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Abstract

We establish a linear proximity gap for Reed-Solomon (RS) codes within the one-and-a-half
Johnson bound. Specifically, we investigate the proximity gap for RS codes, revealing that any
affine subspace is either entirely δ-close to an RS code or nearly all its members are δ-far from it.
When δ is within the one-and-a-half Johnson bound, we prove an upper bound on the number of
members (in the affine subspace) that are δ-close to the RS code for the latter case. Our bound
is linear in the length of codewords. In comparison, Ben-Sasson, Carmon, Ishai, Kopparty and
Saraf [FOCS 2020] prove a linear bound when δ is within the unique decoding bound and a
quadratic bound when δ is within the Johnson bound. Note that when the rate of the RS
code is smaller than 0.23, the one-and-a-half Johnson bound is larger than the unique decoding
bound.

Proximity gaps for Reed-Solomon (RS) codes have implications in various RS code-based
protocols. In many cases, a stronger property than individual distance—known as correlated
agreement—is required, i.e., functions in the affine subspace are not only δ-close to an RS code,
but also agree on the same evaluation domain. Our results support this stronger property.
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1 Introduction

Reed-Solomon (RS) codes [RS60] are a class of error-correcting codes. They are fundamental objects
of study in algebraic coding theory and theoretical computer science. Let Fq be a finite field with
q elements, and let L ⊆ Fq be the evaluation domain. Let ρ ∈ (0, 1] be the code rate and n = |L|
be the code length. Let RS[Fq, L, ρ] denote the set of functions f : L → Fq that are evaluation
results of polynomials of degree strictly less than ρ|L|. Reed-Solomon codes have a wide range
of applications. For example, many protocols in areas such as blockchain, distributed storage,
and cryptography utilize Reed-Solomon codes as essential building blocks. In some protocols, the
soundness of relies on the existence of a series of vectors that are close to the Reed-Solomon (RS)
code (in relative Hamming distance). Consequently, it is critical to efficiently identify vectors that
are far from the RS code.

The RS Proximity Testing (RPT) problem involves a verifier determining whether a given func-
tion f : L → Fq is a member of RS[Fq, L, ρ] or is far from all codewords in RS[Fq, L, ρ]. The verifier
has limited query access to f , and an untrusted prover may assist the verifier. We consider this
problem under the interactive oracle proofs of proximity (IOPP) model [BCS16] (also called prob-
abilistically checkable interactive proofs of proximity in [RRR16]). This model combines aspects
of probabilistically checkable proof (PCPs) and interactive proofs (IPs). The prover provides the
verifier with auxiliary proofs, and the verifier has oracle access to the messages from the prover.

For a batch of vectors u = {u0, . . . , ul} ⊂ Fn
q , one can implement a protocol for the RPT problem

on each vector to ensure that they are all close to RS[Fq, L, ρ]. However, this approach is inefficient.
[RVW13] provides an approach: randomly choose a vector u′ in the span of u (denoted by span(u))
and check if u′ is close to RS[Fq, L, ρ]. The soundness proof of this method raises an important
question: If ∃ui ∈ u that is far from all the members of RS[Fq, L, ρ], can we prove u′ is far from
RS[Fq, L, ρ] with high probability?

Many previous works have explored this question and provided positive answers. This property
is referred to as the proximity gap for Reed-Solomon codes, as formally defined by Ben-Sasson,
Carmon, Ishai, Kopparty, and Saraf in [Ben+20b]. In a more general setting, let V ⊂ Fn

q be any
linear code and δV ∈ [0, 1] be its minimal relative distance. Suppose ui ∈ u is δ-far from V , denoted
by δ(ui, V ) > δ. In [Ame+17], Ames, Hazay, Ishai, and Venkitasubramaniam proved that when
δ < δV /4, with high probability u′ ∈ span(u) is δ-far from V . When u′ ∈ span(u) is on a line, i.e.,
u = {u0, u1}, Ben-Sasson, Kopparty, and Saraf [BKS18] demonstrated that when δ < 1− 4

√
1− δV

(the double Johnson bound), with high probability (related to a small constant ϵ) u′ ∈ span(u)
is (δ − ϵ)-far from V . Later, Ben-Sasson, Goldberg, Kopparty, and Saraf improved the bound to
1− 3

√
1− δV (the 1.5 Johnson bound) in [Ben+20a]. Furthermore, they showed their result is tight

for certain RS codes. Especially, when V = RS[Fq, L, ρ], [Ben+20b] bounded the probability that
u′ is δ-close to V for the unique decoding bound δV /2 and the Johnson bound

√
1− δV respectively.

See Table 1 for details.

1.1 Our results

We present proximity gaps for Reed-Solomon codes within the one-and-a-half Johnson bound. Our
result is linear in the length of the code. We begin by considering a simplified case where u =
{u0, u1}. Here, u′ = u0 + zu1, z ∈ Fq is over a line. We have the following result.

Theorem 1 (Informal). Let L be a subset of F×
q . Let u0, u1 : L → Fq be two functions on
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L. Let δ, η, ρ > 0 satisfy δ ≤ 1 − 3
√
ρ − η and η ≤ 1

3ρ
− 1

3 . If there exists i ∈ {0, 1} such that
δ(ui,RS[Fq, L, ρ]) > δ, then

Pz∈Fq(∆(u0 + zu1,RS[Fq, L, ρ]) ≤ δ) <
2(1− ρ)|L|
9ρη3|Fq|

. (1)

We prove that if either u0 or u1 is δ-far from the RS code, then in probability that is linear in
the code length, u′ is δ-far from the RS code. The formal statement of this theorem is presented in
Theorem 4, which describes the result in its contrapositive form. Furthermore, the formal theorem
is stronger. We utilize the concept of correlated agreement, as defined in [Ben+20b]. A series of
functions u0, . . . , ul have δ-correlated agreement with RS[Fq, L, ρ] if there exists a sufficiently large
subdomain L′ ⊆ L and v0, . . . , vl ∈ RS[Fq, L, ρ] such that

|L′| ≥ (1− δ)|L| and ui|L′ = vi|L′ , 1 ≤ i ≤ l.

The definition of correlated agreement is relevant in the context of real-world protocol applications.
Notice that even if all of ui are δ-close to RS[Fq, L, ρ], they may not have δ-correlated agreement.
Our formal theorem supports this stronger notion of agreement; specifically, if u0 and u1 do not
have δ-correlated agreement, (1) holds.

δ bound u′ distance Probability Code
[Ame+17] δV /4 δ (δ + 1)/|Fq| Linear code
[BKS18] Jϵ(Jϵ(δV )) δ − ϵ 2/(ϵ3|Fq|) Linear code

[Ben+20a] 1− 3
√
1− δV + ϵ δ − ϵ 2/(ϵ2|Fq|) Linear code

[Ben+20b] 1−√
ρ− ϵ δ (ρ2n2)/((2ϵ)7|Fq|) RS

[Ben+20b] (1− ρ)/2 δ n/|Fq| RS
This work 1− 3

√
ρ− ϵ δ 2(1− ρ)n/(9ρϵ3|Fq|) RS

Table 1: When u = {u0, u1} and u0(u1) is δ-far from the code V , the provable probability that
randomly chosen u′ ∈ span(u) is δ (or δ − ϵ) close to V . δ bound is the upper bound. δV is the
minimal relative distance of V . The latter three rows focus on RS codes with rate ρ and δV = 1−ρ.
Jϵ(δV ) = 1−

√
1− δV (1− ϵ) is the Johnson bound.

Table 1 compares our result with previous results. [Ben+20b] provides the linear proximity gap
under the unique decoding bound (1 − ρ)/2 and the quadratic proximity gap under the Johnson
bound 1−√

ρ. When the one-and-a-half Johnson bound 1− 3
√
ρ is better than the unique decoding

bound (related to ρ), we improve the provable proximity gap to linear. Additionally, [Ben+20b]
conjectures that we can prove the proximity gap when δ ≤ 1 − ρ. We will briefly introduce this
conjecture in Section 5.3. Figure 1 compares various bounds. When ρ ≤ 1/8, the one-and-a-half
Johnson bound is better than the unique decoding bound. And we make improvements in this case.

We prove our result under the generalized case that u = {u0, . . . , ul}.

Theorem 2 (Informal). Let L be a subset of F×
q . Let u0, · · · , ul : L → Fq, l ≥ 1 be a sequence of

functions on L. Let δ, η, ρ > 0 satisfy δ ≤ 1− 3
√
ρ− η and η ≤ 1

3ρ
− 1

3 . Denote V = RS[Fq, L, ρ] and

S = {zl = ⟨z1, · · · , zl⟩ ∈ Fl
q : ∆(u0 + z1u1 + · · ·+ zlul, V ) ≤ δ|L|}.
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Figure 1: Bounds for RS codes

If ∃ui ∈ u such that δ(ui, V ) > δ, then

Pzl∈Fl
q
(zl ∈ S) <

(
2(1− ρ)|L|
9ρη3|Fq|

)
· l.

This result also supports the correlated agreement version. The formal theorem can be found
in Theorem 6.

1.2 Applications

Proximity gaps for RS codes provide provable soundness for a variety of protocols. For example,
the Fast RS IOPP (known as FRI) [Ben+18] is a widely used IOPP for RS codes due to its high
efficiency. FRI is implemented as a subprotocol in many recent (zk)SNARKs and real-world systems
[Ben+19][KPV22][Sta23][Pol][Zha+20][Xie+22].

Our result can be implied to prove the soundness of FRI. Previously, Ben-Sasson, Carmon, Ishai,
Kopparty, and Saraf established the best provable soundness of FRI in [Ben+20b], utilizing elegant
mathematical techniques. They proved the soundness error bound of FRI is

ϵFRI ≤ max

{
O

(
ρ2

η7
· |L|

2

|Fq|

)
, (1− δ)t

}
(2)

when δ ≤ 1 − √
ρ − η. Let t represent the iteration time during the QUERY phase in FRI. It is

important to note that the first term is a constant dependent on the parameters. For small values
of t, the second term dominates the inequality. Furthermore, this term decreases as t increases.
Consequently, when t becomes sufficiently large, the first term establishes a provable upper bound
on the soundness error of FRI. We will introduce the protocol in detail in Section 6. We provide an
alternative soundness error bound of FRI:

ϵFRI ≤ max

{
O

(
1

ρη3
· |L|
|Fq|

)
, (1− δ)t

}
(3)
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when δ ≤ 1 − 3
√
ρ − η. When t is large, the first term dominates the soundness error bound. In

practical applications, |L| is large and significantly influences the soundness error bound. Conse-
quently, our bound indicates that FRI can provide enhanced security. However, when t is small,
the previous bound is more advantageous. In practical applications, we can select the minimum of
these two bounds.

Our result and the provable soundness in [Ben+20b] fit the correlated agreement condition. The
correlated agreement of FRI is used to prove the (knowledge) soundness of protocols that use FRI
as a sub-protocol [Sta23], as well as to prove the round-by-round soundness of FRI [Sta23][Blo+23].
There are also a variety of generalized protocols of FRI [ZCF23][Arn+24]. These works build upon
the soundness of FRI, and improvements in the soundness of FRI can also be applied to these
subsequent works.

2 Technical overview

In this section, we outline the overall idea behind our proof of the main result, Theorem 3. We take
a new approach to address this problem through combinatorial methods. This section introduces
the tools we employ and explains how this can be done. The main theorem is articulated in the
context of the folding operation within the FRI framework. Folding and proximity gaps can be
transformed into each other. We will introduce the transformation in Section 5. For now, we will
concentrate on the concept of folding.

2.1 Polynomial folding and function folding

Let Fq be a finite field and L ⊆ Fq be an evaluation domain, with |L| = n. Denote ρ ∈ (0, 1] as
the rate. The notation RS[Fq, L, ρ] represents the set of code words p : L → Fq that are evaluation
results of polynomials of degree strictly less than ρ|L|. For a given code word f : L → Fq, we want
to know whether f is a member of RS[Fq, L, ρ]. This verification is called the low degree test(LDT)
of f .

We can use FFT to check directly. However, the time complexity of FFT is O(n log n), which
is unacceptable in many real-world applications. The FRI protocol[Ben+18] is an interactive oracle
proof(IOP) to achieve this goal with time complexity O(log n). An untrusted prover may help us
to complete the verification and the time complexity of an honest prover is O(n).

The folding operation plays an important role in the FRI protocol. It can fold a polynomial
into half its degree. So we can fold a polynomial of degree n into a constant after log2(n) rounds of
folding. More precisely, let p(X) ∈ Fq[X] be a polynomial with degree d and suppose

p(X) = c0 + c1X + c2X
2 + . . .+ cdX

d.

We can divide p(X) into even and odd parts, i.e.,

p(even)(X) =
∑

even i

ciX
i and p(odd)(X) =

∑
odd i

ciX
i−1,

and we have
p(X) = p(even)(X) +Xp(odd)(X).
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Let α ∈ Fq be a randomly chosen folding point, then define the folding result of p(X) at folding
point α, denoted by PolyFoldα(p), to be the following polynomial

PolyFoldα(p) =

{
(c0 + αc1) + (c2 + αc3)X + . . .+ (cd−1 + αcd)X

d−1
2 if d is odd

(c0 + αc1) + (c2 + αc3)X + . . .+ (cd−2 + αcd−1)X
d−2
2 + cdX

d
2 if d is even

of degree ⌊d2⌋. Notice that we have

PolyFoldα(p)(X
2) = p(even)(X) + αp(odd)(X).

