
Somewhat Homomorphic Encryption

from Linear Homomorphism and Sparse LPN

Henry Corrigan-Gibbs
MIT CSAIL

henrycg@csail.mit.edu

Alexandra Henzinger
MIT CSAIL

ahenz@csail.mit.edu

Yael Kalai
MIT CSAIL

tauman@mit.edu

Vinod Vaikuntanathan
MIT CSAIL

vinodv@csail.mit.edu

October 30, 2024

Abstract

We construct somewhat homomorphic encryption schemes from the learning sparse parities
with noise (sparse LPN) problem, along with an assumption that implies linearly homomor-
phic encryption (e.g., the decisional Diffie-Hellman or decisional composite residuosity assump-
tions). Our resulting schemes support an a-priori bounded number of homomorphic operations:
O(log λ/ log log λ) multiplications followed by poly(λ) additions, where λ ∈ N is a security pa-
rameter. These schemes have compact ciphertexts: after homomorphic evaluation, the bit-length
of each ciphertext is a fixed polynomial in the security parameter λ, independent of the number
of homomorphic operations applied to it. This gives the first somewhat homomorphic encryption
schemes that can evaluate the class of bounded-degree polynomials with a bounded number of
monomials without relying on lattice assumptions or bilinear maps.

Much like in the Gentry-Sahai-Waters fully homomorphic encryption scheme, ciphertexts
in our scheme are matrices, homomorphic addition is matrix addition, and homomorphic mul-
tiplication is matrix multiplication. Moreover, when encrypting many messages at once and
performing many homomorphic evaluations at once, the bit-length of ciphertexts in some of our
schemes (before and after homomorphic evaluation) can be arbitrarily close to the bit-length of
the plaintexts. The main limitation of our schemes is that they require a large evaluation key,
whose size scales with the complexity of the homomorphic computation performed, though this
key can be re-used across any polynomial number of encryptions and evaluations.

1

Contents

1 Introduction 3
1.1 Our Results . 4
1.2 Technical Overview . 6
1.3 Related Work . 10

2 Background and Definitions 11
2.1 Definition of Somewhat Homomorphic Encryption 12
2.2 Definition of Linearly Homomorphic Encryption . 13
2.3 Definition of LPN and Sparse LPN . 13

3 Somewhat Homomorphic Encryption from Sparse LPN and Linearly Homomor-
phic Encryption 15

4 Optimizing the length of ciphertexts 18
4.1 From ciphertext matrices to ciphertext vectors . 19
4.2 From ciphertext vectors to a single Fq element . 19
4.3 Shrinking the length of output ciphertexts . 21
4.4 Proof sketch for Theorem 4.1 . 23

5 Open Question: Can We Bootstrap? 24

References 25

A Additional Material on Sparse LPN 32

B Additional Material on Somewhat Homomorphic Encryption 33
B.1 Proof of Theorem 3.1 . 33
B.2 Proof of Remark 3.3 . 41
B.3 Proof of Remark 3.4 . 42

C Additional Material on Optimizations and Batching 43
C.1 Syntax for Batch Somewhat Homomorphic Encryption 43
C.2 Additional Material for Section 4.1 . 45
C.3 Additional Material for Section 4.2 . 52
C.4 Additional Material for Section 4.3 . 52
C.5 Proof of Theorem 4.1 . 59

2

1 Introduction

An encryption scheme is homomorphic if it allows anyone to perform computations on encrypted
data [RAD78]. There are many shades of homomorphic encryption: linearly homomorphic encryp-
tion can perform only additions on encrypted data [GM84]; fully homomorphic encryption can
perform any polynomial-time computation on encrypted data [Gen09]; and somewhat homomor-
phic encryption falls in between these two notions, in that it can perform a restricted class of
computations on encrypted data. Somewhat homomorphic encryption has wide-ranging applica-
tions to the theory of cryptography [OSI05,DPSZ12,CLR17,LT22,CGHK22,LMW23] and the de-
sign of privacy-preserving systems [WH12,BPTG14,DGBL+17,ACLS18,HHCP19,JVC18,HLC+22,
RCK+21,MW22].

More formally, we say an encryption scheme is homomorphic for a class of computations C
if, given an evaluation key ek, it is possible to map the ciphertexts Enc(x1), . . . ,Enc(xn) to a new
ciphertext Enc(f(x1, . . . , xn)) for all f ∈ C, where the bitlength of Enc(f(x1, . . . , xn)) is smaller than
the bitlength of specifying f .1 (Without this requirement, any encryption scheme could be trivially
homomorphic by concatenating ciphertexts and appending a description of the function applied.)
Then, an encryption scheme is somewhat homomorphic if it can evaluate a class of computations
that can be expressed using both addition and multiplication gates, capturing the notion of “non-
linear” computation on encrypted data [Gen09,VDGHV10,Hal17].

To date, constructions of somewhat homomorphic encryption are known from precious few
hardness assumptions. Boneh, Goh, and Nissim gave an encryption scheme that can homomor-
phically evaluate degree-two polynomials from cryptographic pairings [BGN05]. Constructions of
somewhat homomorphic encryption for polynomials of degree larger than two rely on the learning
with errors problem [Reg09,MGH10,BV11,Bra12,BGH13,GSW13,BV14,BGV14], its instantiation
over rings [LPR10, GHS12, GHPS13, BLLN13, ASP14, DM15, CGGI16, CKKS17, GH19, CGGI20],
the NTRU problem [HPS98,LATV12], or the approximate integer greatest common divisor prob-
lem [VDGHV10], all of which are based on underlying lattice problems (directly or indirectly).
Only two alternative approaches to somewhat homomorphic encryption exist. The first is via
the route of indistinguishability obfuscation (iO) [CLTV15, JLS21, JLS22, RVV24]; all known iO
schemes with a non-vacuous proof of security use pairings (along with other cryptographic as-
sumptions) and require a tremendously expensive reduction to the intermediate notion of iO
with exponential efficiency [AJ15, BV15, LPST16]. The second is via the route of private in-
formation retrieval [CGKS95, KO97], which enables homomorphic evaluation of branching pro-
grams [IP07,DGI+19]. However, the bitlength of ciphertexts in these schemes grows with the length
of the branching program evaluated. While complexity-theoretic barriers have precluded proving
strong lower bounds on the length of branching programs, it is currently not known how to use
these schemes to homomorphically evaluate polynomials of degree two (or higher) with better than
trivial ciphertext size. After many years of study, these approaches to somewhat homomorphic
encryption remain the only ones in the cryptographer’s toolkit. In particular, to homomorphically
evaluate degree-two polynomials, bilinear maps and lattices are the only games in town.

In this paper, we present a new approach for constructing somewhat homomorphic encryption.
Our idea is to take a linearly homomorphic encryption scheme and “lift” it into one that can
perform a bounded amount of non-linear homomorphic computation. We achieve this lifting step

1In general, homomorphic evaluation can produce ciphertexts that look different from the ciphertexts produced
by the encryption algorithm. We elide this detail in this informal description.

3

by relying on a coding-theoretic assumption, namely sparse learning parities with noise [Ale03,
AIK06b, IKOS08, ABW10,DIJL23]. This gives the first constructions of somewhat homomorphic
encryption for the class of polynomials of degree two (or higher) from assumptions not based on
lattices or pairings. Our result places somewhat homomorphic encryption on broader foundations:
diversifying the assumptions from which it can be built, presenting a range of simple constructions
with new efficiency trade-offs, and demonstrating that homomorphic evaluation of bounded-degree
polynomials is possible even in a world where iO is impractical and lattice problems are easy.

1.1 Our Results

Somewhat Homomorphic Encryption using Sparse LPN. This paper builds somewhat ho-
momorphic encryption from the sparse learning parities with noise assumption (“sparse LPN”),
a coding-theoretic assumption [Ale03,AIK06b, IKOS08,ABW10,DIJL23,RVV24]. While the stan-
dard LPN assumption posits that it is hard to solve a system of random linear equations (over
a finite field) corrupted in some locations with random noise [GKL93,BFKL93], the sparse-LPN
assumption states that this task remains hard even when the linear equations are sparse, i.e., only
a few variables appear in each equation [DIJL23]. An alternate view of the sparse-LPN problem
is as the task of decoding a noisy linear code, in which each symbol of the codeword is a ran-
dom linear combination of a small number of symbols of the message. The sparse-LPN assumption
is closely related to the hardness of random constraint-satisfaction problems [Gol00,CM01,Fei02,
Ale03,AIK06a,ABW10,AOW15,AL16,KMOW17].

In more detail, the sparse-LPN assumption (defined formally in Section 2) is parameterized by a
secret dimension n, a number of samples m, a sparsity k, a prime modulus q, and an error parameter
δ. The assumption asserts that, for a matrix A ∈ Fm×n

q with k random non-zero entries in each row,
a secret vector s←R Fn

q , and an error vector e ∈ Fm
q in which each entry is a random non-zero value

in Fq with probability n−δ and zero otherwise, it is computationally hard to distinguish (A,A·s+e)
from (A, r), for a uniform random r←R Fm

q . Given a security parameter λ ∈ N, our results work in
the following parameter regime: the dimensions n,m are polynomials in λ, the sparsity k is at most
logarithmic in λ, and the error parameter δ ∈ (0, 1) is a constant, meaning that each sparse-LPN
sample has inverse-polynomial noise rate n−δ.

From sparse LPN and a secret-key linearly homomorphic encryption scheme, we show how to
construct a secret-key somewhat homomorphic encryption scheme for the class of polynomials with
bounded degree and a bounded number of monomials (Sections 3 and 4). We prove the following:

Informal Theorem 1.1. On security parameter λ ∈ N and given a prime modulus q ≥ 3 of size
at most exponential in λ, assume that sparse LPN with modulus q, O(

√
log λ)-sparsity, and any

inverse-polynomial noise rate is hard. Assume the existence of a linearly homomorphic encryption
scheme with message space Fq. Then, for every constant c ∈ N, there exists a somewhat homo-
morphic encryption scheme capable of evaluating multivariate polynomials over Fq with total degree
c · log λ/ log log λ and up to λc monomials.

Our schemes require the transmission of a large evaluation key, whose size scales linearly with
the number of additions and exponentially with the number of multiplications to be performed
on ciphertexts. Concretely, given the above parameter c ∈ N (which determines how expressive
the class of homomorphic computations is that our scheme supports), the length of the evaluation
key grows exponentially with c. However, this evaluation key only needs to be published once;

4

thereafter, it can be re-used to evaluate any poly(λ) number of polynomials on any poly(λ) number
of ciphertexts encrypted under the corresponding secret key — regardless of the value of c. In this
way, it is possible to amortize away the cost of communicating the large evaluation key.

Instantiating our construction with concrete linearly homomorphic encryption schemes [ElG85,
Pai99,DJ01], we obtain new somewhat homomorphic encryption schemes from sparse LPN and the
hardness of either the decisional Diffie-Hellman (DDH) [DH76,Bon98] or the decisional composite
residuosity (DCR) [Pai99] problems. (For ways to construct an analogous scheme from quadratic
residuosity [GM84], see Remark 3.6.) These schemes are the first constructions of homomorphic
encryption for the class of polynomials of degree two (or higher) that do not require assumptions
based on lattices or pairings. As an additional benefit, our somewhat homomorphic encryption
schemes are compact: after homomorphic evaluation, the bitlength of the ciphertexts is a fixed
polynomial in λ, regardless of the computations that have been applied to them.

Finally, we show how to shrink the length of ciphertexts in the above construction. Namely, when
some of our somewhat homomorphic encryption schemes are used to encrypt many messages at
once and evaluate many polynomials at once, the sum of the ciphertexts’ bitlengths — both before
and after homomorphic evaluation — can be arbitrarily close to the bitlengths of the plaintexts. In
particular, we describe optimizations that give the following efficiency:

Informal Theorem 1.2. On security parameter λ ∈ N and any prime modulus q ≥ 3 of size
at most polynomial in λ, assume that sparse LPN with modulus q, O(

√
log λ)-sparsity, and any

inverse-polynomial noise rate is hard and that DDH is hard. Then, there exists a somewhat homo-
morphic encryption scheme with message space Fq and the homomorphic capabilities of Informal
Theorem 1.1, such that, when evaluating a batch of t polynomials, each in Fm

q → Fq, on a batch of
tm inputs,

• all tm input ciphertexts together can consist of tm · log q +m · poly log(λ) bits, in addition to a
one-time evaluation key of t2 · poly(λ) bits, and

• all t output ciphertexts together can consist of t · log q + poly(λ) bits.

Here, when the number of polynomials t evaluated in a batch grows large, each encrypted input
and output is represented using roughly one element in Fq — matching the plaintext space, up to
additive factors. As before, when evaluating sufficiently many such batches of polynomials, we can
amortize away the cost of transmitting the evaluation key.

Our constructions draw inspiration from two sources: a well-known fully homomorphic encryp-
tion scheme from the learning with errors (LWE) assumption [GSW13] and a recent homomor-
phic secret-sharing scheme from sparse LPN [DIJL23]. In particular, our results can be viewed
in two ways: on the one hand, our schemes modify Dao, Ishai, Jain, and Lin’s homomorphic
secret-sharing scheme from sparse LPN to work with only a single party, rather than multiple
non-colluding parties. On the other hand, our schemes closely resemble Gentry, Sahai, and Wa-
ters’ fully homomorphic encryption from LWE, ported to the setting of code-based encryption.
This connection lets us draw upon many optimizations developed in the context of lattice-based
encryption [PVW08, BV14, BGV14, CGGI20, dCHI+22] to improve our schemes’ efficiency. Like
the Gentry-Sahai-Waters encryption scheme, our somewhat homomorphic encryption is simple:
ciphertexts are sparse matrices, homomorphic addition is just matrix addition, and homomorphic
multiplication is just matrix multiplication, without even the bit decomposition of the Gentry-Sahai-
Waters scheme. The main limitation of our schemes is that they remain much less homomorphic
than their lattice-based counterparts, which allow for fully homomorphic encryption.

5

Can we bootstrap? One question left open by our work is whether it is possible to bootstrap our
schemes to construct fully homomorphic encryption from sparse LPN and linearly homomorphic
encryption (possibly with another mild assumption). We discuss why this appears challenging in
Section 5. In particular, a natural approach would be to instantiate our constructions with a linearly
homomorphic encryption scheme whose decryption circuit can be homomorphically evaluated by
our somewhat homomorphic schemes — that is, we need linearly homomorphic encryption whose
decryption algorithm can be written as a multivariate polynomial of total degree O(log λ/ log log λ)
with poly(λ) monomials. However, this route likely runs into trouble: first, we do not know of such a
linearly homomorphic scheme. Second, if there were to be such a linearly homomorphic encryption
scheme, together with our constructions, it appears to imply a gadget that can generate many
sparse-LPN samples from a small number of them. This in turn would render such a bootstrapped
scheme vulnerable to attacks on sparse LPN in the many-sample regime.

1.2 Technical Overview

We begin with an overview of each of the constructions and results in this work.

Sparse Learning Parity with Noise. The sparse learning parity with noise (sparse LPN) as-
sumption posits that it is computationally hard to solve a sparse system of linear equations over a
finite field, which has been corrupted with random noise in a fraction of locations. In more detail,
given a prime modulus q ≥ 2, dimensions m,n ∈ N, a sparsity parameter k ≤ n, and a constant
error parameter δ ∈ (0, 1), we write Sk,m,n,q to denote the set of matrices in Fm×n

q whose rows
are each k-sparse (i.e., contain exactly k non-zero entries). We write RandBernn−δ,q to denote a

Bernoulli random variable that takes on a random value in Fq \{0} with probability n−δ, and takes
on the value 0 otherwise.

Then, the sparse-LPN assumption with parameters (n,m, q, δ, k) states that the following two
distributions are computationally indistinguishable:(A,As+ e) :

A←R Sk,m,n,q

s←R Fn
q

e← RandBernmn−δ,q

 c
≈

{
(A,u) :

A←R Sk,m,n,q

u←R Fm
q

}
.

At first glance, sparse LPN looks very similar to the learning with errors (LWE) assumption:
the assumptions differ only in their choice of the A-matrix (taken to be sparse in sparse LPN)
and their error distribution (LWE uses low-norm errors that perturb every location, while sparse
LPN uses high-norm errors that completely corrupt a small fraction of locations). However, while
LWE gives rise to some of the most powerful cryptographic tools including fully homomorphic
encryption, only a handful of primitives are known from sparse LPN: among them, public-key
encryption [Ale03,ABW10], cryptographic tools with constant overhead [AIK06b,IKOS08,ADI+17],
and multi-party computation with sublinear communication [DIJL23].

Building Somewhat Homomorphic Encryption. In Section 3, we introduce new constructions
of somewhat homomorphic encryption from sparse LPN, along with an assumption that implies
linearly homomorphic encryption (e.g., DDH or DCR). At its core, our construction relies on two
key design steps:

Step 1: Leveraging sparse LPN’s structure to support homomorphic operations. The reason why
sparse LPN implies an encryption scheme that can support both homomorphic additions and mul-

6

tiplications — unlike many other cryptographic assumptions — is because it is powerful enough to
homomorphically evaluate its own decryption circuit (a bounded number of times)2.

In particular, we can build a Regev-style [Reg09] encryption scheme from sparse LPN that,
given a secret key s ∈ Fn

q and a message µ ∈ Fq, produces the ciphertext

RegevEncs(µ) = (a,a⊺s+ e+ µ) ∈ Fn
q × Fq,

for a random k-sparse vector a ∈ Fn
q and a Bernoulli error e ← RandBernn−δ,q. The sparse-LPN

assumption implies that the value a⊺s+e is computationally indistinguishable from random, so the
ciphertext hides the message µ. In addition, this scheme has the following properties:

1. It can homomorphically evaluate linear functions with few (i.e., up to O(nδ)) variables. More
precisely, we can add up c such ciphertexts encrypted with the same secret key s; the result
will be an encryption of the sum of the messages under secret key s, with c times larger error
probability.

2. Its decryption algorithm is a linear function in only a few variables. In particular, given a
ciphertext (a, b) ∈ Fn

q ×Fq encrypted with secret key s ∈ Fn
q , decryption evaluates the function

fa,b(x1, . . . , xn) = b− a⊺x = b−
n∑

i=1

ai · xi

on input s = (s1, . . . , sn) ∈ Fn
q , where the vector a = (a1, . . . , an) ∈ Fn

q is public and has
only a few non-zero entries. Decryption succeeds if the error e in the ciphertext is zero; this
happens with good probability, as long as not too many homomorphic additions have been
performed.

Combining these two properties, we follow the template of Gentry, Sahai, and Waters [GSW13]
and Micciancio’s [Mic19] “linear-decrypt-and-multiply” framework — applied previously in the
context of lattice-based encryption — to implement homomorphic multiplications. To do so, for each
message µ and each entry si of the secret key s ∈ Fn

q , we publish the encryption RegevEncs(µ·si).
(Here, as we will see in Section 2.3, to ensure key-dependent-message security from sparse LPN, we
sample the a-components of such a ciphertext to be k-sparse vectors with a random non-zero value
in their ith entry.) Then, given the encryption of two inputs RegevEncs(µ) and RegevEncs(µ̂), along
with special encryptions of the form RegevEncs(µ̂ · si) for each i ∈ [n], we compute RegevEncs(µµ̂)
by:

• thinking of each component (a, b) of RegevEncs(µ) as a “plaintext” in Fn
q × Fq,

• computing the plaintext multiplication ctµ·µ̂ = b · RegevEncs(µ̂), and

• homomorphically “decrypting” this ciphertext ctµ·µ̂ by subtracting the inner-product of the
plaintext vector a with the ciphertext vector RegevEncs(µ̂ · s).

2Unlike in prior FHE schemes, the fact that we can homomorphically evaluate the decryption circuit does not
give us a scheme that is “bootstrappable.” This is because the amount of error present in our ciphertexts is always
larger after homomorphically evaluating the decryption circuit than before. So, we can make use of homomorphic
decryption only to support multiplications, not to control error growth.

7

By the above two properties, this final step produces exactly the output we need:

b·RegevEncs(µ̂)− a⊺·RegevEncs(µ̂·s) = b·RegevEncs(µ̂)−
n∑

i=1

ai·RegevEncs(µ̂·si)

≈ RegevEncs(bµ̂− µ̂ · a⊺s) (property 1.)

= RegevEncs((b− a⊺s) · µ̂)
= RegevEncs(fa,b(s) · µ̂)
≈ RegevEncs(µµ̂). (property 2.)

We can similarly multiply RegevEncs(µ̂) by each RegevEncs(µ ·si) to produce RegevEncs(µµ̂ ·si).
This lets us compute exactly the inputs that we need to perform another multiplication — namely,
the encryptions RegevEncs(w) and RegevEncs(w · s) for every intermediate wire value w ∈ Fq —
allowing us to keep multiplying and adding until the error growth becomes unmanageable.

Our somewhat homomorphic encryption schemes follow exactly this template. More concretely,
given a secret key s = (s1, . . . , sn) ∈ Fn

q and a message µ ∈ Fq, we compute a ciphertext matrix

C ∈ F(n+1)×(n+1)
q encrypting µ as

C =


RegevEncs(−µ · s1)
RegevEncs(−µ · s2)

...
RegevEncs(−µ · sn)

RegevEncs(µ)

 =

[
A || As+ e+ µ ·

[
−s
1

]]
,

where A ∈ F(n+1)×n
q is a matrix whose rows are each k-sparse and the vector e ∈ Fn+1

q has entries
sampled from the Bernoulli error distribution. To decrypt ciphertext C, we run Regev decryption
(property 2 above) on the last row of the ciphertext matrix. To perform homomorphic additions on
ciphertexts C1 and C2, we add the ciphertext matrices: this operation exactly adds the underlying
Regev encryptions, stored in each row of the matrices. To perform homomorphic multiplications
on ciphertexts C1 and C2, we multiply the ciphertext matrices: this operation exactly implements
the ciphertext tensoring and decryption steps described above to multiply.

