
SoK: On the Physical Security of
UOV-based Signature Schemes

Thomas Aulbach1, Fabio Campos2 and Juliane Krämer1

1 University of Regensburg, Germany
{thomas.aulbach,juliane.kraemer}@ur.de

2 RheinMain University of Applied Sciencess, Wiesbaden, Germany
campos@sopmac.de

Abstract. Multivariate cryptography currently centres mostly around UOV-based
signature schemes: All multivariate round 2 candidates in the selection process for
additional digital signatures by NIST are either UOV itself or close variations of
it: MAYO, QR-UOV, SNOVA, and UOV. Also schemes which have been in the
focus of the multivariate research community, but are broken by now - like Rainbow
and LUOV - are based on UOV. Both UOV and the schemes based on it have been
frequently analyzed regarding their physical security in the course of the NIST process.
However, a comprehensive analysis regarding the physical security of UOV-based
signature schemes is missing.
In this work, we want to bridge this gap and create a comprehensive overview of
physical attacks on UOV and its variants from the second round of NIST’s selection
process for additional post-quantum signature schemes, which just started. First,
we collect all existing side-channel and fault attacks on UOV-based schemes and
transfer them to the current UOV specification. Since UOV was subject to significant
changes over the past few years, e.g., adaptions to the expanded secret key, some
attacks need to be reassessed. Next, we introduce new physical attacks in order to
obtain an overview as complete as possible. We then show how all these attacks
would translate to MAYO, QR-UOV, and SNOVA. To improve the resistance of
UOV-based signature schemes towards physical attacks, we discuss and introduce
dedicated countermeasures. As related result, we observe that certain implementation
decisions, like key compression techniques and randomization choices, also have a large
impact on the physical security, in particular on the effectiveness of the considered
fault attacks. Finally, we provide implementations of UOV and MAYO for the
ARM Cortex-M4 architecture that feature first-order masking and protection against
selected fault attacks. We benchmark the resulting overhead on a NUCLEO-L4R5ZI
board and validate our approach by performing a TVLA on original and protected
subroutines, yielding significantly smaller t-values for the latter.
Keywords: Multivariate Cryptography · Physical Security · Fault Attacks · Side-
channel Analysis · Masking · ARM Cortex-M4 · TVLA

1 Introduction
At the latest since the standards FIPS 203, FIPS 204, and FIPS 205 have been published,
post-quantum cryptography can be considered mature enough for practical use. For

∗Author list in alphabetical order; see https://www.ams.org/profession/leaders/
CultureStatement04.pdf. This work has been supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) under the project SASPIT (ID 16KIS1858). Furthermore, this work was
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number
50550035. Date of this document: 2024-11-06.

mailto:{thomas.aulbach,juliane.kraemer}@ur.de
mailto:campos@sopmac.de
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

practical applications, however, not only standardized schemes are interesting, but also
other post-quantum schemes which offer useful alternatives, for instance, regarding key
sizes or computation times. Depending on the application, schemes that are not (yet)
standardized might be therefore also in demand.

A very promising post-quantum family for signature schemes with interesting properties
is multivariate cryptography. Two multivariate signature schemes, including Rainbow [17],
also advanced to the third round of NIST’s standardization process for post-quantum
cryptography (PQC).1 However, powerful attacks against both schemes showed that these
two schemes should not be standardized [8, 41]. The two attacks, especially the one on
Rainbow by Beullens, brought the unbalanced oil and vinegar (UOV) scheme [33] back
into the interest of the research community. Although UOV had already been published at
the end of the 1990s and is the basis for Rainbow, research concentrated on Rainbow after
its publication because it seemed to be more efficient than UOV both in terms of required
memory and computation time. This is also why UOV has initially not been submitted to
the NIST PQC standardization process. However, although Rainbow is a generalization of
the oil-and-vinegar construction underlying UOV, the sweeping attack on Rainbow does
not apply to UOV. This makes UOV again a very interesting signature scheme since it
withstands cryptanalysis since more than two decades.

UOV in particular and multivariate signature schemes in general feature very small
signatures. Short signatures (and fast verification) were also features of signature schemes
NIST was explicitly interested in for their call for additional post-quantum signatures.2
The goal of this process is to diversify the post-quantum signature standards by selecting
additional general-purpose signature schemes not based on structured lattices and schemes
that are particularly suitable for certain applications. Hence, it was not surprising that ten
out of fourty submissions to the call in 2023 have been based on multivariate cryptography.3
For three of these schemes - 3WISE, DME, and HPPC - rapidly efficient attacks have
been found. The remaining seven schemes all rely on the oil-and-vinegar principle, i.e., are
UOV-based: MAYO [11], PROV [23], QR-UOV [20], SNOVA [43], TUOV [19], UOV [12],
and VOX [34]. Hence, since then, all multivariate signature schemes which are in the focus
of the research community are based on the UOV principle. Very recently, on October
25, 2024 NIST announced the 14 schemes to advance to the next round.4 The share of
multivariate signature schemes even increased slightly, since four of the schemes advanced
to round 2: MAYO, QR-UOV, SNOVA, and UOV.