Furthermore, for any x2 ∈ L2, we can prove

PolyFoldα(p)(x
2) =

p(x) + p(−x)

2
+ α · p(x)− p(−x)

2x

by calculating directly.
Recall that our goal is to verify whether a given function f : L → Fq is a low-degree polynomial.

As a result, the folding operation needs to be defined on the functions. Especially, the folding
operation works on functions over evaluation domains with pairing elements, i.e. if x ∈ L, we have
−x ∈ L. This is because of the folding structure, which will be explained later.

Suppose L = {x1,−x1, x2,−x2, . . . , xn
2
,−xn

2
} is an evaluation domain with pairing elements

and L2 = {x21, x22, . . . , x2n
2
}. Let α ∈ Fq be a randomly chosen folding point. The folding result of f ,

denoted as FuncFoldα(f), is a function on L2. More precisely, suppose we have a function

f = {f(x1), f(−x1), f(x2), f(−x2), . . . , f(xn
2
), f(−xn

2
)}.

Define FuncFoldα(f) : L
2 → Fq as follows:

FuncFoldα(f)(x
2) =

f(x) + f(−x)

2
+ α · f(x)− f(−x)

2x

for any x ∈ L. For example, in the finite field F17, let L = {1,−1, 4,−4, 2,−2, 8,−8} be an
evaluation domain with eight elements. Then we have L2 = {1,−1, 4,−4}. Let α ∈ Fq be the
folding point. For a given function f = {0,−1, 4,−4, 2,−2, 8,−8}, the folding result of f at point
α is FuncFoldα(f) = {−9 + 9α, α, α, α}. Figure 2 shows the folding result.

Figure 2: Function folding result of f at point α. f is on the first layer and FuncFoldα(f) is on the
second layer. Each element on the second layer is calculated from its parents.

Furthermore, we have the following properties:

1. For any α ∈ Fq, the length of FuncFoldα(f) is half of f .

5



2. When f ∈ RS[Fq, L, ρ], i.e., f agrees with some low-degree polynomial p, we have

FuncFoldα(f) = PolyFoldα(p)

for any α ∈ Fq. This will be proved in Proposition 2.

3. For any α ∈ Fq and x2 ∈ L2, FuncFoldα(f)(x2) only depends on f(x) and f(−x).

Condition 2 implies when f ∈ RS[Fq, L, ρ], we have FuncFoldα(f) ∈ RS[Fq, L
2, ρ]. Suppose L2 is

still an evaluation domain with pairing elements, we can do function folding on FuncFoldα(f) again.
We say L is smooth if L,L2, L4, . . . are all with pairing elements. Thus, we can recursively fold a
function on L until it becomes a constant. Condition 3 says the function folding operation is local.
If we want to check the accuracy of the folding on any location x2 ∈ L2, we only need to know f(x)
and f(−x). Furthermore, for some f ∈ RS[Fq, L, ρ], we can do the folding operation on it even
without knowing the polynomial coefficients.

Since the folding result of a low-degree polynomial is still a low-degree polynomial, we can fold
a polynomial of degree d into a constant after ⌈log2 d⌉ rounds. It is easy to check a constant in
an evaluation domain. However, we can not claim a function is a low-degree polynomial even if
it can be folded into a constant after some limited number of rounds. This is because there exist
some bad folding points that will disclose the relative distance between the given function f and
RS[Fq, L, ρ]. Set ρ = 1

4 in the above example. Then RS[F17, L,
1
4 ] is the set of polynomials with

degree < 1
4 · 8 = 2. It is easy to verify that f is not a member of RS[F17, L,

1
4 ]. The closest code

word of f in RS[F17, L,
1
4 ] is p(X) = X and the relative distance between f and RS[F17, L,

1
4 ] is 1

8 .
When α = −1, the folding result is FuncFold−1(f) = {−1,−1,−1,−1}. This is a constant and is a
member of RS[F17, L

2, 14 ]. Then α = −1 is a bad folding point in this example. For a given relative
distance δ > 0 and a function f that is δ-far from the RS code. Define the bad folding points as
folding points whose folding results are δ-close to the RS code. Our goal is to prove that the number
of bad folding points is limited. This is called the proximity gap for Reed-Solomon codes, defined
in [Ben+20b].

2.2 Partition the bad folding points into blocks

For a fixed 0 < δ < 1 and a function f that is δ-far from the RS code, define the set of bad folding
points to be

Bad(f) = {α ∈ Fq | FuncFoldα(f) is δ-close to the RS code}.

Many previous studies focus on the folding results and use the list-decoding skill to restrict the
number of bad folding points. We provide a new approach to deal with this problem. Instead of the
folding result, we focus on the origin function f . We pay attention to some sub-evaluation domains
of f and transform the problem into a combinatorics problem.

More precisely, let α ∈ Bad(f) be a bad folding point and pα ∈ RS[Fq, L, ρ] is the closest code
word of FuncFoldα(f). The following sub-evaluation domains are related to α :

C∗
α = {x2 ∈ L2 | FuncFoldα(f)(x2) = pα(x

2)}

and
P ∗
α = {x ∈ L | x2 ∈ C∗

α} i.e., P ∗
α is the parent set of C∗

α.

For two distinct bad folding points α, β ∈ Bad(f), we prove the following lemma:
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Lemma 1. [Informal] For any distinct α, β ∈ Bad(f), there exists a polynomial p(X) ∈ Fq[X] of
degree strictly less than ρ|L| such that

f |P ∗
α∩P ∗

β
= p|P ∗

α∩P ∗
β
,

that is, f(x) = p(x) for any x ∈ P ∗
α ∩ P ∗

β .

Figure 3 shows a simple example. In the finite field F17, let L = {1,−1, 4,−4, 2,−2, 8,−8}
and L2 = {1,−1, 4,−4}. Let ρ = 1

4 , so the member of RS[F17, L
2, 14 ] are constants. For a given

function f = {0, 2, 4,−4, 2,−2, 5, 7}. The folding result of f at point α = 9 is {9, 9, 9, 7}. Thus,
we have C∗

α = {1,−1, 4} and P ∗
α = {1,−1, 4,−4, 2,−2}. Similarly, the folding result of f at

point β = 11 is {7, 11, 11, 11} and C∗
β = {−1, 4,−4}, P ∗

β = {4,−4, 2,−2, 8,−8}. As a result,
P ∗
α ∩ P ∗

β = {4,−4, 2,−2}. Lemma 4 says f |P ∗
α∩P ∗

β
agrees with a low-degree polynomial p of degree

< ρ|L| = 2. It is easy to find that p(X) = X in our example.

Figure 3: Folding results of f at folding point α = 9(black solid line) and β = 11(blue dotted line).
C∗
α and C∗

β are filled in green on the second layer. P ∗
α ∩ P ∗

β is filled in green on the first layer.

Because of the use of Corrádi’s lemma, which will be introduced later, we extract a series of
subsections of P ∗

α, C
∗
α, α ∈ Bad(f) such that these subsections have the same size. For a given

0 < δ < 1, notice that |P ∗
α| ≥ (1− δ)|L| and |C∗

α| ≥ (1− δ)|L2| for α ∈ Bad(f). We define

• Cα: The set of first (1− δ)|L2| elements of C∗
α, i.e., |Cα| = (1− δ)|L2|.

• Pα = {x : x2 ∈ Cα}. That is, Pα is the “parent set” of Cα.

The above definitions make sense since the elements in the evaluation domain L are in order. Notice
that Pα ∩ Pβ ⊆ P ∗

α ∩ P ∗
β , Lemma 1 still holds on Pα ∩ Pβ . Using these definitions, we can partition

Bad(f) into blocks.
Our partition is based on some long low-degree polynomials in f . More precisely, let 0 < ξ ≤ 1

and D ⊆ L satisfying |D| ≥ ξ|L|. If f |D agrees with some low-degree polynomial p, then we
say p is a long low-degree polynomial contained in f . There may be many such long low-degree
polynomials p1, . . . , ps, denote by Di, 1 ≤ i ≤ s the maximal agree domains of pi, 1 ≤ i ≤ s and f ,
i.e., f |Di = pi|Di . We partition the set of bad folding points Bad(f) based on Algorithm 1.

Let {A1, . . . , Ar} be the output blocks of the algorithm and {α1, . . . , αr} be the corresponding
represent elements. For a block A ∈ {A1, . . . , Ar} and its represent element α, we have |Pβ ∩Pα| ≥
ξ|L|. Lemma 1 implies a long low-degree polynomial in f is contained in both Pα and Pβ . On the
other hand, for distinct represent elements αi, αj ∈ {α1, . . . , αr}, we have |Pαi ∩ Pαj | < ξ|L|.

The number of blocks is limited. Let δ ≤ 1− 3
√
ρ−η and ξ = (1−δ)2−η′, where η′ = 3 3

√
ρη2

2 ,
we prove r ≤ 1−ρ

η′ . Focusing on the represent elements {α1, . . . , αr}, we have

7



Algorithm 1 Partition Bad Folding Points(Informal)
input: Bad(f)
initialization: r = 0
set X∗ = Bad(f)
while X∗ ̸= ∅ do
r = r + 1
pick an arbitrary x ∈ X∗ and let αi = x
let Ai = {β ∈ Bad(f) : |Pβ ∩ Pαi | ≥ ξ|L|}
X∗ = X∗ −Ai

end while
return A1, . . . , Ar and α1, . . . , αr

• |Pαi | = (1− δ)|L|, 1 ≤ i ≤ r;

• |Pαi ∩ Pαj | < ξ|L| =
(
(1− δ)2 − η′

)
|L|, 1 ≤ i < j ≤ r.

Notice that
⋃r

i=1 Pαi ⊆ L. Using the following lemma by Corrádi, we can restrict the number of
blocks.

Lemma 2 (Corrádi 1969 [Juk11]). Let P1, . . . , Pr be s-element sets. If |Pi∩Pj | ≤ k for any distinct
i, j ∈ {1, 2, . . . , r}, then ∣∣∣∣∣

r⋃
i=1

Pi

∣∣∣∣∣ ≥ s2r

s+ (r − 1)k
.

Calculating directly, we have

r <
1− ρ

η′
.

The upper bound of the number of blocks is a constant and is independent of |L|, the length of the
code word.

2.3 Partition the blocks into equivalence classes

We further restrict the number of elements in each block. Let A ∈ {A1, . . . , Ar} be a block and
α be the corresponding represent element, i.e., for all β ∈ A, we have |Pα ∩ Pβ| ≥ ξ|L|. Lemma
1 implies a long low-degree polynomial in f is contained in both Pα and Pβ . Denote by p1, . . . , ps
all the long low-degree polynomials contained in Pα, i.e., ∃Di ⊆ Pα such that |Di| ≥ ξ|L| and
f |Di = pi|Di . Furthermore, for all β ∈ A \ {α}, we can find one and only one low-degree polynomial
p ∈ {p1, . . . , ps} such that f |Pα∩Pβ

= p|Pα∩Pβ
. We define an equivalence relation R on A \ {α}:

(β1, β2) ∈ R ⇐⇒ The low-degree polynomials decided by Pα ∩ Pβ1 and Pα ∩ Pβ2 are the same.

The number of equivalence classes is limited. We restrict the number of long low-degree
polynomials p1, . . . , ps contained in Pα. We have

• |Di| ≥ ξ|L|, 1 ≤ i ≤ s according to the definition of pi.

• |Di ∩Dj | ≤ ρ|L|, 1 ≤ i < j ≤ s because pi, pj are distinct polynomials with degree < ρ|L|.
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• |Di| ≤ (1− δ)|L| since f is δ-far from RS[Fq, L, ρ].

The first two conditions are similar to the condition of Corrádi’s lemma(Lemma 2). But we have
|Di| ≥ ξ|L| instead of |Di| = ξ|L| in this case. As a result, we use the third condition and follow
the proof of Corrádi’s lemma to prove

s ≤ 1

3ηρ
2
3

when δ ≤ 1 − 3
√
ρ − η, ξ = (1 − δ)2 − η′ and η′ =

3 3
√
ρη2

2 . The upper bound of the number of
equivalence classes is a constant and is independent of |L|, the length of the code word.

The size of each equivalence class is bounded. For any equivalence class {β1, . . . , βt}.
Suppose p is the low-degree polynomial related to the equivalence class and D is the maximal agree
domain of p, i.e., f |D = p|D. Since f is δ-far from RS[Fq, L, ρ], |D| < (1− δ)|L|. On the other hand,
for any βi, 1 ≤ i ≤ t in the equivalence class, we have |Pβi

| = (1− δ)|L| according to the definition
of Pβi

. As a result, |Pβi
\D| ≥ 1. We prove that

(Pβi
\D) ∩

(
Pβj

\D
)
= ∅, i ̸= j.

For any x ∈ Pβi
\ D, we have f(x) ̸= p(x). (Remember that x ̸= 0 since Pβi

⊆ L and L is with
pairing elements.) According to the definition of Pβi

, we have

FuncFoldβi
(f)(x) = PolyFoldβi

(p)(x).

The above equation is equivalent to

f(x) + f(−x)

2
+ βi ·

f(x)− f(−x)

2x
=

p(x) + p(−x)

2
+ βi ·

p(x)− p(−x)

2x

according to the definition and property of folding. If f(x)−f(−x)
2x = p(x)−p(−x)

2x , then we have
f(x)+f(−x)

2 = p(x)+p(−x)
2 to make the above equation hold. However, this implies f(x) = p(x).

A contradiction. As a result, we have f(x)−f(−x)
2x ̸= p(x)−p(−x)

2x and we can transform the equation
into

βi = x · (p(x) + p(−x))− (f(x) + f(−x))

(f(x)− f(−x))− (p(x)− p(−x))
.

