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1 Introduction
Lattice problems are central to modern cryptography and computational complexity theory
due to their inherent hardness, which provides a foundation for secure cryptographic
protocols. These problems are believed to be difficult to solve efficiently, even for quantum
computers. This makes lattice-based cryptography a promising candidate for post-quantum
security, offering resilience against future quantum attacks [12, 18, 19]. Moreover, lattice
problems have applications in algorithmic number theory [28], convex optimization [23, 24,
20], coding theory [16], and cryptanalysis tools [35, 14, 27], reinforcing their importance
across both theoretical and practical domains in computer science.

There is currently a gap in the understanding of these problems with respect to their
worst-case complexity and their average-case behaviour. For instance, the Shortest Vector
problem (SVP) on an n-dimensional lattice has worst-case complexity 2n+o(n) [2]. However,
in practice, people rely on heuristic (unproven) sieving algorithms of time complexity
20.292n+o(n) [11] to assess the security of lattice-based cryptography schemes. Those
heuristic algorithms are experimentally verified for lattices used in cryptography, which
are usually random in some way, but only seem to provide very short and not shortest
nonzero vectors.

For most cryptographic applications, finding a short, but not necessarily shortest,
nonzero vector is in fact sufficient. The α-SVP consists in finding a nonzero vector of
length at most α times the length of a shortest nonzero vector. Surprisingly, very little is
known about the worst-case complexity about this problem. The best provable algorithm
has worst-case complexity 20.802n+o(n) [39] but only solve O(1)-SVP for an unspecified
constant. More explicit constants are provided in [6] but even for α = 100, the time
complexity is still 20.824n+o(n). In [10], the authors noted that there is no theoretical
evidence to show that

√
2-SVP is easier than SVP. In fact, solving

√
2-SVP in time better

than 2n+o(n) would give a better algorithm for ZLIP which is a recent hardness assumption
in lattice-based cryptographic schemes [17]. If we relax the approximation ratio, better
complexities can be achieved. For example, [5] gives an algorithm that solves Õ(

√
n)-SVP

in time 2n/2+o(n).
In this paper, we try to bridge the gap between worst-case and heuristic algorithms.

Using the formalism of random real lattices developped by Siegel [36], we obtain a 2n/2+o(n)

time algorithm for
√

e-SVP on random lattices. Our algorithm (Theorem 1) achieves a
much better approximation ratio compared to all worst-case algorithms and is particularly
simple compared to [5].

Most lattice reduction algorithms rely on solving α-SVP in smaller dimension [34] for
α close to 1 [8]. In certain lattice reduction algorithms such as slide reduction [21, 4], it is
more convenient for the analysis to compare the length of short vectors to the determinant
of the lattice instead of the length of a shortest vector. The problem of finding a vector of
length at most α vol(L)1/n for a lattice L ⊂ Rn is known as the α-Hermite SVP (α-HSVP).
Our algorithm (Theorem 1) also solves

√
n

2π -HSVP in time 2n/2+o(n) for random lattices.
This improves upon the worst-case algorithm of [5] which solves Õ(

√
n)-HSVP in time

2n/2+o(n). Indeed, we avoid the extra logarithmic factors in the approximation ratio and
obtain a much better constant.

Theorem 1 (Informal, see Theorem 5 and Corollary 3). For every n ⩾ 1, there is an
algorithm that on most lattices L ⊂ Rn, solves (1+o(1))

√
e-SVP and (1+o(1))

√
n

2π -HSVP
in time and space 2n/2+o(n).

Our algorithm works by sampling the discrete Gaussian distribution DL,s on the
lattice L, a very commonly used distribution in lattice algorithms. This distribution is
parametrized by the width s. It is known that sampling from DL,s is easy when s is large
but very hard when s is small. A important quantity, known as the smoothing parameter
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ηε(L), intuitively characterizes when DL,s transitions from a “smooth” distribution to a
discrete one (see Section 2.4). In particular, we use [1] to sample from DL,s for s = η1/3(L).
Our main technical result is a probabilistic bound on the value of ηε(L) for a random
lattice L for all ε > 0. This allows us to obtain tigher bounds on the length of vectors
sampled from DL,s. We then show that generating a constant number of samples from
DL,s for s = η1/3(L) is sufficient to approximate the SVP.

Interestingly, the complexity of our algorithm is dominated by the time to sample from
DL,s for s = η1/3(L), i.e. above the smoothing parameter. Therefore, any improvement
in those samplers would yield an improvement to the complexity of solving

√
e-SVP

and
√

n
2π -HSVP for random lattices. Lattice-based cryptography relies on the fact that

problems such as
√

e-SVP are hard, even for random lattices, with no subexponential-time
algorithms. On the other hand, sampling efficiently from the discrete Gaussian distribution
at the smoothing parameter is still an open problem, with no subexponential algorithm
currently known. Therefore, we can view our result as an average-case hardness result for
discrete Gaussian sampling (DGS) at the smoothing parameter. Plainly, solving DGS at
the smoothing parameter in subexponential time for random lattices would have a major
impact in lattice-based cryptography.

