
PriSrv: Privacy-Enhanced and Highly Usable
Service Discovery in Wireless Communications

Yang Yang1, Robert H. Deng1, Guomin Yang1, Yingjiu Li2, HweeHwa Pang1,
Minming Huang1, Rui Shi3, Jian Weng4

1. School of Computing and Information Systems, Singapore Management University, Singapore
2. Department of Computer Science, University of Oregon, USA

3. Beijing Electronic Science and Technology Institute, Beijing, China
4. College of Information Science and Technology, Jinan University, Guangzhou, China

Abstract—Service discovery is essential in wireless commu-
nications. However, existing service discovery protocols provide
no or very limited privacy protection for service providers and
clients, and they often leak sensitive information (e.g., service
type, client’s identity and mobility pattern), which leads to
various network-based attacks (e.g., spoofing, man-in-the-middle,
identification and tracking). In this paper, we propose a private
service discovery protocol, called PriSrv, which allows a service
provider and a client to respectively specify a fine-grained
authentication policy that the other party must satisfy before
a connection is established. PriSrv consists of a private service
broadcast phase and an anonymous mutual authentication phase
with bilateral control, where the private information of both
parties is hidden beyond the fact that a mutual match to the
respective authentication policy occurred. As a core component
of PriSrv, we introduce the notion of anonymous credential-
based matchmaking encryption (ACME), which exerts dual-
layer matching in one step to simultaneously achieve bilateral
flexible policy control, selective attribute disclosure and multi-
show unlinkability. As a building block of ACME, we design a
fast anonymous credential (FAC) scheme to provide constant size
credentials and efficient show/verification mechanisms, which is
suitable for privacy-enhanced and highly usable service discovery
in wireless networks.

We present a concrete PriSrv protocol that is interoperable
with popular wireless communication protocols, such as Wi-
Fi Extensible Authentication Protocol (EAP), mDNS, BLE and
Airdrop, to offer privacy-enhanced protection. We present formal
security proof of our protocol and evaluate its performance on
multiple hardware platforms: desktop, laptop, mobile phone and
Raspberry Pi. PriSrv accomplishes private discovery and secure
connection in less than 0.973 s on the first three platforms, and
in less than 2.712 s on Raspberry Pi 4B. We also implement
PriSrv into IEEE 802.1X in the real network to demonstrate its
practicality.

I. INTRODUCTION

Service discovery (SD) protocols, such as Wi-Fi [1], Air-
Drop [2], and BLE [3], are essential components of network-
ing systems that enable devices and services to dynamically
discover and communicate with each other in a network
environment. They facilitate the automatic detection and ad-
vertisement of available services, making it easier for devices
to locate and interact with desired resources. However, there
is a lack of highly usable approaches to sufficiently protect

identification and private information in protocol executions,
especially for privacy-concerned parties. A survey [4] showed
that about 90% users considered the exposure of device names
from wireless network services as a privacy risk, as such
exposure may lead to adversarial inference of users’ private
information such as mobility patterns, profiles, and locations
[5], [6], [7], [8]. For instance, in public Wi-Fi, ISP could easily
identify a person via the announced device names [9]. In IoT
networks, an attacker may infer a user’s regular routine by
collecting the service data from user’s smart devices [10].
Several vulnerabilities spanning from Wi-Fi, BLE to Apple
Wireless Direct Link (AWDL) are discovered in recently years
which lead to tracking, DoS, and MitM attacks on iOS and
macOS [8].

On the other hand, users prefer high usability in accessing
wireless network services, which include no pre-registered
pairing, no third-party dependence for service discovery, and
low computation and communication overheads. A major
barrier in increasing user satisfaction for accessing wireless
network services is the technical difficulty of elevating pri-
vacy protection without sacrificing high usability in wireless
network protocols. Existing privacy-aware wireless network
protocols and other related works fail to overcome this barrier
as they either leak private information [11], [12], [13] or
violate high usability requirements in protocol executions [14].

Our objective is to develop a privacy-enhanced and highly
usable service discovery protocol between wireless network
service access point (service provider) and client to enable
them to discover each other within range and establish a secure
communication channel only if they meet each other’s connec-
tion requirements. The challenges to achieve this objective are
three folds: (1) ensure that services are only discoverable by
an authorized set of clients; (2) enable clients to filter out
unauthorized services without heavy computation; (3) allow
both service provider and client to specify policies the other
party must satisfy in order for their private information to
be revealed. In certain service discovery protocols, such as
AirDrop and BLE, both service provider and client are wireless
devices, which necessitates reciprocal privacy protection.

We propose a dual-layer architecture to solve this problem,
which includes an outer layer and an inner layer. In the outer
layer, each service provider or client is associated with a set of

This is the full version of the research work published in Network and
Distributed System Security (NDSS) Symposium 2024.
https://dx.doi.org/10.14722/ndss.2024.24174

public attributes (such as domain name) that can be revealed to
everyone and a public authentication policy, which are used for
fast bilateral policy matching without decryption. Specifically,
a service provider broadcasts a ciphertext encrypted by its
policy and public attributes. A client first checks whether
its public attributes match with the service provider’s public
policy, and vice versa, which filters the mismatch services
accordingly. If and only if their public attributes satisfy the
bilateral policy, the client can decrypt the ciphertext. In the
inner layer, each party is associated with a set of private
attributes (such as device ID) that are only revealed to the
intended peers. Only when the decryption of the outer layer
ciphertext is successful, the client can recover the private
attributes of the service provider, which allows the client to
authenticate the service provider by verifying the authenticity
of the latter’s attributes, including both public attributes and
private attributes. The service provider authenticates the client
using the same mechanism. Then, they establish a session
key using a secure key agreement protocol to enable secure
communication between them. By applying the above dual-
layer architecture, PriSrv builds a private-enhanced service
discovery protocol with high usability.

A. Privacy Enhancement and High Usability Requirements

To mitigate the leakage of any private information in service
discovery, SD protocols should meet the following privacy
enhancement requirements.

1. Private Service Broadcast. Service contents broadcasted
by service providers must be both confidential and unforge-
able, preventing unintended clients from learning service con-
tent and enabling the detection of bogus service providers
broadcasting fraudulent services.

2. Mutual Authentication. Service providers and clients
authenticate each other in a secure manner to ensure that the
private information of both parties will not be leaked to any
unauthenticated entity.

3. Bilateral Anonymity. Both service providers and clients
remain anonymous to a third-party during protocol execution,
and no third-party can identify the private information of the
involved parties.

4. Bilateral Flexible Policy Control. Both service providers
and clients can specify fine-grained access policies for autho-
rized peers and simultaneously check the satisfaction of poli-
cies from both sides, which guarantees that private information
of both sides are only exposed to their authorized peers.

5. Selective Attribute Disclosure. It refers to the ability of
an entity (either service provider or client) to choose which
specific attributes they disclose to the other, while keeping
other attributes undisclosed. It allows each entity to share
only the necessary and relevant information while maintaining
control over their private information.

6. Multi-Show Unlinkability. It allows a user to prove
possession of a credential or attributes without revealing their
identity or linking their actions across multiple sessions.

In addition to these privacy enhancement requirements, SD
protocols are expected to meet the following high usability
requirements.

1. No Pre-registered Pairing. Clients are not required to
subscribe to or share a secret key with any service providers
beforehand. It allows clients to discover and connect to service
providers seamlessly without any manual setup or configura-
tion.

2. No Third-party Dependency during Service Discovery
Process. Service discovery should not depend on any ex-
ternal services such as a third-party server or a directory
provider during protocol execution. Protocols relying on exter-
nal servers presume a reliable Internet connection for mobile
devices. However, this presumption may not hold in wireless
communications (e.g., BLE communications).

3. No In-advance Identity Issuance. Users are not required
to register to a third-party to obtain identity certification docu-
ments, such as certificates, credentials, etc. In-advance identity
issuance has less impact on the usability of service discovery
process since it occurs only once before the execution of
SD protocol. We note that PriSrv requires in-advance identity
issuance.

B. Contributions

We propose PriSrv, a service discovery protocol, to meet
both privacy enhancement and high usability requirements.
The main contributions of this work are summarized as
follows.
• A New Privacy-Enhanced Service Discovery Protocol

with High Usability. PriSrv is the first privacy-enhanced and
highly usable service discovery protocol that can be integrated
into a wide range of wireless applications.
• Anonymous Credential-based Matchmaking Encryp-

tion (ACME). We propose a novel cryptographic primitive
called anonymous credential-based matchmaking encryption
(ACME). ACME supports bilateral fine-grained policies and
selective attribute disclosure for private mutual authentication
in service discovery. ACME outperforms the matchmaking
encryption (ME) in CRYPTO’19 [15] in terms of functionality
and efficiency. This is a contribution of independent interest
for the advancement of matchmaking encryption.
• Fast Anonymous Credential. As a building block

of ACME, we propose a fast anonymous credential (FAC)
scheme to support anonymous authentication with selective
attribute disclosure and multi-show unlinkability. A com-
prehensive comparison with existing anonymous credential
schemes demonstrates its superior efficiency for credential
showing and verification with constant and small credential.
• Interoperability with Existing Protocols. To demon-

strate interoperability, we present concrete methods for inte-
grating PriSrv with mainstream service discovery protocols
including Extensible Authentication Protocol (EAP), mDNS,
BLE and AirDrop. Through experimentation, we show the ap-
plicability and effectiveness of PriSrv in real-world scenarios.
• Formal Security Proofs. We provide formal security

proofs for the security and privacy properties of PriSrv in

2

a security model that captures various attack vectors, such
as intercepting, tampering with channel messages, replaying,
injecting data packets, and interleaving messages among dif-
ferent sessions in realistic settings.
• Deployment on Multiple Platforms in Real Networks:

The performance of PriSrv is evaluated on multiple hard-
ware platforms, including desktop, laptop, mobile phone and
Raspberry Pi, in the Wi-Fi WPA-Enterprise framework. Our
experiments demonstrate the efficiency of PriSrv across differ-
ent platforms. The private service broadcast phase in PriSrv
takes less than 0.483 seconds, and the anonymous mutual
authentication phase takes less than 0.973 seconds on the first
three devices. The delays stay well below 1 second, which
humans perceive as an “immediate response” [16], [17]. While
on Raspberry Pi, the delays are 1.189 and 2.712 seconds for
private broadcast and mutual authenticationon, respectively,
which demonstrates additional costs on IoT devices.

II. RELATED WORK

A variety of protocols have been developed for service
discover in network environments. As shown in Table I,
none of them, except PriSrv, satisfy all privacy enhancement
requirements.

In particular, the protocols DNS-SD [18], mDNS [19],
SSDP [20], UPnP [21] and CBN [9] do not meet any
privacy enhancement requirement. First, DNS-based Service
Discovery (DNS-SD) [18] utilizes the Domain Name System
(DNS) to enable service discovery. It allows service providers
to advertise their services by registering them with a DNS
server, and clients can discover these services by querying
the DNS server, which is widely used in local networks and
the Internet. Second, multicast DNS (mDNS) [19] enables
service discovery in local networks without the need for a
central DNS server, and allows service providers to announce
their services using multicast DNS packets, and clients can
resolve and discover these services directly. Third, Simple
Service Discovery Protocol (SSDP) [20] is designed based on
the Internet protocol suite for advertisement and discovery of
network services and presence information. Fourth, Universal
Plug and Play (UPnP) [21] permits networked devices, such as
personal computers, printers, Internet gateways, Wi-Fi access
points and mobile devices to seamlessly discover each other’s
presence on the network and establish functional network
services. Lastly, CBN scheme [9] requires clients to subscribe
to service providers so that service providers can unilaterally
authenticate clients anonymously for service discovery.

The above SD protocols are vulnerable to man-in-the-
middle (MitM) attacks, spoofing attacks and denial-of-service
(DoS) attacks due to the lack of proper privacy protection.
Bai et al. [12] launched MitM attacks against mDNS and
illustrated how a malicious device can impersonate a printer
by spoofing its mDNS hostname. According to Wang et al.
[22], UPnP is vulnerable to DoS attacks: a device receiving
a request from a potentially spoofed control point may re-
spond to the supposed requester, unknowingly contributing
to the amplification and intensification of the attack. CBN

scheme [9] only requires clients to anonymously authenticate
to service providers in a private manner, while the authenti-
cation/anonymity of service providers and private broadcast
are not supported, making it vulnerable to MitM attacks and
spoofing attacks.

Among these protocols, DNS-SD relies on DNS records
to advertise and discover services within a network. CBN
scheme relies on a pre-registration pairing mechanism: ser-
vice provider maintains a directory to control the access of
subscribers while clients are required to register to service
providers beforehand, where the size of directory grows lin-
early with the number of clients.

Although Wi-Fi [1] and BLE [3] support mutual authentica-
tion, they dissatisfy other privacy enhancement requirements,
including private broadcast, bilateral anonymity, bilateral flex-
ible policy control, selective attribute disclosure and multi-
show unlinkability. Wi-Fi [1] enables devices to discover
and connect to services available on a local-area network.
Bluetooth Low Energy (BLE) [3] is designed for low-power
devices, such as IoT devices and wearable devices, to advertise
their available services, allowing other devices to discover and
connect to them for data exchange and interaction.

A common problem of Wi-Fi and BLE is that the pri-
vate information of service providers and clients is adver-
tised publicly in wireless network, which may induce user
identification, impersonation attacks and spoofing attacks. A
survey [4] indicated that 59% investigated devices periodically
announce their owners’ real names for Wi-Fi network, which
is deemed as a privacy risky by about 90% users. A deep-
learning-based identification mechanism (with accuracy over
80%) was demonstrated in [23] to identify mobile devices from
broadcast and multicast packets. Na et al. [11] proposed Wi-
attack to leverage the wide-deployed Wi-Fi devices (such as
Wi-Fi APs) to conduct poisonous impersonation attacks, where
the vulnerability is caused by the open nature of these cleartext
advertisements. Similarly, BLE-equipped devices consistently
advertise their unique identifiers in cleartext [10], making them
vulnerable to BLE Spoofing Attacks (BLESA) [24].

Revealing of device identifiers in Wi-Fi and BLE is a
stepping stone toward advanced attacks such as user profiling
and tracking [10]. Large-scale tracking attack in real-time can
be mounted by deploying multiple low-cost Wi-Fi and BLE
nodes throughout an area. This allows adversaries to infer
additional user information such as home and work locations,
movement patterns and behavior profiling, which are useful
for targeted tracking [25].

AirDrop [2], PrivateDrop [16] and WTSB [5] employ en-
cryption and authentication mechanisms to protect communi-
cations in service discovery. AirDrop [2] is an SD protocol for
file-sharing on Apple devices, which utilizes a combination of
Wi-Fi and Bluetooth technologies to enable devices in close
proximity to discover each other and share files wirelessly. Air-
Drop and PrivateDrop need to establish TLS connection with
client and server certificates for authentication. PrivateDrop
realizes private mutual authentication for AirDrop by protect-
ing device identifiers in an optimized private set intersection

3

SD Protocols
Privacy Enhancement High Usability

Private Mutual Bilateral Bilateral Flex. Sel. Attr. Multi-Show No Pre-reg. No 3rd-party No In-advance

Broadcast Authn. Anon. Pol. Ctrl. Disclosure Unlinkability Pairing Dependence ID Issuance

DNS-SD [18] × × × × × ×
√

× ×
mDNS [19] × × × × × ×

√ √
×

SSDP [20] × × × × × ×
√ √ √

UPnP [21] × × × × × ×
√ √ √

Wi-Fi [1] ×
√

× × × ×
√ √

×
BLE [3] ×

√
× × × ×

√ √ √

AirDrop [2] ×
√

× × × ×
√ √

×
PrivateDrop [16] ×

√ √
× × ×

√ √
×

CBN [9] × × × × × × ×
√

×
WTSB [5]

√ √ √
× × ×

√ √
×

PriSrv
√ √ √ √ √ √ √ √

×

TABLE I: Comparison of Service Discovery Protocols

protocol [16]. WTSB [5] realizes private service discovery
by leveraging prefix encryption (a variant of identity-based
encryption) and standard digital signature-based key exchange
protocol. WTSB [5] supports private broadcast, mutual authen-
tication and bilateral anonymity.

However, these SD protocols (AirDrop, PrivateDrop [16]
and WTSB [5]) suffer from MitM attacks, DoS attacks,
impersonation attacks or user tracking attacks due to the lack
of privacy enhanced properties, such as bilateral policy control,
selective attribute disclosure and multi-show unlinkability. The
attacker is able to link multiple sessions using client and
server certificates in AirDrop and PrivateDrop protocols. Stute
et al. [7] exposed several security and privacy vulnerabilities
in Apple Wireless Direct Link (AWDL) ranging from design
flaws to implementation bugs leading to (i) MitM attacks
enabling stealthy modification of files transmitted via AirDrop,
(ii) DoS attacks disrupting communications, and (iii) privacy
leaks enabling user identification and long-term tracking. Bai
et al. [12] demonstrated impersonation and spoofing attacks on
certain Zeroconf protocols (e.g. AirDrop), which even allows
attackers to steal clients’ SMS messages, documents, email
notifications and photos [13].

Heinrich et al. [16] discovered a series of flaws in AirDrop
that allow attackers to learn phone numbers and email ad-
dresses of both sender and receiver devices. As stated in the
work [16], users of PrivateDrop can be tracked via UUIDs in
the TLS certificates used for establishing the protocol com-
munication channels. WTBS [5] dissatisfies bilateral flexible
policy control: service providers have the ability to specify the
type of clients they intend to communicate with, but clients do
not have the option to choose the service providers they want
to communicate with. Furthermore, WTBS [5] is susceptible to
user tracking attack due to the lack of multi-show unlinkability.

AirDrop and PrivateDrop offer mutual authentication,
while PrivateDrop provides an additional feature of bilateral
anonymity. The fundamental building block of PrivateDrop is

a Diffie-Hellman-based Private Set Intersection (PSI) scheme,
which exclusively entails exponentiation computations. More-
over, WTBS [5] further enhances privacy by encrypting broad-
cast messages, achieving private broadcasting in addition to
these features. WTSB has the advantage of high efficiency
due to the usage of efficient identity-based prefix encryp-
tion scheme. Conversely, PriSrv utilizes both exponentiation
and bilinear pairing operations within ACME, and the time
consumption increases with the complexity of access policy.
Therefore, PriSrv achieves improved privacy but incurs a
higher computational overhead as a trade-off.

After conducting a comprehensive comparison, it becomes
evident that PriSrv stands out as the only SD protocol that
successfully meets all the privacy enhancement requirements.
As for high usability, PriSrv satisfies no pre-registerd pairing
and no third-party dependence during service discovery. PriSrv
does require in-advance identity issuance, but it does not affect
the service discovery process.

III. PRELIMINARIES

A. Notation and Bilinear Pairing

Let x⃗ denote the full attribute set, x⃗(in) the private attributes
for an inner layer and x⃗(out) the public attributes for an outer
layer, where x⃗(in), x⃗(out) ⊆ x⃗. Let f : {0, 1}n → {0, 1}
denote the policy; f(x⃗) = 1 denote x⃗ satisfying f , and
f(x⃗) = 0 denote x⃗ not satisfying f .

Let s
$←− S denote s sampled uniformly at random from

a set S; N denote the natural number; λ ∈ N denote the
security parameter; [n1, n2] denote {n1, · · · , n2}; PPT denote
probabilistic polynomial time; Zp represent the group of
integers modulo p, and Z∗

p = Zp\{0}. We use lower case
boldface to denote (column) vectors and upper case boldface to
denote matrices. Denote a bilinear group with Type-3 pairings
as BG = (G1, G2, GT , e, p), where there is no efficiently
computable isomophism between G1 and G2. Let g1 ∈ G1,
g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective

4

generators. For a matrix A over Zp, define [A]1 := gA
1 ,

[A]2 := gA
2 , [A]T := gA

T , where exponentiation is carried out
component-wise.

B. Assumptions

Definition 3.1. (Discrete Logarithm (DL) Assumption).
Let g be a generator of a cyclic group G. DL assumption
holds if for all PPT adversary A, the advantage function
AdvDL

A (λ) := Pr[A(g, ga) = a] is negligible, where a
$←− Z∗

p.
Definition 3.2. (Decisional Diffie-Hellman (DDH) Assump-

tion). Let g be a generator of G and T = (g, ga, gb) ∈ G3,
where a, b

$←− Z∗
p. DDH assumption holds if for all PPT adver-

sary A, the advantage |Pr[A(T , gab) = 1] − Pr[A(T , gc) =
1]| is negligible, where c

$←− Z∗
p.

Definition 3.3. (Matrix DDH (MDDHk) Assumption) [26].
Let ℓ > k ≥ 1, d ≥ 1. MDDHk assumption holds if
for all PPT adversary A, the advantage AdvMDDHk

A (λ) :=
|Pr[A([M]1, [MS]1) = 1] − Pr[A([M]1, [U]1) = 1]| is neg-
ligible, where M $←− Zℓ×k

p , S $←− Zk×d
p and U $←− Zℓ×d

p .

C. Linear Secret Sharing for Monotone Boolean Formulae

The information-theoretic linear secret sharing for mono-
tone Boolean formulae [26], [27] is described below.

share(f, µ). Input: A formula f : {0, 1}n → {0, 1} of size
m (i.e., the number of edges in f is m), and a secret µ ∈ Zp. 1)
For each non-output wire j = 1, · · · ,m− 1, select µ̂j

$←− Zp.
For the output wire, set µ̂m := µ. 2) For each outgoing wire j
from input node i, add µj := µ̂j to the output set of shares and
set ρ(j) := i. 3) For each AND gate g with input wires a, b
and output wire c, add µca := µ̂c+ µ̂a+ µ̂b ∈ Zp to the output
set of shares and set ρ(c) := 0. 4) For each OR gate g with
input wires a, b and output wire c, add µca := µ̂c + µ̂a ∈ Zp

and µcb := µ̂c + µ̂b ∈ Zp to the output set of shares and set
ρ(ca) := 0 and ρ(cb) := 0. 5) Output ({µj}j∈[m̂], ρ).

reconstruct(f, x, {µj}ρ(j)=0∨xρ(j)=1). Input: A formula f ,
x⃗ ∈ {0, 1}n, and {µj}ρ(j)=0∨xρ(j)=1. From the leaves of the
formula to the root, calculate the output wire value µ̂c at each
node. 1) Given µ̂a, µ̂b associated with the input wires a and
b of an AND gate, compute µ̂c = µc − µ̂a − µ̂b. 2) Given
µ̂a (or µ̂b) associated with the input wires a (or b) of an OR
gate, compute µ̂c = µca − µ̂a (or µ̂c = µcb − µ̂b). 3) Output
µ = µ̂m.