We give an alternate view of this scheme, which closely resembles Gentry, Sahai, and Waters’
fully homomorphic encryption from lattices [GSW13] (referred to as the “GSW scheme”), in our
proof of correctness in Section 3 and Appendix B.1. At a high level, our ciphertexts are sparse
matrices that are carefully constructed to have the secret key as an “approximate” eigenvector and
the encrypted message as the corresponding eigenvalue. (Here, unlike in GSW, the “approximate”
eigenvector is corrupted with high-norm errors in a small fraction of locations.) As matrix addi-
tion/multiplication preserves the eigenvectors of a matrix while adding/multiplying the eigenvalues,
we can perform homomorphic operations. However, unlike in GSW, we must deal with much more
aggressive error growth, since any errors in the eigenvectors corrupt all computations that they
touch (rather than just corrupting the lowest-order bits). As a result, our homomorphic operations
only succeed when the ciphertext matrices are sufficiently sparse — this is why our construction
requires sparse LPN instead of plain LPN.

Step 2: Using linearly homomorphic encryption to achieve compactness. While sparse LPN on its
own is sufficient to implement homomorphic additions and multiplications, these operations are

8

not compact: with each operation, the underlying matrices grow less and less sparse. As a result,
representing a ciphertext matrix C always requires more bits than just representing the function
that has been homomorphically applied to it. In fact, this limitation may be inherent: it is not
known whether sparse LPN can be broken using an SZK oracle (where SZK denotes the class of
languages with statistical zero-knowledge proofs), making it unclear whether sparse LPN alone can
achieve the “compression” needed to compactly support homomorphic operations [BLVW19,DJ24].

To circumvent this issue, we again take advantage of the fact that sparse-LPN decryption is a
linear function of the secret key s ∈ Fn

q . To do so, we include in our scheme an evaluation key ek that
holds encryptions of each entry of the sparse-LPN secret key s ∈ Fn

q under a second, only linearly
homomorphic encryption scheme with message space Fq. After performing all desired operations
on ciphertexts, any party performing homomorphic evaluation can then homomorphically decrypt
the (non-compact) sparse-LPN ciphertexts under the linearly homomorphic encryption scheme, to
obtain (compact) ciphertexts that encrypt the same underlying message. This gives our main result.

Minimizing ciphertext length. In Section 4, we show how to reduce the bitlength of our scheme’s
ciphertexts. That is, under DDH and when computing over any prime modulus q = poly(λ),
when homomorphically evaluating a batch of t polynomials, each mapping Fm

q → Fq, on tm input
ciphertexts, the bitlength of all tm input ciphertexts together can be arbitrarily close to tm · log q,
as t grows large. This the minimum number of bits necessary to represent the input plaintexts.
The bitlength of all t output ciphertexts together can be arbitrarily close to t · log q, as t grows
large. This is the minimum number of bits necessary to represent the output plaintext. Finally, by
evaluating sufficiently many batches of polynomials, we can amortize away the cost of transmitting
the one-time evaluation key.

To achieve this efficiency, we apply a sequence of optimizations: in Section 4.1, we shrink the
length of fresh sparse-LPN ciphertexts by a factor of the secret dimension n, at the cost of requiring
a larger evaluation key. Concretely, rather than encrypting a message µ ∈ Fq as RegevEncs(µ) along
with the special encryptions RegevEncs(µ ·si) for each i ∈ [n], we instead only publish RegevEncs(µ)
and a one-time “key-switching key” that holds RegevEncs(si·sj) for each i, j ∈ [n]. (Here, we actually
use a chain of two secret keys to avoid circular-security issues.) Then, we show how to generate each
of the special encryptions RegevEncs(µ ·si) using only RegevEncs(µ) and the key-switching key. This
technique is inspired by algorithms for key-switching from Regev to GSW encryption [CGGI20]. In
Section 4.2, we fix and re-use large portions of the sparse-LPN ciphertexts at only a polynomial loss
in security, following a standard technique in the lattice literature [PVW08]. At this point, each
sparse-LPN ciphertext consists of essentially one value in Fq — this matches the plaintext space.

In Section 4.3, we shrink the size of ciphertexts after homomorphic evaluation. To this end, we
construct a linearly homomorphic encryption scheme from DDH that can evaluate linear functions
over an arbitrarily small modulus q (that is of size at most poly(λ)), and that achieves high rate in a
specific context: namely, when homomorphically applying a batch of many different linear functions
to many ciphertexts, each output ciphertext consists of roughly one element in Fq. Our linearly
homomorphic encryption scheme from DDH combines ideas from recent “distributed discrete loga-
rithm” protocols [BGI16,DGI+19,BBD+20,BBDP22] and rate-one encryption schemes from lattice
assumptions [dCHI+22]. Using this linearly homomorphic scheme, our somewhat homomorphic en-
cryption scheme can perform “batch compaction” after evaluating multiple different polynomials
on different ciphertexts. When doing so with batch size t, its output is a “packed” DDH ciphertext
that holds all t polynomial evaluations, each encoded as a value in Fq (plus a single preamble of λ
bits) — again, this essentially matches the plaintext space.

9

Discussion: The power of sparse LPN. At first sight, sparse LPN seems like an assump-
tion with limited utility: in the parameter regime we work in, sparse LPN does not imply that
a hard problem in the complexity class SZK exists, a prerequisite for building homomorphic en-
cryption [DJ24]. Moreover, in some of the parameter settings that our schemes work in, sparse
LPN is not known to imply public-key encryption (which is only known from LPN with constant
sparsity [ABW10,DIJL23,RVV24], with sufficiently low noise rate [Ale03], or with sub-exponential
hardness [YZ16]). However, once paired with other relatively mild cryptographic assumptions (in
our case, the existence of linearly homomorphic encryption), sparse LPN seems to act as a pow-
erful catalyst towards constructing more advanced cryptography. An analogous, equally intriguing
phenomenon appears in the study of indistinguishability obfuscation (iO) [JLS21, JLS22,RVV24],
where sparse LPN together with other standard assumptions (specifically, the DLIN assumption
on bilinear maps and LPN over large fields) gives iO. Our work makes progress on harnessing the
power of sparse LPN in a different (albeit more modest) setting.

Yet a different interpretation of our results is that they “decompose” the properties of the
learning with errors (LWE) assumption needed to build somewhat homomorphic encryption. As
described earlier, in our schemes, sparse LPN provides linear decryption, while linearly homomor-
phic encryption provides compression. LWE has both of these properties baked in.

1.3 Related Work

Homomorphic encryption. Rivest, Adleman, and Dertouzos first proposed the notion of homo-
morphic encryption in 1978 [RAD78]. Many early encryption schemes from number-theoretic as-
sumptions support natural but limited types of homomorphism: they can compute only multipli-
cations [ElG85] or only additions [Rab79,GM84, ElG85,Ben87, Pai99,DJ01] on their ciphertexts.
Using bilinear maps [BF01], Boneh, Goh, and Nissim gave an encryption scheme supporting any
number of additions and one multiplication (i.e., degree-two polynomials) [BGN05]. Gentry, Halevi,
and Vaikuntanathan later showed how to evaluate this same class of functions with an encryption
scheme from LWE [GHV10]. However, these works left open the question of how to build homo-
morphic encryption for a larger class of functions, e.g., polynomials of higher degree.

In his 2009 thesis, Gentry gave a fully homomorphic encryption scheme from ideal lattices [Gen09],
kicking off a cascade of works building lattice-based fully homomorphic schemes from standard as-
sumptions [LPR10,VDGHV10,BV11,Bra12,LATV12,BLLN13,BV14] with better efficiency [GHS12,
GHPS13,BGH13,BGV14,ASP14,DM15,CGGI16,CKKS17,GH19,BDGM19,CGGI20] and simpler
constructions [GSW13]. Melchor, Gaborit, and Herranz leveraged a certain flavor of linearly ho-
momorphic encryption to evaluate low-degree polynomials and instantiated their framework from
lattice-based assumptions [MGH10,MBGH11].

Two main lines of work have constructed somewhat/fully homomorphic encryption from stan-
dard assumptions not based on lattices. First, in 2007, Ishai and Paskin described a generic
transformation that uses any linearly homomorphic encryption with sufficiently short ciphertexts
(known today from DCR, QR, DDH, and LWE) to evaluate branching programs under encryp-
tion [IP07,DGI+19]. Ishai and Paskin’s scheme can homomorphically evaluate any log-space or NC1

computation. However, unlike the schemes in this paper, Ishai and Paskin’s scheme is not compact:
the size of evaluated ciphertexts scales polynomially with the branching program’s length, but is
independent of its size. To date, it is not known how to use Ishai and Paskin’s scheme to homo-
morphically evaluate the class of polynomials of degree two (or higher) with better than trivial

10

ciphertext size. Second, recent constructions of indistinguishability obfuscation (iO) together with
any re-randomizable encryption scheme (e.g., based on DDH, DCR, QR, etc.) imply fully homomor-
phic encryption [CLTV15]. Our schemes are vastly simpler than the constructions implied by iO,
under every reasonable complexity notion: size of boolean circuit implementing the construction,
number of lines of code to implement, number of pages to describe, etc. Moreover, all known iO
schemes [JLS21,JLS22,RVV24] require bilinear maps, while our schemes do not.

Brakerski gave evidence that known LPN-based encryption schemes cannot be somewhat homo-
morphic [Bra13]: to break a candidate scheme [BL11], he proved that any homomorphic encryption
that is powerful enough to evaluate the majority function cannot have a “weakly learnable” decryp-
tion circuit, as standard LPN-based schemes with linear decryption do. Our schemes get around this
impossibility result by working with a second assumption (DDH or DCR) and thus the decryption
circuit of our schemes is not linear.

Connections to homomorphic secret sharing. Homomorphic secret sharing is the multi-party ana-
logue of homomorphic encryption: data is shared among multiple parties such that no individual
party can recover the data, but together the parties can perform computations on it without
interacting [BGI16,BGI+18]. Micciancio [Mic19] showed that Gentry, Sahai, and Waters’ fully ho-
momorphic encryption from lattices [GSW13] and recent homomorphic secret sharing schemes from
computational assumptions [BGI16,BKS19,FGJI17,OSY21,RS21,DIJL23] are closely related: both
make use of a “linear-decrypt-and-multiply” operation to implement homomorphic multiplications.
Our new somewhat homomorphic encryption schemes also fall under this same framework. One
view of our schemes is that they make Dao, Ishai, Jain, and Lin’s recent homomorphic secret
sharing scheme from sparse LPN [DIJL23] work with only a single party — rather than multiple
non-colluding parties — by substituting the use of a linear secret-sharing scheme with linearly
homomorphic encryption.

Concurrent Work. Agrawal, Saha, Schwartzbach, Vanukuri and Vasudevan have informed us
that they have constructed a somewhat homomorphic encryption scheme from variants of LPN.
We will update this statement when more details are available.

2 Background and Definitions

We begin by defining the cryptographic primitives and hardness assumptions used in this work.

Notation. Throughout, we assume that sparse vectors and matrices are represented efficiently in
memory, and in particular we define the bitlength of a vector in Fn

q with k ≪ n non-zero entries to
be k · log q · log n. Our model of computation is a RAM machine with O(1) cost per memory access
and with word-size linear in the security parameter, λ ∈ N. We measure the cost of algorithms and
computations in terms of the number of RAM operations they require.

We write D
c
≈ D′ to denote that samples from two distributions D and D′ are computationally

indistinguishable. We use negl(λ) to denote a function that is negligibly small in λ, and poly(λ) to
denote one that is polynomial in λ. We write the entries of a vector v ∈ Fn

q as (v1, . . . , vn). We write
the set {1, 2, . . . , n} as [n]. For a set of elements S, we write v ←R S to denote sampling a uniform
random element v from S. For a probability distribution D, we write v ← D to denote sampling
an element v from D. For a randomized algorithm Alg, we write v ← Alg to denote the output of
a run of Alg. We write v := x to assign the value of x to v. We write 1cond to denote the indicator

11

variable that is “1” if condition cond is true, and “0” otherwise. We omit the notation ⌊·⌋ and ⌈·⌉
and treat values like nϵ and n/k as integers. All logarithms are base two.

Standard primitives. We use the standard definition of pseudorandom functions (PRFs) [Gol01].
On key space K, input space I, and output space O, we denote a PRF as PRF : K × I → O.

2.1 Definition of Somewhat Homomorphic Encryption

An encryption scheme is “somewhat homomorphic” if a bounded class of computations may be
performed on its ciphertexts. Following Halevi’s definition [Hal17], we describe such a scheme in
terms of a security parameter λ ∈ N, which governs how hard it is to break the scheme’s security,
and a functionality parameter τ ∈ N, which governs how many homomorphic operations the scheme
supports. Then, we define a somewhat homomorphic encryption scheme relative to a correctness
failure probability ϵ = ϵ(λ) ∈ [0, 1] and a function class Fτ ⊆ {f :M∗ →M}, which comprises the
computations that can be homomorphically performed on ciphertexts:

Definition 2.1 (Somewhat Homomorphic Encryption). Given a key space K, a message spaceM,
and a ciphertext space C, a somewhat homomorphic encryption (SHE) scheme for the function class
Fτ is a tuple of four polynomial-time algorithms:

• Gen(1λ, 1τ)→ (sk, ek), a randomized algorithm that takes as input a security parameter λ ∈ N
and a functionality parameter τ ∈ N and outputs a secret key sk ∈ K and an evaluation key
ek ∈ K.

• Enc(sk, µ)→ ct, a randomized algorithm that takes as input a secret key sk ∈ K and a message
µ ∈M and outputs a ciphertext ct ∈ C.

• Eval(ek, f, ct1, . . . , ctℓ) → ctout, a deterministic algorithm that takes as input an evaluation
key ek ∈ K, a function f : Mℓ → M, and ℓ ciphertexts ct1, . . . , ctℓ ∈ C and outputs a
ciphertext ctout ∈ C.

• Dec(sk, ct) → µ, a deterministic algorithm that takes as input a secret key sk ∈ K and a
ciphertext ct ∈ C and outputs a message µ ∈M.

Given a failure probability ϵ(λ) and a function class Fτ , we require a somewhat homomorphic
encryption scheme to satisfy three properties: correctness, semantic security, and compactness.

Correctness. For all parameters λ ∈ N and τ ∈ N, for all functions f :Mℓ →M in the class Fτ ,
and for all ℓ messages µ1, . . . , µℓ ∈M, we require that:

Pr

Dec(sk, ctout) ̸= f(µ1, . . . , µℓ)

∣∣∣∣∣∣
sk, ek ← Gen(1λ, 1τ)

cti ← Enc(sk, µi) for i ∈ [ℓ]
ctout ← Eval(ek, f, ct1, . . . , ctℓ)

 ≤ ϵ(λ).

Semantic security. For all parameters λ ∈ N and τ ∈ N, for any number of messages m =
poly(λ) ∈ N, and for any two vectors u,v ∈ Mm, their encryptions must be computationally
indistinguishable: {

ek,Enc(sk, u1), . . . ,Enc(sk, um)
∣∣ sk, ek← Gen(1λ, 1τ)

}
c
≈

{
ek,Enc(sk, v1), . . . ,Enc(sk, vm)

∣∣ sk, ek← Gen(1λ, 1τ)
}
.

12

Compactness. There exists a polynomial p(·) such that, for all parameters λ ∈ N and τ ∈ N, for
all functions f :Mℓ →M in the class Fτ , and for all ℓ messages µ1, . . . , µℓ ∈M, let:

sk, ek ← Gen(1λ, 1τ)
cti ← Enc(sk, µi) for i ∈ [ℓ]

ctout ← Eval(ek, f, ct1, . . . , ctℓ).

Then, the bitlength of the ciphertext ctout is at most p(λ), independent of τ .

2.2 Definition of Linearly Homomorphic Encryption

An encryption scheme is “linearly homomorphic” if it supports additions and scalar multiplications
on its ciphertexts. We formalize this notion as follows:

Definition 2.2 (Linearly Homomorphic Encryption). For any modulus q ≥ 2, a linearly homo-
morphic encryption (LHE) scheme over message space Zq is a SHE scheme whose function class Fτ

contains all affine functions over Zq in up to τ variables.

Linearly homomorphic encryption is implied by the decisional Diffie-Hellman (DDH) assump-
tion [ElG85] and the decisional composite residuosity (DCR) assumption [Pai99], among others.
We say a LHE scheme has “rate one” if the ratio between the bitlength of ciphertexts after ho-
momorphic evaluation and the bitlength of plaintexts approaches one. That is, each ciphertext
(after homomorphic evaluation) requires roughly as many bits to represent as each plaintext. The
Damg̊ard-Jurik cryptosystem from DCR is a LHE scheme with rate one: as the message space grows
large, the bitlength of ciphertexts can be arbitrarily close to the bitlength of plaintexts [DJ01].

From DDH, no LHE scheme with rate one is known. However, prior work has constructed
LHE from DDH such that, when evaluating the same affine function on many ciphertexts, the
bitlength of a batch of ciphertexts after homomorphic evaluation can be made arbitrarily close
to the bitlength of plaintexts [DGI+19, BBDP22]. In Section 4.3, we build a new LHE scheme
from DDH such that, when evaluating many different affine functions on many ciphertexts, the
bitlength of a batch of ciphertexts after homomorphic evaluation can be made arbitrarily close to
the bitlength of plaintexts (Lemma 4.5). We refer to this as LHE with “batch-rate one.”

2.3 Definition of LPN and Sparse LPN

At a high level, the learning parity with noise (LPN) assumption [BFKL93] states that it is computa-
tionally hard to solve systems of linear equations over a finite field, when a fraction of the equations
have been corrupted with random noise. In the language of codes, this is equivalent to the task of
decoding a linear code, when the codeword has been randomly corrupted in a fraction of locations.
The sparse learning parity with noise assumption [Ale03,AIK06b,IKOS08,ABW10,DIJL23,RVV24]
posits that this problem remains hard, even when the system of linear equations (or, equivalently,
the generating matrix of the linear code) is sparse. Other research communities have studied the
sparse-LPN problem, which is also referred to as the noisy k-LIN problem or noisy k-XOR in the
case of the binary field.

On their own, the LPN and sparse-LPN assumptions give rise to a modest number of cryp-
tographic primitives, including public-key encryption [Ale03, ABW10, DMQN12, KMP14, YZ16],
pseudorandom generators with linear stretch and constant locality [AIK06b], cryptographic prim-
itives with constant computational overhead [IKOS08, ADI+17], certain forms of pseudorandom

13

correlation generators [BCGI18], and sublinear-communication multi-party computation using ho-
momorphic secret sharing [DIJL23]. However, in combination with other assumptions (in particular,
Diffie-Hellman-like assumptions on groups that admit bilinear maps), LPN and sparse LPN are a
crucial ingredient in constructions of indistinguishability obfuscation [JLS21,JLS22,RVV24], which
in turn imply many cryptographic primitives [SW14,CLTV15,AS16,KNY17,WW24]. One benefit
of LPN and sparse LPN is plausible post-quantum security: they appear to resist attacks even from
quantum algorithms [BLVW19,DJ24].

Defining sparse LPN. Our definitions use the following distributions and sets, parameterized by
an error probability ν ∈ (0, 1), an integer modulus q ≥ 2, dimensions m,n ∈ N, and an integer
sparsity k ≤ n:

• Bernoulli errors. We let RandBernν,q be the distribution over Fq that

– with probability ν, takes on a uniform random value in Fq \ {0}, and
– otherwise, takes on the value 0.

• Sparse matrices. We let Sk,m,n,q denote the set of matrices in Fm×n
q whose rows each contain

exactly k non-zero entries. Throughout, we refer to Sk,m,n,q as the set of k-sparse matrices.

• Sparse diagonal matrices. We let Diag(Sk,m,n,q) denote the subset of matrices in Sk,m,n,q for
which, in every chunk of (n + 1) rows, the values along the “diagonal” must be non-zero.
More formally, this corresponds to the matrices in Fm×n

q where (a) each row must contain k

non-zero entries, and (b) for each index i ∈ [m] where i mod (n + 1) ̸= 0, the ith row in the
matrix contains a non-zero value in its (i mod (n+ 1))th entry.

Definition 2.3 (Decisional (n,m, q, δ, k)-sparse LPN). On security parameter λ ∈ N, secret di-
mension n = n(λ) ∈ N, number of samples m = m(λ) ∈ N, prime modulus q = q(λ) ≥ 2, constant
error parameter δ ∈ (0, 1), and sparsity k = k(λ) ≤ n, the decision version of (n,m, q, δ, k)-sparse
LPN asserts that the following distributions are computationally indistinguishable:(A,As+ e) :

A←R Sk,m,n,q

s←R Fn
q

e← RandBernmn−δ,q

 c
≈

{
(A,u) :

A←R Sk,m,n,q

u←R Fm
q

}
.

In this work, we rely on the sparse-LPN assumption with a secret dimension n that is polynomial
in λ, any modulus q that is at most exponential in λ, any constant error parameter δ ∈ (0, 1), and
any sparsity k that is a super-constant function in λ. In this setting, for any number of samples m =
poly(λ), the sparse-LPN assumption plausibly holds against polynomial-time algorithms. We write
“(n, q, δ, k)-sparse LPN” to denote the assumption that decisional (n,m, q, δ, k)-sparse LPN is true
for any m = poly(λ).

Key-dependent-message security. Looking ahead, for a certain flavor of key-dependent-message
(KDM) security [BHHO08] to hold with sparse LPN, we will need the A-matrix to be a sparse di-
agonal matrix. Dao, Ishai, Jain, and Lin show that, if sparse LPN is hard, then LPN with sparse
diagonal matrices is hard and satisfies KDM security for linear functions [DIJL23, Lemma 4.1]. We
recall this statement, which is proved via a reduction that polynomially increases the number of
samples m, roughly doubles the sparsity k, increases the error parameter δ by o(1), and requires
the modulus q ≥ 3:

14

Lemma 2.4 (KDM Security of Sparse Diagonal LPN [DIJL23, Lemma 4.1]). Under (n, q, δ′, (k +
1)/2)-sparse LPN with a prime modulus q ≥ 3, error rate δ′ = δ−1/ log n, and super-constant, odd
sparsity k = o(

√
n), for any m = poly(λ) messages µ1, . . . , µm ∈ Fq, it holds that:

{
Ai,Ais+ ei + µi ·

[
−s
1

]}
i∈[m]

:

Ai ←R Diag(Sk,n+1,n,q) for i ∈ [m]

s←R Fn
q

ei ← RandBernn+1
n−δ,q

for i ∈ [m]


c
≈

{
{Ai,ui}i∈[m] :

Ai ←R Diag(Sk,n+1,n,q) for i ∈ [m]

ui ←R Fn+1
q for i ∈ [m]

}
.