Notice that once x is fixed, the right side of the above equation is fixed. Since βj , βi are distinct,
x /∈ Pβj

\D.
Thus,

|L \D| ≥

∣∣∣∣∣
t⋃

i=1

(Pβi
\D)

∣∣∣∣∣ =
t∑

i=1

|Pβi
\D| ≥ t.

The size of each equivalence class is bounded by |L \D|. We can further optimize the bound to be
|L\D|

2 , see Corollary 5 for details.
Combining all these above, we finish our proof of the main theorem, i.e., the number of bad

folding points is linear in the length of the code word.

3 Preliminaries

We present the preliminaries and notations. We use Fq to denote a finite field with q elements.
Denote by F×

q = Fq \ {0} the cyclic group.
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3.1 Reed-Solomon codes

Let L ⊆ Fq be a subset. Let RS[Fq, L, ρ] : Fd+1
q → F|L|

q denote the Reed-Solomon code of de-
gree strictly less than ρ|L| evaluated on L, where RS[Fq, L, ρ] maps (c0, c1, . . . , cd) ∈ Fd+1

q to(∑k
i=0 cix

i
)
x∈L

∈ F|L|
q , and d = ⌈ρ|L|⌉ − 1. Throughout the paper, we assume ρ|L|/2 is

an integer. Then RS[Fq, L, ρ] has code rate ρ.
Let f, g : L → F be two codewords. The distance between f and g is defined as

∆(f, g) = |{x ∈ L : f(x) ̸= g(x)}|.

The distance between f and RS[Fq, L, ρ] is defined as

∆(f,RS[Fq, L, ρ]) = min
g∈RS[Fq ,L,ρ]

∆(f, g).

3.2 Polynomial folding and function folding

We define an operation called folding in this subsection, which is used in FRI.

Definition 1 (polynomial folding). Let p(X) ∈ Fq[X] be a polynomial of degree d, that is,

p(X) = c0 + c1X + . . .+ cdX
d.

Define the folding of polynomial p(X) at point α ∈ Fq, denoted by PolyFoldα(p), to be the following
polynomial{

(c0 + αc1) + (c2 + αc3)X + . . .+ (cd−1 + αcd)X
d−1
2 if d is odd

(c0 + αc1) + (c2 + αc3)X + . . .+ (cd−2 + αcd−1)X
d−2
2 + cdX

d
2 if d is even

of degree ⌊d2⌋.

The following proposition says PolyFold is a linear operator, which is straightforward to prove.

Proposition 1. For any p(X), q(X) ∈ Fq[X], and any α, β, γ ∈ Fq we have

PolyFoldα(βp+ γq) = βPolyFoldα(p) + γPolyFoldα(q).

Definition 2. Let p(X) ∈ Fq[X] be a polynomial, where p(X) =
∑d

i=0 ciX
i. Let

p(even)(X) =
∑

even i

ciX
i and p(odd)(X) =

∑
odd i

ciX
i−1.

Both p(even)(X) and p(odd)(X) are even functions, and p(X) = p(even)(X) + Xp(odd)(X). One
can easily verify that

PolyFoldα(p)(x
2) = p(even)(x) + αp(odd)(x) (4)

for any x ∈ Fq.
Codeword folding is defined on the codewords over evaluation domains with pairing elements

defined as follows:

Definition 3. Let L ⊆ F×
q be a subset.
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• Say L is with pairing elements if for all x ∈ L, we have −x ∈ L.

• Say L is smooth if L is a coset of a multiplicative group whose order is a power of 2.

Notice that a smooth set must be with pairing elements. Suppose L is a set with pairing
elements, we define L2 = {x2 : x ∈ L}. And we have |L2| = |L|/2.

Definition 4 (codeword folding). Let L ⊆ Fq be a set with pairing elements. Let f : L → Fq be any
codeword (function). We define the folding of f at point α, denoted by FuncFoldα(f) : L

2 → Fq, as
follows

FuncFoldα(f)(x
2) =

f(x) + f(−x)

2
+ α · f(x)− f(−x)

2x

for any x ∈ L.

Proposition 2. Let p(X) ∈ Fq[X] be a polynomial, and let α ∈ Fq. We have

PolyFoldα(p)(X
2) =

p(X) + p(−X)

2
+ α · p(X)− p(−X)

2X
. (5)

Proof. By the linearity of PolyFold operator (Prop 1), it suffices to prove (5) when p is a monomial.
If p(X) = Xd, where d is even, we have PolyFoldα(p) = Xd/2. Thus,

PolyFoldα(p)(X
2) = Xd.

The right-hand side of (5) is also Xd.
If p(X) = Xd, where d is odd, we have PolyFoldα(p) = αX(d−1)/2. Thus, PolyFoldα(p)(X2) =

αXd−1. The right-hand side of (5) is

α · X
d − (−X)d

2X
= αXd−1 = PolyFoldα(p)(X

2).

Remark 1. When the characteristic of the finite field char(Fq) = 2, the polynomial and function
folding structures are different from Definition 1 and Definition 4. This is because q(X) = X2 is no
longer a 2 to 1 map. But we can still prove the corresponding Proposition 2 under this situation.
Further details can be found in [Ben+18] and [BKS18].

3.3 Correlated agreement

For a series of functions f0, . . . , ft, we not only require them to be close to a codeword set V
individually but also to share a common large agreement domain. The property that such a domain
exists is called correlated agreement.

Definition 5. [Ben+20b] Let L ⊆ Fq be a subset. Let f0, . . . , ft : L → Fq be a sequence of functions.
Let V be a set of codewords. Let 0 < δ ≤ 1. If there exists a subdomain L′ ⊆ L and v0, . . . , vt ∈ V
satisfying

• Density: |L′|/|L| ≥ 1− δ, and

• Agreement: for all i ∈ {0, . . . , t}, the functions fi and vi agree on L′.

Then we say f
(0)
0 , . . . , f

(0)
t have correlated agreement with V on L

11



4 Main proof

Let L ⊆ Fq be a set with pairing elements. f : L → Fq is a codeword δ-far from RS codes, where δ
is under the one-and-a-half Johnson bound 1− 3

√
ρ. Let η > 0 be the gap between δ and the double

Johnson bound, i.e., δ ≤ 1 − 3
√
ρ − η. Our goal is to prove that with high probability, the folded

codeword FuncFoldα(f) is still δ-far from RS codes, where α ∈ Fq is chosen uniformly at random.
Our motivation is to analyze the soundness of the FRI protocol.

Definition 6 (bad folding points). Let L ⊆ Fq be a set with pairing elements. Let 0 < δ < 1 − ρ.
Let f : L → Fq be a codeword such that ∆(f,RS[Fq, L, ρ]) > δ|L|. Define the bad folding points to
be

Bad(f) =
{
α ∈ Fq : ∆

(
FuncFoldα(f),RS[Fq, L

2, ρ]
)
≤ δ|L2|)

}
.

Our main theorem limits the number of bad folding points when δ is within the Johnson bound.

Theorem 3. Let L ⊆ Fq be a set with pairing elements. Let δ, η, ρ > 0 satisfy δ ≤ 1− 3
√
ρ− η. Let

f : L → Fq be a codeword such that ∆(f,RS[Fq, L, ρ]) > δ|L|. Then,

|Bad(f)| <
(1− 3

√
ρ)(1− ρ)

9ρη3
|L|+ 2(1− ρ)

3ρ
1
3 η2

.

Corollary 1. Let L ⊆ Fq be a set with pairing elements. Let δ, η, ρ > 0 satisfy δ ≤ 1− 3
√
ρ− η and

η ≤ 1
3ρ

− 1
3 . Let f : L → Fq be a codeword such that ∆(f,RS[Fq, L, ρ]) > δ|L|. Then,

|Bad(f)| < (1− ρ)|L|
9ρη3

.

Proof. Since L is a set with pairing elements, we have |L| ≥ 2. Thus, |L| ≥ 6ρ
1
3 η. As a result, we

have

|Bad(f)| <
(1− 3

√
ρ)(1− ρ)

9ρη3
|L|+ 2(1− ρ)

3ρ
1
3 η2

by Theorem 3

=
(1− ρ)

(
|L| − ρ

1
3 (|L| − 6ρ

1
3 η)
)

9ρη3

≤ (1− ρ)|L|
9ρη3

.

To prove the main theorem, we first introduce a few definitions.

Definition 7. Fix an arbitrary order for all the elements in the finite field Fq. Let L ⊆ Fq be a set
with pairing elements. Let f : L → Fq be a codeword. Let α ∈ Bad(f).

• Let Closest(f,RS[Fq, L, ρ]) ∈ RS[Fq, L, ρ] denote the closest codeword (polynomial). If there
are more than one codewords with the same minimal distance, choose the one with the smallest
lexicographical order.
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• C∗
α = {x ∈ L2 : FuncFoldα(f)(x) = Closest(FuncFoldα(f),RS[Fq, L, ρ])(x)}. That is, Cα is

the set of evaluations points where FuncFoldα(f) agrees with Closest(f,RS[Fq, L, ρ]).

• P ∗
α = {x : x2 ∈ C∗

α}. That is, P ∗
α is the “parent set” of C∗

α.

• Cα: The set of first (1− δ)|L2| elements of C∗
α, i.e., |Cα| = (1− δ)|L2|.

• Pα = {x : x2 ∈ Cα}. That is, Pα is the “parent set” of Cα.

Poof overview: The overall strategy is to partition the bad points Bad(f) ⊆ Fq into r subsets,
denoted by A1, A2, . . . , Ar, with representatives α1 ∈ A1, α2 ∈ A2, . . . , αr ∈ Ar such that r is
bounded. To put restriction on |Ai|, we provide an equivalent relation on Ai \ {αi}. Denote by s
the number of equivalence classes and t the number of elements in an equivalence class. We put
upper bounds on s and t respectively. Thus, we restrict the number of elements in the set of bad
folding points.

We use a greedy algorithm to find the partition of Bad(f) and the representatives.

Algorithm 2 Partition Bad Folding Points
input: Bad(f)
initialization: r = 0
set X∗ = Bad(f)
while X∗ ̸= ∅ do
r = r + 1
pick an arbitrary x ∈ X∗ and let αi = x
let Ai = {β ∈ Bad(f) : |Pβ ∩ Pαi | ≥

(
(1− δ)2 − η′

)
|L|}

X∗ = X∗ −Ai

end while
return A1, . . . , Ar and α1, . . . , αr

4.1 Upper bound on the number of blocks

In this subsection, we limit the number of blocks. We prove that r ≤ 1−ρ
η′ when δ ≤ 1 − 3

√
ρ − η,

where η′ =
3 3
√
ρη2

2 .
Without loss of generality, we can set η < 1 since 0 < δ ≤ 1− 3

√
ρ− η. Then we have

(1− δ)2 − η′ ≥ (ρ
1
3 + η)2 − 3ρ

1
3 η2

2

= ρ
2
3 + (2ρ

1
3 η − 3ρ

1
3 η2

2
) + η2

> ρ
2
3 ≥ ρ. (6)

Using Corrádi’s lemma(Lemma 2), we can restrict the number of blocks.

Lemma 3. Let L ⊆ Fq be a set with pairing elements. Let f : L → Fq be any codeword. We have

r <
1− ρ

η′
.
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Proof. We associate a set Pαi for each representative αi. From Algorithm 2, we know

• |Pαi ∩ Pαj | <
(
(1− δ)2 − η′

)
|L| for any distinct i, j.

• |Pαi | = 2|Cαi | = (1− δ)|L| for any i.

By Lemma 2, we have∣∣∣∣∣
r⋃

i=1

Pαi

∣∣∣∣∣ ≥ r(1− δ)2|L|2

(1− δ)|L|+ (r − 1) ((1− δ)2 − η′) |L|
.

On the other hand,
⋃r

i=1 Pαi is a subset of L. Thus,

|L| ≥ r(1− δ)2|L|
(1− δ) + (r − 1) ((1− δ)2 − η′)

,

that is
(1− δ) + (r − 1)

(
(1− δ)2 − η′

)
≥ r(1− δ)2,

which implies

r ≤
1− δ −

(
(1− δ)2 − η′

)
(1− δ)2 − ((1− δ)2 − η′)

<
1− δ − ρ

η′
by (6)

<
1− ρ

η′
.

4.2 Upper bound on the size of each block

In this subsection, we aim to bound the number of elements in each block Ai. Combined with
Lemma 3, we can limit the number of bad folding points and finish our proof of the main theorem.

Lemma 4. For any distinct α1, α2 ∈ Bad(f), there exists a polynomial p(X) ∈ Fq[X] of degree
strictly less than ρ|L| such that

f |Pα1∩Pα2
= p|Pα1∩Pα2

, (7)

and

f |P ∗
α1

∩P ∗
α2

= p|P ∗
α1

∩P ∗
α2
. (8)

Moreover, if |Pα1 ∩ Pα2 | ≥ ρ|L|, polynomial p(X) is uniquely determined.