Organization of the paper Section 2 contains preliminary technical results. Section 3
gives some probabilistic bounds on the Gaussian mass and smoothing parameter of random
real lattice. Section 4 give an application of those bounds to the approximate (Hermite)
SVP.

2 Preliminaries
We denote vectors and matrices in bold case. We denote by xT the transpose of the
(column) vector x, which is therefore a row vector. For any vector x ∈ Rn, we denote by
∥x∥ its Euclidean norm. For any finite set X, we denote by U(X) the uniform distribution
over X. As usual, if P and Q are two probability distributions over X and Y respectively,
we denote by PQ the product distribution over X × Y . For any two distributions P and
Q, we denote by dTV(P, Q) the statistical distance (or total variation distance) between P
and Q. We say that two distributions P and Q are ε-close if dTV(P, Q) ⩽ ε.

We denote by ζ the Riemann zeta function, defined for any s > 1 by ζ(s) =
∑∞

k=1 k−s.
Furthermore, it is standard that

ζ(s) − 1 ∼s→∞ 2−s (1)

2.1 Lambert W function
Recall that Lambert W function is a multivalued function giving the complex solution(s)
w to the equation wew = z. In this paper we will only deal with real numbers. It can be
shown that for any x, y ∈ R, the equation

yey = x

can only be solved (for y) if x ⩾ − 1
e . For negative numbers x < 0, this equation has

exactly two solutions y = W0(x) and y = W−1(x), where W0 and W−1 are the two real
branches of the W function. It is known that W0 is an increasing function while W−1 is a
decreasing function. Furthermore, for x ∈ [− 1

e , 0), W−1(x) ⩽ −1 ⩽ W0(x). The following
lemma on W will be useful

Lemma 1 ([15, Theorem 1]). For any u > 0, −1 −
√

2u − u < W−1(−e−1−u) < −1 −√
2u − 2

3 u.
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2.2 Lattices
A lattice L is a discrete subgroup of Rm. Equivalently it is the set

L(b1, . . . , bn) =
{

n∑
i=1

xibi : xi ∈ Z

}

of all integer combinations of n linearly independent vectors b1, . . . , bn ∈ Rm. Such bi’s
form a basis of L and are usually collected in matrix form

[
b1 · · · bn

]
. The lattice L

is said to be full-rank if n = m. We denote by λ1(L) the first minimum of L, defined
as the length of a shortest non-zero vector of L. We denote by vol(L) the volume (or
determinant) of L. For a full-rank lattice L, vol(L) = det(A) for any basis A of L.

For a rank n lattice L ⊂ Rm, the dual lattice, denoted L̂, is defined as the set of all
points in span(L) that have integer inner products with all lattice points,

L̂ = {w ∈ span(L) : ∀y ∈ L, ⟨w, y⟩ ∈ Z}.

Similarly, for a lattice basis B = (b1, . . . , bn), we define the dual basis B∗ = (b∗
1, . . . , b∗

n)
to be the unique set of vectors in span(L) satisfying ⟨b∗

i , bj⟩ = 1 if i = j, and 0, otherwise.
It is easy to show that L̂ is itself a rank n lattice and B∗ is a basis of L̂. Given a lattice
B = (b1, . . . , bn), we denote ∥ B ∥2 = max

i
∥bi∥. In this paper, all the lattices that we

consider will be full rank, i.e. n = m.

2.3 Lattice problems
We will study the following lattice problems in this paper.

Definition 1. The search problem SVP (Shortest Vector Problem) is defined as follows:
The input is a basis B for a lattice L ⊂ Rn. The goal is to output a vector y ∈ L with
∥y∥ = λ1(L).

Definition 2. For α = α(n), the search problem α-SVP (α-Approximate Shortest Vector
Problem) is defined as follows: The input is a basis B for a lattice L ⊂ Rn. The goal is to
output a vector y ∈ L \{0} with ∥y∥ ≤ α · λ1(L).

Definition 3. For α = α(n), the search problem α-HSVP (α-Hermite Approximate
Shortest Vector Problem) is defined as follows: The input is a basis B for a lattice L ⊂ Rn.
The goal is to output a vector y ∈ L \{0} with ∥y∥ ≤ α · det(L)1/n.

For convenience reasons, when we discuss the running time of the algorithms solving the
problems above, we ignore polynomial factors in the bit-length of the individual input basis
vectors (i.e. we assume the input basis has bit-size polynomial in the ambient dimension
n).

2.4 Discrete Gaussian distribution and Smoothing Parameter
Let n ∈ N and s > 0. For any x ∈ Rn, we let

ρs(x) = e−π∥x∥2/s2
.

As usual, we extend ρs to sets by

ρs(X) =
∑
x∈X

ρs(x)
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for any set X. For any lattice L ⊂ Rn, we denote the discrete Gaussian distribution over L

by DL,s(x) = ρs(x)
ρs(L) for any x ∈ L. We denote DL,1 by DL for simplicity. It is well-known

by the Poisson summation formula that for any lattice L and any s > 0,

ρ1/s(L̂) = s−n

vol(L)ρs(L).

