
Siniel: Distributed Privacy-Preserving zkSNARK
Yunbo Yang1,2,3, Yuejia Cheng4, Kailun Wang5, Xiaoguo Li6, Jianfei Sun7,

Jiachen Shen2, XIaolei Dong2, Zhenfu Cao2, Guomin Yang7 and
Robert H. Deng7

1 State Key Laboratory of Blockchain and Data Security, Zhejiang University, Zhejiang, China
2 East China Normal University, Shanghai, China

3 Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security, Zhejiang,
China

4 Shanghai DeCareer Consulting Co., Ltd, Shanghai, China
5 Beijing Jiaotong University, Beijing, China

6 Chongqing University, Chongqing, China
7 Singapore Management University, Singapore

Abstract. Zero-knowledge Succinct Non-interactive Argument of Knowledge (zk-
SNARK) is a powerful cryptographic primitive, in which a prover convinces a verifier
that a given statement is true without leaking any additional information. However,
existing zkSNARKs suffer from high computation overhead in the proof generation.
This limits the applications of zkSNARKs, such as private payments, private smart
contracts, and anonymous credentials. Private delegation has become a prominent
way to accelerate proof generation.
In this work, we propose Siniel, an efficient private delegation framework for zk-
SNARKs constructed from polynomial interactive oracle proof (PIOP) and polynomial
commitment scheme (PCS). Our protocol allows a computationally limited prover
(a.k.a. delegator) to delegate its expensive prover computation to several workers
without leaking any information about the private witness. Most importantly, com-
pared with the recent work EOS (USENIX’23), the state-of-the-art zkSNARK prover
delegation framework, a prover in Siniel needs not to engage in the MPC protocol
after sending its shares of private witness. This means that a Siniel prover can
outsource the entire computation to the workers.
We compare Siniel with EOS and show significant performance advantages of the for-
mer. The experimental results show that, under low bandwidth conditions (10MBps),
Siniel saves about 16% time for delegators than that of EOS, whereas under high
bandwidth conditions (1000MBps), Siniel saves about 80% than EOS.
It is a preprint version of Siniel and this work will appear in NDSS 2025.
Keywords: Zero-knowledge Proofs · Secure Multiparty Computation · Private
Delegation

1 Introduction
Zero-knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK) is a funda-
mental cryptographic primitive. In the zero-knowledge proof, a prover P wants to convince
a verifier V some statements of the form ‘Given a function F and a public instance x, there

E-mail: 52215902015@stu.ecnu.edu.cn (Yunbo Yang), chengyuejia@foxmail.com (Yuejia Cheng),
wangkailun@bjtu.edu.cn (Kailun Wang), csxgli@cqu.edu.cn (Xiaoguo Li), jfsun@smu.edu.sg (Jianfei
Sun), jcshen@sei.ecnu.edu.cn (Jiachen Shen), dongxiaolei@sei.ecnu.edu.cn (XIaolei Dong), zfcao@se
i.ecnu.edu.cn (Zhenfu Cao), gmyang@smu.edu.sg (Guomin Yang), robertdeng@smu.edu.sg (Robert H.
Deng)

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-11-11.

mailto:52215902015@stu.ecnu.edu.cn
mailto:chengyuejia@foxmail.com
mailto:wangkailun@bjtu.edu.cn
mailto:csxgli@cqu.edu.cn
mailto:jfsun@smu.edu.sg
mailto:jcshen@sei.ecnu.edu.cn
mailto:dongxiaolei@sei.ecnu.edu.cn
mailto:zfcao@sei.ecnu.edu.cn
mailto:zfcao@sei.ecnu.edu.cn
mailto:gmyang@smu.edu.sg
mailto:robertdeng@smu.edu.sg
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 The iacrcc class

exists a private witness w such that F (x, w) = 1’. The function can be any computation
(in the NP space) such as the hash function, digital signature, and some other common
cryptographic operations. zkSNARK enjoys short proof size and fast verification time.
They are also considered one of the most promising approaches to real-world applications
such as private payments [SCG+14, GGM17], private smart contracts [BCG+20, KMS+16]
and anonymous credentials [DLFKP16, RWGM23].

Bünz [BFS20] pointed out that modern zkSNARKs are built from three components:
a polynomial interactive oracle proof (PIOP), a polynomial commitment scheme (PCS),
and the Fiat-Shamir transformation. At a high level, the function F is first represented as
an arithmetic circuit and then transformed into a constraint system that includes a set of
mathematical constraints, which is commonly encoded as a series of polynomials. Second,
a PIOP is designed to prove that a witness-instance pair satisfies the constraint system.
In this phase, a prover computes the prover polynomials, and a verifier has oracle access
to these prover polynomials. Third, the PIOP is compiled into an interactive argument
with PCS. In this phase, a prover sends commitments to the prover polynomials instead
of the polynomial itself and interacts with a verifier to prove that the given statement
is correct. Finally, the proof system can be made non-interactive with the Fiat-Shamir
transformation.

Unfortunately, the costly proof generation hinders zkSNARK’s practical deployment.
Specifically, its performance bottleneck comes from two parts. First, the arithmetic circuit
C representing computation F is often much larger and more complex than F itself. For
example, although computing SHA256 is extremely fast, we still need around 20,000
multiplication gates to express the SHA256 function. Second, most existing zkSNARKs
[WCM+20, GWC19, Gro16, BBB+18] generate proof over polynomials over large prime
fields, and the polynomial degrees are at least linear to the circuit size |C|. In addition,
provers also suffer from expensive operations over high-degree polynomials including
Fast Fourier Transform (FFT) and Multi-scalar Multiplication (MSM). The computation
complexity grows at least linearly in |C|. Moreover, MSM requires tens of field operations
for curve addition and thousands of field operations for multiplication by scalars [OB22],
while the computation complexity of FFT [CT65] is O(N log N), in which N is the number
of evaluation points. For example, we need to perform multiple heavy FFT and MSM
operations over polynomials with degrees around 20,000 for a SHA256 compression function,
which is unaffordable for a computationally limited device.

Private delegation [GS20, GSZ20, GLO+21], a special use case of secure multiparty
computation (MPC), is a way to resolve the above-mentioned issues, in which a com-
putationally limited device (e.g., mobile phone) can delegate its computation to several
powerful machines (i.e., workers) without leaking any additional information about its
input. Naturally, one may consider delegating the computationally expensive ‘zkSNARK
prover’ to several powerful machines. Yet, most existing works are either with weak
security, or inefficient in real-world applications. For example, Garg et al. [GGW23]
proposed zkSaaS, a general framework for private delegation. However, their protocol
only achieves security in the honest majority setting against semi-honest parties. If one
corrupted party conducts malicious behavior, the security of zkSaaS will be compromised.
Meanwhile, Garg et al. [GGJ+23] used homomorphic encryption to let a delegator directly
outsource the ciphertext of its witness to a server. However, the computation overhead of
homomorphic encryption is too high to be practical in real-world applications. Chiesa et al.
[CLMZ23] proposed EOS, a private delegation for zkSNARK prover. The EOS delegator
engages in the MPC protocol with workers to check the correctness of PIOP computation.
Yet, EOS suffers from high round complexity on the computationally limited delegator
side.

Naturally, we raise the following question:
Is there a general framework for the private delegation of zkSNARK prover that simulta-

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 3

neously achieves (1) no extra interaction during the online phase for the delegator, (2)
lightweight operations for the delegator, and (3) malicious security against workers?

1.1 Our Contributions
This paper proposes Siniel, a novel delegation framework of zkSNARK provers, to answer
the above question affirmatively. We summarize our contributions as follows:

• A New General Delegation Framework of zkSNARK Prover. We construct Siniel, a novel
general delegation framework of zkSNARK prover. Like EOS, this delegation framework
applies to all zkSNARKs built from PIOP and PCS. Siniel allows a computationally
limited prover to delegate the expensive proof generation to several powerful machines
without leaking any private information. Compared with EOS, the Siniel delegator
only requires offline computation and can delegate the entire computation to several
workers after sending its shares of witness without further interaction. In addition,
the security proof shows that Siniel is secure against malicious workers.

• A New ‘Consistency Checker’. EOS introduces the notion of a ‘consistency checker’
to enable the delegator to check the consistency of prover polynomials computed
by the workers. The consistency checker prevents an adversary from performing
maliciously during the online phase. However, the EOS delegator needs to perform the
consistency checker interactively after it receives all prover polynomials in each PIOP
round. To eliminate the interaction, Siniel proposes a new non-interactive consistency
checker, which is only executed by workers during the online phase. In brief, the
Siniel delegator generates some additional information (e.g., authentication tag and
authentication key) about the shares of the witness in the offline phase, and all workers
jointly verify that all PIOP computations and corresponding polynomial commitments
are consistent with shares of the private witness generated by the delegator. Therefore,
the delegator can delegate its entire proof generation to workers without any further
interaction during the online phase.

• Implementation and Evaluation Results. We conduct experiments to compare Siniel
with EOS in terms of the computation and communication overhead on the delegator
side with different bandwidths, and the computation overhead of the online phase on
the worker side. The experimental results show that compared with EOS, a delegator
utilizing Siniel only takes 6.5 seconds with 10MBps bandwidth to generate the proof
for the SHA256 compression function, compared with 8.8 seconds of EOS, while under
1000MBps bandwidth, the Siniel delegator takes 0.17 seconds compared with 2.07
seconds of EOS delegator. Moreover, the Siniel delegator does not engage in the MPC
protocol with workers. Therefore, the network is no longer a bottleneck for the private
delegation protocol, and workers do not need to wait for the response from the delegator.
Specifically, the Siniel consistency checker is only executed by the workers during
the online phase.

1.2 Use Cases of Siniel
We discuss some use cases in which Siniel can speed up proof generation while preserving
the privacy of the delegator.
Private Payment. Private payment is an essential part of web3 applications. However,
it is inefficient for a resource-constrained device to generate a zkSNARK proof. Although
powerful devices can help generate proofs, it is insecure for the resource-constrained device
to directly delegate its private key to the powerful devices. With Siniel, a computationally
limited device can outsource the proof generation to several powerful workers without
leaking any private information (i.e., private key). Hence, it significantly reduces the

4 The iacrcc class

time to complete a spend transaction and brings users a seamless experience similar to
centralized payment.
Decentralized Applications (dApps). As part of the Web3 ecosystem, dApps provide
decentralized services like DeFi, on-chain gaming, and digital identity management. We
take the digital identity as an example. In DID, users prove that they possess certain
attributes (e.g., being over 18 years old or having specific certifications) to access certain
services without leaking the private information. To achieve this, zkSNARK can help users
generate zero-knowledge proofs of their identity attributes without revealing the actual
data. However, it is inefficient for a computationally limited device to locally generate a
proof. With Siniel, such device outsource the proof generation to several powerful worker
to generate the final proof while preserving the privacy of the private information. This
can significantly reduce the time to generate zkSNARK proofs and allow more users to
participate in the web3 network.