Proof. Notice that (8) implies (7) because Pα1 ∩ Pα2 ⊆ P ∗
α1

∩ P ∗
α2

. So we only prove (8). By
Definition 7, there exists a polynomial p1(X) ∈ Fq[X] of degree strictly less than ρ|L|/2 such that
FuncFoldα1(f)|C∗

α1
= p1|C∗

α1
. By Definition 4, we have

p1(x
2) =

f(x) + f(−x)

2
+ α1 ·

f(x)− f(−x)

2x
(9)
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for any x ∈ P ∗
α1

. Similarly, there exists a polynomial p2(X) ∈ Fq[X] of degree strictly less than
ρ|L|/2 such that FuncFoldα2(f)|C∗

α2
= p2|C∗

α2
. And we have

p2(x
2) =

f(x) + f(−x)

2
+ α2 ·

f(x)− f(−x)

2x
(10)

for any x ∈ P ∗
α2

.
From (9) and (10), we have

p1(x
2)− p2(x

2) =
α1 − α2

2x
· (f(x)− f(−x))

α2p1(x
2)− α1p2(x

2) =
α2 − α1

2
· (f(x) + f(−x))

for any x ∈ P ∗
α1

∩ P ∗
α2

. That is,
f(x)− f(−x) =

2x

α1 − α2
·
(
p1(x

2)− p2(x
2)
)

f(x) + f(−x) =
2

α2 − α1
·
(
α2p1(x

2)− α1p2(x
2)
)

Therefore, for any x ∈ P ∗
α1

∩ P ∗
α2

, we have

f(x) =
x

α1 − α2
·
(
p1(x

2)− p2(x
2)
)
+

1

α2 − α1
·
(
α2p1(x

2)− α1p2(x
2)
)
. (11)

Note that deg(p1),deg(p2) ≤ 1
2 · ρ|L| − 1. From (11), we have

deg(f) ≤ 1 + 2max(deg(p1), deg(p2))

≤ 1 + ρ|L| − 2

= ρ|L| − 1.

If |P ∗
α1

∩P ∗
α2
| ≥ |Pα1 ∩Pα2 | ≥ ρ|L|, polynomial p(X) is unique, since ρ|L| points uniquely determine

a polynomial of degree at most ρ|L| − 1.

Proposition 3. Let α, β ∈ Bad(f) be different points such that |Pα ∩ Pβ| ≥ ρ|L|. Let p(X) be the
unique polynomial of degree < ρ|L| such that p|Pα∩Pβ

= f |Pα∩Pβ
. Then

Closest(FuncFoldβ(f),RS[Fq, L
2, ρ]) = PolyFoldβ(p). (12)

Proof. Since both sides of (12) are polynomials of degree at most ρ|L2| − 1, it suffices to find ρ|L2|
points on which both sides of (12) are equal. We have |Cα ∩ Cβ| = 1

2 · |Pα ∩ Pβ| ≥ ρ|L2|.
Let x2 ∈ Cα ∩ Cβ . By the definition of folding, we have

PolyFoldβ(p)(x
2) =

p(x) + p(−x)

2
+ β · p(x)− p(−x)

2x

=
f(x) + f(−x)

2
+ β · f(x)− f(−x)

2x
By Definition 7

= FuncFoldβ(f)(x
2).

Thus, we have exhibited at least ρ|L2| points where the evaluations of both sides of (12) are equal.
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Corollary 2. Let α, β ∈ Bad(f) be distinct and |P ∗
α ∩ P ∗

β | ≥ |Pα ∩ Pβ| ≥ ρ|L|. Let p(X) be the
unique polynomial such that f |P ∗

α∩P ∗
β
= p|P ∗

α∩P ∗
β

(by Lemma 4). For any x ∈ L, x ∈ P ∗
α ∩ P ∗

β if and
only if f(x) = p(x) and f(−x) = p(−x).

Proof. The “only if” direction is trivial. Let x ∈ P ∗
α ∩ P ∗

β . Then −x ∈ P ∗
α ∩ P ∗

β by Definition 7.
Since f |P ∗

α∩P ∗
β
= p|P ∗

α∩P ∗
β
, we have f(x) = p(x) and f(−x) = p(−x).

For the “if” direction, assuming f(x) = p(x) and f(−x) = p(−x), our goal is to prove x ∈ P ∗
α∩P ∗

β .
We prove x ∈ P ∗

α; x ∈ P ∗
β is similar to prove.

By Proposition 3, we have

PolyFoldα(p) = Closest(FuncFoldα(f),RS[Fq, L
2, ρ]). (13)

Since f(x) = p(x) and f(−x) = p(−x), by the definition of folding, we have

FuncFoldα(f)(x
2) = PolyFoldα(p)(x

2). (14)

Combining (13) with (14), we have

Closest(FuncFoldα(f),RS[Fq, L
2, ρ])(x2) = FuncFoldα(f)(x

2),

which implies x2 ∈ C∗
α, i.e., x ∈ P ∗

α.

Lemma 5. Let α, β1, β2 ∈ Bad(f) be different such that |Pα ∩ Pβ1 | ≥ ρ|L| and |Pα ∩ Pβ2 | ≥ ρ|L|.
Denote by p1(X) and p2(X) the polynomials of degree at most ρ|L| − 1 decided by f |Pα∩Pβ1

and
f |Pα∩Pβ2

(Lemma 4). Then exactly one of the followings holds:

• p1 = p2 and P ∗
α ∩ P ∗

β1
= P ∗

α ∩ P ∗
β2

.

• p1 ̸= p2 and |Pα ∩ Pβ1 ∩ Pβ2 | ≤ |P ∗
α ∩ P ∗

β1
∩ P ∗

β2
| ≤ ρ|L| − 1.

Proof. If p1 = p2, we claim P ∗
α ∩ P ∗

β1
= P ∗

α ∩ P ∗
β2

. Let us prove P ∗
α ∩ P ∗

β1
⊆ P ∗

α ∩ P ∗
β2

first. Let
x ∈ P ∗

α ∩ P ∗
β1

. By Corollary 2, we have f(x) = p1(x) and f(−x) = p1(−x). Since p1 = p2, we
have f(x) = p2(x) and f(−x) = p2(−x). By Corollary 2, x ∈ P ∗

α ∩ P ∗
β2

. Thus, we have shown that
P ∗
α ∩ P ∗

β1
⊆ P ∗

α ∩ P ∗
β2

. The other direction, P ∗
α ∩ P ∗

β2
⊆ P ∗

α ∩ P ∗
β1

, is similar to prove.
If p1 ̸= p2, we want to prove |P ∗

α∩P ∗
β1
∩P ∗

β2
| ≤ ρ|L|−1. Note that, for any x ∈ P ∗

α∩P ∗
β1
∩P ∗

β2
, by

Corollary 2, f(x) = p1(x) and f(x) = p2(x), which implies p1(x) = p2(x). Since p1, p2 are different
polynomials of degree at most ρ|L| − 1, and two different polynomials of degree at most ρ|L| − 1
agree on at most ρ|L| − 1 points, we have |P ∗

α ∩ P ∗
β1

∩ P ∗
β2
| ≤ ρ|L| − 1.

Proposition 4. Let α, β1, β2 ∈ Bad(f) be different points such that

• |Pα ∩ Pβ1 |, |Pα ∩ Pβ2 | ≥ ρ|L|

• p1 ̸= p2, where p1 and p2 are the polynomials of degree at most ρ|L|−1 determined by f |Pα∩Pβ1

and f |Pα∩Pβ2
respectively.

Then PolyFoldα(p1) = PolyFoldα(p2).
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Proof. By our condition, we have p1|Pα∩Pβ1
= f |Pα∩Pβ1

and p2|Pα∩Pβ2
= f |Pα∩Pβ2

, which implies
that

PolyFoldα(pi)|Cα∩Cβi
= FuncFoldα(f)|Cα∩Cβi

, i = 1, 2.

By Definition 7, FuncFoldα(f) coincides with a polynomial of degree < ρ|L2| on Cα, denoted
by p(X). Notice that |Cα ∩ Cβ1 | ≥ 1

2 · |Pα ∩ Pβ1 | ≥ ρ · |L|
2 = ρ|L2|; thus, PolyFoldα(p1) is

uniquely determined, and equals p. A similar argument shows PolyFoldα(p1) = p. Therefore,
PolyFoldα(p1) = PolyFoldα(p2).

Remark 2. Definition 7 can be extended to general points in Fq, i.e., we can define the corresponding
C∗
α, P

∗
α for any α ∈ Fq. Furthermore, if |P ∗

α ∩ P ∗
β | ≥ ρ|L|, the above results still hold.

Let A ∈ {A1, . . . , Ar} be a set of folding points defined in Algorithm 2 and α be the corresponding
folding point, i.e., for any β ∈ A, we have |Pβ ∩ Pα| ≥

(
(1− δ)2 − η′

)
|L|. Since

(
(1− δ)2 − η′

)
≥ ρ

according to (6), we can define an equivalence relation R on A \ {α} as follows:

(β1, β2) ∈ R ⇐⇒ p1 = p2,

where p1 and p2 are the low-degree polynomials determined by f |Pα∩Pβ1
and f |Pα∩Pβ2

respectively.
R gives a partition on set A \ {α}. Let s be the number of equivalence classes. For convenience, let

[βi] = {βi,1, . . . , βi,ti},

1 ≤ i ≤ s denote the equivalence classes.
From the definitions, we know

• (Lemma 5) Different equivalence classes correspond to different low-degree polynomials, de-
noted by p1(X), . . . , ps(X).

• (Proposition 4) The foldings of the polynomials p1, . . . , ps at point α are the same. That is,

PolyFoldα(p1) = PolyFoldα(p2) = . . . = PolyFoldα(ps).

• (Proposition 3) For any i ∈ {1, . . . , s}, and for any j ∈ {1, . . . , ti}, we have

Closest(FuncFoldβi,j
(f),RSq[F, L2, ρ]) = PolyFoldβi,j

(pi).

On the one hand, we can bound the number of equivalence classes by using the following gen-
eralization of Corrádi’s lemma, whose proof is almost the same as Corrádi’s.

Corollary 3 (Corollary of Corrádi’s lemma). Let P1, . . . , Pr be r sets satisfying

s1 ≤ |Pi| < s2, 1 ≤ i ≤ r.

If |Pi ∩ Pj | ≤ k for any distinct i, j ∈ {1, 2, . . . , r}, then∣∣∣∣∣
r⋃

i=1

Pi

∣∣∣∣∣ > s21r

s2 + (r − 1)k
.
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Proof. Follow the proof of Corrádi’s Lemma. For any x ∈
⋃r

i=1 Pi, denote by d(x) the count of x,
i.e., the number of Pi containing x, we have

∑
x∈Pi

d(x) =

r∑
j=1

|Pi ∩ Pj | = |Pi|+
∑
j ̸=i

|Pi ∩ Pj |

< s2 + (r − 1)k. (15)

Summing over all sets Pi, we have

r∑
i=1

∑
x∈Pi

d(x) =
∑

x∈
⋃r

i=1 Pi

d(x)2

≥ 1

|
⋃r

i=1 Pi|

 ∑
x∈

⋃r
i=1 Pi

d(x)

2

by Cauchy–Schwarz inequality

=
1

|
⋃r

i=1 Pi|

(
r∑

i=1

|Pi|

)2

≥ s21r
2

|
⋃r

i=1 Pi|
. (16)

Combining (15) and (16), we have

r (s2 + (r − 1)k) >
s21r

2

|
⋃r

i=1 Pi|
⇒

∣∣∣∣∣
r⋃

i=1

Pi

∣∣∣∣∣ > s21r

s2 + (r − 1)k
.

Corollary 4. When δ ≤ 1− 3
√
ρ−η and η′ =

3 3
√
ρη2

2 . Let A ∈ {A1, . . . , Ar} be a set of folding points
defined in Algorithm 2 and α be the corresponding folding point. Let s be the number of equivalence
classes decided by R on A \ {α}. We have s ≤ 1

3ηρ
2
3
.

Proof. Let
[βi] = {βi,1, . . . , βi,ti}, 1 ≤ i ≤ s

be the equivalence classes. Notice that we have

• |Pα ∩Pβi,1
| < (1− δ)|L|, 1 ≤ i ≤ s since ∆(f,RS[Fq, L, ρ]) > δ|L| and f |Pα∩Pβi,1

agrees with a
low-degree polynomial according to Lemma 4.

• |Pα ∩ Pβi,1
| ≥

(
(1− δ)2 − η′

)
|L|, 1 ≤ i ≤ s according to Algorithm 2.

• |Pα ∩ Pβi,1
∩ Pβj,1

| < ρ|L|, 1 ≤ i < j ≤ s according to Lemma 5.

• |
⋃s

i=1 (Pα ∩ Pβi,1)| ≤ |Pα| = (1− δ)|L|.

By Corollary 3, we have

(1− δ)|L| >
((
(1− δ)2 − η′

)
|L|
)2

s

(1− δ)|L|+ (s− 1)ρ|L|
.

18



Thus,

s <
(1− δ − ρ) (1− δ)

((1− δ)2 − η′)2 − ρ(1− δ)

=
(1− δ − ρ) (1− δ)

((1− δ)3 − ρ) (1− δ)− 2η′(1− δ)2 + η′2

≤ (1− δ − ρ) (1− δ)(
3η2ρ

1
3 + 3ηρ

2
3 + η3

)
(1− δ)− 2η′(1− δ)2 + η′2

.

Notice that η′ = 3ρ
1
3 η2

2 , then we have

3η2ρ
1
3 (1− δ)− 2η′(1− δ)2 ≥ 3η2ρ

1
3 (1− δ)− 2η′(1− δ) = 0.

Thus, we have

s <
(1− δ − ρ) (1− δ)

3ηρ
2
3 (1− δ)

=
1− δ − ρ

3ηρ
2
3

≤ 1

3ηρ
2
3

.

On the other hand, we can bound the number of elements in each equivalence class based on
the following lemma.