For completeness, we give a proof of Lemma 2.4 in Appendix A.

3 Somewhat Homomorphic Encryption from Sparse LPN and Lin-
early Homomorphic Encryption

We now present a somewhat homomorphic encryption scheme from sparse LPN and a linearly
homomorphic encryption scheme. On security parameter λ ∈ N and functionality parameter τ =
poly(λ) ∈ N, our scheme can homomorphically evaluate multivariate polynomials of total degree
log τ/ log log τ with up to τ monomials. Our scheme satisfies semantic security and has an arbitrarily
small, inverse-polynomial probability of correctness errors, which can be driven down to negligible
via parallel repetitions (Remark 3.4).

Our construction proves the following theorem statement:

Theorem 3.1 (SHE from Sparse LPN and LHE). On security parameter λ ∈ N, functionality
parameter τ = poly(λ) ∈ N, and constant correctness parameter c ∈ N, assume that (n, q, δ′, (k +
1)/2)-sparse LPN holds with a prime modulus q ≥ 3, error parameter δ′ = δ − 1/ log n, secret
dimension n ≥ τ2/δ · λc/δ, and super-constant, odd sparsity k ≤ log τ − 1. Let Ψ be a semantically-
secure LHE scheme with message space Fq and ϵLHE(λ) probability of correctness failures. Then,
Construction 3.2 parameterized by (n, q, δ, k,Ψ) is a semantically-secure SHE scheme with message
space Fq and the following properties:

• Correctness: decryption succeeds with probability 1− λ−c − ϵLHE(λ).

• Homomorphism: the function class Fτ contains all multivariate polynomials over Fq with total
degree up to log τ/ log log τ and up to τ monomials.

Put differently, our new somewhat homomorphic encryption can perform up to log τ/ log log τ
homomorphic multiplications, followed by τ homomorphic additions. By instantiating Theorem 3.1
with a standard LHE scheme (e.g., El Gamal [ElG85], Paillier [Pai99], Damg̊ard-Jurik [DJ01]), we
obtain the first constructions of somewhat homomorphic encryption for the function class Fτ from
sparse LPN and either DDH or DCR. On their own, none of these assumptions are known to imply
somewhat homomorphic encryption for polynomials with bounded degree and a bounded number
of monomials.

As a corollary, if there exists a plausibly post-quantum LHE scheme that is based on non-lattice
assumptions, then Theorem 3.1 gives the first plausibly post-quantum somewhat homomorphic
encryption scheme that is based on non-lattice assumptions. In other words, Theorem 3.1 reduces

15

Construction 3.2 (SHE from sparse LPN and LHE). The scheme is parameterized by LPN parameters
(n, q, δ, k), where n = n(λ), q = q(λ), δ ∈ (0, 1), and k = k(λ), and a linearly homomorphic encryp-
tion scheme (LHE.Gen, LHE.Enc, LHE.Eval, LHE.Dec) with message space Fq, key space K, and ciphertext
space C. Let ℓ := n+1. Define the set Diag(Sk,ℓ,n,q) and the distribution RandBernn−δ,q as in Section 2.3.

Gen(1λ, 1τ)→ (sk, ek)

• Let s←R Fn
q .

• Let skLHE, ekLHE ← LHE.Gen(1λ, 1n).

• ∀ i ∈ [n], cti ← LHE.Enc(skLHE, si).

• Output sk := (s, skLHE) and
ek := (ekLHE, ct1, . . . , ctn).

Enc(sk, µ ∈ Fq)→ C ∈ Fℓ×ℓ
q

• Parse s ∈ Fn
q from sk.

• Let A←R Diag(Sk,ℓ,n,q).

• Sample e← RandBernℓn−δ,q.

• Let s′ :=
[
−s || 1

]⊺ ∈ Fℓ
q.

• Compute b := As+ e+ µ · s′.

• Output
[
A || b

]
.

Add(C1 ∈ Fℓ×ℓ
q ,C2 ∈ Fℓ×ℓ

q)→ C ∈ Fℓ×ℓ
q

• Output C1 +C2.

Mul(C1 ∈ Fℓ×ℓ
q ,C2 ∈ Fℓ×ℓ

q)→ C ∈ Fℓ×ℓ
q

• Output C1 ·C2.

Compact(ek,C ∈ Fℓ×ℓ
q)→ ct ∈ C

• Parse (ekLHE, ct1, . . . , ctn) from ek.

• Parse the last row of C as
[
a || b

]
,

where a ∈ Fn
q and b ∈ Fq.

• Let f(x1, . . . , xn) = b−
∑

i∈[n] aixi.

• Output LHE.Eval(ekLHE, f, ct1, . . . , ctn).

Dec(sk, ct ∈ C)→ µ ∈ Fq

• Parse skLHE ∈ K from sk.

• Output LHE.Dec(skLHE, ct).

Figure 1: Our construction of somewhat homomorphic encryption from sparse LPN and linearly homomorphic
encryption.

the task of building post-quantum SHE without lattices to the simpler task of building post-
quantum LHE without lattices.

Construction. We formally describe our somewhat homomorphic encryption scheme from sparse
LPN and a LHE scheme in Construction 3.2. To implement the Eval routine (defined in Section 2.1),
Construction 3.2 uses three polynomial-time algorithms: Add, Mul, and Compact. The Add and Mul
algorithms apply homomorphic addition and multiplication gates to ciphertexts. We do not require
their outputs to be compact — instead, the bitlength of ciphertexts may grow as operations are
performed. Later on, after all homomorphic operations have been completed, each ciphertext is
passed to the Compact algorithm, which outputs a fixed-length ciphertext encrypting the same
message but which no longer has (many of its) homomorphic capabilities.

We formally analyze Construction 3.2’s correctness, security, and compactness in Appendix B.1.
To do so, we show that the ciphertext matrices output by Enc have the “extended” secret key[
−s 1

]⊺
as an “approximate” eigenvector, with the encrypted message µ as the corresponding

eigenvalue. Then, as long as each ciphertext matrix remains sufficiently sparse, we can add and
multiply these matrices — adding and multiplying the underlying messages — without the error
rate growing too large. As in GSW [BV14], the sparsity and error rate of our ciphertexts grow
additively with every Add and asymmetrically with every Mul. As a result, when evaluating some
poynomials, there may exist an order of operations that leads to smaller error growth than other

16

configurations. In the rest of this section, we discuss the efficiency of Construction 3.2 and variations
of it.

Remark 3.3 (Efficiency of Construction 3.2). On parameters (n, q, δ, k) and given a LHE scheme
with ciphertext space C, Construction 3.2 is a SHE scheme with the following efficiency:

• Each ciphertext output by Enc is a (k + 1)-sparse matrix in F(n+1)×(n+1)
q .

• When evaluating a polynomial of total degree d with M monomials,

– each call to Mul requires (k + 1)d multiplications and additions in Fq,

– each call to Add requires (k + 1)d additions in Fq, and

– the call to Compact requires M · (k+1)d homomorphic additions under LHE encryption.

• Each ciphertext output by Compact is a value in C, the ciphertext space of the linearly
homomorphic encryption scheme.

These compute costs do not scale with the secret dimension n, even though ciphertexts are (n+1)-
by-(n+1) matrices. This is because we can take advantage of the sparsity in these matrices to prune
the computation and perform only those operations that affect the final output [DIJL23, Remark
5.4]. We describe this optimization in more detail in Appendix B.2.

Remark 3.4 (SHE with negl(λ) probability of correctness failures). We can boost our SHE scheme
to one that has a negligibly small probability of correctness failures by performing λ instances of
Construction 3.2 (with independent randomness) and outputting the majority of the decryptions,
in addition to using a LHE scheme with perfect correctness. When evaluating the function class Fτ ,
this transformation succeeds as long as the following conditions on the sparsity k and the secret
dimension n hold: k ≤ log τ − 1 and n = Ω(τ2/δ). We give the full analysis in Appendix B.3. In this
case, our construction is λ× less efficient.

Remark 3.5 (Using LHE with homomorphism over other moduli). Construction 3.2 natively sup-
ports homomorphism over any Fq, where q ≥ 3 is a prime and Fq is the LHE scheme’s message
space. We can decouple the sparse-LPN modulus q from the LHE scheme’s message space Zq′ by
instead running the linear function evaluation within Compact “over the integers,” as long as q′ is
sufficiently large compared to n and q (in particular, q′ > (n+1) · q2). We give one example of this
in Section 4.3.

Remark 3.6 (SHE from sparse LPN and QR?). Standard encryption schemes from the quadratic
residuosity assumption (e.g., Goldwasser-Micali [GM84]) are linearly homomorphic over F2. How-
ever, we cannot directly substitute them into Construction 3.2 because the KDM-security proof of
sparse LPN, on which our security hinges, only works for a prime modulus q ≥ 3 (Lemma 2.4). To
overcome this barrier, Dao, Ishai, Jain, and Lin sketch a variant of the sparse-LPN assumption that
can be proved KDM-secure on modulus q = 2: in this variant, every sparse-LPN sample is equally
likely to be either k or (k + 1)-sparse [DIJL23, Remark 4.2]. Under this modified assumption, we
can construct SHE using QR or, more broadly, any LHE scheme with message space F2.

Remark 3.7 (Increased homomorphism from constant-sparse LPN). One way to boost the ho-
momorphism of our SHE schemes would be to rely on the stronger assumption that LPN with
constant sparsity is hard, which plausibly holds in certain parameter regimes, when the number
of samples released is small enough, and when sampling the A-matrices from carefully crafted

17

distributions [ADI+17, AK19]. As with Dao, Ishai, Jain, and Lin’s homomorphic secret-sharing
scheme [DIJL23], this stronger assumption could improve our SHE scheme’s homomorphism to
support polynomials of total degree O(log λ) with poly(λ) monomials, but also appears to require
the encryption algorithm to be stateful to sample the A-matrices from a safe distribution. The crit-
ical issue is that the encryptor must not release sparse-LPN samples with too similar A-matrices,
which otherwise might occur with non-negligible probability.

Remark 3.8 (Scalar multiplications are “free”). In our schemes, multiplying a ciphertext by a
scalar does not incur any growth in the error rate or in the sparsity of a ciphertext, which means
that the multiplication-by-scalar operation does not increase the probability of a correctness error.
In contrast, lattice-based somewhat homomorphic encryption schemes generally must bound the
number and magnitude of scalar multiplications performed on a single ciphertext.

4 Optimizing the length of ciphertexts

In this section, we turn our attention to the efficiency of our new somewhat homomorphic encryp-
tion. We present a sequence of optimizations that gives SHE from sparse LPN and DDH with short
ciphertexts, when encrypting a batch of many messages at once and homomorphically evaluating
a batch of many polynomials at once.

To capture this notion of “batch encryption” and “batch evaluation,” we introduce a slightly
more general syntax for somewhat homomorphic encryption in Appendix C.1. We give optimizations
that shrink the size of ciphertexts before homomorphic evaluation in Sections 4.1 and 4.2, and one
that shrinks the size of ciphertexts after homomorphic evaluation in Section 4.3. Together, these
techniques prove the following theorem (Section 4.4):

Theorem 4.1 (SHE with Short Ciphertexts from Sparse LPN and DDH). On security parameter
λ ∈ N, functionality parameter τ = poly(λ) ≥ 1, constant correctness parameter c ∈ N, and any
prime modulus q ≥ 3 of size at most poly(λ), assume that (n, q, δ′, (k + 1)/2)-sparse LPN holds
with any error parameter δ′ = δ − 1/ log n, super-constant, odd sparsity k ≤

√
log τ − 1, and secret

dimension n ≥ τ3/δ · λc/δ. Then, assuming DDH, there exists a semantically-secure SHE scheme
with message space Fq and with the following properties:

• Correctness: decryption succeeds with probability 1− 2λ−c.

• Homomorphism: the function class Fτ contains all multivariate polynomials over Fq with total
degree up to log τ/ log log τ , and up to τ monomials.

• Efficiency: when homomorphically evaluating a batch of t = poly(λ) polynomials in Fm
q → Fq,

on a batch of tm inputs,

– The evaluation key consists of t2 · poly(λ) bits.
– All tm input ciphertexts together consist of tm log q +m·polylog(λ) bits.
– All t output ciphertexts together consist of t log q + poly(λ) bits.

In this scheme, as the batch size t grows large, the bitlength of all tm input ciphertexts together
can be arbitrarily close to tm · log q (i.e., the bitlength of all input plaintexts together) and the
bitlength of all t output ciphertexts together can be arbitrarily close to t · log q (i.e., the bitlength
of all output plaintexts together). Finally, by evaluating sufficiently many batches of polynomials,
we can also amortize away the cost of transmitting the one-time evaluation key.

18

Remark 4.2 (SHE with Short Ciphertexts from Sparse LPN and DCR). An alternate construction
of SHE, which can have rate-one ciphertexts when evaluating a single polynomial over a sufficiently
large modulus, is possible from sparse LPN and DCR: this requires (a) extending the KDM-security
proof (Lemma 2.4) to allow for sparse LPN over a modulus that is a power of a product of two
λ-bit primes, (b) instantiating Construction 3.2 with the Damg̊ard-Jurik LHE scheme [DJ01] that
has rate one, and (c) applying the techniques from Sections 4.1 and 4.2.

4.1 From ciphertext matrices to ciphertext vectors

In the SHE scheme in Section 3, ciphertexts are large: each ciphertext is a (k + 1)-sparse matrix

in F(n+1)×(n+1)
q . The more homomorphic the scheme, the larger n must be, and so the bulkier our

ciphertexts get. In this section, we show how to shrink the size of ciphertexts down to a (k + 1)-
sparse vector in Fn+1

q at the cost of growing the evaluation key. The resulting ciphertexts resemble
those in Regev/BV encryption [Reg09, BV11] and our technique mirrors that for switching from
Regev to GSW ciphertexts in lattice-based cryptosystems [CGGI20].

Our construction works as follows: we augment the evaluation key ek with a “key-switching
key” that holds the sparse-LPN encryption of each entry of the sparse-LPN secret s ∈ Fn

q . To
avoid circular-security issues, we publish the encryptions of s here under a second sparse-LPN
secret t ∈ Fn

q . Then, we modify the encryption algorithm to construct much smaller, Regev-like
ciphertexts using the secret key s ∈ Fn

q . In Construction 4.3, we present modified GenOpt and EncOpt
algorithms that implement these changes, along with a new algorithm, ConvertOpt, that transforms

ciphertexts output by EncOpt into matrices in F(n+1)×(n+1)
q using the key-switching key. From then

on, we can apply the standard Add, Mul, Compact, and Dec algorithms (from Construction 3.2) to
perform homomorphic operations, squash ciphertexts, and decrypt.

In Appendix C.2, we prove the correctness and security of this transformation. Roughly speak-
ing, we show that ConvertOpt(ek, ·) converts a ciphertext produced by EncOpt(sk, µ) for any message
µ ∈ Fq into one produced by Enc(sk, µ), albeit with slightly worse sparsity and error rate. Our effi-
ciency claims hold by construction: each ciphertext produced by EncOpt is a (k+1)-sparse vector in
Fn+1
q . When the modulus q is at most poly(λ) and the sparsity k is O(

√
log λ), as in Theorem 4.1,

each ciphertext’s bitlength scales only polylogarithmically with the parameters λ and τ . These
improvements in ciphertext size come at the cost of making the evaluation key larger: it contains

(n+1) additional sparse-LPN ciphertexts, each of which is a (k+1)-sparse matrix in F(n+1)×(n+1)
q .

Nonetheless, since the evaluation key can be re-used across polynomially many encryptions, this
trade-off is beneficial whenever the number of ciphertexts (encrypted with the same secret key) is
larger than n.

4.2 From ciphertext vectors to a single Fq element

Next, we shrink the size of sparse-LPN ciphertexts down to one element in Fq, instead of a (k+1)-
sparse vector in Fn+1

q , completely eliminating the dependence on the secret dimension n. The
insight here, which stems from the lattice literature [PW08, Lemma 6.2][PVW08, Lemma 7.3], is
that the A-component in sparse-LPN ciphertexts is a random sparse matrix (or vector) that does
not depend on the message being encrypted. As a result, we can take this A-component to be
either pseudorandom or fixed across many encryptions, at only a polynomial loss in security. In
more detail:

19

Construction 4.3 (Optimized SHE from sparse LPN and LHE). Parameterized by (n, q, δ, k), where
n = n(λ), k = k(λ), δ ∈ (0, 1), and q = q(λ), and a linearly homomorphic encryption scheme
(LHE.Gen, LHE.Enc, LHE.Eval, LHE.Dec) with message space Fq. Define Sk,1,n,q and RandBern as in Sec-
tion 2.3, and Enc as in Construction 3.2.

GenOpt(1λ, 1τ)→ (sk, ek)

• Let s←R Fn
q and t←R Fn

q . Let skLHE, ekLHE ← LHE.Gen(1λ, 1n).

• ∀ i ∈ [n], let cti ← LHE.Enc(skLHE, si) and Ci,ek ← Enc((s, skLHE), ti).

• Let Cn+1,ek ← Enc((s, skLHE), 1)

• Output sk := (t, skLHE) and ek := ((ct1, . . . , ctn), (C1,ek, . . . ,Cn+1,ek), ekLHE).

EncOpt(sk, µ ∈ Fq)→ ct ∈ Fn+1
q

• Parse t ∈ Fn
q from sk. Sample a←R Sk,1,n,q. Sample e← RandBernn−δ,q.

• Output ct :=
[
a || ⟨a, t⟩+ e+ µ

]
∈ Fn+1

q .

ConvertOpt(ek, ct ∈ Fn+1
q)→ C ∈ F(n+1)×(n+1)

q

• Parse ciphertext ct as
[
a || b

]
∈ Fn

q × Fq. Parse (C1,ek, . . . ,Cn+1,ek) from ek.

• ∀ i ∈ [n+ 1], ∀ j ∈ [n+ 1], let ci,j ∈ Fn+1
q be the jth row of matrix Ci,ek, and build the matrix

Mj :=

 c1,j
...

cn+1,j

 ∈ F(n+1)×(n+1)
q .

• Output

C :=


[
−a || b

]
·M1[

−a || b
]
·M2

...[
−a || b

]
·Mn+1

 ∈ F(n+1)×(n+1)
q .

Figure 2: Algorithms to shrink the size of ciphertexts in our somewhat homomorphic encryption from sparse
LPN and linearly homomorphic encryption.

20

In the random-oracle model. Given a random oracle, we can specify the A-component of each
ciphertext with a short seed for a pseudorandom generator.

Without a random oracle. We can fix and re-use the A-matrix in sparse LPN to build polynomially
many ciphertexts, as long as each ciphertext uses a random, independently sampled secret key s
and error vector e. This optimization lets us communicate the A-matrix only once, and amortize
this cost over many ciphertexts. We formalize this technique in Lemma C.8, proved via a hybrid
argument in Appendix C.3.

Remark 4.4 (Fixing the A-matrix in GSW-style ciphertexts). By further extending Lemma C.8
to handle sparse diagonal LPN, we could apply the same technique to shrink each of the (n + 1)

sparse-LPN ciphertexts included in the evaluation key from a (k+1)-sparse matrix in F(n+1)×(n+1)
q

down to a vector in F(n+1)
q . Intuitively, this optimization works because our SHE scheme reveals

the A-matrix in the clear as part of each ciphertext. As a result, an adversary can on its own
build polynomially many sparse-LPN samples with the same A-matrix but independent secrets
and errors. By the scheme’s security, it must be that obtaining these sparse-LPN samples with the
same A-matrix (but different secrets and errors) does not noticeably help in breaking the original
scheme.

4.3 Shrinking the length of output ciphertexts

In this section, we shrink the size of ciphertexts after homomorphic evaluation in our SHE scheme.
To do so, we build a secret-key linearly homomorphic encryption scheme from DDH that sup-
ports an arbitrarily small message space Zq and satisfies a specific notion that we call “batch-
rate one”: namely, when homomorphically evaluating a batch of sufficiently many affine functions
on ciphertexts, each output ciphertext consists of roughly log q bits. Prior LHE schemes from
DDH [DGI+19,BBD+20,BBDP22] satisfy only a weaker form of “batch-rate one”: in those schemes,
when homomorphically evaluating the same affine function on a batch of ciphertexts sufficiently
many times, each output ciphertext consists of roughly log q bits (see Section 2.2).

Looking ahead, each of these properties of our new LHE scheme is crucial in our construction of
SHE with short ciphertexts (Theorem 4.1). Namely, to evaluate polynomials over Fq on any prime
modulus q ≥ 3, we need LHE with message space Fq. (Otherwise, we would need to embed the
polynomial computation into the larger field over which our LHE scheme is homomorphic, e.g., the
El-Gamal message space, causing big losses in rate.) Second, we need LHE with batch-rate one while
homomorphically evaluating many distinct affine functions, because running Compact on distinct
sparse-LPN ciphertexts (even ones produced by homomorphically evaluating the same polynomial)
requires evaluating different affine functions, each determined by the ciphertexts’ A-component.

Lemma 4.5 (LHE from DDH over Zq). On security parameter λ ∈ N, assume that DDH is hard in
a group with elements of bitlength λDDH. Then, given any functionality parameter τ ∈ N, modulus
q ∈ N, and packing parameter t ∈ N that are each at most poly(λ) and given any constant correctness
parameter c ∈ N, there exists a semantically-secure LHE scheme from DDH with message space Zq

and the following properties:

• Correctness: Decryption succeeds with probability 1− λ−c.

• Efficiency: The evaluation key consists of poly(λ) bits. Each fresh ciphertext produced by LHE.Enc
consists of t · (t+1)2 · λDDH bits. When homomorphically evaluating a batch of t affine functions
in Zτ

q → Zq, the t output ciphertexts together consist of t log q + λDDH bits.

21

We present our linearly homomorphic encryption in Construction C.9; our scheme is a variant
of standard El-Gamal encryption [ElG85] with two twists. First, since El-Gamal is linearly homo-
morphic over an exponentially large message space (i.e., Zp on a λ-bit prime p), whereas we require
homomorphism over the much smaller space Zq, we think of homomorphic operations as performed
“over the integers.” When evaluating any affine function f : Zτ

q → Zq, the maximal value that
f can output over the integers is bounded from above by B = q2 · (τ + 1). So, whenever p > B
(which happens naturally as p is exponential in λ, whereas B is at most polynomial in λ), lifting
f to Zp (i.e., lifting each of its coefficients and inputs from Zq to Zp) and evaluating it within
the El-Gamal scheme’s message space produces the same result as computing f over the integers.
Roughly speaking, our encryption scheme evaluates f over Zp and takes the result mod q, which
recovers the evaluation of f over Zq.