See e.g. [37] for a good introduction on this topic. The discrete Gaussian distribution
plays an essential role in lattice-based cryptography and an important problem is to be
able to sample efficiently from it: this is known as the discrete Gaussian sampling (DGS)
problem.

Definition 4. For δ = δ(n) ≥ 0, σ a function that maps lattices to non-negative real
numbers, and m = m(n) ∈ N, δ-DGSm

σ is defined as follows. The input is a basis B for a
lattice L ⊂ Rn and a parameter s > σ(L). The goal is to output a sequence of m vectors
whose joint distribution is δ-close to m independent samples from DL,s.

We omit the parameter δ if δ = 0, and the parameter m if m = 1. We stress that δ
bounds the statistical distance between the joint distribution of the output vectors and m
independent samples from DL,s.

In general, the smaller s is, the harder it is to construct a sampler for DL,s. The notion
of smoothing parameter [31] captures the idea that sampling for a value of s above this
threshold is significantly easier than sampling below because the distribution looks more
like a continuous Gaussian. Formally, for any ε > 0, the smoothing parameter of a lattice
L is defined by

ηε(L) = inf
{

s > 0 : ρ1/s(L̂) ⩽ 1 + ε
}

.

There are many algorithms to sample above the smoothing parameter [26, 22, 13], includ-
ing a time-space trade-off [1]. Sampling below the smoothing parameter is much more
challenging and usually inefficient [2]. At the extreme, sampling for sufficiently small
values of s allows one to solve the Shortest Vector problem (SVP) [2] which is known
to be NP-hard under randomized reduction [7]. The Monte Carlo Markov Chain based
algorithm of [38] works for all values of s but the complexity significantly depends on s
and the shape of the basis. In this paper, we will use the following sampler from [1].

Lemma 2 ([1, Lemma 54]). There is a probabilistic algorithm that, given a lattice L ⊂ Rn,
m ∈ N and s ≥ η1/3(L) as input, outputs m samples from a distribution (m · 2−Ω(n2))-close
to DL,s in expected time m ·2n/2+o(n) and space (m+2n/2) ·2o(n). Furthermore, all samples
have poly(n) bit-size.

We will use the following concentration bound for the discrete Gaussian.

Lemma 3 ([2, Lemma 2.4]). For any lattice L ⊂ Rn, s > 0 and t ⩾ 1,

Prx∼DL,s

[
∥x∥ > ts

√
n

2π

]
<
(

t exp( 1−t2

2 )
)n

.

Since the right-hand side of the equation of the above lemma is difficult to use directly,
we will simplify it using the following lemma.

Lemma 4. For any k ⩾ 1, α ∈ (0, 1) and t2 ⩾ 1 +
√

−4
k log α − 2

k log α, we have(
t exp( 1−t2

2 )
)k

⩽ α.

Proof. Check that for t ⩾ 1,(
t exp( 1−t2

2 )
)k

⩽ α
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⇔ t2 exp(1 − t2) ⩽ α2/k

⇔ −t2 exp(−t2) ⩾ − 1
e α2/k

⇔ −t2 ⩽ W−1

(
− 1

e α2/k
)

by the decreasing behaviour of the function W−1.

⇐ −t2 ⩽

(
1 +

√
−4
k log α − 2

k log α

)
by Lemma 1.

2.5 Random real lattices
Recall that a lattice L is the integer span of a real basis b1, . . . , bn in Rn. If B is the
matrix whose columns are the bi, then L = BZn. The classical approach to defining a
probability on the real lattices is the following. First we usually consider lattices modulo
scales, so that L and αL are equivalent for any α ∈ R. Therefore, a lattice is represented
by an invertible matrix of determinant 1, that is an element of SLn(R). Second, it is clear
that many matrices in SLn(R) span the same lattice: for instance permuting columns or
changing the sign of an even number of columns. In general, matrices B ∈ SLn(R) and
BU span the same lattice for any U ∈ SLn(Z). The converse is also true and hence we
wish to define a probability measure on the homogenous space Xn := SLn(R)/ SLn(Z).

Let µ be a measure on Xn, Y be a measurable set of lattices in Xn and B ∈ SLn(Z): a
natural measure µ should assign the same probability to Y and BY since those are the
same lattices up to the change of basis. Therefore, µ should be (left) SLn(Z)−invariant:
µ(Y ) = µ(BY ). Furthermore, Xn inherits the natural topology of Rn2 through the quotient
and we want the open sets to be measurable, therefore µ should be a Borel measure. Such
a measure is called a (left-)invariant Haar measure and Siegel showed [36] that it is unique
up to a multiplicative factor. We are interested in the unique one which is a probability
measure (µ(Xn) = 1) which we denote by µn.