D. NC1 Circuit and Monotone Formulae

We define NC1 circuit and monotone Boolean formulae
following Kowalczyk’s [26] and Katsumata’s [27] works. A
monotone Boolean formula f : {0, 1}n → {0, 1} is specified
by a directed acyclic graph (DAG) with three kinds of nodes:
input gate nodes, gate nodes and a single output node. Input
nodes have in-degree 0 and out-degree 1, AND/OR nodes have
in-degree (fan-in) 2 and out-degree (fan-out) 1, and the output
node has in-degree 1 and out-degree 0. We number the edges
(wires) 1, 2, · · · ,m, and each gate node is defined by a tuple
(g, ag, bg, cg), where g : {0, 1}2 → {0, 1} is either AND or
OR, ag, bg are the incoming wires, cg is the outgoing wire and

Fig. 1: Overview of PriSrv

ag, bg < cg . The size m of a formula is the number of edges
in the underlying DAG and the depth d of a formula is the
length of the longest path from the output node. Lemma 2.1
in Katsumata’s work [27] states the well-known equivalence
between the monotone Boolean formulae and NC1 circuits.

IV. PRISRV’S OVERVIEW

First, we present a technical overview of PriSrv. Next, we
provide an example to illustrate how PriSrv is used. Finally,
we highlight how PriSrv meets all privacy-enhancement and
high usability requirements.
Technical overview. At a high level, PriSrv is a private service
discovery protocol that ensures services are only discoverable
by an authorized set of clients. PriSrv consists of a private ser-
vice broadcast phase and an anonymous mutual authentication
phase as shown in Fig. 1.

PriSrv’s design incorporates a novel crypto-enforced con-
struction that enables both service providers and clients to
express flexible access control policies and disclose partial
attributes. To meet the privacy enhancement and high us-
ability requirements outlinted in §I-A, we design a dual-
layer matching mechanism: an outer layer defines bilateral
public authorization policies for filtering unauthorized service
providers and clients based on their public attributes; an inner
layer performs mutual authentication based on the selectively
disclosed private attributes. We design a new cryptographic
primitive, named anonymous credential-based matchmaking
encryption (ACME), to realize such a dual-layer design in
PriSrv.

Anonymous credential (AC) realizes attribute based anony-
mous authentication with selective attribute disclosure, mak-
ing it a potential tool for ACME construction. Existing AC
schemes suffer from either large credential sizes or cum-
bersome show and verification mechanisms [28], [29], [30],
rendering them unsuitable for privacy-enhanced and highly
usable service discovery in wireless networks. We design a
new AC scheme, named fast anonymous credential (FAC) as
a building block of ACME.

To realize bilateral policy control in ACME, one promising
technology is the Matchmaking Encryption (ME) proposed by
Ateniese et al. in CRYPTO’19 [15]. In ME, sender (snd) and

5

receiver (rcv) possess a set of attributes x⃗snd and x⃗rcv, respec-
tively. The sender is able to specify an authorization policy
fsnd for the receiver’s attributes x⃗rcv to satisfy, and vice versa.
ME enables both participants to specify fine-grained policies
for encrypted data, which satisfies our need for bilateral policy
control. Nonetheless, the ME in [15] has three limitations:
(1) the conception of ME to support expressive policies relies
on heavy cryptographic tools, including Functional Encryption
(FE) and general Zero-Knowledge Proof (ZKP), whose known
instantiations are still far from practical; (2) ME does not sup-
port selective attribute disclosure; (3) concrete instantiations of
ME [15], [31] only support identity-based equality matching.
It remains an open problem to develop an efficient ME that
supports fine-grained policy based fuzzy matching [15]. We
develop ACME to solve this open problem and overcome
the above limitations. We further develop PriSrv based on
ACME to meet both privacy enhancement and high usability
requirements.
Example. We provide a smart office example to exemplify the
use of bilateral policy control and selective attribute disclosure
in PriSrv. Consider a screen mirroring service provided by a
smart TV, which only allows authorized devices to connect
to it. On the other hand, a client device should only project
its screen to an authorized screen mirroring service device to
prevent any leakage of private information. The service type
in this scenario is the screen mirroring service, and the service
parameters include resolution, refresh rate, etc. The smart TV
is associated with a set of attributes: x⃗s=(device type, vendor,
model, OS, domain name, device name, location, IP address,
security domain), where the first five are public attributes
and the rest are private. The mirroring service provider may
select a set of public attributes x⃗

(out)
s =(device type, vendor,

domain name) to be used in the outer layer, and a set of
private attributes x⃗

(in)
s =(IP address) to be used in the inner

layer. The client device is associated with another set of
attributes: x⃗c=(device type, model, OS, department, device
name, classified device, IP address, security domain), where
the first four are public attributes and the rest are private. The
client selects a set of public attributes x⃗

(out)
c =(device type,

OS, department) for outer layer matching, and a set of private
attributes x⃗

(in)
c =(classified device, security domain) for inner

layer authentication.
To realize bilateral control, the service provider (i.e., the

smart TV) sets a service policy as

fs =
(

Device Type = “Smart phone ∨ Laptop”∧
OS = “Android ∨ iOS ∨Windows”∧
Department = “A ∨ B”

)
.

The client device specifies a connection policy as

fc =
(

Device Type = “TV”
∧

Vendor = “C ∨ D”∧
Domain Name = “*.XYZ.COM”

)
.

The screen mirroring service can be discovered by the client
if and only if fs(x⃗

(out)
c) = 1∧fc(x⃗(out)

s) = 1, which indicates

that the public attributes of the service provider (and the client,
respectively) satisfy the policy of its peer. The private attributes
selected by smart TV and client device are used for mutual
authentication.
How PriSrv Meets Requirements. PriSrv meets both privacy
enhancement and high usability requirements as outlined in
§I-A.

- Private Service Broadcast & Mutual Authentication. The
messages broadcasted by service providers are encrypted using
ACME such that only intended clients can obtain the decrypted
information. Both service providers and clients authenticate
each other’s private attributes before establishing a secure
communication channel.

- Bilateral Anonymity & Bilateral Flexible Policy Control.
Both service providers and clients maintain their anonymity
during the discovery process. Bilateral flexible policy control
is achieved via ACME, as decryption fails if any protocol
participant’s policy is not satisfied by its peers’ attributes.

- Selective Attribute Disclosure & Multi-Show Unlinkability.
According to the minimum privacy leakage principle, any
participant in PriSrv only reveals a subset of its attributes to its
peer. Both service provider and client select a subset of their
attributes, including public attributes and private attributes to
generate their authentication tokens. Multi-show unlinkability
of PriSrv is inherited from that of FAC, which ensures the
unlinkability of multiple instances of authentication tokens
generated by the same entity across multiple protocol sessions
(even using the same subset of non-unique attributes).

- No Pre-registered Pairing & No Third-party Dependency
for Service Discovery. PriSrv protocol execution does not
require any service provider to know its clients, or any client
to subscribe to its service providers in advance. PriSrv oper-
ates without relying on any external services during protocol
execution.

Threat and Attacker Model. The credential issuer is
considered trustworthy to issue and revoke anonymous cre-
dentials. Both service providers and clients in the protocol are
considered untrustworthy, as they have the potential to launch
any passive or active attacks. Specifically, a service provider
may attempt to impersonate other providers by broadcasting
deceptive messages or to track clients’ activities. Likewise, a
client may impersonate other clients to obtain unauthorized
network access.

Following the Canetti-Krawczyk model for authenticated
key-exchange (AKE) in [32], [33] and the service discovery
model in [5], the attackers against PriSrv include malicious
service providers, clients, and external adversaries. We aim to
comprehensively model the attackers’ capabilities in the real
world to gain full control over public network communication.
This control encompasses actions such as revealing certain
protocol secrets, intercepting or tampering with channel mes-
sages, replaying, delaying, injecting or dropping data packets,
and interleaving messages from different sessions, etc. They
are capable to launch various types of attacks, including
eavesdropping attacks, spoofing attacks, impersonation attacks,
man-in-the-middle attacks, etc. The attackers’ goals include:

6

(1) breaking authenticated key-exchange security; and (2)
revealing sensitive information pertaining to clients or service
providers, enabling attackers to track their activities.

Formal Security Definition and Analysis. The formal
security models of private service discovery include service
discovery security and bilateral anonymity, which is followed
by formal security proofs. The formal security models and
proofs are shown in Appendix C.

V. FAST ANONYMOUS CREDENTIAL

We propose a fast anonymous credential scheme (FAC) as a
component of ACME to enable fast anonymous authentication
while maintaining a constant and small credential size. FAC
supports re-randomization of credentials to support multi-show
unlinkability, and selective attribute disclosure. We provide the
syntax for anonymous credentials and proceed to construct a
concrete FAC scheme for mobile devices.

A. Syntax of Anonymous Credential

Anonymous credential (AC) is formally defined by the
following PPT algorithms [35], [36].
• Setup(1λ, 1n) → pp: On input a security parameter λ

and a function parameter 1n, it outputs public parameter pp,
which is an implicit input to all the other algorithms.
• CredKeyGen(pp) → (pk, sk): On input pp, this al-

gorithm creates credential issuer’s public/secret keys pk/sk,
where pk is an implicit input to the algorithms below.
• UserKeyGen(pp) → (upk,usk): On input pp, the

algorithm generates user’s public key upk and secret key usk.
• ⟨Issue.I(sk,upk) ⇄ Issue.U(uid, x⃗,usk)⟩ → cred. This

is an interactive protocol for AC issuance executed between
the issuer and a user over a secure channel. The user executes
the protocol by inputting a user’s identity uid, an attribute set
x⃗ and a secret key usk. The credential issuer runs the protocol
by inputting sk and upk. The issuer hands over a credential
cred to user via secure channel.
• Show(uid, {xi}i∈I , cred,usk,m)→ tok: On input uid,

an attribute subset {xi}i∈I ⊆ x⃗ (I ⊆ [1, n]), cred, usk and a
message m, it outputs an authentication token tok.
• Verify(tok,m) → b ∈ {0, 1}. On input tok and m, it

outputs b = 1 if tok is valid; otherwise, it outputs b = 0.
Following the security definitions in [35], [36], the correct-

ness, unforgeability, anonymity and unlinkability of AC are
defined, which are shown in Appendix A.

B. Construction of FAC

Our construction of FAC is given below.
• Setup(1λ, 1n) → pp: Let λ be the security parame-

ter, and n the attribute number in the system. Run G =

(p,G1, G2, GT , e)
$←− GGen(1λ), and output pp = (g, h, n),

where g, h are the generators of G1, G2, respectively.
• CredKeyGen(pp) → (pk, sk): The issuer samples

τ, yi
$←− Z∗

p, computes W ← gτ , Xi ← hyi , Yi ← gyi for
i ∈ [0, n+1], and Zi,j = gyi·yj for 0 ≤ i ̸= j ≤ n+1. Then,
it outputs secret key sk = (τ, {yi}i∈[0,n+1]) and public key
pk← (W, {Xi, Yi}i∈[0,n+1], {Zi,j}0≤i ̸=j≤n+1).

• UserKeyGen(pp) → (upk,usk): The user with uid

samples usk $←− Z∗
p, computes upk ← husk, and creates a

signature proof of knowledge π1 as SPK{usk : upk = husk}.
The issuer registers upk if VerifySPK(upk, π1) = 1 holds.
• ⟨Issue.I(sk,upk) ⇄ Issue.U(uid, x⃗,usk)⟩ → cred. The

secure channel between issuer and user can be established by
standard protocols, such as TLS.

(1) User sends uid and attributes x⃗ = {xi}i∈[1,n] to issuer.

(2) The issuer samples r
$← Z∗

p to calculate cred ←
(σ1, σ2), where

σ1 ← hr, σ2 ← upkr·y0 · hr(τ+
∑n

i=1 yixi+yn+1·uid).

(3) The user accepts the credential cred if the following
equation holds

e(W · Y usk
0 · Y uid

n+1

∏n

i=1
Y xi
i , σ1) = e(g, σ2).

• Show(uid, {xi}i∈I , cred,usk,m)→ tok: The user gen-
erates a token on selected attribute subset {xi}i∈I , I ⊆ [1, n].
Select t1, t2

$← Z∗
p to compute

T1 = gt1
∏

j∈[1,n]\I

Y
xj

j , T2 = (
∏
i∈I′

Yi)
t1

∏
i∈I′,j∈[1,n]\I

Z
xj

i,j ,

σ̄1 = σt2
1 , σ̄2 = σt2

2 σ̄t1
1 , and create π2 as

SPK

(usk, uid) :
σ̄1 = σt2

1 , σ̄2 = σt2
2 σ̄t1

1 , σ1 = hr,

σ2 = (husk)r·y0h
r(τ+

n∑
i=1

yixi+yn+1·uid)

 (m),

where I ′ = I ∪ {0, n+ 1}. The token is

tok← ({xi}i∈I , T1, T2, σ̄1, σ̄2, π2).

• Verify(tok,m)→ b ∈ {0, 1}. The algorithm outputs b = 1
if VerifySPK(tok,m) = 1. Otherwise, it returns b = 0.

Instantiation of SPK. Following the standard Fiat-Shamir
paradigm, SPKs in FAC are instantiated as follows.

The SPK π1:

Prove: Prover selects ũsk $← Z∗
p and computes γ ← hũsk,

c ← H(upk, γ), usk = ũsk − c · usk mod p. Return π1 ←
(c, γ,usk).

Verify: Given upk and SPK π1, the verifier checks c
?
=

H(upk, γ), γ ?
= huskupkc. It outputs 1 if these equations hold,

and 0 otherwise.
The SPK π2:

Prove: Prover selects ũid, ũsk $← Z∗
p and computes

Λ← e(Y ũsk
0 Y ũid

n+1, σ̄1), c← H(m, {xi}i∈I ,Λ, T1, T2, σ̄1, σ̄2),
uid ← ũid − c · uid mod p, usk ← ũsk − c · usk
mod p. Set π2 ← (c, uid,usk,Λ), and return tok ←
({xi}i∈I , T1, T2, σ̄1, σ̄2, π2).

Verify: Given tok, the verifier checks c ?
= H(m, {xi}i∈I ,Λ,

T1, T2, σ̄1, σ̄2), e(Y usk
0 Y uid

n+1, σ̄1)
−1 ·Λ ?

= [e(g, σ̄2) · Γ]c, e(T1,∏
i∈I′ Xi)

?
= e(T2, h), where Γ = e(W ·T1 ·

∏
i∈I Y xi

i , σ̄1)
−1.

It outputs 1 if these equations hold, and 0 otherwise.

7

Fig. 2: Architecture of ACME

Our fast anonymous credential (FAC) scheme has the fol-
lowing advantages: 1) FAC offers a non-interactive Show ⇆
Verify process, ensuring fast anonymous authentication. 2)
FAC generates anonymous credentials of a constant and small
size. 3) An authentication token generated in FAC consists
of only two group elements. The construction is based on
the unlinkable redactable signature (URS) scheme [36], which
is one of the initial frameworks for generating constant-
size redactable signatures on attributes x⃗ = (x1, · · · , xn).
FAC generates an anonymous credential cred based on the
URS scheme [36]. When a request is made to verify the
authenticity of a subset of attributes {xi}i∈I ⊆ x⃗, the Show
algorithm in FAC performs the following steps: it derives an
authentication token tok from the anonymous credential cred,
and then produces a signature proof of knowledge (SPK)
for the authentication token. The Verify algorithm in FAC is
responsible for checking the validity of tok. The correctness
proof of FAC is shown in Appendix A.

Theorem 5.1. The FAC scheme is secure (i.e., achieves
unforgeability, anonymity and unlinkability) under the DL and
DDH assumptions.

The proof of Theorem 5.1 is shown in Appendix A.

VI. ANONYMOUS CREDENTIAL-BASED MATCHMAKING
ENCRYPTION (ACME)

We introduce a new cryptographic primitive named ACME
to support several core features in PriSrv protocol, including
bilateral policy control, anonymous authentication and selec-
tive attribute disclosure. ACME is a variant of ME where the
sender and the receiver can use anonymous credentials to prove
their attributes without revealing their identities. This is useful
because it allows for stronger privacy guarantees and flexible
policy enforcement in scenarios such as secure online dating,
e-voting, and anonymous whistleblowing, where the parties do
not trust each other or third parties. ACME is of independent
interests for advancing research on Matchmaking Encryption.

A. Design Intuition

Matchmaking Encryption (ME) is a natural starting point
to construct ACME. However, the conception of ME [15] that

can simultaneously support expressive policy (e.g., monotone
Boolean formulae) and policy hiding is of theoretical interest
only since no concrete instantiation has been proposed. Al-
though identity-based ME schemes supporting equality poli-
cies were introduced in [15], [31], they do not fit for highly-
usable service discovery since in general participants of service
discovery are unaware of their peers’ identities and thus
cannot define identity-based equality policies. Meanwhile, we
notice that the original ME schemes [15], [31] support hidden
policies, but they are not ideal for service discovery because
such schemes require clients to blindly decrypt every service
advertisement, bringing high costs when multiple services are
in presence.

To balance fast service discovery and privacy protection,
ACME adopts a dual-layer matching design for a sender (snd)
to encrypt any message M and send the ciphertext to a receiver
(rcv) with bilateral policy control. Sender snd receives an
anonymous credential credsnd from a credential issuer for all
its attributes x⃗snd. As shown in Fig. 2, ACME consists of
an inner layer and an outer layer. In the inner layer, sender
snd generates an authentication token using FAC.Show from
a message M and selected attributes (including public and
private attributes) based on the received credential credsnd.
In the outer layer, sender snd encrypts the authentication
token and the message M using an authentication policy fsnd
(specified by snd for rcv) and the sender’s selected public
attributes. Then, sender snd transmits the ciphertext to receiver
rcv.

On the receiver side, the ciphertext is decrypted in the outer
layer using receiver’s policy decryption key and attribute de-
cryption key to recover the authentication token and message
M . In the inner layer, the authentication token is verified
using FAC.Verify to authenticate the sender’s selected private
attributes, public attributes and the message M .

Impersonation Resistance. ACME is the core component
of PriSrv to prevent impersonation attacks. As shown in Fig.
2, both the public and private attributes are used as inputs
for authentication token generation in the inner layer. This
design has been purposefully engineered to provide robust
protection against impersonation attacks. Although the public
attributes used in the service provider’s outer layer are public,
a malicous service provider (without all the authorized public
attributes) is not able to impersonate any legal provider since
the forged authentication token cannot pass the verification
by the receiver (using FAC.Verify). On the other hand, if
the public attributes used in the outer layer are not unique,
PriSrv relies on the inner layer to authenticate both public and
private attributes, which rules out any impersonation attack.
Meanwhile, an attacker impersonating a legitimate receiver
cannot be successful in decryption without a valid secret key.

B. Syntax of ACME

Anonymous credential-based matchmaking encryption
(ACME) is formally defined below, and the correctness of
ACME is defined in Appendix B.

8

• Setup(1λ, 1n): On input a security parameter 1λ and
a function parameter 1n, this algorithm outputs the master
public/secret keys mpk/msk. Note that mpk is implicit input
in all the following algorithms.
• CredKeyGen(mpk) → (pk, sk): On input mpk, this

algorithm creates credential issuer’s public key pk and secret
key sk. pk is an implicit input to the following algorithms.
• UserKeyGen(mpk) → (upk,usk): On input mpk, the

algorithm generates user’s public key upk and secret key usk.
• ⟨Issue.I(sk,upk) ⇄ Issue.U(uid, x⃗,usk)⟩ → cred. The

issuer inputs sk, upk and the user inputs uid, usk, full
attributes x⃗. The issuer interacts with user to generate a
credential cred for the user.
• DKGen(msk, x⃗rcv): On input msk and attributes x⃗rcv, this

algorithm outputs an attribute decryption key DKx⃗rcv .
• PolGen(msk, frcv): On input msk and policy frcv, this

algorithm outputs a policy decryption key DKfrcv .
• Enc(credsnd, x⃗snd, fsnd,M): On input credsnd, full at-

tributes x⃗snd, policy fsnd and message M as input, the sender
selects a set of private attributes x⃗

(in)
snd for an inner layer and a

set of public attributes x⃗
(out)
snd for an outer layer from x⃗snd. It

firstly generates a token toksnd for x⃗
(in)
snd , x⃗(out)

snd and message
M . Then, it encrypts (M, toksnd) using the public attributes
x⃗
(out)
snd and policy fsnd, and outputs a ciphertext CTx⃗snd,fsnd .
• Dec(DKx⃗rcv ,DKfrcv ,CTx⃗snd,fsnd): On input DKx⃗rcv , DKfrcv

and CTx⃗snd,fsnd , the receiver recovers (M, toksnd) iff
fsnd(x⃗

(out)
rcv) = 1 and frcv(x⃗

(out)
snd) = 1; otherwise, it outputs

⊥. If the above step succeeds, the receiver verifies toksnd for
x⃗
(in)
snd ∪ x⃗

(out)
snd and M . It outputs the message M if the token

is valid; otherwise, it outputs ⊥.
Remark. In encryption algorithm, the authentication token

toksnd is generated for selected public and private attributes
rather than just private attributes. The purpose is to authen-
ticate sender’s selective attributes in both layers to prevent
spoofing attacks. The token also authenticates M to prevent
message forgery.

Definition 6.1. An ACME scheme is secure if it satisfies
privacy, authenticity, anonymity and unlinkability.

The formal definitions of these security properties are
provided in Appendix B.

C. Construction of ACME
FAC in §V is leveraged in the inner layer of ACME

for authentication. For outer-layer encryption and bilateral
policy control, we resort to attribute-based encryption (ABE)
that supports expressive access policies. However, ABE only
supports unilateral policy control. To enable bilateral control,
a potential solution is to integrate key policy (KP-)ABE and
ciphertext policy (CP-)ABE so that the secret key of CP-
ABE (resp. KP-ABE) functions as attribute decryption key
(resp. policy decryption key) produced by the DKGen (resp.
PolGen) algorithm. Although the idea seems straightforward,
there are a few subtleties to be addressed. Firstly, compact
ABE schemes are preferred for compact ciphertext size and
key size. The compact KP-ABE and CP-ABE schemes pro-
posed by Kowalczyk et al. [26] in Eurocrypt’19 are natural

candidates because they are in the dual form with common
parameters and support Boolean formulae (equivalent to NC1

circuits1). Nonetheless, the decryption process of the dual ABE
schemes in [26] involves a large number of time-consuming
pairing operations (depending on the complexity of NC1).
If we construct ACME based on the dual schemes given in
[26], such ACME would incur high computational costs for
wireless devices. Meanwhile, we notice that for KP-ABE,
Katsumata et al. proposed an improved scheme in [27] with
faster decryption, which requires only a constant number of
pairing operations. We apply the technique in [27] to improve
CP-ABE scheme in [26] to achieve fast decryption with a
constant number of pairing operations. By integrating the
improved CP-ABE with Katsumata’s KP-ABE [27], which are
also in a dual form, we can achieve both fine-grained bilateral
policy control and fast decryption.

Concrete Construction. Our ACME scheme for general
policies is built from the above fast anonymous creden-
tial scheme FAC, a symmetric encryption scheme SE =
(SGen,SEnc,SDec) with key space K, and a hash function
H : {0, 1}∗ → K.
Setup(1λ, 1n): Run G = (p,G1, G2, GT , e)

$←− GGen(1λ).
Let g, h be the generators of G1, G2, respectively. Run
FAC.Setup(1λ, 1n) to get pp. Sample A

$←− Zk×2k
p , B $←−

Zk×k
p , U0,Wi

$←− Z2k×k
p for i ∈ [n], v $←− Z2k

p , output

msk = (v,B,U0,W1, · · · ,Wn),

mpk = (pp, [A]1, [AU0]1, [AW1]1, · · · , [AWn]1, e([A]1, [v]2)).