Second, inspired by existing LHE schemes from LWE [dCHI+22] and from DDH [DGI+19,
BBD+20,BBDP22], we design a “distributed discrete logarithm” protocol that lets us shrink each
DDH-ciphertext down to just log q bits, along with a preamble of λDDH bits that can be amortized
over arbitrarily many ciphertexts. To achieve this, we encrypt vectors of t values in Zq at once. Then,
given τ such ciphertexts encrypting the vectors x(1), . . . ,x(τ), each in Zt

q, and given t affine functions
f1, . . . , ft, each mapping Zτ

q → Zq, we give a procedure that produces a batch of ciphertexts

encrypting the t evaluations v1 = f1(x
(1)
1 , . . . , x

(τ)
1), . . . , vt = ft(x

(1)
t , . . . , x

(τ)
t), each in Zq.

Our LHE.Eval algorithm works as follows: given an order-p generator g of a DDH-group G and

a secret-key (z1, . . . , zt) ∈ Zt
p, we encrypt the message vector (x

(i)
1 , . . . , x

(i)
t) ∈ Zt

q, for i ∈ [τ], hidden
along the diagonal of a ciphertext matrix:

ct(i) =


gr1 gr1z1+x

(i)
1 gr1z2 . . . gr1zt

gr2 gr2z1 gr2z2+x
(i)
2 . . . gr2zt

...
...

...
. . .

...

grt grtz1 grtz2 . . . grtzt+x
(i)
t

 .

Now, given τ such ciphertext matrices ct(1), . . . , ct(τ), along with t affine functions f1, . . . , ft : Zτ
q →

Zq, our LHE.Eval algorithm:

1. Exponentiates the jth row of ct(i) by the coefficient on the variable “xi” in function fj . This
step effectively multiplies the encrypted values along each ciphertext’s diagonal by the match-
ing coefficient in each function, while keeping the “random preambles” (e.g., gr1) identical
across each row.

2. Computes the matrix ct′ ∈ Gt×(t+1) that consists of the element-wise product of all τ cipher-
text matrices, and multiplies gfj(0,...,0) into the jth entry of the diagonal. This step effectively
produces a matrix with the evaluation of the jth function stored in the jth entry of the
diagonal, while keeping the random preambles identical across each row.

3. Computes the vector ct′′ ∈ Gt+1, whose jth entry is the product of all entries in the jth column
of ct′. This step effectively produces a vector with the evaluation of the jth function stored
in the jth entry, and where each entry has the same random preamble.

At the end of this procedure, the ciphertext ct′′ has the following form:

ct′′ =
(
gr grz1+qe1+v1 grz2+qe2+v2 . . . grzt+qet+vt

)
,

22

where v1, . . . , vt ∈ Zq are the outputs of the t affine functions over Zq applied to the encrypted
values, r ∈ Zp is joint randomness, and the terms e1, . . . , et ∈ {0, . . . , B/q} are accumulated by
performing Zq-computations over the integers.

In a final step, we have LHE.Eval compress the ciphertext ct′′ down to just t log q + λDDH bits.
To do so, we use a PRF and a shared random seed seed, that meets the following properties with
high probability:

1. for each ℓ ∈ [t], for any extra term e ∈ {0, . . . , B/q}, and for any output value µ ∈ Zq, it
holds that PRF(seed, grzℓ+qe+µ) ̸= 0, and

2. for each ℓ ∈ [t] and for each output value µ ∈ Zq, let padℓ,µ be the smallest integer such that

PRF(seed, grzℓ+qpadℓ,µ+µ) = 0. Then, for each ℓ ∈ [t], each of the values of padℓ,µ are distinct
and do not fall within ±1 of each other.

Now, for each ℓ ∈ [t] and for every output value µ ∈ Zq, the LHE.Eval algorithm can iteratively
evaluate PRF on successive group elements (each offset by gq) starting at the point grzℓ+qeℓ+vℓ+µ,
until it finds a group element where the PRF evaluates to 0. The number of PRF evaluations here
must be

kℓ,µ = padℓ,vℓ+µ mod q − eℓ ± 1.

Finally, for each ℓ ∈ [t], LHE.Eval sorts the values (kℓ,0, . . . , kℓ,q−1), and computes the rank of kℓ,0
in this list — which is just an integer in Zq. LHE.Eval outputs a compressed ciphertext consisting
of the term gr and each of these t ranks in Zq.

Given such a compressed ciphertext, along with the secret key (z1, . . . , zt) and the seed, the
LHE.Dec algorithm can recover each padℓ,µ for each message µ ∈ Zq and index ℓ ∈ [t]: it suffices
to compute (gr)zℓ · gµ, and to evaluate the PRF on successive group elements (offset by gq) until
hitting one that evaluates to 0. By sorting the values (padℓ,0, . . . , padℓ,q−1) and learning their relative
ranks, LHE.Dec can exactly recover each vℓ. We formally show that this LHE scheme, described in
Construction C.9, is correct, secure, and runs in polynomial time in Appendix C.4.

4.4 Proof sketch for Theorem 4.1

We describe the somewhat homomorphic encryption scheme that proves Theorem 4.1 in Ap-
pendix C.5. Here, we give a high-level overview of the scheme.

Our scheme is governed by two new parameters: tEnc ∈ N, which determines how many mes-
sages can be “packed” into a single input ciphertext, and tEval ∈ N, which determines how many
messages can be “packed” into a single output ciphertext. Our scheme uses tEnc sparse-LPN secrets
t(1), . . . , t(tEnc) ∈ Fn

q . For each of these tEnc sparse-LPN secrets, we publish a key-switching key (as

described in Section 4.1) that lets us switch a Regev-style encryption under key t(i) into a GSW-
style encryption under a common sparse-LPN secret s ∈ Fn

q . In addition, we publish a redundant
encryption of each entry of the sparse-LPN secret s using our packed-El-Gamal LHE scheme, with
packing parameter tEval.

Then, to encrypt a batch of tEnc messages at once, our encryption scheme can sample a single a-
vector, and encrypt each message under the same a-vector using a different one of the t(1), . . . , t(tEnc)

secret keys (per the optimization in Section 4.2). This produces a “packed” ciphertext encrypting
all tEnc messages at once, as a (k + tEnc)-sparse vector in Fn+tEnc

q . Our homomorphic evaluation
routine can unpack these ciphertexts, run the ConvertOpt algorithm on each of them to transform

23

them into a GSW-style encryption under secret key s, and perform homomorphic additions and
multiplications as usual. Finally, our compaction routine uses the packed-El-Gamal LHE scheme
(from Section 4.3) to produce a “packed” output ciphertext that encrypts a batch of tEval polynomial
evaluations at once. Given the parameter t ∈ N in the theorem statement, setting tEnc := t and
tEval := t proves Theorem 4.1.

5 Open Question: Can We Bootstrap?

We leave open the question of whether it is possible to bootstrap our somewhat homomorphic
schemes to build fully homomorphic encryption. Doing so would give the first direct construction
of fully homomorphic encryption without lattice-based assumptions. However, this task appears
challenging.

One natural approach would be to instantiate our somewhat homomorphic encryption scheme
with a LHE scheme whose decryption circuit falls in the function class Fτ — that is, we need LHE
whose decryption can be written as a multivariate polynomial of total degree O(log λ/ log log λ)
with poly(λ) monomials. If such a LHE scheme were to exist, a tempting direction would be
to “bootstrap” our SHE schemes in almost the standard way, using a ladder of encryptions of
sparse-LPN secret keys under the LHE scheme and encryptions of the LHE secret keys under the
sparse-LPN scheme. Then, bootstrapping our schemes could take the following form: (a) evaluating
a polynomial f ∈ Fτ on our sparse-LPN ciphertexts, (b) performing ciphertext compaction, (c)
homomorphically decrypting the resulting LHE ciphertext under our SHE scheme, using a sparse-
LPN encryption of its secret key, and (d) repeating, perhaps with extra machinery to handle
sparse-LPN error growth. The security of such a transformation would be implied by the hardness
of sparse LPN and the semantic security of the LHE scheme (as, using a chain of keys, circular
security is not necessary).

However, this approach runs into trouble: first, we do not know of such a linearly homomorphic
scheme. A symmetric encryption scheme of the type described above — i.e., with a decryption
algorithm that can be written as a multivariate polynomial with total degree O(log λ/ log log λ) with
poly(λ) monomials — exists assuming the pseudorandomness of Goldreich’s function [Gol00] (or,
more generally, the existence of local pseudorandom generators), but these schemes are not linearly
homomorphic. One may be able to rule out the existence of linearly homomorphic encryption
schemes with such a decryption procedure, which we leave as an open problem.

Second, even a bounded-depth version of the bootstrapping procedure described above would
essentially give us a gadget that generates many sparse-LPN samples from few of them, without
increasing the sparsity by much. This would render such a scheme vulnerable to known attacks on
sparse LPN when the number of released samples is large (e.g., super-polynomial). The take-away
is that our scheme as is does not appear “bootstrappable” in this natural way. While this rules out
one approach to squeezing more homomorphism out of our schemes, a compelling open question
remains whether other approaches exist.

Acknowledgements. We thank Quang Dao, Yuval Ishai, Aayush Jain, and Huijia Lin for con-
versations about constant-sparse LPN. Conversations with Yuval always have unreasonably high
information content: in this case, we thank him for discussions about private information retrieval
and for insightful suggestions on how to present our results.

This work was funded in part by gifts from Apple, Capital One, Facebook, Google, Mozilla,
NASDAQ, and MIT’s FinTech@CSAIL Initiative, along with support from NSF under Award

24

CNS-2054869. Alexandra Henzinger was supported by the National Science Foundation Graduate
Research Fellowship under Grant No. 2141064. Vinod Vaikuntanathan was supported by NSF CNS-
2154149 and a Simons Investigator Award.

References

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In STOC, 2010. 4, 6, 10, 13

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed
queries and amortized query processing. In S&P, 2018. 3

[ADI+17] Benny Applebaum, Ivan Damg̊ard, Yuval Ishai, Michael Nielsen, and Lior Zichron.
Secure arithmetic computation with constant computational overhead. In CRYPTO,
2017. 6, 13, 18

[AIK06a] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM
Journal on Computing, 36(4), 2006. 4

[AIK06b] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom generators
with linear stretch in NC0. In International Workshop on Approximation Algorithms
for Combinatorial Optimization, 2006. 4, 6, 13

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In CRYPTO, 2015. 3

[AK19] Benny Applebaum and Eliran Kachlon. Sampling graphs without forbidden subgraphs
and unbalanced expanders with negligible error. In FOCS, 2019. 18

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. In STOC, 2016. 4

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In FOCS,
2003. 4, 6, 10, 13

[AOW15] Sarah R Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP.
In FOCS, 2015. 4

[AS16] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. In
TCC, 2016. 14

[ASP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In CRYPTO, 2014. 3, 10

[BBD+20] Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, and Giulio Malavolta.
Constant ciphertext-rate non-committing encryption from standard assumptions. In
TCC, 2020. 9, 21, 22

[BBDP22] Zvika Brakerski, Pedro Branco, Nico Döttling, and Sihang Pu. Batch-OT with optimal
rate. In CRYPTO, 2022. 9, 13, 21, 22, 59

25

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In ACM SIGSAC, 2018. 14

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In TCC,
2019. 10

[Ben87] Josh Daniel Cohen Benaloh. Verifiable secret-ballot elections. Yale University, 1987.
10

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In
CRYPTO, 2001. 10

[BFKL93] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic
primitives based on hard learning problems. In CRYPTO, 1993. 4, 13

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in LWE-based
homomorphic encryption. In PKC, 2013. 3, 10

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure
computation under DDH. In CRYPTO, 2016. 9, 11

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations
of homomorphic secret sharing. In ITCS, 2018. 11

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on cipher-
texts. In TCC, 2005. 3, 10

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT), 6(3), 2014. 3, 5, 10

[BHHO08] Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-secure en-
cryption from decision Diffie-Hellman. In CRYPTO, 2008. 14

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices
without FHE. In EUROCRYPT, 2019. 11

[BL11] Andrej Bogdanov and Chin Ho Lee. Homomorphic encryption from codes. arXiv
preprint arXiv:1111.4301, 2011. 11

[BLLN13] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security
for a ring-based fully homomorphic encryption scheme. In IMACC, 2013. 3, 10

[BLVW19] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs.
Worst-case hardness for LPN and cryptographic hashing via code smoothing. In
EUROCRYPT, 2019. 9, 14

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In International Algorithmic Num-
ber Theory Symposium, 1998. 5, 59

26

[BPTG14] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning
classification over encrypted data. Cryptology ePrint Archive, 2014. 3

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In CRYPTO, 2012. 3, 10

[Bra13] Zvika Brakerski. When homomorphism becomes a liability. In TCC, 2013. 11

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In CRYPTO, 2011. 3, 10, 19

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE.
In ITCS, 2014. 3, 5, 10, 16, 38

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In FOCS, 2015. 3

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT,
2016. 3, 10

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: fast
fully homomorphic encryption over the torus. Journal of Cryptology, 33(1), 2020. 3,
5, 9, 10, 19

[CGHK22] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-server pri-
vate information retrieval with sublinear amortized time. In EUROCRYPT, 2022.
3

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private informa-
tion retrieval. In FOCS, 1995. 3

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic en-
cryption for arithmetic of approximate numbers. In ASIACRYPT, 2017. 3, 10

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homo-
morphic encryption. In CCS, 2017. 3

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In TCC, 2015. 3, 11, 14

[CM01] Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in NC 0. In
MFCS, 2001. 4

[dCHI+22] Leo de Castro, Carmit Hazay, Yuval Ishai, Vinod Vaikuntanathan, and Muthu Venki-
tasubramaniam. Asymptotically quasi-optimal cryptography. In CRYPTO, 2022. 5,
9, 22

[DGBL+17] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Manual for using homomorphic encryption for bioinformatics.
Proceedings of the IEEE, 105(3), 2017. 3

27

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In CRYPTO, 2019. 3, 9,
10, 13, 21, 22, 59

[DH76] Whitfield Diffie and Martin E Hellman. New directions in cryptography. 22(6), 1976.
5

[DIJL23] Quang Dao, Yuval Ishai, Aayush Jain, and Huijia Lin. Multi-party homomorphic
secret sharing and sublinear MPC from sparse LPN. In CRYPTO, 2023. 4, 5, 6, 10,
11, 13, 14, 15, 17, 18, 32, 33, 42

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In PKC, 2001. 5, 10, 13, 15,
19

[DJ24] Quang Dao and Aayush Jain. Lossy cryptography from code-based assumptions. In
CRYPTO, 2024. 9, 10, 14

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption
in less than a second. In EUROCRYPT, 2015. 3, 10

[DMQN12] Nico Döttling, Jörn Müller-Quade, and Anderson CA Nascimento. IND-CCA secure
cryptography based on a variant of the LPN problem. In ASIACRYPT, 2012. 13

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In CRYPTO, 2012. 3

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory, 31(4), 1985. 5, 10, 13, 15, 22

[Fei02] Uriel Feige. Relations between average case complexity and approximation complexity.
In STOC, 2002. 4

[FGJI17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith III. Homo-
morphic secret sharing from Paillier encryption. In ProvSec, 2017. 11

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009. 3,
10

[GH19] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In TCC,
2019. 3, 10

[GHPS13] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P Smart. Field switching in
BGV-style homomorphic encryption. Journal of Computer Security, 21(5), 2013. 3,
10

[GHS12] Craig Gentry, Shai Halevi, and Nigel P Smart. Fully homomorphic encryption with
polylog overhead. In EUROCRYPT, 2012. 3, 10

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple BGN-type cryp-
tosystem from LWE. In EUROCRYPT, 2010. 10

28

[GKL93] Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseudoran-
dom generators. SIAM Journal on Computing, 22(6), 1993. 4

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer
and system sciences, 1984. 3, 5, 10, 17

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. IACR
Cryp- tol. ePrint Arch, 2000. 4, 24

[Gol01] Oded Goldreich. Foundations of Cryptography. Cambridge University Press, 2001. 12

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
CRYPTO, 2013. 3, 5, 7, 8, 10, 11, 34

[Hal17] Shai Halevi. Homomorphic encryption. In Tutorials on the Foundations of Cryptog-
raphy: Dedicated to Oded Goldreich. 2017. 3, 12

[HHCP19] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. Logistic re-
gression on homomorphic encrypted data at scale. In AAAI, volume 33, 2019. 3

[HLC+22] Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei
Zhang. Iron: Private inference on transformers. Neurips, 35, 2022. 3

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. NTRU: A ring-based public
key cryptosystem. In International algorithmic number theory symposium. Springer,
1998. 3

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In STOC, 2008. 4, 6, 13

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
TCC, 2007. 3, 10

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In STOC, 2021. 3, 10, 11, 14

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over Fp, DLIN, and PRGs in NC 0. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2022. 3, 10, 11, 14

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE:
A low latency framework for secure neural network inference. In USENIX Security,
2018. 3

[KMOW17] Pravesh K Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares
lower bounds for refuting any CSP. In STOC, 2017. 4

[KMP14] Eike Kiltz, Daniel Masny, and Krzysztof Pietrzak. Simple chosen-ciphertext security
from low-noise LPN. In PKC, 2014. 13

29

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. Journal of
Cryptology, 30(2), 2017. 14

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In FOCS, 1997. 3

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC,
2012. 3, 10

[LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information
retrieval and fully homomorphic RAM computation from ring LWE. In STOC, 2023.
3

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, 2010. 3, 10

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfus-
cation with non-trivial efficiency. In PKC. 2016. 3

[LT22] Zeyu Liu and Eran Tromer. Oblivious message retrieval. In CRYPTO, 2022. 3

[MBGH11] Carlos Aguilar Melchor, Slim Bettaieb, Philippe Gaborit, and Javier Herranz. Improv-
ing additive and multiplicative homomorphic encryption schemes based on worst-case
hardness assumptions. Cryptology ePrint Archive, 2011. 10

[MGH10] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomor-
phic encryption with d-operand multiplications. In CRYPTO, 2010. 3, 10

[Mic19] Daniele Micciancio. Fully homomorphic encryption from the ground up. https:

//cseweb.ucsd.edu/~daniele/papers/FHEeurocrypt19-slides.pdf, 2019. 7, 11

[MW22] Samir Jordan Menon and David J. Wu. Spiral: Fast, high-rate single-server PIR via
FHE composition. In S&P, 2022. 3

[OSI05] Rafail Ostrovsky and William E Skeith III. Private searching on streaming data. In
CRYPTO, 2005. 3

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of Paillier: Homomor-
phic secret sharing and public-key silent OT. In EUROCRYPT, 2021. 11

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, 1999. 5, 10, 13, 15

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO, 2008. 5, 9, 19

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
STOC, 2008. 19

[Rab79] Michael O Rabin. Digitalized signatures and public-key functions as intractable as
factorization. 1979. 10

30

https://cseweb.ucsd.edu/~daniele/papers/FHEeurocrypt19-slides.pdf
https://cseweb.ucsd.edu/~daniele/papers/FHEeurocrypt19-slides.pdf

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11), 1978. 3, 10

[RCK+21] Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T Lee, Hsien-Hsin S Lee, Gu-
Yeon Wei, and David Brooks. Cheetah: Optimizing and accelerating homomorphic
encryption for private inference. In HPCA, 2021. 3

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 2009. 3, 7, 19

[RS21] Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from
DCR and applications. In CRYPTO, 2021. 11

[RVV24] Seyoon Ragavan, Neekon Vafa, and Vinod Vaikuntanathan. Indistinguishability ob-
fuscation from bilinear maps and LPN variants. In TCC, 2024. 3, 4, 10, 11, 13,
14

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, 2014. 14

[VDGHV10] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In EUROCRYPT, 2010. 3, 10

[WH12] David Wu and Jacob Haven. Using homomorphic encryption for large scale statistical
analysis. FHE-SI-Report, Univ. Stanford, Tech. Rep. TR-dwu4, 2012. 3

[WW24] Brent Waters and David J Wu. Adaptively-sound succinct arguments for NP from
indistinguishability obfuscation. Cryptology ePrint Archive, 2024. 14

[YZ16] Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor from
constant-noise LPN. In CRYPTO, 2016. 10, 13

31

Supplementary Material

A Additional Material on Sparse LPN

We give a proof of Lemma 2.4, which was first proved by Dao, Ishai, Jain, and Lin [DIJL23]. We
repeat the proof here since our KDM distribution is slightly (but not meaningfully) different. (In

particular, we have the set Diag(Sk,n+1,n,q) correspond to matrices in F(n+1)×n
q that have k non-zero

entries in every row, rather than having k non-zero entries in every row but the last one, which has
(k + 1)/2 non-zero entries.)

Proof. Let δ′ = δ−1/ log n, which gives that nδ′ = nδ/2. Pick any odd k ≥ 3, and let k′ = (k+1)/2 ∈
Z. Take any m = poly(λ) and consider any m messages µ1, . . . , µm ∈ Fq. Let m

′ = m · (n+1) · 2n3.
Assume for the sake of contradiction that, for these messages, the lemma statement is false — that
is, there exists a polynomial-time algorithm A that distinguishes between the two distributions in
Lemma 2.4. We use algorithm A to break the (n, q, δ′, k′)-sparse LPN assumption.

To prove the reduction, we build an algorithm B that is given as input (A,b) , where A ∈ Fm′×n
q

and b ∈ Fm′
q . The algorithm B proceeds as follows:

1. For i ∈ [m], for j ∈ [n+ 1]:

• Let ℓ = i · (n+ 1) + j ∈ Z.
• If j ≤ n,

– Find a pair of distinct indices k1, k2 ∈ [2n3] such that, if v1 ∈ Fn
q denotes the(

ℓ · 2n3 + k1
)th

row of A and v2 ∈ Fn
q denotes the (ℓ · 2n3 + k2)

th
row of A, then

the only entry in which the vectors v1 and v2 are both non-zero is the jth one. If no
such indices exist, fail.

– Let e1, e2 ∈ Fq be the entries in the jth position in vectors v1,v2.