In this paper, we will identity the set of lattices modulo scale and the set Xn. This
means that we will view an element of Xn either as a lattice or as matrix of determinant
of 1, depending on what is more convenient. We also note that the map Xn → Xn, L 7→ L̂
preserves µn so that if L is distributed according to µn then so is its dual L̂.

The above measure was introduced by Siegel in [36] who proved the following averaging
theorem.

Theorem 2 (Siegel [36]). Let n ⩾ 1 and f be a Lebesgue integrable function on Rn,∫
Xn

∑
x∈L \{0}

f(x)d µn(L) =
∫
Rn

f(x)d λ(x).

where λ denotes the usual Lebesgue measure on Rn

This result was later generalized by Rogers [32], and the presentation simplified in [29]
which is probably the most readable reference on the topic.

We say that a matrix M ∈ Zn×m is primitive if columns can be added to it to make up
a unimodular matrix. Equivalently, a matrix is primitive if its columns form a primitive
set of vectors for Zm, i.e. this set can be extended to form an integer basis of Zm. Let
PRn,ℓ ⊂ Zn×ℓ be the set of primitive matrices and LIn,ℓ ⊂ Zn×ℓ be the set of matrices
whose columns are linearly independent. Macbeath and Rogers’ theorem can be stated as
follows. Here, recall again that we identify Xn as both the set of lattices modulo scale, or
the set of matrices of determinant 1.
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Theorem 3 ([30, Theorems 1, 2 and (13)]). Let 1 ⩽ ℓ ⩽ n−1 and f be Lebesgue integrable
on Rn×ℓ, then∫

Xn

∑
M∈LIn,ℓ

f(AM)d µ(A) = ζ(n) · · · ζ(n−ℓ+1)
∫

Xn

∑
P∈PRn,ℓ

f(AP)d µ(A) =
∫
Rn×ℓ

f(X)d λ(X).

It is clear that this theorem implies Siegel’s theorem when ℓ = 1 since the set of linearly
independent points of L is exactly L \{0}. In fact, the result about linearly independent
vectors follows easily from the statement about primitive matrices which is the main
technical result of [30]. In this paper, we will only make use of the following special case.

Recall that a vector x ∈ Zn is primitive if and only if x ∈ PRn,1. One can check that
this is equivalent to saying that 1

αx /∈ Zn for all integers α ⩾ 2, i.e. x is not an integer
multiple of an integer vector (except by multiplying by 1 and −1).

Corollary 1. Let n ⩾ 2 and f be Lebesgue integrable on Rn×ℓ, then∫
Xn

∑
x∈L

f(x)d µn(L) = f(0) +
∫
Rn

f(x)d λ(x),

∫
Xn

(∑
x∈L

f(x)
)2

d µn(L) =
(∫

Xn

∑
x∈L

f(x)d µn(L)
)2

+ 1
ζ(n)

∑
α∈N\{0}

∑
β∈Z\{0}

∫
Rn

f(αx)f(βx)d λ(x).

Proof. The first inequality follows directly from Theorem 2:∫
Xn

∑
x∈L

f(x)d µn(L) = f(0) +
∫

Xn

∑
x∈L \{0}

f(x)d µn(L) = f(0) +
∫
Rn

f(x)d λ(x).

For the second equality, first oberve that∫
Xn

(∑
x∈L

f(x)
)2

d µn(L) =
∫

Xn

∑
x,y∈L

f(x)f(y)d µn(L).

Now let g : Rn×2 → R be defined by g(
[
x y

]
) = f(x)f(y) which is clearly Lebesgue

integrable. Let L ∈ Xn be a lattice and A be a basis of L. Then∑
x,y∈L

f(x)f(y) =
∑

u,v∈Zn

f(Au)f(Av) =
∑

u,v∈Zn

g(A
[
u v

]
)

Now there are three cases for u and v: either u = v = 0; or u and v are linearly
independent i.e.

[
u v

]
∈ LIn,2; or u = 0 and v ̸= 0; or they are linearly dependent

and both non zero. The last case is the most interesting: it is not hard to see that
if u, v ∈ Zn \ {0} are linearly dependent, then u = αp and v = βp for some unique
primitive vector p ∈ Zn, unique α ∈ N \ {0} and unique β ∈ Z \ {0}. Since p, α and
β are unique, and that conversely the vectors αp and βp are always linearly dependent
and nonzero, there is a bijection between

{
(u, v) ∈ (Zn \ {0})2 : linearly dependent

}
and

{(αp, βp) : p ∈ Zn primitive, α ∈ N \ {0}, β ∈ Z \ {0}}. Therefore,∑
x,y∈L

f(x)f(y)

= f(0)2 +
∑

M∈LIn,2

g(AM) + 2f(0)
∑

v∈Zn\{0}

f(Av) +
∑

p∈Zn:prim.