CredKeyGen(mpk) → (pk, sk): This algorithm executes
FAC.CredKeyGen to generate issuer’s pk and sk.

UserKeyGen(mpk) → (upk,usk): This algorithm exe-
cutes FAC.UserKeyGen to generate user’s upk and usk.
⟨Issue.I(sk,upk) ⇄ Issue.U(uid, x⃗,usk)⟩ → cred. This

algorithm executes FAC.Issue to create user’s credential
cred.

DKGen(msk, x⃗rcv): To generate an attribute decryption key
for receiver’s attributes x⃗rcv, it samples r $←− Zk

p and outputs
DKx⃗rcv = (dk1,dk2,dk3):

dk1 = [v+U0Br]2,dk2 = [Br]2,dk3 = [
∑

i:x
(out)
r,i =1

WiBr]2.

PolGen(msk, frcv): To generate a policy decryption
key for receiver’s policy frcv, this algorithm samples
({vj}j∈[m̂r], ρr)

$←− share(frcv, v), rj
$←− Zk

p and outputs
DKfrcv = ({dkj ,dkρr(j),j , {dki,j}i∈[n]\{ρr(j)}}j∈[m̂r]) :

dkj = [rj]2,dkρr(j),j = [vj + Wρr(j)rj]2,dki,j = [Wirj]2,

where W0 = 0, m̂r is the number of shares for receiver’s
policy, and ρr is a mapping from the indices of the shares to

1In computational complexity theory, NCi is the class of decision problems
decidable by uniform boolean circuits with a polynomial number of gates of
at most two inputs and depth O(logi n), or the class of decision problems
solvable in time O(logi n) on a parallel computer with a polynomial number
of processors, where NC is short for ”Nick Pippenger’s Class”.

9

the indices of receiver’s public attributes2. For ρr(j) = 0, we
have [n]\{ρr(j)} = [n].
Enc(credsnd, x⃗snd, fsnd,M): The sender selects the private

attributes x⃗
(in)
snd for inner layer and public attributes x⃗

(out)
snd for

outer layer from x⃗snd. Then, it runs FAC.Show to obtain
toksnd for x⃗

(in)
snd , x⃗(out)

snd and M ∈ {0, 1}∗. Next, it encrypts
(M, toksnd) using the public attributes x⃗

(out)
snd and policy fsnd

as follows.
The sender samples s̃, s, sj

$←− Zk
p , ({u⊤

j }j∈[m̂s], ρs)
$←−

share(fsnd, s⊤AU0), K ∈ GT , and compute CTx⃗snd,fsnd =

(ctM , ct0, ct′1, ct′2, ct1, {c̃tj , ctρs(j),j , {cti,j}i∈[n]\{ρs(j)}}j∈[m̂s]) :

ctM = SE .SEnc(H(K), (M, toksnd)),

ct0 = e([̃s⊤A + s⊤A]1, [v]2) ·K,

ct′1 = [̃s⊤A]1, ct′2 =
[̃
s⊤
∑

i:x
(out)
s,i =1

AWi

]
1
,

ct1 = [s⊤A]1, c̃tj = [s⊤j A]1,

ctρs(j),j =
[
u⊤
j + s⊤j AWρs(j)

]
1
, cti,j =

[
s⊤j AWi

]
1
,

where W0 = 0, x(out)
s,i is sender’s i-th public attribute for outer

layer, m̂s is the number of shares for sender’s policy, and ρs
is a mapping from the indices of the shares to the indices of
sender’s public attributes.

Dec(DKx⃗rcv ,DKfrcv ,CTx⃗snd,fsnd): The receiver recovers
(M, toksnd) using (DKx⃗rcv ,DKfrcv) as follows. It compute
ωj , µj such that v =

∑
j∈Sr

ωjvj , s⊤AU0 =
∑

j∈Ss
µju⊤

j ,
and calculates

K = ct0 ·
e
(
ct′2,

∏
j∈Sr

dkωj

j

)
·

e
(
ct′1,

∏
j∈Sr

(∏
i:x

(out)
s,i =1

dki,j
)ωj
)

·
e(
∏

j∈Ss
(
∏

i:x
(out)
r,i =1

cti,j)µj ,dk2)

e(ct1,dk1)e(
∏

j∈Ss
c̃t

µj

j ,dk3)
,

where Sr = {j : ρr(j) = 0∨x(out)
s,ρr(j)

= 1}, Ss = {j : ρs(j) =
0 ∨ x

(out)
r,ρs(j)

= 1} and x
(out)
r,i is receiver’s i-th public attribute

for outer layer.
If fsnd(x⃗

(out)
rcv) = 0 ∨ frcv(x⃗

(out)
snd) = 0, it outputs ⊥;

otherwise, it recovers (M, toksnd)← SE .SDec(H(K), ctM).
Then, the receiver runs FAC.Verify(toksnd,M) to verify
toksnd for x⃗

(in)
snd ∪ x⃗

(out)
snd and M . It outputs the message M

if the token is valid; otherwise, it outputs ⊥.
The correctness of ACME scheme is analyzed below.
Denote Ss = {j : ρs(j) = 0 ∨ x

(out)
r,ρs(j)

= 1} and Sr = {j :

ρr(j) = 0 ∨ x
(out)
s,ρr(j)

= 1}. The correctness of ACME relies
on the fact that

∏
j∈Sr

dkωj

j =
∏

j∈Sr
[rj]

ωj

2 = [r̂]2,∏
j∈Sr

(∏
i:x

(out)
s,i =1

dki,j
)ωj

= [v +
∑

i:x
(out)
s,i =1

Wir̂]2,

where r̂ =
∑

j∈Sr
ωjrj . Also we have,

e(ct1,dk1) = [s⊤Av + s⊤AU0Br]T ,∏
j∈Ss

c̃t
µj

j =
∏

j∈Ss

[s⊤j A]
µj

1 = [̂s⊤A]1,

2Please refer to the details of linear secret sharing for NC1 in §5.1 of [26].

∏
j∈Ss

(∏
i:x

(out)
r,i =1

cti,j
)µj

= [s⊤AU0 + ŝ⊤
∑

i:x
(out)
r,i =1

AWi]1,

where ŝ⊤ =
∑

j∈Ss
µjs⊤j .

Therefore, for all frcv, x⃗snd such that frcv(x⃗
(out)
snd) = 1, we

have:

e
(
ct′2,

∏
j∈Sr

dkωj

j

)
·

e
(
ct′1,

∏
j∈Sr

(∏
i:x

(out)
s,i =1

dki,j
)ωj
)

=
e
([̃

s⊤
∑

i:x
(out)
s,i =1

AWi

]
1
, [r̂]2)

e
(
[̃s⊤A]1, [v +

∑
i:x

(out)
s,i =1

Wir̂]2
)

=
[̃s⊤Ar̂

∑
i:x

(out)
s,i =1

Wi

]
T

[̃s⊤Av + s̃⊤Ar̂
∑

i:x
(out)
s,i =1

Wi]T
= ([̃s⊤Av]T)−1.

where r̂ =
∑

j∈Sr
ωjrj .

For all fsnd, x⃗rcv such that fsnd(x⃗
(out)
rcv) = 1, we have:

e(
∏

j∈Ss
(
∏

i:x
(out)
r,i =1

cti,j)µj ,dk2)

e(ct1,dk1) · e(
∏

j∈Ss
c̃t

µj

j ,dk3)

=
e([s⊤AU0 + ŝ⊤

∑
i:x

(out)
r,i =1

AWi]1, [Br]2)

[s⊤Av + s⊤AU0Br]T · e([̂s⊤A]1, [
∑

i:x
(out)
r,i =1

WiBr]2)

=
[s⊤AU0Br]T

[s⊤Av + s⊤AU0Br]T
= ([s⊤Av]T)−1.

Theorem 6.2. The ACME scheme achieves privacy, authen-
ticity, anonymity and unlinkability if the MDDHk assumption
holds and the underlying FAC is secure.

The proof of Theorem 6.2 is shown in Appendix B.

D. Comparison of ME Schemes

Mathmaking encryption (ME) protects data confidentiality
with bilateral control for both senders and receivers in com-
munications. The existing instantiations of ME include an
identity-based scheme (IBME) [15] proposed in CRYPTO’19
and a security enhanced version [31] in Asiacrypt’22, but they
do not support fine-grained access control. Table II compares
our ACME with IBME [15], [31]. Since IBME simply sets
x⃗snd = snd, fsnd = rcv and x⃗rcv = rcv, frcv = snd,
it requires pre-registration pairing between service providers
and clients. On the contrary, ACME relies on bilateral policy
matching for service discovery and thus it does not need pre-
registration pairing. Furthermore, ACME supports expressive
policy (i.e., Boolean formulae equivalent to NC1 circuit),
while IBME is constrained to equality policy. On the other
hand, the expressive policy in ACME is public to enable fast
service discovery, while the equality policy is hidden from the
public in IBME.

10

Service Broadcast Phase
Service Provider S’s Broadcast: bid,CTB ← ACME .Enc(creds, x⃗s, fs,MSGB)

where MSGB = {bid||Z||ServiceType||ServicePar||Kc}, z
$←− Z∗

p, Z ← hz ∈ G2, Kc ←MAC.KeyGen(1λ)

Anonymous Mutual Authentication Phase
Client (C) Service Provider (S)

(credc,DKx⃗c ,DKfc) (creds,DKx⃗s ,DKfs)

MSGB ← ACME .Dec(DKx⃗c ,DKfc ,CTB)

x1, x2
$←− Z∗

p, X1 ← gx1 ∈ G1, X2 ← hx2 ∈ G2

σc ←MAC.MAC(Kc,Mc)

where Mc = (“C → S”, bid, sid,X1, X2, Z)

Ks ←MAC.KeyGen(1λ) bid,sid,σc,CTc−−−−−−−−−−−−−−−−→ MSGc ← ACME .Dec(DKx⃗s ,DKfs ,CTc)

CTc ← ACME .Enc(credc, x⃗c, fc,MSGc) bc ←MAC.Verify(Kc,Mc, σc)

where MSGc = (Ks,Mc) If bc = 0, abort; otherwise,

y
$←− Z∗

p, Y ← gy ∈ G1

bs ←MAC.Verify(Ks,Ms, σs) σs ←MAC.MAC(Ks,Ms)

If bs = 0, abort; otherwise,
Ms,σs←−−−−−−−−−−−−−−−− where Ms = (“S → C”, bid, sid,X1, X2, Y, Z)

SSKc,s ← H(Y x1 , Zx2) SSKc,s ← H(Xy
1 , X

z
2)

Fig. 3: PriSrv Protocol

Scheme ME Anon.
Complex Selective No Pre-reg. Hidden

Policy Disclosure Pairing Policy
IBME [15], [31]

√ √
× × ×

√

ACME
√ √ √ √ √

×

TABLE II: Comparison of ME Schemes

VII. PRISRV: PRIVACY-ENHANCED FAST SERVICE
DISCOVERY

A. PriSrv Protocol and Security

Fig. 3 shows PriSrv, which consists of a service broadcast
phase and an anonymous mutual authentication phase. A
unique broadcast identifier bid is assigned to each broadcast
cycle; and a unique session identifier sid is assigned to
each session. A lifetime should be set for each broadcast
cycle (e.g., 30 seconds) by including a timestamp (which
can be part of bid) and a client verifies the timestamp upon
successful decryption to ensure the freshness. Let MAC =
(Setup,KeyGen,MAC,Verify) be a message authentication
code (MAC) scheme [35], [37], [38], and H : {0, 1}∗ → K
be a hash function, where K is the secret session key space. We
assume that the generation and dissemination of anonymous
credential, attribute and policy decryption keys to both service
provider (S) and client (C) are performed according to ACME.

Service Broadcast Phase. To initiate a broadcast ses-
sion with identifier bid, S defines a policy fs to be sat-
isfied by C. S selects an ephemeral Diffie-Hellman (DH)
exponent z

$←− Z∗
p and calculates Z ← hz . S also

runs Kc ← MAC.KeyGen(1λ) to generate an MAC key.
S generates the broadcast message MSGB = {bid||Z||
ServiceType||ServicePar||Kc} including the broadcast iden-

tifier, service type and parameters as well as a MAC key for
the client. Next, S encrypts MSGB to a broadcast ciphertext
CTB = CTx⃗s,fs ← ACME .Enc(creds, x⃗s, fs,MSGB).
Then, the broadcast identifier bid and service ciphertext CTB

are announced over the public network.
Anonymous Mutual Authentication Phase. To establish a

secure session between C and S, the anonymous mutual
authentication is executed to establish a session key SSKc,s.

(1) To discover the private service, C firstly checks whether
x⃗
(out)
c satisfies with the anonounced access policy fs of

S, i.e. fs(x⃗
(out)
c)

?
= 1. C quickly filters out mismatched

services without decryption when fs(x⃗
(out)
c) = 0. Otherwise,

C attempts to decrypt CTB using its attribute and policy
decryption keys (DKx⃗c

,DKfc). If the decryption fails which
means fs(x⃗

(out)
c) = 0 ∨ fc(x⃗

(out)
s) = 0, then C aborts.

Otherwise, C responds to the broadcast message by executing
ACME .Dec to recover MSGB . Next, C selects ephemeral
DH exponents x1, x2

$←− Z∗
p and calculates X1 = gx1 ,

X2 = hx2 . C computes a MAC key Ks and an authentication
tag σc of Mc = (“C → S”, bid, sid,X1, X2, Z) using
Kc from MSGB , where “C → S” denotes the message
direction. Then, C defines a policy fc to be satisfied by S,
and selects a set of public attributes and a set of private
attributes to be disclosed to S. C runs ACME .Enc to compute
CTc = CTx⃗c,fc and sends it to S.

(2) S authenticates C’s service access request and computes
a secret session key. S executes ACME .Dec to recover
MSGc. S aborts the protocol if decryption fails. Next, S veri-
fies σc and selects DH exponent y $←− Z∗

p to calculate Y ← gy .
S sets Ms = (“S → C”, bid, sid,X1, X2, Y, Z) and generates
a tag σs ← MAC.MAC(Ks,Ms) using Ks from MSGc.

11

Then, S computes a secret session key SSKc,s ← H(Xy
1 , X

z
2)

and sends (Ms, σs) to C.
(3) Receiving the message, C checks the validity of σs. If

it is valid, C computes SSKc,s ← H(Y x1 , Zx2) using the
secret values (x1, x2). Therefore, C and S derive the same
session key SSKc,s since Xy

1 = Y x1 = gx1y ∈ G1 and
Xz

2 = Zx2 = hx2z ∈ G2.
The following theorem shows the security of PriSrv.
Theorem 7.1. Suppose that the DDH assumption holds,

ACME is secure, MAC is unforgeable, and H is a random
oracle, then PriSrv is a secure service discovery protocol and
satisfies bilateral anonymity.

The proof of Theorem 7.1 is shown in Appendix C.

B. PriSrv Credential Management

Now we discuss credential management, including creden-
tial issuance, credential interoperability, and credential revo-
cation.

Credential Issuance. PriSrv leverages FAC to implement
a digital identity system for service providers and clients,
offering the advantages of unforgeability, anonymous authen-
tication, unlinkability, and selective attribute disclosure. W3C
published Decentralized Identifiers (DIDs) [39] and Verifiable
Credentials (VC) [40] specifications to regulate verifiable and
decentralized digital identities. Decentralized Identity Foun-
dation (DIF) [41] developed a set of standards to support a
decentralized identity ecosystem [42]. Technology giants, such
as IBM [43] and Microsoft [44], also provide flexible identity
governance and administration services for credentials. Can-
DID proposed in [45] allows user’s attributes to be verified
by issuers or imported from existing authority systems. PriSrv
may follow any of these existing DID frameworks to issue
credentials.

Credential Interoperability. Credentials complying with
standard specifications are interoperable across different plat-
forms. DID [39] and VC [40] have regulated the process
for inteoperable usage of credentials, which is also supported
by DIF [41]. Backed by Microsoft, Google, Yahoo, IBM,
VeriSign, PayPal, and Facebook, the OpenID Foundation3

promotes identity management, federation and interoperation,
in compliance with the specifications of W3C. PriSrv may
follow these specifications to ensure credential interoperability
when deployed in various service discovery settings.

Credential Revocation. Another consideration of PriSrv is
to manage revocation of user’s credentials whenever it is
necessary. Credential revocation has been intensively studied
in the last decade: various types of dynamic accumulators
(such as RSA-based and bilinear map based) with ZKP are
adopted for credential revocation [46], [47], [48]. It can also
be achieved by the combination of ElGamal encryption and
Schnorr proofs [49], or n-times unlinkable proofs [50]. PriSrv
may incorporate the above techniques to realize credential
revocation.

3OpenID Foundation: https://openid.net/foundation.

C. Interoperability of PriSrv with Existing Protocols

There are two approaches to make PriSrv work on top
of/with different layers of different wireless protocols. The
first approach is to position PriSrv at the application layer
providing application payload to lower layers. If the payload
of PriSrv is oversized in lower layers, the lower layer protocols
need to perform segmentation on the sender side and assem-
bling on the receiver side without changing the protocol logics.
The second approach is to substitute target protocols at lower
layers with PriSrv. However, the second approach requests for
specific adaptations of the concret protocols. In the following,
we give two examples for each approach, including mDNS and
BLE for the first approach, and EAP, AirDrop for the second
approach.

1) Privacy Enhanced mDNS and BLE: PriSrv can be inte-
grated in the Vanadium4 framework for developing privacy en-
hanced mDNS and BLE. Vanadium provides service discovery
APIs to broadcast and scan services over widely deployed pro-
tocols, such as mDNS [51], [52] and BLE [3]. mDNS can work
in conjunction with DNS Service Discovery (DNS-SD), a
companion zero-configuration networking technique specified
separately in RFC 67635. DNS-SD extends the functionality of
mDNS by adding additional attributes to the service discovery
process. Specifically, the TXT (Text) resource record can be
used to carry the attributes in the payload, where the maximum
size for a single TXT record in DNS is 65535 bytes. The
service broadcast of PriSrv is in the form (bid,CTB), which
takes 531996 bytes in communications on BN256 elliptic
curve (100-bit security) [53]. Therefore, privacy enhanced
mDNS may use 9 TXT records in DNS-SD to transmit the
broadcast ciphertext of PriSrv.

On the other hand, the payload of BLE broadcast is
constrained to 31 bytes, which is too small for carrying a
broadcast ciphertext in PriSrv. To enable privacy enhanced
BLE using PriSrv, the BLE Attribute Protocol (ATT) and
Attribute Protocol Data Unit (PDU) Segmentation techniques
can be leveraged to extend the payload size. If the payload
exceeds the standard packet size in BLE, the ATT protocol
(which is used for exchanging data between devices) can
segment the payload data into multiple Attribute Protocol Data
Units (PDUs) and transmit them sequentially. These PDUs can
be reassembled on the receiver side to recover the original
payload for the ciphertext in PriSrv.

2) Privacy Enhanced EAP: Figure 4 presents the architec-
ture of privacy enhanced EAP using PriSrv, which extends
RFC 3748 on Extensible Authentication Protocol (EAP) [54]
to support private service discovery. An access point (AP)
is involved in the interactions between client and service
provider, which acts as a pass-through agent for a backend
authentication server [54]. The anonymous authentication ex-
change in privacy enhanced EAP proceeds as follows. (1) At
the beginning, the service provider announces private service
broadcast information via AP, which contains the broadcast

4Vanadium. https://vanadium.github.io/.
5https://tools.ietf.org/html/rfc6763.

12

Fig. 4: Architecture of Privacy Enahnced EAP

identifier bid and the broadcast ciphertext CTB = CTx⃗s,fs =
ACME .Enc(· · · ,MSGB). This step corresponds to the state-
ment “the authenticator sends a request to authenticate the
peer” in EAP Standard. (2) If the client can decrypt MSGB

from CTB , he/she sends a response packet (bid, sid, σc,CTc)
as reply to the service provider, where CTc = CTx⃗c,fc =
ACME .Enc(· · · ,MSGC) and sid is a session identifier.
(3) Receiving the response, the service provider proceeds to
recover MSGc from CTc. If it succeeds, the service provider
sends (Ms, σs) to client, where Ms contains the DH shares
for computing a session key and σs is the corresponding MAC
value. After the client verifies σs, it calculates a secret session
key SSKc,s, and responds with a message “succeed”. (4)
Finally, the service provider also computes SSKc,s so that
a secure session is established between service provider and
client. All subsequent protocol messages are encapsulated in
EAPOL frames and re-encapsulated as RADIUS packets on
the back-haul. Following [9], the privacy enhanced EAP can
be adopted to enhance the privacy of Wi-Fi connections.

3) Privacy Enhanced Apple AirDrop: AirDrop applies BLE
to advertise the hashed identity of a service provider to look
for potential clients in their proximity. If a match is confirmed,
a TLS handshake is performed to exchange their certificates in
cleartext. Both hashed identities and certificates are disclosed
to the public, which is subject to identification and tracking
attacks. Following the PrivateDrop mechanism in [16], we
can improve the privacy of AirDrop by avoiding transmitting
private information (such as identifier) of service provider
during the advertising phase using BLE, and then encrypt the
certificates of both parties using ACME at the beginning of
TLS handshake. Apple may take the role of credential issuer
in this case to generate necessary secret keys and credentials
in addition to their existing iCloud certificates.

D. Limitations of PriSrv

One limitation of PriSrv lies in its large message size when
compared to existing protocols. This large size of the outer

discovery broadcast poses a scalability challenge, particularly
on slower networks like BLE, resulting in high transmission
overhead and reception delays. Moreover, on networks such
as Wi-Fi, broadcasts must always be transmitted at the lowest
feasible speed, further exacerbating airtime congestion.

The issue of large message sizes also compounds another
challenge in wireless networks: packet loss, especially when
using opportunistic transmission protocols like mDNS, which
relies on UDP. Although UDP packets can theoretically reach
sizes of up to 64K, they are fragmented to align with the
Maximum Transmission Unit (MTU) of the physical network.
Any loss of a single fragment results in the entire packet
being discarded. While Wi-Fi incorporates a rudimentary
acknowledgment and retry mechanism, this only applies to
unicast traffic and can only recover from brief RF disruptions.
Consequently, clients must wait for the broadcast ciphertext
in the subsequent round to receive full packets, causing
additional delays in reception. How to design efficient privacy-
preserving discovery protocols remain an open problem for
future research.

PriSrv protects its own payloads for achieving unlinka-
bility at its positioned layer. As for achieving unlinkability
at lower layers, the lower layer headers must be protected
using specific anti-tracking mechanisms designed at lower
layers. For example, PriSrv can work with MAC randomiza-
tion mechanism at data link layer. Smartphone manufacturers
(e.g., Apple iOS) incorporate MAC randomization for Wi-
Fi and AWDL connections to provide unlinkability at the
link layer, but devices can still be tracked at the layer where
PriSrv resides. PriSrv complements the MAC randomization
mechanism to realize unlinkability in different layers. Nev-
ertheless, the current MAC address randomization approach
(e.g., as implemented in Android and iOS) only performs
randomization once when connecting to a new network and
not with each subsequent connection. To achieve more robust
unlinkability, a more effective MAC address randomization
strategy should be devised to ensure unlinkability for each
individual connection. Achieving unlinkability across multiple
layers remains a persistent challenge.