– Sample r ←R Fq such that r ̸= 0. Then, sample random, non-zero c1, c2 ∈ Fq such
that c1 · e1+ c2 · e2 = r+µi. (This is possible because Fq is a finite field, and q ≥ 3.)

– Define the vector āi,j := c1 ·v1+c2 ·v2−µi ·ej (where ej denotes the jth unit vector
in Fn

q , which is “0” everywhere except for “1” at the jth entry).

– Let u1, u2 ∈ Fq denote the (ℓ · 2n3 + k1)
th

and (ℓ · 2n3 + k2)
th

entries of vector b
respectively. Define the scalar b̄i,j := c1 · u1 + c2 · u2 ∈ Fq.

• If j = n+ 1,

– Sample x ←R [n]. Find a pair of distinct indices k1, k2 ∈ [2n3] such that, if v1 ∈ Fn
q

denotes the (ℓ · 2n3 + k1)
th

row of A and v2 ∈ Fn
q denotes the (ℓ · 2n3 + k2)

th
row

of A, then the only entry in which the vectors v1 and v2 are both non-zero is the
xth one. If no such indices exist, fail.

– Let e1, e2 ∈ Fq be the entries in the xth position in vectors v1,v2.

– Sample r ←R Fq such that r ̸= 0. Then, sample random, non-zero c1, c2 ∈ Fq such
that c1 · e1 + c2 · e2 = r. (This is possible because Fq is a finite field, and q ≥ 3.)

– Then, define the vector āi,j := c1 · v1 + c2 · v2.

32

– Also, let u1, u2 ∈ Fq denote the (ℓ · 2n3 + k1)
th

and (ℓ · 2n3 + k2)
th

entries of vector
b respectively. Define the scalar b̄i,j := c1 · u1 + c2 · u2 + µi ∈ Fq.

2. Output the result from calling algorithm A on the list of matrices
(
Ā1, b̄1, . . . , Ām, b̄m

)
,

where for i ∈ [m] we define:

Āi :=

 āi,1
...

āi,n+1

 ∈ F(n+1)×n
q and b̄i :=

 b̄i,1
...

b̄i,n+1

 ∈ Fn+1
q

By construction, we see that the algorithm B runs in polynomial time. Next, we analyze the
probability that the algorithm B fails, when the input matrix A ∈ Fm′×n

q is a random k′-sparse
matrix. By [DIJL23, Claim 4.1], the probability that any one iteration of the loop fails is negl(n).
So, by a union bound, the probability that algorithm B fails, when the input matrix A ∈ Fm′×n

q is
a random k′-sparse matrix, is also negl(n).

Finally, conditioned on the event that B does not fail, we see that for each i ∈ [m]:

• if (A,b) is a sparse-LPN sample with dimension n, modulus q, sparsity k′, and error parameter
δ′, then (Āi, b̄i) is distributed exactly like a sample in our KDM distribution with sparsity k
and noise parameter ≤ δ (i.e., the left-hand side in the equation of Lemma 2.4).

• if (A,b) is distributed such that (1) A is a random k′-sparse matrix in Sk′,m′,n,q and (2)
b is a uniformly random vector in Fm′

q , then (Āi, b̄i) is distributed such that (1) Āi is a
random matrix in Diag(Sk,n+1,n,q) and (2) b̄i is a uniformly random vector in Fn+1

q (i.e., like
the right-hand side in the equation of Lemma 2.4).

So, by our assumption that algorithm A can break KDM security with non-negligible probabil-
ity, it must be that B can distinguish sparse-LPN samples from random ones with non-negligible
probability. This contradicts the (n, q, δ′, k′)-sparse LPN distribution.

B Additional Material on Somewhat Homomorphic Encryption

B.1 Proof of Theorem 3.1

On security parameter λ ∈ N, functionality parameter τ = poly(λ) ∈ N, and constant correctness
parameter c ∈ N, let (n, q, δ, k,Ψ) be the parameters of Construction 3.2 defined in the theorem
statement. In this section, we prove that Construction 3.2 is a somewhat homomorphic encryption
scheme for the function class Fτ that satisfies correctness with probability 1 − λ−c − ϵLHE(λ),
semantic security, and compactness.

Proof. We prove correctness, security, and compactness separately.

Correctness. Let (sk, ek) be a key pair output by running Gen(1λ, 1τ). We parse secret key sk as
(s ∈ Fn

q , skLHE) and evaluation key ek as (ekLHE, ct1, . . . , ctn). For the remainder of this argument,
we will reason about Construction 3.2 using this key pair.

To analyze the scheme, we examine the distribution of ciphertexts output by Enc, Add, and Mul,
taken over the encryption algorithm’s randomness. We say that a distribution D over ciphertexts
is (t, ϵ)-good with respect to a message µ ∈ Fq and the fixed key

[
−s 1

]⊺
, if it meets the following

properties:

33

1. Sparsity t: every ciphertext in the support of D is a matrix in F(n+1)×(n+1)
q that has at most

t non-zero entries in each of its rows.

2. Error-rate ϵ: the following equation holds:

∀i ∈ [n+ 1], Pr
C←D

ei ̸= 0

∣∣∣∣∣∣∣∣∣


e1
e2
...

en+1

 := C ·
[
−s
1

]
− µ ·

[
−s
1

] ≤ ϵ. (∗)

The (∗)-equation here implies that a ciphertext matrix C sampled from the distribution
D will have the “extended” secret-key vector

[
−s 1

]⊺
as an approximate eigenvector, with

approximate eigenvalue µ — exactly as with GSW encryption [GSW13]. However, unlike with
GSW, the eigenvector here is corrupted with sparse (rather than low-norm) noise.

We will show that, given any message µ ∈ Fq, the algorithm Enc(sk, ·) outputs a ciphertext
sampled from a distribution that is (k + 1, n−δ)-good with respect to µ. Moreover, for any two
distributions Dleft and Dright that are each (t, ϵ)-good with respect to messages µleft and µright, the
distribution

DAdd = {Add(Cleft,Cright) : Cleft ← Dleft,Cright ← Dright}

is (tAdd, ϵAdd)-good with respect to µ1 + µ2. Similarly, the distribution

DMul = {Mul(Cleft,Cright) : Cleft ← Dleft,Cright ← Dright}

is (tMul, ϵMul)-good with respect to µ1 ·µ2. Here, tAdd and tMul are somewhat bigger than t, and ϵAdd
and ϵMul are somewhat bigger than ϵ, but they all remain bounded. In other words, the (∗)-invariant
holds after encryption, after homomorphic additions, and after homomorphic multiplications.

We perform this analysis in a sequence of claims:

Claim B.1 (Encryption). For any µ ∈ Fq, the algorithm Enc(sk, µ) produces a ciphertext sampled
from a (k + 1, n−δ)-good distribution with respect to µ.

Proof. Sparsity analysis. The Enc algorithm samples a matrix A from the set Diag(Sk,n+1,n,q).
By definition, the A-matrix here contains exactly k non-zero entries in each of its rows. Then, Enc
outputs a ciphertext matrix C that is the concatenation of A with a column vector. So, the sparsity
of C is at most k + 1.

Error-rate analysis. To show that the (∗)-invariant holds after encryption, we observe that the
ciphertext matrix C output by Enc(sk, µ) is constructed as

C =


a1 a1

⊺s+ e1 − s1 · µ
a2 a2

⊺s+ e2 − s2 · µ
...

...
an an

⊺s+ en − sn · µ
an+1 an+1

⊺s+ en+1 + µ

 ,

34

where vectors a1, . . . ,an+1 are the rows of the A-matrix, scalars s1, . . . , sn are the entries of the
secret vector s, and each scalar e1, . . . , en+1 is sampled from the error distribution RandBernn−δ,q.
Here, we see that:

C ·
[
−s
1

]
=


a1 a1

⊺s+ e1 − s1 · µ
a2 a2

⊺s+ e2 − s2 · µ
...

...
an an

⊺s+ en − sn · µ
an+1 an+1

⊺s+ en+1 + µ

 ·
[
−s
1

]
= µ ·

[
−s
1

]
+


e1
e2
...
en
en+1


This implies that, for all i ∈ [n+ 1]:

Pr

ẽi ̸= 0

∣∣∣∣∣∣∣∣∣


ẽ1
ẽ2
...

ẽn+1

 := C ·
[
−s
1

]
− µ ·

[
−s
1

] = Pr [ei ̸= 0] = n−δ.

That is, the algorithm Enc(sk, µ) outputs a ciphertext sampled from a distribution that is (k +
1, n−δ)-good with respect to µ.

Claim B.2 (Homomorphic addition). Given any distribution Dleft that is (kleft, ϵleft)-good with
respect to message µleft and any distribution Dright that is (kright, ϵright)-good with respect to message
µright, the distribution

DAdd = {Add(Cleft,Cright) : Cleft ← Dleft,Cright ← Dright}

is (knew, ϵnew)-good with respect to message (µleft + µright) ∈ Fq, with sparsity knew ≤ kleft + kright
and error-rate ϵnew ≤ ϵleft + ϵright.

Proof. Sparsity analysis. Let Cleft be any matrix in the support of Dleft, let Cright be any matrix in
the support of Dright, and let Cnew := Add(Cleft,Cright). Then, each row in Cleft contains at most
kleft non-zero entries, and each row in Cright contains at most kright non-zero entries. So, each of row
of Cnew contains at most kleft + kright non-zero entries.

Error-rate analysis. Consider matricesCleft andCright sampled from Dleft and Dright, and letCnew :=
Add(Cleft,Cright). We observe that:

Cnew ·
[
−s
1

]
= (Cleft +Cright) ·

[
−s
1

]
(1)

= Cleft ·
[
−s
1

]
+Cright ·

[
−s
1

]
(2)

= µleft ·
[
−s
1

]
+ eleft + µright ·

[
−s
1

]
+ eright (3)

= (µleft + µright)︸ ︷︷ ︸
message µnew

·
[
−s
1

]
+ (eleft + eright)︸ ︷︷ ︸

invariant error enew

. (4)

35

Here, Eq. (3) follows by the (∗)-invariant, which tells us that the probability that each entry in error
vectors eleft and eright is non-zero is at most ϵleft and ϵright, respectively. Since enew = eleft + eright,
by a union bound, the probability of any one entry in the new invariant error, enew, being non-zero
is at most ϵleft + ϵright.

Equivalently, we can write that, for all i ∈ [n+ 1],

Pr
Cleft ← Dleft

Cright ← Dright

ẽi ̸= 0

∣∣∣∣∣∣∣∣∣


ẽ1
ẽ2
...

ẽn+1

 := Add(Cleft,Cright) ·
[
−s
1

]
− µnew ·

[
−s
1

]
≤ ϵleft + ϵright.

That is, the distribution DAdd is (knew, ϵnew)-good with respect to the new message µnew = µleft +
µright ∈ Fq, for knew ≤ kleft + kright and ϵnew ≤ ϵleft + ϵright.

Claim B.3 (Homomorphic multiplication). Given any distribution Dleft that is (kleft, ϵleft)-good
with respect to message µleft and any distribution Dright that is (kright, ϵright)-good with respect to
message µright, the distribution

DMul = {Mul(Cleft,Cright) : Cleft ← Dleft,Cright ← Dright}

is (knew, ϵnew)-good with respect to message (µleft · µright) ∈ Fq, with sparsity knew ≤ kleft · kright and
error-rate ϵnew ≤ kleft · ϵright + ϵleft.

Proof. Sparsity analysis. Let Cleft be any matrix in the support of Dleft, let Cright be any matrix
in the support of Dright, and let Cnew := Mul(Cleft,Cright) = Cleft ·Cright. For any j ∈ [n + 1], let
vector u ∈ Fn+1

q denote the jth row in matrix Cleft. Additionally, for any i ∈ [n + 1], let vector

v(i) ∈ Fn+1
q denote the ith row in matrix Cright. Finally, let vector w ∈ Fn+1

q denote the jth row in
matrix Cnew. Then, by construction, the row vector w is computed as follows:

w =
n∑

ℓ=1

uℓ · v(ℓ) (5)

We know that the vector u contains at most kleft non-zero entries, and that each vector v(ℓ) for
ℓ ∈ [n+1] contains at most kright non-zero entries. So, by Eq. (5), the row vector w can contain at
most kleft · kright non-zero entries. Thus, the resulting ciphertext Cnew must have sparsity at most
knew ≤ kleft · kright.

Error-rate analysis. Consider matricesCleft andCright sampled from Dleft and Dright, and letCnew :=

36

Mul(Cleft,Cright). We observe that:

Cnew ·
[
−s
1

]
= Cleft ·Cright ·

[
−s
1

]
(6)

= Cleft ·
([
−s
1

]
· µright + eright

)
(7)

= Cleft ·
[
−s
1

]
· µright +Cleft · eright (8)

=

([
−s
1

]
· µleft + eleft

)
· µright +Cleft · eright (9)

= µleftµright︸ ︷︷ ︸
message µnew

·
[
−s
1

]
+ (eleft · µright +Cleft · eright)︸ ︷︷ ︸

invariant error enew

. (10)

Here, Eqs. (7) and (9) each follow by the (∗)-invariant, which tells us that the probability of any
one entry in vectors eleft and eright being non-zero is at most ϵleft and ϵright, respectively. Since
enew = µright · eleft +Cleft · eright, where each row of Cleft contains at most kleft non-zero entries, by
a union bound, the probability of any one entry in enew being non-zero is at most ϵleft + kleft · ϵright.

Equivalently, we can write that, for all i ∈ [n+ 1],

Pr
Cleft ← Dleft

Cright ← Dright

ẽi ̸= 0

∣∣∣∣∣∣∣∣∣


ẽ1
ẽ2
...

ẽn+1

 := Mul(Cleft,Cright) ·
[
−s
1

]
− µnew ·

[
−s
1

]
≤ ϵleft + kleft · ϵright.

That is, the distribution DMul is (knew, ϵnew)-good with respect to the message µnew = µleft ·µright ∈
Fq, for knew ≤ kleft · kright and ϵnew ≤ ϵleft + kleft · ϵright.

Finally, we observe that the (∗)-invariant is exactly used by the Compact and Dec algorithms
to squash and decrypt ciphertexts. Here, we must now consider the randomness over both the Gen
and Enc algorithms (that is, we no longer work with a fixed key pair (sk, ek)).

Claim B.4 (Compaction and Decryption). Sample a key pair (sk, ek) ← Gen(1λ, 1τ). Given any
distribution D that is (t, ϵ)-good with respect to a message µ ∈ Fq and the secret key sk, it holds
that

Pr [Dec(sk,Compact(ek,C)) ̸= µ | C← D] ≤ ϵ+ ϵLHE(λ).

Proof. Consider a ciphertext C ← D, and let
[
a || b

]
∈ Fn

q × Fq denote the last row of ci-
phertext matrix C. Looking at just the last row of C, because D is (t, ϵ)-good, we know that
Pr [b− a⊺s ̸= µ] ≤ ϵ. Then, the algorithm Compact(ek,C) outputs the result of the affine function

fa,b(x1, . . . , xn) = b−
∑
i∈[n]

ai · xi = b− a⊺x

37

applied to the LHE-encryption of the secret-key vector s. Then, the Dec(sk, ·) algorithm decrypts
this LHE ciphertext. So, because our LHE scheme has ϵLHE(λ) probability of correctness failures,
taking the probability over the randomness of Gen and Enc, by a union bound we see that:

Pr [Dec (sk,Compact(ek,C)) ̸= µ] ≤ Pr [fa,b(s1, . . . , sn) ̸= µ] + ϵLHE(λ)

= Pr [b− a⊺s ̸= µ] + ϵLHE(λ)

≤ ϵ+ ϵLHE(λ).

An inductive argument on Claims B.1 to B.4 shows that we can chain homomorphic operations
computed with Add and Mul on ciphertexts encrypted with Enc(sk, ·). As long as the error growth
is not too large, the algorithms Compact(ek, ·) and Dec(sk, ·) will recover the correct output of
the computation. For every Add, the sparsity and the error-rate of the resulting ciphertexts grow
additively (Claim B.2). For every Mul, the sparsity grows multiplicatively and — exactly as with
GSW encryption [BV14] — the error-rate grows asymmetrically: it scales linearly with the sparsity
of the left operand (Claim B.3).

To evaluate degree-d products, we perform multiplications in a “straight line,” such that each
call toMul takes as input a fresh ciphertext with low sparsity as its left operand. With this evaluation
strategy, computing a degree-d product on “fresh” ciphertexts (with sparsity (k+1) and error-rate
n−δ, per Claim B.1) produces an encryption of their product with sparsity (k + 1)d and error rate

n−δ ·

d−1∑
j=0

(k + 1)j

 = n−δ · (k + 1)d − 1

k
≤ n−δ · (k + 1)d.

Then, performing M additions after this degree-d product gives an encryption of the result with
sparsity M · (k + 1)d and error rate at most M · (k + 1)d · n−δ.

To homomorphically evaluate polynomials in Fτ with correctness error (λ−c+ ϵLHE(λ)), it then
suffices to set the secret dimension n to be sufficiently large. To achieve this, when computing
products of total degree d and then adding up M such terms, we set the parameters so that

M · (k + 1)d · n−δ ≤ λ−c. (∗∗)

Taking M = τ and d = log τ/ log log τ , we get that τ · (k+1)
log τ

log log τ ≤ nδ ·λ−c. When k ≤ log τ − 1,
this equation is satisfied whenever n ≥ τ2/δ · λc/δ, as required by the theorem statement. Applying
Claim B.4 proves the final result.

Security. We now show that Construction 3.2 satisfies semantic security. Consider any number of
messages m = poly(λ). Let δ′ := δ − 1/ log n, as in the theorem statement. We need to show that,
given the evaluation key ek, any m ciphertexts output by Enc look computationally indistinguish-
able, regardless of the underlying messages being encrypted. To do so, we will show that, assuming
(n, q, δ′, (k + 1)/2)-sparse LPN and under the LHE scheme’s semantic security, the encryption of
any m messages looks computationally indistinguishable from the encryption of m zeros. That is,

38

for any m messages µ1, . . . , µm ∈ Fq, we show that D
c
≈ D′ where:

D =


ekLHE,

ct1, . . . , ctn,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣
s ←R Fn

q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, si) ,∀ i ∈ [n]
Cj ← Enc((s, skLHE), µj) ,∀ j ∈ [m]


D′ =


ekLHE,

ct1, . . . , ctn,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣
s ←R Fn

q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, si) ,∀ i ∈ [n]
Cj ← Enc((s, skLHE), 0) , ∀ j ∈ [m]


We show this via a hybrid argument with three steps:

1. In a first step, because of the underlying LHE scheme’s security, we can replace the LHE
encryption of s ∈ Fn

q in the evaluation key ek with the encryption of the all-zeros vector.

That is, by the LHE scheme’s semantic security, we get that D
c
≈ D1, where

D1 =


ekLHE,

ct1, . . . , ctn,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣
s ←R Fn

q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) ,∀ i ∈ [n]
Cj ← Enc((s, skLHE), µj) , ∀ j ∈ [m]


2. In a second step, assuming (n, q, δ′, (k+1)/2)-sparse LPN, we can apply Lemma 2.4 to replace

the m ciphertexts output by Enc with the encryption of m zeros.

That is, by Lemma 2.4, we get that D1
c
≈ D2, where

D2 =


ekLHE,

ct1, . . . , ctn,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣
s ←R Fn

q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n]
Cj ← Enc((s, skLHE), 0) , ∀ j ∈ [m]


3. In a third step, because of the underlying LHE scheme’s security, we switch the LHE encryp-

tion of the all-zeros vector in the evaluation key ek back to the LHE encryption of s ∈ Fn
q .

That is, by the LHE scheme’s semantic security, we get that D2
c
≈ D′, where

D′ =


ekLHE,

ct1, . . . , ctn,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣
s ←R Fn

q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, si) , ∀ i ∈ [n]
Cj ← Enc((s, skLHE), 0) ,∀ j ∈ [m]

 .

We formally prove security with the following three claims.

Claim B.5. D
c
≈ D1.

39

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ϵadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D, A outputs “1” with probability pleft; when given a sample from distribution D1, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ϵadv.

Now, consider the sequence of n+ 1 distributions D1,0, . . . ,D1,n defined as, ∀ k ∈ {0, 1, . . . , n}:

D1,k =


ekLHE,

ct1, . . . , ctn,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣
s ←R Fn

q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [k]
cti ← LHE.Enc(skLHE, si) ,∀ i ∈ {k + 1, . . . , n}
Cj ← Enc((s, skLHE), µj) ,∀ j ∈ [m]


Let pk denote the probability of algorithm A outputting “1” given an input from distribution D1,k.
Since distribution D1,0 is equal to D, we have pleft = p0. Similarly, since distribution D1,n is equal
to D1, we have pright = pn. As a result, |p0 − pn| ≥ ϵadv, so there must exist some index i ∈ [n] such
that |pi − pi−1| ≥ ϵadv/n. That is, the algorithm A can distinguish between distributions D1,i and
D1,i−1 with non-negligible advantage.

Since distributions D1,i and D1,i−1 differ only in the ith LHE encryption in the evaluation key
being an encryption of either 0 or si, this means that algorithm A can break the semantic security
of the LHE scheme. This is a contradiction.

Claim B.6. D1
c
≈ D2.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ϵadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D1, A outputs “1” with probability pleft; when given a sample from distribution D2, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ϵadv.

Now, consider the sequence of m+1 distributions D2,0, . . . ,D2,m defined as, ∀ k ∈ {0, 1, . . . ,m}:

D2,k =


ekLHE,

ct1, . . . , ctn,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣
s ←R Fn

q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n]
Cj ← Enc((s, skLHE), 0) , ∀ j ∈ [k]
Cj ← Enc((s, skLHE), µj) , ∀ j ∈ {k + 1, . . . ,m}


Let pk denote the probability of algorithm A outputting “1” given an input from distribution D2,k.
Since distribution D2,0 is equal to D1, we have pleft = p0. Similarly, since distribution D2,m is equal
to D2, we have pright = pm. As a result, |p0 − pm| ≥ ϵadv, so there must exist some index i ∈ [m]
such that |pi − pi−1| ≥ ϵadv/m. That is, the algorithm A can distinguish between distributions D2,i

and D2,i−1 with non-negligible advantage.
The distributions D2,i and D2,i−1 differ only in the ith sparse-LPN encryption in the evaluation

key being an encryption of either 0 or µi. By Lemma 2.4, assuming (n, q, δ′, (k+1)/2)-sparse LPN,
these two sparse-LPN encryptions (of either 0 or µi) are both computationally indistinguishable
from the distribution {

(A,b) : A←R Diag(Sk,n+1,n,q), b←R Fn+1
q

}
.