∑
α∈N\{0}

∑
β∈Z\{0}

f(Aαp)f(Aβp)
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= f(0)2 +
∑

M∈LIn,2

g(AM) + 2f(0)
∑

y∈L \{0}

f(y) +
∑

α∈N\{0}

∑
β∈Z\{0}

∑
p∈Zn:prim.

f(αAp)f(βAp)

We can now compute one of those terms by Theorem 2:∫
Xn

f(0)
∑

y∈L \{0}

f(y)d µn(L) = f(0)
∫
Rn

f(x)d λ(x).

And the other two by Theorem 3:∫
Xn

∑
M∈LIn,2

g(AM)d µn(A) =
∫
Rn×2

g(M)d λ(M)

=
∫
Rn

∫
Rn

f(x)f(y)d λ(x)d λ(y)

=
(∫

Rn

f(x)d λ(x)
)2

and ∫
Xn

∑
p∈Zn:prim.

f(αAp)f(βAp)d µn(A) =
∫

Xn

∑
p∈PRn,1

f(αAp)f(βAp)d µn(A)

= 1
ζ(n)

∫
Rn

f(αx)f(βx)d λ(x).

The result follows by putting everything together.

The following result is a well-known consequence of Theorem 3. There are many ways
to prove similar results, see e.g. [33] or the survey [9]. Since we could not find a proof with
explicit constants in both the length bound and the probability bound, we provide one for
completeness. This result formalizes what is usually known as the Gaussian heuristic which
says that heuristically, a “random” lattice L ⊂ Rn satisfies that λ1(L) ≈

√
n

2πe vol(L)1/n.
For the notion of real random lattices that we use in this paper, the volume is always 1.

Theorem 4. Let n ⩾ 2. For any α > 0,

PrL∼µn

[
λ1(L) ⩽ α vol(Bn)−1/n

]{⩽ 2αnA(n)
(2−αn)2 if α < 21/n,

⩾ 1 − 2αnA(n)
(αn−2)2 if α > 21/n.

where A(n) := 1 + n
n−1

ζ(n−1)−1
ζ(n) = 1 + 2n−1(1 + o(1)) as n → ∞.

Proof. Fix r > 0 and let fr be the indicator function of the n-dimensional ball Bn(r) of
radius r. By Corollary 1, we have that

µr := EL∼µn
[| L ∩Bn(r)|] = 1 +

∫
Rn

fr(x)d λ(x) = 1 + vol(Bn(r)).

and

σ2
r := VL∼µn

[
| L ∩Bn(r)|2

]
= 1

ζ(n)
∑

α∈N\{0}

∑
β∈Z\{0}

∫
Rn

fr(αx)fr(βx)d λ(x).
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But we observe that for any α ⩾ 1 and β ∈ Z, fr(αx)fr(βx) = fr(max(α, |β|)x). Therefore,

σ2
r = 1

ζ(n)
∑

α∈N\{0}

∑
β∈Z\{0}

∫
Rn

fr(max(α, |β|)x)d λ(x)

= 1
ζ(n)

∑
α∈N\{0}

∑
β∈Z\{0}

max(α, |β|)−n vol(Bn(r))

= 2vol(Bn(r))
ζ(n)

∑
α∈N\{0}

∑
β∈N\{0}

max(α, β)−n.

We now observe that ∑
α∈N\{0}

∑
β∈N\{0}

max(α, β)−n

=
∑

α∈N\{0}

 α∑
β=1

α−n + (α + 1)−n +
∞∑

β=α+2
β−n


⩽

∑
α∈N\{0}

(
α1−n + (α + 1)−n +

∫ ∞

α+1
x−nd x

)

= ζ(n − 1) + ζ(n) − 1 +
∑

α∈N\{0}

(α + 1)1−n

n − 1

= ζ(n − 1) + ζ(n) − 1 + ζ(n − 1)
n − 1

= ζ(n) + n
n−1 (ζ(n − 1) − 1).

It follows by Chebyshev’s inequality that for any X > 0,

PrL
[∣∣| L ∩Bn(r)| − µr

∣∣ > X
]
⩽

σ2
r

X2 .

We apply the above inequality to study λ1. Observe that for any r > 0, λ1(L) ⩽ r if
and only if | L ∩Bn(r)| ⩾ 3 since as soon as there is a nonzero vector, there are at least
two (a point and its opposite), as the origin is in every ball. Assume that µr ⩽ 3, i.e.
rn vol(Bn) ⩽ 2. Then we can let X = 3 − µr and apply the above inequality to get that

PrL[λ1(L) ⩽ r] = PrL[| L ∩Bn(r)| ⩾ 3]
= PrL[| L ∩Bn(r)| − µr ⩾ X]
⩽ PrL

[∣∣| L ∩Bn(r)| − µr

∣∣ ⩾ X
]

⩽
σ2

r

X2 .

If we let r0 be such that vol(Bn(r0)) = 1 and write r = αr0 then

σ2
r = 2 vol(Bn(αr0))A(n) = 2αnA(n)

where A(n) := 1 + n
n−1

ζ(n−1)−1
ζ(n) , and at the same time

X = 3 − µr = 2 − vol(Bn(αr0)) = 2 − αn.