Lemma 6. Let α, β1, . . . , βt ∈ Bad(f) be distinct such that

• P ∗
α ∩ P ∗

β1
= P ∗

α ∩ P ∗
β2

= . . . = P ∗
α ∩ P ∗

βt
, and

• |P ∗
α ∩ P ∗

β1
| ≥ |Pα ∩ Pβ1 | ≥ ρ|L|.

Then P ∗
β1
, . . . , P ∗

βt
form a sunflower with core P ∗

α ∩ P ∗
β1

. That is, for any distinct i, j ∈ {1, . . . , t},
we have

P ∗
βi
∩ P ∗

βj
= P ∗

α ∩ P ∗
β1
.

Proof. Let i, j ∈ {1, . . . , t} be any two distinct numbers. Let p(X) denote the unique polynomial of
degree at most ρ|L| − 1 determined by f |P ∗

α∩P ∗
βi

(Lemma 4).
Observe that P ∗

α∩P ∗
βi

= P ∗
α∩P ∗

βi
∩P ∗

βj
⊆ P ∗

βi
∩P ∗

βj
. By Lemma 4, there exists a unique polynomial

q(X) ∈ Fq[X] of degree strictly less than ρ|L| determined by f |P ∗
βi
∩P ∗

βj
. Since p|P ∗

α∩P ∗
βi

= f |P ∗
α∩P ∗

βi
,

and polynomial p is uniquely determined, we have q = p.
For any x ∈ P ∗

βi
∩P ∗

βj
, we have f(x) = q(x) and f(−x) = q(−x) by Corollary 2. Since f(x) = p(x)

and f(−x) = p(−x), using Corollary 2 again, we have x ∈ P ∗
α ∩ P ∗

βi
= P ∗

α ∩ P ∗
βi
∩ P ∗

βj
. Thus,

P ∗
βi
∩ P ∗

βj
= P ∗

α ∩ P ∗
βi
∩ P ∗

βj
= P ∗

α ∩ P ∗
β1
.

Since i, j are arbitrary, we have completed the proof.

Corollary 5. Denote by t the upper bound of the number of elements in each equivalence class.
Then we have t ≤ δ

2 |L|.
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Proof. Let
[βi] = {βi,1, . . . , βi,ti}

be an equivalence class. According to the definition of equivalent relation, we have P ∗
α∩P ∗

βi,1
= . . . =

P ∗
α∩P ∗

βi,ti
. According to Algorithm 2, we have |P ∗

α∩P ∗
βi,1

| ≥ |Pα∩Pβi,1
| ≥

(
(1− δ)2 − η′

)
|L| ≥ ρ|L|.

Lemma 6 tells us
P ∗
βi,j

∩ P ∗
βi,k

= P ∗
α ∩ P ∗

βi,1
, 1 ≤ j < k ≤ ti.

This implies (
P ∗
βi,j

\ P ∗
α

)
∩
(
P ∗
βi,k

\ P ∗
α

)
= ∅, 1 ≤ j < k ≤ ti. (17)

Thus,

δ|L| ≥ |L \ P ∗
α| ≥

∣∣∣∣∣∣
ti⋃

j=1

(
P ∗
βi,j

\ P ∗
α

)∣∣∣∣∣∣ =
ti∑

j=1

∣∣∣P ∗
βi,j

\ P ∗
α

∣∣∣ (18)

For each βi,j ∈ [βi], we have |P ∗
βi,j

| ≥ (1− δ)|L| according to the definition of bad folding points
(Definition 6). On the other hand, Lemma 4 tells us f agrees with some low-degree polynomial on
P ∗
α∩P ∗

βi,j
. Since ∆(f,RS[Fq, L, ρ]) > δ|L|, we have |P ∗

α∩P ∗
βi,j

| < (1−δ)|L|. Furthermore, according
to Definition 7, the number of elements in P ∗

βi,j
\ P ∗

α is even. As a result, we have∣∣∣P ∗
βi,j

\ P ∗
α

∣∣∣ ≥ 2. (19)

Plug (19) into (18), we have

δ|L| ≥ 2ti ⇒ ti ≤
δ

2
|L|.

4.3 Proof of Theorem 3

Algorithm 2 gives a partition of Bad(f), denoted by A1, . . . , Ar ⊆ Bad(f). By Lemma 3, the number
of blocks is at most r < 1−ρ

η′ . The size of each block Ai is less than st + 1, which is bounded by
Corollary 4 and Corollary 5. So

|Bad(f)| =
r∑

i=1

|Ai| ≤ r · (st+ 1)

<
1− ρ

η′
·

(
1

3ηρ
2
3

· δ
2
|L|+ 1

)
Corollary 4 and Corollary 5

≤ 1− ρ

η′
·

(
1

3ηρ
2
3

· 1− ρ
1
3 − η

2
|L|+ 1

)

≤
(1− ρ)

(
1− ρ

1
3

)
3
2ρ

1
3 η2 · 3ηρ

2
3 · 2

|L|+ 1− ρ
3
2ρ

1
3 η2

=
(1− ρ)

(
1− ρ

1
3

)
9ρη3

|L|+ 2(1− ρ)

3ρ
1
3 η2
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5 Proximity gaps for Reed-Solomon codes

A property displays a proximity gap (Definition 1.1 in [Ben+20b]) for Reed-Solomon codes if either
all the members of a Reed-Solomon code are δ-close to the property or only a tiny fraction of
members are δ-close this property. [Ben+20b] proposes this notion to improve the analysis of the
soundness of (batched) FRI. Furthermore, their analysis covers the power of correlated agreement,
which is used in the proof of (knowledge) soundness of protocols that use FRI as a sub-protocol.

In this section, we analyze the proximity gaps for Reed-Solomon codes using our main theorem.
The correlated agreement property is also held in our improved results. More precisely, we prove
correlated agreement over lines (Theorem 4) and correlated agreement over affine spaces (Theorem
6). These theorems lead to the soundness analysis of (batched) FRI in Section 6.

5.1 Correlated agreement over lines

Theorem 4. Let L be a subset of F×
q . Let u0, u1 : L → Fq. Let δ, η, ρ > 0 satisfy δ ≤ 1 − 3

√
ρ − η

and η ≤ 1
3ρ

− 1
3 , and suppose

Pz∈Fq(∆(u0 + zu1,RS[Fq, L, ρ]) ≤ δ) ≥ 2(1− ρ)|L|
9ρη3|Fq|

.

Then u0, u1 are simultaneously δ-close to RS[Fq, L, ρ], i.e., ∃v0, v1 ∈ RS[Fq, L, ρ] such that

|{x ∈ L : (u0(x), u1(x)) = (v0(x), v1(x))}| ≥ (1− δ)|L|.

Proof of Theorem 4 We use Corollary 1 to prove Theorem 4. In order to apply Theorem 3,
we construct a function f whose folding result at point z is exactly u0 + zu1.

We can find an extension field of Fq, denoted by K, such that
√
L ≜ {x | x2 ∈ L} is in this field.

We define a function f :
√
L → K as follows

f(x) = u0(x
2) + xu1(x

2), x ∈
√
L.

Then for any z ∈ Fq, for any x2 ∈ L,

FuncFoldz(f)(x
2) =

f(x) + f(−x)

2
+ z · f(x)− f(−x)

2x
= u0(x

2) + zu1(x
2) ∈ Fq.

Thus we have

{z ∈ K | ∆(FuncFoldz(f),RS[K, L, ρ]) ≤ δ|L|}
⊇ {z ∈ Fq | ∆(u0 + zu1,RS[Fq, L, ρ]) ≤ δ|L|} .

Since
Pz∈Fq (∆(u0 + zu1,RS[Fq, L, ρ]) ≤ δ) ≥ 2(1− ρ)|L|

9ρη3|Fq|
,

we have

|{z ∈ K | δ(FuncFoldz(f),RS[K, L, ρ]) ≤ δ}| ≥ 2(1− ρ)|L|
9ρη3

=
(1− ρ)|

√
L|

9ρη3
. (20)

Corollary 1 implies that f is δ-close to RS[K,
√
L, ρ]. However, this is insufficient for our pur-

poses, as we aim to demonstrate the correlated agreement of u0 and u1. For this purpose, we define
a new distance called pairing distance and slightly improve Theorem 3 and Corollary 1 under this
new distance.
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Definition 8 (pairing distance). Let L ⊆ F×
q be a set with pairing elements. Let f, f ′ : L → Fq be

two functions. Define the pairing distance between f and f ′ to be

∆P (f, f
′) = |{x ∈ L | f(x) ̸= f ′(x) or f(−x) ̸= f ′(−x)}|.

Let V be a set of codewords on L. Define the pairing distance between f and V to be

∆P (f, V ) ≜ min
f ′∈V

∆P (f, f
′).

Let ClosestP (f, V ) denote the closest codeword (polynomial) under the pairing distance. If there are
more than one codeword with the same minimal pairing distance, choose the one with the smallest
lexicographical order.

The following lemma improves the result of Corollary 5 by using the pairing distance. Cα, Pα, C
∗
α

and P ∗
α are defined as in Definition 7, with the distance is replaced by the pairing distance.

Lemma 7. Let L ⊆ F×
q be a set with pairing elements. Let f : L → Fq be a codeword such that

∆P (f,RS[Fq, L, ρ]) > δ|L|. α, β1, . . . , βt ∈ Bad(f) are distinct and C,P,C∗, P ∗ are defined as in
Definition 7 satisfying

1. P ∗
α ∩ P ∗

β1
= P ∗

α ∩ P ∗
β2

= . . . = P ∗
α ∩ P ∗

βt
.

2. |P ∗
α ∩ P ∗

β1
| ≥ |Pα ∩ Pβ1 | ≥ ρ|L|;

Then we have t ≤ δ
2 |L|.

Proof. Since α, β1, . . . , βt satisfy the first two conditions, Lemma 6 tells us

P ∗
βi
∩ P ∗

βj
= P ∗

α ∩ P ∗
β1
, 1 ≤ i < j ≤ t.

This implies (
P ∗
βi
\ P ∗

α

)
∩
(
P ∗
βj

\ P ∗
α

)
= ∅, 1 ≤ i < j ≤ t.

We have |P ∗
α| ≥ (1− δ)|L| since α ∈ Bad(f). Thus,

δ|L| ≥ |L \ P ∗
α| ≥

∣∣∣∣∣
t⋃

i=1

(
P ∗
βi
\ P ∗

α

)∣∣∣∣∣ =
t∑

i=1

∣∣P ∗
βi
\ P ∗

α

∣∣ (21)

Since ∆P (f,RS[Fq, L, ρ]) > δ|L|, we have |P ∗
α ∩ P ∗

βi
| < (1 − δ)|L|. Otherwise, if |P ∗

α ∩ P ∗
βi
| ≥

(1 − δ)|L|, by Lemma 4, let p be the low degree polynomial that agrees with f on P ∗
α ∩ P ∗

βi
. By

Corollary 2, for any x ∈ P ∗
α ∩ P ∗

βi
, f(x) = p(x). According to Definition 7, −x ∈ P ∗

α ∩ P ∗
βi

and
f(−x) = p(−x). Thus, ∆P (f, p) ≤ |L \ (P ∗

α ∩P ∗
βi
)| ≤ δ|L|. A contradiction. On the other hand, we

have |P ∗
βi
| ≥ (1 − δ)|L| since βi ∈ Bad(f). As a result,

∣∣∣P ∗
βi
\ P ∗

α

∣∣∣ > 0. Furthermore, according to
Definition 7, the number of elements in P ∗

βi
\ P ∗

α is even. Thus, we have∣∣P ∗
βi
\ P ∗

α

∣∣ ≥ 2. (22)

Plug (22) into (21), we have

δ|L| ≥ 2t ⇒ t ≤ δ

2
|L|.
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Lemma 7 limits the number of elements in the same equivalence class in this case. Following
a similar argument as that of Theorem 3 (Corollary 1), we can prove the following result, which
strengthens Theorem 3 (Corollary 1).

Theorem 5. Let L ⊆ Fq be a set with pairing elements. Let δ, η, ρ > 0 satisfy δ ≤ 1− 3
√
ρ− η and

η ≤ 1
3ρ

− 1
3 . Let f : L → Fq be a codeword such that δP (f,RS[Fq, L, ρ]) > δ. Then,∣∣{α ∈ Fq : ∆

(
FuncFoldα(f),RS[Fq, L

2, ρ]
)
≤ δ|L2|

}∣∣ < (1− ρ)|L|
9ρη3

.

Notice that
√
L is with pairing elements. According to Theorem 5, (20) implies δP (f,RS[K,

√
L, ρ]) ≤

δ. Let p = ClosestP (f,RS[K,
√
L, ρ]) be the closest codeword (in pairing distance), then we have∣∣∣√L

∣∣∣−∆P (f, p) =
∣∣∣{x ∈

√
L : (f(x), f(−x)) = (p(x), p(−x))}

∣∣∣
≥ (1− δ)

∣∣∣√L
∣∣∣ . (23)

Construct v0, v1 ∈ RS[K, L, ρ] as follows:{
v0(x

2) = 1
2 (p(x) + p(−x))

v1(x
2) = 1

2x (p(x)− p(−x))
, ∀x ∈

√
L.

Then ∣∣{x2 ∈ L :
(
u0(x

2), u1(x
2)
)
=
(
v0(x

2), v1(x
2)
)
}
∣∣

=
1

2

∣∣∣{x ∈
√
L : (f(x), f(−x)) = (p(x), p(−x))}

∣∣∣
≥ (1− δ)

∣∣∣√L
∣∣∣

2
= (1− δ)|L|. By (23)

By the definition of v0, v1, we know v0 and v1 are low-degree polynomials in K[X]. Further-
more, since (1 − δ)|L| ≥ ρ|L|, we can interpolate on the agree points to get the unique low-degree
polynomials v0, v1. And v0, v1 takes the values in Fq on these points. Thus, v0, v1 ∈ RS[Fq, L, ρ].
Therefore, we have completed the proof of Theorem 4.

5.2 Correlated agreement over affine spaces

Theorem 6. Let L be a subset of F×
q . Let u0, · · · , ul : L → Fq, l ≥ 1 be a sequence of functions. Let

δ, η, ρ > 0 satisfy δ ≤ 1− 3
√
ρ− η and η ≤ 1

3ρ
− 1

3 . For convenience, denote V = RS[Fq, L, ρ]. Define

S = {zl = ⟨z1, · · · , zl⟩ ∈ Fl
q : ∆(u0 + z1u1 + · · ·+ zlul, V ) ≤ δ|L|}

and suppose

Pzl∈Fl
q
(zl ∈ S) ≥

(
2(1− ρ)|L|
9ρη3|Fq|

)
· l.

Then u0, · · · , ul are simultaneously δ-close to V , i.e., ∃v0, · · · , vl ∈ V such that

|{x ∈ L | ui(x) = vi(x), i = 1, . . . , l}| ≥ (1− δ)|L|.
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To prove the above theorem, we consider the list decoding of a given function. We bound the
number of folding points that enlarge the agree domains. More precisely, we consider the following
domains:

Definition 9 (Maximal δ-pairing-agree domain). Let 0 ≤ δ ≤ 1. Let L ⊆ F×
q be a set with pairing

elements. Let f : L → Fq be a function. Let V be a set of codewords on L. Let D ⊆ L be a domain
satisfying:

• Density: |D| ≥ (1− δ)|L|;

• Pairing: x ∈ D ⇐⇒ −x ∈ D;

• Agreement: ∃v ∈ V such that f |D = v|D;

• Maximal: If D ⊊ D′, then ∄v ∈ V such that f |D′ = v|D′.

We define such domain as a maximal δ-pairing-agree domain between f and V . Denote the set of
all of the maximal δ-pairing-agree domains between f and V as

Dδ,f,V ≜ {D1, . . . , Dm}.

Notice that Dδ,f,V is unique and when δP (f, V ) > δ, Dδ,f,V is empty.

Definition 10. Let L ⊆ Fq be an evaluation domain. Let f1, f2 : L → Fq be to functions on L.
Function Agree(f1, f2) returns the locations where f1 agrees with f2, i.e.,

Agree(f1, f2) = {x ∈ L | f1(x) = f2(x)}.

Based on the above definitions, we can define the set of bad folding points that enlarge the
list-decoding agree domains.

Definition 11. Let L ⊆ F×
q be a set with pairing elements. Let 0 < δ ≤ 1. Let f : L → Fq be a

function. Suppose Dδ,f,RS[F,L,ρ] = {D1, . . . , Dm}. Define the set of list-bad folding points to be

BadL(f) ≜ {α ∈ Fq |∃v ∈ RS[Fq, L
2, ρ], such that δ(FuncFoldα(f), v) ≤ δ

and Agree(FuncFoldα(f), v) ̸= D2
i , i = 1, . . . ,m}.

Theorem 7. Let δ, η, ρ > 0 satisfy δ ≤ 1− 3
√
ρ− η and η ≤ 1

3ρ
− 1

3 . Let L ⊆ F×
q be a set with pairing

elements. Let f : L → Fq be a function. Then we have

|BadL(f)| <
(1− ρ)|L|

9ρη3
.

The proof of Theorem 7 follows the proof of Theorem 3. We only outline the modifications here.
The proof details can be found in Appendix A.

Proof. We first modify the definition of some sets corresponding to Definition 7. For any α ∈
BadL(f), ∃v ∈ RS[Fq, L

2, ρ] such that δ(FuncFoldα(f), v) ≤ δ and Agree(FuncFoldα(f), v) ̸=
D2

i , i = 1, . . . ,m. If more than one codewords satisfy these conditions, choose the one with the
smallest lexicographical order. Define

C∗
L,α ≜ Agree(FuncFoldα(f), v) ⊆ L2, (24)

and P ∗
L,α ≜ {x | x2 ∈ C∗

L,α} ⊆ L is the parent set of C∗
L,α. For each C∗

L,α, we prove that there are
two possible cases:
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1. |C∗
L,α ∩D2

i | < ρ|L2|, i ∈ {1, . . . ,m}, or

2. ∃Di ∈ Dδ,f,RS[Fq ,L,ρ], such that C∗
L,α ⊋ D2

i .

This is because if ∃Di, |C∗
L,α ∩D2

i | ≥ ρ|L2|, denote by p the low-degree polynomial f agrees on Di.
According to Definition 9, x ∈ Di ⇐⇒ −x ∈ Di, thus

FuncFoldα(f)|D2
i
= PolyFoldα(p)|D2

i
.

Notice that
PolyFoldα(p)|C∗

L,α∩D
2
i
= v|C∗

L,α∩D
2
i

because of (24). Since |C∗
L,α ∩D2

i | ≥ ρ|L2|, we have PolyFoldα(p) = v. Then

FuncFoldα(f)|D2
i
= PolyFoldα(p)|D2

i
= v|D2

i
.

As a result, we have C∗
L,α = Agree(FuncFoldα(f), v) ⊇ D2

i . Definition 11 tells us Agree(FuncFoldα(f), v) ̸=
D2

i , thus,
Agree(FuncFoldα(f), v) ⊋ D2

i .

Run Algorithm 2 on BadL(f) and the corresponding parent sets to give a partition on BadL(f).
Denote the output as A′

1, . . . , A
′
r and α1, . . . , αr. Lemma 3 still holds because our partition strategy

is unchanged and we have |CL,α| = (1− δ)|L2| for any α ∈ BadL(f). Thus, we have r < 1−ρ
η′ . If we

can bound the size of each block Ai, we finish our proof of the theorem.
For any α ∈ {α1, . . . , αr}, denote by A the block α is in.
For the first case that |C∗

L,α ∩ D2
i | < ρ|L2|, i = 1, . . . ,m, we claim that A = {α}. Otherwise,

if ∃β ∈ A and β ̸= α, we have f agree with some low-degree polynomial p on P ∗
L,α ∩ P ∗

L,β by
using the same skill as Lemma 4 (see Lemma 9 in Appendix A for details). Since |P ∗

L,α ∩ P ∗
L,β| ≥

|PL,α ∩PL,β| ≥ ρ|L| according to the partition in Algorithm 2 and |C∗
L,α ∩D2

i | < ρ|L2|, i = 1, . . . ,m
according to our assumption, P ∗

L,α ∩ P ∗
L,β ⊈ Di, i = 1, . . . ,m. A contradiction to Definition 9. So

|A| = 1.
For the second case, if |A| = 1, we finish our proof of the theorem. Otherwise, we prove

|A| ≤ δ|L|
2η′ +1 in this case, we outline the proof sketch here, details can be found in Appendix A. We

still have the equivalent relation on A\{α} (see Lemma 10 in Appendix A). Notice that Corollary 4
still holds in this case, we can bound the number of equivalence classes (Corollary 7), i.e., s ≤ 1

3ηρ
2
3
.

On the other hand, Lemma 6 still holds (Lemma 11), so we can limit the number of elements in
each equivalence class (Corollary 8). Let

[β] = {β1, . . . , βt}

be an equivalence class. Based on Lemma 11, we can prove

δ|L| ≥ |L \ P ∗
L,α| ≥

∣∣∣∣∣
t⋃

i=1

(
P ∗
L,βi

\ P ∗
L,α

)∣∣∣∣∣ =
t∑

i=1

∣∣P ∗
L,βi

\ P ∗
L,α

∣∣ (25)

According to Lemma 9, f agrees with a low-degree polynomial p on P ∗
L,α ∩ P ∗

L,βi
. Since x ∈

P ∗
L,α ∩ P ∗

L,βi
⇐⇒ −x ∈ P ∗

L,α ∩ P ∗
L,βi

, ∃Di ∈ Dδ,f,RS[Fq ,L,ρ], such that P ∗
L,α ∩ P ∗

L,βi
⊆ Di. According
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to the definition of BadL(f) and P ∗
L,βi

, P ∗
L,βi

̸= Di. Furthermore, the number of elements in
P ∗
L,βi

\ P ∗
L,α is even. As a result,

|P ∗
L,βi

\ P ∗
L,α| = |P ∗

L,βi
\ (P ∗

L,α ∩ P ∗
L,βi

)| ≥ 2. (26)

Plugging (26) into (25), we have

δ|L| ≥ 2t ⇒ t ≤ δ

2
|L|.

So we have |A| ≤ st+ 1 ≤ δ|L|
6ηρ

2
3
+ 1 in this case.

Definition 12 (maximal δ-correlated-agree domains). Let 0 ≤ δ ≤ 1. Let L ⊆ Fq be an evaluation
domain. Let l ≥ 2, uj : L → Fq, 1 ≤ i ≤ l be a series of functions. Let V be a set of code words on
L. Let D ⊆ L be a domain satisfying:

• Density: |D| ≥ (1− δ)|L|;

• Correlated agreement: For i ∈ {1, . . . , l}, ∃vi ∈ V , such that ui|D = vi|D;

• Maximal: If D ⊊ D′, then ∃i ∈ {1, . . . , l}, for all v ∈ V , ui|D′ ̸= v|D′ .

We define such domain as a maximal δ-correlated-agree domain between u and V . Denote the set of
all of the maximal δ-correlated-agree domains between u and V as Aδ,{u1,...,ul},V ≜ {D1, . . . , Dm}.
Notice that Aδ,{u1,...,ul},V is unique and can be empty.

We have the corresponding theorem in the proximity gap version:

Theorem 8. Let L be a subset of F×
q . Let δ, η, ρ > 0 satisfy δ ≤ 1 − 3

√
ρ − η and η ≤ 1

3ρ
− 1

3 . Let
u0, u1 : L → Fq. Let

S1 ≜ {z ∈ Fq |∃v ∈ RS[Fq, L, ρ], such that δ(u0 + zu1, v) ≤ δ

and Agree(u0 + zu1, v) /∈ Aδ,{u0,u1},RS[Fq ,L,ρ]}.

Then
|S1| <

2(1− ρ)|L|
9ρη3

.

Proof. Let
√
L ≜ {x ∈ K | x2 ∈ L} be the parent set of L, where K is an extension field of Fq whose

characteristic is the same as Fq. Construct a function f :
√
L → K as follows:

f(x) = u0(x
2) + xu1(x

2), x ∈
√
L.

Suppose Aδ,{u0,u1},RS[Fq ,L,ρ] = {D1, · · · , Dm}. Let
√
Di ≜ {x | x2 ∈ Di} ⊆

√
L, i = 1, . . . ,m be the

parent sets of Di, i = 1, . . . ,m. Dδ,f,RS[K,
√
L,ρ] is the set of the maximal δ-pairing-agree domains

between f and RS[Fq,
√
L, ρ]. We want to prove that

Dδ,f,RS[K,
√
L,ρ] = {

√
D1, . . . ,

√
Dm}. (27)

On one hand, for any Di ∈ Aδ,{u0,u1},RS[Fq ,L,ρ], let v0, v1 ∈ RS[Fq, L, ρ] be the corresponding
codewords satisfying

u0|Di = v0|Di , u1|Di = v1|Di .
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Construct v(x) = v0(x
2) + xv1(x

2), x ∈
√
L. Then v ∈ RS[K,

√
L, ρ] and f |√Di

= v|√Di
. So

∃
√
D ∈ Dδ,f,RS[K,

√
L,ρ] such that

√
Di ⊆

√
D. For any x ∈

√
D, we have −x ∈

√
D according to

Definition 9. Then we have f(x) = v(x) and f(−x) = v(−x), which implies the following equations:{
u0(x

2) + xu1(x
2) = v0(x

2) + xv1(x
2)

u0(x
2)− xu1(x

2) = v0(x
2)− xv1(x

2)
.

Since x ̸= 0, we have u0(x
2) = v0(x

2), u1(x
2) = v1(x

2). As a result, x ∈
√
Di. So we have√

D ⊆
√
Di. Thus

√
Di =

√
D ∈ Dδ,f,RS[K,

√
L,ρ].

On the other hand, for any
√
D ∈ Dδ,f,RS[K,

√
L,ρ], let v ∈ RS[K,

√
L, ρ] be the corresponding

codeword such that
f |√D = v|√D.

Since x ∈
√
D ⇐⇒ −x ∈

√
D according to Definition 9, FuncFoldz(f)|D = PolyFoldz(v)|D,

∀z ∈ Fq. Since |D| ≥ (1− δ)|L|, ∃Di ∈ Aδ,{u0,u1},RS[Fq ,L,ρ] such that D ⊆ Di. Let the v0, v1 be the
code words such that

u0|Di = v0|Di , u1|Di = v1|Di .

Then we have

f(x) = u0(x
2) + xu1(x

2) = v0(x
2) + xv1(x

2) = v(x), x ∈
√
Di.

This implies
√
Di ⊆

√
D. We have proved D = Di.

Thus, (27) holds. Furthermore, ∀z ∈ Fq, ∀x2 ∈ L, we have

FuncFoldz(f)(x
2) =

f(x) + f(−x)

2
+ z · f(x)− f(−x)

2x
= u0(x

2) + zu1(x
2) ∈ Fq.