1.3 Related Work
Private delegation [GS20, GSZ20, GLO+21] enables a party to delegate its computation
to several workers without leaking any additional information about its private input.
It is natural to consider delegating the ‘zkSNARK prover’ work to several workers. For
example, Ozdemir et al. [OB22] first constructed a delegation protocol in which a set of
parties with shares of the witness jointly generate proofs with respect to that witness.
They proposed protocols for three zkSNARKs [Gro16, WCM+20, GWC19] based on SPDZ
[DPSZ12], a dishonest majority MPC protocol with additive secret sharing, and GSZ
[GSZ20], an honest majority MPC protocol with guaranteed output delivery. Chiesa et al.
[CLMZ23] found that the delegation protocols of [OB22] rely on expensive cryptographic
primitives to ensure the correctness of protocol execution, and they optimized [OB22]
by introducing a ‘consistency checker’, in which a delegator participates in the MPC
protocol to check the consistency of prover polynomials. In addition, this protocol is secure
against any number of malicious adversaries. Although the security level of proposed Siniel
(i.e., honest marjority) is weaker than EOS (i.e., dishonest majority), it achieves better
usability and efficiency. Most importantly, the honest majority assumption is sufficient for
many real-world decentralized applications, where a dishonest majority threat model is
often unnecessarily strong. Siniel can be applied in decentralized systems with consensus
protocols that assume an honest majority, such as those with corruption thresholds up
to 1/3 for BFT or 1/2 for PoS/PoW, allowing efficient detection of malicious behavior
through voting.

In a concurrent and independent work of [CLMZ23], Grag et al. [GGJ+23] proposed
another private delegation of zkSNARK provers called zkSaaS. In zkSaaS, they design
several dedicated secure multiparty computation protocols for polynomial arithmetization
and MSM operations. However, this protocol is only secure under the honest majority
setting against semi-honest adversaries. The security level of zkSaaS (i.e., semi-honest
corruption) is weaker than that of Siniel (i.e., malicious corruption). Subsequently, Grag
et al. [GGW23] delegated the zkSNARK computation to a single untrusted server instead
of several servers based on fully homomorphic encryption (FHE). Compared with Siniel,
the FHE-based private delegation protocol is high in computation overhead and makes
this delegation protocol less practical in real-world applications.

Additionally, some works focus on distributed ZKP, in which it scales existing ZKP to
large circuits with several distributed algorithms. Namely, assume the size of the entire
circuit is N and a prover holds M machines participating in the protocol. After that, each
machine is responsible for generating a proof for a subcircuit of size T = N

M with a part of
the plain witness.

For example, DIZK [WZC+18] focused on delegating the prover computation to several
workers. However, the communication overhead of DIZK is linear in the circuit size. Then,

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 5

Xie et al. [XZC+22] proposed deVirgo, a distributed zero-knowledge proof protocol of Virgo
[ZXZS20]. However, deVirgo also has a linear communication cost among the workers, and
the proof size is relevant to the number of workers. Recently, Liu et al. proposed Pianist
[LXZ+24], a distributed zero-knowledge proof protocol of Plonk [GWC19], to improve the
overall performance of DIZK. Although these protocols do not hide the part of the witness
from each machine, they are still important as these protocols mentioned above focus on
optimizing the space complexity of each worker. Therefore, these works are complementary
to Siniel, as we can employ the techniques of distributed ZKP to improve the scalability of
Siniel, and also protect the privacy of the delegator.

2 Technical Overview

In this section, we first introduce the background of zkSNARKs. After that, we review
EOS and zkSaaS, two state-of-the-art private delegation protocols of zkSNARKs, as a
starting point for Siniel, and point out the disadvantages of both protocols. Finally, we
address these issues step-by-step.

2.1 Background: Design Paradigm for zkSNARKs

The design of the state-of-the-art zkSNARKs relies on two components, polynomial
interactive oracle proof and polynomial commitment scheme. In this subsection, we review
these components and show how to combine these two cryptographic primitives to obtain
zkSNARKs.
Polynomial Interactive Oracle Proof (PIOP) for a relation R = {(x, w)} is an
interactive proof with a tuple PIOP = (F, K, S, P, V) in which F is a finite field with a
large prime order, K is the total rounds of PIOP, S(j) is the number of prover polynomials
in the jth PIOP round. In each round, P receives a message from V and replies with S(j)
prover polynomials. Then, V can have oracle access to these prover polynomials with
several evaluation points. Finally, V decides whether to accept or reject based on the
response from the polynomial oracles.
Polynomial Commitment Scheme (PCS) allows a prover to first commit to a private
polynomial. Then the prover opens the polynomial at a given point along with an opening
proof. It is hard for a malicious prover to alter the private polynomial inside the public
commitment once committed. In this paper, we focus on the KZG polynomial commitment
scheme [KZG10].
Constructing zkSNARKs from PIOP and PCS. A zkSNARK in the random oracle
model for a relation R = {(x, w)} is a tuple of algorithms ARG = (G,P,V) defined as
below.

The interactive argument prover P and verifier V invoke PIOP prover P and verifier V,
respectively. In each PIOP round, P commits to the prover polynomials generated by P
using PCS.Commit. Then, P sends these commitments to V instead of the polynomial
oracles. After the PIOP phase, V invokes V to generate its query to polynomials inside
the commitments. P responds to the evaluation at the given query along with an opening
proof. Finally, V accepts or rejects based on the response.

In addition, one can apply the Fiat-Shamir transformation under the random oracle
model to achieve non-interactivity. The random oracle can be instantiated with a standard
cryptographic hash function.

6 The iacrcc class

2.2 Siniel: An Efficient Private Delegation Framework of zk-
SNARKs

Starting point: EOS and zkSaaS. First, we review the system model of EOS and
zkSaaS, as shown in Fig. 1.(a) and Fig. 1.(b), respectively.

EOS consists of an offline phase and an online phase. In the offline phase, a delegator
D prepares shares of the (private) witness and distributes each share to each worker, while
in the online phase, all workers jointly execute a predefined MPC protocol to generate the
final proof. In EOS, D is always online and needs to perform a consistency checker in
each PIOP round against malicious workers. D should wait for all workers to finish the
MPC computation before executing the consistency checker. These drawbacks limit the
applications of EOS.

zkSaaS also consists of an offline phase and an online phase. In the offline phase, a
delegator D generates shares of the private witness and outsources the entire zkSNARK
computation to several workers. In the online phase, all workers jointly generate the
final proof without any further interaction with D. However, this protocol is only secure
under an honest majority assumption with a semi-honest corruption model. If one of the
workers conducts malicious behavior, the security and privacy of the entire protocol will
be compromised.

Figure 1: System Model.

We show how to simultaneously overcome the limitations of EOS (i.e., excessive
interaction with the delegator) and zkSaaS (i.e., semi-honest security) below.
System Architecture of Siniel. We first introduce the system architecture of Siniel,
shown in Fig. 1.(c). Concretely speaking, a delegating prover (a.k.a. delegator D)
outsources its entire zkSNARK computation to a set of workers P1, P2, . . . , Pn. D will not
interact with workers during the online computation. In the offline phase, D generates
shares of the private witness and some additional information about the shares of the
private witness. Then, D distributes them to workers. In the online phase, each worker
executes the delegation protocol with its share of the private witness. All workers also
jointly conduct the consistency checker to check the protocol execution. Finally, if the
consistency checker passes, then they aggregate the final proof and forward it to D.

Siniel guarantees that the private witness w⃗ is completely hidden from all workers
if more than half of the workers are honest and do not collude with others. Malicious
workers can arbitrarily deviate from the protocol.

Next, we show how to simultaneously eliminate the online interaction with the delegator
and achieve malicious security step-by-step.
Step 1: Dividing Circuit for zkSNARK Computation into Multiple Chunks.
First, we divide the circuit for zkSNARK computation into three chunks, as shown in Fig.
2. The Siniel delegator first distributes each share of the private witness along with a
public instance to each worker. In the online phase (i.e., PIOP computation and proof
generation), each worker executes the computation with its share of the private witness.
Finally, all workers jointly reconstruct the final proof.

For the sake of simplicity, we first consider all workers to be semi-honest, in which each
semi-honest worker honestly follows the protocol but tries to get private information from
other honest workers.

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 7

First, each worker takes a share of the private witness and a public instance as inputs
to the PIOP circuit and outputs a share of prover polynomials. PIOP circuit only consists
of polynomial arithmetization so it only consists of addition and multiplication gates over
the finite field, which is referred to as AddF and MulF , respectively. In the PIOP circuit,
each worker locally computes the sum of shares and uses the Beaver multiplication protocol
to compute the multiplication of shares.

Second, each worker commits to all prover polynomials. This stage only consists of
addition and multiplication over an elliptic curve group, which is referred to as AddG and
MulG gates, respectively. It is natural that the worker can compute the AddG locally. The
worker can also compute the MulG locally as at least one of the inputs is public. Therefore,
each worker can locally compute the commitment to the shares of prover polynomials
without any further interaction.

Third, all workers share the same Fiat-Shamir randomness and get the same evaluation
point with a call to a random oracle. Each worker then evaluates the prover polynomials
at the evaluation point along with an opening polynomial. This part involves polynomial
arithmetization and only consists of AddF and MulF . After that, each worker commits to
the opening polynomial. This stage relies on operations over an elliptic curve and consists
of AddG and MulG. Finally, all workers jointly reconstruct the final proof with their
shares of the proof.
Step 2: Enforcing Malicious Security. Second, a malicious worker may conduct various
attacks in each chunk, as shown in Fig. 2. In this step, we introduce potential attacks in
each chunk. We address these potential attacks by introducing a novel consistency checker
in step 3.

Figure 2: Potenital Attacks on zkSNARK Circuit.

1. Inputs to PIOP Circuit: The potential attacks are as follows:

• Attack 1.1: Generate inconsistent commitment to a share of the private witness. A
malicious worker may first commit to an incorrect share. This will directly lead to
the failure of generating a wrong proof.