Finally, we check that the condition µr ⩾ 3 is equivalent to αn < 2.
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Conversely, let Y = µr−3 and assume that Y > 0, i.e. αn > 2. If
∣∣| L ∩Bn(r)|−µr

∣∣ ⩽ Y
then in particular µr − | L ∩Bn(r)| ⩽ Y so | L ∩Bn(r)| ⩾ µr − Y = 3. Hence,

PrL[λ1(L) ⩽ r] = PrL[| L ∩Bn(r)| ⩾ 3]
⩾ PrL

[∣∣| L ∩Bn(r)| − µr

∣∣ ⩽ Y
]

= 1 − PrL
[∣∣| L ∩Bn(r)| − µr

∣∣ > Y
]

⩾ 1 − σ2
r

Y 2 .

3 On the Gaussian mass of random lattices
In this section, we give a probabilistic estimate of the value of ρ1/s(L̂) when L is a random
real lattice. We derive from this a probabilistic bound on the smoothing parameter of
a random lattice. We are not aware of any such results in the literature for this class
of random lattices. However, a closely related result is available in [25] which studies
matrices with each entry independently and identically distributed from an integer Gaussian
distribution, and that define a class known as orthogonal lattices.

Recall that by random real lattice, we mean L ∈ Xn distributed according to µn, i.e.
the Haar measure. See Section 2.5 for more details. Our first technical result is to obtain
the expected value and variance of ρ1/s(L̂) for a random lattice L. We derive from this a
probabilistic bound on ρ1/s(L̂).

Lemma 5. For any n ∈ N and s > 0, let L ∈ Xn be distributed according to µn. Then
EL

[
ρ1/s(L̂)

]
= 1 + s−n and VL

[
ρ1/s(L̂)

]
= 2 s−n

ζ(n)
∑∞

α,β=1(α2 + β2)−n/2 ⩽ s−n21−n/2(1 +
o(1)). In particular, for any α > 0

PrL∼µn

[∣∣∣ρ1/s(L̂) − 1 − s−n
∣∣∣ > α

]
⩽

21−n/2(1 + o(1))
snα2

where o(1) → 0 as n → ∞ is independent of α.

Proof. By Corollary 1, we have that

EL∼µn

[
ρ1/s(L)

]
= ρs(0) +

∫
Xn

ρs(L)d µn(L) = 1 + sn

where the last equality comes from standard results on the integration of Gaussian functions.
By Corollary 1 we also have that

VL∼µn

[
ρ1/s(L)

]
= 1

ζ(n)
∑

α∈N\{0}

∑
β∈Z\{0}

∫
Rn

ρs(αx)ρs(βx)d λ(x)

= 1
ζ(n)

∑
α∈N\{0}

∑
β∈Z\{0}

∫
Rn

ρ
s/

√
α2+β2(x)d λ(x)

= sn

ζ(n)
∑

α∈N\{0}

∑
β∈Z\{0}

(α2 + β2)−n/2

= 2 sn

ζ(n)

∞∑
α,β=1

(α2 + β2)−n/2.



Amaury Pouly, Yixin Shen 11

By the Poisson summation formula, we have that ρ1/s(L̂) = s−nρs(L) since vol(L) = 1 for
L ∈ Xn. It follows that

µ := EL

[
ρ1/s(L̂)

]
= s−n EL[ρs(L)] = s−n + 1

and

σ2 := VL

[
ρ1/s(L̂)

]
= s−2n VL

[
ρ1/s(L̂)

]
= 2 s−n

ζ(n)

∞∑
α,β=1

(α2 + β2)−n/2.

Furthermore,

∞∑
α,β=1

(α2 + β2)−n/2 =
∞∑

α=1

(α2 + 1)−n/2 +
∞∑

β=2
(α2 + β2)−n/2


⩽

∞∑
α=1

(α + 1)−n/2 +
∞∑

β=2
(α2 + β)−n/2


⩽ ζ( n

2 ) − 1 +
∞∑

α=1

∫ ∞

1
(α + β)−n/2d β

= ζ( n
2 ) − 1 +

∞∑
α=1

2 (α+1)1−
n
2

n−2

= ζ( n
2 ) − 1 + 2

n−2 (ζ( n
2 − 1) − 1)

= 2−n/2(1 + o(1))

as n → ∞. Let µ = EL

[
ρ1/s(L̂)

]
and σ2 = VL

[
ρ1/s(L̂)

]
. Then by Chebyshev’s inequality,

for any α > 0,

p := PrL

[∣∣∣ρ1/s(L̂) − µ
∣∣∣ > α

]
⩽

σ2

α2 .

We have shown above that

µ = 1 + s−n, σ2 ⩽
2s−n

ζ(n) 2−n/2(1 + o(1)) = s−n21−n/2(1 + o(1))

Furthermore σ2 ⩽ s−n21−n/2(1 + on(1)) by (1). Hence,

p ⩽
21−n/2(1 + o(1))

snα2 .