Then

S1 = {z ∈ Fq |∃v ∈ RS[Fq, L, ρ], such that δ(u0 + zu1, v) ≤ δ

and Agree(u0 + zu1, v) ̸= Di, i = 1, . . . ,m}
⊆ {z ∈ K |∃v ∈ RS[K, L, ρ], such that δ(FuncFoldz(f), v) ≤ δ

and Agree(FuncFoldz(f), v) ̸= Di, i = 1, . . . ,m}.

We have proved that (27) holds, so Theorem 7 tells us

|S| < (1− ρ)|
√
L|

9ρη3
=

2(1− ρ)|L|
9ρη3

.

Corollary 6. Let L be a subset of F×
q . Let L ⊆ Fq be a set with pairing elements. Let δ, η, ρ > 0

satisfy δ ≤ 1− 3
√
ρ− η and η ≤ 1

3ρ
− 1

3 . l ≥ 1, let u0, · · ·ul : L → Fq be a series of functions, denoted
as ul ≜ {u0, · · · , ul}. V ≜ RS[Fq, L, ρ]. Suppose Aδ,ul,V = {D1, · · · , Dml

}. Let

Sl ≜ {zl ∈ Fl
q |∃v ∈ V, such that ∆(u0 + · · ·+ zlul, v) ≤ δ

and Agree(u0 + · · ·+ zlul, v) /∈ Aδ,ul,V }.

Then
Pzl∈Fl

q
(zl ∈ Sl) <

2(1− ρ)|L|
9ρη3|Fq|

· l.
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Proof. We use induction to prove the result. When l = 1, the problem is reduced to Theorem 8.
Suppose the result holds for l − 1 functions. Denote {u0, · · · , ul−1} as ul−1. Define

Sl−1 ≜ {zl−1 ∈ Fl−1
q |∃v ∈ V, such that ∆(u0 + · · ·+ zl−1ul−1, v) ≤ δ

and Agree(u0 + · · ·+ zlul, v) /∈ Aδ,ul−1,V }.

Then we have

Pzl∈Fl
q
(zl ∈ Sl)

=Pzl∈Fl
q
(zl ∈ Sl | zl−1 ∈ Sl−1) · Pzl−1∈Fl−1

q
(zl−1 ∈ Sl−1)+

Pzl∈Fl
q
(zl ∈ Sl | zl−1 /∈ Sl−1) · Pzl−1∈Fl−1

q
(zl−1 /∈ Sl−1)

≤Pzl−1∈Fl−1
q

(zl−1 ∈ Sl−1) + Pzl∈Fl
q
(zl ∈ Sl | zl−1 /∈ Sl−1). (28)

According to our assumption, the first item satisfies

Pzl−1∈Fl−1
q

(zl−1 ∈ Sl−1) <
2(1− ρ)|L|
9ρη3|Fq|

· (l − 1). (29)

For the second item, for any fixed zl−1 /∈ Sl−1, define the set

Szl−1
≜ {zl ∈ Fq : ⟨zl−1, zl⟩ ∈ Sl}.

For convenience, use u′ to denote u0 + · · ·+ zl−1ul−1. Consider the set

Sδ,{u′,ul},V = {zl ∈ Fq |∃v ∈ V, such that δ(u′ + zlul, v) ≤ δ

and Agree(u′ + zlul, v) /∈ Aδ,{u′,ul},V }.

We want to prove
Szl−1

⊆ Sδ,{u′,ul},V . (30)

Notice that |Sδ,{u′,ul},V | <
2(1−ρ)|L|

9ρη3
by Theorem 8. So if (30) holds, we have

|Szl−1
| < 2(1− ρ)|L|

9ρη3
. (31)

Suppose Aδ,{u′,ul},V = {D′
1, . . . , D

′
m′

1
}. Since zl−1 /∈ Sδ,ul−1,V , {D′

1, . . . , D
′
m′

1
} are δ-correlated-

agree domains of u0, · · · , ul−1 (may be not maximal). According to the definition of Aδ,{u′,ul},V ,
{D′

1, . . . , D
′
m′

1
} are δ-correlated-agree domains of u0, · · · , ul. For any D′

i ∈ Aδ,{u′,ul},V , ∃D ∈ Aδ,ul,V ,
such that D′

i ⊆ D. If D′
i ̸= D, it is obvious that D is a correlated-agreement between u′, ul and V .

This is a contradiction to D′
i ∈ Aδ,{u′,ul},V . So we have

Aδ,{u′,ul},V ⊆ Aδ,ul,V . (32)

Fix a z ∈ Szl−1
, ⟨zl−1, z⟩ ∈ Sl. According to the definition of Sl, ∃v ∈ V such that

Agree(u′ + zul, v) /∈ Aδ,ul,V and |Agree(u′ + zul, v)| ≥ (1− δ)|L|.
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(32) tells us Agree(u′ + zul, v) /∈ Aδ,{u′,ul},V . Thus,

z ∈ Sδ,{u′,ul},V .

We have proved (30).
Plugging (29) and (31) into (28), we have

Pzl∈Fl
q
(zl ∈ Sl) <

2(1− ρ)|L|
9ρη3|Fq|

· l.

Proof of Theorem 6
We have Sl ⊆ S according to their definitions. Furthermore, since

Pzl∈Fl
q
(zl ∈ S) ≥ 2(1− ρ)|L|

9ρη3|Fq|
· l > Pzl∈Fl

q
(zl ∈ Sl) by Corollary 6

we have Sl ⊊ S. This means there exists a δ-correlated-agree domain between u0, · · · , ul and
RS[Fq, L, ρ].

5.3 Conjectured proximity gaps

Besides the provable proximity gaps of the RS codes, [Ben+20b] also provides a conjecture. Many
implementations of FRI are based on this conjecture.

Conjecture 1 (Conjecture 8.4 in [Ben+20b]). There exist universal constants c1, c2 > 0 such that
the following holds. Let u0, u1 : L → Fq. Let δ, η > 0 and δ ≤ 1− ρ− η, and suppose

Pz∈Fq(∆(u0 + zu1,RS[Fq, L, ρ]) ≤ δ) >
1

(ηρ)c1
· |L|

c2

|Fq|
.

Then u0, u1 are simultaneously δ-close to RS[Fq, L, ρ], i.e. ∃v0, v1 ∈ RS[Fq, L, ρ] such that

|{x ∈ L : (u0(x), u1(x)) = (v0(x), v1(x))}| ≥ (1− δ)|L|.

[Ben+20b] proofs the conjecture when c2 = 2 and δ is under the Johnson bound, i.e., δ ≤
1−√

ρ−η. They state that “To the best of our knowledge, nothing contradicts setting c1 = c2 = 2”
and “When limiting the scope to fields of characteristic greater than k (degree of the RS code), we
are not aware of anything contradicting c1 = c2 = 1”.

Theorem 4 provides proof for a part of the conjecture when setting c2 = 1. The parameter δ
needs to be under the double Johnson bound in our setting, i.e., δ ≤ 1− 3

√
ρ− η.

The proof of the remaining part of the conjecture is still open.

6 Soundness of batched FRI

FRI[Ben+18] is an IOPP for testing proximity to the RS codes. It is used to help the verifier to
check whether a given function f : L(0) → Fq belongs to RS[Fq, L

(0), ρ] or is far from the code. In
particular, FRI works for smooth evaluation sets defined in Definition 9. We apply our results to
prove the soundness of FRI.
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6.1 The batched FRI protocol

Let L(0) be a smooth domain, 0 < ρ < 1. For a given function f (0) : L(0) → Fq, the verifier wants to
know whether it is a member of RS[Fq, L

(0), ρ]. An untrusted prover may help the verifier while the
verifier has query accesses to f (0). The verifier and the prover agree on a series of smooth evaluation
domains L(0), L(1), · · · , L(nr), where nr is the number of interactive rounds. For convenience, we
will focus on a specific case of folding where L(k+1) = (L(k))2. For general cases, the definition of
folding can be found in [Ben+18], and we will not discuss those details here.

The FRI protocol has two phases, called COMMIT and QUERY.
In the COMMIT phase, the prover and the verifier work together round by round to fold the

target function f (0) into a field element (or a short vector). Thus, the verifier can check the element
easily. In the kth round, the prover sends the oracle of a function f (k) to the verifier. The verifier
randomly selects a folding parameter α(k) ∈ Fq and sends it to the prover. In this context, we
assume that the folding parameter cannot be zero. Upon receiving α(k), the prover folds f (k) using
this parameter to obtain a new function f (k+1) : L(k+1) → Fq. If the prover is honest, the folding
result is supposed to be

f (k+1) = FuncFoldα(k)(f (k)).

If f (k) is a member of RS[Fq, L
(k), ρ], then the degree of f (k+1) is expected to be halved. Conse-

quently, any member of RS[Fq, L
(0), ρ] will be folded into a single element after log(ρ|L(0)|) rounds.

In the QUERY phase, the verifier queries some random locations in L(0), and the prover responds
with the queried elements as well as those involved in the folding path. The verifier then calculates
the folding results to verify the correctness of the folding process.

Batching Batched FRI is a generalization of the FRI protocol. Instead of checking only
one function f (0) is near RS[Fq, L

(0), ρ], the prover is now required to prove a series of functions
f
(0)
0 , · · · , f (0)

l : L(0) → Fq are near RS[Fq, L
(0), ρ]. A trivial strategy is checking each function indi-

vidually; however, this approach becomes inefficient when the number of functions is large. Batched
FRI provides a way to do the verifications at one time.

Suppose the prover has a series of functions f
(0)
0 , · · · , f (0)

l ∈ FL(0)

q , and the verifier has or-
acle access to these functions. Before executing the FRI protocol, the verifier randomly selects
z1, · · · , zl ∈ Fq and sends them to the prover. The prover and the verifier then run the FRI protocol
on the combined function defined as f (0) ≜ f

(0)
0 + z1f

(0)
1 + · · · + zlf

(0)
l . The COMMIT phase of

the batched FRI protocol is the same as the basic FRI protocol, while the QUERY phase includes
additional checks to verify that the combination is correct. More precisely, the batched FRI protocol
works as follows:

BATCH Phase:

1. The verifier picks uniformly random z1, . . . , zl ∈ F×
q .

2. Set f (0) ≜ f
(0)
0 + z1f

(0)
1 + · · ·+ zlf

(0)
l .

COMMIT Phase:

1. For each k ∈ [0, nr − 1] :

(a) The verifier picks a uniformly random α(k) ∈ F×
q .
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(b) The prover writes down a function

f (k+1) : L(k+1) → Fq

and sends the oracle of f (k+1) to the verifier. For an honest prover, we have f (k+1) =
FuncFoldα(k)(f (k)).

2. The prover writes down a value C ∈ Fq.

QUERY Phase: Repeat t times:

1. The verifier picks a uniformly random s(0) ∈ L(0).

2. If f (0)(s(0)) ̸= f
(0)
0 (s(0)) + z1f

(0)
1 (s(0)) + · · ·+ zlf

(0)
l (s(0)), REJECT.

3. For each i ∈ [0, nr − 1] :

(a) Define s(k+1) ∈ L(k+1) by s(k+1) = (s(k))2.

(b) Compute FuncFoldα(k)(f (k))(s(k+1)) by making queries to f (k)(s(k)) and f (k)(−s(k)).
(c) If FuncFoldα(k)(f (k))(s(k+1)) ̸= f (k+1)(s(k+1)), REJECT.

4. If f (nr)(s(nr)) ̸= C, REJECT.

5. ACCEPT.

6.2 Soundness of batched FRI

The soundness error of batched FRI consists of bad batching, bad folding, and prover’s cheating.
The bad batching is restricted by Theorem 6 directly. We propose an analysis of the possibility

of bad folding based on Corollary 1. Let f (0) : L(0) → Fq be the initial function. Without loss of
generality, we state the case q(X) = X2 here. The prover and the verifier have agreed on a series of
“smooth” evaluation domains, L(0), L(1), . . .. Suppose there are nr rounds in the FRI protocol. Let

δ(k) ≜ δ(f (k),RS[Fq, L
(k), ρ])

be the relative distance.
Let B(k) = min{δ(k) − 1

|L(k+1)| , 1− 3
√
ρ− η}. Let η ≤ 1

3ρ
− 1

3 . Define the kth Bad Event E(k), 0 ≤
k ≤ nr − 1 as the event:

E(k) = {α(k) ∈ Fq : δ(FuncFoldα(k)(f (k)),RS[Fq, L
(k+1), ρ]) ≤ B(k)}

where α(k) is the random folding point chosen by the verifier in the kth round. According to Corollary
1, we have

P(E(k)) <
(1− ρ)|L(k)|
9ρη3|Fq|

.

Notice that |L(k+1)| = |L(k)|
2 . Then the possibility that in all of the nr rounds, the bad events do

not happen satisfies:

P(
nr−1∧
k=0

⌝E(k)) ≥ 1−
nr−1∑
k=0

P(E(k))

> 1− 2(1− ρ)|L(0)|
9ρη3|Fq|

.
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Suppose bad batching and bad folding do not happen in all the nr rounds. A dishonest prover
may modify some locations of the codeword to pass the verification. However, modifications will be
checked during the QUERY phase and can not increase the possibility of passing. As a result, we
have the following soundness error bound of batched FRI.

Suppose that bad batching and bad folding do not occur in any of the nr rounds. A dishonest
prover may alter some positions of the codeword to pass verification; however, these modifications
will be scrutinized during the QUERY phase and cannot increase the likelihood of passing. Conse-
quently, we derive the following soundness error bound for batched FRI. Further details regarding
the soundness of FRI can be found in [Ben+18], which offers a comprehensive soundness analysis.

Theorem 9 (Batched FRI soundness). Let Fq be a finite field. Let L(0) ⊆ Fq be a smooth evaluation
domain.

Let f (0)
0 , · · · , f (0)

l : L(0) → Fq, 1 ≤ l be a sequence of functions and let V (0) = RS[Fq, L
(0), ρ] and

ρ satisfies ρ = 2−R for a positive integer R. Let δ, η > 0 satisfy δ ≤ 1 − 3
√
ρ − η and η ≤ 1

3ρ
− 1

3 .
Furthermore, let t denote the number of invocations of the FRI QUERY step.

Suppose there exists a batched FRI prover P∗ that interacts with the batched FRI verifier and
causes it to output “accept” with a probability greater than

ϵBatched-FRI =

(
2(1− ρ)|L(0)|

9ρη3|Fq|

)
· (l + 1) + (1− δ)t (33)

Then f
(0)
0 , · · · , f (0)

l have correlated agreement with V (0) on a domain D ⊆ L(0) of density at least
1− δ.

Remark 3. For general cases that q(X) = X2k , k ∈ N∗, this error bound also holds. One folding
in this case can be seen as k foldings of the special case with the same folding parameter.

6.3 Numerical Example

We provide a numerical example to show the improvement in the provable soundness of FRI. Set
q = |Fq| > 2183 (the extension field used in [Sta23]), ρ = 1

8 , m = 3, η = 2−6, |L(0)| = 224 and l = 28.
nr = log2(|L(0)|) = 24 is the number of rounds. t is the number of QUERY times.

Let

ϵc ≜
(m+ 1

2)
7 · |L(0)|2

2ρ3/2q
+

(2m+ 1) · (|L(0)|+ 1)
√
ρ

·
∑nr−1

i=0 l(i)

q
,

where l(i) = |L(i)|
|L(i+1)| = 2 in our example. And we have

2−122 < ϵc < 2−121.

The soundness error bound provided in [Ben+20b] is

ϵBatched-FRI = ϵc +

(
√
ρ(1 +

1

2m
)

)t

. (34)

This can reach 121 bits of security when t ≥ 97, and can not reach 128 bits of security. For higher
security levels, we can apply the FRI protocol in a bigger extension field. However, this will increase
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the cost of operations. Our soundness error bound is provided in (33). And we have

2−136 <

(
|L(0)|

√
ρη2|Fq|

)
· (l + 1) < 2−135.

We prove FRI can reach 128 bits of security in the current field when t ≥ 134.
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A Proof of Theorem 7

Definition 13. Let L ∈ F×
q be a set with pairing elements. Let f : L → Fq be a function. Let

0 < δ ≤ 1 and BadL(f) is defined in Definition 11. For any α ∈ BadL(f), ∃v ∈ RS[Fq, L
2, ρ] such

that δ(FuncFoldα(f), v) ≤ δ and Agree(FuncFoldα(f), v) ̸= D2
i , i = 1, . . . ,m. If more than one

codewords satisfy these conditions, choose the one with the smallest lexicographical order. Define

• ClosestL(δ,FuncFoldα(f),RS[Fq, L
2, ρ]) = v.

• C∗
L,α = Agree(FuncFoldα(f), v) ⊆ L2.

• P ∗
L,α = {x | x2 ∈ C∗

L,α} ⊆ L is the parent set of C∗
L,α.

• CL,α: The set of the first (1− δ)|L2| elements of C∗
L,α, i.e., |CL,α| = (1− δ)|L2|.
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• PL,α = {x | x2 ∈ CL,α} ⊆ L is the parent set of CL,α.

Lemma 8. Let L ∈ F×
q be a set with pairing elements. Let f : L → Fq be a function. Let 0 < δ ≤ 1

and BadL(f) is defined in Definition 11. For each C∗
L,α, we prove that there are two possible cases:

1. |C∗
L,α ∩D2

i | < ρ|L2|, i ∈ {1, . . . ,m}, or

2. ∃Di ∈ Dδ,f,RS[Fq ,L,ρ], such that C∗
L,α ⊋ D2

i .

Proof. If ∃Di, |C∗
L,α∩D2

i | ≥ ρ|L2|, denote by p the low-degree polynomial f agrees on Di. According
to Definition 9, x ∈ Di ⇐⇒ −x ∈ Di, thus

FuncFoldα(f)|D2
i
= PolyFoldα(p)|D2

i
.

Notice that
PolyFoldα(p)|C∗

L,α∩D
2
i
= v|C∗

L,α∩D
2
i

because of (24). Since |C∗
L,α ∩D2

i | ≥ ρ|L2|, we have PolyFoldα(p) = v. Then

FuncFoldα(f)|D2
i
= PolyFoldα(p)|D2

i
= v|D2

i
.

As a result, we have C∗
L,α = Agree(FuncFoldα(f), v) ⊇ D2

i . Definition 11 tells us Agree(FuncFoldα(f), v) ̸=
D2

i , thus,
Agree(FuncFoldα(f), v) ⊋ D2

i .

Lemma 9. For any distinct α1, α2 ∈ BadL(f), there exists a polynomial p(X) ∈ Fq[X] of degree
strictly less than ρ|L| such that

f |PL,α1
∩PL,α2

= p|PL,α1
∩PL,α2

, (35)

that is, f(x) = p(x) for any x ∈ PL,α1 ∩ PL,α2 .
Moreover, if |PL,α1∩PL,α2 | ≥ ρ|L|, polynomial p(X) is uniquely determined. (If |PL,α1∩PL,α2 | <

ρ|L|, the existence of p(X) is obvious.)
Furthermore, we have

f |P ∗
α1

∩P ∗
α2

= p|P ∗
α1

∩P ∗
α2
. (36)

Proof. Notice that if (36) holds, then we have (35) because PL,α1 ∩ PL,α2 ⊆ P ∗
L,α1

∩ P ∗
L,α2

. So we
only prove (36). By Definition 13, there exists a polynomial

v1(X) = ClosestL(δ,FuncFoldα1(f),RS[Fq, L
2, ρ]) ∈ Fq[X]

of degree strictly less than ρ|L|/2 such that FuncFoldα1(f)|C∗
L,α1

= v1|C∗
L,α1

. By Definition 4, we
have

v1(x
2) =

f(x) + f(−x)

2
+ α1 ·

f(x)− f(−x)

2x
(37)

35



for any x ∈ P ∗
L,α1

. Similarly, there exists a polynomial v2(X) ∈ Fq[X] of degree strictly less than
ρ|L|/2 such that FuncFoldα2(f)|C∗

L,α2
= v2|C∗

L,α2
. And we have

v2(x
2) =

f(x) + f(−x)

2
+ α2 ·

f(x)− f(−x)

2x
(38)

for any x ∈ P ∗
L,α2

.
From (37) and (38), we have

v1(x
2)− v2(x

2) =
α1 − α2

2x
· (f(x)− f(−x))

α2v1(x
2)− α1v2(x

2) =
α2 − α1

2
· (f(x) + f(−x))

for any x ∈ P ∗
L,α1

∩ P ∗
L,α2

. That is,
f(x)− f(−x) =

2x

α1 − α2
·
(
v1(x

2)− v2(x
2)
)

f(x) + f(−x) =
2

α2 − α1
·
(
α2v1(x

2)− α1v2(x
2)
)

Therefore, we have

f(x) =
x

α1 − α2
·
(
v1(x

2)− v2(x
2)
)
+

1

α2 − α1
·
(
α2v1(x

2)− α1v2(x
2)
)
. (39)

for any x ∈ P ∗
L,α1

∩ P ∗
L,α2

.
Note that deg(v1), deg(v2) ≤ 1

2 · ρ|L| − 1. From (39), we have

deg(f) ≤ 1 + 2max(deg(v1), deg(v2))

≤ 1 + ρ|L| − 2

= ρ|L| − 1.

If |P ∗
L,α1

∩ P ∗
L,α2

| ≥ ρ|L|, polynomial p(X) is unique, since ρ|L| points uniquely determine a poly-
nomial of degree at most ρ|L| − 1.

Lemma 10. Let α, β1, β2 ∈ BadL(f) be different such that |P ∗
L,α∩P ∗

L,β1
| ≥ ρ|L| and |P ∗

L,α∩P ∗
L,β2

| ≥
ρ|L|. Denote by p1(X) and p2(X) the polynomials of degree at most ρ|L|− 1 decided by f |P ∗

L,α∩P
∗
L,β1

and f |P ∗
L,α∩P

∗
L,β2

(Lemma 9). Then exactly one of the followings holds:

• p1 = p2 and P ∗
L,α ∩ P ∗

L,β1
= P ∗

L,α ∩ P ∗
L,β2

.

• p1 ̸= p2 and |PL,α ∩ PL,β1 ∩ PL,β2 | ≤ |P ∗
L,α ∩ P ∗

L,β1
∩ P ∗

L,β2
| ≤ ρ|L| − 1.

Proof. The proof is the same as Lemma 5.

Run Algorithm 2 on BadL(f) and the corresponding parent sets to give a partition on BadL(f).
Denote the output as A′

1, . . . , A
′
r and α1, . . . , αr. Lemma 3 still holds because our partition strategy

is unchanged and we have |CL,α| = (1− δ)|L2| for any α ∈ BadL(f). So if we can bound the size of
each block Ai, we finish our proof of the theorem.
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Let A ∈ {A′
1, . . . , A

′
r} and α be the corresponding folding point, i.e., for any β ∈ A, we have

|PL,β ∩ PL,α| ≥
(
(1− δ)2 − η′

)
|L| ≥ ρ|L|. Since Lemma 10 holds, The relation R on A \ {α}:

(β1, β2) ∈ R ⇐⇒ p1 = p2,

where p1 and p2 are the low-degree polynomials determined by f |PL,α∩PL,β1
and f |PL,α∩PL,β2

respec-
tively. R is still an equivalence relation and gives a partition on set A \ {α}. Let s be the number
of equivalence classes.

Corollary 7. When δ ≤ 1− 3
√
ρ−η and η′ =

3 3
√
ρη2

2 . Let A ∈ {A′
1, . . . , A

′
r} be a set of folding points

defined in Algorithm 2 and α be the corresponding folding point. Let s be the number of equivalence
classes decided by R on A \ {α}. We have s ≤ 1

3ηρ
2
3
.

Proof. The proof is the same as Corollary 4.

We modify Lemma 6 into the following lemma.

Lemma 11. Let α, β1, . . . , βt ∈ BadL(f) be distinct such that

• P ∗
L,α ∩ P ∗

L,β1
= P ∗

L,α ∩ P ∗
L,β2

= . . . = P ∗
L,α ∩ P ∗

L,βt
, and

• |P ∗
L,α ∩ P ∗

L,β1
| ≥ |PL,α ∩ PL,β1 | ≥ ρ|L|.

Then P ∗
L,β1

, . . . , P ∗
L,βt

form a sunflower with core P ∗
L,α ∩ P ∗

L,β1
. That is, for any distinct i, j ∈

{1, . . . , t}, we have
P ∗
L,βi

∩ P ∗
L,βj

= P ∗
L,α ∩ P ∗

L,β1
.

The proof of Lemma 11 is the same as Lemma 6. We omit the details here. Now we can bound
the number of elements in each equivalence class. The following lemma has the same result as
Corollary 5, but the proof is slightly different.

Corollary 8. Denote by t the upper bound of the number of elements in each equivalence class.
Then we have t ≤ δ

2 |L|.

Proof. Let
[β] = {β1, . . . , βt}

be an equivalence class. According to the definition of equivalent relation, we have P ∗
L,α ∩ P ∗

L,β1
=

. . . = P ∗
L,α∩P ∗

L,βt
. According to Algorithm 2, we have |P ∗

L,α∩P ∗
L,β1

| ≥ (
√
ρ+ η′)|L| > ρ|L|. Lemma

11 tells us
P ∗
L,βi

∩ P ∗
L,βj

= P ∗
L,α ∩ P ∗

L,β1
, 1 ≤ i < j ≤ t.

This implies (
P ∗
L,βi

\ P ∗
L,α

)
∩
(
P ∗
L,βj

\ P ∗
L,α

)
= ∅, 1 ≤ i < j ≤ t.

Thus,

δ|L| ≥ |L \ P ∗
L,α| ≥

∣∣∣∣∣
t⋃

i=1

(
P ∗
L,βi

\ P ∗
L,α

)∣∣∣∣∣ =
t∑

i=1

∣∣P ∗
L,βi

\ P ∗
L,α

∣∣ (40)
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According to Lemma 9, f agrees with a low-degree polynomial p on P ∗
L,α ∩ P ∗

L,βi
. Since x ∈

P ∗
L,α∩P ∗

L,βi
⇐⇒ −x ∈ P ∗

L,α∩P ∗
L,βi

, ∃Di ∈ Dδ,f,RS[Fq ,L,ρ], such that P ∗
L,α∩P ∗

L,βi
⊆ Di. According to

the definition of BadL(f) and P ∗
L,βi

, P ∗
L,βi

̸= Di. Furthermore, the number of elements in P ∗
L,βi

\P ∗
L,α

is even. As a result,
|P ∗

L,βi
\ P ∗

L,α| = |P ∗
L,βi

\ (P ∗
L,α ∩ P ∗

L,βi
)| ≥ 2. (41)

Plugging (41) into (40), we have

δ|L| ≥ 2t ⇒ t ≤ δ

2
|L|.
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