Therefore, before the PIOP computation, all workers should jointly verify that all commit-
ments are consistent with all shares of the private witness.
2. PIOP Computation: The potential attacks are as follows:

• Attack 2.1: Generate a consistent commitment to the share of the private witness
but use another share to execute the PIOP computation. A malicious worker may
first generate a consistent commitment to the share. After that, it tampers with the
share, takes the tampered share as input to the PIOP circuit, and honestly follows
the protocol. Chiesa et al. [CLMZ23] showed that this may leak some parts of the
private witness when the proof is invalid.
Let us take an example to illustrate this attack. Suppose three workers jointly
compute a final proof for a bit constraint b · (1− b) = 0 with additive secret sharing,
and the plain witness is b = 1. The delegator distributes a share [b]i of b = 1 to
worker Pi. Suppose P1 receives [b]1 = −1, P2 receives [b]2 = 1 and P3 receives [b]3 = 1
such that [b]1 + [b]2 + [b]3 = 1.

8 The iacrcc class

In the EOS setting (malicious majority), two of the workers are malicious and one is
honest. An adversary conducts an attack as follows: First, it controls P2, P3 and
sees their shares of the witness. It then guesses that the actual witness b is 1, and
infers that the share held by P1 is [b]1 = −1. After that, it can alter the shares held
by P2 and P3 to shares of b′ = 2. It sets [b′]2 = 2 and [b′]3 = 1. The share held by P1
is ‘obliviously’ changed to the share of b′ = 2. Then, the adversary honestly follows
the protocol but the final proof is invalid. This invalid proof reveals the information
about the original witness b.
This problem also occurs in the Siniel setting (honest majority with Shamir secret
sharing). Briefly speaking, suppose there are three workers, two of them are honest
and one is malicious. An adversary controls the malicious one. The adversary
holds the share held by the malicious worker and guesses the plain witness. It can
reconstruct the ‘guessed’ polynomial and infer ‘guessed’ shares held by the other two
honest workers. Then, it alters the share held by the malicious worker and honestly
follows the protocol. The shares held by two honest workers are ‘obliviously’ changed
to other shares of an invalid witness. Finally, the proof is also invalid and leaks some
information about the original witness.

• Attack 2.2: Deviate from the PIOP protocol. A malicious worker may arbitrarily
deviate from the PIOP computation and generate incorrect prover polynomials. This
will lead to the failure of generating a correct proof.

• Attack 2.3: Generate inconsistent commitments to the outputted prover polynomials.
A malicious worker may generate inconsistent commitments to the prover polynomial
or commit to other random polynomials. This will lead to the failure of generating a
correct proof.

Therefore, all workers should jointly verify (1) all prover polynomials generated by each
worker are consistent with the share of the private witness held by each worker (i.e., the
input is correct), (2) the PIOP computation is correct, and (3) all commitments generated
by each worker are consistent with all prover polynomials.
3. Proof Generation: In the third part, the potential attacks are as follows:

• Attack 3.1: Generate invalid final proofs. A malicious worker may output incor-
rect evaluations or corresponding opening proofs. It will lead to the failure of
reconstructing a correct proof.

Therefore, all workers should jointly verify the validity of the final proof.
Step 3: A non-interactive consistency checker for checkpoints. In this step, we
introduce the non-interactive consistency checker for the above-mentioned checkpoints.
Note that “non-interactive” means the consistency checker is only executed among workers
during the online phase.

For the first checkpoint (i.e., inputs to the PIOP circuit), we need to ensure that the
commitment to the input (share of witness) generated by each worker is consistent with the
share held by each worker. The delegator in Siniel generates some additional information
in the offline phase to help workers verify during the online phase. Technically, for the
witness w⃗, the delegator first generates a random element α, then computes w⃗(α), and
generates shares of w⃗(α). In the verification phase, each worker computes shares of witness
polynomials at α along with an evaluation proof. After that, they broadcast shares of
witness polynomials at α and recover the witness polynomials at α. We refer to it as
w⃗′(α). Finally they jointly recover w⃗(α), and check whether w⃗(α) = w⃗′(α) and that each
evaluation proof is valid. We refer to it as the witness consistency checker.

For the second checkpoint (i.e., PIOP computation), all workers jointly check that
(1) all prover polynomials are consistent with the shares of the private witness, (2) the

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 9

PIOP computation is correct, and (3) all commitments are consistent with the prover
polynomials. We introduce the authentication mechanism to add verifiability to all shares.
Technically, for each worker Pi, a delegator generates a share [w⃗]i of witness w⃗ along with an
authentication tag τ[w⃗]i

and two authentication keys µ, v[w⃗]i
such that τ[w⃗]i

= µ · [w⃗]i +v[w⃗]i
.

Then for every other worker Pj ̸= Pi, the delegator generates a share of authentication keys
[µ]j and v[w⃗]j

. The delegator distributes [w⃗]i along with τ[w⃗]i
to Pi, and distributes [µ]j and

v[w⃗]j
to Pj . A malicious worker Pi can forge a tag with only a negligible probability without

the authentication keys. In addition, PIOP only consists of addition and multiplication
over scalar fields, and both operations enjoy linear homomorphism. Therefore, each Pi can
locally update the corresponding authentication tag, while each Pj can locally update the
corresponding shares of authentication keys. We refer to it as the PIOP consistency
checker.

At the end of PIOP computation, suppose each worker Pi holds a prover polynomial
f(X) = f0 + f1 ·X + · · ·+ fd ·Xd along with corresponding tags τf0 , τf1 , . . . , τfd

, while
each other worker Pj holds corresponding authentication keys [µ]j , [v]f0 , [v]f1 , . . . , [v]fd

.
To check the correctness of the prover polynomial and the consistency of commitment,
each worker Pi acts as a prover, and all other workers Pj act as a verifier. First, Pj

sends a random challenge β to Pi. Pi responses f(β) along with corresponding tag
τf(β) = τf0 +τf1 ·β + · · ·+τfd

·βd and an opening proof. Each Pj updates the corresponding
authentication key as [vf(β)]j = [τf0]j + [vf1 · β]j + · · · + [vfd

· βd]j . Then all Pj jointly
reconstruct µ and vf(β) and verify whether the tag is consistent with the key such that
τf(β) = µ · f(β) + vf(β) and the opening proof is valid. The tag ensures that the prover
polynomial is consistent with the input share as well as the PIOP computation is correct,
while the opening proof ensures that the commitment is consistent with the prover
polynomial. We refer to it as the PIOP consistency checker.

The third checkpoint (i.e., proof generation) is straightforward. All workers jointly
reconstruct the final proof and then verify the validity of the final proof.
Final Protocol. In brief, the final protocol works as follows:
Setup. A trusted third party or an MPC ceremony is utilized to generate commitment key
ck.
Offline. A delegator D distributes a share of the witness along with the authentication tag
and some other additional information about the witness to Pi while distributing shares of
the authentication keys to other workers.
PIOP Computation.

• Invoke the Witness Consistency Checker. Upon generating commitments to all shares
of the private witness, all workers jointly invoke the witness consistency checker to
check the consistency of the commitment.

• PIOP Computation. Each worker computes the prover polynomials with a PIOP
circuit and commits to the prover polynomials. In addition, each worker also
updates the corresponding authentication tags, while each other worker updates the
corresponding authentication keys.

• Invoke the PIOP Consistency Checker. Each worker Pi and all other workers jointly
invoke the PIOP consistency checker to check the correctness of PIOP computation
and the consistency of the prover polynomials and the commitments.

Proof Generation. Each worker generates evaluations of prover polynomials along with
opening proofs. Then, all workers reconstruct the final proof. Finally, they verify the
validity of the final proof before sending it to the delegator.

By combining these optimizations, we propose Siniel, a novel private delegation protocol
of zkSNARK provers, that achieves no online interaction with the delegator as well as
malicious security.

10 The iacrcc class

3 Preliminaries
Notations. In this paper, we denote [s]i is a share of secret s held by the worker Pi, while
[s⃗]i is a share of a vector of secret s⃗ held by Pi. τw, µ, vw are denoted as the authentication
tag of the share w, the global authentication key, and the local authentication key of vw,
respectively. In addition, µ(i) means the global authentication key of the worker Pi. In
addition, n is the number of workers, while t is the maximum number of corrupted workers
(i.e., threshold).

3.1 Shamir Secret Sharing
In Siniel, we use the Shamir secret sharing (SSS) scheme. For a finite field Fp, a degree-t
secret sharing is a vector (s1, . . . , sn), which satisfies that, there exists a polynomial f of
degree at most t, such that f(0) = s. We denote each share of secret s held by worker Pi

as [s]i. Formally, a (t, n) threshold SSS consists of two algorithms:

• SSS.Share(t, n, s) → ([s]1, [s]2, . . . , [s]n) : Select a random polynomial f(x) = s +
a1x + a2x2 + . . . + at−1xt−1, where s is the secret. Choose n different values idi,
compute the value [s]i over f(x), set [s]i = f(idi). In default, we can use idi = i,
and each share has the form (i, [s]i). Usually, we write (i, [s]i) as [s]i for simplicity.

• SSS.Recover(t, n, ([s]1, [s]2, . . . , [s]n))→ s : Upon receiving ([s]1, [s]2, . . . , [s]n), inter-
polate as a polynomial f(x) over (xi, [s]i) for i ∈ [n],compute s = f(0).

Additionally, the Shamir shares of commitments and opening proofs lie in the exponen-
tiation of the generator. Therefore, we adopt the algorithm proposed by Applebaum et al.
[ANP23] to reconstruct the secret over the exponent with O(n) additions.

3.2 Multiparty Computation with Authentication Tags
Multiparty computation allows several parties to compute a given function without leaking
any additional information. Some existing MPC protocols [GSZ20] use the authentication
tag mechanism to enhance security. An authentication tag is a new way to commit to
shares generated by a dealer. It helps detect any dishonest parties who lie about their
shares during computation. This is necessary for the honest majority setting, where SSS is
used to do the secret sharing.

We use the idea of [RBO89] to instantiate the authentication tag. In more detail, a
worker Pi, acting as a prover, holds a share [x]i and an attached authentication tag τi,
while another worker Pj , acting as a verifier, holds the corresponding authentication key
(µ, v), such that τi = µ · [x]i + v. Pi is not able to tamper the share [x]i to another share
[x′]i without the authentication key (µ, v) except with negligible probability. For incorrect
shares, the verifier can easily detect and filter out.

