
Breaking BASS

Simon-Philipp Merz1, Kenneth G.Paterson1, and Àlex Rodŕıguez Garćıa2

1 Applied Cryptography Group, ETH Zurich
2 Universitat Politècnica de Catalunya

Abstract. We provide several attacks on the BASS signature scheme
introduced by Grigoriev, Ilmer, Ovchinnikov and Shpilrain in 2023. We
lay out a trivial forgery attack which generates signatures passing the
scheme’s probabilistic signature verification with high probability. Gener-
ating these forgeries is faster than generating signatures honestly. More-
over, we describe a key-only attack which allows us to recover an equiv-
alent private key from a signer’s public key. The time complexity of this
recovery is asymptotically the same as that of signing messages.

1 Introduction

In this paper, we present multiple attacks against the Boolean automorphisms
signature scheme (BASS) proposed by Grigoriev, Ilmer, Ovchinnikov and Shpil-
rain in 2023 [1].

First, we show that the scheme’s probabilistic signature verification allows
us to forge signatures that will be likely to pass verification. Producing these
forgeries is more efficient than honestly generating signatures using the private
key. According to our experiments, the forgeries produced this way pass the
verification algorithm of BASS on average 86.2% of the time for the proposed
parameters.

Second, we provide a key-only attack which recovers a key equivalent to the
private key from the public key. This allows us to forge signatures that pass
verification with the same probability as legitimately generated signatures. This
attack is practical for the suggested parameters of the signature algorithm and
it runs with the same complexity as the signing algorithm asymptotically.

Finally, we briefly discuss how to further improve our attack by exploiting
how secret keys are chosen in BASS.

Along the way, we provide a different characterisation of the space of the
Boolean automorphisms used as private keys in BASS. From our description it
is apparent that the private keys are far from being unique. Further, we discuss
the probability of the BASS verification algorithm rejecting valid signatures. Our
analysis and experimental results diverge significantly from the claims made by
the authors of BASS [1].

2 Authors listed in alphabetical order: see https://www.ams.org/profession/

leaders/CultureStatement04.pdf. The research was carried out while the third
author visited ETH Zurich on an SSRF scholarship.

https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

All algorithms described in this paper are implemented and were used to
verify our results experimentally. The code is available at [2].

Outline. In Section 2 we introduce some necessary notation as well as the notion
of two bases that will be crucial to describe this paper’s contributions. In Sec-
tion 3 we recall the BASS signature scheme and we provide our own explanation
of why the probabilistic verification of the scheme is usually correct. We further
explain why it seems to have more false negatives than claimed in [1]. Section 4
characterises (the large number) of equivalent private keys in the BASS signa-
ture scheme. In Section 5 we give a probabilistic attack which forges signatures
that will likely be accepted. Generating forgeries takes less time than it would
take to honestly sign a message. Finally, in Section 6, we show how to recover an
equivalent private key from a public key in BASS. Using this, we can forge signa-
tures that will be accepted with the same probability as legitimately generated
signatures.

2 Notation

We introduce the following notation to describe the BASS signature scheme
and our attacks. Let Kn = Z[x1, . . . , xn] and I the ideal in Kn generated
by the polynomials x2i − xi for i ∈ [n]. The ring Bn := Kn /I is called the
“booleanization” of Kn. We denote the automorphisms of Bn by Aut(Bn). Let
c = c1c2 . . . cn ∈ {0, 1}n be an n-tuple of bits, i.e. ci ∈ {0, 1}. Further, we define

bc :=

n∏
i=1

xcii ∈ Bn B := {bc | c ∈ {0, 1}n},

ec :=

n∏
i=1

xcii (1− xi)
1−ci ∈ Bn E := {ec | c ∈ {0, 1}n}.

We refer to B as the standard basis of Bn and E as the orthogonal basis of Bn.
Given p ∈ Bn, we denote by p(c) = p(c1, c2, . . . , cn) = p|xi=ci ∀i∈[n] the evaluation
of p at a Boolean n-tuple c ∈ {0, 1}n. Partial evaluations are written as p|xi=b,
where b ∈ {0, 1}.

When providing implementation details, we denote a polynomial p repre-
sented in the standard basis by [p]b and in the orthogonal basis by [p]e. In the
first case, polynomials are represented as a list of monomials whose size depends
on the number of monomials. In the second case, polynomials are represented
by a list of 2n binary integer coefficients, where the i-th element corresponds to
the coefficient of ei. In all implementations we represent automorphisms by their
action on the orthogonal basis, leaving no ambiguity in their representation.

3 The BASS signature scheme

In this section, we briefly recall the BASS signature scheme with the parameters
suggested in [1].

2

Key generation. A secret automorphism ϕ ∈ Aut(B31) is sampled as the
private key of the signer. Further, three sparse polynomials P1, P2, P3 ∈ B31 are
chosen at random from a publicly known distribution. The public key consists of
the polynomials P1, P2, P3, ϕ(P1), ϕ(P2), ϕ(P3) ∈ B31. Using the recommended
parameters, all three Pi are the sum of three monomial terms with coefficients
in {−1, 1}.

Signature generation. To sign a message m, it is hashed onto a 256-bit string
(using SHA3-256) which is encoded as a polynomial Q ∈ B32 according to a
publicly known map. Then, the secret automorphism ϕ is extended to ϕext ∈
Aut(B32) such that ϕext(xi) = ϕ(xi), ∀i ∈ [31] and a randomly defined image
for ϕext(x32) that is compatible with ϕext being an automorphism is selected.
The signature for m is σ := ϕext(Q) ∈ B32.

Verification. When verifying a signature, first a random polynomial u ∈ K4 is
sampled. Given the message-signature pair (m, σ),m is mapped to the polynomial
Q ∈ B32 following the same procedure as in the signature generation. Let

R := u(P1, P2, P3, Q), S := u(ϕ(P1), ϕ(P2), ϕ(P3), σ) ∈ B32.

The verifier samples with repetition 3000 Boolean tuples in {0, 1}32 and evaluates
both R and S at these tuples and counts the tuples that evaluate to a positive
value. If the number of positive values appearing for R and S differ by no more
than 3% of the total number of samples, the signature is accepted as valid and
rejected otherwise. Note, this is a probabilistic signature verification algorithm.