This is a contradiction.

40

Claim B.7. D2
c
≈ D′.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ϵadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D2, A outputs “1” with probability pleft; when given a sample from distribution D′, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ϵadv.

Now, consider the sequence of n+ 1 distributions D′0, . . . ,D′n defined as, ∀ k ∈ {0, 1, . . . , n}:

D′k =


ekLHE,

ct1, . . . , ctn,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣
s ←R Fn

q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, si) , ∀ i ∈ [k]
cti ← LHE.Enc(skLHE, 0) ,∀ i ∈ {k + 1, . . . , n}
Cj ← Enc((s, skLHE), 0) ,∀ j ∈ [m]

 .

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D′k.
Since distribution D′0 is equal to D2, we have pleft = p0. Similarly, since distribution D′n is equal to
D′, we have pright = pn. As a result, |p0 − pn| ≥ ϵadv, so there must exist some index i ∈ [n] such
that |pi − pi−1| ≥ ϵadv/n. That is, the algorithm A can distinguish between distributions D′i and
D′i−1 with non-negligible advantage.

Since distributions D′i and D′i−1 differ only in the ith LHE encryption in the evaluation key
being an encryption of either 0 or si, this means that algorithm A can break the semantic security
of the LHE scheme. This is a contradiction.

Compactness. Finally, we examine the size of ciphertexts in Construction 3.2.

Size of fresh ciphertexts. Each ciphertext output by Enc is a matrix in F(n+1)×(n+1)
q , whose rows

each contain at most (k + 1) non-zero entries.

Size of squashed ciphertexts. Each ciphertext output by Compact is a ciphertext of the underlying
LHE scheme, produced by LHE.Eval. Here, LHE.Eval is given:

• an evaluation key ekLHE, output by LHE.Gen(1λ, 1n),

• an affine function f : Fn
q → Fq, and

• n LHE ciphertexts ct1, . . . , ctn, encrypted by calling LHE.Enc(skLHE, ·).

By definition, the n-variate affine function f is in the function class supported by the LHE scheme
with the given parameters (cf. Section 2.2). Then, since the LHE scheme must satisfy compactness,
there exists a polynomial p(·) such that the bitlength of any ciphertext it outputs is at most p(λ),
independent of n. As a result, the encryption scheme in Construction 3.2 must also be compact.

B.2 Proof of Remark 3.3

Remark 3.3 describes the efficiency of the SHE scheme in Construction 3.2.

Proof. In Construction 3.2, we can take advantage of the sparsity in our ciphertexts by pruning the
computation required by each Add and Mul so as to perform only those operations that affect the
final output of a computation. Pruning the computation in this way does not affect the scheme’s

41

correctness, error growth, or security, but improves the cost of operating on (and storing) interme-
diate ciphertexts. An analogous observation was previously applied in the context of homomorphic
secret sharing by Dao et al. [DIJL23, Remark 5.4].

In more detail, each ciphertext before compaction is a matrix in F(n+1)×(n+1)
q . However, the

Compact algorithm only inspects the last row of the ciphertext matrix C it is given. So, we can
materialize only those rows of the intermediate ciphertexts that affect the last row of matrix C.

Consider a degree-d multiplication circuit computing

Cnew ← Cd ·Cd−1 · . . . ·C2 ·C1,

where each input ciphertext has sparsity kinit ∈ N. Per Appendix B.1, we perform this computation
as Cnew ← Cd ·(Cd−1 ·(. . . ·(C2 ·C1))), in a straight line from right to left to minimize error growth.

In the last call to Mul, we can materialize only the last row of the output ciphertext Cnew. This
lets us compute over only the last row of ciphertext Cd, given as the left operand to Mul. Since the
ciphertext (Cd−1 · (. . . · (C2 · C1))) has sparsity kright = kd−1init , the cost of this multiplication of a
row vector with a ciphertext matrix, exactly as in Eq. (5), is kinit · kright = kdinit operations in Fq.

In the second-to-last call to Mul, operating on Cd−1 and Cd−2 · (. . . · (C2 · C1)), we similarly
compute only the kinit rows of the output that are needed by the final call to Mul—namely, those
corresponding to non-zero entries in the last row of Cd. Given that the ciphertext Cd−2 · (. . . · (C2 ·
C1)) has sparsity k′right = kd−2init , this multiplication of a kinit-by-(n + 1) dimensional matrix with

another ciphertext matrix incurs kinit · kinit · k′right = kdinit operations in Fq.

We push this optimization further, all the way to inspecting only the kd−1init rows of C1 needed to
compute the final output. For any i ∈ [d], the intermediate ciphertext output by the ith call to Mul
will be a kd−i−1init -by-(n + 1) dimensional matrix with sparsity ki+1

init , which we can compute in kdinit
operations. Taken together, all d− 1 calls to Mul require (d− 1) ·kdinit operations in Fq, independent
of the secret dimension n.

Incorporating homomorphic additions into this framework is seamless: to perform any number
of Adds between the ith and the (i+ 1)th level of multiplications, it suffices to add those rows of
the ciphertext matrices that the subsequent operations will touch. Since, after i of the d total calls
to Mul, each ciphertext is a kd−i−1init -by-(n+ 1) dimensional matrix with sparsity ki+1

init , calls to Add

each require kd−i−1init ·ki+1
init = kdinit operations in Fq—again, independent of n. These additions worsen

ciphertext sparsity, which affects the cost of future operations. If all calls to Mul are completed and
only Adds remain, we can immediately run the Compact algorithm and perform these additions on
the LHE ciphertexts.

Finally, the number of LHE operations required by Compact is linear in the sparsity of the
ciphertext it is given as input. That is, performing degree-d multiplications, followed by M total
additions, on ciphertexts with initial sparsity kinit requires (d−1)M ·kdinit operations in Fq, followed
by M · kdinit LHE additions.

B.3 Proof of Remark 3.4

Remark 3.4 describes how to shrink the probability of correctness errors in the SHE scheme of
Construction 3.2 down to negl(λ).

Proof. To prove Remark 3.4, we must argue that repeating the scheme in Construction 3.2 λ times
(1) shrinks the probability of correctness errors down to negl(λ), (2) only causes a polynomial loss in

42

security, and (3) only causes a polynomial loss in compactness. Compactness follows by inspection.
We discuss correctness and security separately.

Correctness. To homomorphically evaluate polynomials in Fτ with negl(λ) probability of correct-
ness failures, we proceed as follows:

Step 1: Set the parameters so that the probability of a correctness failure is constant (e.g., at most
1/8). To achieve this, when computing products of total degree d and then adding up M such
terms, we set the parameters so that

M · (k + 1)d · n−δ ≤ 1/8.

Taking M = τ and d = log τ/ log log τ , we get that τ · (k + 1)
log τ

log log τ ≤ nδ/8. When k ≤ log τ − 1,
this equation is satisfied whenever n ≥ τ2/δ · 81/δ, as required by the remark.

Step 2: Amplify the scheme’s correctness with independent trials. We shrink the probability of a
decryption failure to negl(λ) by repeating the scheme λ times with independent randomness (that
is, independently sampled secret keys and errors) and outputting the majority of the results across
all instances.

In more detail, let T1, . . . , Tλ be random variables in Fq that represent the output of Dec for each
of the λ instances (where each instance first generates independent keys with Gen, then encrypts
the same messages with independent keys and errors using Enc, performs the same homomorphic
operations on the resulting ciphertexts with Add and Mul, and finally runs Compact and Dec). We
know that, for each i ∈ [λ], Ti takes on the correct value with probability at least 7/8 by the
analysis in step (1). Finally, let T = MAJ(T1, . . . , Tλ). The probability that T does not take on
the correct value is upper bounded by the probability that at least λ/2 of the trials produce an
incorrect result, which we compute as(

λ

λ/2

)
·
(
1

8

)λ/2

<

(
λ · e
λ/2

)λ/2

·
(
1

8

)λ/2

=
(e
4

)λ/2
≤ 1.4−λ/2 = negl(λ).

We have shown that the resulting scheme can homomorphically evaluate the function class Fτ

consisting of multivariate polynomials with total degree up to log τ/ log log τ and up to τ monomials,
whenever n = Ω(τ2/δ) = poly(τ). When doing so, the scheme has a negligible probability of
correctness errors.

Security. Security follows from the semantic security of a single instance of Construction 3.2
(Appendix B.1). Namely, when performing λ parallel instances and taking the majority of all
outputs, security follows via a hybrid argument using the semantic security of each instance.

C Additional Material on Optimizations and Batching

C.1 Syntax for Batch Somewhat Homomorphic Encryption

To allow for batch encryption and batch evaluation in our SHE schemes, we extend their syntax
to include two “packing parameters” tEnc, tEval ∈ N. Then, the encryption algorithm can produce
“packed” ciphertexts encrypting any number t0 ≤ tEnc of values, and the evaluation algorithm
can evaluate any number t1 ≤ tEval of functions on such packed ciphertexts, producing a packed
encryption of their outputs.

43

Definition C.1 (Somewhat Homomorphic Encryption with “Batch Encryption” and “Batch Eval-
uation”). Given a key space K, a message spaceM, and a ciphertext space C, a somewhat homo-
morphic encryption scheme with batch encryption and batch evaluation (batch-SHE) is a tuple of
four polynomial-time algorithms:

• BatchGen(1λ, 1τ , 1tEnc , 1tEval)→ (sk, ek), a randomized algorithm that takes as input a security
parameter λ ∈ N, a functionality parameter τ ∈ N, and two packing parameters tEnc, tEval ∈ N,
and outputs a secret key sk ∈ K and an evaluation key ek ∈ K.

• BatchEnc(sk,v)→ ct, a randomized algorithm that takes as input a secret key sk ∈ K and a
message vector v ∈Mt for any 1 ≤ t ≤ tEnc, and outputs a “packed” ciphertext ct ∈ C.

• BatchEval(ek, f1, . . . , ft, ct1, . . . , ctm) → ctout, a deterministic algorithm that takes as input
an evaluation key ek ∈ K, t functions f1, . . . , ft : Mℓ → M for any 1 ≤ t ≤ tEval, and any
m ∈ N “packed” ciphertexts ct1, . . . , ctm ∈ C and outputs a “packed” ciphertext ctout ∈ C.

• BatchDec(sk, ct) → v, a deterministic algorithm that takes as input a secret key sk ∈ K and
a ciphertext ct ∈ C and outputs a message vector v ∈M∗.

We define a batch-SHE scheme relative to a correctness failure probability ϵ = ϵ(λ) ∈ [0, 1] and
a function class Fτ ⊆ {f :M∗ →M}, which comprises the computations that can be homomor-
phically performed on ciphertexts. Given such a failure probability ϵ and a function class Fτ , we
require a batch-SHE scheme to satisfy correctness, semantic security, and compactness.

Correctness. For all parameters λ ∈ N, τ ∈ N, tEnc ∈ N, and tEval ∈ N, for any t0 ∈ [tEnc] and
t1 ∈ [tEval] and m = poly(λ), for all t1 functions f1, . . . , ft1 :Mm·t0 →M in the class Fτ , and for
all t1 ·m vectors v(1), . . . ,v(t1·m) ∈ Mt0 , let ϵ = ϵ(λ) ∈ [0, 1] be the correctness failure probability.
For each i ∈ [t1], we require that the following quantity is at most ϵ:

Pr

 BatchDec(sk, ct)i ̸= yi

∣∣∣∣∣∣
sk, ek ← BatchGen(1λ, 1τ , 1tEnc , 1tEval)

cti ← BatchEnc(sk, v
(i)
1 , . . . , v

(i)
t0
) for i ∈ [t1m]

ct ← BatchEval(ek, f1, . . . , ft1 , ct1, . . . , ctt1m)

 ,

where we write yi = fi(v
((i−1)m+1)
1 , . . . , v

((i−1)m+1)
t0

, . . . , v
(im)
1 , . . . , v

(im)
t0

).

Semantic security. For all parameters λ ∈ N, τ ∈ N, tEnc = poly(λ) ∈ N, and tEval = poly(λ) ∈ N,
for any t0 ∈ [tEnc] and any number of messages m = poly(λ) ∈ N, and for any sets of 2m vectors
u(1), . . . ,u(m),v(1), . . .v(m) ∈Mt0 , their encryptions are computationally indistinguishable:{

ek,BatchEnc(sk, u
(1)
1 , . . . , u

(1)
t0

),

. . . ,BatchEnc(sk, u
(m)
1 , . . . , u

(m)
t0

)

∣∣∣∣∣ sk, ek← BatchGen(1λ, 1τ , 1tEnc , 1tEval)

}
c
≈

{
ek,BatchEnc(sk, v

(1)
1 , . . . , v

(1)
t0

),

. . . ,BatchEnc(sk, v
(m)
1 , . . . , v

(m)
t0

)

∣∣∣∣∣ sk, ek← BatchGen(1λ, 1τ , 1tEnc , 1tEval)

}
.

Compactness. There exists a polynomial p(·) such that, for all parameters λ ∈ N, τ ∈ N, tEnc ∈ N,
and tEval ∈ N, for any t0 ∈ [tEnc], t1 ∈ [tEval], and m = poly(λ), for all t1 functions f1, . . . , ft1 :

44

Mm·t0 →M in the class Fτ , and for all t1 ·m vectors v(1), . . . ,v(t1·m) ∈Mt0 , let:

sk, ek ← BatchGen(1λ, 1τ , 1tEnc , 1tEval)

cti ← BatchEnc(sk, v
(i)
1 , . . . , v

(i)
t0
) for i ∈ [t1 ·m]

ctout ← BatchEval(ek, f1, . . . , ft1 , ct1, . . . , ctt1·m).

Then, the bitlength of the ciphertext ctout is at most t1 · p(λ), independent of τ .

C.2 Additional Material for Section 4.1

We give the construction described in Section 4.1 in Construction 4.3. Here, we prove its security
and correctness. The efficiency and compactness claims follow by inspection.

Proof. We discuss the scheme’s security and correctness separately. Throughout, let (n, q, δ, k) be
the LPN parameters given in Theorem 4.1.

Security. The evaluation key output by GenOpt consists of:

1. an evaluation key ekLHE for the underlying LHE scheme,

2. n LHE encryptions of the entries of secret key s ∈ Fn
q , and

3. (n+ 1) sparse-LPN encryptions of the entries of
[
t || 1

]
∈ Fn+1

q , under secret key s.

To prove security, we must show that, under (n, q, δ′, (k+1)/2)-sparse LPN, for anym = poly(λ), the
evaluation key together with m ciphertexts output by EncOpt on any m messages µ1, . . . , µm ∈ Fq,
are computationally indistinguishable from the evaluation key together with m encryptions of zero.

As in Appendix B.1, security here follows by a hybrid argument:

• First, by the semantic security of the underlying LHE scheme, we can swap the LHE encryp-
tions of the entries of secret key s ∈ Fn

q with LHE encryptions of the all-zeros vector.

• Second, by the semantic security of ciphertexts produced by Enc (which in turn follows from
the KDM-security of sparse LPN, as proved in Theorem 3.1), we can swap the sparse-LPN en-
cryptions of the entries of

[
t || 1

]
∈ Fn+1

q , under secret key s, with sparse-LPN encryptions
of the all-zeros vector under s.

• Third, by the sparse-LPN assumption, we can swap the m ciphertexts output by EncOpt,
encrypting µ1, . . . , µm under secret-key t, with m encryptions of zero under secret-key t.

• Fourth, by the semantic security of ciphertexts produced by Enc (which in turn follows from
the KDM-security of sparse LPN, as proved in Theorem 3.1), we can swap the sparse-LPN
encryptions of the all-zeros vector under secret key s back to the sparse-LPN encryptions of
the entries of

[
t || 1

]
∈ Fn+1

q , under s.

• Fifth, by the semantic security of the underlying LHE scheme, we can swap the LHE encryp-
tions of the all-zeros vector back to LHE encryptions of the entries of secret key s ∈ Fn

q .

We formalize this argument with the following five claims.

45

Claim C.2. D0
c
≈ D1, where we define:

D0 =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, si) ,∀ i ∈ [n]

Ci,ek ← Enc((s, skLHE), t
′
i) , ∀ i ∈ [n+ 1]

Cj ← EncOpt((t, skLHE), µj) , ∀ j ∈ [m]



D1 =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n]

Ci,ek ← Enc((s, skLHE), t
′
i) , ∀ i ∈ [n+ 1]

Cj ← EncOpt((t, skLHE), µj) , ∀ j ∈ [m]


.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ϵadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D0, A outputs “1” with probability pleft; when given a sample from distribution D1, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ϵadv.

Now, consider the sequence of n+ 1 distributions D0,0, . . . ,D0,n defined as, ∀ k ∈ {0, 1, . . . , n}:

D0,k =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [k]
cti ← LHE.Enc(skLHE, si) ,∀ i ∈ {k + 1, . . . , n}

Ci,ek ← Enc((s, skLHE), t
′
i) , ∀ i ∈ [n+ 1]

Cj ← EncOpt((t, skLHE), µj) ,∀ j ∈ [m]


.

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D0,k.
Since distribution D0,0 is equal to D0, we have pleft = p0. Similarly, since distribution D0,n is equal
to D1, we have pright = pn. As a result, |p0 − pn| ≥ ϵadv, so there must exist some index i ∈ [n] such
that |pi − pi−1| ≥ ϵadv/n. That is, the algorithm A can distinguish between distributions D0,i and
D0,i−1 with non-negligible advantage.

Since distributions D0,i and D0,i−1 differ only in the ith LHE encryption in the evaluation key
being an encryption of either 0 or si, this means that algorithm A can break the semantic security
of the LHE scheme. This is a contradiction.

46

Claim C.3. D1
c
≈ D2, where we define:

D2 =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n]

Ci,ek ← Enc((s, skLHE), 0) , ∀ i ∈ [n+ 1]
Cj ← EncOpt((t, skLHE), µj) , ∀ j ∈ [m]


.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ϵadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D1, A outputs “1” with probability pleft; when given a sample from distribution D2, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ϵadv.

Now, consider the n+ 2 distributions D1,0, . . . ,D1,n+1 defined as, ∀ k ∈ {0, 1, . . . , n+ 1}:

D1,k =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) ,∀ i ∈ [n]

Ci,ek ← Enc((s, skLHE), 0) ,∀ i ∈ [k]
Ci,ek ← Enc((s, skLHE), t

′
i) ,∀ i ∈ {k + 1, . . . , n+ 1}

Cj ← EncOpt((t, skLHE), µj) ,∀ j ∈ [m]


.

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D1,k.
Since distribution D1,0 is equal to D1, we have pleft = p0. Similarly, since distribution D1,n+1 is
equal to D2, we have pright = pn+1. As a result, |p0 − pn+1| ≥ ϵadv, so there must exist some index
i ∈ [n + 1] such that |pi − pi−1| ≥ ϵadv/(n + 1). That is, the algorithm A can distinguish between
distributions D1,i and D1,i−1 with non-negligible advantage.

The distributions D1,i and D1,i−1 differ only in the ith sparse-LPN encryption in the evaluation
key being an encryption of either 0 or t′i. By Lemma 2.4, assuming (n, q, δ′, (k+1)/2)-sparse LPN,
these two sparse-LPN encryptions (of either 0 or t′i) are both computationally indistinguishable
from the distribution {

(A,b) : A←R Diag(Sk,n+1,n,q), b←R Fn+1
q

}
.

This is a contradiction.

Claim C.4. D2
c
≈ D3, where we define:

D3 =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) ,∀ i ∈ [n]

Ci,ek ← Enc((s, skLHE), 0) ,∀ i ∈ [n+ 1]
Cj ← EncOpt((t, skLHE), 0) , ∀ j ∈ [m]


.

47

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ϵadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D2, A outputs “1” with probability pleft; when given a sample from distribution D3, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ϵadv.

Now, consider the sequence of m+1 distributions D2,0, . . . ,D2,m defined as, ∀ k ∈ {0, 1, . . . ,m}:

D2,k =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n]

Ci,ek ← Enc((s, skLHE), 0) , ∀ i ∈ [n+ 1]
Cj ← EncOpt((t, skLHE), 0) ,∀ j ∈ [k]
Cj ← EncOpt((t, skLHE), µj) ,∀ j ∈ {k + 1, . . . ,m}


.

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D2,k.
Since distribution D2,0 is equal to D2, we have pleft = p0. Similarly, since distribution D2,m is equal
to D3, we have pright = pm. As a result, |p0 − pm| ≥ ϵadv, so there must exist some index i ∈ [m]
such that |pi − pi−1| ≥ ϵadv/m. That is, the algorithm A can distinguish between distributions D2,i

and D2,i−1 with non-negligible advantage.
The distributionsD2,i andD2,i−1 differ only in the ith sparse-LPN ciphertext being an encryption

of either 0 or µi. Assuming (n, q, δ′, (k + 1)/2)-sparse LPN, these two sparse-LPN encryptions (of
either 0 or µi) are both computationally indistinguishable from the distribution

{(a, b) : a←R Sk,1,n,q, b←R Fq} .

(This is because (n, q, δ′, (k + 1)/2)-sparse LPN directly implies (n, q, δ, k)-sparse LPN3, for prime
modulus q ≥ 3.) This is a contradiction.

Claim C.5. D3
c
≈ D4, where we define:

D4 =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) ,∀ i ∈ [n]

Ci,ek ← Enc((s, skLHE), t
′
i) ,∀ i ∈ [n+ 1]

Cj ← EncOpt((t, skLHE), 0) , ∀ j ∈ [m]


.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ϵadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D3, A outputs “1” with probability pleft; when given a sample from distribution D4, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ϵadv.

3The case of j = n+ 1 in the reduction in Appendix A gives a proof of this statement.

48

Now, consider the n+ 2 distributions D3,0, . . . ,D3,n+1 defined as, ∀ k ∈ {0, 1, . . . , n+ 1}:

D3,k =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, 0) ,∀ i ∈ [n]

Ci,ek ← Enc((s, skLHE), t
′
i) ,∀ i ∈ [k]

Ci,ek ← Enc((s, skLHE), 0) ,∀ i ∈ {k + 1, . . . , n+ 1}
Cj ← EncOpt((t, skLHE), 0) , ∀ j ∈ [m]


.