In some previous works, the tag is locally computed by the dealer. In Siniel, the
delegator honestly follows the protocol in the offline phase. It can directly generate shares
of the private witness, and distribute authentication keys and tags to other workers. In
addition, with the nice linear homomorphism of the authentication tag, the prover and
the verifier can locally update authentication tags and authentication keys during the
MPC computation, respectively. At the end of the protocol, the verifier can check the
correctness of protocol execution by checking the corresponding authentication tags. The
protocol is executed correctly if the authentication tags of the final shares held by Pi are
consistent with the authentication keys held by Pv. Namely, in the Siniel setting, each
worker Pi acts as a prover with a share [w]i and corresponding tag τi, while each other
worker Pj acts as a verifier with a share of authentication tags [µ]j and [v]j . During the
PIOP computation, Pi updates authentication tags while each other worker Pj updates a

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 11

share of authentication keys, In the verification phase, Pi responds with a final share [x]i
along with a corresponding tag τi, then all Pj reconstruct authentication keys µ and v,
and check whether τi = µ · [x]i + v.

3.3 Beaver Triples
In SSS-based multiparty computation, a dealer shares a secret s and all parties compute
over the shares of secret s. Finally, they jointly aggregate the final results with their
computed shares. For the addition gate, it is cheap as all parties can locally compute
the sum of corresponding shares without any further interaction. Meanwhile, for the
multiplication gate, all parties should use the Beaver multiplication protocol to compute
the product of shares. Due to the space constraints, we refer readers to Appendix.A for
more details about the Beaver multiplication protocol.

3.4 Polynomial Commitment Scheme
In a polynomial commitment scheme (PCS), a sender first commits to a private polynomial
p, and later opens the polynomial p at a given point α. It should satisfy completeness and
knowledge soundness under the algebraic group model (AGM). In Siniel, we use the KZG
polynomial commitment scheme [KZG10] to instantiate the PCS, and KZG is a tuple of
algorithms (Setup, Commit, Open, V erify) defined as follows:

• KZG.Setup(1λ)→ ck : On input a security parameter λ, output a commitment key
ck.

• KZG.Commit(pub ck, priv p)→ pub C : On input ck and a private polynomial p,
output a public commitment C to p.

• KZG.Open(pub ck, priv p, pub C, pub point z)→ (pub v, pub π) : On input ck, p, C
and a given point z, output its public evaluation v = p(z) along with the opening
proof π.

• KZG.V erify(pub ck, pub π, pub C, pub v, pub z)→ 1/0 : On input ck, π, C, v = p(z)
and output accept (1) or reject (0) based on π.

3.5 Polynomial Interactive Oracle Proof
A polynomial interactive oracle proof (PIOP) for a relation R is an interactive proof with
a tuple PIOP = (F, K, S,P,V) in which F is a finite field, K is the total round of PIOP,
S(j) is the number of prover polynomials in the jth round, P and V are defined as below.

In each round j ∈ [K], P(F, x, w) receives a message µj ∈ F ∗ from V(x) and replies
with S(j) prover polynomials pj,1, . . . , pj,s(j). V then have oracle access to these prover
polynomials with several evaluation points. After the interaction, the verifier accepts or
rejects. The PIOP should satisfy perfect completeness, negligible knowledge soundness
error, and zero knowledge.

3.6 zkSNARK
A zkSNARK in the random oracle model is a tuple of algorithm ARG = (G,P,V) for a
relation R = {(x, w)} shown as follows.
Constructing zkSNARKs from PIOP and PCS. The interactive argument prover
P and verifier V invoke PIOP prover P and verifier V, respectively. In each round, P
commits to the prover polynomials generated by P using PCS.Commit instead of directly
sending the polynomial oracles. Then, P forwards these commitments to V. After the
interaction, V invokes V to generate its query to the committed polynomials. P responds

12 The iacrcc class

to the evaluation at the given query along with an opening proof. Finally, V accepts
or rejects based on the response. To get a zkSNARK, one can apply the Fiat-Shamir
transformation under the random oracle model. In addition, we can use any cryptographic
hash function to instantiate the random oracle.

4 Circuits for Common Operations
4.1 Circuit Model
Many efficient MPC protocols express a computation as an arithmetic circuit, only with
field addition and multiplication gates. In our case, the computation also requires elliptic
curve group arithmetic, random oracle as well as recovering the secret. The gates are
defined in Definition 1, while the gate executions are shown in Fig. 3, Fig. 4, Fig. 5.

The proof of KZG-based zkSNARKs includes three parts, commitments to the prover
polynomials, evaluations of the prover polynomials at given points, and opening proofs
to the evaluations. The commitments and opening proofs are group elements, while the
evaluations are scalar elements. In Siniel, each worker holds a share of these elements
after the MPC protocol. They aggregate these shares to get the final zkSNARK proof.
To recover various types of shares, we extend the EOS circuit model by introducing two
new gates, OutputF for scalar aggregation and OutputG for group element aggregation.
In addition, private visibility means that a worker holds a share of the secret, while public
visibility means that a worker holds a public value.

When evaluating the AddF and MulF , each worker Pi needs to compute its share [w]i
along with a corresponding authentication tag τ[w]i

, while other party Pj holds a share of
global authentication key [µ(i)]j and needs to compute a new authentication key [v[w]i

]j
corresponding to the share [w]i, such that τ[w]i

= µ(i) · [w]i + v[w]i
.

Definition 1. Let F be a finite field with a large prime p, G be the p−order subgroup of
an elliptic curve, and transcript stores all public values and is initialized empty. Then,
the circuit model consists of the following gates:

• AddF (wi ∈ F, wj ∈ F) → wk ∈ F : Set wk = wi + wj, where + denotes scalar
addition in F .

• MulF (wi ∈ F, wj ∈ F) → wk ∈ F : Set wk = wi · wj, where · denotes scalar
multiplication in F .

• AddG(wi ∈ G, wj ∈ G)→ wk ∈ G : Set wk = wi + wj, where + denotes addition in
G.

• MulG(wi ∈ F, wj ∈ G)→ wk ∈ G : Set wk = wi · wj, where · denotes multiplication
in G. In KZG circuits, wj ∈ G has public visibility.

• Reveal(wi)→ pub wi : Set wi public, and put it into the transcript.

• RO(public transcript) → pub wk = ρ(transcript) : Output a public random chal-
lenge wk with a call to the random oracle ρ, and add the output to transcript.

• OutputF ([wi] ∈ F)→ pub wi ∈ F : Get shares of wi ∈ F from at least t + 1 workers,
and recover wi ∈ G.

• OutputG([wi] ∈ G)→ pub wi ∈ G : Get shares of wi ∈ G from at least t + 1 workers,
and recover wi ∈ G.

The circuit model satisfies:

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 13

• Each wire takes an element in either F or G, and is either private or public. If the
input w is public, each party holds a publicly known value w, otherwise, each party
Pi holds a share [w]i of w.

• For every gate except Reveal, RO, and Output, the output wk is public if and only
if both wi and wj are public.

Each worker Pi and each other worker Pj (i ̸= j) proceed to each gate as follows:

• AddF (wa ∈ F, wb ∈ F)→ wc ∈ F :

– If wa and wb are both public, Pi locally computes pub wc = wa + wb, while
Pj does nothing.

– If wa and wb are both private, Pi locally computes priv [wc]i = [wa]i +[wb]i
and τ[wc]i

= τ[wa]i
+ τ[wb]i

, while Pj locally computes [v[wc]i
]j = [v[wa]i

]j +
[v[wb]i

]j .
– If wa is public and wb is private, then P1 sets [wc]1 = wa + [wb]1 and

τ[wc]1 = τ[wb]1 , other worker Pi sets [wc]i = [wb]i and τ[wc]i
= τ[wb]i

, while
Pj sets [v[wc]1]j = [v[wb]1]j − [µ(i)]j · wa and [v[wc]i

]j = [v[wb]i
]j .

• MulF (wa ∈ F, wb ∈ F)→ wc ∈ F :

– If wa and wb are both public, locally computes pub wc = wa · wb.
– If wa and wb are both private, Pi and Pj jointly compute priv [wc]i =

[wa · wb]i, τ[wc]i
and [v[wc]i

]j with the Beaver multiplication protocol as
shown in section 3.3.

– If wa is public and wb is private, Pi locally computes priv [wc]i = wa · [wb]i
and τ[wc]i

= wa · τ[wb]i
, while Pj locally computes [v[wc]i

]j = wa · [v[wb]i
].

Figure 3: Gate Execution of the Siniel Online Phase: AddF and MulF Operations.

Each worker Pi proceeds to each gate as follows:

• AddG(wa ∈ G, wb ∈ G)→ wc ∈ G :

– If wa and wb are both public, Pi computes pub wc = wa + wb.
– If wa and wb are both private, Pi computes priv [wc]i = [wa]i + [wb]i.
– If wa is public and wb is private, then P1 sets [wc]i = wa + [wb]i, while

other worker Pi sets [wc]i = [wb]i.

• MulG(wa ∈ F, wb ∈ G)→ wc ∈ G :

– If wa and wb are both public, Pi locally computes pub wc = wa · wb.
– If wa is private and wb is public, Pi locally computes priv [wc]i = [wa]i ·wb.

Figure 4: Gate Execution of the Siniel Online Phase: AddG and MulG Operations.

14 The iacrcc class

Each worker Pi proceeds to each gate as follows:

• Reveal(wa)→ wb :

– If wa is public, set wb = wa.
– If wa is private, make wa public, and set wb = wa.

• RO(transcript)→ wb = ρ(transcript) :
Set wb = ρ(transcript).

• OutputF ({[wa]i} ∈ F}i∈[n])→ wa ∈ F :
1. Pi broadcasts its share [wa]i ∈ F .
2. Upon receiving all shares, recover secret

wa = SSS.Recover(t, n, ([wa]1, [wa]2, . . . , [wi]n))

• OutputG({[wa]} ∈ G}i∈[n])→ wa ∈ G :
1. Pi broadcasts its share [wa]i ∈ G.
2. Upon receiving all shares, use algorithm in [ANP23] to recover wa ∈ G.

Figure 5: Gate Execution (Reveal, RO, OutputF and OutputG) of the Siniel Online Phase.

4.2 Circuit for PIOP
The fundamental objects in PIOP-based zkSNARKs are polynomial arithmetic. We now
describe efficient circuits for common operations. If one of the inputs to the PIOP circuit
is private, then the output is private. PIOP circuits include polynomial addition, FFT,
inverse FFT (IFFT), polynomial evaluation at a public point, polynomial multiplication,
and polynomial division. All operations in PIOP circuits are over gates AddF and MulF .
The difference from EOS is that we support multiplication between two polynomials with
any visibility. The circuits for PIOP are shown in Fig. 6.

4.3 Circuit for KZG
A circuit for the KZG polynomial commitment scheme consists of two operations: commit-
ting to a private polynomial and opening the committed private polynomial at a given
point. Except for evaluating the polynomial at a given point, all other KZG operations
are over the group element (AddG and MulG). Therefore, the MSM is the core building
block for KZG. In addition, the difference from EOS is that each party should reveal
its commitment to the shared polynomial once committed and its opening proofs once
evaluated. The circuits for KZG are shown in Fig. 7.