Remark 3.1. The description of the signature verification in BASS is not con-
sistent throughout [1]. In most places, the authors claim that the proportions
of positive values of R and S are compared as mentioned above [1, Sect. 2-7].
However, according to the abstract and the proof of concept implementation the
number of zeroes in R and S are compared. Our attacks later apply to both ver-
ification procedures, but for consistency we will adhere to the description given
above.

3.1 Correctness of the verification algorithm

We provide in this subsection our own explanation for the correctness of the
signature scheme, i.e. why we expect the scheme to verify legitimately generated
signatures. We typically express polynomials in Bn using the standard basis.
However, the orthogonal basis is more useful for understanding the behaviour
of automorphisms. The following lemma summarises the key properties of the
orthogonal basis that we will use in the following. Its proof is located in Ap-
pendix A.

Lemma 3.1 Let E := {ec | c ∈ {0, 1}n} with ec :=
∏n

i=1 x
ci
i (1 − xi)

1−ci ∈ Bn

denote the “orthogonal basis”.

3

(i) The orthogonal basis is indeed a basis, i.e. any polynomial in Bn can be
uniquely expressed as a linear combination of elements in E.

(ii) For c, d ∈ {0, 1}n with c ̸= d, we have ec(d) = 0 and ec · ed = 0. Moreover,
ec(c) = 1 and ec · ec = ec.

(iii) The orthogonal basis is a Lagrange basis, i.e. any polynomial A ∈ Bn can
be expressed in terms of E as

A =
∑

c∈{0,1}n

A(c)ec.

(iv) For each ϕ ∈ Aut(Bn) there exists a permutation π ∈ Σ{0,1}n such that
ϕ(ec) = eπ(c) for every c ∈ {0, 1}n.

(v) For each π ∈ Σ{0,1}n there exists an automorphism ϕ ∈ Aut(Bn) such that
ϕ(ec) = eπ(c) for every c ∈ {0, 1}n.

Lemma 3.1 shows that any automorphism can be viewed as a permutation
on the variables of Bn. We use this result to argue why honestly generated
signatures are expected to pass verification.

Given any polynomial A ∈ Bn and any automorphism ϕ ∈ Aut(Bn), we can
write

A =
∑

c∈{0,1}n

A(c)ec

ϕ(A) =
∑

c∈{0,1}n

A(c)ϕ(ec) =
∑

c∈{0,1}n

A(c)eπ(c) =
∑

c∈{0,1}n

A(π−1(c))ec (1)

for some permutation π. Then, ϕ(A)(c) = A(π−1(c)). Here we have used (ii), (iii)
and (iv) from Lemma 3.1 and linearity of automorphisms. If σ is an honestly
generated signature, then σ = ϕext(Q). Using linearity of automorphisms, we
have

R = u(P1, P2, P3, Q)

S = u
(
ϕext(P1), ϕext(P2), ϕext(P3), ϕext(Q)

)
= ϕext

(
u(P1, P2, P3, Q)

)
= ϕext(R).

Using Eq. (1), we obtain: R(c) = S(π−1(c)) for some permutation π. Using
this relationship, it is easy to see that if we evaluate the polynomials R and S on
the set of all Boolean tuples the results have to be the same up to a permutation.
In particular, the number of positive images have to be the same.

Probability of false negatives. Let r be the proportion of positive images
when evaluating R or S on all Boolean tuples. When evaluating the polynomials
on a sample of 3000 values, the number of positive images follows a binomial
distribution Bin(3000, r) as the verification algorithm samples without replace-
ment.

4

When running the signature verification on an honestly generated signature,
the probability that this signature is falsely rejected is the probability that two
random variables X,Y ∼ Bin(3000, r) satisfy |X − Y | > 90, i.e. that the pro-
portions differ by more than 3% of the samples. When approximating X,Y as
normal distributions N(3000r, 3000r(1− r)), then X −Y ∼ N(0, 6000r(1− r)).
Using the fact that r(1− r) ≤ 1/4 and looking at the normal probability density
function table, we conclude

Pr(|X − Y | ≤ 90) ≤ Pr(−2.32σ ≤ X − Y ≤ 2.32σ) ≈ 0.98,

where σ denotes the standard deviation. Hence the probability of rejecting an
honestly generated signature is at most 2%.

Note that this bound is tight if the proportion of positive images among
all the evaluations on Boolean tuples r is close to 0.5 which can be observed
in practice. We ran the probabilistic signature verification on a fixed message-
signature pair 100.000 times. The signature was falsely rejected in roughly 1.32%
of the trials. The example can be found at [2].

This contrasts the claim by the authors of BASS that false negatives would
only occur with a tiny probability of 2−33.

4 Space of equivalent private keys

In this section, we characterise automorphisms which are equivalent to a signer’s
private key in the BASS signature scheme, i.e. automorphisms that allow us
to compute signatures which will pass verification with the same probability
as signatures generated with the private key of the signer, independent of the
message signed.

4.1 A sufficient condition for equivalent private keys

Lemma 4.1 Let ϕ ∈ Aut(B32) be a signer’s private key, let P1, P2, P3 be the
polynomials contained in the public key and let Q ∈ B32 be the polynomial cor-
responding to a message m. For any ψ ∈ Aut(B32) satisfying

ψ(Pi) = ϕ(Pi), ∀i ∈ {1, 2, 3}, (2)

the polynomial ψ(Q) will be accepted as a valid signature with the same probability
as an honestly generated signature ϕ(Q).

Proof. Using the same notation as in Section 3, note that

S = u(ϕ(P1), ϕ(P2), ϕ(P3), ψ(Q)) = u(ψ(P1), ψ(P2), ψ(P3), ψ(Q))

= ψ(u(P1, P2, P3, Q)) = ψ(R)

The verification only checks (probabilistically) the equality of the proportion
of positive images of S and R. Since ψ is an automorphism the proportion of

5

positive values are the same for both polynomials, following the same argument
as in Section 3 for honestly generated signatures. Hence, the signature ψ(Q) will
be accepted by the verifier with the same probability as an honestly generated
signature. ⊓⊔

As such, Lemma 4.1 provides a sufficient condition on whether an automorphism
ψ ∈ Aut(B32) is equivalent to a signer’s private key for the purpose of producing
arbitrary valid message-signature pairs.