The previous lemma allows us to derive a probabilistic bound on the smoothing
paragraph ηε(L) of a random lattice L. For our application to (Hermite) SVP in Section 4,
we will not only need to bound ηε(L) but simultaneously bound ρ

ηε(L̂)(L) and ηε(L̂). The
following corollary provides both bounds.

Corollary 2. For any n ∈ N and ε > 0 let sε =
(

ε+1+
√

2 ε+1
ε2

)1/n

. Then

PrL∼µn [ηε(L) > sε] ⩽ 2−n/2(1 + o(1)).

and
PrL∼µn

[
ρsε

(L) < 1 + sn
ε −

√
2sn

ε or ηε(L) > sε

]
⩽ 21−n/2(1 + o(1)).



12 Smoothing Parameter and SVP on Random Lattices

Proof. Let α = ε − s−n
ε and check that α > 0. We can therefore apply Lemma 5 to get

that

PrL

[
ρ1/sε

(L̂) > 1 + ε
]

= PrL

[
ρ1/sε

(L̂) − 1 − s−n
ε > α

]
⩽ PrL

[∣∣∣ρ1/s(L̂) − 1 − s−n
ε

∣∣∣ > α
]

⩽
21−n/2(1 + o(1))

sn
ε α2 .

A routine calculation shows that sn
ε α2 = sn

ε (ε − s−n
ε )2 = 2. Furthermore, for any lattice L,

if ρ1/sε
(L̂) ⩽ 1 + ε then ηε(L) ⩽ sε. Therefore,

PrL[ηε(L) > sε] ⩽ PrL
[
ρ1/sε

(L) > 1 + ε
]
⩽ 2−n/2(1 + o(1)). (2)

On the other hand, recall that if L ∈ Xn is distributed according to µn then its L̂ is also
distributed according to µn. Therefore, we can also apply Lemma 5 to α = √2sn

ε to get
that

PrL

[
ρsε(L̂) < 1 + sn

ε − α
]

= PrL

[
ρsε(L̂) − 1 − sn

ε < −α
]

⩽ PrL

[∣∣∣ρsε(L̂) − 1 − sn
ε

∣∣∣ > α
]

⩽
21−n/2(1 + o(1))

sn
ε α2

= 2−n/2(1 + o(1)). (3)

It follows by a union bound that a random lattice L satisfies (2) or (3) with probability at
most 21−n/2(1 + o(1)).

4 Application to the Hermite and approximate SVP
In this section, we use our probabilistic bound on the smoothing parameter ηε(L) to solve
the approximate (Hermite) SVP for random lattices. Our algorithm is conceptually simple:
we sample a constant number of vectors from DL,s for s = η1/3(L) and we return the
shortest nonzero vector among them. When sampling from DL,s to get short vectors, there
is a tradeoff in the choice of s: if s is too large small then we will get too long vectors in
average, but if s is too small then we will mostly get the 0 vector (which has the highest
probability according to DL,s). Therefore, the difficulty lies in showing that we return a
relatively short vector with good probability when s = η1/3(L).

Theorem 5. For every n ⩾ 1, there is a randomized algorithm that on a fraction at
least 1 − 21−n/2(1 + o(1)) of random lattices L according to µn, outputs in time and space
2n/2+o(n) a nonzero vector of L of length at most t(n)

√
n

2π · 241/n with probability at least
1/2, where t(n)2 := 1 +

√
−4
n log 15

17 − 2
n log 15

17 .

Proof. Let s = s1/3 be given by Corollary 2, and N to be fixed later. Consider the following
algorithm:

• Sample N vectors independently according to DL,s by Lemma 2.

• Return the shortest nonzero vector.

We will analyze this algorithm. First the running time is clear by Lemma 2: the algorithm
takes time N · 2n/2+o(n) and space (N + 2n/2) · 2o(n).
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Next we observe that by Corollary 2 for ε = 1/3, and with probability at least
1 − 21−n/2(1 + o(n)) we have both

ρs(L) ⩾ 1 + sn −
√

2sn and η1/3(L) ⩽ s.

Assume that we are in this case. It will be useful to note that s = s1/3 = (12 + 3
√

15)1/n

and 1 + sn −
√

2sn = 10 + 2
√

5. Therefore

231/n ⩽ s ⩽ 241/n, 1 + sn −
√

2sn ⩾ 17.

Since η1/3(L) ⩽ s we can indeed apply Lemma 2 to sample from DL,s. It is clear that

Prx∼DL,s
[x = 0] = ρs(0) = 1

ρs(L) ⩽
1
17 .

Furthermore, by Lemma 3, for any t ⩾ 1,

Prx∼DL,s

[
∥x∥ > ts

√
n

2π

]
<
(

t exp( 1−t2

2 )
)n

.

Let α = 15
17 and apply Lemma 4 to get that if t2 = t(n)2 := 1 +

√
−4
n log α − 2

n log α then

Prx∼DL,s

[
x = 0 or ∥x∥ > ts

√
n

2π

]
⩽ 1

17 + α = 16
17 .