5 Consistency Checker for PIOPs
As described in the previous section, a corrupted worker may alter its share of witness and
generate the final proof with this invalid share. This may leak some parts of the private
witness and cause privacy leakage. In the Siniel setting, all workers should jointly verify
the correctness of the prover polynomials. In addition, the delegator does not engage in
the online phase after it distributes each share of the private witness to each worker.

Therefore, we introduce two consistency checkers named witness consistency checker and
PIOP consistency checker. The witness consistency checker checks that the commitment
to each share of witness is correct, while the PIOP consistency checker checks that (1).

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 15

PolyAdd(poly p1, poly p2)→ poly p3:
For i ∈ 0, . . . , d, set p3,i := AddF (p1,i, p2,i).
Claim 1: This circuit requires no interaction.

FFT (poly p1, pub subgroupH)→ {p(wj)}|H|−1
i=0 :

Compute the FFT with the standard algorithm [CT65], using only additions and
multiplications by public values.
Claim 2: This circuit requires no interaction.

IFFT (evaluations {p(wj)}|H|−1
i=0 , pub subgroup H)→ poly p:

Compute the IFFT with the standard algorithm [CT65], using only additions and
multiplications by public values.
Claim 3: This circuit requires no interaction.

PolyEval(poly p1, pub point z)→ poly p(z):
Set p(z) =

∑d
i=0 p1,i · zi

Claim 4: This circuit requires no interaction.

PolyMul(poly p1, poly p2)→ poly p3:
1. Construct a domain H with at least 2d + 1 points.
2. Compute e1 := FFT (p1, H) and e2 := FFT (p2, H).
3. Compute e3,i = MulF (e1,i, e2,i).
4. Compute p3 := IFFT (e3, H).
Claim 5: If both polynomials are private, This circuit requires one round of
interaction. otherwise, it requires no interaction.
Proof : If both polynomials are private, then we need to use Beaver multiplication
protocol to compute the MulF (e1,i, e2,i), which consists of one interaction round,
otherwise, they can locally compute the final results.

PolyDiv(poly p1, pub poly d)→ (q, r):
1. Obtain quotient q and remainder r via Euclidean division.
Claim 6: This circuit requires no interaction.

Figure 6: Circuit for PIOP

the prover polynomials are consistent with the input shares as well as the commitments,
and (2). the prover polynomial is correctly generated. The security models for the witness
consistency checker and PIOP consistency checker are shown in the Appendix.B.

5.1 Construction of Witness Consistency Checker
Before the PIOP computation, all workers jointly execute the witness consistency checker
to verify whether the commitment is consistent with the share of the private witness. The
protocol for the consistency checker is proposed in Fig. 8. The security proof for the
witness consistency checker protocol is given in Appendix.D.

In more detail, each worker Pi first broadcasts its share [α]i. Upon receiving all shares
of α from other workers, it broadcasts the evaluation [w⃗′(α)]i along with an opening
proof. After that, Pi aggregates the evaluation w⃗′(α) along with the opening proof, then
broadcasts its share [w⃗(α)]i.

Finally, upon receiving all shares of ⃗w(α) along with the opening proofs, then Pi checks
if w⃗′(α) = ⃗w(α) and the corresponding opening proof is valid. If at least t + 1 workers

16 The iacrcc class

MSM(priv c⃗ ∈ F d, pub G⃗ ∈ Gn)→ priv R ∈ G:
Output R :=

∑d
i=0 MulG(ci, Gi).

Claim 7: This circuit requires no interaction.
Proof : As is claimed above, one can locally compute the MulG gate without any
interaction.

KZG.Commit(pub ck, priv poly p)→ C:
1. Parse ck as {αi ·G}d

i=0.
2. C := MSM(p, {αi ·G}d

i=0).
3. Reveal(C).
Claim 8: This circuit requires one round of interaction.
Proof : Once a polynomial is committed, the party invokes the Reveal gate to
broadcast its commitment to the private polynomial.

KZG.Open(pub ck, priv poly p, pub C, pub point z)→
(v = p(z), proof π):
1. Compute priv v = p(z) = PolyEval(p, z).
2. Compute proof polynomial ŵ := PolyDiv(p− v, X − z).
3. Commit to ŵ as Ŵ = KZG.Commit(ck, w).
4. Reveal(v, π = Ŵ).
Claim 9: This circuit requires one round of interaction.
Proof : Once a polynomial is opened, the party invokes the Reveal gate to broadcast
its evaluation result v = p(z) along with the proof π.

Figure 7: Circuit for PCS

disagree with the verification, then the protocol outputs 0.

5.2 Construction of PIOP Consistency Checker
For each worker Pi, each other worker Pj acts as a verifier and runs the PIOP consistency
checker as shown in Fig. 9 to check the correctness of the PIOP computation executed by
Pi. The PIOP consistency checker checks that (1). the prover polynomials are computed
correctly with a given PIOP circuit; (2). the prover polynomials are consistent with the
input share of the private witness; (3). the commitments are consistent with the prover
polynomials. The security proof for the PIOP consistency checker protocol is given in
Appendix.E.

At a high level, the delegator distributes a share of the private witness along with
corresponding authentication tags to each worker Pi, while each other worker Pj gets a
share of the authentication keys. It is hard for Pi to generate another valid authentication
tag for another share without the corresponding authentication keys. With the linear
homomorphism of the authentication tag mechanism, during the PIOP computation,
each worker Pi updates its corresponding authentication tag, while each other worker Pj

updates the share of the authentication keys. Then, Pi generates commitments to the
prover polynomials.

After that, each worker Pi and all other workers jointly execute the PIOP consistency
checker as follows. For a sake of simplicity, we assume that Pi outputs a prover polynomial
f(X) = f0 + f1 ·X + · · ·+ fd ·Xd along with corresponding tags τf0 , τf1 , . . . , τfd

and a com-
mitment comf to f(X), while each other worker Pj outputs shares of final authentication
key [µ]j , [vf0]j , [vf1]j , . . . , [vfd

]j such that τfk
= µ · fk + vfk

, for each k ∈ [0..d].
First, all other workers send a random challenge β to Pi. Pi responses with an evaluation

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 17

Parameters:
[w⃗]i is the share of the private witness w⃗ held by Pi.
[w⃗]i(α) is the evaluation of the corresponding (share of) witness polynomial at point
α.
Protocol: Each worker Pi proceeds the protocol as follows:
1. Broadcast share [α]i, and recover α upon receiving all shares.
2. Compute the opening proof

([w⃗]i(α), π[w⃗]i
) := KZG.Open(ck, [w⃗]i, C[w⃗]i

, α)

3. Aggregate all shares of opening proof

Cw⃗ := OutputG(C[w⃗]i
)

w⃗′(α) := OutputF ([w⃗]i(α))

πw⃗ := OutputG(π[w⃗]i
)

4. Invoke Reveal([w⃗(α)]i), and computes

w⃗(α) := OutputF ([w⃗(α)]i)

5. Output 1 if w⃗′(α) = w⃗(α) and

KZG.V erify(ck, πw⃗, Cw⃗, w⃗(α), α) = 1

otherwise outputs 0.

Figure 8: The Protocol for Witness Consistency Checker πwcc

f(β), a corresponding authentication tag τf(β) = τf0 + τf1 · β + · · ·+ τfd
· βd, and a KZG

opening proof to the evaluation. Then, each other worker Pj updates the corresponding
authentication key as [vf(β)]j = [vf0]j + [vf1]j · β + · · ·+ [vfd

]j · βd. Finally, they jointly
reconstruct µ and vf(β), check whether τf(β) = µ · f(β) + vf(β) and the KZG opening proof
is valid.

The authentication tag mechanism ensures that the prover polynomials are computed
correctly with a given PIOP circuit and are consistent with the input shares, while the KZG
opening proof ensures that the commitments are consistent with the prover polynomials.

6 Siniel: Delegated zkSNARK
Siniel consists of setup, offline, PIOP computation, and proof generation phases, as shown
in Fig. 10, Fig. 11. Before PIOP computation, all workers invoke the witness consistency
checker to jointly verify that the commitments to the input shares are correct. At the end of
each PIOP round, each worker Pi proves to all other parties that its PIOP computation is
correct and all commitments to the prover polynomials are consistent. Finally, all workers
jointly open the prover polynomials at given evaluation points and generate corresponding
opening proofs. If more than t + 1 workers do not agree with the verification at any time,
then the protocol aborts. In addition, the security model and the security proof of Siniel
are shown in Appendix.C and Appendix.F, respectively.
Setup: A trusted setup will be performed to initialize the commitment key ck. This
operation will be performed only once as we can reuse ck in subsequent executions. This
stage can be securely implemented with an MPC ceremony.

18 The iacrcc class

Parameter:
S(t) is the number of prover polynomials in the tth PIOP round.
d is the maximum degree of prover polynomials.
comf(k) is the commitment to a prover polynomial f (k).
Protocol: For each worker Pi and each other worker Pj , they proceed the protocol
as follows:
1. All workers except Pi send a random challenge β to Pi.
2. Pi responses with (f (k)(β), τf(k)(β), πk) to each worker Pj , for each k ∈ S(t), in
which

(f (k)(β), πk) = KZG.Open(ck, f, com, β)

τf(k)(β) = τ
f

(k)
0

+ τ
f

(k)
1
· β + · · ·+ τ

f
(k)
d

· βd

3. For each k ∈ S(t), each Pj computes

[vf(k)(β)]j = [v
f

(k)
0

]j + [v
f

(k)
1

]j · β + · · ·+ [v
f

(k)
d

]j · βd

4. For each k ∈ S(t), all workers except Pi reconstruct the authentication key
(µ, vf(k)(β)), and verify whether

τf(k)(β) = µ · f (k)(β) + vf(k)(β)

KZG.V erify(ck, πk, comf(k) , f (k)(β), β) = accept

Figure 9: The Protocol for PIOP Consistency Checker πwcc

Setup: Run KZG.Setup(1λ)→ ck = (g, τ · g, τ2 · g, . . . , τ t · g).

Offline: For each worker Pi and each other worker Pj , D does the following:
1. Parse w as a vector w⃗, and generate share [w⃗]i of witness w⃗ with SSS.
2. Sample a random point α ← F , and compute w⃗(α) with barycentric evaluation
[LQ23] in O(n) field operations, and generate share [w⃗(α)]i and [α]i.
3. Choose a global authentication key µ(i) and for each [wk]i ∈ [w⃗]i choose a local
authentication key v[wk]i

.
4. For each [wk]i ∈ [w⃗]i, compute τ[wk]i

= µ(i) · [wk]i + v[wk]i
, generates shares [µ(i)]j

and [v[wk]i
]j .