Recall from the key generation in Section 3, that all three polynomials Pi in
the public key are the sum of three monomial terms with coefficients in {−1, 1}.
Let ai denote the number of coefficients in Pi equal to −1. As each term of Pi

only takes values in {0, 1} when evaluated at a Boolean tuple, the polynomial
Pi − ai takes values in the set {0, 1, 2, 3} for each i ∈ {1, 2, 3}. Consider the
polynomial P defined as

P := (P1 − a1) + 4 · (P2 − a2) + 16 · (P3 − a3). (3)

Note that the polynomial

ϕ(P) = (ϕ(P1)− a1) + 4 · (ϕ(P2)− a2) + 16 · (ϕ(P3)− a3)

can also be computed from the public key.
Clearly, any ψ ∈ Aut(B32) satisfying ψ(P) = ϕ(P) also satisfies the sufficient

condition from Lemma 4.1, as we have only rewritten the condition in base 4.
Thus, to recover a key that is equivalent to a private key of a signer it is

sufficient to solve the following problem (in BASS with n = 32).

Problem 4.1. Let ϕ ∈ Aut(Bn) be an unknown automorphism. Given two poly-
nomials P, ϕ(P) ∈ Bn, find ψ ∈ Aut(Bn) such that ψ(P) = ϕ(P).

Our observation about equivalent private keys raises the question of how
many solutions there are for Problem 4.1.

4.2 Solutions to Problem 4.1 as permutations

In this section we characterise the set of solutions to Problem 4.1 as a set of
permutations with a specific property described by the following theorem. This
characterisation will allow us to compute the number of solutions to Problem 4.1.

Theorem 4.2. Let A,B ∈ Bn be two polynomials and let

V := {v ∈ Z | ∃c ∈ {0, 1}n such that A(c) = v or B(c) = v}.

We write m = |V | and V = {vi | i ∈ {0, 1, . . . ,m − 1}}. For each i ∈
{0, 1, . . . ,m− 1}, we further define

Si := {c ∈ {0, 1}n | A(c) = vi} and Ti := {c ∈ {0, 1}n | B(c) = vi}.

Then, there exists an automorphism ψ ∈ Aut(Bn) such that ψ(A) = B if and
only if |Si| = |Ti|, for all i ∈ {0, 1, . . . ,m− 1}.

6

Proof. Using Lemma 3.1 (iii) and grouping terms based on the value of A(c)
and B(c) respectively, we write

A =

m−1∑
i=0

vi

 ∑
c∈{0,1}n

A(c)=vi

ec

 =

m−1∑
i=0

vi

(∑
c∈Si

ec

)

B =

m−1∑
i=0

vi

 ∑
c∈{0,1}n

B(c)=vi

ec

 =

m−1∑
i=0

vi

(∑
c∈Ti

ec

)
.

We first prove that if there exists ψ ∈ Aut(Bn) such that ψ(A) = B, then
|Si| = |Ti| for all i ∈ {0, 1, . . . ,m− 1}. Note that

ψ(A) =

m−1∑
i=0

vi

(∑
c∈Si

eτ(c)

)
=

m−1∑
i=0

vi

 ∑
c∈τ(Si)

ec

for some unknown permutation τ . Using Lemma 3.1 (iii), we know that the
coefficients of the polynomials ψ(A) and B in the orthogonal basis must coin-
cide. In particular, we have τ(Si) = Ti and thus both sets must have the same
cardinality.

We prove the reverse direction by construction. Suppose |Si| = |Ti| for all
i ∈ {0, 1, . . . ,m − 1}. Then we can define a bijection between elements of Si

and Ti. As the sets Si are pairwise disjoint and so are the Ti, these bijections
define a permutation τ over the set of Boolean tuples. Using Lemma 3.1 (v), we
know that τ defines an automorphism ψ ∈ Aut(B32). As

ψ(A) =

m−1∑
i=0

vi

(∑
c∈Si

eτ(c)

)
=

m−1∑
i=0

vi

 ∑
c∈τ(Si)

ec

 =

m−1∑
i=0

vi

(∑
c∈Ti

ec

)
= B,

we obtain the desired equality. ⊓⊔

Remark 4.3. We can apply Theorem 4.2 to the polynomials P and ϕ(P) defined
in Eq. (3) and consider the respective sets Si and Ti. The space of solutions ψ
to Problem 4.1 corresponds to all the permutations τ such that τ(Si) = Ti, ∀i ∈
{0, 1, . . . ,m − 1}. Note that any such permutation induces a solution to Prob-

lem 4.1. Thus, we can count the exact number of solutions, which is:
∏m−1

i=0 |Si|!.
For the proposed parameters of BASS and the definition of P , we know that
P takes values only in {0, 1, . . . , 63}, i.e. m ≤ 64. The value is minimised for
larger m and if each set Si has an equal number of elements. Therefore, the
number of automorphisms ψ ∈ Aut(B32) such that ψ(P) = ϕ(P), i.e. the num-
ber of equivalent keys for the BASS signature scheme, is considerable – at least
(232/64)!64 ≈ 1010

10.5

. This contradicts the statement of the authors of BASS
that “the secret key does not have to be unique, although most of the time it
is” [1, Sect. 7].

7

5 Signing with trivial signatures

We have seen that there are many automorphisms which solve Problem 4.1.
When evaluating any such automorphism on Q, the encoded hash of a message,
we obtain a polynomial that will be accepted during the signature verification
with the same probability as a legitimately generated signature. In Section 6 we
will describe how to compute such equivalent keys. Another natural question is:

Given a polynomial σ ∈ Bn and a message corresponding to the hashed en-
coding Q ∈ Bn, how likely will the probabilistic signature verification accept σ?

Note that a polynomial will likely be accepted whenever it is “sufficiently
close” to a polynomial obtained by evaluating an automorphism ψ from the set
of equivalent private keys on Q.

In this section, we provide a lower bound for the above question. Estimating
the probability of polynomials passing the signature verification will allow us to
describe how to forge signatures that are likely to be accepted in less time than
it would take to generate a legitimate signature using the private key.

More precisely, we will argue why just outputting Q, the encoded hash of a
message, as a forgery, may pass signature verification. Then, we provide experi-
mental evidence that such forgeries will indeed be accepted on average 86.2% of
the time for randomly chosen pairs of messages and public keys.

Further, we observe experimentally that the trivial zero-polynomial will also
pass verification on average 11.2% of the time for randomly chosen messages.