When cryptographic schemes are used in practical applications, not only their math-
ematical security and efficiency, but also their resistance towards physical attacks is
important. Hence, post-quantum schemes have been analyzed with respect to their phys-
ical security in recent years, and there is also a line of research targeting multivariate
cryptography in general and UOV-based signature schemes in particular.

1.1 State of the Art and Related Work
Starting in 2011 [24], UOV-based signature schemes have been analyzed both with respect
to passive, i.e., side-channel, and active, i.e., fault attacks. There are results that specifically
target UOV [2, 21] or another UOV-based scheme [3, 4, 26, 30, 38, 40], but also publications
that analyze several schemes [24, 29, 32].

However, by reading these publications, one does not get a comprehensive picture of
the state of the art of the physical security of UOV-based signature schemes. This has

1https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-
standardization/round-3-submissions

2https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-
sig-sept-2022.pdf

3https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
4https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures

2

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures

several reasons: 1) Some of the schemes have received more attention from the research
community than others; simply because of their age, but also because of the existence
of a mature implementation. To the best of our knowledge, there was no effort yet to
study the transferability of all attacks to all UOV-based signature schemes. 2) Some of the
attacks [3, 30] targeted schemes that have since been proven to be insecure, like LUOV
and Rainbow. Also for these attacks, it is often unknown if and how they transfer to other
schemes. 3) Both the specifications of the schemes and their implementations have been
subject to various changes and optimizations over time, e.g., the method of generating
compressed public keys introduced in [36]. Hence, it is not even clear if the older attacks
still remain a realistic threat to the current version of the algorithms. 4) Although attacks
are usually published with descriptions of countermeasures, there are limited results about
implemented countermeasures and their overhead, or physically secure implementations of
multivariate schemes in general. This might also be due to the fact that for a long time
there were no common reference implementations that could serve as a basis. 5) Moreover,
since the recent history of multivariate signatures is characterized by major breaks and
fixes, e.g., [8, 18, 41], the research community focused initially on the mathematical security
of the schemes, which is natural and reasonable.

Now, with NIST’s process for standardizing additional digital signature schemes com-
mencing the second round, we have the chance to study all remaining UOV-based schemes
on the basis of consistent specifications and implementations. Our goal is to advance their
resistance against physical attacks by creating an extensive survey of possible attack vectors,
implementing countermeasures, and measuring their overhead directly in comparison to
existing implementations.

1.2 Contribution
In this project, we provide a comprehensive overview on the physical security of today’s
most relevant UOV-based signature schemes, i.e., the schemes MAYO, QR-UOV, SNOVA,
and UOV, that are being analyzed in the second round of NIST’s standardization process for
additional signature schemes. While we analyze all four schemes in this work, we specifically
focus on UOV and MAYO, since they provide the more advanced implementation: The
more practical a physical attack is carried out, the greater its relevance. To practically
perform a physical attack, however, a target implementation is needed. Therefore, UOV and
MAYO can be considered the most relevant signature schemes in the field of multivariate
cryptography with respect to physical attacks, since they are most advanced in terms
of their implementation and both provide an implementation for the ARM Cortex-M4
architecture.

In this work, we provide a complete overview of known side-channel and fault attacks
against UOV-based schemes and derive their core attack vectors. We set out to understand
if further vulnerabilities exist. In finding new vulnerabilities, we concentrate on side-
channel attacks, since so far most attacks are based on faults. We provide a complete
overview for all considered schemes regarding their susceptibility towards physical attacks:
For all attacks, both known and new, we analyze if and how they can be transferred
to all considered schemes. For all attacks, we provide existing and newly developed
countermeasures. Moreover, we describe the effect of certain implementation decisions on
the physical security of the schemes and derive implementation guidelines from this.

For UOV and MAYO, based on existing optimized M4 implementations, we provide
first-order masked implementations for the ARM Cortex-M4 architecture. Additionally,
the implementations include protection against the most relevant fault attacks. We bench-
mark the resulting overhead on a NUCLEO-L4R5ZI board and validate our approach by
performing a test vector leakage assessment (TVLA) on original and protected subroutines,
yielding significantly smaller t-values for the latter. Our implementation is available to the
public at https://github.com/SoK-Psec-UOV-based/code.