5. Generate a sufficient number of Beaver triples {([am]i, [bm]i, [cm]i)}m∈[γ·CMul], in
which γ is a predefined constant, CMul is the number of MulF .
6. Generate corresponding authentication keys {(v[am]i

, v[bm]i
, v[cm]i

)}m∈[γ·CMul] and
authentication tags {(τ[am]i

= µ(i) · [am]i + v[am]i
, τ[bm]i

= µ(i) · [bm]i + v[bm]i
, τ[cm]i

=
µ(i) · [cm]i + v[cm]i

)}m∈[γ·CMul].
7. Generate shares of corresponding keys {([v[am]i

]j , [v[bm]i
]j , [v[cm]i

]j)}m∈[γ·CMul].
8. Send ([α]i, x, [w⃗]i, [w⃗(α)]i, {τ[wk]i

}[wk]i∈[w⃗]i
, {([am]i, [bm]i, [cm]i)}m∈[γ·CMul],

{(τ[am]i
, τ[bm]i

, τ[cm]i
}m∈[γ·CMul]) to Pi, and ([µ(i)]j , {[v[wk]i

]j}[wk]i∈[w⃗]i

, {([v[am]i
]j , [v[bm]i

]j , [v[cm]i
]j)}m∈[γ·CMul]) to Pj .

Figure 10: Siniel Construction: Setup and Offline Phase

Offline: The delegator distributes a share of the private witness along with authentication
tags to each worker Pi and sends the share of the authentication keys to each other worker

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 19

PIOP Computation:
1. Each worker Pi does the following:
1.1 Initialize transcript = x, and prover state stp = (x, [w⃗]i).
1.2 Pi sets the round j = 1, and total PIOP round is K.
1.3 Compute commitment to shares of witness: C⃗[w⃗]i

:= KZG.Commit([w⃗]i, ck).
2. All workers invoke the ideal functionality Fwcc of the witness consistency checker
as shown in Fig. 14, each Pi takes ([w⃗]i, [w⃗]i(α), C⃗[w⃗]i

, [α]i) as inputs; if Fwcc outputs
0, then the protocol aborts.
3. For each k ∈ K, each worker Pi and each other worker Pj do the following:
3.1 Pi computes βk := RO(transcript) as randomness of the PIOP verifier V.
3.2 Pi computes prover polynomials [p⃗k]i with the PIOP prover P:
(stp, [p⃗k]i) := P(stp, βk), and updates corresponding authentication tags τ[p⃗k]i

,
while Pj updates corresponding authentication keys ([µ(i)]j , [v[p⃗k]i

]j), as shown in Fig.
??.
3.3 Pi commits to all prover polynomials: C⃗[p⃗k]i

:= KZG.Commit([p⃗k]i, ck).
3.4 Pi and all other workers invoke the ideal functionality Fpcc of the PIOP consistency
checker as shown in Fig. 15. Pi takes (ck, x, [w⃗]i, τ[w⃗]i

, [p⃗k]i, τ[p⃗k]i
, C⃗[p⃗k]i

) as inputs,
while each Pj takes ([µ(i)]j , [v[p⃗k]i

]j) as inputs; if Fpcc outputs 0, then the protocol
aborts.
3.5 Set k = k + 1.

Proof Generation: For each k ∈ [K], each worker Pi does the following:
1. Compute query set Q := RO(transcript), and evaluate shared polynomials at Q,
compute proofs as

([p⃗k]i(Q), π[p⃗k]i
) := KZG.Open(ck, [p⃗k]i, C[p⃗k]i

, Q)

2. Aggregate all shares of proofs Cp⃗k
:= OutputG(C[p⃗k]i

), p⃗k(Q) := OutputF ([p⃗k]i(Q)),
and πp⃗k

:= OutputG(π[p⃗k]i
).

3. Check whether V outputs accept and KZG.V erify(ck, πp⃗k
, Cp⃗k

, p⃗k(Q), Q) = 1.
If at least t + 1 workers do not agree with the verification, then the protocol aborts.
Otherwise, for each k ∈ [K], assemble and send the proof (Cp⃗k

, p⃗k(Q), πp⃗k
) to D.

Figure 11: Siniel Construction: PIOP Computation and Proof Generation

Pj . The authentication mechanism ensures that a malicious worker Pi is hard to alter
the share and generate a valid authentication tag without the authentication keys. To
compute the Beaver multiplication protocol, the delegator generates Beaver triples, the
corresponding authentication tags, and authentication keys. In addition, the delegator
also generates some additional information about the private witness to help all workers
execute the witness consistency checker.
PIOP Computation: PIOP computation consists of three stages. First, all workers
jointly execute the witness consistency checker to ensure that each worker uses the correct
share of the private witness to generate the initial commitment. Second, all workers jointly
execute the PIOP computation and commit to the prover polynomials. At the end of each
PIOP round, each worker Pi and all other workers execute the PIOP consistency checker
to ensure the correctness of the PIOP computation and the consistency of commitments.
Proof Generation: If both verifications pass in the PIOP computation, each worker Pi

first applies the Fiat-Shamir transformation for public randomness to get evaluation points.
Then, Pi computes evaluations of the prover polynomials along with opening proofs. After
that, all workers jointly reconstruct the final proof and verify its validity. If at least t + 1
workers agree with the verification, then all workers send the final proof to the delegator.

20 The iacrcc class

(a) 10MBps (b) 100MBps (c) 1000MBps

Figure 12: Running time of the naive Marlin prover, EOS delegator, and Siniel delegator
under different network bandwidths.

(a) 10MBps (b) 100MBps (c) 1000MBps

Figure 13: Running time of the EOS worker and Siniel worker under different network
bandwidths.

7 Implementation and Performance

7.1 Experimental Setup
We use one delegator and three workers in the experiment. In the private delegation of
zkSNARK like Siniel and EOS, an excessive number of workers would significantly increase
the cost, and thus sacrifice the efficiency of the entire system. A small number of workers
is often optimal as it balances efficiency and security without overburdening the delegator.
Therefore, we set the number of workers to three, which is the minimum required for an
honest majority setting.
Implementation. We use the arkworks library [ark] as a baseline to implement Siniel and
EOS. The Marlin code is open-sourced. All implementations are written in Rust. Different
from the basic operations including addition, multiplication and MSM in the original
arkworks library, all operations in Siniel and EOS are over shares. Therefore, we modify
the arkworks library to accommodate our settings as follows. First, we add codes for
Shamir secret sharing to share the private witness and reconstruct the secret. These codes
include operations over scalar elements and group elements. Second, we add codes for
multiplication of two shares. These codes include generating Beaver triples and executing
Beaver multiplication protocol. Third, based on the codes for share multiplication, we add
codes for shared polynomial arithmetizations including addition and multiplication.
Evaluation. The delegator is an AWS c5a.4xlarge instance with 32 GB of RAM and
an AMD EPYC 7R32 CPU at 3.3 GHz with 16 cores, while all three workers are AWS
c5a.8xlarge instances with 64GB of RAM and an AMD EPYC 7R32 CPU at 3.3 GHz with
32 cores. We measure the private delegation of the Marlin prover with different circuit
sizes (from 212 to 220). We evaluate the performance with different bandwidths (10MBps,
100MBps, 1000MBps). We evaluate both EOS and Siniel for ten times, and take the
average as the final result. The round-trip latency is only for the setup phase, and we did
not include it in the time for online proof-generation. Therefore, the total running time of

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 21

Siniel and EOS includes the online communication time as well as the computation time.

7.2 Cost of the Delegator
In this subsection, we measure the running time of the delegator, as shown in Fig. 12
under different network bandwidths (10MBps, 100MBps, 1000MBps). The naive Marlin is
the baseline that a delegator directly runs the Marlin computation without outsourcing its
computation to several workers.

The running time of the Siniel delegator is much faster than that of the EOS delegator
and naive Marlin prover. For example, for circuit size 220 and network bandwidth
10MBps, Siniel completes in 419 seconds compared to the naive Marlin’s 1549 seconds,
an approximate 3-fold speedup, and compared to the EOS’s 503 seconds, an approximate
1.2-fold speedup. As the network bandwidth grows, the Siniel delegator spends less time
than the EOS delegator. This is because the running time of the EOS delegator consists
of two parts, the preprocessing phase, in which the delegator distributes the share of the
private witness, and the online phase, in which the delegator engages the computation with
workers to check the PIOP computation, while that of the Siniel delegator only consists of
the preprocessing phase. In EOS, the delegator should engage in the MPC computation for
the PIOP consistency checker and wait for workers to finish the computation. Meanwhile,
the Siniel delegator can entirely outsource the zkSNARK computation to several
workers without any further interaction. The communication overhead of Siniel is a major
bottleneck under low network bandwidth since the communication overhead of Siniel
consists of Beaver triples, authentication keys, authentication tags, and shares of the
private witness, while that of EOS consists of shares of the private witness.

First, the Siniel delegator distributes tags and keys to workers to help them verify
the correctness of zkSNARK computation. Compared with EOS, no further interaction
is needed for the delegator during the online phase. On the other hand, EOS adopts a
technique to reduce the communication overhead in which a delegator sends a full share
of witness to a single party while others get PRG seeds. This reduces communication
overhead from O(n|w⃗|) to O(|w⃗|), in which n is the number of workers and |w⃗| is the length
of witness. However, this technique is only applicable for additive secret sharing rather
than Shamir secret sharing. In addition, offline time includes the time to generate shares
of the private witness and send the shares to all workers, and it is mainly determined
by the worker receiving the largest amount of communication. In EOS, all workers must
wait until one worker receives the entire share before the online phase, while in Siniel, D
concurrently sends each share along with corresponding authentication keys and tags to
each worker.

7.3 Cost of the Worker
In this subsection, we evaluate the running time of the worker in the online phase, as
shown in Fig. 13. The experimental results show that the Siniel workers consume less time
than EOS workers in the low bandwidth environment (i.e., 10MBps), while Siniel workers
consume more time in the high bandwidth environment (i.e., 1000MBps). For example,
for the circuit size 220 and 10MBPS network bandwidth, Siniel and EOS spend around
130 and 400 seconds, respectively, while Siniel and EOS respectively spend around 79 and
70 seconds for the circuit size 220 and 1000MBPS network bandwidth.