Observe here that the reason why we wanted to simultaneously both ρsε
(L) and ηε(L) in

Corollary 2 is precisely so that the concentration bound in Lemma 3 is high (i.e. we get
short vectors on average) but not so high that we only get the 0 vector with overwhelming
probability (by bounding ρs(0) = 1ρs(L)).

As a result,

Prx1,...,xN ∼DL,s

[
∃i. xi ̸= 0 and ∥xi∥ ⩽ ts

√
n

2π

]
⩾ 1 −

n∏
i=1

Prxi∼DL,s

[
xi = 0 or ∥xi∥ > ts

√
n

2π

]
⩾ 1 −

( 16
17
)N

.

Therefore, it suffices to take N sufficiently large (and constant) to get that, with probability
at least 1/2, the algorithm will return a nonzero vector of length at most

st
√

n
2π ⩽ t(n)

√
n

2π · 241/n.

The previous result allows us to show that we have an algorithm that returns relatively
short vectors on average but note that the bound does not depend on the lattice (more
precisely, it is related to the volume of the lattice but our random lattices are scaled to
have volume 1). This is known as the α-Hermite SVP (HSVP). The more common α-SVP
problem asks to relate the length of the vectors to the first minimum λ1(L). To do so, we
rely on a probabilistic lower bound on λ1 for random lattices.

Corollary 3. For every n ⩾ 1 and α ∈ [0, 1], there is a randomized algorithm that
on a fraction at least 1 − 21−n/2(1 + o(1)) − 2αn(1+o(1))

(2−αn)2 of random lattices L according
to µn, outputs in time and space 2n/2+o(n) a nonzero vector of L of length at most
t(n)

√
e · 241/nα−1λ1(L) with probability at least 1/2, where t(n) is defined in Theorem 5.
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Proof. We apply Theorem 5 to get an algorithm that returns a nonzero vector on a lattice
L with probability at least 1/2 and of length at most t(n)

√
n

2π · 241/n. This algorithm
works on a fraction at least 1 − ε of lattices L where ε = 21−n/2(1 + o(1)). We further
apply Theorem 4 to get that for a fraction at least 1 − ε′ of lattices, where ε′ = 2αnζ(n)

2−αn ,
we have λ1 ⩾ α vol(Bn)−1/n. Therefore, for a fraction at least 1 − ε − ε′ of lattices, the
nonzero vector returned by the algorithm is of length at most ℓ · λ1(L) where

ℓ =
t(n)

√
n

2π · 241/n

λ1(L) ⩽
t(n)

√
n

2π · 241/n

α vol(Bn)−1/n
.

But vol(Bn) ∼ 1√
nπ

( 2πe
n

)n/2 so

vol(Bn)1/n =
√

2πe

n
e− 1

2n ln(nπ)+o(1/n) =
√

2πe

n
eo(1) =

√
2πe

n
(1 + o(1))

which gives the result.

5 Discussion and open questions
We have shown a conceptually simple algorithm to solve (1 + o(1))

√
e-SVP and (1 +

o(1))
√

n
2π -HSVP for random lattices by discrete Gaussian sampling. Perhaps the most

intriguing consequence of these results is that it implies that sampling from a discrete
Gaussian at the smoothing parameter cannot be done in subexponential time (even
for random lattices) without major consequences on lattice-based cryptography. This,
however, does not quite settle the question of the exact complexity of DGS at the smoothing
parameter. Indeed, all existing algorithms that run in time 2n/2+o(n) use exponential
space and it is open whether it is possible to sample in subexponential space. With our
results, this question becomes even more relevant since any improvement in the space
complexity would translate into a similar improvement for for (1 + o(1))

√
e-SVP and

(1 + o(1))
√

n
2π -HSVP (on random lattices).

Another open question concerns our probabilistic bound (Corollary 2) on ηε(L). Indeed,
recall that for any ε > 0 we have shown that almost all lattices L satisfy that

ηε(L) ⩽ sε =
(

ε + 1 +
√

2 ε + 1
ε2

)1/n

.

When ε becomes sufficiently small, sε ∼ 21/nε−2/n. Combining this with the upper bound
(Theorem 4) on λ1(L) we get that for small values of ε,

λ1(L)ηε(L̂) ⩽ (1 + o(1))
√

n
2πe ε−2/n. (4)

This should be compared with the unconditional result of [3, Lemma 6.1] that shows that√
log(1/ε)

π
< λ1(L)ηε(L̂) <

√
β(L)2n

2πe
· ε−1/n · (1 + o(1)) (5)

where β(L) ⩽ 20.401 is the generalized kissing number [1]. It is reasonable to believe that
β(L) ≈ 1 for a random lattice L. If this were the case, then it remains a discrepancy
between our bound (4) and the bound (5) of [3]: ε−2/n in our case compared to ε−1/n in
theirs. We leave as an open question to explain this discrepancy which may point to our
upper bound (Corollary 2) being suboptimal.
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