3

https://github.com/SoK-Psec-UOV-based/code

1.3 Organization
In Section 2, we discuss the notation used in this work, describe the UOV scheme and the
main differences between UOV and MAYO, QR-UOV, and SNOVA, and explain why an
attack on a UOV-based scheme often leads to full key recovery once a single oil vector is
found. In Sections 3 and 4, we present a comprehensive collection of fault attacks and side-
channel attacks, respectively, on UOV-based signature schemes. We present both known
and new attacks, and analyze if they can be transferred to the current specifications of
UOV, MAYO, QR-UOV, and SNOVA. In Section 5, we describe implementation guidelines
that we derived from the analysis of the attacks. In Section 6, we present implementations
of UOV and MAYO that include protection against selected fault attacks from Section 3
and countermeasures against all side-channel attacks from Section 4, i.e., are first-order
masked. In Section 7, we conclude this work.

2 Background
2.1 Notation
In this paper we describe physical attacks and countermeasures to existing UOV-based
signature schemes, which are all submitted to NIST’s call for additional digital signatures
for the PQC standardization process. Thus, we deem it reasonable to use exactly the
notations and conventions introduced in the specification of the designated signature
scheme. E.g., the discussions on UOV follow the notation given in [12], the findings about
MAYO follow the notation in [11], etc. This requires the reader to be cautious at time,
since the respective specifications might use different names or variables for similar objects.
Nevertheless, we think this is the correct way, since using a fixed notation in here, would
force the reader to adjust the notation on their own when referring to different schemes.

2.2 UOV
Here, we would like to recall UOV in its current form and the most important properties.
We will also link its abstract mathematical description to the steps listed in the pseudo
code.
The main objects in multivariate cryptography are multivariate quadratic maps P : Fn

q →
Fm

q . In general, it is hard to find a solution s ∈ Fn
q to a given target t ∈ Fm

q such that
P(s) = t. This task is also known as the MQ Problem. It can be solved in polynomial
time in the very under- or overdetermined case, i.e. m ≥ n(n + 1)/2 or n ≥ m(m + 1),
but is believed to be exponentially hard even for large scale quantum computers if n ∼ m.
By installing a secret trapdoor into the public map P, one can render this task efficiently
solvable and construct a signature scheme thereof. In UOV this trapdoor is a m-dimensional
linear subspace O ⊂ Fn

q - the oil space - with the property P(o) = 0 for all o ∈ O. The
message µ, together with a random salt, is mapped to a target value t in the codomain
Fm

q using a cryptographic hash function H, i.e t = H(µ||salt). Computing a signature
boils down to finding a preimage s ∈ Fn

q with P (s) = t. To this end one can deploy the
following method, if knowledge of the oil space is provided. First, one picks a vector v at
random and then solves the equation

P(v + o) = P(v) + P(o) + P ′(v, o) = t (1)

for o ∈ O. The map P ′ : Fn
q × Fn

q → Fm
q defined by the equation above, is called the

differential of P and is bilinear and symmetric [6]. Viewing the oil vector o as a linear
combination of its m basis vectors given in O ensures P(o) = 0m and shows clearly that

P ′(v, o) = t− P(v) (2)

4

UOV.CompactKeyGen() // csk = (seedsk, seedpk)

1 : seedsk ← {0, 1}sk_seed_len

2 : seedpk ← {0, 1}pk_seed_len

3 : O← Expandsk(seedsk)

4 : {P(1)
i , P(2)

i }i∈[m] ← ExpandP (seedpk)
5 : for j = i, . . . , m do

6 : P(3)
i ← Upper(−O⊤P(1)

i O−O⊤P(2)
i)

7 : cpk ← (seedpk, {P(3)
i }i∈[m])

8 : csk ← (seedpk, seedsk)
9 : return (cpk, csk)

Figure 1: UOV key generation algorithm

is a system of m linear equations in m variables. If there exists a solution, it can be
computed efficiently, if not, one samples a new v and tries again. Together, the vinegar
and oil vector yield a preimage s = v + o to the target t, which constitutes the core of the
signature.

2.2.1 Key Generation

Within key generation we need to generate the m-dimensional oil space O and a multivariate
quadratic map P : Fn

q → Fm
q that vanishes on O. The map P is a sequence of m

quadratic polynomials p1(x), . . . , pm(x) in n variables. The linear and constant part of
the polynomials is omitted, and the coefficients of the quadratic monomials can be stored
in an upper triangular matrix Pi, such that evaluating the polynomial pi at a value a can
be realized by computing pi(a) = a⊤Pia.