The running time of the EOS worker consists of online MPC computation as well as
the time to wait for delegator verification. As the verification for the delegator is very fast,
the communication overhead becomes a major bottleneck in low network bandwidth (i.e.,
10MBps). On the other hand, in Siniel, the verification for the delegator is replaced with
wcc and pcc executed by the workers. In the high network bandwidth, the time to transfer

22 The iacrcc class

data in the online phase can be neglected. Therefore, the communication is no longer the
bottleneck for EOS workers.

Compared with EOS, Siniel should execute two additional consistency checkers to
ensure the correctness of zkSNARK computation. The communication overhead of wcc
and pcc is negligible as it only consists of a few elements. Thus, both checkers are not
limited to the network bandwidth.

References
[ANP23] Benny Applebaum, Oded Nir, and Benny Pinkas. How to recover a secret

with o(n) additions. In Advances in Cryptology (CRYPTO), pages 236–262,
2023.

[ark] A. developers. arkworks, 2020. In https://github.com/arkworks-rs.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In IEEE Symposium on Security and Privacy (SP), pages 315–334,
2018.

[BCG+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra,
and Howard Wu. Zexe: Enabling decentralized private computation. In IEEE
Symposium on Security and Privacy (SP), pages 947–964, 2020.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from
dark compilers. In Advances in Cryptology (EUROCRYPT), pages 677–706,
2020.

[CLMZ23] Alessandro Chiesa, Ryan Lehmkuhl, Pratyush Mishra, and Yinuo Zhang. Eos:
Efficient private delegation of zksnark provers. In USENIX Security, pages
6453–6469, 2023.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[DLFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan
Parno. Cinderella: Turning shabby x. 509 certificates into elegant anonymous
credentials with the magic of verifiable computation. In IEEE Symposium on
Security and Privacy (SP), pages 235–254, 2016.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Annual
International Cryptology Conference (CRYPTO), pages 643–662, 2012.

[GGJ+23] Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and
Sruthi Sekar. zksaas: Zero-knowledge snarks as a service. pages 4427–4444,
2023.

[GGM17] Christina Garman, Matthew Green, and Ian Miers. Accountable privacy for
decentralized anonymous payments. In Financial Cryptography and Data
Security (FC), pages 81–98, 2017.

[GGW23] Sanjam Garg, Aarushi Goel, and Mingyuan Wang. How to prove statements
obliviously? Cryptology ePrint Archive, 2023.

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 23

[GLO+21] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and
Yifan Song. Atlas: efficient and scalable mpc in the honest majority setting.
In Annual International Cryptology Conference (CRYPTO), pages 244–274,
2021.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Advances in Cryptology (EUROCRYPT), pages 305–326, 2016.

[GS20] Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority
mpc. pages 618–646, 2020.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes
free in honest majority mpc. In Annual International Cryptology Conference
(CRYPTO), pages 618–646, 2020.

[GWC19] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, 2019.

[KMS+16] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In IEEE Symposium on Security and Privacy
(SP), pages 839–858, 2016.

[KZG10] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Advances in Cryptology
(ASIACRYPT), pages 177–194, 2010.

[LQ23] Jin Li and Jinzheng Qu. Barycentric lagrange interpolation collocation method
for solving the sine–gordon equation. Wave Motion, 120:103159, 2023.

[LXZ+24] Tianyi Liu, Tiancheng Xie, Jiaheng Zhang, Dawn Song, and Yupeng Zhang.
Pianist: Scalable zkrollups via fully distributed zero-knowledge proofs. IEEE
Symposium on Security and Privacy (SP), pages 35–35, 2024.

[OB22] Alex Ozdemir and Dan Boneh. Experimenting with collaborative zk-snarks
zero-knowledge proofs for distributed secrets. In USENIX Security, pages
4291–4308, 2022.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. In Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pages 73–85, 1989.

[RWGM23] Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers. zk-
creds: Flexible anonymous credentials from zksnarks and existing identity
infrastructure. In IEEE Symposium on Security and Privacy (SP), pages
790–808, 2023.

[SCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In IEEE Symposium on Security and Privacy (SP),
pages 459–474, 2014.

[WCM+20] Nicholas Ward, Alessandro Chiesa, Pratyush Mishra, Yuncong Hu, Noah
Vesely, and Mary Maller. Marlin: Preprocessing zksnarks with universal and
updatable srs. pages 738–768, 2020.

24 The iacrcc class

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion
Stoica. {DIZK}: A distributed zero knowledge proof system. In USENIX
Security, pages 675–692, 2018.

[XZC+22] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. zkbridge: Trustless cross-chain
bridges made practical. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 3003–3017, 2022.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent
polynomial delegation and its applications to zero knowledge proof. In IEEE
Symposium on Security and Privacy (SP), pages 859–876, 2020.

Appendix

A Beaver Multiplication
Suppose there exists a trusted third party (or a secure protocol) in the preprocessing phase
to generate a Beaver triple ([a]i, [b]i, [c]i) such that c = a · b. Then every party Pi holds a
Beaver triple ([a]i, [b]i, [c]i). For two private inputs ([x]i, [y]i), Pi executes the following
step to get [x · y]i.

• Locally compute
[A]i = [x]i − [a]i = [x− a]i

[B]i = [y]i − [b]i = [y − b]i

• Open [A]i, [B]i to let all parties learn A = x + a, B = y + b.

• Let all workers compute

[z]i = A · [b]i + B · [a]i + [c]i + A ·B

In addition, in the Siniel setting, except for computing the share, each Pi needs to
compute a corresponding authentication tag, while each other worker Pj needs to update
the share of the corresponding authentication key as follows:

• Each Pi broadcasts
[A]i = [x]i − [a]i = [x− a]i

[B]i = [y]i − [b]i = [y − b]i

• Each Pi reconstructs A and B.

• Each Pi computes

[z]i = [x · y]i = A · [b]i + B · [a]i + [c]i + A ·B

τ[z]i
= A · τ[b]i

+ B · τ[a]i
+ τ[c]i

while Pj computes

[v[z]i
]j = A · [v[b]i

]j + B · [v[a]i
]j + [v[c]i

]j − [µ(i)]j ·A ·B

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 25

B Security Definitions for Consistency Checkers
First, we define the security model of the witness consistency checker, as shown in Fig. 14.
In the witness consistency checker, all workers jointly verify the consistency of commitments
to the input shares (i.e., shares of the private witness). In the ideal world, a trusted
third party receives each commitment cmi to [w⃗]i held by the worker Pi. If cm and w⃗ are
consistent with w and w⃗(α) = w(α), then the trusted third party informs to all workers
that the verification passes.

Formally, the protocol for the witness consistency checker π securely implements the
ideal functionality Fwcc, if it is a protocol between n workers [Pi]ni=1 such that for every
efficient adversary A in the real world, there exists a simulator S in the ideal world, such
that the view in the real world is computationally indistinguishable from the view in the
ideal world.

1. For each i ∈ [n], receive ([w⃗]i, [w⃗]i(α), cmi, [α]i) from each worker Pi.
2. Aggregate cmi, [w⃗]i, [w⃗]i(α), [α]i and gets cm, w⃗, w⃗(α) and α.
3. If cm and w⃗ are consistent with w and w⃗(α) = w(α), it outputs 1 to all parties,
otherwise, it outputs 0.

Figure 14: Witness Consistency Checker Ideal Functionality Fwcc

Second, we define the security model of the PIOP consistency checker, as shown
in Fig. 15. In the PIOP consistency checker, all other workers jointly verify that the
PIOP computation executed by Pi is correct. In the ideal functionality, a trusted third
party receives the prover polynomial f(X), corresponding authentication tag τf⃗ , and
corresponding commitment comm from Pi, in which f⃗ is the coefficients of the polynomial
f(X). If the authentication tags τf⃗ are consistent with the prover polynomials f(X) (i.e.,
f(X) is correctly computed with a PIOP circuit C), f(X) is consistent with the input
share [w⃗]i, and the commitment comm to f(X) is correct, then the trusted third party
informs other parties that the verification succeeds.

Formally, the protocol for the PIOP consistency checker π securely implements the ideal
functionality Fpcc, if it is a protocol between a worker Pi and all other workers [Pj]nj=1∩j ̸=i

such that for every efficient adversary A in the real world, there exists a simulator S in
the ideal world, such that the view in the real world is computationally indistinguishable
from the view in the ideal world.

1. Receive (ck, x, [w⃗]i, τ[w⃗]i
, f(X), τ[f⃗]i

, comm) from Pi.
2. Receive ([µ]j , [v[f⃗]i

]j) from each other worker Pj .
3. Reconstruct µ and v[f⃗]i

.
3. Output 1 to all parties Pj (i ̸= j), if
(1). For each fk ∈ f⃗ , τ[fk]i

= µ · [fk]i + v[fk]i
,

(2). comm is consistent with f(X), and
(3). f(X) is consistent with [w⃗]i,
otherwise, output 0.

Figure 15: PIOP Consistency Checker Ideal Functionality Fpcc

C Security Definition for Siniel
Siniel focuses on the honest majority with secure with abort setting. ‘Honest majority’
means that at least half of the workers do not behave maliciously, while ‘secure with

26 The iacrcc class

1. Receive (ck, x, w) from D.
2. Compute π ← P(ck, x, w).
3. Send (ck, x, π) to all workers (and hence to S).
4. If at least t + 1 workers output reject, output ⊥, otherwise, send π to D.

Figure 16: Ideal Functionality FSNARK

abort’ means that the protocol halts if malicious behavior is detected. In addition, Siniel
guarantees that the private witness w is completely hidden from all workers if no more
than t workers collude (n = 2t + 1 in total). Malicious workers can arbitrarily deviate from
the protocol.

Formally, let ARG = (G,P,V) be a SNARK for an NP relation R = {(x, w)}. Then
πSNARK is a delegation protocol for ARG and securely implements the ideal functionality
FSNARK as shown in Fig. 16, if it is a protocol between a delegator D and n workers
[Pi]ni=1 such that for every (x, w) ∈ R and every efficient adversary A in the real world,
there exists a simulator S in the ideal world, such that the view of the real execution is
indistinguishable from the view of the ideal execution. We give a formal security proof in
section F.

D Security Proof for Witness Consistency Checker
Theorem 1. The protocol for the witness consistency checker as shown in Fig. 8 securely
implements the ideal functionality Fwcc as shown in Fig. 14.

Proof. The simulator S for the corrupted workers does as follows:

• Recover α′ with shares [α′]i.

• Receive shares of evaluations and opening proofs ([⃗̂w]i(α′), π[⃗̂w]i
) from the adversarial

workers.