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D3,k.
Since distribution D3,0 is equal to D3, we have pleft = p0. Similarly, since distribution D3,n+1 is
equal to D4, we have pright = pn+1. As a result, |p0 − pn+1| ≥ ϵadv, so there must exist some index
i ∈ [n + 1] such that |pi − pi−1| ≥ ϵadv/(n + 1). That is, the algorithm A can distinguish between
distributions D3,i and D3,i−1 with non-negligible advantage.

The distributions D3,i and D3,i−1 differ only in the ith sparse-LPN encryption in the evaluation
key being an encryption of either 0 or t′i. By Lemma 2.4, assuming (n, q, δ′, (k+1)/2)-sparse LPN,
these two sparse-LPN encryptions (of either 0 or t′i) are both computationally indistinguishable
from the distribution {

(A,b) : A←R Diag(Sk,n+1,n,q), b←R Fn+1
q

}
.

This is a contradiction.

Claim C.6. D4
c
≈ D5, where we define:

D5 =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, si) ,∀ i ∈ [n]

Ci,ek ← Enc((s, skLHE), t
′
i) ,∀ i ∈ [n+ 1]

Cj ← EncOpt((t, skLHE), 0) ,∀ j ∈ [m]


.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ϵadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D4, A outputs “1” with probability pleft; when given a sample from distribution D5, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ϵadv.

Now, consider the sequence of n+ 1 distributions D4,0, . . . ,D4,n defined as, ∀ k ∈ {0, 1, . . . , n}:

D4,k =



ekLHE,
ct1, . . . , ctn,

C1,ek, . . . ,Cn+1,ek,
C1, . . . ,Cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s ←R Fn
q

t ←R Fn
q

t′ :=
[
t || 1

]⊺ ∈ Fn+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n)
cti ← LHE.Enc(skLHE, si) ,∀ i ∈ [k]
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ {k + 1, . . . , n}

Ci,ek ← Enc((s, skLHE), t
′
i) ,∀ i ∈ [n+ 1]

Cj ← EncOpt((t, skLHE), 0) ,∀ j ∈ [m]


.

49

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D4,k.
Since distribution D4,0 is equal to D4, we have pleft = p0. Similarly, since distribution D4,n is equal
to D5, we have pright = pn. As a result, |p0 − pn| ≥ ϵadv, so there must exist some index i ∈ [n] such
that |pi − pi−1| ≥ ϵadv/n. That is, the algorithm A can distinguish between distributions D4,i and
D4,i−1 with non-negligible advantage.

Since distributions D4,i and D4,i−1 differ only in the ith LHE encryption in the evaluation key
being an encryption of either 0 or si, this means that algorithm A can break the semantic security
of the LHE scheme. This is a contradiction.

Correctness. Let (sk, ek) ← GenOpt(1λ, 1τ) and parse sk as (t, skLHE). In addition, let s ∈ Fn
q

be the vector sampled and used by the GenOpt algorithm. We will show that, given any message
µ ∈ Fq, the composition of algorithms ConvertOpt(ek,EncOpt(sk, ·)) outputs a matrix sampled from
a ((k + 1)2, (k + 2) · n−δ)-good distribution with respect to message µ and secret-key

[
−s 1

]⊺
.

Per Claims B.2 to B.4, this is exactly what we need to keep performing homomorphic operations,
squash ciphertexts, and decrypt. By the analysis in Appendix B.1, if k ≤

√
log τ − 1 and n ≥

τ2/δ · λc/δ · (
√
log τ + 1)1/δ, then this encryption scheme can homomorphically evaluate functions

in the class Fτ , with decryption failure probability λ−c + ϵLHE(λ), where ϵLHE(λ) is the decryption
failure probability of the underlying LHE scheme.

Claim C.7 (Ciphertext conversion). For any µ ∈ Fq, running the composition of algorithms
ConvertOpt(ek,EncOpt(sk, µ)) produces a ciphertext sampled from a ((k + 1)2, (k + 2) · n−δ)-good
distribution with respect to µ.

Proof. Sparsity analysis. Consider any ciphertext C output by the following process:[
a || b

]
← EncOpt(sk, µ)

C← ConvertOpt(ek,
[
a || b

]
).

By construction, the vector a ∈ Fn
q contains at most k non-zero entries. Per Claim B.1, each row

of the matrices C1,ek, . . . ,Cn+1,ek given as part of the evaluation key ek contains at most (k + 1)
non-zero entries. As a result, the matrix C has sparsity at most (k + 1)2, by the same analysis as
in Claim B.3.

Error-rate analysis. Per Claim B.1, for each i ∈ [n], the ciphertext Ci,ek is sampled from a distri-
bution that is ((k + 1), n−δ)-good with respect to the message ti and the secret-key

[
−s 1

]⊺
. Let

ci,j ∈ Fn+1
q be the jth row of matrix Ci,ek. Then, ∀ i ∈ [n],∀ j ∈ [n+ 1],

Pr

ej ̸= 0

∣∣∣∣∣∣∣
 e1

...
en+1

 :=

 ci,1
...

ci,n+1

 · [−s
1

]
− ti ·

[
−s
1

] ≤ n−δ, and

Pr

ej ̸= 0

∣∣∣∣∣∣∣
 e1

...
en+1

 :=

 cn+1,1
...

cn+1,n+1

 · [−s
1

]
−
[
−s
1

] ≤ n−δ.

50

We can re-write this as follows: ∀ i ∈ [n],∀ j ∈ [n],

Pr

[
ci,j ·

[
−s
1

]
̸= −ti · sj

]
≤ n−δ Pr

[
ci,n+1 ·

[
−s
1

]
̸= ti

]
≤ n−δ,

Pr

[
cn+1,j ·

[
−s
1

]
̸= −sj

]
≤ n−δ Pr

[
cn+1,n+1 ·

[
−s
1

]
̸= 1

]
≤ n−δ.

Throughout, we will write v =
[
−a || b

]
. Now, we observe that, by construction:

C ·
[
−s
1

]
=



v ·

 c1,1
...

cn+1,1

 · [−s
1

]
...

v ·

 c1,n
...

cn+1,n

 · [−s
1

]

v ·

 c1,n+1
...

cn+1,n+1

 · [−s
1

]



=



v ·


−t1 · s1 + e1,1

...
−tn · s1 + en,1
−s1 + en+1,1


...

v ·


−t1 · sn + e1,n

...
−tn · sn + en,n
−sn + en+1,n



v ·


t1 + e1,n+1

...
tn + en,n+1

1 + en+1,n+1





,

where each ei,j for i ∈ [n + 1], j ∈ [n + 1] is non-zero with probability at most n−δ. Finally, we
know that b− a⊺t = µ+ e, where e is the error sampled from RandBernn−δ,q. Re-writing the above

expression and substituting in v ·
[
t
1

]
= µ+ e, we see that:

C ·
[
−s
1

]
=



v ·

−s1 [t1
]
+

 e1,1
...

en+1,1




...

v ·

−sn [t1
]
+

 e1,n
...

en+1,n




v ·

[
t
1

]
+

 e1,n+1
...

en+1,n+1






= µ ·
[
−s
1

]
+



v ·

 e1,1
...

en+1,1

− e · s1

...

v ·

 e1,n
...

en+1,n

− e · sn

v ·

 e1,n+1
...

en+1,n+1

+ e


︸ ︷︷ ︸

error enew

.

By a union bound, each entry of error vector enew is non-zero with probability at most (k+2) ·n−δ.

51

Equivalently, we can write that, for all i ∈ [n+ 1],

Pr

ẽi ̸= 0

∣∣∣∣∣∣∣∣∣


ẽ1
ẽ2
...

ẽn+1

 := ConvertOpt(ek,EncOpt(sk, µ)) ·
[
−s
1

]
− µ ·

[
−s
1

]
≤ (k + 2) · n−δ.

That is, the output distribution D is ((k+1)2, (k+2) ·n−δ)-good with respect to the message µ.

C.3 Additional Material for Section 4.2

We state and prove Lemma C.8.

Lemma C.8 (Sparse LPN with a reusedA-matrix). On security parameter λ ∈ N, under (n, q, δ, k)-
sparse LPN, for any m = poly(λ) and ℓ = poly(λ) ∈ N, the following distributions are computa-
tionally indistinguishable:(A,AS+E) :

A←R Sk,m,n,q

S←R Fn×ℓ
q

E← RandBernm×ℓ
n−δ,q


c
≈

{
(A,U) :

A←R Sk,m,n,q

U←R Fm×ℓ
q

}
.

Proof. Fix any m, ℓ = poly(λ). For the sake of contradiction, let there be a polynomial-time algo-
rithm A that distinguishes between the two distributions with advantage ϵadv ≥ 1/poly(λ). That
is, when given a sample from the left distribution, A outputs “1” with probability pleft; when given
a sample from the right distribution, A outputs “1” with probability pright; and it must be that
|pleft − pright| ≥ ϵadv.

Now, consider the sequence of ℓ+ 1 distributions D0, . . . ,Dℓ defined as:

∀i ∈ {0, 1, . . . , ℓ}, Di =


(
A,

[
AS+E ||U

])
:

A←R Sk,m,n,q

S←R Fn×(ℓ−i)
q

E← RandBern
m×(ℓ−i)
n−δ,q

U←R Fm×i
q


.

Let pi denote the probability of algorithm A outputting “1” given an input from distribution
Di. Since distribution D0 is equal to the left distribution above, we have pleft = p0. Similarly,
since distribution Dℓ is equal to the right distribution above, we have pright = pℓ. As a result,
|p0 − pℓ| ≥ ϵadv, so there must exist some index i ∈ [ℓ] such that |pi − pi−1| ≥ ϵadv/ℓ.

Since distributions Di and Di−1 differ only in the ith column of the second component being
either a sparse-LPN sample or truly random, this means that algorithm A can break the (n, q, δ, k)-
sparse LPN assumption with probability ϵadv/ℓ = O(1/ poly(λ)). This is a contradiction.

C.4 Additional Material for Section 4.3

We give the construction described informally in Section 4.3 in Construction C.9.

52

Construction C.9 (Packed El-Gamal over Zq with ciphertext compression). Parameterized by plaintext
modulus q ∈ N, packing parameter t ∈ N, and correctness parameter c ∈ N. Let the algorithm Sort :
Zq → Zq output a sorted copy of the list of values it is given. Instantiate PRF using a pseudorandom
function from DDH.

LHE.Gen(1λ, 1τ)→ (skLHE, ekLHE)

• Let B := q2 · (τ + 1) and T := 6λc · q2 · t · (B + 1). Let g be a generator of a group G in which DDH is
hard, and where order(g) > B + (q + 1)λT . Let p := order(g).

• Pick any PRF : K ×G→ {0, 1}log(T). Sample seed←R K. Sample z1, . . . , zt ←R Zp.

• Output skLHE := (PRF, seed, g, p, z1, . . . , zt) and ekLHE := (PRF, seed, B, T, g).

LHE.Enc(skLHE, (µ1, . . . , µt) ∈ Zt
q)→ ct

• Parse skLHE as (PRF, seed, g, p, z1, . . . , zt). Sample r1, . . . , rt ←R Zp.

• Output ct :=


gr1 gr1z1+µ1 gr1z2 . . . gr1zt

gr2 gr2z1 gr2z2+µ2 . . . gr2zt

...
...

...
. . .

...
grt grtz1 grtz2 . . . grtzt+µt

.

LHE.Eval(ekLHE, f1 : Zτ
q → Zq, . . . , ft : Zτ

q → Zq, ct1, . . . , ctτ)→ ct′

• For j ∈ [t], parse the affine function fj as fj(x1, . . . , xτ) = cj,0 +
∑τ

k=1 cj,k · xk.

• For k ∈ [τ], parse ctk as the matrix of group elements {gk,ℓ,j}ℓ∈{0,...,t},j∈[t].

• For ℓ ∈ {0, . . . , t}, let hℓ := gcℓ,0 ·
∏τ

k=1

∏t
j=1 g

cj,k
k,ℓ,j , where we take c0,0 := 0.

• Output ct′ := Shrink(ekLHE, h0, . . . , ht).

LHE.Dec(skLHE, ct)→ (µ1, . . . , µt) ∈ Zt
q

• Parse skLHE as (PRF, seed, g, p, z1, . . . , zt) and parse ct as (h, u1, . . . , ut).

• Output (w1, . . . , wt), where wℓ := Unshrink(PRF, seed, g, hzℓ , uℓ) for ℓ ∈ [t].

Shrink(ekLHE, h0 ∈ G, . . . , ht ∈ G)→ ct

• Parse ekLHE as (PRF, seed, B, T, g).

• If there exists ℓ ∈ [t] such that any of the following 3 conditions hold, output ⊥:

1. there exists b ∈ {0, . . . , B} such that PRF(seed, hℓ · g−b) = 0.

2. there exists µ ∈ Zq such that, for all b ∈ [λ · T], PRF(seed, hℓ · gq·b+µ) ̸= 0.

3. there exist distinct µ, µ′ ∈ Zq such that
∣∣padℓ,µ − padℓ,µ′

∣∣ ≤ 1, where, for all m ∈ Zq, we define

padℓ,m to be the smallest non-negative integer for which PRF(seed, hℓ · gq·padℓ,m+m) = 0.

• Let uℓ ∈ Zq be the index of padℓ,0 in Sort(padℓ,0, . . . , padℓ,q−1). Output (h0, u1, . . . , ut).

Unshrink(PRF : K ×G→ {0, 1}log(T), seed ∈ K, g ∈ G, h′ ∈ G, u ∈ Zq)→ Zq

• For µ ∈ Zq, let padµ be the smallest non-negative integer for which PRF(seed, h′ · gq·padµ+µ) = 0.

• Output i ∈ Zq so that padi is the uth element in Sort(pad0, . . . , padq−1).

Figure 3: Construction of linearly homomorphic encryption over Zq from DDH.

53

Let (c, q, t) be the parameters of Lemma 4.5. We prove that Construction C.9, instantiated
with these parameters, gives a correct and semantically secure LHE scheme with message space Zq

and correctness failure probability λ−c. The claimed efficiency follows by construction, and directly
implies that Construction C.9 is compact.

Proof. We prove correctness and security separately.

Correctness. To prove correctness, we first show that the probability that LHE.Eval outputs ⊥ is
at most λ−c (Claim C.10). Then, we show that decryption in Construction C.9 always recovers the
correct output of the t affine functions f1, . . . , ft evaluated on the encrypted values, conditioned on
the event that LHE.Eval did not output ⊥ (Claim C.11).

Claim C.10. For all λ ∈ N, τ = poly(λ) ∈ N, q = poly(λ) ∈ N, constant c ∈ N, and t = poly(λ) ∈
N, for all τ messages v(1), . . . ,v(τ) ∈ Zt

q, and for all t affine functions f1, . . . , ft : Zτ
q → Zq, it holds

that:

Pr

 ctout = ⊥

∣∣∣∣∣∣∣∣
skLHE, ekLHE ← LHE.Gen (1λ, 1τ)

cti ← LHE.Enc (skLHE,v
(i)), ∀ i ∈ [τ]

ctout ← LHE.Eval (ekLHE, f1, . . . , ft,
ct1, . . . , ctτ)

 ≤ λ−c.

Proof. Let the evaluation key ekLHE, the affine functions f1, . . . , ft, and the ciphertexts ct1, . . . , ctτ
be as defined in the claim statement. Let h0, . . . , ht ∈ G be the inputs passed to Shrink by
LHE.Eval(ekLHE, f1, . . . , ft, ct1, . . . , ctτ). Let T := 6λc · q2 · t · (B + 1). The Shrink(ekLHE, h0, . . . , ht)
algorithm outputs ⊥ if and only if one of 3 events occur:

1. Event E1: there exists some ℓ ∈ [t] and some b ∈ {0, . . . , B} such that PRF(seed, hℓ ·g−b) = 0.

2. Event E2: there exists some ℓ ∈ [t] and some µ ∈ Zq such that, for all b ∈ [λ · T], it holds
that PRF(seed, hℓ · gq·b+µ) ̸= 0.

3. Event E3: there exists some ℓ ∈ [t] and two distinct µ, µ′ ∈ Zq such that
∣∣padℓ,µ − padℓ,µ′

∣∣ ≤ 1,

where padℓ,µ is the smallest non-negative integer such that PRF(seed, hℓ · gq·padℓ,µ+µ) = 0 and

padℓ,µ′ is the smallest non-negative integer such that PRF(seed, hℓ · gq·padℓ,µ′+µ′
) = 0.

Checking whether these events occur can be done in polynomial time. Since the group order
is larger than B + (q + 1)λT , the events E1 and E2 are non-overlapping. We analyze each event’s
probability.

Analyzing E1. Since PRF is a pseudorandom function with output bitlength log(T), for each ℓ ∈ [t]
and b ∈ {0, . . . , B}, we have that

Pr
[
PRF(seed, hℓ · g−b) = 0

]
≤ 1

T
+ negl(λ).

We know that t = poly(λ) and B = poly(λ). So, by a union bound over all ℓ ∈ [t], b ∈ {0, . . . , B},
it holds that

Pr [E1] ≤
t · (B + 1)

T
+ negl(λ) =

1

6λc · q2
+ negl(λ).

Analyzing E2. Assume for the sake of contradiction that, with non-negligible probability, there
exists some ℓ ∈ [t] and some µ ∈ Zq such that PRF(seed, hℓ · gq·b+µ) ̸= 0 for all b ∈ [λ · T]. We will

54

construct an efficient distinguisher that wins with non-negligible advantage in the PRF security
game. Given a generator g for the group G, our distinguisher works as follows:

1. it samples r1, . . . , rt ←R Zorder(g).

2. for ℓ ∈ [t], µ ∈ Zq, it asks for the evaluation of the PRF at point grℓ+q·b+µ, for all b ∈ [λT]. If
there exists some ℓ and µ such that all λT evaluations are non-zero, it outputs “1”. Else, it
outputs “0”.

Here, we observe that each of the inputs that the distinguisher passes to the PRF are distributed
identically to hℓ · gq·b+µ, for ℓ ∈ [t], µ ∈ Zq, and b ∈ [λT]. So, when the distinguisher is interacting
with the PRF, by our assumption it must be that the distinguisher outputs “1” with non-negligible
probability. However, when the distinguisher is interacting with a truly random function frand from
the space F : G → {0, 1}log(T), it outputs “1” only with neligible probability: namely, for each
ℓ ∈ [t], µ ∈ Zq,

Pr
frand←R F

[
∀ b ∈ [λT], frand(g

rℓ+q·b+µ) ̸= 0
]
≤

∏
b∈[λ·T]

Pr
[
frand(g

rℓ+q·b+µ) ̸= 0
]

≤
(
1− 1

T

)λ·T

≤ e−λ = negl(λ).

We can then take a union bound over all choices of ℓ and µ (of which there are poly(λ)). So, we
have reached a contradiction with the PRF’s computational security. As a result, it must be that
Pr [E2] ≤ negl(λ).

Analyzing E3|¬E2. For each ℓ ∈ [t] and each pair of distinct µ, µ′ ∈ Zq, we know that if event
E2 did not occur, it must be that padℓ,µ ≤ λT and padℓ,µ′ ≤ λT . Then, as the order of the group

generated by g is bigger than (q + 1)λT , each of the group elements in the sets {hℓ · gq·b+µ}b∈[λT]

and {hℓ · gq·b+µ′}b∈[λT] must be distinct. Since PRF is a PRF with output bitlength log(T), we then
have that

Pr
[
PRF(seed, hℓ · gq·padℓ,µ+µ′

) = 0|¬E2

]
≤ 1

T
+ negl(λ)

Pr
[
PRF(seed, hℓ · gq·(padℓ,µ−1)+µ′

) = 0|¬E2

]
≤ 1

T
+ negl(λ)

Pr
[
PRF(seed, hℓ · gq·(padℓ,µ+1)+µ′

) = 0|¬E2

]
≤ 1

T
+ negl(λ).

As a result,

Pr
[∣∣padℓ,µ − padℓ,µ′

∣∣ ≤ 1|¬E2

]
≤ 3

T
+ negl(λ).

We know that t = poly(λ) and that q = poly(λ). So, by a union bound over all ℓ ∈ [t] and all
(
q
2

)
pairs of µ, µ′ ∈ Zq, it holds that

Pr [E3|¬E2] ≤
3t · q2

T
+ negl(λ) ≤ 1

2λc · (B + 1)
+ negl(λ).

55

By a final union bound and the law of total probability, it must then be that the probability
that LHE.Eval outputs ⊥ is at most:

Pr[E1 ∪ E2 ∪ E3] ≤ Pr[E1] + Pr[E2 ∪ E3]

= Pr[E1] + Pr[E2 ∪ E3|E2]·Pr[E2]+Pr[E2 ∪ E3|¬E2]·Pr[¬E2]

≤ Pr[E1] + Pr[E2] + Pr[E3|¬E2]

≤ 1

6λc · q2
+

1

2λc · (B + 1)
+ negl(λ)

≤ 1

λc
.

Claim C.11. For all λ ∈ N, τ = poly(λ) ∈ N, q = poly(λ) ∈ N, constant c ∈ N, and t = poly(λ) ∈
N, for all τ messages v(1), . . . ,v(τ) ∈ Zt

q, and for all t affine functions f1, . . . , ft : Zτ
q → Zq, define

w :=
(
f1(v

(1)
1 , . . . , v

(τ)
1), . . . , ft(v

(1)
t , . . . , v

(τ)
t)

)
.

Then, it holds that:

Pr

 LHE.Dec(skLHE, ctout)
̸= w

∣∣∣∣∣∣∣∣∣∣
skLHE, ekLHE ← LHE.Gen (1λ, 1τ)

cti ← LHE.Enc (skLHE,v
(i)), ∀ i ∈ [τ]

ctout ← LHE.Eval (ekLHE, f1, . . . , ft,
ct1, . . . , ctτ)

ctout ̸= ⊥

 = 0.

Proof. Let (skLHE, ekLHE)← LHE.Gen(1λ, 1τ), then parse skLHE as the terms (PRF, seed, g, p, z1, . . . , zt),
and parse ekLHE as (PRF, seed, B, T, g). For the rest of the correctness argument, we will reason
about Construction C.9 using this key pair.