VIII. IMPLEMENTATION AND COMPARISON

We benchmark the performance of PriSrv on various hard-
ware platforms, including desktop, laptop, smartphone, and
Raspberry Pi as shown in Table III. Three asymmetric el-
liptic curves are selected from the MIRACL library [55]
for evaluation, including MNT159 (80-bit security), MNT201
(90-bit security), and BN256 (100-bit security) [53]. We use
AES-CTR with 100-bit keys to instantiate the SEnc/SDec
algorithms in PriSrv, using SHA-256 as the hash function, and
use MACGGM [35] as suf-cma secure MAC. The source code
of our experiments is written in C/C++ and publicly available
on GitHub6. For each test case, we report the average over 20
executions.

6Source Code: https://github.com/prisrv.

13

No. Type Hardware Platforms
1 Desktop Intel® Core™ i9-7920X CPU @ 2.9GHz×12, 16GB
2 Laptop Intel® Core™ i5-10210U CPU @ 1.6GHz×4, 8GB
3 Phone ARM Cortex @2.84GHz+3×2.4GHz, 4GB
4 Raspberry Pi ARM Cortex @1.5GHz×4, 2GB

TABLE III: Hardware Platforms for Experiments

A. Evaluation of FAC

In Table IV, we compare FAC with typical anonymous
credential schemes. FAC constructs a constant-size anonymous
credential. With FAC, a verifier only needs to conduct k
operations to check the proof of k attributes, which is an up-
to-date optimal solution. The O(1) communication complexity
in [29] for its Show algorithm (i.e., |Show|) is composed of
about 100 group elements. Since the scheme in [29] is the only
one to achieve UC security in Table IV, these overheads can
be seen as a tradoff between efficiency and security. Compared
with [30], our credential only consists of 2 elements in G2,
which is approximately 2× more efficient than that of [30]
(i.e., 3|G1| + |G2| + 2|Zp|). To show a credential in FAC, a
user transmits 2 elements in G1, 2 in G2, 1 in GT and three
scalar elements, which is smaller than 8 elements in G1, 1 in
G2 and two scalar elements for [30].

Ref. Issue |cred| |Show| Show Verify
[56] O(1) 2|QRN |+ |ℓN | O(k) O(k) O(k)

[57] O(1) |G1|+ 2|Zq| O(n) O(n) O(n)

[28] O(n) (2n+ 4)(|G1|+ |Zq|) O(n) O(n) O(n)

[29] O(1) 6|G1|+ 2|G2|+ |Zp| O(1) O(n− k) O(k)

[30] O(1) 3|G1|+ |G2|+ 2|Zp| O(1) O(n− k) O(k)

FAC O(1) 2|G2| O(1) O(n− k) O(k)

TABLE IV: Comparison of Anonymous Credential Schemes
|Show| indicates the communication cost for showing k attributes.
Show and Verify represent the computational costs. QRN

represents the group of quadratic residues modulo a composite N ,
and ℓN is an RSA moduli defined in [56].

Ref. |Cred| Issue Show Verify
Idemix [56] 0.671 76.437 283.245 210.783
UProve [57] 0.768 37.422 12.264 33.231

[29] 1.352 389.513 657.024 253.453
[30] 0.736 371.126 87.625 284.719
FAC 0.544 39.387 28.302 65.819

TABLE V: Performance of AC (ms/KB) (BN256)

Table V compares the performance of FAC with Idemix,
UProve and the schemes in [29], [30] on desktop. The parame-
ters for FAC are n = 10 and |I| = 4. UProve incurs a low cost
without providing multi-show unlinkability, while the other
schemes support this privacy property. FAC has the smallest
credential size (0.544 KB) in this comparison and its overheads
for Issue, Show, Verify are the lowest or the second lowest
among those supporting multi-show unlinkability.

B. Evaluation of ACME and PriSrv

Table VI presents the computation cost (comp.) and com-
munication cost (comm.) of ACME for different algorithms on
desktop following the example in §IV, where the parameters
are n = 10, k = 2, m̂ = 9 and |S| = 9. The system setup time,
performed on various curves, ranges from 20.526 ms to 33.344
ms. The sizes of master public key (|mpk|) and master secret
key (|msk|) for BN256 are 4.128 KB and 1.6 KB, respectively.
The credential key generation (CredKeyGen) and user key
generation (UserKeyGen) cost no more than 118.622 ms and
9.102 ms, respectively. The credential issue (Issue) algorithm
is efficient (39.383 ms) and the size of generated anonymous
credential (|cred|) is merely 0.544 KB on BN256 curve, which
is consistant with the theoretical analysis of FAC in §VIII-A.
The size of attribute decryption key (DKx⃗) and the size of
policy decryption key (DKf) are no more than 2.72 KB and
44.064 KB, respectively. The computation costs for encryption
and decryption are less than 188 ms and 232 ms, respectively,
on BN256 curve. While the computation costs on MNT159
and MNT201 are significantly lower than those on BN256.

Comp. (ms)
Curve and Security Level

MNT159 MNT201 BN256
(80-bit Security) (90-bit Security) (100-bit Security)

Setup 20.526 26.882 33.344
CredKeyGen 98.261 105.883 118.622
UserKeyGen 6.153 7.582 9.102

Issue 29.298 33.783 39.383
DKGen 21.63 18.64 15.75
PolGen 359.807 327.796 237.675

Enc 146.931 167.337 187.822
Dec 123.772 188.346 231.214

Comm. (KB) MNT159 MNT201 BN256
|mpk|/|msk| 1.044 / 1.2 1.332 / 1.36 4.128 / 1.6
|pk|/|sk| 0.91 / 0.18 1.158 / 0.204 3.408 / 0.24

|upk|/|usk| 0.116 / 0.03 0.148 / 0.034 0.4 / 0.04
|DKx⃗|/|DKf | 0.86 / 13.932 1.1 / 17.82 2.72 / 44.064
|cred|/|CT| 0.172 / 164.34 0.220 / 212.964 0.544 / 537.984

TABLE VI: Performance of ACME

Using the same example and parameter settings, Table VII
provides a comprehensive evaluation of PriSrv on multiple
hardware platforms with various elliptic curves and security
levels. The communication overheads of the broadcast and
mutual authentication phases are similar, as both of them are
primarily determined by the size of the ACME ciphertext. The
communication costs remain the same for different platforms,
and the computation costs gradually increase from desktop
to Raspberry Pi. The desktop, laptop and smartphone take
less than 0.483 s for private service broadcast, and less than
0.973 s for anonymous mutual authentication. Raspberry Pi
is relatively resource-limited, which takes 1.189 s and 2.712
s for private broadcast and authentication, respectively. The
experimental results show that the broadcast and anonymous
mutual authentication delays on the first three devices stay well

14

Device

Private Service Broadcast
MNT159 MNT201 BN256

(80-bit Security) (90-bit Security) (100-bit Security)
Comp. Comm. Comp. Comm. Comp. Comm.

1 158.931 164.34 180.337 212.96 202.822 537.98
2 216.493 164.34 261.059 212.96 287.287 537.98
3 385.553 164.34 443.686 212.96 482.725 537.98
4 638.259 164.34 880.868 212.96 1188.392 537.98

Device

Anonymous Mutual Authentication
MNT159 MNT201 BN256

(80-bit Security) (90-bit Security) (100-bit Security)
Comp. Comm. Comp. Comm. Comp. Comm.

1 429.282 164.45 517.512 213.09 673.039 538.83
2 576.161 164.45 686.054 213.09 854.177 538.83
3 727.572 164.45 892.712 213.09 972.163 538.83
4 1224.365 164.45 1832.187 213.09 2711.013 538.83

TABLE VII: Performance of PriSrv (ms/KB)

Fig. 5: Computation/Communication cost of PriSrv

below 1 s, which humans perceive the delays as an “immediate
response” [16], [17], while the delays on Raspberry Pi are
longer but not too significant.

We further implement PriSrv in wireless environment by
adapting an open-source project of Wi-Fi Alliance [1], which
implements IEEE 802.1X and enables the deployment of
clients (running wpa supplicant program of the project) and
service providers (running hostapd program). Experiments of
PriSrv in wireless communication use two laptops running
Ubuntu 20.04. We deploy one laptop as the service provider
and the other as the client. Fig. 5-6 present the broadcast time
(TB), server’s computation time (TS) and client’s computation
time (TC) during the anonymous mutual authentication phase,
where the total mutual authentication time is TMA = TS+TC .
The left y-axis shows the computation time, and right y-axis
indicates the communication overhead in the broadcast phase
(|Broadcast|) and the communication overhead of service
provider/client in the authentication phase (|Server|/|Client|).
The performance of PriSrv varies with the attribute number
n (top x-axis) and the wire number m̂ of NC1 (i.e. number
of shares for policy, bottom x-axis), where the matrix size is
fixed to be k = 2.

In Fig. 5, we set n = 8, 11, 15 and vary the complexity

Fig. 6: Performance of PriSrv with Complex Policies

of access policy m̂ among {1, 3, 7, 11} for practicality test.
For n = 15, m̂ = 11, we have TB = 763.892 ms,
TS = 302.973 ms and TC = 938.395 ms, |Client|=573.852
KB and |Server| = 0.82 KB. Fig. 6 sets n = 25, 50 and
varies m̂ among {3, 7, 11, 13, 17, 21, 27} for testing complex
policies involving large number of attributes. The computation
time increases with the number of attributes and complexity
of access policies. For n = 50 and m̂ = 27, the computation
costs are TB = 5.711s, TS = 0.549s, TC = 6.262s. The
communication cost in the broadcast phase grows from 0.549
MB to 0.881 MB. The transmission overhead of the server in
the authentication phase remains relatively low (no more than
0.82 KB), while that of the client is mainly influenced by
the ACME ciphertext, ranging from 0.549 MB to 0.881 MB.
The comprehensive evaluations demonstrate the efficiency of
PriSrv in wireless communications.

IX. CONCLUSION

This paper presented PriSrv, a privacy-enhanced service
discovery protocol with high usability, for wireless commu-
nications. PriSrv enforces bilateral flexible policy control for
anonymous mutual authentication, making it an ideal solution
for enhancing privacy protection in popular wireless commu-
nication protocols such as EAP, mDNS, BLE, and AirDrop.
PriSrv is built upon a novel primitive called anonymous
credential-based matchmaking encryption (ACME), which ex-
tends the concept of ME proposed in CRYPTO’19 by offering
selective attribute disclosure and eliminating the need for
heavy cryptographic tools. ACME relies on a newly designed
Fast Anonymous Credential (FAC) scheme to generate and
verify authentication tokens that are unlinkable across multiple
protocol sessions. Comprehensive experimental evaluations
and comparisons demonstrated that ACME outperforms exist-
ing ME instantiations in terms of functionality and efficiency,
which makes it a contribution of independent interests. Formal
security models are provided to prove that PriSrv, ACME and
FAC have desired security and privacy properties. Benchmarks
on multiple hardware platforms demonstrated that PriSrv is
suitable for interoperating with a wide range of service dis-
covery protocols with enhanced privacy protection and high
usability.

15

ACKNOWLEDGMENT

The authors would like to thank the shepherd and anony-
mous reviewers for their valuable comments and insightful
suggestions. Yang Yang is supported by Lee Kong Chian
Professor Fund, National Natural Science Foundation of China
under Grant No. 62372110, and Fujian Provincial Natural
Science of Foundation under Grant 2023J02008. Robert Deng
is supported by AXA Research Fund. Guomin Yang is sup-
ported by Lee Kong Chian Fellowship awarded by Singa-
pore Management University. HweeHwa Pang is supported
by Lee Kong Chian Chair Professor Fund. Jian Weng is
supported by National Key Research and Development Plan of
China under Grant No. 2020YFB1005600, National Natural
Science Foundation of China under Grant Nos. 61825203,
62332007 and U22B2028, Science and Technology Major
Project of Tibetan Autonomous Region of China under Grant
No. XZ202201ZD0006G, National Joint Engineering Re-
search Center of Network Security Detection and Protection
Technology, Guangdong Key Laboratory of Data Security and
Privacy Preserving, Guangdong Hong Kong Joint Laboratory
for Data Security and Privacy Protection, and Engineering
Research Center of Trustworthy AI, Ministry of Education.

REFERENCES

[1] WiFi [Online]. Available: https://w1.fi.
[2] How to use AirDrop on your iPhone or iPad. [Online]. Available:

https://support.apple.com/en-us/HT204144.
[3] Bluetooth specification version 4.2. [Online]. Available: Bluetooth.com.
[4] B. Könings, C. Bachmaier, F. Schaub, M. Weber. Device names in the

wild: Investigating privacy risks of zero configuration networking. In
MDM, 2013.

[5] D. J. Wu, A. Taly, A. Shankar, D. Boneh. Privacy, discovery, and
authentication for the internet of things. In ESORICS, 2016.

[6] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, Y. Zhang.
Discovering and understanding the security hazards in the interactions
between iot devices, mobile apps, and clouds on smart home platforms.
In USENIX Security, 2019.

[7] M. Stute, S. Narain, A. Mariotto, A. Heinrich, D. Kreitschmann, G.
Noubir, M. Hollick. A billion open interfaces for eve and mallory: Mitm,
dos, and tracking attacks on ios and macos through apple wireless direct
link. In USENIX Security, 2019.

[8] M. Stute, A. Heinrich, J. Lorenz, M. Hollick. Disrupting continuity
of Apple’s wireless ccosystem security: new tracking, DoS, and MitM
attacks on iOS and macOS through Bluetooth low energy, AWDL, and
Wi-Fi. In USENIX Security, 2021.

[9] A. Cassola, E. O. Blass, G. Noubir. Authenticating privately over public
Wi-Fi hotspots. In CCS, 2015.

[10] K. Fawaz, K. H. Kim, K. G. Shin. Protecting privacy of BLE device
users. In USENIX Security, 2016.

[11] X. Na, X. Guo, Y. He, R. Xi. Wi-attack: cross-technology impersonation
attack against iBeacon services. In SECON, 2021.

[12] X. Bai, L. Xing, N. Zhang, X. Wang, X. Liao, T. Li, S. M. Hu. Staying
secure and unprepared: understanding and mitigating the security risks of
apple zeroconf. In S&P, 2016.

[13] X. Bai, L. Xing, N. Zhang, X. Wang, X. Liao, T. Li, S. M. Hu. Apple
ZeroConf holes: how hackers can steal iPhone photos. IEEE Security &
Privacy Magazine, 2017, 15(2): 42-49.

[14] J. Xu, Y. Liu, H. Shi. A survey on privacy-preserving wireless network
protocols: techniques and challenges. IEEE Communications Surveys &
Tutorials, 2020: 22(1), 572-598.

[15] G. Ateniese, D. Francati, D. Nuñez, D. Venturi. Match me if you
can: matchmaking encryption and its applications. Journal of Cryptology,
2021, 34: 1-50.

[16] A. Heinrich, M. Hollick, T. Schneider, M. Stute, C. Weinert. Private-
Drop: practical privacy-preserving authentication for Apple airDrop. In
USENIX Security, 2021.

[17] S. K. Stuart, G. G. George, J. D. Jock. The Information Visualizer, an
Information Workspace. In CHI, 1991.

[18] S. Cheshire, M. Krochmal. RFC 6763: DNS-based service discovery.
2013.

[19] S. Cheshire, M. Krochmal. RFC 6762: Multicast DNS. 2013.
[20] Y. Y. Goland, T. Cai, P. Leach, Y. Gu. Simple service discovery proto-

col/1.0 operating without on arbiter. IETF INTERNET-DRAFT draft-cai-
ssdp-v1-03. 1999.

[21] M. Boucadair, R. Penno, D. Wing. Universal Plug and Play (UPnP)
Internet Gateway Device - Port Control Protocol Interworking Function
(IGD-PCP IWF). RFC 6970: Multicast DNS. 2013.

[22] X. Wang, Y. Sun, S. Nanda, X. Wang. Looking from the Mirror:
Evaluating IoT Device Security through Mobile Companion Apps. In
USENIX Security, 2019.

[23] L. Yu, B. Luo, J. Ma, Z. Zhou, Q. Liu. You Are What You Broadcast:
Identification of Mobile and IoT Devices from (Public) WiFi. In USENIX
Security, 2020.

[24] J. Wu, Y. Nan, V. Kumar, D. Tian, A. Bianchi, M. Payer, D. Xu. BLESA:
Spoofing Attacks against Reconnections in Bluetooth Low Energy. In
WOOT@USENIX Security, 2020.

[25] R. H. Venkatnarayan, M. Shahzad, S. Yun, C. Vlachou, K. H. Kim.
Leveraging polarization of WiFi signals to simultaneously track multiple
people. In Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2020, 4(2): 1-24.

[26] L. Kowalczyk, H. Wee. Compact adaptively secure ABE for NC1 from
k-Lin. Journal of Cryptology, 2020, 33(3): 954-1002.

[27] S. Katsumata, R. Nishimaki, S. Yamada, T. Yamakawa. Compact NIZKs
from standard assumptions on bilinear maps. In EUROCRYPT, 2020.

[28] S. Ringers, E. Verheul, J. H. Hoepman. An efficient self-blindable
attribute-based credential scheme. In FC, 2017.

[29] J. Camenisch, M. Dubovitskaya, K. Haralambiev, M. Kohlweiss. Com-
posable and modular anonymous credentials: definitions and practical
constructions. In ASIACRYPT, 2015.

[30] G. Fuchsbauer, C. Hanser, D. Slamanig. Structure-preserving signatures
on equivalence classes and constant-size anonymous credentials. Journal
of Cryptology, 2019.

[31] J. Chen, Y. Li, J. Wen, J. Weng. Identity-based matchmaking encryption
from standard assumptions. In ASIACRYPT, 2022.

[32] R. Canetti, H. Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In EUROCRYPT, 2001.

[33] R. Canetti, H. Krawczyk. Security analysis of IKE’s signature-based
key-exchange protocol. In CRYPTO, 2002.

[34] J. Camenisch, M. Drijvers, M. Dubovitskaya. Practical UC-secure dele-
gatable credentials with attributes and their application to blockchain. In
CCS, 2017.

[35] M. Chase, S. Meiklejohn, G. Zaverucha. Algebraic MACs and keyed-
verification anonymous credentials. In CCS, 2014.

[36] O. Sanders. Efficient redactable signature and application to anonymous
credentials. In PKC, 2020.

[37] M. Chase, T. Perrin, G. Zaverucha. The signal private group system and
anonymous credentials supporting efficient verifiable encryption. In CCS,
2020.

[38] Z. Zhang, K. Yang, X. Hu, Y. Wang. Practical anonymous password
authentication and TLS with anonymous client authentication. In CCS,
2016.

[39] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, M. Sabadello, J.
Holt. Decentralized identifiers (DIDs) v1.0: Core architecture, data model,
and representations. W3C Working Draft, 2020.

[40] M. Sporny, D. Longley, D. Chadwick. Verifiable credentials data model
v1.1. Available: https://www.w3.org/TR/vc-data-model, 2022.

[41] DIF. Decentralized Identity Foundation. [Online]. Available: https://
identity.foundation/.

[42] L. Lesavre, P. Varin, P. Mell, M. Davidson, J. Shook. A taxonomic
approach to understanding emerging blockchain identity management
systems. NIST Cybersecurity White Paper, 2019.

[43] IBM. Blockchain for Digital Identity and Credentials. [Online]. Avail-
able: https://www.ibm.com.

[44] Microsoft. Decentralized Identity, Blockchain, and Privacy. [Online].
Available: https://www.microsoft.com.

[45] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell,
T. Lobban, C. Moy, A. Juels, A. Miller. Candid: Can-do decentralized
identity with legacy compatibility, sybil-resistance, and accountability. In
S&P, 2021.

16

[46] D. Boneh, B. Bünz, B. Fisch. Batching techniques for accumulators with
applications to IOPs and stateless blockchains. In CRYPTO, 2019.

[47] J. Camenisch, M. Kohlweiss, C. Soriente. An accumulator based on
bilinear maps and efficient revocation for anonymous credentials. In PKC,
2009.

[48] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, A. Lysyanskaya, L.
Reyzin, K. Samelin, S. Yakoubov. Accumulators with applications to
anonymity-preserving revocation. In EuroS&P, 2017.

[49] D. Bogatov, A. De Caro, K. Elkhiyaoui, B. Tackmann. Anonymous
transactions with revocation and auditing in hyperledger fabric. In CANS,
2021.

[50] J. Camenisch, M. Drijvers, J. Hajny. Scalable revocation scheme for
anonymous credentials based on n-times unlinkable proofs. In WPES,
2016.

[51] S. Cheshire, M. Krochmal. DNS-based service discovery. Technical
Report. RFC 6763, 2013.

[52] S. Cheshire, M. Krochmal. Multicast DNS. Technical Report. RFC 6762,
2013.

[53] Pairing-Friendly Curves. [Online]. Available: https://www.ietf.org/
archive/id/draft-irtf-cfrg-pairing-friendly-curves-02.html.

[54] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, H. Levkowetz. Extensible
authentication protocol (EAP). 2004.

[55] MIRACL: Multiprecision integer and rational arithmetic c/c++ library.
[Online]. Available: https://github.com/miracl/MIRACL.

[56] J. Camenisch, A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In EURO-
CRYPT, 2001.

[57] C. Paquin, G. Zaverucha. U-prove cryptographic specification v1.1.
Technical Report, Microsoft Corporation, 2011.

[58] M. Bellare, R. Canetti, H. Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols. In STOC,
1998.

[59] E. Fujisaki, T. Okamoto. Secure integration of asymmetric and symmet-
ric encryption schemes. In CRYPTO, 1999.

[60] H. Krawczyk, H. Wee. The OPTLS protocol and TLS 1.3. In EuroS&P,
2016.

17

APPENDIX

A. FAC: Security Model and Proof

(1) Security Model
Following the definitions in [35], [36], we define correct-

ness, unforgeability, anonymity and unlinkability for anony-
mous credential scheme. The lists in the security models are
given in Table VIII.

Definition A.1 Let D be the universe of user identity, and Ω
be the universe of attribute sets. Then an anonymous credential
scheme AC is correct for D,Ω if all uid ∈ D, all x⃗ ⊆ Ω, for
all security parameter λ,

Pr



pp $←− Setup(1λ, 1n); (pk, sk) $←− CredKeyGen(pp);

(upk,usk) $←− UserKeyGen(pp);

cred $←− ⟨Issue.I(sk,upk) ⇄ Issue.U(uid, x⃗,usk)⟩ ;
tok $←− Show(uid, {xi}i∈I , cred,usk,m) :

Verify(tok,m) = 0


≤ ν(λ), where ν is a negligible function.

Definition A.2 An AC scheme satisfies unforgeability if for
any PPT adversary A, there exists a negligible function ν such
that Advunforge

AC (λ)
def
=

Pr


b = 1

pp← Setup(1λ, 1n),
(pk,sk)← CredKeyGen(pp)
(uid∗, x⃗∗,m∗, cred∗, tok∗)← AO(sk,·)(pp,pk)
b← Verify(tok∗,m∗)

return b if (m∗, x⃗∗, cred∗, tok∗) /∈ Lshow

∧ cred∗ /∈ Lissue ∧ (uid∗, x⃗∗) /∈ Lcorrupt

else abort


≤ ν(λ), where the oracle set O = {UserKeyGen, Issue,
Show, Corrupt} is implemented by UserKeyGen(pp, ·),
Issue(sk, st, ·), Show(pk, ·) and Corrupt(·).

Definition A.3 An AC scheme AC satisfies anonymity if for
any PPT adversary A, there exists a negligible function ν such
that Advanon

AC (λ)
def
=

Pr



b′ = b

pp← Setup(1λ, 1n),
(pk,sk)← CredKeyGen(pp)
(uid∗0, uid

∗
1, x⃗

∗,m∗)← AO(sk,·)(pp,pk)

abort if ∃d $←− {0, 1} :
(uid∗d, x⃗

∗, credd) /∈ Lhonest; b
$←− {0, 1}

tok∗ ← Show(uid∗b , credb,uskb, x⃗∗,m∗)

b′ ← AO(sk,·)(pp, tok∗)
return b′ if cred∗ /∈ Lissue∧
(m∗, x⃗∗, tok∗) /∈ Lshow ∧ (uid∗0/1, x⃗

∗) /∈ Lcorrupt

else abort


≤ ν(λ), where the oracle set O = {UserKeyGen, Issue,
Show, Corrupt} is implemented by UserKeyGen(pp, ·),
Issue(sk, st, ·), Show(pk, ·) and Corrupt(·).

Definition A.4 An AC scheme AC satisfies unlinkability if
for any PPT adversary A, there exists a negligible function ν

such that Advunlink
AC (λ)

def
=

Pr



b′ = b

pp← Setup(1λ, 1n),
(pk,sk)← CredKeyGen(pp)
(uid∗0, uid

∗
1, I∗, x⃗∗

0, x⃗
∗
1,m

∗)← AO(sk,·)(pp,pk)
where I∗ ⊆ [1, n], x⃗∗

d = {x(d)
i }i∈[1,n], d ∈ {0, 1}

abort if ∃j ∈ I∗ : x
(0)
j ̸= x

(1)
j

or ∃d $←− {0, 1} : (uid∗d, x⃗∗
d, credd) /∈ Lhonest,

b
$←− {0, 1}

tok∗b ← Show(uid∗b , cred∗
b ,usk∗b , {x

(b)
i }i∈I∗ ,m∗)

b′ ← AO(sk,·)(pp, tok∗b)
return b′ if ∀d′ ∈ {0, 1}, cred∗

d′ /∈ Lissue∧
(m∗, x⃗∗

d′ , tok∗d′) /∈ Lshow ∧ (uid∗d′ , x⃗∗
d′) /∈ Lcorrupt

else abort


≤ ν(λ), where the oracle set O = {UserKeyGen, Issue,
Show, Corrupt} is implemented by UserKeyGen(pp, ·),
Issue(sk, st, ·), Show(pk, ·) and Corrupt(·).

It is easy to see that the security definition of unlinkability
implicitly implies that of anonymity.

List Description
Lregisterd registered users
Lissue credentials that have been issued
Lshow credentials that have been shown
Lhonest registered users that are honest
Lcorrupt registered users that are corrupted
Lauth authorized users in service discovery session
Lexec contains all messages that user or adversary

exchanged during executions of protocol

TABLE VIII: Lists in Security Experiments

(2) Correctness Proof
Theorem A.1 The FAC scheme satisfies correctness.

Proof. For the correctness proof, we need to demonstrate the
following properties: 1) the instantiation of SPK π1 is correct
in the UserKeyGen algorithm; 2) the credential created by the
issuer is verified true by the user in the Issue algorithm; 3)
the instantiation of SPK π2 is correct in Show and Verify
algorithms.

For the first property, The correctness of SPK π1 is verified
as γ = hũsk = husk(husk)c = huskupkc, where usk = ũsk −
c · usk mod p and upk = husk.

For the second property, a received credential is cred =
(σ1, σ2), σ1 = hr, σ2 = upkr·y0 · hr(τ+

∑n
i=1 yixi+yn+1·uid),

and the user verifies it as e(W · Y usk
0 · Y uid

n+1

∏n
i=1 Y

xi
i , σ1)

?
=

e(g, σ2). This equation holds since

e(W · Y usk
0 · Y uid

n+1

∏n

i=1
Y xi
i , σ1)

= e(gτ · (gy0)usk · (gyn+1)uid
∏n

i=1
(gyi)xi , hr)

= e(g, (husk)r·y0hr(τ+
∑n

i=1 yixi+yn+1·uid))

18

= e(g,upkr·y0 · hr(τ+
∑n

i=1 yixi+yn+1·uid)) = e(g, σ2).

For the third property, assume that cred is a valid anony-
mous credential on uid, x⃗ and usk, and we have

e(W · Y usk
0 · Y uid

n+1

∏n

i=1
Y xi
i , σ1) = e(g, σ2),

⇒ e(Y usk
0 · Y uid

n+1, σ1) = e(g, σ2)e(W ·
∏n

i=1
Y xi
i , σ1)

−1.

The correctness of SPK π2 can be derived from

e(Y usk
0 Y uid

n+1, σ̄1)
−1 · Λ

= e(Y usk
0 Y uid

n+1, σ̄1)
−1 · e(Y ũsk

0 Y ũid
n+1, σ̄1)

= e(Y usk
0 Y uid

n+1, σ1)
c·t2

= [e(g, σ2)e(W ·
∏

i∈[1,n]
Y xi
i , σ1)

−1]c·t2

= [e(g, σ̄2)e(g, σ̄1)
−t1e(W ·

∏
i∈[1,n]

Y xi
i , σ̄1)

−1]c

= [e(g, σ̄2)e(W · gt1 ·
∏

i∈[1,n]\I
Y xi
i

∏
i∈I

Y xi
i , σ̄1)

−1]c

= [e(g, σ̄2)e(W · T1 ·
∏

i∈I
Y xi
i , σ̄1)

−1]c = [e(g, σ̄2) · Γ]c.

On the other hand,

e(T1,
∏

i∈I′
Xi)

= e(gt1 ,
∏

i∈I′
Xi)e(

∏
j∈[1,n]\I

Y
xj

j ,
∏

i∈I′
Xi)

= e(
∏
i∈I′

Yi, h)
t1e(

∏
i∈I′,j∈[1,n]\I

Z
xj

i,j , h)

= e((
∏
i∈I′

Yi)
t1

∏
i∈I′,j∈[1,n]\I

Z
xj

i,j , h) = e(T2, h).

Therefore, a valid credential cred and its SPK π2 will be
verified true.

(3) Security Proof
The security of FAC in Theorem 5.1 is proved in aspects

of unforgeability, anonymity and unlinkability.

3.1) Unforgeability Proof of FAC
Lemma A.1 The FAC scheme is unforgeable if the underly-

ing unforgeable redactable signature (URS) [36] is unforgeable
and the discrete logarithm (DL) assumption holds.

Proof. The proof reduces the unforgeability of FAC to the
existential unforgeability of the unlinkable redactable signa-
ture (URS) scheme (in §4 of [36]) and discrete logarithm
(DL) assumption. Let A be a PPT adversary that wins the
unforgeability game with probability ϵ.

During the challenge phase, A returns a challenge user iden-
tifier uid∗, attribute set x⃗∗ and proves possession of a valid au-
thentication token tok∗ for credential cred∗ on (uid∗, x⃗∗). Ob-
viously, it should be constrained that (m∗, x⃗∗, cred∗, tok∗) /∈
Lshow, cred∗ /∈ Lissue, (uid∗, x⃗∗) /∈ Lcorrupt. Let usk∗ be the
secret key whose knowledge should be proved by A when it
generates a challenge credential cred∗ on (uid∗, x⃗∗). Denote
Lhonest as a set of registered users that are honest and Lcorrupt
as a set of registered users that are corrupted. Denote q as

the number of honest user. We define two types of adversaries
(A1,A2) that possess different resources for the attack: type-1
adversary A1: ∃uidβ∗ ∈ Lhonest, s.t., uskβ∗ = usk∗; type-
2 adversary A2: ∀uidi ∈ Lhonest, s.t., uski ̸= usk∗. In
the following, we prove the unforgeability of FAC with two
propositions for the two types of adversaries.

Proposition A.1 Suppose type-1 adversary A1 is able to
break the unforgeability of FAC with advantage ϵ1. Then, we
can utilize A1 to solve the DL problem with advantage ϵ1/q,
where q is the number of honest users.

Proof. The proof reduces the unforgeability of FAC to the
security of DL assumption. Let A1 be a PPT adversary
that wins the security game with probability ϵ1. Consider
a simulator S which runs A1 as a subroutine and interacts
with a challenger C for the DL-assumption. According to
the definition of type-1 adversary A1, there exists an index
β∗ ∈ [1, q] for A1 to impersonate the β∗-th honest user in
Lhonest. Then, the challenger C is requested to make a guess
on β∗ from the q honest users. If A1 is able to break the
unforgeability of FAC, C could makes use of the advantage
of A1 to solve the DL problem. Let g, h be the generators
of groups G1 and G2, respectively. Let (h, ha) be challenge
tuple of DL assumption on group G2.

Setup. S creates the public key pk = (W, {Xi, Yi}i∈[0,n+1],
{Zi,j}0≤i ̸=j≤n+1) following the Setup and CredKeyGen
algorithms in FAC and forwards it to A1.

Query. The adversary A1 adaptively makes the following
queries.
− According to the definition of type-1 adversary A1, there

exists an index β∗ ∈ [1, q] for A1 to impersonate the β∗-
th honest user in Lhonest. For the UserKeyGen queries on
(uidβ∗ , x⃗β∗), S implicitly sets uskβ∗ = a, and sends upkβ∗ =
ha to A1. For the UserKeyGen queries on (uidj , x⃗j) with
j ̸= i, S generates user’s secret key uskj

$←− Z∗
p and public key

upkj = huskj , which are returned to A1. S adds (uid, x⃗,upk)
to a list Lhonest. If (uid, x⃗) already exists in Lhonest, S just
replies with the same answer.
− For the Issue queries on (uidj , x⃗j) with restriction that

j ̸= β∗, S runs UserKeyGen to generate (upkj ,uskj) if
(uidj , x⃗j) has not been queried beforehand. Otherwise, S ex-
tracts user’s keys (upkj ,uskj) from Lhonest. Then, S queries
C on (uidj , x⃗j) and obtains a URS signature σj = (σ̃1, σ̃2),
where σ̃1

$←− G2 and σ̃2 ← σ̃
τ+

∑n
i=1 yi·xi

1 . S implicitly sets
σ1 = σ̃1 = hr, computes

σ2 = (σ̃1)
uskj ·y0(σ̃1)

yn+1·uidσ̃2

= (husk
j)r·y0hr(τ+

∑n
i=1 yixi+yn+1·uid)

= upkr·y0 · hr(τ+
∑n

i=1 yixi+yn+1·uid),

and returns credj ← (σ1, σ2) to A1. S inserts (uidj , x⃗j ,upkj ,
credj) into a list Lissue.
− To answer the Show query on (uidj , {xi}i∈I , credj ,mj)

with restriction that j ̸= β∗, S runs UserKeyGen to generate
(upkj ,uskj) if uidj has not been queried beforehand. Other-
wise, S extracts user’s keys (upkj ,uskj) from Lhonest. Then,

19

S answers the query by executing the Show algorithm and re-
turns the token tok to A1. S inserts (uidj , {xi}i∈I , credj ,mj ,
tokj) into a list Lshow.
− To answer the Corrupt request on (uidj , x⃗j) ∈ Lhonest

with restriction that j ̸= β∗, simulator S returns the corre-
sponding user secret key uskj , credential credj and the token
tokj to A1, which are recorded in Lhonest, Lissue and Lshow,
respectively. S inserts (uidj , x⃗j) into Lcorrupt. If (uidj , x⃗j)
does exist in these lists, S returns ⊥.

Challenge. Adversary A1 outputs a challenge tuple (x⃗∗,
m∗, cred∗, tok∗) with attributes x⃗∗, a message m∗ and an
authentication token tok∗ for the β∗-th honest user with
uidβ∗ . The restriction is that (m∗, x⃗∗, cred∗, tok∗) /∈ Lshow,
cred∗ /∈ Lissue, (uid∗, x⃗∗) /∈ Lcorrupt. We say that A1 wins
the game if FAC.Verify (tok∗,m∗) = 1.

One can note that this game is perfectly simulated if the
guess on β∗ ∈ [1, q] is correct, which occurs with probability
1/q. In this case, adversary A1 is succeed with advantage ϵ1
to prove knowledge of uskβ∗ = a when it shows a valid
credential. S sends the challenge tuple to C. Then, C runs the
extractor of the proof of knowledge to recover a, which is a
solution to the DL problem. Therefore, the probability for C
to break the DL assumption is ϵ1/q.

Proposition A.2 Suppose type-2 adversary A2 is able to
break the unforgeability of FAC with advantage ϵ2. Then, we
can utilize A2 to break the existential unforgeability of URS
in [36] with advantage ϵ2.

Proof. The proof reduces the unforgeability of FAC to the
existential unforgeability of the unlinkable redactable signature
(URS) scheme in Section 4 of [36]. As the unforgeability of
URS relies on the DL assumption, this proposition follows.
Let type-2 adversary A2 be a PPT adversary that wins the
unforgeability game with probability ϵ2. Consider a simulator
S which runs A2 as a subroutine and interacts with a unforge-
ability game challenger C for the URS scheme in [36].

Setup. S generates the public parameter pp = (g, h, n) and
sends it to C, where g, h are generators of G1, G2, respectively,
and n is the attribute number. C generates the public key p̃k =
(W, {Xi, Yi}i∈[1,n], {Zi,j}1≤i ̸=j≤n) of URS, and transmits it
to simulator S , where W = gτ , Xi = hyi , Yi = gyi for
i ∈ [1, n], and Zi,j = gyi·yj for 1 ≤ i ̸= j ≤ n. Note that the
secret key s̃k = (τ, {yi}i∈[1,n]) of URS is unknown to S. S
selects random elements y0, yn+1

$←− Z∗
p, and implicitly sets

the secret key of FAC as sk = (τ, {yi}i∈[0,n+1]). S calculates
Xi = hyi , Yi = gyi for i = {0, n + 1}, computes Zi,n+1 =
Y

yn+1

i = gyi·yn+1 for 1 ≤ i ≤ n, Z0,j = Y y0

j = gy0·yj for
1 ≤ j ≤ n, and Z0,n+1 = gy0·yn+1 . S sets the public key
of FAC as pk = (W, {Xi, Yi}i∈[0,n+1], {Zi,j}0≤i ̸=j≤n+1) and
forwards it to A2.

Query. The adversary A2 adaptively makes the following
queries.
− For the UserKeyGen queries on (uid, x⃗), S generates

user’s secret key usk $←− Z∗
p and public key upk = husk, which

are returned to A2. S adds (uid, x⃗,upk,usk) to a list Lhonest.

If (uid, x⃗) already exists in Lhonest, S just replies with the
same answer.
− For the Issue queries on (uid, x⃗), S runs UserKeyGen

to generate (upk,usk) if (uid, x⃗) has not been queried be-
forehand. Otherwise, S extracts user’s keys (upk,usk) from
Lhonest. Then, S queries C on (uid, x⃗) and obtains a URS
signature σ = (σ̃1, σ̃2), where σ̃1

$←− G2 and σ̃2 ←
σ̃
τ+

∑n
i=1 yi·xi

1 . S implicitly sets σ1 = σ̃1 = hr, computes

σ2 = (σ̃1)
usk·y0(σ̃1)

yn+1·uidσ̃2

= (husk)r·y0hr(τ+
∑n

i=1 yixi+yn+1·uid)

= upkr·y0 · hr(τ+
∑n

i=1 yixi+yn+1·uid),

and returns cred ← (σ1, σ2) to A2. S inserts
(uid, x⃗,upk, cred) into a list Lissue.
− The inputs of Show query are (uid, {xi}i∈I , cred,m).

A Show query can only be made for a credential that has
been created in the Issue query since the latter uses the
OSign∗ oracle of the unforgeability game of URS scheme [36]
as subroutine. Then, S answers the query by executing the
Show algorithm and returns the token tok to A2. S inserts
(uid, {xi}i∈I , cred,m, tok) into a list Lshow.
− To answer Corrupt on (uid, x⃗), simulator S returns the

corresponding user secret key usk, credential cred and the
token tok to A2, which are recorded in Lhonest, Lissue and
Lshow, respectively. S inserts (uid, x⃗) into Lcorrupt. If (uid, x⃗)
does exist in these lists, S returns ⊥.

Challenge. Adversary A2 outputs a challenge tuple (uid∗,
x⃗∗,m∗, cred∗, tok∗), which associates with challenge secret
key usk∗. Since we are simulating a type-2 adversary A2,
it is requested that usk∗ should be different from uski
for any honest user i. The constraints also include that
(m∗, x⃗∗, cred∗, tok∗) /∈ Lshow, cred∗ /∈ Lissue, (uid∗, x⃗∗) /∈
Lcorrupt. We say that A2 wins the game if FAC.Verify
(tok∗,m∗) = 1.

If A2 is succeed with advantage ϵ2 to prove knowledge of
usk∗ when it shows a valid credential. S sends the challenge
tuple to C. Then, C runs the extractor of proof of knowledge to
recover usk∗. C parses cred∗ ← (σ∗

1 , σ
∗
2) and calculates σ̃∗

1 =
σ∗
1 = hr, computes σ̃∗

2 = σ∗
2(σ

∗
1)

−usk∗·y0(σ∗
1)

yn+1·uid∗
=

(σ̃∗
1)

τ+
∑n

i=1 yi·x∗
i . Therefore, C obtains a valid forgery σ∗ =

(σ̃∗
1 , σ̃

∗
2) for the URS scheme in [36] with advantage ϵ2.

The proofs for two propositions against A = (A1,A2)
conclude the proof for unforgeability of FAC.

3.2) Anonymity and Unlinkability of FAC
Lemma A.2 The FAC scheme satisfies anonymity and

unlinkability under the decisional Diffie–Hellman (DDH) as-
sumption.

Proof. Suppose a PPT adversary A is able to break the
anonymity of FAC with advantage ϵ. Then, we can utilize A to
solve the DDH problem with advantage ϵ. Consider a simulator
S which runs A as a subroutine and interacts with a challenger
C for the DDH-assumption. Let g, h be the generators of

20

groups G1 and G2, respectively. Let (h, ha, hb, hc) be a
challenge tuple of DDH assumption on group G2. It is required
to decide whether c = a · b or c $←− Z∗

p.
Setup. S creates the public key pk = (W, {Xi, Yi}i∈[0,n+1],

{Zi,j}0≤i ̸=j≤n+1) following the Setup and CredKeyGen
algorithms in FAC and forwards it to A.

Query. A adaptively makes the following queries.
− For the UserKeyGen queries on (uid, x⃗), S generates

user’s secret key usk $←− Z∗
p and public key upk = husk, which

are returned to A. S adds (uid, x⃗,upk,usk) to a list Lhonest.
If (uid, x⃗) already exists in Lhonest, S just replies with the
same answer.
− For the Issue queries on (uid, x⃗), S runs UserKeyGen

to generate (upk,usk) if (uid, x⃗) has not been queried be-
forehand. Otherwise, S extracts user’s keys (upk,usk) from
Lhonest. Since S creates the issuer’s secret key sk by itself in
Setup phase and knows user’s secret key usk, S executes the
Issue protocol to obtain cred ← (σ1, σ2), which is returned
to A. S inserts (uid, x⃗,upk, cred) into a list Lissue.
− The inputs of Show query are (uid, {xi}i∈I , cred,m).

A Show query can only be made for a credential that has
been created in the Issue query. S extracts (uid, x⃗,upk, cred)
from Lissue. Then, S answers the query by executing the
Show algorithm and returns the token tok to A. S inserts
(uid, {xi}i∈I , cred,m, tok) into a list Lshow.
− To answer Corrupt on (uid, x⃗), simulator S returns the

corresponding user secret key usk, credential cred and the
token tok to A, which are recorded in Lhonest, Lissue and
Lshow, respectively. S inserts (uid, x⃗) into Lcorrupt. If (uid, x⃗)
does exist in these lists, S returns ⊥.

Challenge. In this phase, A outputs two challenge
users with attributes (uid∗0, x⃗

∗
0), (uid∗1, x⃗

∗
1), and mes-

sage m∗. The simulator S flips a random coin b̄ ∈
{0, 1} and generates challenge tok∗ for user uid∗

b̄
, where

tok∗ ← ({x∗
i }i∈I∗ , T ∗

1 , T
∗
2 , σ̄

∗
1 , σ̄

∗
2 , π

∗
2), T ∗

1 = gα,
T ∗
2 = (T ∗

1)
∑

i∈I∗′ yi , σ̄∗
1 = hb, σ̄∗

2 = (hc)y0 ·
(σ̄∗

1)
α+τ+

∑
i∈I∗ yix

∗
i +yn+1·uid∗

b̄), π∗
2 is a simulated knowledge

of a, the disclosed attribute set I∗ ⊆ [1, n], α ∈R Z∗
p.

The restriction is that the disclosed attributes in x⃗∗
0 and x⃗∗

1

are the same, cred∗
0/1 /∈ Lissue, (m∗, x⃗∗

0/1, tok∗0/1) /∈ Lshow,
(uid∗0/1, x⃗

∗
0/1) /∈ Lcorrupt.

Guess. The adversary A makes a guess b̄′ ∈ {0, 1} on the
identity of the user from (uid∗0, uid

∗
1). A wins the game if

b̄′ = b̄.
S sends the guess result of A to C. It is noted that if c = ab,

by setting t1 = α−
∑

i∈[1,n]\I∗ yix
∗
i , One can see that tok∗ is

distributed as in the FAC scheme. Else, c is a random number
in Z∗

p and σ̄∗
2 is a random element in G2. Since (T ∗

1 , T
∗
2 , σ̄

∗
1)

are independent of a and {x∗
i }i∈[n]\I∗ , A cannot succeed in

this game with non-negligile advantage. If A is able to win
the security game with advantage ϵ, C can makes use of A to
solve the DDH problem with advantage ϵ.

B. ACME: Security Model and Proof

(1) Security Model

This section defines correctness, privacy, authenticity,
anonymity and unlinkability for ACME scheme.

Definition B.1. Let D be the universe of user identity, and Ω
be the universe of attributes. An anonymous credential-based
matchmaking encryption encryption scheme ACME is correct
for D,Ω if all uid ∈ D, all x⃗ ⊆ Ω for all security parameter
λ,

Pr



(mpk,msk) $←− Setup(1λ, 1n);

(pk, sk) $←− CredKeyGen(mpk);

(upk, usk) $←− UserKeyGen(mpk);

credsnd
$←− ⟨Issue.I(sk, upk) ⇄ Issue.U(uid, x⃗snd, usk)⟩ ;

DKx⃗rcv
$←− DKGen(msk, x⃗rcv);

DKfrcv ← PolGen(msk, frcv);

CTx⃗snd,fsnd

$←− Enc(credsnd, x⃗snd, fsnd,M) :

frcv(x⃗
(out)
snd) = 1 ∧ fsnd(x⃗

(out)
rcv) = 1∧

Dec(DKx⃗rcv ,DKfrcv ,CTx⃗snd,fsnd) = ⊥


≤ ν(λ), where ν is a negligible function.

Definition B.2. An ACME scheme ACME satisfies privacy
if for any PPT adversary A = (A1,A2), there exists a
negligible function ν such that Advpriv

ACME(λ)
def
=

Pr

b′ = b

(mpk,msk)← Setup(1λ, 1n), b $←− {0, 1}
(M∗

0 ,M
∗
1 , cred∗

snd0 , cred∗
snd1 , x⃗

∗
snd0 , x⃗

∗
snd1 , f

∗
snd)

← AO1,O2,O3
1 (mpk)

CT∗ ← Enc(cred∗
sndb , x⃗

∗
sndb , f

∗
snd,Mb)

b′ ← AO1,O2,O3
2 (mpk,CT∗)


≤ ν(λ), where oracles O1, O2, O3 are implemented by Issue
(msk, ·), DKGen(msk, ·), PolGen(msk, ·), respectively. It is
required that O2 and O3 are not queried for attributes and
policies that can satisfy (x⃗∗

snd0
, f∗

snd) or (x⃗∗
snd1

, f∗
snd). It is also

required that for public attributes x⃗
(out)∗
snd0

/ x⃗
(out)∗
snd1

in x⃗∗
snd0

/
x⃗∗

snd1
, we have x⃗

(out)∗
snd0

= x⃗
(out)∗
snd1

.
This model only captures security under chosen plaintext

attacks (CPA). We can extend the above definition by in-
troducing another decryption oracle O4 which can decrypt
ciphertexts except the challenge ciphertext CT∗ to capture
security under chosen-ciphertext attacks (CCA).

Definition B.3. An ACME scheme ACME satisfies authen-
ticity if for any PPT adversary A, there exists a negligible
function ν such that Advauth

ACME(λ)
def
=

Pr



(mpk,msk)← Setup(1λ, 1n)
(CTx⃗snd,fsnd , x⃗rcv, frcv)← AO1,O2,O3(mpk)
DKx⃗rcv ← DKGen(msk, x⃗rcv)

DKfrcv ← PolGen(msk, frcv)

M = Dec(DKx⃗rcv ,DKfrcv ,CTx⃗snd,fsnd)

∀x⃗ ∈ QO1,O2 : (frcv(x⃗
(out)) = 0) ∧ (M ̸= ⊥)


≤ ν(λ), where oracles O1, O2, O3 are implemented by Issue
(msk, ·), DKGen(msk, ·), PolGen(msk, ·).

ACME also satisfy the security properties of anonymous
credential, namely anonymity (Def. A.3) and unlinkability
(Def. A.4), against an entity who can decrypt the ciphertext.
(2) Security Proof

21

Theorem 6.2. The proposed ACME scheme achieves
privacy, authenticity, anonymity and unlinkability if the
MDDHk assumption holds and the underlying FAC is secure.

The security proofs of authenticity, anonymity and unlinka-
bility of ACME follows those of unforgeability, anonymity and
unlinkability of FAC. Next, we prove that the proposed ACME
scheme achieves privacy under the MDDHk assumption.
Proof Intuition. In our proposed ACME scheme, the message
M and the FAC token toksnd (corresponding to the private
attributes) are encrypted using a symmetric key K which is
encapsulated in ct0 = e([̃s⊤A + s⊤A]1, [v]2) ·K. Hence, the
privacy of both M and toksnd is based on the confidentiality
of the symmetric key K.

As shown in the correctness, when frcv(x⃗
(out)
snd) = 1 (corre-

sponding to KP-ABE), we have

e
(
ct′2,

∏
j∈Sr

dkωj

j

)
e
(
ct′1,

∏
j∈Sr

(∏
i:x

(out)
s,i =1

dki,j
)ωj
) = ([̃s⊤Av]T)−1

and when fsnd(x⃗
(out)
rcv) = 1 (corresponding to CP-ABE), we

have

e(
∏

j∈Ss
(
∏

i:x
(out)
r,i =1

cti,j)µj ,dk2)

e(ct1,dk1) · e(
∏

j∈Ss
c̃t

µj

j ,dk3)
= ([s⊤Av]T)−1.

Hence, the proof for the confidentiality of K essentially
follows the same proof techniques used in the underlying
(dual) CP-ABE and KP-ABE schemes [26], [27]. Specifically,
if frcv(x⃗

(out)∗
snd) ̸= 1, then the confidentiality of K is ensured

by the security of the KP-ABE scheme; otherwise, since
according to the security game, the adversary is not allowed
to obtain keys for frcv and x⃗rcv such that frcv(x⃗

(out)∗
snd) =

1 ∧ f∗
snd(x⃗

(out)
rcv) = 1, the security is ensured by that of the

CP-ABE scheme.
The dual ABE schemes in [26], [27] both applied a sequence

of games and a hybrid argument in the security proofs. The
initial game is the same as the original security game whereas
in the last game, the encrypted symmetric key K is replaced
by a random key. Here we follow the same game sequences
defined in [26], [27] by considering two cases: if the adversary
would not query a key for frcv such that frcv(x⃗

(out)∗
snd) = 1, then

we follow the transitions of the keys and ciphertexts in the
proof of KP-ABE and use normal keys and ciphertexts for the
CP-ABE componments; otherwise, we perfom the transitions
in the opposite way. Below we outline the crucial steps of the
proof.

Proof. Let ≡ denote that two distributions are identically
distributed, and ≈c represent that two distributions are com-
putationally indistinguishable.

The security of ACME scheme is proved by a series of
hybrid games, depending on whether the adversary would
query a key for frcv such that frcv(x⃗

(out)∗
snd) = 1.

Case 1: the adversary queries a key for frcv such that
frcv(x⃗

(out)∗
snd) = 1. Note that in this case the adversary cannot

query a key for x⃗rcv such that f∗
snd(x⃗

(out)
rcv) = 1.

A ciphertext (under access policy f and attributes x⃗) can
be in one of the following forms:

- Normal: A normal ciphertext is generated by Enc.
- SF: An SF ciphertext is the same as Normal ciphertext,

except that s⊤A, s⊤j A are replaced with c⊤, c⊤j , where c, cj ←
Z2k
p . Let c̃ := s̃⊤A as in the normal ciphertext, then CTx⃗,f :=

(ct0 = e([̃c⊤ + c⊤]1, [v]2) ·K,

ct′1 = [̃c⊤]1, ct′2 =
[
c̃⊤
∑

i:x
(out)
i =1

Wi

]
1
,

ct1 = [c⊤]1, {c̃tj = [c⊤j]1, ctρ(j),j = [u⊤
j + c⊤j Wρ(j)]1,

cti,j =
[

c⊤j Wi

]
1
}).

A secret key DKf (for policy f) follows its normal form in
this case. A secret key (for attributes x⃗) can be in one of the
following forms:

- Normal: A normal secret key is generated by DKGen.
- SF: An SF key is sampled as a Normal key, except v is

replaced with v+A⊥δ(q), where a fresh δ(q) ← Zk
p is chosen

per SF key and A⊥ is any fixed A⊥ ∈ Z2k×k
p \{0} such that

AA⊥ = 0. That is DKx⃗ :=

(dk1 = [v + A⊥δ(q) + U0Br]2,dk2 = [Br]2,

dk3 = [
∑

i:x
(out)
i =1

WiBr]2).

- P-Normal: A P-Normal key as the same as a Normal
key, except Br is replaced with d← Zk

p . That is DKx⃗ :=(
dk1 = [v+U0 d]2,dk2 = [d]2,dk3 = [

∑
i:x

(out)
i =1

Wi d]2
)
.

- P-SF: A P-SF key is the same as an SF key, except Br
is replaced with d← Zk

p . That is DKx⃗ :=

(dk1 = [v + A⊥δ(q) + U0 d]2,dk2 = [d]2,

dk3 = [
∑

i:x
(out)
i =1

Wi d]2).

Next, we define the hybrid sequence for the proof. Assume
the adversary A makes at most Qx attribute decryption key
queries.

- H0: This is the real game where all secret keys and
ciphertexts are Normal.

- H1: This game is the same as H0 except that the challenge
ciphertext is SF.

- H2,ℓ,1: This game is the same as H1 except that the ℓ-th
attribute decryption key is P-Normal, the first ℓ− 1 attribute
decryption keys are SF and the last Qx−ℓ attribute decryption
keys are Normal, where ℓ = 0, · · · , Qx.

- H2,ℓ,2: This game is the same as H2,ℓ,1 except the ℓ’th
attribute decryption key is P-SF, where ℓ = 0, · · · , Qx.

- H2,ℓ,3: This game is the same as H2,ℓ,2 except the ℓ’th
attribute decryption key is SF, where ℓ = 0, · · · , Qx.

- H3: This game is the same as H2,Qx,3 except that the
message encryption symmetric key K to be encrypted is
replaced by a random K̃.

22

Let A be a PPT adversary, and Advxxx be the advantage of
A in game Hxxx. Also, define H1 ≡ H2,0,1. To complete the
proof for Case 1, we prove lemmas E.2-E.6 in the following.

Lemma B.1. Under the MDDH2m+1
k assumption on G1,

we have

|Pr[⟨A,H0⟩ = 1]− Pr[⟨A,H1⟩ = 1]| = negl(λ).

Proof. Assume that A distinguishes H0 and H1 with non-
negligible advantage. Then, we can construct another adver-
sary B to break the MDDH2m+1

k assumption. On input a
MDDH2m+1

k challenge ([A]1, [Z]1), where either Z⊤ = S⊤A
or Z = C, for S,C← Z(2m+1)×k

p . B proceeds as below.
Setup. B chooses generators g ← G1, h ← G2,

user’s attribute number n, and sets pp = (g, h, n). B runs
FAC.CredKeyGen to create (pk, sk). B selects B ← Zk×k

p ,
U0,Wi ← Z2k×k

p , v ← Z2k
p and sets mpk, msk as in the

scheme, where the elements [AWi]1 in mpk can be derived
from [A]1 and Wi.

Issue Query. B firstly executes FAC.UserKeyGen to
create user’s public/secret keys upk/usk. B can response to
any credential issue query since credential issuer’s secret key
sk is generated by B.

Attribute Decryption Key Query. B can response to any
attribute decryption key query since msk is generated by B.

Policy Decryption Key Query. B can response to any
policy decryption key query since msk is generated by B.

Challenge. After the secret key queries, A requests for
the challenge ciphertext corresponding to symmetric keys
(K0,K1), attributes x⃗ and formula f . B flips a random coin
coin ← {0, 1} and constructs the challenge ciphertext for
Kcoin. B computes ({u⊤

j }, ρ)← share(f, z⊤2m+1U0) and sets
the challenge ciphertext as CTx⃗,f :=

(ct0 = e([̃z⊤ + z⊤2m+1]1, [v]2) ·Kcoin,

ct′1 = [̃z⊤]1, ct′2 = [̃z⊤
∑

i:x
(out)
i =1

Wi]1,

ct1 = [z⊤2m+1]1, {c̃tj = [z⊤j]1, ctρ(j),j = [u⊤
j + z⊤j Wρ(j)]1,

cti,j = [z⊤j Wi]1}),

where (z̃, ct′1, ct′2) are computed normally and note that
|{uj}| ≤ 2m.

Guess. A halts the game with a guess coin′ ← {0, 1}.
B outputs 1 if coin′ = coin, and 0 otherwise. It is straight
forward to see that if Z⊤ = S⊤A, the challenge ciphertext
is Normal and B simulates H0; if Z⊤ = C⊤, the challenge
ciphertext is SF and B simulates H1.

Lemma B.2. Under the MDDHk assumption on G2, we
have

|Pr[⟨A,H2,ℓ−1,3⟩ = 1]− Pr[⟨A,H2,ℓ,1⟩ = 1]| = negl(λ).

Proof. Assume that A distinguishes H2,ℓ−1,3 and H2,ℓ,1 with
non-negligible advantage. Then, we can construct another
adversary B to break the MDDHk assumption. On input
MDDHk challenge ([B]2, [z]2), where either z = Br for
r← Zk

p , or z = d for d← Zk+1
p . B proceeds as below.

Setup. B chooses generators g ← G1, h ← G2, user’s
attribute number n, and sets pp = (g, h, n). Next, B selects
A← Zk×2k

p , U0,Wi ← Z2k×(k+1)
p , v← Z2k

p , and forms mpk
with these parameters as in the scheme. B computes A⊥ ∈
Z2k×k
p such that AA⊥ = 0, which is used for responding secret

key queries. B runs FAC.CredKeyGen to create (pk, sk).
Issue Query. B firstly executes FAC.UserKeyGen to

create user’s public/secret keys upk/usk. B can response to
any credential issue query since credential issuer’s secret key
sk is generated by B.

Attribute Decryption Key. B simulates attribute decryption
keys as below.

- For the first ℓ−1 attribute decryption key queries, say the
q-th request is for x⃗, B samples δ(q), r(q) ∈ Zk

p , and creates
(SF) attribute decryption key DKx⃗ :=(

[v + A⊥δ(q) + U0Br(q)]2, [Br(q)]2, [
∑

i:xi=1
WiBr(q)]2

)
.

- For the last Qx − ℓ attribute decryption key queries, B
proceeds as before for the first ℓ− 1 keys except substituting
v + A⊥δ(q) with v. It is obvious that it becomes a Normal
key.

- For the ℓth attribute decryption key request, A′ creates the
secret key DKx⃗ :=

(
[v + U0z]2, [z]2, [

∑
i:xi=1 Wiz]2

)
.

Policy Decryption Key. B simulates any policy decryption
key normally since the elements for generating policy decryp-
tion key are generated by B.

Challenge. After the secret key queries, A requests for
the challenge ciphertext corresponding to symmetric keys
(K0,K1), attributes x⃗ and formula f . B flips a random
coin coin ← {0, 1} and constructs the challenge cipher-
text for Kcoin. Sample c, cj ← Z2k

p for each j, compute
({u⊤

j }, ρ) ← share(f, c⊤U0) and return (SF) challenge
ciphertext CTx⃗,f :=(

ct0 = e([̃z⊤ + c⊤]1, [v]2) ·Kcoin,

ct′1 = [̃z⊤]1, ct′2 = [̃z⊤
∑

i:x
(out)
i =1

Wi]1,

ct1 = [c⊤]1, c̃tj = [c⊤j]1, ctρ(j),j = [u⊤
j + c⊤j Wρ(j)]1,

cti,j = [c⊤j Wi]1
)
.

Guess. A halts the game with a guess coin′ ← {0, 1}.
B outputs 1 if coin′ = coin, and 0 otherwise. It is straight
forward to see that if z = Br, then the ℓth attribute decryption
key is Normal and A′ has simulated H2,ℓ−1,3; if z = d,
then the ℓth attribute decryption key is P-Normal and A′ has
simulated H2,ℓ,1.

Lemma B.3. Under the MDDHk assumption, we have

|Pr[⟨A,H2,ℓ,1⟩ = 1]− Pr[⟨A,H2,ℓ,2⟩ = 1]| = negl(λ).

Proof. Assume that A distinguishes H2,ℓ,1 and H2,ℓ,2 with
non-negligible advantage. Then, we can construct another
adversary B that distinguishes the oracles in G1−ABE

β of [26],
which implies an attacker against the MDDHk assumption.

23

Given µ(0) as an input and equipped with oracles OF,β , OX

and OE (defined in G1−ABE
β of [26]), B proceeds as below.

Setup. B chooses generators g ← G1, h ← G2, user’s
attribute number n, and sets pp = (g, h, n). Next, B chooses
A← Zk×2k

p , B← Zk×k
p , Ũ0, W̃i ← Z2k×k

p for i ∈ [1, n], and
ṽ ← Z2k

p , computes A⊥ ∈ Z2k×k
p \{0}, b⊥ ← Zk

p such that
AA⊥ = 0 and (b⊥)⊤B = 0 and implicitly defines

v := ṽ− µ(0)((b⊥)⊤d)
c⊤A⊥u

A⊥u,

U0 := Ũ0 +
µ(β)

c⊤A⊥u
A⊥u(b⊥)⊤,

Wi := W̃i + A⊥wi(b⊥)⊤,

where wi ∈ Zk
p , µ(β) ∈ Zp are chosen by the G1-ABE

β game
in [26], c ← Z2k

p is selected for generating the challenge
ciphertext, d← Zk+1

p is selected for generating the ℓth secret
key, and u← Zk

p . Note that B can compute v since it has µ(0)

from the game and knows all other vectors. Then, B creates

mpk := (pp, [A]1, [AŨ0]1, [AW̃1]1, · · · , [AW̃n]1, e([A]1, [ṽ]2)).

B runs FAC.CredKeyGen to create (pk, sk).
Issue Query. B firstly executes FAC.UserKeyGen to

create user’s public/secret keys upk/usk. B can response to
any credential issue query since credential issuer’s secret key
sk is generated by B.

Attribute Decryption Key. B simulates attribute decryption
key as below.

- For the first ℓ−1 attribute decryption key queries, say the
qth request is for x⃗, B samples δ(q), r(q) ← Zk

p , and creates
the (SF) attribute decryption key: DKx⃗ :=

(dk1 = [v + A⊥δ(q) + Ũ0Br(q)︸ ︷︷ ︸
=U0Br(q)

]2,

dk2 = [Br(q)]2, dk3 = [
∑

i:x
(out)
i =1

W̃iBr(q)︸ ︷︷ ︸
=WiBr(q)

]2).

- For the last Qx − ℓ attribute decryption key queries, B
proceeds as before for the first ℓ− 1 keys except using just v
instead of v+A⊥δ(q). It is easy to see that it forms a Normal
attribute decryption key.

- For the ℓth attribute decryption key query for x⃗, queries
OX(x⃗)→ ({wi}xi=1) and creates the attribute decryption key:
DKx⃗ :=

(dk1 = [ṽ + Ũ0d︸ ︷︷ ︸
=v+ (µ(0)−µ(β))((b⊥)⊤d)

(c⊤A⊥u)
A⊥u+U0d

]2, dk2 = [d]2,

dk3 = [
∑

i:x
(out)
i =1

(W̃i + A⊥wi(b⊥)⊤)d︸ ︷︷ ︸
=Wid

]2).

We claim that if β = 0, then the ℓth key is a P-Normal
attribute decryption key since v+ (µ(0)−µ(0))((b⊥)⊤d)

(c⊤A⊥u) A⊥u = v;

and if β = 1, then the ℓth key is a P-SF key since δ(ℓ) =
(µ(0)−µ(1))((b⊥)⊤d)

(c⊤A⊥u) u.

Policy Decryption Key. B can simulate any policy key
normally since the elements for generating policy decryption
key are generated by B.

Challenge. When A requests a challenge ciphertext for
symmetric keys (K0,K1), attributes x⃗ and formula f , B
flips a random coin coin ← {0, 1} and constructs the chal-
lenge ciphertext for Kcoin. B queries OF(f) →

(
{[µj +

r⊤j wρ(j)]1, [rj]1}
)

on input f . B samples c̃j ← Zk
p for each

j, defines A⊥
C :=

[
(A⊥)⊤

M

]
∈ Z2k×2k

p for a choice of M that

makes A⊥
C invertible, computes ({ũ⊤

j }, ρ)← share(f, c⊤Ũ0),

[cj]1 :=

[
(A⊥

C)
−1

(
rj
c̃j

)]
1

, and constructs the (SF) challenge

ciphertext CTx⃗,f :=(
ct0 = e([̃z⊤ + c⊤]1, [v]2) ·Kcoin,

ct′1 = [̃z⊤]1, ct′2 = [̃z⊤
∑

i:x
(out)
i =1

W̃i + A⊥wi(b⊥)⊤︸ ︷︷ ︸
=Wi

]1,

ct1 = [c⊤]1, c̃tj = [c⊤j]1,

ctρ(j),j = [ũ⊤
j + (µj + r⊤j wρ(j))(b⊥)⊤ + c⊤j W̃ρ(j)]1),

cti,j = r⊤j wi(b⊥)⊤ + c⊤j W̃i]1).

We can deduce that

ctρ(j),j = [ũ⊤
j + µj(b⊥)⊤︸ ︷︷ ︸
≡share(f,c⊤U0)

+ c⊤j W̃ρ(j) + r⊤j wρ(j)(b⊥)⊤︸ ︷︷ ︸
=c⊤j Wρ(j)

]1.

It should be noted that {µj(b⊥)⊤} is distributed like the
output of share(f, µb(b⊥)⊤), and therefore due to linearity
and the fact that c⊤U0 = c⊤Ũ0 + µ(b)(b⊥)⊤, then {ũ⊤

j +

µj(b⊥)⊤} is distributed like share(f, c⊤Ũ0 + µ(b)(b⊥)⊤) ≡
share(f, c⊤U0). Also, note that c⊤j Wi = c⊤j W̃i + rjwρ(j)b⊥

since c⊤j A⊥ = rj .
Guess. A halts the game with a guess coin′ ← {0, 1}. B

outputs 1 if coin′ = coin, and 0 otherwise.
Putting everything together, we can see that B simulates

H2,ℓ,1 when β = 0; and H2,ℓ,2 when β = 1.

Lemma B.4. Under the MDDHk assumption, we have

|Pr[⟨A,H2,ℓ,2⟩ = 1]− Pr[⟨A,H2,ℓ,3⟩ = 1]| = negl(λ).

Proof. Omitted, since this proof is similar to that of Lemma
E.3. We need to substitute v with v + A⊥δ(ℓ) for the ℓth
attribute decryption key query, where δ(ℓ) is a random ele-
ment.

Lemma B.5. We have

|Pr[⟨A,H2,Qx,3⟩ = 1]− Pr[⟨A,H3⟩ = 1]| ≤ 1/p

unconditionally.

Proof. These two hybrids are identically distributed condi-
tioned on c⊤A⊥ ̸= 0. To see this, consider two ways of
choosing v : v = ṽ ← Z2k

p and v : v = ṽ + A⊥m̃ for an

24

independently random m̃ ← Zk
p . Note that both result in v

having a uniform distribution.
Using ṽ to simulate hybrid H2,Qx,3 obviously results in

H2,Qx,3 (where v = ṽ). However, using the identically dis-
tributed v = ṽ + A⊥m̃ to simulate H2,Qx,3 results in H3 with
K̃ = Kcoin · [c⊤A⊥m̃]T . Note that the information of m̃ is not
leaked to A from the secret key queries since m̃ is blinded by
random value δ(i) for each key. Therefore, K̃ is distributed
uniformly at random over GT as long as c⊤A⊥ ̸= 0.

Since c is chosen at random and independent from s̃⊤A and
A⊥ ̸= 0, so c⊤A⊥ = 0 with probability 1/p, and since we
know that H2,Qx,3 ≡ H3 conditioned on c⊤A⊥ ̸= 0, then the
lemma follows.

Case 2: the adversary does not query a key for frcv such that
frcv(x⃗

(out)∗
snd) = 1.

A ciphertext (under access policy f and attributes x⃗) can
be in one of the following forms:

- Normal: A normal ciphertext is generated by Enc.
- SF: An SF ciphertext is the same as Normal ciphertext,

except that s̃⊤A is replaced with c̃⊤ ← Z2k
p . That is CTx⃗,f :=

(ct0 = e([c̃⊤ + c⊤]1, [v]2) ·K,

ct′1 = [c̃⊤]1, ct′2 =
[

c̃⊤
∑

i:x
(out)
i =1

Wi

]
1
,

ct1 = [c⊤]1, {c̃tj = [c⊤j]1, ctρ(j),j = [u⊤
j + c⊤j Wρ(j)]1,

cti,j = [c⊤j Wi]1}),

where c⊤ = s⊤A and c⊤j = s⊤j A are same as in the original
ciphertext.

A secret key (for attributes x⃗) follows its normal form.
A secret key (for a Boolean formula f) can be one of the
following forms:

- Normal: A normal secret key is generated by PolGen.
- SF: An SF key is sampled as a Normal key, except v is

replaced with v + δa⊥, where a fresh δ is chosen per SF key
and a⊥ is any fixed a⊥ ∈ Z2k

p \{0}. That is DKf :=(
dkj = [rj]2,dkρ(j),j = [vj + Wρ(j)rj]2,dki,j = [Wirj]2

)
.

where ({vj}j∈[m̂], ρ)
$←− share(f, v + δa⊥), rj

$←− Zk
p .

Next, we define hybrid sequences for the proof. Assume
the adversary A makes at most Qx attribute decryption key
queries and Qf policy decryption key queries.

- H0: This is the real game where all secret keys and
ciphertexts are Normal.

- H1: This game is the same as H0 except that the challenge
ciphertext is SF.

- H2,ℓ: This game is the same as H1 except that the first ℓ
policy decryption keys are SF and the remaining Qf − ℓ keys
are Normal, where ℓ = 0, · · · , Qf .

- H3: This game is the same as H2,Qf
except that the

message encryption symmetric key K to be encrypted is
replaced by a random K̃.

Lemma B.6. Under the MDDHk assumption on G1, we
have

|Pr[⟨A,H0⟩ = 1]− Pr[⟨A,H1⟩ = 1]| = negl(λ).

Proof. If A can distinguish H0 from H1 with non-negligible
advantage, then we can construct an algorithm B that can solve
the MDDHk assumption. On input a MDDHk challenge
([A]1, [̃z]1), where either z̃⊤ = s̃⊤A or z̃ = c̃ for s̃← Zk

p and
c̃← Z2k

p . B proceeds as in the proof of Lemma E.2 except that
an SF challenge ciphertext is returned to A. B flips a random
coin coin ← {0, 1} and constructs the challenge ciphertext
for Kcoin by computing ({u⊤

j }, ρ)← share(f, z⊤U0), where
z⊤ = s⊤A, and z⊤j = s⊤j A as in the normal ACME
construction, and sets the challenge ciphertext as CTx⃗,f :=(

ct0 = e([̃z⊤ + z⊤]1, [v]2) ·Kcoin,

ct′1 = [̃z⊤]1, ct′2 = [̃z⊤
∑

i:x
(out)
i =1

Wi]1,

ct1 = [z⊤]1, {c̃tj = [z⊤j]1, ctρ(j),j = [u⊤
j + z⊤j Wρ(j)]1.

cti,j = [z⊤j Wi]1}
)
.

Guess. A halts the game with a guess coin′ ← {0, 1}.
B outputs 1 if coin′ = coin, and 0 otherwise. It is straight
forward to see that if z̃⊤ = s̃⊤A, the challenge ciphertext
is Normal and B simulates H0; if z̃⊤ = c̃⊤, the challenge
ciphertext is SF and B simulates H1.

Lemma B.7. Under the MDDHk assumption on G2, we
have

|Pr[⟨A,H2,ℓ−1⟩ = 1]− Pr[⟨A,H2,ℓ⟩ = 1]| = negl(λ).

Proof. Assume that A distinguishes H2,ℓ−1 and H2,ℓ with
non-negligible advantage. Then, we can construct another
adversary B that distinguishes the oracles in G1−ABE

β of [27],
which implies an attacker against the MDDHk assumption.
Given µ(0) as an input and equipped with oracles OF,β , OX

and OE (defined in G1−ABE
β of [27]), B proceeds as below.

Setup. B chooses generators g ← G1, h ← G2, user’s
attribute number n, and sets pp = (g, h, n). Next, B chooses
A $←− Zk×2k

p , Ũ0, W̃i
$←− Z2k×k

p for i ∈ [1, n], and ṽ $←− Z2k
p ,

computes a⊥ ∈ Z2k
p \{0} such that Aa⊥ = 0. It then sets

W̃0 := 0 and implicitly defines v := ṽ + µ(0)a⊥, Wi :=
W̃i + a⊥w⊤

i , where wi ∈ Zk
p , µ(0) ∈ Zp are chosen by the

G1-ABE
β game in [27]. Then, B creates

mpk := (pp, [A]1, [AŨ0]1, [AW̃1]1, · · · , [AW̃n]1, e([A]1, [ṽ]2)).

B runs FAC.CredKeyGen to create (pk, sk).
Issue Query. B firstly executes FAC.UserKeyGen to

create user’s public/secret keys upk/usk. B can response to
any credential issue query since credential issuer’s secret key
sk is generated by B.

Attribute Decryption Key Query. B simulates any attribute
decryption key normally.

Policy Decryption Key Query. B responds to A’s policy
decryption key queries as below.

25

- For the first ℓ − 1 policy decryption key queries, say for
formula f of size m, B computes:

({vj}j∈[m̂], ρ)
$←− share(f, ṽ + δ̃a⊥︸ ︷︷ ︸

=v+δa⊥

),

where δ̃
$←− Zp is drawn independently for each key (here, the

per-key δ = δ̃ − µ(0) implicitly). Next, for each j ∈ [m̂], it
queries OE → ([rj]2, {[w⊤

i rj]2}i∈[n]) and forms the SF policy
decryption key as DKf :=

(dkj = [rj]2,dkρ(j),j = [vj + W̃ρ(j)rj + a⊥w⊤
ρ(j)rj︸ ︷︷ ︸

vj+Wρ(j)rj

]2,

dki,j = [W̃irj + a⊥w⊤
i rj︸ ︷︷ ︸

=Wirj

]2).

Then, it returns DKf to A.
- For the last Qf − ℓ policy decryption key queries, say for

formula f of size m, B proceeds as before for the first ℓ− 1
policy decryption keys except

({vj}j∈[m̂], ρ)
$←− share(f, ṽ + µ(0)a⊥︸ ︷︷ ︸

=v

),

It is easy to see that it forms a Normal policy decryption key.
- For the ℓ-th policy decryption key query,

say for formula f of size m, B computes
({vj}j∈[m̂], ρ)

$←− share(f, ṽ), queries OF,β(f) →
({[rj]2, [µj + wρ(j)rj]2, {[w⊤

i rj]2}i∈[n]\{ρ(j)}}j∈[m̂]) and
uses these components to return: DKf :=

(dkj = [rj]2,dkρ(j),j = [vj + W̃ρ(j)rj + a⊥(µj + w⊤
ρ(j)rj)︸ ︷︷ ︸

=(vj+µja⊥)+Wρ(j)rj

]2,

dki,j = [W̃irj + a⊥w⊤
i rj︸ ︷︷ ︸

=Wirj

]2).

We claim that if β = 0, then DKf is a Normal policy
decryption key, and if β = 1, then DKf is a SF policy key.
This follows from the fact that thanks to linearity, the shares
({vj + µja⊥}j∈[m̂], ρ), where ({vj}j∈[m̂], ρ)

$←− share(f, ṽ),
({µj}j∈[m̂], ρ)

$←− share(f, µ(β)), are identically distributed
to share(f, ṽ + µ(β)a⊥). The claim follows the fact that v =
ṽ + µ(0)a⊥, where we set δ := µ(1) − µ(0) is a fresh random
value for the key.

Challenge. When A requests a challenge ciphertext for
symmetric keys (K0,K1), attributes x⃗ and formula f , B flips
a random coin coin ← {0, 1} and constructs the challenge
ciphertext for Kcoin. B queries OX on input x⃗ to obtain
{wi}i:xi=1. B computes c⊤ = s⊤A, c⊤j = s⊤j A, ({u⊤

j }, ρ)←
share(f, c⊤U0) normally, samples c̃ $←− Z2k

p , and constructs
the challenge ciphertext CTx⃗,f :=(

ct0 = e([̃c⊤ + c⊤]1, [ṽ + µ(0)a⊥]2) ·Kcoin,

ct′1 = [̃c⊤]1, ct′2 = [̃c⊤
∑

i:x
(out)
i =1

W̃i + a⊥w⊤
i︸ ︷︷ ︸

=Wi

]1,

ct1 = [c⊤]1, c̃tj = [c⊤j]1,

ctρ(j),j = [u⊤
j + c⊤j (W̃ρ(j) + a⊥w⊤

ρ(j))︸ ︷︷ ︸
=Wρ(j)

]1),

cti,j = [c⊤j (W̃i + a⊥w⊤
i)︸ ︷︷ ︸

=Wi

]1).

Guess. A halts the game with a guess coin′ ← {0, 1}. B
outputs 1 if coin′ = coin, and 0 otherwise.

Putting everything together, we can see that B simulates
H2,ℓ−1 when β = 0; and H2,ℓ when β = 1.

Lemma B.8. We have

|Pr[
〈
A,H2,Qf

〉
= 1]− Pr[⟨A,H3⟩ = 1]| ≤ 1/p

unconditionally.

Proof. The two hybrids are identically distributed conditioned
on c̃⊤a⊥ ̸= 0. To see this, consider two ways to sample v: as
ṽ $←− Z2k

p and as ṽ + m̃a⊥ for an independent m̃ $←− Zp. Both
result in v having a uniform distribution.

Using ṽ to simulate hybrid H2,Qf
obviously results in H2,Qf

(where v = ṽ). However, using the identically distributed v =
ṽ + m̃a⊥ to simulate H2,Qf

results in H3 with K̃ = Kcoin ·
[̃c⊤m̃a⊥]T and re-defined randomness δ̃j = δj + m̃ for all the
keys. Note that the information of m̃ is not leaked to A from
the secret key queries since m̃ is blinded by random value δj
for each key. Therefore, K̃ is distributed uniformly at random
over GT as long as [̃c⊤a⊥]T ̸= 0.

Since c̃ is chosen at random and independent from a⊥ ̸= 0,
so [̃c⊤a⊥]T = 0 with probability 1/p, and since we know that
H2,Qf

≡ H3 conditioned on [̃c⊤a⊥]T ̸= 0, then the lemma
follows.

This completes the proof of Theorem 6.2.

C. PriSrv: Security Model and Proof

(1) Security Model of PriSrv
We formalize the security model for PriSrv, which includes

the service discovery with bilateral control, key secrecy
and bilateral anonymity, by following the Canetti-Krawczyk
model for authenticated key-exchange (AKE) in [32], [33],
[38] and the service discovery model in [5].

1.1) Service Discovery Security
The service discovery security captures service discovery

with bilateral control and AKE security. The framework of
PriSrv contains two sub-protocols: a private broadcast protocol
that announces the service type, server’s identifier, as well
as other relevant information in a privacy-preserving man-
ner; and an anonymous mutual authentication protocol with
bilateral policy control. Compared with traditional mutual au-
thentication settings, a remarkable difference in PriSrv is that
multiple clients can respond to a service provider’s broadcast

26

message if their credentials satisfy the service authorization
policy.
Protocol participants. The participants of PriSrv includes
a set of clients C = {C1, · · · , Cn1

} and a set of service
providers S = {S1, · · · , Sn2}.
Long-term Keys. Each Ci ∈ C and Sj ∈ S hold long-
term secret keys for bilateral authentication and message
decryption.
Session and Pairing. Denote the ρ-th instance of participant
U ∈ C ∪ S as Uρ, which is modeled as a PPT Turing
machine. A participant Uρ can be activated to initiate a
session with a broadcast identifier bidρU , a session identifier
sidρU , attributes x⃗ρ

U , and a policy fρ
U . A client instance Cρ

i

and a service provider instance Sδ
j are said to be paired

if their session instances (Cρ
i , bid

ρ
Ci
, sidρCi

, x⃗ρ
Ci
, fρ

Ci
) and

(Sδ
j , bid

δ
Sj
, sidδSj

, x⃗δ
Sj
, fδ

Sj
) satisfy bidρCi

= bidδSj
, sidρCi

=

sidδSj
, fδ

Sj
(x⃗

ρ(out)
Ci

) = 1, fρ
Ci
(x⃗

δ(out)
Sj

) = 1. A completed ses-
sion contains a tuple (Cρ

i , bid
ρ,δ
Ci,Sj

, sidρ,δCi,Sj
, Sδ

j , SSK
ρ,δ
Ci,Sj

),
where bidρ,δCi,Sj

= bidρCi
= bidδSj

, sidρ,δCi,Sj
= sidρCi

= sidδSj
.

Adversary Capability. We capture all of the adversary’s
attack capabilities in real world to have full control over
the public network communication, including revealing some
secrets in the protocol, intercepting or tampering with the
channel messages, replaying, delaying, injecting or dropping
data packets, interleaving messages from different sessions,
etc.
Protocol Execution. An adversary A is modeled as a PPT
machine with a distinguished query tape to issue a set of
session exposure queries for gaining the ephemeral and long-
term secrets possessed by participants.
• Send(Uρ,M): transmits a message M to Uρ, who exe-

cutes the protocol and returns the operation result to adversary
A. If the message in the query causes the protocol to execute
or abort, it will be made known to A.
• Execute(Cρ

i , S
δ
j): executes a complete protocol between

Cρ
i and Sδ

j . The adversary captures all messages transmitted
over the public network. Hence, the query to Execute oracle
models passive eavesdropping capability of the adversary.
• RevealBroadcast(Sδ

j , bid): returns the semi-static state
in a service provider Sδ

j that is maintained for the lifetime of
its current broadcast with identifier bid, including the attributes
x⃗Sδ

j
and authorization policy fSδ

j
. The revealed state does not

involve the long-term secrets. A is allowed to make query for
any service provider Sj ∈ S.
• RevealState(Uρ, bid, sid): returns the local state asso-

ciated with the targeted session, which does not contain the
long-term secrets.
• RevealKey(Uρ, bid, sid): outputs the secret session key

associated with a targeted session.
• Corrupt(U): returns all information (including ephemeral

and long-term secrets) held by U .
• TestSession(Uρ, bid, sid): This oracle is used to model

key secrecy. A random bit b ∈ {0, 1} is selected to respond
this query. If b = 1, the target session key is returned to A.

Otherwise, a randomly value picked from the secret session
key space is returned.

Session Exposure. A session (Uρ, bid, sid) is said to be
exposed if the adversary makes the following queries.

- The adversary makes a RevealKey query on the session.
- The adversary makes a Corrupt query on U , or any partner

with (x⃗, f) satisfying fU (x⃗
(out)) = 1 ∧ f(x⃗

(out)
U) = 1, before

the session has expired.
- U is the client in the protocol and the adversary has made

a RevealState query on the session.
- U is the server in the protocol and the adversary has

made a RevealState query on the session, and also made
a RevealBroadcast query on the session or a Corrupt query
on U before the session has expired.

Session Freshness. A session (Uρ, bid, sid) is said to be fresh
if itself is not exposed and all its matching sessions are not
exposed.

Definition C.1 Let SuccSec
PriSrv(A) denote the event

that A makes a single TestSession query with the
restriction that the queried session (Uρ, bid, sid) is fresh,
and finally outputs a bit b′ = b, where b is the random
value selected in the TestSession query. A private
service discovery protocol PriSrv is secure if for any
PPT adversary A, there exists a negligible function ν such
that AdvSec

PriSrv(A)
def
= 2Pr[SuccSec

PriSrv(A)]− 1 ≤ ν(λ).

1.2) Bilateral Anonymity
The bilateral anonymity property implies that no PPT ser-

vice provider (or client) can learn anything about another
participant’s identifier and private attributes unless it satisfies
the latter’s authorization policy. The adversary is permitted to
compromise multiple participants. This property should hold
provided that the compromised participants do not satisfy
the target’s policy. We include the registration query oracle
in the security model for the bilateral anonymity proof. In
the following, we firstly define the security game to prove
the client anonymity, which captures the property that no
adversary can distinguish the interactions with C∗

i0
or C∗

i1
(challenge clients). Let n be the number of parties participating
in the protocol execution experiment, which are denoted as
(P1, · · · , Pn). A special test party PT is introduced at the
beginning of the experiment whose identity is kept confidential
from the adversary. We introduce two experiments Exp0 and
Exp1, and select random b ∈ {0, 1} at the beginning of the
game. The experiment Expb proceeds as below.
Setup Phase. At the beginning of the experiment, adver-
sary A submits a set of identities (with attributes and poli-
cies) {(uidj , x⃗j , fj)}nj=1 for parties (P1, · · · , Pn). For each
j ∈ [n], the challenger sets up anonymous credential and
long-term secret attribute/policy keys for party Pj . A also
submits two challenge clients C∗

i0
, C∗

i1
∈ C, where C∗

i0
possesses (uid∗i0 , x⃗

∗
i0
, f∗

i0
) and C∗

i1
has (uid∗i1 , x⃗

∗
i1
, f∗

i1
). It

is required that x⃗∗
i0

= x⃗∗
i1

and f∗
i0

= f∗
i1

. Note that the
challenge tuples (uid∗i0 , x⃗

∗
i0
, f∗

i0
) and (uid∗i1 , x⃗

∗
i1
, f∗

i1
) are dis-

tinct from {(uidj , x⃗j , fj)}nj=1. Then, the challenger associates

27

(uid∗ib , x⃗
∗
ib
, f∗

ib
) with PT , and executes the setup algorithm for

PT that is defined in the protocol.
Protocol Execution. Adversary A is allowed to issue the
following queries.
• Reg(Uρ, uidρU , x⃗

ρ
U , f

ρ
U): If Uρ ∈ (P1, · · · , Pn) with user

identifier uidρU , attributes x⃗ρ
U and policy fρ

U is unregistered,
it executes as the protocol definition, and returns the result to
A.
• Send, RevealBroadcast, RevealState, RevealKey and

Corrupt are the same as the definition in “Service Discovery
Security” model.
• Challenge. In Expb, the instance C∗

ib
with

(uid∗ib , x⃗
∗
ib
, f∗

ib
) executes PriSrv by following the protocol

steps. The restriction is that A does not issue any of the
following queries:

- Reg query on (uid∗i0 , x⃗
∗
i0
, f∗

i0
) or (uid∗i1 , x⃗

∗
i1
, f∗

i1
) or any

service provider whose attributes and policy satisfy (x⃗∗
i0
, f∗

i0
)

or (x⃗∗
i1
, f∗

i1
);

- RevealState or RevealKey query on any (PT , bid, sid)
or its matching session;

- Corrupt query on C∗
i0

or C∗
i1

or any service provider
whose attributes and policy satisfy (x⃗∗

i0
, f∗

i0
) or (x⃗∗

i1
, f∗

i1
).

- If A associates a policy (x⃗Sj
, fSj

) with a service provider
session (Sδ

j , bid, sid), it is required that either both C∗
i0

and
C∗

i1
satisfy the policy, or neither of them satisfies the policy.

In any above query, if the query causes an instance to accept
or termination, these outputs will be shown to A.
Output phase. A outputs a guess b′ ∈ {0, 1} for b.

A service discovery protocol achieves client anonymity
if no adversary can distinguish the experiments Exp0 and
Exp1 with non-negligible advantage greater than 1/2, which
captures the property that no active adversary can distinguish
communications with a client C∗

i0
from those with a client

C∗
i1

. Here is the formal definition.
Definition C.2 Let Succanon-C

PriSrv (A) denote the event that A
outputs a bit b′ = b. PriSrv satisfies client anonymity if for
any PPT adversary A, there exists a negligible function ν such
that Advanon-C

PriSrv (A) def
= 2Pr[Succanon-C

PriSrv (A)]− 1 ≤ ν(λ).

The security game for service provider anonymity is similar
to that for the client anonymity, except for exchanging their
roles and restriction that the adversary is not allowed to query
Revealbroadcast for the challenge sessions. The concrete
security model is omitted for brevity.

Definition C.3 Let Succanon-S
PriSrv (A) denote the event that

A outputs a bit b′ = b. PriSrv satisfies service provider
anonymity if for any PPT adversaryA, there exists a negligible
function ν such that Advanon-S

PriSrv (A) def
= 2Pr[Succanon-S

PriSrv (A)] −
1 ≤ ν(λ).

Definition C.4 PriSrv satisfies bilateral anonymity if it
achieves client anonymity and service provider anonymity.

(2) Security Proof of PriSrv
Theorem 7.1. Suppose that the DDH assumption holds,

ACME is secure, MAC is unforgeable, and H is a random

oracle, then PriSrv is a secure service discovery protocol and
satisfies bilateral anonymity.

We utilize three lemmas to prove the security of PriSrv in
Theorem 7.1, which demonstrate PriSrv is secure and private
in extended Canetti-Krawzyk key-exchange model (Lemma
C.1), and it provides anonymity for both the client and the
server (Lemma C.2 and Lemma C.3).

The security proof of PriSrv requires the underlying ACME
scheme should be CCA secure. There are standard (and effi-
cient) generic approaches (e.g., the Fujisaki-Okamoto transfor-
mation [59]) to transform our ACME construction to achieve
CCA security.

Lemma C.1. (Service discovery privacy with bilateral
control.) Suppose that DDH assumption holds on G1 and G2,
ACME is secure, MAC is unforgeable, and H is random
oracle, then PriSrv is a secure service discovery protocol with
bilateral control.

Proof. Following similar proofs for key-exchange and service
discovery protocols proposed in [32], [33], [38], [5], we
assume selective security in the adversary’s choice of the
test session, i.e., at the beginning of the security game, the
adversary commits to the following:
• The test session (α∗, bid, sid, x⃗α∗ , fα∗).
• The peer’s identity, attributes and policy (β∗, x⃗β∗ , fβ∗).
• Whether α∗ is the initializer or the responder of the test

session.
Note that a selective security proof can be converted to an

adaptive one at a security loss that increases polynomially in
the number of parties and the number of sessions the adversary
initiates.

We define a simulator S = S(A). On input the number
of parties n and an adversary A, the simulator S simulates
a series of security games for the protocol. In the selective
security setting, the adversary begins by committing to a
test session (α∗, bid, sid, x⃗α∗ , fα∗), the peer (β∗, x⃗β∗ , fβ∗)
in the test session, and whether α∗ was the initiator or the
responder in the test session. Then, S initializes the n parties
by generating anonymous credential, attribute decryption key
and policy decryption key for each of them. When A activates
a party, S executes as in the protocol on behalf of the parties,
and outputs the corresponding messages to A as well as the
public outputs of each session.