• Compute
C ⃗̂w := OutputF (C[⃗̂w]i

)

⃗̂w′(α′) := OutputF ([⃗̂w]i(α′)

π ⃗̂w := OutputG(π[⃗̂w]i
)

• Check whether
⃗̂w′(α′) = ⃗̂w(α′)

KZG.V erify(ĉk, π ⃗̂w, C ⃗̂w, ⃗̂w′(α′), α′) = 1

• If the proof does not pass, it outputs 0. If the proof passes, run the KZG extractor
to obtain ⃗̂w inside the commitment C ⃗̂w. If the extracted ⃗̂w is the expected one, then
output 1, otherwise, output 0.

We prove the indistinguishability between the real world and the ideal world as follows:

• Hybrid 0: The real protocol.

• Hybrid 1: This hybrid is identical to hybrid 0 except that α in the real execution is
replaced with α′ in the ideal execution. This hybrid is indistinguishable as it leaks
nothing about the witness.

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 27

• Hybrid 2: This hybrid is identical to hybrid 1 except that shares of w⃗ in the real
world are replaced with the shares of ⃗̂w in the ideal world. With the property of
the KZG commitment scheme, the commitment and opening proof do not leak any
information about the plain witness. Therefore, this hybrid is indistinguishable from
the previous one.

• Hybrid 3: This hybrid is identical to hybrid 2 except that S extracts the witness
inside the commitment. With the knowledge soundness of the KZG polynomial
commitment scheme, if the proof is not valid, then the extraction fails with a non-
negligible probability. Therefore, this hybrid is indistinguishable from the previous
hybrid.

E Security Proof for PIOP Consistency Checker
Theorem 2. The protocol for the PIOP consistency checker as shown in Fig. 9 securely
implements the ideal functionality Fpcc as shown in Fig. 15.

Proof. The simulator S for the corrupted Pi does as follows:

• If Pi is an honest party, send a random challenge β′ to Pi, otherwise, send β′ to the
adversarial worker.

• For each k ∈ S(i), receive (f (k)(β′), τf(k)(β′), πk) from the adversarial worker.

• For each k ∈ S(i), honestly update the authentication key vf(k)(β′), and check that

τf(k)(β) = µ · f (k)(β) + vf(k)(β)

KZG.V erify(ck, πk, comf(k) , f (j)(β), β) = accept

• If the above verification passes, then run a KZG extractor to extract each f (k)(X)
inside the commitment comf(k) .

We prove the indistinguishability between the real world and the ideal world as follows:

• Hybrid 0: The real protocol.

• Hybrid 1: This hybrid is identical to hybrid 0 except that S chooses another random
challenge β′ instead of β. This hybrid is indistinguishable from hybrid 0.

• Hybrid 2: This hybrid is identical to hybrid 0 except that S extracts the polynomial
inside the commitment. With the knowledge soundness of the KZG polynomial
commitment scheme, the extractor fails with a negligible probability. Therefore, this
hybrid is indistinguishable from the hybrid 1.

F Security Proof for Siniel
Theorem 3. Let R = {x, w} be an NP relation with the following components:

• PIOP=(F, K, S,P,V) is a PIOP for R satisfying completeness, knowledge soundness
and zero-knowledge.

• KZG=(Setup, Commit, Open, V erify) is a PCS satisfying completeness and knowl-
edge soundness under AGM.

28 The iacrcc class

Setup and Offline: For each Pi ∈ Corr and each other party Pj , S does the
following:
1. Sample a random τ̂ ∈ F , and sets

ĉk = (g, τ̂ · g, τ̂2 · g, . . . , τ̂ t · g)

2. Receive x and π from FSNARK .
3. Set a simulated witness ˆ⃗w ← F |w⃗|, and compute

[ˆ⃗w]i ← SSS.Share(t, n, ˆ⃗w)

4. Set α′ ← F , compute ˆ⃗w(α′),

[ˆ⃗w(α′)]i ← SSS.Share(t, n, ˆ⃗w(α′))

[α′]i ← SSS.Share(t, n, α′))

5. Choose authentication keys µ(i) and v[ˆ⃗w]i
, computes τ[ˆ⃗w]i

= µ(i) · [ˆ⃗w]i + v[ˆ⃗w]i
.

6. For each other worker Pj (j ≠ i), generate shares of authentication key
([µ(i)]j , [v[ˆ⃗w]i

]j), send to adversarial parties (ĉk, x, [α′]i, [ˆ⃗w(α′)]i, [ˆ⃗w]i, τ[ˆ⃗w]i
) and to

Pj ([µ(i)]j , [v[ˆ⃗w]i
]j).

PIOP Computation: S proceeds as follows:
1. S invokes the ideal functionality Fwcc as shown in Fig. 14.
2. For each Pi ∈ Corr, S does the following:
Simulate the protocol execution as follows:

• There is no interaction between workers for gates AddF , AddG, MulG, so com-
putation proceeds locally according to Siniel.

• If at least one of the wires in MulF is public, proceed locally according to Siniel.
Otherwise, evaluate it with a Beaver multiplication protocol shown in Fig. 3.3.

• To evaluate the random oracle gate RO, read all outputs O⃗ of ρ. Add the
mapping ini → oi to the programming µ, for each oi ∈ O⃗.

• To evaluate Reveal, proceed the computation according to Siniel.

3. S invokes the ideal functionality Fpcc as shown in Fig. 15.
Proof Generation: S proceeds as follows:
1. Compute the query set Q, and sends Q to adversarial workers.
2. Receive all shares of evaluations and opening proofs of the prover polynomials from
the adversarial workers.
3. Compute OutputG over all shares of commitments to prover polynomials, and the
opening proofs of evaluation, and OutputF over all shares of evaluations of prover
polynomials. Assemble these aggregated proofs π′.
4. If V (ĉk, x, π′) = 0, send ⊥ to FSNARK .
Finally, if the protocol does not abort, send π′ to D.

Figure 17: Simulator S for Siniel

• SSS=(Share, Recover) is a (t, n) threshold SSS.

• An ideal functionality Fwcc as shown in Fig. 14.

• An ideal functionality Fpcc as shown in Fig. 15.

Yunbo Yang, Yuejia Cheng, Kailun Wang, Xiaoguo Li, Jianfei Sun, Jiachen Shen, XIaolei
Dong, Zhenfu Cao, Guomin Yang, Robert H. Deng 29

Let ARG = (G,P,V) be a zkSNARK for the relation R based on PIOP and KZG. Then
Siniel as shown in Fig. ?? securely implements FSNARK in the Fwcc, Fpcc− hybrid model
with corruption at most t workers (n = 2t + 1 workers).

Proof : The simulator S for the Siniel is shown in Fig. 17. We prove the indistinguishability
between the ideal world and the real world as follows:
Input. From the view of corrupted parties, the received shares of ˆ⃗w are indistinguishable
from random.
Linear Gates. No interaction is needed between workers. Therefore, no information is
exchanged in the real world and the ideal world.
Multiplication Gates with Two Private Wires. We use the standard Beaver multipli-
cation protocol plus the verification mechanism. Therefore, the adversary learns nothing
about the shared values.
Random Oracle Gate. The programmed random oracle is chosen uniformly at random.
Therefore, no adversary can distinguish them.
Reveal Gate. The inputs to ’Reveal’ have two kinds of values: the scalar field and the
group element. We analyze them as follows:

• Evaluations of Shared Prover Polynomials. In the ideal world, we reveal evaluations
of shares of random polynomials, while in the real world, we reveal evaluations of
shares of prover polynomials. Since PIOP is zero-knowledge, the views of both worlds
are indistinguishable.

• Commitments to Shared Polynomials and Opening Proofs of the Evaluations. In
the ideal world, we reveal shares of commitments to random polynomials and corre-
sponding opening proofs, while in the real world, we reveal shares of commitments
to the real prover polynomials and corresponding opening proofs. Since PIOP is
zero-knowledge, the prover polynomials seem random. Therefore, the distribution of
both worlds is indistinguishable.

Output Gate. ’Output’ gate has two kinds of values: the OutputF for the scalar field
and OutputG for the group element. We analyze them as follows:

• OutputF . This gate as shown in Fig. 4 is identical to SSS.Recover.

• OutputG. This gate as shown in Fig. 4 is almost identical to SSS.Recover except
that it recovers the secret over group elements.

Leakage in the Verify Phase. We discuss the verification as follows:

• Verification for the witness. There is no leakage in this phase other than the validity
of the witness. If this verification aborts, no information about the final proof will
be revealed to D.

• Verification for the PIOP computation. There is no leakage in this phase other than
the validity of this verification. If this verification aborts, no information about the
final proof will be revealed to D.

• Verification for the final proof. There is no leakage in this phase other than the final
proof and its validity. If this verification aborts, no information about the final proof
will be revealed to D, since in the real world, D receives the final proof when at least
t + 1 workers agree with the verification, and in the ideal world, D receives the final
simulated proof when at least t + 1 workers send accept to FSNARK

Rejection in the PIOP Computation Phase. If the adversary behaves honestly, with
the correctness property of PIOP and KZG extractor, Fpcc will output 1. S also extracts

30 The iacrcc class

the share of the private witness from Fpcc. The extracted share equals the simulated share
with non-negligible probability.
Rejection in the Proof Generation Phase. If the adversary behaves honestly, with
the correctness property of PIOP and KZG extractor, both verifications will pass. If the
adversary does not follow the protocol, with the knowledge soundness of PIOP and KZG,
the probability that the ideal world passes both verifications and the ideal world does not
pass the verifications is negligible.
Probability of Rejection due to an Incorrect Output Proof. In both worlds, all
workers check if the proof is correct. The knowledge soundness of zkSNARK ensures that
the probability of the real check passing (D receives the proof) but the ideal check failing
(D does not receive the proof) is negligible.

	Introduction
	Our Contributions
	Use Cases of Siniel
	Related Work

	Technical Overview
	Background: Design Paradigm for zkSNARKs
	Siniel: An Efficient Private Delegation Framework of zkSNARKs

	Preliminaries
	Shamir Secret Sharing
	Multiparty Computation with Authentication Tags
	Beaver Triples
	Polynomial Commitment Scheme
	Polynomial Interactive Oracle Proof
	zkSNARK

	Circuits for Common Operations
	Circuit Model
	Circuit for PIOP
	Circuit for KZG

	Consistency Checker for PIOPs
	Construction of Witness Consistency Checker
	Construction of PIOP Consistency Checker

	Siniel: Delegated zkSNARK
	Implementation and Performance
	Experimental Setup
	Cost of the Delegator
	Cost of the Worker

	References
	Beaver Multiplication
	Security Definitions for Consistency Checkers
	Security Definition for Siniel
	Security Proof for Witness Consistency Checker
	Security Proof for PIOP Consistency Checker
	Security Proof for Siniel