For j ∈ [t], parse the jth affine function as

fj(x1, . . . , xτ) = cj,0 +
τ∑

k=1

cj,k·xk ∈ Zq,

and write the corresponding affine function “lifted” to the integers as

f̂j(x1, . . . , xτ) = cj,0 +

τ∑
k=1

cj,k · xk ∈ Z.

Here, for ℓ ∈ [t], we observe that

f̂ℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ) = cℓ,0 +

τ∑
k=1

cℓ,k · v
(k)
ℓ and (11)

fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ) = f̂ℓ(v

(1)
ℓ , . . . , v

(τ)
ℓ) mod q. (12)

Moreover, for all ℓ ∈ [t], it must hold that

0 ≤ f̂ℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ) < B. (13)

56

This is because f̂ℓ is the lifted version of fℓ, which is an affine function with τ inputs and all
coefficients in {0, . . . , q − 1}. In addition, all of the inputs must be in {0, . . . , q − 1}. For ease of
notation, define z0 := 1 and c0,0 := 0. Throughout this proof, we describe the functionality of

Construction C.9, along with a line-by-line analysis highlighted in yellow .

Encryption. The LHE.Enc algorithm generates encryptions ct1, . . . , ctτ of the messages v(1), . . . ,v(τ).
By construction, for k ∈ [τ], ℓ ∈ {0, . . . , t}, and j ∈ [t], we denote the entry in the ℓth column and

jth row of ciphertext matrix ctk as grk,j ·zℓ+v
(k)
ℓ ·1ℓ=j .

Homomorphic evaluation. For ℓ ∈ {0, . . . , t}, the LHE.Eval algorithm computes hℓ = gcℓ,0 ·∏τ
k=1

∏t
j=1

(
grk,j ·zℓ+v

(k)
ℓ ·1ℓ=j

)cj,k
.

Re-writing the above expression, we see that, for ℓ ∈ {0, . . . , t},

hℓ = gcℓ,0 · g
∑τ

k=1

∑t
j=1

(
cj,k·rk,j ·zℓ+cj,k·v

(k)
ℓ ·1ℓ=j

)

= g
(
∑τ

k=1

∑t
j=1 cj,k·rk,j)·zℓ+1ℓ>0·

(∑τ
k=1 cℓ,k·v

(k)
ℓ

)
+cℓ,0 .

Here, writing r :=
∑τ

k=1

∑t
j=1 cj,k · rk,j and by Eq. (11), we get that

h0 = gr·z0 = gr (14)

for ℓ ∈ [t], hℓ = gr·zℓ+f̂ℓ(v
(1)
ℓ ,...,v

(τ)
ℓ). (15)

Then, LHE.Eval outputs ct′ := Shrink(ekLHE, h0, . . . , ht). Here, conditioned on the fact that
Shrink does not output ⊥, it must be that:

(1) for ℓ ∈ [t], b ∈ {0, . . . , B}, it holds that PRF(seed, hℓ · g−b) ̸= 0.

By Eqs. (13) and (15), this implies that, for ℓ ∈ [t],

PRF(seed, gr·zℓ) ̸= 0 and (16)

PRF(seed, gr·zℓ+k) ̸= 0 for k ∈ {0, . . . , f̂ℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ)} (17)

(2) for ℓ ∈ [t], µ ∈ Zq, let padℓ,µ be the smallest non-negative integer such that PRF(seed, hℓ ·
gq·padℓ,µ+µ) = 0. We know that padℓ,µ ≤ λ · T . In addition, we know that there exist no distinct
µ, µ′ ∈ Zq with

∣∣padℓ,µ − padℓ,µ′
∣∣ ≤ 1.

Then, for ℓ ∈ [t], Shrink sets uℓ ∈ Zq to be the position of padℓ,0 in the sorted list Sort(padℓ,0, . . . , padℓ,q−1).
Finally, Shrink outputs (h0, u1, . . . , ut).

57

For ℓ ∈ [t] and µ ∈ Zq, let offsetℓ :=
⌊
f̂ℓ(v

(1)
ℓ , . . . , v

(τ)
ℓ)/q

⌋
. Then, by Eqs. (12) and (15),

hℓ · gq·padℓ,µ+µ = gr·zℓ+f̂ℓ(v
(1)
ℓ ,...,v

(τ)
ℓ)+q·padℓ,µ+µ

= gr·zℓ+fℓ(v
(1)
ℓ ,...,v

(τ)
ℓ)+q·(padℓ,µ+offsetℓ)+µ

= gr·zℓ+q·(padℓ,µ+offsetℓ)+(fℓ(v
(1)
ℓ ,...,v

(τ)
ℓ)+µ).

So, by construction, padℓ,µ is the smallest non-negative integer such that

PRF(seed, gr·zℓ+q·(padℓ,µ+offsetℓ)+(fℓ(v
(1)
ℓ ,...,v

(τ)
ℓ)+µ)) = 0.

Now, define pad′ℓ,µ to be the smallest non-negative integer such that PRF(seed, gr·zℓ+q·pad′ℓ,µ+µ) =

0. Let µ′ = fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ) + µ, computed over the integers. Here, it must be that µ′ < 2q.

Define eℓ,µ to be 0 if µ′ < q, and to be 1 otherwise. That is, µ′ = (µ′ mod q) + eℓ,µ · q.
Then, by Eq. (17), because padℓ,µ ≤ λT , and because order(g) > B+ (q+1)λT , it must be that

r · zℓ + q · (padℓ,µ + offsetℓ) + (fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ) + µ) = c

r · zℓ + q · pad′ℓ,µ′ mod q + (µ′ mod q) = c

for the same value c ∈ Z such that PRF(seed, gc) = 0. As a result, it must be that

r · zℓ + q · (padℓ,µ + offsetℓ) + (fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ) + µ) = r · zℓ + q · pad′ℓ,µ′ mod q + (µ′ mod q),

which implies that

pad′
ℓ,fℓ(v

(1)
ℓ ,...,v

(τ)
ℓ)+µ mod q

= padℓ,µ + offsetℓ + eℓ,µ, (18)

where eℓ,µ ∈ {0, 1}. By Eq. (18) and since there exist no distinct µ, µ′ ∈ Zq with∣∣padℓ,µ − padℓ,µ′
∣∣ ≤ 1, it must be that uℓ is also the position of pad′

ℓ,fℓ(v
(1)
ℓ ,...,v

(τ)
ℓ)

in

Sort(pad′ℓ,0, . . . , pad
′
ℓ,q−1).

Decryption. LHE.Dec outputs t values in Zq. For ℓ ∈ [t], the ℓth value output by LHE.Dec corre-
sponds to the output of Unshrink(PRF, seed, g, hzℓ0 , uℓ). Here, for µ ∈ Zq, Unshrink computes pad′′ℓ,µ

to be the smallest non-negative integer such that PRF(seed, hzℓ0 · g
q·pad′′ℓ,µ+µ) = 0. Then, Unshrink

outputs the value µ′ ∈ Zq such that pad′′ℓ,µ′ is the uℓ
th element in Sort(pad′′ℓ,0, . . . , pad

′′
ℓ,q−1).

For each ℓ ∈ [t], hzℓ0 = gr·zℓ by Eq. (14). So, for each ℓ ∈ [t] and µ ∈ Zq, pad
′′
ℓ,µ is exactly equal to

pad′ℓ,µ. Then, since uℓ is the position of pad′
ℓ,fℓ(v

(1)
ℓ ,...,v

(τ)
ℓ)

in Sort(pad′ℓ,0, . . . , pad
′
ℓ,q−1), LHE.Dec

outputs fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ), as desired.

Semantic security. The semantic security of Construction C.9 follows directly from DDH. Let u ∈
Zt
q be the all-zeros vector. In more detail, for any m = poly(λ), for any m messages v(1), . . . ,v(m) ∈

58

Zt
q, we will show that D

c
≈ D′, where:

D =

{
ekLHE,

ct1, . . . , ctm

∣∣∣∣ skLHE, ekLHE ← LHE.Gen(1λ, 1τ)

ctj ← LHE.Enc(skLHE,v
(j)) ,∀ j ∈ [m]

}
and

D′ =
{

ekLHE,
ct1, . . . , ctm

∣∣∣∣ skLHE, ekLHE ← LHE.Gen(1λ, 1τ)
ctj ← LHE.Enc(skLHE,u) , ∀ j ∈ [m]

}
.

To do so, we use a series of m hybrid arguments. In the ith of these m hybrid arguments, we
replace ciphertext cti from an encryption of v(j) to an encryption of u. That is, we define:

Di =

 ekLHE,
ct1, . . . , ctm

∣∣∣∣∣∣
skLHE, ekLHE ← LHE.Gen(1λ, 1τ)

ctj ← LHE.Enc(skLHE,v
(j)) ,∀ j ∈ {1, . . . , i}

ctj ← LHE.Enc(skLHE,u) , ∀ j ∈ {i+ 1, . . . ,m}


By construction, we have that D = Dm and D′ = D0. Now, for any i ∈ {0, . . . ,m − 1}, the
distributions Di and Di+1 differ only in the ith ciphertext. Since ekLHE consists of only a public
description of a PRF (computable from the public parameters, λ, and τ), a randomly sampled
PRF seed seed (that is independent of ct1, . . . , ctm), public bounds B and T (computable from the
public parameters, λ, and τ), and the group generator g, these two ciphertexts are computationally
indistinguishable under DDH, by the same argument as for the semantic security of El-Gamal

encryption [Bon98,DGI+19,BBDP22]. So we get that Di
c
≈ Di+1, implying that D

c
≈ D′.

C.5 Proof of Theorem 4.1

We describe the batch-SHE scheme (defined in Appendix C.1) from sparse LPN and DDH that
proves Theorem 4.1. This scheme works by applying the optimizations from Sections 4.1 to 4.3 to
the original SHE scheme in Construction 3.2. Let (n, q, δ, k) be the sparse-LPN parameters defined
in the theorem statement and let c ∈ N be the correctness parameter. In addition to the usual
parameters (λ, τ), the scheme is parameterized by “packing parameters” tEnc = poly(λ) ∈ N and
tEval = poly(λ) ∈ N, as per the syntax in Appendix C.1.

Then, for any tA ∈ [tEnc], our scheme can produce a “packed” ciphertext that encrypts tA
values at once. Moreover, for any tB ∈ [tEval], when homomorphically evaluating tB multivariate
polynomials p1, . . . , ptB ∈ Fτ , the scheme can produce “packed” output ciphertexts encrypting all
tB polynomial evaluations at once.

The scheme proceeds as follows:

1. Key generation. Using LHE.Gen, LHE.Enc from the packed-El-Gamal encryption scheme
in Construction C.9 (with plaintext modulus q, packing parameter tEval, and correctness
parameter c) and instantiating Enc with the SHE scheme in Construction 3.2 (with parameters
n, q, δ, k, and correctness parameter c), we compute:

BatchGen(1λ, 1τ , 1tEnc , 1tEval)→ (sk, ek)

• Let skLHE, ekLHE ← LHE.Gen(1λ, 1n).

• Let s←R Fn
q . For ℓ ∈ [tEnc], let t

(ℓ) ←R Fn
q .

• For i ∈ [n], let cti,ek ← LHE.Enc(skLHE, (si, . . . , si)). (Here, per the syntax of Construc-
tion C.9, (si, . . . , si) is a vector with repeated entries of dimension tEval, the packing
parameter.)

59

• For i ∈ [n], for ℓ ∈ [tEnc], let Cℓ,i,ek ← Enc((s, skLHE), t
(ℓ)
i).

• For ℓ ∈ [tEnc], let Cℓ,n+1,ek ← Enc((s, skLHE), 1).

• Output

sk := (skLHE, t
(1), . . . , t(tEnc))

ek :=
(
ekLHE, (ct1,ek, . . . , ctn,ek), {Cℓ,1,ek, . . . ,Cℓ,n+1,ek}ℓ∈[tEnc]

)
2. Encryption. Our encryption algorithm takes as input any tA ≤ tEnc values in Fq at once.

BatchEnc(sk, (µ1, . . . , µtA) ∈ FtA
q)→ ct ∈ Fn+tA

q

• Parse t(1), . . . , t(tA) from sk.

• Sample a←R Sk,1,n,q. (That is, a is a random k-sparse vector in Fn
q .)

• For ℓ ∈ [tA], sample eℓ ← RandBernn−δ,q.

• Compute the vector

b := a⊺ ·

t(1) t(2) · · · t(tA)

+
[
e1 e2 · · · etA

]
+
[
µ1 µ2 · · · µtA

]
∈ FtA

q .

• Output ct :=
[
a || b

]
∈ Fn+tA

q .

3. Homomorphic evaluation. Let tB ≤ tEval be the number of polynomials to evaluate.

For each of the input ciphertexts, we proceed as follows: we decompose an input ciphertext

ct =
[
a || b1 b2 · · · bt

]
∈ Fn+t

q

into the t smaller ciphertexts ct1, . . . , ctt as follows:

for ℓ ∈ [t], ctℓ :=
[
a || bℓ

]
∈ Fn+1

q .

Then, for ℓ ∈ [t], we run the ConvertOpt algorithm from Construction 4.3 on ciphertext ctℓ,
using the key-switching key (Cℓ,1,ek, . . . ,Cℓ,n+1,ek) from ek. The output of ConvertOpt is a

ciphertext matrix in F(n+1)×(n+1)
q that holds the value encrypted in the ℓth slot of ct.

At this point, we can use the Add and Mul algorithms from Construction 3.2 to evaluate each
polynomial p1, . . . , ptB on encrypted inputs.

At the end of this step, we hold one sparse-LPN ciphertext matrix for each of the tB
polynomials p1, . . . , ptB . For ℓ ∈ [tB], denote the last row of the ℓth ciphertext matrix as[
u(ℓ) || v(ℓ)

]
∈ Fn

q × Fq. To compact these ciphertexts, define the following tB affine func-
tions:

for ℓ ∈ [tB], fℓ(x1, . . . , xn) := v(ℓ) −
n∑

i=1

u
(ℓ)
i · xi.

For ℓ ∈ {tB + 1, . . . , tEval}, define fℓ(x1, . . . , xn) := 0.

Finally, we call LHE.Eval(ekLHE, f1, . . . , ftEval , ct1,ek, . . . , ctn,ek) from Construction C.9. We parse
its result as (h, u1, . . . , utEval) ∈ G× FtEval

q and output (h, u1, . . . , utB).

60

4. Decryption. Parse the ciphertext as (h, u1, . . . , utB). Run LHE.Dec(skLHE, ·) from Construc-
tion C.9 on the given ciphertext (skipping the call to Unshrink for all but the first tB entries
of the message) and output its result in FtB

q .

Analysis. We discuss the scheme’s security, correctness, and compactness.

Security. Security follows from the semantic security of the LHE scheme in Construction C.9
(Lemma 4.5, proved in Appendix C.4), the semantic security of the SHE scheme in Construction 3.2
(Theorem 3.1, proved in Appendix B.1), and the hardness of sparse LPN with a re-used A-matrix
(Lemma C.8, proved in Appendix C.3). Our security proof follows the same argument as that for
Construction 4.3.

More formally, the evaluation key output by BatchGen consists of:

1. an evaluation key ekLHE for the underlying LHE scheme,

2. n “redundant” LHE encryptions of the entries of secret key vector s, and

3. for each ℓ ∈ [tEnc], (n+1) sparse-LPN encryptions of the entries of
[
t(ℓ) || 1

]
∈ Fn+1

q , under
secret key s.

To prove security, we must show that, under (n, q, δ′, (k + 1)/2)-sparse LPN, for any t ∈ [tEnc]
and any m = poly(λ), the evaluation key together with m ciphertexts output by BatchEnc, on
any m messages v(1), . . . ,v(m) ∈ Ft

q, are computationally indistinguishable from the evaluation key
together with m encryptions of the all-zeros vector.

Again, security follows by a hybrid argument:

• First, by the semantic security of the underlying LHE scheme, we can swap the LHE encryp-
tions of the entries of the secret-key vector s with LHE encryptions of the all-zeros vector.

• Second, by the semantic security of ciphertexts produced by Enc (which in turn follows from
the KDM-security of sparse LPN, as proved in Theorem 3.1), for each ℓ ∈ [tEnc], we can swap
the sparse-LPN encryptions of the entries of

[
t(ℓ) || 1

]
∈ Fn+1

q , under secret key s, with
sparse-LPN encryptions of the all-zeros vector under s.

• Third, by the sparse-LPN assumption with a re-usedA-matrix (Lemma C.8), we can swap the
m ciphertexts output by BatchEnc, encrypting v(1), . . . ,v(m) under secret keys t(1), . . . , t(t),
with m encryptions of zero under secret keys t(1), . . . , t(t).

• Fourth, by the semantic security of ciphertexts produced by Enc (which in turn follows from
the KDM-security of sparse LPN, as proved in Theorem 3.1), for each ℓ ∈ [tEnc], we can swap
the sparse-LPN encryptions of the all-zeros vector under secret key s back to the sparse-LPN
encryptions of the entries of

[
t(ℓ) || 1

]
∈ Fn+1

q , under s.

• Fifth, by the semantic security of the underlying LHE scheme, we can swap the LHE encryp-
tions of the all-zeros vector back to LHE encryptions of the entries of secret key vector s.

Correctness. Correctness follows from the correctness of the SHE scheme in Section 3 (Theo-
rem 3.1, proved in Appendix B.1), the correctness of the optimization in Section 4.1 (proved in
Appendix C.2), and the correctness of the LHE scheme in Section 4.3 (Lemma 4.5, proved in
Appendix C.4).

61

More formally, consider any key pair (sk, ek)← BatchGen(1λ, 1τ , 1tEnc , 1tEval). Then, on any input
vector v ∈ Ft

q for any t ≤ tEnc, running BatchEnc(sk,v) and “decomposing” the resulting ciphertext
in Fn+t

q into t ciphertexts in Fn+1
q (as described above) produces t ciphertexts that respectively

encrypt each of the scalars v1, . . . , vt ∈ Fq and that are distributed identically to those in Construc-
tion 4.3. That is, for each ℓ ∈ [t], the ciphertext encrypting vℓ is Regev-encrypted under the secret
key t(ℓ), with a k-sparse a-component and error-rate n−δ.

Then, by the proof of Construction 4.3 (given in Appendix C.2), passing this ciphertext to
ConvertOpt with the ℓth key-switching key produces a ciphertext matrix, as in the original SHE
scheme from Construction 3.2, encrypting the message vℓ under secret key s. This ciphertext is
sampled from a distribution that is ((k + 1)2, (k + 2) · n−δ)-good with respect to the message vℓ
(Claim C.7). At this point, as in Construction 4.3, we can perform homomorphic operations using
Add and Mul (Claims B.2 and B.3). At the end, we perform “batch compaction” on the tB resulting
ciphertexts (one for each of the tB polynomials), exactly as in Construction 4.3 instantiated with
our Construction C.9 as the underlying LHE scheme.

Again as in the proof of Construction 4.3, if k ≤
√
log τ − 1 and n ≥ τ3/δ · λc/δ (which im-

plies the tighter condition that n ≥ τ2/δ · λc/δ · (
√
log τ + 1)1/δ, for τ ≥ 1), then this encryption

scheme can homomorphically evaluate functions in the class Fτ , where each of the tB evaluations
incurs a correctness error with probability λ−c. Then, the compaction step fails with probability
ϵLHE(λ), where ϵLHE(λ) is the decryption failure probability of the underlying LHE scheme. Here,
by construction, we have that ϵLHE(λ) = λ−c, which by a union bound gives the final correctness
bound.

Efficiency. When our LHE scheme is instantiated with a group with elements of bitlength λDDH,
the evaluation key consists of:

• poly(λ) bits to specify ekLHE,

• n · tEval · (tEval + 1) · λDDH bits to specify the packed-El-Gamal encryptions of each of the n
entries of the sparse-LPN secret s, and

• tEnc · (n + 1)2 · (k + 1) · log n log q bits to specify the tEnc key-switching keys, each of which

consists of (n+ 1) matrices in F(n+1)×(n+1)
q that are (k + 1)-sparse.

In total, as the sparsity k = O(
√
log λ), q = poly(λ), n = poly(λ), and λDDH = poly(λ), this comes

out to (t2Eval + tEnc) · poly(λ) bits.
Then, each ciphertext output by BatchEnc (which encrypts a vector of plaintexts in FtA

q for
tA ≤ tEnc) consists of a vector in Fn+tA

q , whose first n entries contain exactly k non-zero values.
Each such ciphertext can be represented in tEnc log q + k log n log q bits. So, encrypting tEnc values
in Fq requires tEnc log q + polylog(λ) bits. Finally, when homomorphically evaluating tB ∈ [tEval]
polynomials, per the analysis of our LHE scheme (Section 4.3), each ciphertext after homomorphic
evaluation consists of tB log q + λDDH bits. As a result, each such ciphertext can be represented in
tEval log q + λDDH bits.

We finally describe how to recover the statement of Theorem 4.1: when homomorphically eval-
uating t polynomials that are each m variate, on a set of tm inputs, we set the parameters tEnc := t
and tEval := t. When this is the case:

• The evaluation key has size t2 · poly(λ) bits,

62

• Each of m “packed” ciphertexts encrypting t inputs has size t log q + polylog(λ) bits. So,
together, all ciphertexts consist of tm log q +m · polylog(λ) bits.

• The “packed” ciphertext encrypting all t outputs has size t log q + λDDH bits.

63

	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Background and Definitions
	2.1 Definition of Somewhat Homomorphic Encryption
	2.2 Definition of Linearly Homomorphic Encryption
	2.3 Definition of LPN and Sparse LPN

	3 Somewhat Homomorphic Encryption from Sparse LPN and Linearly Homomorphic Encryption
	4 Optimizing the length of ciphertexts
	4.1 From ciphertext matrices to ciphertext vectors
	4.2 From ciphertext vectors to a single Fq element
	4.3 Shrinking the length of output ciphertexts
	4.4 Proof sketch for thm:opt

	5 Open Question: Can We Bootstrap?
	References
	A Additional Material on Sparse LPN
	B Additional Material on Somewhat Homomorphic Encryption
	B.1 Proof of thm:she
	B.2 Proof of rem:she:eff
	B.3 Proof of rem:she:negl

	C Additional Material on Optimizations and Batching
	C.1 Syntax for Batch Somewhat Homomorphic Encryption
	C.2 Additional Material for sec:opt:bv
	C.3 Additional Material for sec:opt:fixA
	C.4 Additional Material for sec:opt:mod
	C.5 Proof of thm:opt