The oil space is chosen to be the space spanned by the rows of a matrix Ō = (O⊤ Im),
where O ∈ F(n−m)×m

q is sampled uniformly at random. Thus, to guarantee that the
quadratic polynomials pi vanish on O, i.e. o⊤Pio = 0 for all o ∈ O, one can set the term

(O⊤ Im)
(

P(1)
i P(2)

i

0 P(3)
i

)(
O
Im

)
= O⊤P(1)

i O + O⊤P(2)
i + P(3)

i

to zero. This is achieved by sampling P(1)
i ∈ F(n−m)×(n−m)

q (upper triangular) and
P(2)

i ∈ F(n−m)×m
q uniformly at random and setting P(3)

i accordingly to

P(3)
i = Upper(−O⊤P(1)

i O−O⊤P(2)
i).

The described procedure is exactly the key generation algorithm of UOV, which is depicted
in Figure 1. Hereby, O and P(1)

i , P(2)
i can be expanded from a private or public seed,

respectively.

2.2.2 Secret Key Expansion

As indicated above, it is necessary to solve Equation 2 with respect to o during signing.
The i-th component of P ′(v, o) is computed by v⊤(Pi + P⊤

i)o and o is written as a linear
combination of its basis vectors in Ō, where the coefficients x are the variables we need to
solve for. Thus, we can prepare the term (Pi +P⊤

i)o by setting Si = (P(1)
i +P(1)⊤

i)O+P(2)
i

and store it in the expanded secret key esk, since it is independent from the message µ.
The coefficients in P(1)

i are necessary to compute P(v), so they are also added to esk. The
pseudo code of the secret key expansion is presented in Figure 2.

5

UOV.ExpandSK(csk) // csk = (seedsk, seedpk)

1 : O← Expandsk(seedsk)

2 : {P(1)
i , P(2)

i }i∈[m] ← ExpandP (seedpk)
3 : for j = i, . . . , m do

4 : Si ← (P(1)
i + P(1)⊤

i)O + P(2)
i

5 : esk ← (seedsk, O, {P(1)
i , Si}i∈[m])

6 : return esk

Figure 2: Algorithm that expands csk to esk in UOV

UOV.Sign(esk, µ) // esk = (seedsk, O, {P(1)
i

, Si}i∈[m])

1 : salt← {0, 1}salt_len

2 : t← H(µ||salt) // t ∈ Fm
q

3 : for ctr = 0, . . . , 255 do
4 : v← Expandv(µ||salt||seedsk||ctr) // v ∈ Fn−m

q

5 : L← 0m×m

6 : for i = 1, . . . , m do
7 : Set i-th row of L to v⊤Si

8 : if L is invertible then

9 : y← [v⊤P(1)
i v]i∈[m] // y ∈ Fm

q

10 : Solve Lx = t− y for x
11 : s← [v, 0m] + Ōx // s ∈ Fn

q

12 : σ ← (s, salt)
13 : return σ

14 : return 0

Figure 3: Algorithm that signs a message µ in UOV

2.2.3 Signing

The signing algorithm is shown in Figure 3. After generating the salt and deriving the
target value t, the vinegar vector v is sampled. Note, that the last m entries of v are set
to zero, which enables a more efficient implementation. With v at hand, one computes the
remaining part of P ′(v, o) in Line 7, which represents the linear part of the system given
in Line 10. In order to evaluate y = P(v) in Line 9, only the submatrix P(1)

i is necessary,
since the last entries of v were chosen to be zero. Solving the derived linear system reveals
the coefficients x of the oil vector o = Ōx = [Ox, x]. Finally, the sum of the vinegar and
oil vector yield the signature s = [v, 0m] + Ōx.

2.2.4 Public Key Expansion and Verification

To verify that the signer really found a preimage s under the public map P of the target
vector t, one needs to expand the public coefficients in P(1)

i and P(2)
i from the seed and

check if P(s) = t really holds. We omit the pseudo code of these two functionalities, since
we do not focus on them in the main part of this work.

6

2.2.5 Variants

We have to differentiate between the variants uov-classic, uov-pkc and uov-pkc+skc.
In uov-pkc+skc the secret key is stored in a compact way csk, such that the function
UOV.ExpandSK is called before signing with UOV.Sign and has to be protected as well.
In uov-classic and uov-pkc UOV.ExpandSK is part of the key gen, since the secret key
is stored in an expanded manner.

One considerable drawback of UOV are its large public keys, due to the amount of
coefficients needed to define the public map P . