
Privacy-Preserving Multi-Party Search via
Homomorphic Encryption with Constant

Multiplicative Depth

Mihail-Iulian Pleşa1,2,3[0000−0001−5954−7199] and Ruxandra F.
Olimid1,2[0000−0003−3563−9851]

1 Department of Computer Science, University of Bucharest, Romania
2 Research Institute of the University of Bucharest (ICUB), Romania

3 Orange Services, Bucharest, Romania
mihail.plesa@orange.com, ruxandra.olimid@fmi.unibuc.ro

Abstract. We propose a privacy-preserving multiparty search protocol
using threshold-level homomorphic encryption, which we prove correct
and secure to honest but curious adversaries. Unlike existing approaches,
our protocol maintains a constant circuit depth. This feature enhances
its suitability for practical applications involving dynamic underlying
databases.

Keywords: Leveled Homomorphic Encryption (LHE) · Multi-Party Com-
putation (MPC) · Privacy-preserving searching

1 Introduction

In today’s data-driven world, vast amounts of information are generated and
stored across numerous distributed databases. These data sets, often scattered
across different organizations and geographical locations, hold immense potential
for valuable insights and analyses. However, the decentralized nature of this data
poses significant challenges for comprehensive analysis, as traditional methods
require data aggregation, which can be impractical because of privacy concerns
and regulatory constraints. Although last years’ advances made cryptographic
primitives such as Multi-Party Computation (MPC) and Homomorphic Encryp-
tion (HE) feasible and usable in many real-case scenarios, there is still room for
improvement.

Some industry-oriented applications include securely searching for an IP ad-
dress across multiple blocklists, sharing threat intelligence data to mitigate cy-
ber threats, conducting collaborative vulnerability assessments, and coordinat-
ing incident response efforts. Central to these applications is privacy-preserving
searching in a multi-party environment.

Contribution. We propose a protocol that allows one party to perform a search
over multiple independent databases. The security of our construction is based
on the threshold version of a Leveled Homomorphic Encryption (LHE) scheme [5,



2 M.I.Pleşa and R.F.Olimid

9, 8, 13, 11]. The primary distinction of our proposal, compared to other similar
solutions, is that our protocol employs a constant number of consecutive multipli-
cations, maintaining a constant multiplicative depth regardless of the database
size. This feature makes the protocol particularly well-suited for searches in
dynamic data sets, where the number of entries is continually changing. Our
contribution can be summarized as follows:

1. We introduce an algorithm with constant multiplicative depth for searching
the 0 element into a linear array;

2. We use the proposed algorithm as a building block to construct a multi-party
privacy-preserving searching protocol (based on LHE), which we prove secure
in the honest-but-curious model;

3. We compare our protocol with other solutions in terms of the complexity of
the searching algorithm, communication rounds, and multiplicative depth.

Outline. Section 2 presents the related works. Section 3 gives the necessary
background, including the description of an LHE scheme. Section 4 defines the
searching problem and discusses some general approaches to solving it. Section
5 introduces our protocol and gives the correctness and security proofs. Section
6 compares our proposal with existing protocols. The last section concludes and
points out further directions of research.

2 Related works

Searching over encrypted data has, at its core, efficient algorithms for secure
equality testing. Traditionally, these algorithms were based either on Homo-
morphic Encryption (HE) or on secure Multi-Party Computation (MPC) proto-
cols [24, 12]. Regarding searchable encryption based on HE, in [25], the authors
proposed a decentralized system for searching through genomic data using Fully
Homomorphic Encryption (FHE). In [23], the authors describe a system for per-
forming cloud-based computations of arbitrary depth over data under an FHE
scheme. To address the challenge of noise growth in encrypted data, the au-
thors utilized a specialized third-party equipped with hardware acceleration for
FV encryption and decryption [13]. In [2], the authors proposed a method for
searching over FHE-encrypted data realized by approximating the searching al-
gorithm with a polynomial of degree logarithmic in the size of the database.
Their method is based on the evaluation of the searching circuit over encrypted
data within multiple distinct finite fields of small characteristics.

There are also other solutions to the problem of privacy-preserving collabo-
rative analytics, based on garbled circuits and secret sharing [20, 6, 14, 22]. The
main difference between these approaches and the HE approach lies in their han-
dling of data and communication requirements. HE allows computations to be
performed directly on encrypted data, maintaining continuous data confidential-
ity with typically fewer communication rounds. In contrast, garbled circuits and
secret sharing require splitting the data into parts and distributing these parts



Privacy-Preserving Multi-Party Search 3

among multiple parties, which necessitates multiple rounds of communication
and interaction to perform computations and reconstruct the results.

Over the years, several surveys on searchable encryption have been pub-
lished [3, 7, 15, 4].

3 Preliminaries

3.1 Notations

Let Z+ be the set of positive integers, including 0. We represent uni-dimensional
arrays by bold values, e.g., v. We denote by x ←R X a uniformly random
sampling of x from the set X. Let λ be the security parameter. For (pk, sk) a
public-private key pair, let [m] be the encryption of m (we ignore to index by pk
for encryption and sk for decryption whenever this is clear from the context).
Similarly, [v] represents a uni-dimensional array of ciphertexts.

Let P = {P1, . . . , Pp} be the set of p, p ≥ 2, parties that take part in the
searching protocol. Without losing generality (after a possible reordering), let
P1 be the querying party. Each party owns a private database Di, i = 1, . . . , p,
which we assume to be in the form of a vector of elements.

3.2 Homomorphic encryption

Overview. Homomorphic Encryption (HE) is an encryption scheme that sup-
ports homomorphic operations on encrypted data without performing decryp-
tion. The multiplicative depth of a circuit is the maximum number of multipli-
cations along any path of the circuit and usually represents a bottleneck: a large
multiplicative depth normally conducts to large parameters and ciphertexts, thus
a high evaluation time.

A Fully HE (FHE) scheme allows any number of computations and the eval-
uation of arbitrary circuits of unbounded depth, while a Leveled HE (LHE)
allows a predetermined number of operations and, thus, the evaluation of cir-
cuits of bounded depth. LHE schemes have a larger ciphertext expansion, but
each operation is cheaper than in normal HE schemes [1].

Description. Let Π = (KeyGen,Enc,Dec) be an LHE scheme. Figure 1 defines
the main homomorphic operations supported by an LHE scheme.

Besides the public encryption key pk and the private decryption key sk, these
schemes employ a public evaluation key to facilitate homomorphic operations on
encrypted data. Specifically, there is a public evaluation key evk for homomor-
phic multiplication [9, 8, 13, 11]. Also, note that EvalSign is not a native homo-
morphic operation, but we include it in Figure 1 because of its significance in
our protocol. This functionality can be implemented using EvalAdd and EvalMul
through polynomial representation [16, 17].

In this paper, we explore the use of BGV, BFV, and CKKS schemes, any of
which can instantiate the proposed protocol [9, 8, 13, 11, 18], with CKKS being



4 M.I.Pleşa and R.F.Olimid

Let Π = (KeyGen,Enc,Dec) be an LHE scheme, where:

– KeyGen(1λ): on input the security parameter λ, it returns a pair (pk, sk) of
public-private keys and an evaluation key evk;

– Encpk(m) → [m]: on input the public key pk and a plaintext m, it returns a
ciphertext [m];

– Decsk([m])→ m′: on input the private key sk and a ciphertext [m], it returns
a plaintext m′ (m′ = m+ e for some small enough, acceptable error e).

Then Π supports the evaluations (in the following, we ignore the errors and use
the public key pk whenever no other key is explicitly mentioned):

1. EvalAdd ([m1], [m2])→ [m1+m2]: on input the ciphertexts [m1] and [m2] (the
encryption of two plaintexts m1 and m2 respectively), it returns [m1 +m2] a
valid encryption of m1 +m2;

2. EvalMulevk ([m1], [m2])→ [m1m2]: on input the ciphertexts [m1] and [m2] (the
encryption of two plaintexts m1 and m2, respectively), it returns a ciphertext
[m1m2] that encrypts m1m2;

3. EvalAddScalar ([m], α)→ [m+α]: on input the ciphertext [m] (the encryption
of a plaintext m) and the scalar α, it returns a ciphertext [m+α] that encrypts
m+ α;

4. EvalMulScalar ([m], α)→ [αm]: on input the ciphertexts [m] and the scalar α,
it returns a ciphertext [αm] that encrypts αm;

5. EvalSign ([m])→ [b]: on input a ciphertext [m] (the encryption of a plaintext
m), it returns [b], the encryption of a bit b indicating the sign of m: b = 0,
for m ≤ 0 and b = 1, otherwise.

Fig. 1. Leveled HE - Simplified description

distinct in its design to handle approximate data. The security of such schemes
is based on the Ring Learning With Errors problem (RLWE) [21]. Both BGV
and BFV are proven to be IND-CPA secure [9, 8, 13]. CKKS [11], with the modi-
fications in [18], has been proven to be IND-CPA-D secure, an IND-CPA variant
specific for approximate encryption [19]4.

Threshold LHE. Our protocol makes use of the Threshold FHE (TFHE) in-
troduced in [5]. In this context, the parties {P1, . . . , Pp} in P collaborate to
create a unique public encryption key pk, with each party receiving a distinct
share ski of the corresponding private key sk. Thus, the key generation algo-
rithm TFHE.KeyGen(setup) becomes a multi-party protocol in which every party

4 IND-CPA-D extends IND-CPA to capture resistance against passive attacks for ap-
proximate HE schemes by allowing access to a decryption oracle (in approximate
schemes the adversary does not have, by construction, the ability to decrypt even if
he/she knows the public key and the homomorphic computation being performed).
IND-CPA-D is equivalent to IND-CPA for exact HE schemes.



Privacy-Preserving Multi-Party Search 5

Pi, i = 1, . . . , p outputs the public key pk, the public evaluation key evk, and a
secret private-key share ski. The encryption and evaluation algorithms remain
the same as for the underlying FHE. The decryption algorithm also becomes
a multi-party protocol TFHE.Decsk1,...,skp([m]). Hence, TFHE.Dec enables the
decryption of a ciphertext [m] only when the parties in P allow decryption5.
Note that TFHE.Dec is asymmetric in the sense that at the end of the protocol,
only one party - the party that initiated the protocol - finds the plaintext (the
plaintext remains hidden for the other parties). TFHE is proven secure in the
Universal Composability (UC) framework [5].

4 The problem

4.1 Problem definition

Overview. A set of p ≥ 3 parties P = {P1, . . . , Pp} posses each a local database
D1, . . . ,Dp. One of these parties, called the querying party (let this party be
P1, without loss of generality after a possible reordering), wishes to search for
a particular element within the collection of all the other parties’ databases.
The problem asks for the search to be privacy-preserving, in the sense that
the queried element and the query result should remain hidden to all except the
querying party, and no other information (e.g., wrt the content of the databases)
must be disclosed. In particular, in case of a positive search result, the querying
party should not be able to identify the party (parties) that possess the queried
element.

We assume an honest-but-curious model, where each party follows the pro-
tocol correctly but is interested in learning as much as possible. In this model,
parties do not deviate from the protocol’s prescribed description; however, they
may attempt to infer additional information from the data they observe during
the execution of the protocol.

Privacy requirements. The privacy requirements are as follows, and they
should hold, at least up to a negligible probability:

1. The querying party P1 should learn nothing about the individual databases
D2, . . . ,Dp apart from the fact that the searched element exists or not in at
least one database (except its own D1).

2. Any database owner except the querying party P1 should learn nothing about
the searched element, the result of the protocol, or the individual databases.

3. Any coalition of parties that excludes the querying party P1 should learn
nothing about the searched element, the result of the protocol, or the indi-
vidual databases.

The third privacy requirement generalizes the second requirement, extend-
ing it from single parties to coalitions of parties, which only strengthens the
protocol’s security.
5 In fact, this is an all-or-nothing (i.e., the threshold equals the total number of parties)

decryption because all p parties need to cooperate.



6 M.I.Pleşa and R.F.Olimid

Operational requirements. We assume a dynamic setup in which participants
can join or leave the group at any time. Additionally, the local databases are
not static; they can undergo changes such as updates, deletions, and additions
of elements. Considering the dynamic nature of the group of participants, we
assume an appropriate key management system, which is beyond the scope of
this paper. For instance, when the group of parties is altered, the keys are re-
generated to ensure continued security and privacy.

4.2 Generic approaches to solve the problem

We discuss different approaches to solve the problem. We do not instantiate
these solutions but keep them in terms of generic cryptographic building blocks.

Multi-Party Computation (MPC). The problem reduces to a secure MPC proto-
col where each party inputs its array, and the querying party inputs the value to
be searched for. The output is 1 if there exists at least one party other than the
querying party that has the value of interest and 0 otherwise. A similar approach
can use the appurtenance of a set: all parties, except the querying party, com-
pute a joined (encrypted) database using MPC, and the querying party further
checks the appurtenance of the queried element to this set.

Private Set Intersection (PSI). The querying party inputs to a PSI protocol a set
containing the searched element only. To maintain the privacy of the searching
party, one might consider masking it within a vector populated with randomly
chosen elements that are guaranteed not to belong to the database, such as by
selecting elements outside a predefined range for the database entries. By con-
struction, the PSI protocol reveals only the intersection of the sets and nothing
else. This approach requires multi-party unbalanced PSI, a primitive that still
raises many open questions.

Simplified select query. More complex solutions based on garbled circuits and
secret sharing can also be employed for privacy-preserving general queries [20, 6,
14, 22]. Within this context, our problem can be formulated as a straightforward
membership query.

Our method. Our approach is modeled as a privacy-preserving searching prob-
lem based on leveled HE that requires a constant number of communication
rounds regardless of the number of parties or the dimension of their databases.
A comparison (e.g., in terms of performance evaluation) of our protocol with the
approaches mentioned above (e.g., a PSI-based solution) is left for future work.

5 Our protocol

5.1 0-searching algorithm

We introduce Algorithm 1 - 0SA for searching the 0 element within an arbitrary
array of length n with non-negative entries, v = (v1, v2, . . . , vn), vi ≥ 0. The



Privacy-Preserving Multi-Party Search 7

search algorithm receives as input the array v and outputs s, which is negative
or zero if the v contains at least one 0 and is strictly positive otherwise. We
define a function H : Z+ → {0, 1} as follows:

H (x) =

{
1, if x > 0,

0, otherwise.
(1)

Correctness (0SA). We consider the two possible cases: (a) v contains no 0
element, and (b) v contains at least one 0 element. (a) Suppose that the array v
contains no 0 elements (i.e., ∀vi ∈ v, vi ̸= 0). Then, s = n (1− r). Since r < 1, it
follows that s > 0. (b) Suppose that the array v contains k elements equal to 0,
1 ≤ k ≤ n. Then, s = (n− k)− nr. Since r ≥ n−1

n ≥ n−k
n , it follows that s ≤ 0.

The main advantage of the 0SA is that its circuit representation has a con-
stant multiplicative depth, given by the number of consecutive multiplications
used by the circuit that computes the function H. Since the number of con-
secutive multiplication is constant, the algorithm can be adapted to run over
encrypted data using an LHE scheme. Algorithm 2 - 0EncSA delineates the
procedure for searching over encrypted data by simply replacing the opera-
tions with the corresponding operations over ciphertexts (i.e., replaces sum with
EvalAddScalar and H with EvalSign) The algorithm takes as input an array of
ciphertexts and produces an encrypted result corresponding to the output of Al-
gorithm 1 - 0SA if it had been executed directly on the corresponding plaintext.

Algorithm 1 0-Searching algorithm (0SA)
Input: v
Output: s
r ←R

[
n−1
n

, 1
)

s =
n∑

i=1

(H (vi)− r).

return s

Algorithm 2 0-Searching algorithm over encrypted data (0EncSA)
Input: [v]
Output: [s]
r ←R

[
n−1
n

, 1
)

[s] = EvalSign ([v1])
[s] = EvalAddScalar ([s],−r)
for i = 2 to n do

[aux] = EvalSign ([vi])
[aux] = EvalAddScalar ([aux],−r)
[s] = EvalAdd ([s], [aux])

end for
return [s]



8 M.I.Pleşa and R.F.Olimid

Algorithm 3 Squared Euclidean distance over encrypted data (EuclDist)
Input: [m1],m2

Output:
[
(m1 −m2)

2]
m2 ← −m2

[c]← EvalAddScalar ([m1],m2)
[d]← EvalMul (c, c)
return [d]

Algorithm 4 Homomorphic sum of elements of an encrypted vector (SumVec)
Input: [m1], [m2], . . . , [mn]
Output: [m1 +m2 + · · ·+mn]
[s]← [m1]
for i = 2 to n do

[s]← EvalAdd ([s], [mi])
end for
return [s]

Note that 0EncSA requires computation over reals. Although many popular
HE schemes do not accept reals by construction, significant work has been done
regarding the processing of real numbers over encryption, with [11] containing a
nice discussion in this respect.

Note. The absence of negative elements simplifies the problem: if v is ordered,
comparing against the lowest element suffices. However, in our protocol, this
simplification does not apply. For each query, we compute the distance between
the encrypted query element and each database element, then search for 0 within
this array of distances. As the array changes with each query, the simplification
is inapplicable.

5.2 Protocol description

We generalize the 0-searching algorithm and present a protocol that allows
privacy-preserving decentralized searching of an arbitrary value in the settings
given in Section 4.1. The protocol is based on the threshold version of an FHE
scheme [5], as explained in Section 3.2. The protocol outputs 1 if there is any
database containing the query element and 0 otherwise.

We further assume that each database is a linear array of reals.6 The protocol
involves computing the squared Euclidean distance between two elements, one
of which (the queried element) is encrypted. This functionality can be imple-
mented using the homomorphic operations allowed by the scheme as described
in Algorithm 3 - EuclDist. Algorithm 4 - SumVec implements another requested
functionality: it computes the sum of a linear array over encrypted data.

6 We leave the translation from a database to a vector out of the scope of this paper.



Privacy-Preserving Multi-Party Search 9

1. Setup and Key Generation. The parties {P1, . . . , Pp} in P:
(a) Run the common setup.
(b) Run the TFHE.KeyGen(setup) to obtain a common public key pk, an

evaluation key evk and p private keys ski, i = 1, . . . , p.
2. Encrypted query. The querying party, P1:

(a) Runs TFHE.Encpk(m)→ [m] to encrypt the query m using the public key
pk.

(b) Sends the ciphertext [m] to each other party
P1 → Pj : [m], ∀j = 2, . . . , p .

3. Search. Each party, Pj , j = 2, . . . , p:
(a) Uses the Algorithm 3 to compute the squared Euclidean distance

between the encrypted query [m] and each plaintext element of the
database Dj

[dkj ] = EuclDist([m], Dk
j ), ∀Dk

j ∈ Dj .
(b) Runs the searching 0EncSA over the vector of encrypted squared

distances obtained in the previous step
[dj ] = 0EncSA([dj ]), where [dj ] = ([dkj ])k.

(c) Sends the encrypted result [dj ] back to the querying party P1

Pj → P1 : [dj ]
4. Compute final result. The querying party, P1:

(a) Runs EvalSign on each ciphertext received from the p − 1 par-
ties, and then homomorphically sums the resulting ciphertexts

[bj ] = EvalSign ([dj ]), 2 ≤ j ≤ p
[s] = SumVec ([b2], [b3], . . . , [bp])

(b) Involves in the threshold decryption protocol along the
other parties P2, . . . , Pp and decrypts the ciphertext [s]

s = TFHE.Decsk1,...,skp([s])
(c) If the result value s equals p − 1 then output 0; otherwise, output 1

Output 1− [s == p− 1]

Fig. 2. Our protocol on decentralized privacy-preserving searching

Figure 2 describes the protocol. The intuition of the protocol is as follows.
Given a database in the form of a linear array and a query element, each party
first computes the distance between the encryption of the queried element and
each element from the array. The outcome of this step is another array with
non-negative elements, which encrypts 0 strictly at every position where the
corresponding element from the database is equal to the query. The problem
is reduced, therefore, to determining if the encryption of 0 belongs to a linear
array with non-negative numbers. Our 0EncSA algorithm in Section 5.1 solves
this problem without using multiplication operations.

Note that at step 4(b), we use the p-out-of-p threshold version of the under-
lying leveled HE scheme, so the decryption implies the cooperation of all parties,
including the querying party P1.



10 M.I.Pleşa and R.F.Olimid

Theorem 1 (Correctness). The protocol described in Figure 2 outputs 1 if
there is at least one database with an entry equal to the query element and 0
otherwise.

Proof. By computing the EuclDist in Step 3.(a), a database owner Pj , 2 ≤ j ≤ p
obtains an array with encrypted non-negative entries. The array has the encryp-
tion of 0 in each position where the Euclidian distance is 0 (i.e., the element in
the database is equal to the querying element) and the encryption of a positive
number elsewhere. Thus, the problem of searching through the database is re-
duced to the problem of searching for the encryption of 0, which is solvable by
0EncSA. By construction, 0EncSA returns the encryption of a strictly positive
number if and only if the encryption of 0 is not within the elements of the en-
crypted database. Hence, in step 3.(c) each party Pj , 2 ≤ j ≤ p returns to P1

the encryption of a single element dj , with dj ≤ 0 if and only if Dj contains
the queried element m. After evaluating EvalSign function over all received en-
crypted results in step 4.(a), the querying party P1 obtains an encrypted vector
[b] that contains, on each position j, j = 2, . . . , p the encryption of bj = 0, if m
is in Dj and bj = 1, if m is not in Dj . Thus, [s] in step 4.(b) is the encryption of
s = p−1 if and only if no database D2, . . . ,Dp contains the querying element m.
[s] decrypts to s in step 4.(b). Finally, in step 4.(c), P1 outputs 0 if no database
D2, . . . ,Dp contains the querying element (i.e., s equals p− 1) and 1 otherwise.

⊓⊔

It is important to note that the protocol accommodates both insertions and
deletions for each database Di, i = 1 . . . p. This flexibility ensures that the pro-
tocol can handle dynamic data sets without compromising the security of the
overall system. This makes the protocol adaptable to various real-world appli-
cations where data is frequently changing.

5.3 Security Proof

Adversarial Model. To prove the security of our protocol, we use the Universal
Composability (UC) framework that allows the composition of distinct proto-
cols [10]. The framework delineates two types of executions: the real execution
and the ideal execution. In the real execution, the parties interact according to
the protocol in the presence of an adversary A and the environment Z. Con-
versely, in the ideal execution, the parties interact with an ideal functionality,
denoted as Fsearch, which implements the protocol using a Trusted Third Party
(TTP) in the presence of a simulated adversary S and the environment Z. A
protocol is considered secure if, for every adversary A in the real execution, there
exists a simulated adversary S in the ideal execution such that the environment
cannot distinguish between the real and ideal executions. We assume that all the
parties are honest-but-curious, meaning they adhere to the protocol specifica-
tions but are motivated to glean additional information beyond their prescribed
outputs (as explained in Section 4.1).

Theorem 2 (Security). The protocol in Figure 2 securely realizes Fsearch in
the presence of honest-but-curious adversaries.



Privacy-Preserving Multi-Party Search 11

Ideal functionality Fsearch

1. Each party Pi, i = 2, . . . , p securely sends the local database Di to the TTP.
2. The querying party P1 securely sends the queried element m to the TTP.
3. The TTP performs the search over all the databases Di, i = 2, . . . , p and

returns 1 if the queried element m is found and 0 otherwise.

Proof (Sketch). We prove that the environment Z cannot distinguish between
the real and the ideal executions, given the messages exchanged by the parties,
until the querying party runs the threshold decryption algorithm in step 4.(b).

In the real execution, the environment Z sees 2p− 2 messages:

1. The querying party P1 sends a ciphertext encrypting the searched element to
each of the p−1 database owners. These ciphertexts can be simulated by S by
p−1 ciphertexts of random values. Since the encryption scheme is IND-CPA
secure, the environment cannot distinguish between the ciphertexts.

2. Each database owner sends the output of the Algorithm 2 - 0EncSA. These
output ciphertexts can also be simulated by p − 1 encryption of random
elements because the encryption scheme is IND-CPA secure.

Given the fact that the threshold decryption algorithm used in step 4.(b)
is secure against honest-but-curious adversaries in the UC framework [5], we
conclude that our protocol in Figure 2 securely realizes Fsearch in the presence
of honest-but-curious adversaries.

6 Protocol evaluation

We compare our encrypted data searching algorithm, 0EncSA, detailed in Algo-
rithm 2, with the most cited privacy-preserving search solutions based on ho-
momorphic encryption (HE). Our comparison focuses on multiplicative depth,
communication rounds, and the complexity of the search algorithm. Although
our procedure is designed to search for the 0 element in a non-negative array,
it can be easily extended to search for any arbitrary value, as shown in Fig-
ure 2. The reason we look into the 0EncSA and not the final proposed protocol is
mainly because the other works do not give results in the multi-party settings.
Nevertheless, we are aware of the fact that the comparison might not be fair in
the sense that 0EncSA allows a particular search and does not accept, by itself,
general queries.

Table 1 summarizes the comparison with the protocols introduced in [25, 23,
2]. Multiplicative depth affects the running time due to linearly increasing noise,
necessitating costly bootstrapping operations. The number of communication
rounds impacts the network overhead and decides whether the participants must
be online. Finally, the complexity of the search algorithm influences the overall
efficiency of the solution. The most efficient protocol in terms of the searching



12 M.I.Pleşa and R.F.Olimid

Table 1. Comparison with related work

Ref. Communication
rounds

Multiplicative
depth

Overall Complexity

[25] O(m) O(m) O(n)
[23] O(1) O(m) O(n)
[2] O(1) O(log(log(m))) O(log(n))
Our protocol O(1) O(1) O(n)

∗n is the number of entries in the database; m is the length of the queried element

complexity is [2], while our approach demonstrates the highest efficiency in terms
of multiplicative depth. From a practical perspective, we conclude that Akavia
et al.’s protocol [2] is better suited for static large databases, while our proposal
is preferable for scenarios involving relatively small but dynamic databases.

7 Conclusions and future work

We proposed a new multi-party privacy-preserving searching protocol that main-
tains a constant multiplicative depth. We proved it correct and secure under the
honest-but-curious adversarial model. We compared our proposal with existing
works, highlighted its advantages, and concluded that it is appropriate for dy-
namic databases.

We have also briefly referred to generic approaches to solve the secure search
problem. A detailed analysis and comparison to other works is out of the current
goal, mostly because of the lack of space, but it is considered for an extension of
the paper. We thus postpone the implementation and the numeric performance
evaluation of the proposed solution for future work. It is also of interest to look
into the performance of the solution in real use cases such as, e.g., the IP address
search against multiple blocklists, as exemplified in the introduction.

Besides outputting a boolean result (1 if the element is found in any of the
party’s databases and 0 otherwise), our protocol can also number the parties that
have the queried element in their databases. This is easily reached by changing
the protocol’s output in the last step. Further investigation of this functionality
in different applications could be interesting. Finally, in the current definition,
the problem asks that the querying party P1 be internal to the set of parties.
Future work will look into solutions where the queries can also originate from
external parties.

Acknowledgements. This work was supported by a grant of the Ministry
of Research, Innovation and Digitalization, CNCS/CCCDI - UEFISCDI, project
number ERANET-CHISTERA-IV-PATTERN, within PNCDI IV.

References

1. Acar, Abbas and Aksu, Hidayet and Uluagac, A. Selcuk and Conti, Mauro: A



Privacy-Preserving Multi-Party Search 13

Survey on Homomorphic Encryption Schemes: Theory and Implementation. ACM
Comput. Surv. 51(4) (jul 2018). https://doi.org/{10.1145/3214303}

2. Akavia, Adi and Feldman, Dan and Shaul, Hayim: Secure search on encrypted data
via multi-ring sketch. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. pp. 985–1001 (2018)

3. Amorim, Ivone and Costa, Ivan: Leveraging Searchable Encryption through Ho-
momorphic Encryption: A Comprehensive Analysis. Mathematics 11(13) (2023).
https://doi.org/{10.3390/math11132948}

4. Andola, N., Gahlot, R., Yadav, V.K., Venkatesan, S., Verma, S.: Searchable en-
cryption on the cloud: a survey. The Journal of Supercomputing 78(7), 9952–9984
(2022)

5. Asharov, Gilad and Jain, Abhishek and López-Alt, Adriana and Tromer, Eran
and Vaikuntanathan, Vinod and Wichs, Daniel: Multiparty computation with low
communication, computation and interaction via threshold FHE. In: Advances
in Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-
19, 2012. Proceedings 31. pp. 483–501. Springer (2012)

6. Bater, Johes and Elliott, Gregory and Eggen, Craig and Goel, Satyender and Kho,
Abel and Rogers, Jennie: smcql: Secure Querying for Federated Databases. Pro-
ceedings of the VLDB Endowment 10(6) (2017)

7. Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable
encryption. ACM Computing Surveys (CSUR) 47(2), 1–51 (2014)

8. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Annual cryptology conference. pp. 868–886. Springer (2012)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT) 6(3), 1–36 (2014)

10. Canetti, Ran: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science. pp. 136–145. IEEE (2001)

11. Cheon, Jung Hee and Kim, Andrey and Kim, Miran and Song, Yongsoo: Ho-
momorphic encryption for arithmetic of approximate numbers. In: Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part I 23. pp. 409–437. Springer (2017)

12. Couteau, Geoffroy: New protocols for secure equality test and comparison. In:
International Conference on Applied Cryptography and Network Security. pp. 303–
320. Springer (2018)

13. Fan, Junfeng and Vercauteren, Frederik: Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive (2012)

14. Han, Feng and Zhang, Lan and Feng, Hanwen and Liu, Weiran and Li, Xiangyang:
Scape: Scalable collaborative analytics system on private database with mali-
cious security. In: 2022 IEEE 38th International Conference on Data Engineering
(ICDE). pp. 1740–1753. IEEE (2022)

15. Handa, R., Krishna, C.R., Aggarwal, N.: Searchable encryption: a survey on
privacy-preserving search schemes on encrypted outsourced data. Concurrency and
Computation: Practice and Experience 31(17), e5201 (2019)

16. Iliashenko, I., Zucca, V.: Faster homomorphic comparison operations for bgv and
bfv. Proceedings on Privacy Enhancing Technologies 2021(3), 246–264 (2021)

17. Lee, E., Lee, J.W., Kim, Y.S., No, J.S.: Optimization of homomorphic comparison
algorithm on rns-ckks scheme. IEEE Access 10, 26163–26176 (2022)



14 M.I.Pleşa and R.F.Olimid

18. Li, B., Micciancio, D., Schultz, M., Sorrell, J.: Securing approximate homomorphic
encryption using differential privacy. In: Annual International Cryptology Confer-
ence. pp. 560–589. Springer (2022)

19. Li, Baiyu and Micciancio, Daniele: On the security of homomorphic encryption
on approximate numbers. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 648–677. Springer (2021)

20. Liagouris, John and Kalavri, Vasiliki and Faisal, Muhammad and Varia, Mayank:
{SECRECY}: Secure collaborative analytics in untrusted clouds. In: 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23). pp.
1031–1056 (2023)

21. Lyubashevsky, Vadim and Peikert, Chris and Regev, Oded: On ideal lattices and
learning with errors over rings. In: Advances in Cryptology–EUROCRYPT 2010:
29th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29. pp.
1–23. Springer (2010)

22. Poddar, Rishabh and Kalra, Sukrit and Yanai, Avishay and Deng, Ryan and Popa,
Raluca Ada and Hellerstein, Joseph M: Senate: a Maliciously-Secure MPC plat-
form for collaborative analytics. In: 30th USENIX Security Symposium (USENIX
Security 21). pp. 2129–2146 (2021)

23. Roy, Sujoy Sinha and Vercauteren, Frederik and Vliegen, Jo and Verbauwhede,
Ingrid: Hardware assisted fully homomorphic function evaluation and encrypted
search. IEEE Transactions on Computers 66(9), 1562–1572 (2017)

24. Saha, Tushar Kanti and Koshiba, Takeshi: Private equality test using ring-LWE
somewhat homomorphic encryption. In: 2016 3rd Asia-Pacific World Congress on
Computer Science and Engineering (APWC on CSE). pp. 1–9. IEEE (2016)

25. Yamamoto, Yuri and Oguchi, Masato: A Decentralized System of Genome Secret
Search Implemented with Fully Homomorphic Encryption. In: 2017 IEEE Inter-
national Conference on Smart Computing (SMARTCOMP). vol. , pp. 1–6 (2017).
https://doi.org/{10.1109/SMARTCOMP.2017.7946977}