For a polynomial σ to pass verification with high probability, it needs to be
close to ψ(Q) for one of the automorphisms ψ solving Problem 4.1, i.e. we want
both ψ(Q) and σ to evaluate to a positive value simultaneously on as many
Boolean tuples as possible. For a fixed Q and σ, a probability estimate for the
acceptance can be approximated by determening the distance to a good choice
of automorphism ψ evaluated on Q.

The following example illustrates how to construct such an automorphism ψ
for the purpose of estimating the probability of a given polynomial σ passing
signature verification.

Example 5.1. For a small example with n = 3, suppose the polynomials P ,
ϕ(P) ∈ B3 computed from the public key are

[P]e = [0, 1, 0, 2, 1, 0, 0, 1]

[ϕ(P)]e = [0, 0, 2, 1, 0, 1, 1, 0].

From Theorem 4.2, we know that finding an automorphism which maps P
to ϕ(P) is equivalent to finding a permutation that maps the first vector of
coefficients to the second one. For example, we may consider the permutation
τ1 =

(
1 2 3 4 5 6 7 8
1 4 2 3 6 5 8 7

)
, which induces an automorphism ψ1. Suppose Q is the en-

coding of the hash of a message m and assume we want to sign the message with

8

the polynomial σ. These polynomials may look like

[Q]e = [−1, 2, 2, 0,−1, 1, 1, 0]

[σ]e = [1,−1, 0, 0, 2,−1, 1, 0].

We know that ψ1(Q) is a signature which will pass verification with the same
probability as an honestly generated signature. We would have

[ψ1(Q)]e = [−1, 2, 0, 2, 1,−1, 0, 1].

Given that σ and ψ1(Q) are represented in the orthogonal basis, we can compare
the vectors componentwise to see that there are exactly two Boolean tuples where
both polynomials evaluate to the same value. However, we can try to find an
automorphism ψ2 such that ψ2(Q) is a valid signature, and also “closer” to σ in
the sense that the evaluation coincides on more Boolean tuples. Let τ2 be the
permutation corresponding to ψ2. As τ2 has to map the vector of coefficients
of P to the vector of coefficients of ϕ(P), we have restrictions such as τ2(1) ∈
{1, 2, 5, 8}. If possible, we choose among the permissible images such that ψ2(Q)
and σ agree in the corresponding coefficient. For example choosing τ2(1) = 2
makes [σ]e and [ψ2(Q)]e coincide in the second coefficient. Iterating this process
greedily, we obtain the permutation τ2 =

(
1 2 3 4 5 6 7 8
2 ∗ 5 3 6 1 ∗ ∗

)
.

The undefined images are completed such that τ2 still induces an automor-
phism between P and ϕ(P), e.g. τ2 =

(
1 2 3 4 5 6 7 8
2 4 5 3 6 1 8 7

)
.

Constructing ψ2(Q) with this greedy approach, it is both a signature that
will verify with the same probability as a legitimately generated one and it is
indistinguishable from σ when evaluated on five of the eight possible Boolean
tuples as

[ψ2(Q)]e = [1,−1, 0, 2, 2,−1, 0, 1].

When running the signature verification on σ and the message corresponding
to Q, σ will evaluate to the value of a valid signature 5/8 of the time. In the
remaining 3/8 of tuples, the sign of the evaluation may or may not be the same.

In the following, we generalise the example and we give the greedy algo-
rithm which computes an automorphism ψ in the solution set of Problem 4.1
such that ψ(Q) is close to a given polynomial σ. The “distance” between the
polynomials can be used to give a lower bound on the probability that σ will
be accepted as a signature. For the previous example, we say that the distance
between ψ2(Q) and σ is 3/8. Notice that in general the smaller the distance, the
bigger the probability σ will be accepted during the verification.

5.1 Sufficiently good signatures

As discussed in Section 4.2, there are many different solutions ψ to Problem 4.1
for each of which ψ(Q) passes verification with the same probability as an hon-
estly generated signature. To determine the probability with which a candidate
signature σ ∈ Bn passes verification, we would like to determine whether σ is

9

sufficiently close to ψ(Q) for some ψ in the set of solutions to Problem 4.1,
meaning ψ(Q) and σ evaluate to the same values on many Boolean tuples. We
say ψ(Q) ≈ σ if the proportion of Boolean values where the evaluation of both
polynomials coincides is large.

Note that given the signature verification this could be relaxed even further
only demanding that ψ(Q) and σ evaluate to values with the same sign on many
Boolean tuples.

Let ϕ be the sender’s private key and recall that the polynomials P , as de-
fined in Eq. (3), and ϕ(P) which can be computed from the public key evaluate
to values in {0, 1, 2, . . . , 63} for the parameters proposed by the authors of BASS.
Given σ, consider the following algorithm generalising Example 5.1. The algo-
rithm computes an equivalent private key ψ ∈ Aut(Bn) in the set of solutions
to Problem 4.1 such that ψ(Q) ≈ σ.

1. Apply Theorem 4.2 to the polynomials P and ϕ(P) as computed in Eq. (3)
and compute the sets Si, Ti ∀i ∈ {0, 1, . . . , 63}, i.e. the sets of Boolean
tuples on which P , respectively ϕ(P), evaluate to i.

2. For every i ∈ {0, 1, . . . , 63}, do:
2.1. For each c ∈ Si (in any order), try to find d ∈ Ti such that Q(c) = σ(d).

If one is found, take both of them out of their sets and define τ(c) = d.
2.2. For the remaining c ∈ Si for which we were not able to find a corre-

sponding d, define τ(c) = d for any d ∈ Ti. Take both of them out of
their sets until both sets are empty. This will happen as Theorem 4.2
guarantees |Si| = |Ti|.

3. Output the automorphism ψ corresponding to the computed permuta-
tion τ , which we know to exist by (v) of Lemma 3.1.

As a consequence of Theorem 4.2, ψ is a solution to Problem 4.1 because τ
matches elements of Si with Ti. Using Eq. (1), we see that for any ψ computed
this way, we have ψ(Q)(d) = Q(τ−1(d)) = Q(c). If τ(c) was defined during
Step 2.1 of the algorithm, then Q(c) = σ(d), i.e. ψ(Q)(d) = Q(c) = σ(d).

Let C denote the set of Boolean tuples c such that τ(c) was defined on the
Step 2.1 of the algorithm. Clearly ψ(Q) and σ are equal whenever evaluated on
any Boolean tuple in C. Thus, computing a good ψ and tracking the size of C
allows us to give a lower bound on the probability that a polynomial σ ∈ B32

passes the signature verification of BASS.