Description of the simulator. We introduce several variants
of S, which are generally denoted as S. The simulator S
behaves similarly to S except the following differences.

(1) At the beginning of the simulation, the simulator chooses
four exponents z, x1, x2, y

$←− Z∗
p and a random session

key SSK. The specification of the keys will determine the
different variants of the simulator S.

(2) In the selective security model, the adversary A
commits to a test session (α∗, bid, sid, x⃗α∗ , fα∗), the peer
(β∗, x⃗β∗ , fβ∗), and the role of α∗ in the session at the
beginning of the experiment. Let S ∈ {α∗, β∗} denote the
server A commits to for a test session, and C ∈ {α∗, β∗} the
client to which it commits.

28

The simulator S simulates the execution of the PriSrv
security game as S, except for the following differences.
• If the adversary A activates S to initiate the broadcast

(S, bid, x⃗S , fS), the simulator uses z as the semi-static DH
exponent in the broadcast.
• If the adversary A activates C to initiate the ses-

sion (C, bid, sid, x⃗C , fC), the simulator uses x1, x2 as the
ephemeral DH exponents of C.
• If the adversary A activates S as a responder to the

session (S,C, bid, sid, x⃗S , fS , x⃗C , fC), the simulator uses y
as the ephemeral DH exponent of S.
• It uses SSK in place of SSK whenever the shares

(hz, gx1 , hx2 , gy) are used to derive the session key (that is,
when the simulator needs to compute H(X

y

1, X
z

2)).
(3) At the end of the protocol, A outputs a bit b ∈ {0, 1}.

The simulator S outputs the same bit.
The security proof contains two cases, depending on

whether A compromises the server’s semi-static broadcast
secret or not. We say the adversary is admissible as long as it
is not the situation that both the server’s epheral DH secret and
the server’s semi-static broadcast DH secret are compromised,
which is similar to the security analysis in [60]. Specifically,
the two cases in our proof are given below.
• Case 1: A neither issues a RevealBroadcast query on

(S, bid, x⃗S , fS) nor corrupt S before the broadcast session
expires (i.e., the semi-static broadcast DH secret is not com-
promised).
• Case 2: A does not issue a RevealState query on (S, bid,

x⃗S , fS).
For each case, we define a series of hybrid games to show

that each consecutive pair of hybrid games are computationally
indistinguishable. Before the formal case analysis, we prove
the following proposition.

Proposition C.1. Suppose a session (α∗, bid, sid, x⃗α∗ , fα∗)
completes with a peer (β∗, x⃗β∗ , fβ∗). Assume that neither
α∗ nor β∗ has been corrupted before the completion of
(α∗, bid, sid, x⃗α∗ , fα∗). Then, assuming that ACME has
authenticity, the following statements hold:

(1) If α∗ is the client and β∗ is the server, then A initiated a
broadcast (β∗, bid, x⃗β∗ , fβ∗) and α∗ must have been activated
to initiate a session (α∗, bid, sid, x⃗α∗ , fα∗) with the broadcast
message if and only if fα∗(x⃗

(out)
β∗) = 1 ∧ fβ∗(x⃗

(out)
α∗) = 1.

(2) If α∗ is the server and β∗ is the client, the ses-
sion (β∗, bid, sid, x⃗β∗ , fβ∗) cannot complete with a peer
session (α′∗, bid, sid, x⃗α′∗ , fα′∗) such that fα′∗(x⃗

(out)
β∗) ̸=

1 ∨ fβ∗(x⃗
(out)
α′∗) ̸= 1.

Proof. We prove the two cases separately.

(1) When α∗ is activated to initialize a session (α∗, bid, sid,
x⃗α∗ , fα∗) with a broadcast message (bid′,CTB), it decrypts
the broadcast ciphertext utilizing its private attribute and policy
keys. If the decryption fails, it indicates that fα′∗(x⃗

(out)
β∗) ̸=

1 ∨ fβ∗(x⃗
(out)
α′∗) ̸= 1. Otherwise, α∗ is an intended client to

obtain the broadcast messages, who checks whether bid′ = bid

and verifies the authenticity of CTB for further communi-
cation. Since (α∗, bid, sid, x⃗α∗ , fα∗) completes with β∗, it
must be the case that fα∗(x⃗

(out)
β∗) = 1 ∧ fβ∗(x⃗

(out)
α∗) = 1.

Since β∗ has not been corrupted before the completion with
(α∗, bid, sid, x⃗α∗ , fα∗), it generates at most one broadcast
ciphertext containing bid. Thus, if (α∗, bid, sid, x⃗α∗ , fα∗)
completes with β∗, it must have been initialized with broadcast
message output by (β∗, bid, x⃗β∗ , fβ∗) since this is the only
message that contains a valid ACME ciphertext from β∗ with
the broadcast identifier bid. Otherwise, A can be used to break
the authenticity of ACME .

(2) If β∗ is activated to initiate the session
(β∗, bid, x⃗β∗ , fβ∗) and the session completes with a peer α′∗

with (x⃗α′∗ , fα′∗) such that fα′∗(x⃗
(out)
β∗) ̸= 1 ∨ fβ∗(x⃗

(out)
α′∗) ̸=

1. In this case, an honest β∗ would never succeed to decrypt
the broadcast ciphertext and then generate the ACME
ciphertext CTβ∗ . Therefore, any adversary that can cause
(α∗, bid, sid, x⃗α∗ , fα∗) to complete with peer β∗, and have
(β∗, bid, sid, x⃗β∗ , fβ∗) complete with peer α′∗ can break the
authenticity of ACME .

Next we consider the two possible cases and prove that the
adversary’s advantage in both cases is negligible.

Case 1: A does not compromise the broadcast session
and z is not disclosed.

In this case, the security proof relies on the server’s broad-
cast secret for the privacy of the session. A series of hybrid
games are defined.
• Hybrid H0: This game is the same as a real interaction

with the PriSrv protocol. A random bit b ∈ {0, 1} is selected.
When b = 1, the real session key is returned as a response
to the TestSession query. Otherwise, a random key from the
key space is returned as the session key.
• Hybrid H1: This game is the same as H0, except that

Zx2 = Xz
2 is replaced by a random value in group G2.

• Hybrid H2: This game is the same as H1, except that
S̄ also aborts if the session (β∗, bid, sid, x⃗β∗ , fβ∗) does not
match (α∗, bid, sid, x⃗α∗ , fα∗).
• Hybrid H3: This game is the same as H2, except that

SSK is replaced by a random number from the secret session
key space.

In the following, we show that each consecutive pair of
hybrid games described above are computationally indistin-
guishable.

Claim C.1. Hybrids H0 and H1 are computationally indis-
tinguishable if the DDH assumption holds in group G2.

Proof. Let (α∗, bid, sid, x⃗α∗ , fα∗) be the session and (β∗,
x⃗β∗ , fβ∗) be the peer that the adversary commits to at the
beginning of the experiment. By definition, this means that
(α∗, β∗, bid, sid, x⃗α∗ , fα∗ , x⃗β∗ , fβ∗) is the public output of
the test session.

Let A be a distinguisher between H0 and H1. We use A
to build a DDH adversary B as below. B is given a DDH
challenge tuple (hb1 , hb2 , hγ2) over group G2, where γ2 =
b1b2 or γ2 is a random number from Z∗

p.

29

At the beginning of the simulation, B generates anonymous
credential, private attribute and policy key (in the same manner
as the simulator S) for each of the n parties. B begins the
simulation of the security game for A. In the following, we
use C ∈ {α∗, β∗} to denote the client and S ∈ {α∗, β∗} to
denote the server in the test session.
• Server broadcast queries. If the adversary activates a

server S to initiate the test broadcast session (S, bid, x⃗s, fs),
the simulator uses hb1 from the DDH challenge instance
as the semi-static DH share in the broadcast message. For
other broadcast queries, B selects a random DH exponent z
to constructs the broadcast ciphertext exactly as in the real
protocol.
• Client initialization queries. When A activates a

party α∗ to initiate a session (α∗, bid, sid, x⃗α∗ , fα∗), if
(α∗, bid, sid, x⃗α∗ , fα∗) ̸= (C, bid, sid, x⃗c, fc), B selects a
random DH exponent and generates the message exactly as
in the real scheme. Otherwise, if (α∗, bid, sid, x⃗α∗ , fα∗) =
(C, bid, sid, x⃗c, fc), B sets hb2 from the DDH challenge
instance to be the DH share X2 = hx2 in its message. The
other computation steps follow the real experiment.
• Server response queries. When A activates a server S

to respond to a session (α∗, bid, sid, x⃗α∗ , fα∗), B selects a
random DH exponent y and generates the message exactly as
in the real scheme.
• Client finish queries. When a client receives a response

message for session (α∗, bid, sid, x⃗α∗ , fα∗), if (α∗, bid, sid,
x⃗α∗ , fα∗) ̸= (C, bid, sid, x⃗c, fc), B constructs the outputs as
in the real scheme (this is feasible since B selects the client’s
ephemeral DH share in this case). Otherwise, if (α∗, bid, sid,
x⃗α∗ , fα∗) = (C, bid, sid, x⃗c, fc), B runs the other computation
steps following the real experiment except that it sets SSK =
H(Xy

1 , h
γ2), where Xy

1 = Y x1 (generated by B) and hγ2 is
from the DDH challenge instance.
• RevealState and RevealKey queries. These are handled

exactly as in H0.
• Corrupt queries. If A corrupts a party U , B sends the

anonymous credential and private attribute/policy keys of U
to A, as well as ephemeral secrets in the local storage of U .
B perfectly simulates H0 if γ2 = b1b2, and B simulates H1

if γ2 is a random number. Then, if A can distinguish H0 from
H1, B can succeed in the DDH game on G2 with the same
advantage.

Claim C.2. Hybrids H1 and H2 are computationally indis-
tinguishable if the ACME algorithm is private and MAC is
unforgeable.

Proof. If an adversary A outputs a session (α∗, bid, sid, x⃗α∗ ,
fα∗) in the TestSession query, there must be a partner
instance (β∗, bid, sid, x⃗β∗ , fβ∗). Otherwise, we can make use
of the adversary A to break the privacy of ACME or the
unforgeability of MAC.

We define an adversary B0 such that in the TestSession
query B0 outputs a session (α∗, bid, sid, x⃗α∗ , fα∗), which has
a matching session (β∗, bid, sid, x⃗β∗ , fβ∗). Given an adversary

A against the PriSrv protocol in the security game, we build
an adversary B0 as follows.

Adversary B0 answers all queries made by A using its
own oracles. If A outputs an instance (α∗, bid, sid, x⃗α∗ , fα∗)
that has no matching session, B0 aborts without any output.
Otherwise, adversary B0 outputs (α∗, bid, sid, x⃗α∗ , fα∗) in the
TestSession query, and returns to adversary A the response
it receives.

Let E denote the event that the instance (α∗, bid, sid, x⃗α∗ ,
fα∗) in the TestSession query output by adversary A does
not have a matching session. If event E does not happen, B0
and adversary A are the same. Otherwise, we can construct
an encryption-aided forger B1 who aims to produce a forgery
MAC.MAC(K∗,M) for a secret key K∗ that is encapsulated
in an ACME ciphertext CT∗ [58].
B1 is given pp, mpk and access to an oracle OIssue(·)

which creates anonymous credential for user U , an oracle
ODKGen(·) which creates attribute decryption key for x⃗, an
oracle OPolGen(·) which creates policy decryption key for f ,
an oracle ODec(·) which decrypts ciphertexts. Assume that
adversary A performs at most qI activations of parties with
an incoming message.

Forger B1 randomly chooses ℓ ← [1, qI] and simulates the
security game for adversary A in the following cases.
• If adversary A does not make a TestSession query with

an activation of α∗, forger B1 aborts.
• If β∗ is not the matching session of α∗, forger B1 aborts.
• If (α∗, bid, sid, x⃗α∗ , fα∗) is not the ℓ-th activation, forger
B1 aborts.
• If adversary A makes a Corrupt query on β∗ or any part-

ner β with (x⃗β , fβ) satisfying fα∗(x⃗
(out)
β) = 1∧fβ(x⃗(out)

α∗) =
1, before the session has expired, forger B1 aborts.
• In the ℓ-th activation, B1 uses (DKx⃗α∗ ,DKfα∗) to de-

rive the broadcast message MSG∗
B ← ACME .Dec(DKx⃗α∗ ,

DKfα∗ , CTβ∗), where MSGB = (bid, Z, · · · ,Kα∗).
B1 generates the ephemeral DH shares (X1, X2) for
(α∗, bid, sid, x⃗α∗ , fα∗). B1 sets Mα∗ = (“α∗ →
β∗”, bid, sid,X1, X2, Z) and creates the tag σα∗ using Kα∗

on Mα∗ . B1 asks its challenger to return

CTα∗ = ACME .Enc(credα∗ , x⃗α∗ , fα∗ ,MSGα∗)

where MSGα∗ = (K∗,Mα∗) and K∗ is chosen by B1’s
challenger. Forger B1 sets CT∗ = CTα∗ .
• If adversary A sends (CT, · · ·) to β∗ where CT ̸= CT∗,

forger B1 makes a query to its decryption oracle ODec(·) on
input CT, and proceeds as usual after getting the response
from ODec(·).
• If adversary A sends (CT∗,M) to β∗, forger B1 issues a

query to its oracle OMAC to generate the tag σ∗ with regards
to K∗ and M . The restriction is that M does not contain
(bid, sid) of challenge session.
• When adversary A sends the tag σ∗ to the ℓ-th activation,

forger B1 outputs the tag σ∗ and the corresponding message
as its forgery.

Therefore, we have ϵ = Pr[B1 succeeds] ≥ 1
qI
Pr[E].

30

Given a forger B1, we now construct another adversary
B2 against the anonymous credential matchmaking encryption
scheme ACME in the security game, which is given the public
parameter pp and has access to the attribute/policy decryption
key generation and decryption oracle. When forger B1 asks
for a challenger with input participant α∗, adversary B2
randomly chooses two keys K0 and K1, and asks its challenger
with inputs (K0,Mα∗) and (K1,Mα∗). After obtaining the
challenge CT∗ (with respect to K0 or K1), adversary B2
sets CT∗ as forger B1’s challenge. When forger B1 makes
a query with a ciphertext CT ̸= CT∗, adversary B2 makes a
decryption query with input CT to its challenger. When forger
B1 makes an OMAC query on a message M , adversary B2
returns MAC.MAC(K0,M) to forger B1. Finally, if forger
B1 successfully makes a forgery MAC.MAC(K0,Mα∗), B2
outputs 0 meaning that CT∗ is an encryption of (K0,Mα∗).
Otherwise, if forger B1 fails to make a forgery, adversary B2
outputs 1, meaning that CT∗ is an encryption of (K1,Mα∗).
Hence, we have

AdvACME
B2

(λ)

= Pr[B2 outputs 0|b = 0] · Pr[b = 0] +

Pr[B2 outputs 0|b = 1] · Pr[b = 1]− 1

2

=
1

2
Pr[B1 succeeds|b = 0] +

1

2
(1− 1

2
Pr[B1 succeeds|b = 1])− 1

2

=
1

2
(Pr[B1 succeeds|b = 0]− Pr[B1 succeeds|b = 1])

=
1

2
(ϵ− AdvMAC

B1
(λ)).

The last line of the above equation is concluded from when
b = 0, forger B1 is in the forgery game, and when b = 1,
forger B1 is in the random message attack game.

Therefore, Hybrids H1 and H2 are computationally indis-
tinguishable.

Claim C.3. Hybrids H2 and H3 are computationally indis-
tinguishable when the hash function H is a random oracle.

Proof. Since in H2 we replaced Zx2 with a random value
hγ2 from G2, the probability that the adversary can make a
hash query H(Y x1 , hγ2) is negligible. When (Y x1 , hγ2) is not
queried, its hash value (i.e., the session key) is an unknown
random value to the adversary, same as in H3. The claim
follows.

Case 2: A has compromised z.
In this case, we rely on the ephemeral DH share y of the

server to ensure confidentiality of the session key. The security
proof is quite similar to that of Case 1. The hybrid experiments
are described below.
• Hybrid H0: This game is the same as a real interaction

with the PriSrv protocol.
• Hybrid H1: This game is the same as in Case 1, except

that Y x1 = Xy
1 is replaced by a random value in group G1.

• Hybrid H2: This game is the same as in Case 1.
• Hybrid H3: This game is the same as in Case 1.

It suffices to prove that the hybrids H0 and H1 are compu-
tationally indistinguishable.

Claim C.4. Hybrids H0 and H1 are computationally indis-
tinguishable if the DDH assumption holds in group G1.

Proof. The proof follows the same arguments as in Case 1
except that the DDH tuple (hz, hx2 , hγ2) on group G2 used
in the proof of the Case 1 is replaced by the DDH tuple
(gy, gx1 , gγ1) on group G1.

Integrating the above proofs for the two cases, we conclude
that PriSrv realizes secure service discovery with bilateral
control.

Lemma C.2. (Client anonymity) PriSrv protocol satisfies
client anonymity assuming the ACME scheme is private.

Proof. We define a simulator S that simulates the challenger
for the adversary A in the client anonymity security game.

At the beginning of the simulation, A submits a set of
identities (with attributes and policies) {(uidj , x⃗j , fj)}nj=1

for parties (P1, · · · , Pn), and two challenge tuples
(uid∗i0 , x⃗

∗
i0
, f∗

i0
) and (uid∗i1 , x⃗

∗
i1
, f∗

i1
), which are distinct

from {(uidj , x⃗j , fj)}nj=1.
We define a series of hybrid experiments. During the

protocol execution, the simulator responds to the adversary’s
queries according to these hybrid experiments.
• Hybrid H1: This is the real experiment Exp0, where

the simulator responds to adversary’s queries as described in
Exp0.
• Hybrid H2: This is the real experiment Exp1.

Next, we prove that Hybrids H1 and H2 are computationally
indistinguishable if the underlying ACME is private.

Let q be an upper bound on the number of sessions,
where A activates the test party PT as the responder (the
client). We define a sequence of q + 1 hybrid experiments
H1,0, · · · ,H1,q , where hybrid experiment H1,i is defined as
follows: H1,i is same as H1 except that for the first i times
when PT is activated as the responder (the client) of the
broadcast ciphertext, PT is instantiated using the credential
of (uid∗i1 , x⃗

∗
i1
, f∗

i1
) for generating the response message. In all

subsequent times, PT PT is instantiated using the credential
of (uid∗i0 , x⃗

∗
i0
, f∗

i0
).

By construction, H1 ≡ H1,0 and H2 ≡ H1,q . We prove that
for all i ∈ [q], hybrid H1,i−1 and H1,i are computationally
indistinguishable assuming that the ACME scheme is private.
Suppose A is able to distinguish H1,i−1 from H1,i, we use
A to construct an adversary B against ACME in the security
game.

First, B is given the public parameters mpk of the ACME
scheme. Then, B begins running A and obtains set of identities
(with attributes and policies) {(uidj , x⃗j , fj)}nj=1 for parties
(P1, · · · , Pn), and two challenge tuples (uid∗i0 , x⃗

∗
i0
, f∗

i0
) and

(uid∗i1 , x⃗
∗
i1
, f∗

i1
), which are distinct from {(uidj , x⃗j , fj)}nj=1.

31

B simulates the setup procedure in H1 by creating anony-
mous credentials, private attribute/policy keys for each party.
Then, B sends mpk to A and begins simulating the protocol
execution experiment for A.
• Server broadcast queries. These are handled exactly as

in H1 and H2.
• Client initialization queries. When A activates a client C

to respond to a broadcast (S, bid, x⃗s, fs), if C ̸= PT , algorithm
B simulates the response as in the real scheme. If C = PT ,
then let ℓ be the number of times A has activated PT to
respond to a broadcast. B queries the ACME key generation
or decryption oracle to obtain a decrypted broadcast message,
and performs the checks on the decrypted broadcast message.
B then proceeds as below.

- If ℓ < i − 1, B constructs the response message as
described in H2, that is using (uid∗i1 , x⃗

∗
i1
, f∗

i1
) in client’s

response message.
- If ℓ ≥ i, B constructs the response message as described in

H1, that is using (uid∗i0 , x⃗
∗
i0
, f∗

i0
) in client’s response message.

- If ℓ = i−1, B selects random DH shares x1, x2
$←− Z∗

p, and
generates a MAC key Ks. It submits (credi0 , x⃗

∗
i0
, f∗

i0
,MSGc)

and (credi1 , x⃗
∗
i1
, f∗

i1
,MSGc) to the ACME challenger, where

MSGc = (Ks,Mc), Mc = (“C → S”, bid, sid,X1 =
gx1 , X2 = hx2 , Z), credib is the anonymous credential for
uid∗ib , b ∈ {0, 1}. Then, it receives a ciphertext CT c from the
challenger. B runs MAC scheme to obtain σc from Kc and
Mc. B outputs the response (bid, sid, σc, CT c).
• Server response queries. When A delivers a message to

server, B responds as below.
- B parses A’s message as (bid, sid, σc, CTc).
- If B is in the pre-challenge phase, or if B is in the post-

challenge phase, and either CTc ̸= CT c or B is allowed
to obtain the decryption key for CTc, B queries the ACME
decryption or key generation oracle to decrypt CTc.

If B is in the post-challenge phase and CTc = CT c, B
simulates the response by using the MSGc = (Ks,Mc) it
has chosen for generating CT c.
• Client finish queries. These are handled exactly as in H1

and H2. They are independent of the ACME parameters.
• RevealState and RevealKey queries. These are handled

exactly as in H1 and H2.
• Corrupt queries. If A corrupts a party P ̸= PT , B queries

the ACME challenger for the private attribute/policy keys for
P , and returns the keys as well as ephemeral secrets in the
local storage of P to A.

At the end of the game, A outputs a guess for whether it
is in H1 or H2. B forwards the guess to its security game.

To complete the proof, we show that B is an elegible ACME
adversary in the privacy security game since B does not need
to request its challenger to decrypt the challenge ciphertext or
return secret keys that can decrypt the challenge ciphertext.

By construction, if B receives an encryption of
(uid∗i0 , x⃗

∗
i0
, f∗

i0
) from the ACME challenger, then it has

correctly simulated the client’s response queries according
to the specification of hybrid H1,i−1 for A. If it receives an
encryption of (uid∗i1 , x⃗

∗
i1
, f∗

i1
) from the ACME challenger,

then it has correctly simulated the client’s response queries
according to the specification of hybrid H1,i for A.

Hence, if the ACME is private, then H1 and H2 are
computationally indistinguishable.

Therefore, we have proved that PriSrv satisfies client
anonymity.

Lemma C.3. (Server anonymity) PriSrv protocol satisfies
server anonymity assuming the ACME scheme is private.

Proof. This proof is similar to the proof of client anonymity
(in Lemma F.7) except that PT initiates broadcast as a server
in the simulation. We omit the details of the proof for briefty.

32