Estimating the probability a polynomial passes signature verification. Let u ∈ K4

be random and consider the corresponding polynomials

R := u(P1, P2, P3, Q), S := u(ϕ(P1), ϕ(P2), ϕ(P3), σ) ∈ B32.

Let r be the proportion of positive values R (and S) take when evaluated
over the set C where ψ(Q) and σ evaluate to the same values. Further, let
δ := 1 − |C|/232. Note that the set C depends on the choices made in Step 2.1
when computing ψ but its cardinality and thus δ is independent of these choices.

10

For the proportion of positive values r1 of R and r2 of S when evaluated over
all Boolean tuples, we have

r1 = (1− δ)r + δp1, r2 = (1− δ)r + δp2,

where p1 and p2 denote the proportions of positive values of R and S, respec-
tively, when evaluated over the complement of C. Clearly, we have |r1 − r2| =
δ|p1 − p2|. The number of positive values N1 of R and N2 of S when evaluated
over 3000 Boolean tuples sampled during the signature verification follow a bi-
nomial distribution. Approximating both to a normal distribution as described
in Section 3.1, their difference can be approximated by the normal distribution

N1 −N2 ∼ N(3000(r1 − r2), 3000r1(1− r1) + 3000r2(1− r2)).

Clearly, the closer r1, r2 are to each other, the more likely the signature
verification will succeed. In particular, suppose that σ = ψ(Q) for some auto-
morphism ψ in the space of solutions of Problem 4.1. Then, it is easy to check
that δ = 0, which implies r1 = r2. Therefore, the probability of accepting σ is
the same as the one of a correctly generated signature.

5.2 Experimental observations

Signing a message with its encoded digest. We tried signing a message with its
encoded digest Q as a signature. The rational is that Q and ψ(Q) have the same
images when evaluated over all Boolean tuples. Thus, one may hope that there
are a number of Boolean tuples in Si and Ti where Q evaluates to the same value.
The greater the number of such tuples, the larger the set C and the smaller δ. For
the proposed parameters of BASS, we computed δ experimentally to be roughly
≈ 0.1. Assuming p1, p2 are independent random variables following a uniform
distribution, the expected value of |r1 − r2| is then δ|p1 − p2| = δ/3 ≈ 0.033.
Using the result from the previous section, we can approximate

N1 −N2 ∼ N(100, 1500).

Here, we used that the distribution has variance close to 1500 which follows
from experiments suggesting that ri ≈ 0.5. Computing the values for the normal
distribution, we get

Pr(|N1 −N2| ≤ 90) ≈ 0.398.

This suggests that Q itself should verify as a signature at least 40% of the
time. Note that the assumptions made throughout were the worst case for an
attacker.

Experimentally, using Q as a signature turned out to be even more successful.
For the proposed parameters, Q was accepted between 78% and 94% of the
time for most of the randomly chosen pairs of public keys and messages. A
visualisation of our experiments is depicted in Fig. 1.

11

Signing a message with 0. Another idea is to sign a message with the zero-
polynomial. In this case, the rational is that Q evaluates to zero on many Boolean
tuples and so will ψ(Q). Choosing random messages, we computed δ ≈ 0.87 with
respect to σ = 0 ∈ Bn. Our experiments then showed that the probability of
accepting 0 as a valid signature tends to be larger than 0.1 for the parameters
proposed for BASS. This highlights a clear weakness in the signature validation
and yields a trivial attack on BASS.

Fig. 1. Given randomly chosen pairs of public key and message, we estimated the
probability of accepting Q or 0 as a valid signature for each pair. The probabilities
were approximated by running the verification algorithm 100 times for all (pk,m)-pairs,
counting how often the verification succeeded. Mean and variance of the probabilities
are computed for all the pairs (pk,m) that share either the public key (left) or the
message (right).

Both attacks, signing with Q as well as signing with 0, exploit the low ac-
curacy of BASS’s probabilistic verification algorithm. Clearly, the success prob-
ability of the attacks could be lowered when checking that the proportions of
positive values in R and S diverge by less than 3%. When reducing this error
bound in the signature verification, either even more correctly generated signa-
tures would be rejected or one would need to evaluate R and S on a much larger
number of Boolean tuples.

Assume we accepted the current probability of rejecting a legitimately gen-
erated signature 2% of the time. Further, assume that the attack of signing a
message with its encoded hash Q succeeds only with a probability of 78% after
evaluating 3000 Monte Carlo samples. Note this was among the lowest success
rates observed in the experiments and the attack performed on average much
better. Even under these very optimistic assumptions (for a signer), it would be
necessary to sample ≈ 295.000 Boolean tuples during signature verification in
order for the attack of signing with the encoded hash of a message Q to suc-
ceed with probability less than 2−128. Since signature verification is linear in the

12

number of Boolean tuples checked, this would slow down signature verification
almost by 100x.

Remark 5.2. Given the inconsistent description of the signature verification of
BASS, as mentioned in Remark 3.1, we also ran the trivial attacks of signing a
message directly with its hashed encoding Q or with 0 for the signature verifi-
cation which compares the number of zeroes instead of the number of positive
values. The success probability of the attacks was even higher with Q being ac-
cepted as a valid signature for almost all message and signature pairs that we
tested. The results are depicted in Appendix B.

6 Recovering and signing with equivalent private keys

In this section, we provide a key-only attack which computes an equivalent pri-
vate key, i.e. a solution to Problem 4.1, given only the public key of the signature
scheme. We first provide an attack using a first-in, first-out (FIFO) criterion.
Then, we speculate about a hypothetical countermeasure and we suggest a more
sophisticated attack that will succeed in this case. Asymptotically our attack
has the same complexity as the signing algorithm of BASS.

Throughout this section, we let ψ be an equivalent private key that we aim
to compute and we represent automorphisms by their action on the orthogonal
basis.

6.1 FIFO attack

Computing an equivalent key. As observed in Section 4.2, we can find a
solution ψ to Problem 4.1 by mapping elements in Si to elements in Ti where
Si and Ti are defined with respect to the polynomials P and ϕ(P) from Eq. (3).
We know that P takes values in {0, 1, . . . , 63} for the proposed parameters in
BASS. Given two polynomials A,B ∈ Bn taking values in {0, 1, . . . , 63} such
that there exists an automorphism that maps one polynomial to the other, Al-
gorithm 1 describes how to recover an automorphism with the same action on
the polynomials using a first-in, first-out approach.

Lemma 6.1 Algorithm 1 is correct and runs with a time and memory complex-
ity of O(poly(n)2n).

Proof. The correctness of the algorithm follows from Lemma 3.1(v) and Theo-
rem 4.2. Computing Si and Ti from polynomials given in the orthogonal basis
takes time O(poly(n)2n) by once passing through the polynomial’s coefficients.
Transforming polynomials from the standard basis to the orthogonal basis can
be done with a divide-and-conquer recurrence running in O(m log(m)), where
m is the size of the given polynomial in the standard basis which is bounded
by 2n. Thus, the translation from standard to orthogonal basis can be achieved in
time O(poly(n)2n). The second loop touches upon all Boolean tuples c ∈ {0, 1}n
exactly once and thus runs in time O(poly(n)2n).

13

Algorithm 1 FIFO

Require: [A]e, [B]e ∈ Bn such that there exists ϕ ∈ Aut(Bn) with A = ϕ(B)
Ensure: ψ ∈ Aut(Bn) with ψ(A) = B

for i ∈ {0, . . . , 63} do
Compute Si = {c ∈ {0, 1}n | A(c) = i}
Compute Ti = {c ∈ {0, 1}n | B(c) = i}

end for
for i ∈ {0, . . . , 63} do

for j ← 1 to |Si| do
c← Si[j]
d← Ti[j]
ψ(ec)← ed

end for
end for
return ψ

The union of the sets Si and Ti are all Boolean n-tuples whose storage re-
quires O(n2n) bits of memory. Similarly, the automorphism can be stored in a
representation that describes its action on each element of the orthogonal basis
requiring O(n2n) bits of memory. ⊓⊔

Evaluating the equivalent key ψ on Q. Having computed an equivalent
key ψ in the set of solutions to Problem 4.1 by its action on the orthogonal basis
in Algorithm 1, we are left with computing [ψ(Q)]b to sign a message.

We do so by expressing [Q]e in the orthogonal basis, computing [ψ(Q)]e and
then converting it to the standard basis as summarised in Algorithm 2. We claim
that this can be done in O(poly(n)2n) time, using O(poly(n)2n) memory.

Algorithm 2 Signing

Require: [ψ]e an equivalent private key, m a message
Ensure: A signature [ψ(Q)]b of m

[Q]b ← Encode(H(m)) ▷ Standard hash and encoding
[Q]e ← StandardToOrthogonal([Q]b)
[ψ(Q)]e ← ψ([Q]e)
[ψ(Q)]b ← OrthogonalToStandard([ψ(Q)]e)
return [ψ(Q)]b

To run Algorithm 2, we need an efficient algorithm to transform a polyno-
mial’s representation with respect to the standard basis to the orthogonal basis
and vice versa. As claimed in the proof of Lemma 6.1, the first transformation
can be done with a divide-and-conquer recurrence in time O(poly(n)2n). To
transform a polynomial A from the orthogonal basis to the standard basis we
apply the following relation.

14

A =
∑

c∈{0,1}n

A(c)ec = (1− xn)
∑

c∈{0,1}n−1

A(c∥0)ec + xn
∑

c∈{0,1}n−1

A(c∥1)ec

= A0 + xn(A1 −A0),

where
Ai =

∑
c∈{0,1}n−1

A|xn=i(c)ec.

Constructing A0 and A1 requires simply selecting the terms A(c)ec in A with
cn equal to 0 or 1, respectively. Computing and subtracting the polynomials thus
takes time linear in the length of A. Since the polynomials Ai do not contain any
terms with xn, the multiplication only appends xn. Conducting the computation
recursively, the standard basis representation can therefore be computed from
the orthogonal basis in time O(poly(n)2n) as well.

As before, we store the automorphism ψ as its action on the orthogonal basis
which takes O(n2n) bits. Storing [Q]b requires O(n) memory as Q consists of at
most 3n monomial terms. Computing the representation of Q in the orthogonal
basis requires O(poly(n)2n) bits of memory. Evaluating ψ on [Q]e is just a re-
ordering of the basis elements and the recursion to compute Q in the standard
basis requires the same amount of memory in every step. As such the memory
cost of signing messages with the equivalent private key given with respect to
its action on the orthogonal basis is O(poly(n)2n).

Note that when a signature is honestly computed, a signer has to compute
polynomial products of the form ϕ(xi) · ϕ(xj) for some indices i ̸= j. In general,
this has time complexity O(poly(n)2n) as well.

We implemented and verified the correctness of the attack in Python and
ran it on several instances for n = 28, small enough to run the attack with the
22GB of memory available on our laptop [2].

6.2 Further improvements of the attack

We have seen how to compute an equivalent secret key from the public key
provided using Algorithm 1, and how this can be used to forge signatures that will
pass verification with the same probability as a legitimately generated signature.
This raises the question:

Are our forgeries indeed indistinguishable from legitimate signatures?

It turns out that forgeries computed with an equivalent key given by Algo-
rithm 1 will usually be polynomials with significantly more terms than honestly
generated ones, when expressed in the standard basis. This is an artifact of the
way private keys are generated in BASS. Instead of choosing private keys uni-
formly at random in Aut(B31) and then extending them to an automorphism in
Aut(B32), the secret automorphism ϕ is sampled in a way such that ϕ(xi) = xj
for some j for approximately one-quarter of the indices i ∈ {1, . . . , 31}. This is a

15

property of the secret keys we have not yet exploited and that is not present in
our equivalent keys in general. To address a hypothetical countermeasure which
would reject signatures of length surpassing a certain threshold, we discuss how
we can find equivalent keys that generate more compact signatures.

In this subsection, we briefly describe how to predict that ψ(xi) = xj for some
i, j ∈ {1, . . . , 32} and how to adapt Algorithm 1 to incorporate these predictions.
Clearly, the more pairs of indices i, j with ψ(xi) = xj we find for a solution ψ
to Problem 4.1, the shorter we can expect the resulting signatures to be in the
standard basis.

We start with the following observation.

Lemma 6.2 Let P , ϕ(P) as defined in Eq. (3), and Si and Ti bet the sets of
Boolean tuples where P and ϕ(P), respectively, evaluate to the same value i as
defined in Theorem 4.2. Further, define

Si,k,0 := Si ∩ {c ∈ {0, 1}n | ck = 0}, Ti,ℓ,0 := Ti ∩ {c ∈ {0, 1}n | cℓ = 0}.

If there exist k, ℓ ∈ [n] such that |Si,k,0| = |Ti,ℓ,0| for all i ∈ {0, 1, . . . ,m − 1},
then there exist ψ0, ψ1 ∈ Aut(Bn−1) such that

ψ0(P |xk=0) = ϕ(P)|xℓ=0, ψ1(P |xk=1) = ϕ(P)|xℓ=1.

For ψ ∈ Aut(Bn) defined as

ψ(xk) = xℓ, ψ(xi) = (1− xℓ)ψ0(xi) + xℓψ1(xi), ∀i ̸= k

we then have ψ(P) = ϕ(P).
Conversely, if ψ ∈ Aut(Bn) such that ψ(P) = ϕ(P) and ψ(xk) = xℓ for some

k, ℓ ∈ [n], then |Si,k,0| = |Ti,ℓ,0| for all i ∈ {0, 1, . . . ,m− 1}.

The proof of Lemma 6.2 is located in Appendix A. The lemma allows us to split
the problem of finding ψ ∈ Aut(Bn) into to two smaller problems where we
have to find ψ0, ψ1 ∈ Aut(Bn−1). By iterating this process, we may find several
indices in the standard basis where ψ has a very simple image, i.e. i, j such
that ψ(xi) = xj . For example, suppose that when computing ψ0, ψ1, we have
ψ0(xi) = xj = ψ1(xi). Then, by definition of ψ we have

ψ(xk) = xℓ

ψ(xi) = (1− xℓ)xj + xℓxj = xj .

That is ψ has two indices with simple images with respect to the standard basis.
Note that the secret automorphism of a signer ϕ has many simple images, thus
by the converse direction we know that we can find ψ0, ψ1 that will satisfy the
necessary condition of the lemma. Yet, we may find false positives in the sense
that the necessary condition of Lemma 6.2 can be fulfilled even if ϕ(xk) ̸= xℓ for
the secret automorphism ϕ.

Remark 6.1. Any automorphism which sends xk to xℓ can be obtained using the
reverse direction of Lemma 6.2. In other words, all automorphisms ψ ∈ Aut(Bn)
with ψ(xk) = xℓ can be obtained by merging solutions for ψ0, ψ1 ∈ Aut(Bn−1).

16

We implemented a variant of our attack which recursively finds a list of valid
predictions by computing and matching the sets Si,k,0 and Ti,k,0 from Lemma 6.2.
When no further predictions for simple images can be made, we call Algorithm 1
previously described.

Making r valid predictions breaks the problem of finding an equivalent private
key ψ into 2r smaller problems of size n− r. Each problem can be solved in time
O(poly(n)2n−r). The necessary predictions can be made in time O(poly(n)2n).
Overall the time and memory complexity thus remains at O(poly(n)2n). How-
ever, the automorphism found will have more simple images with respect to the
standard basis, making the resulting forgeries more compact in the standard
basis.

7 Conclusion

In this paper we describe multiple shortcomings of and attacks on the BASS
signature scheme by Grigoriev, Ilmer, Ovchinnikov and Shpilrain [1].

We explain two ways of generating trivial forgeries which pass the verification
with high probability for the proposed parameters. Generating these forgeries
takes less time than legitimately generating a signature. The attack could be
prevented by changing the parameters of the probabilistic signature verification.
However, even under very optimistic assumptions this would lead to a roughly
100x slowdown in signature verification.

Further, we give a key-only attack which recovers an equivalent private key
from the public key. The complexity of this attack is asymptotically the same as
honestly running the signature scheme.

Along the way, we contradict several claims by the authors of BASS. We
show that private keys are far from being (almost) unique, and we show that
the scheme’s signature verification leads to significantly more false negatives for
the proposed parameters than claimed.

Due to the numerous design flaws and significant security issues of BASS
identified in this paper, the signature scheme and in particular its probabilistic
signature verification appear not to be fit for use.

Bibliography

[1] Dima Grigoriev, Ilia Ilmer, Alexey Ovchinnikov, and Vladimir Shpilrain.
Bass: Boolean automorphisms signature scheme. In Mark Manulis, Di-
ana Maimuţ, and George Teşeleanu, editors, Innovative Security Solutions
for Information Technology and Communications, pages 1–12, Cham, 2024.
Springer Nature Switzerland. ISBN 978-3-031-52947-4.

[2] A. Rodŕıguez. Python implementation of attacks on BASS, 2024. URL
https://github.com/AlexRG03/BASS_attack.

17

https://github.com/AlexRG03/BASS_attack

A Proofs

Proof (Lemma 3.1). For (i) notice that any polynomial expressed in the standard
basis can be written as a polynomial in the orthogonal basis. Given c ∈ {0, 1}n,
define I1 := {i : ci = 1}, I0 := {i : ci = 0}. Then

bc =
∏
i∈I1

xi =
∏
i∈I1

xi
∏
j∈I0

[xj + (1− xj)] =
∑

c : ci=1 ∀i∈I1

ec.

Uniqueness will follow with the proof of (iii).

(ii) As c ̸= d, there exists an i ∈ [n] such that ci ̸= di. If ci = 0, then

ec = (1− xi) ·
∏
j ̸=i

x
cj
j (1− xj)

1−cj .

If ci = 1, then

ec = xi ·
∏
j ̸=i

x
cj
j (1− xj)

1−cj .

In both cases, evaluation at d is zero. Using the same notation, we have

ec · ed = (1− xi) · xi
∏
j ̸=i

x
cj
j (1− xj)

1−cj ·
∏
j ̸=i

x
dj

j (1− xj)
1−dj = 0,

where we used (1− xi)xi = xi − x2i = 0. Finally, we have

ec(c) =

n∏
i=1

1 = 1

ec · ec =
n∏

i=1

x2cii (1− xi)
2(1−ci) =

n∏
i=1

xcii (1− xi)
1−ci = ec

using again that x2i = xi.

(iii) From (i) we know that any polynomial A ∈ Bn can be written as

A =
∑

c∈{0,1}

Acec

for some integers Ac. Evaluating both sides at d ∈ {0, 1}n and using (ii), we
obtain the equality A(d) = Ad. Hence,

A =
∑

c∈{0,1}

A(c)ec

which is a unique expression.

18

(iv) Let ϕ ∈ Aut(Bn). By ϕ’s linearity and the previous results, we have

ϕ(ed) =
∑

c∈{0,1}n

ϕ(ed)(c)ec

ϕ(ed) · ϕ(ed) =
∑

c∈{0,1}n

ϕ(ed)(c)
2ec

ϕ(ed) = ϕ(ed · ed) = ϕ(ed) · ϕ(ed)

In particular, we have ϕ(ed)(c) = ϕ(ed)(c)
2, i.e. 0 or 1. Thus, we can write

ϕ(ed) =
∑
c∈Sd

ec

for some non-empty subsetMd. NoteMd is non-empty as ϕmust have an inverse.
For d′ ∈ {0, 1}n, d′ ̸= d, we have

ϕ(ed) · ϕ(ed′) =
∑

c∈Md∩Md′

ec

ϕ(ed) · ϕ(ed′) = ϕ(ed · ed′) = ϕ(0) = 0,

i.e. Md ∩Md′ = ∅. Here, we used that the expression of a polynomial in base ec
is unique and the coefficients of the 0 polynomial are all zero. The 2n sets Md

are contained in the power set of {0, 1}n are all non-empty and disjoint and thus
all must have size 1. Define π such that Md = {π(d)}. We observe that π is a
permutation. Further, ϕ(ed) = eπ(d), which we wanted to prove.

(v) Let π be a permutation and define a morphism ϕ with

ϕ(xi) =
∑

c∈{0,1}n

ci=1

eπ(c).

We can verify that

ϕ(xi)(π(d)) =
∑

c∈{0,1}n

ci=1

eπ(c)(π(d)).

As π is a permutation and using (ii), we conclude that eπ(c)(π(d)) = ec(d).
Therefore,

ϕ(xi)(π(d)) =

{
1 if di = 1,

0 if di = 0.
= di.

Then,

ϕ(ec) =

n∏
i=1

ϕ(xi)
ci(1− ϕ(xi))

1−ci .

Evaluating this expression at π(d), we have

ϕ(ec)(π(d)) =

{
1 if d = c,

0 otherwise
.

19

Using (iii), we get ϕ(ec) = eπ(c). Thus, ϕ is a morphism with the desired
property. Defining ϕ−1 analogously using the permutation π−1, we see that ϕ is
indeed an automorphism as it has an inverse. ⊓⊔

Proof (Lemma 6.2). The existence of ψ0 and ψ1 follows by applying Theorem 4.2
for A := P |xk=0 and B := ϕ(P)|xℓ=0. The sets of Boolean tuples where A and B
evaluate to i are Si,k,0 and Ti,ℓ,0. Similarly, for A′ = P |xk=1 and B′ = ϕ(P)|xℓ=1,
the corresponding sets are Si \ Si,k,0 and Ti \ Ti,ℓ,0.

Note that ψ as defined in the lemma is a morphism as it extends linearly,
and it is an automorphism because ψ(ec) = eπ(c) for some permutation π. Next,
we show that ψ(P) = ϕ(P). Consider any c ∈ {0, 1}n. If cℓ = 0, we have

ψ(P)(c) = P (ψ(x1), . . . , ψ(xn))(c)

= P ((1− xℓ)ψ0(x1) + xℓψ1(x1), . . . , xℓ, . . . , (1− xℓ)ψ0(xn) + xℓψ1(xn))(c)

= P (ψ0(x1), . . . , 0, . . . , ψ0(xn))(c) = P (ψ0(x1), . . . , ψ0(xn))|xk=0(c)

= ψ0(P |xk=0)(c) = ϕ(P)|cℓ=0(c) = ϕ(P)(c).

Similarly, if cℓ = 1

ψ(P)(c) = P (ψ(x1), . . . , ψ(xn))(c)

= P ((1− xℓ)ψ0(x1) + xℓψ1(x1), . . . , xℓ, . . . , (1− xℓ)ψ0(xn) + xℓψ1(xn))(c)

= P (ψ1(x1), . . . , 1, . . . , ψ1(xn))(c) = P (ψ1(x1), . . . , ψ1(xn))|xk=1(c)

= ψ1(P |xk=1)(c) = ϕ(P)|cℓ=1(c) = ϕ(P)(c).

By (iii) of Lemma 3.1 and as ψ(P)(c) = ϕ(P)(c) for all c ∈ {0, 1}n, it follows
that ψ(P) = ϕ(P).

For the other direction of the proof, suppose there exists ψ ∈ Aut(Bn) such
that ψ(P) = ϕ(P) and ψ(xk) = xℓ for some k, ℓ ∈ [n]. Grouping terms in the
orthogonal basis, we obtain

P = xkp1 + (1− xk)p0

where p0 and p1 do not depend on xk. Evaluating on both sides we get p0 =
P |xk=0 and p1 = P |xk=1. Applying ψ to both sides, we get

ϕ(P) = ψ(P) = xℓψ(p1) + (1− xℓ)ψ(p0).

Evaluating on xℓ = 0, we get

ϕ(P)|xℓ=0 = ψ(p0)|xℓ=0.

We can define ψ0 by linear extension as ψ0(xi) = ψ(xi)|xℓ=0 for all i ̸= k, i.e.
we have ϕ(P)|xℓ=0 = ψ0(p0). In particular, ψ0 is an automorphism that maps
P |xk=0 to ϕ(P)|xℓ=0 and thus |Si,k,0| = |Ti,ℓ,0| for all i ∈ {0, 1, . . . ,m − 1} by
Theorem 4.2. ⊓⊔

20

B Success probability of trivial attacks with alternative
verification

The following plots depict the success probability of our trivial attacks where one
signs with the encoded hash of the message Q or the zero-polynomial, when the
number of zeroes (instead of the number of positive values) are counted during
signature verification. The public key and message pairs used are the same as
used in the experiments to generate Fig. 1.

Fig. 2. Given randomly chosen pairs of public key and message, we estimated the
probability of accepting Q or 0 as a valid signature for each pair. The probabilities
were approximated by running the verification algorithm 100 times for all (pk,m)-
pairs, counting how often the verification succeeded when the number of zeroes was
compared. Mean and variance of the probabilities are computed for all the pairs (pk,m)
that share either the public key (left) or the message (right).

21

	Breaking BASS

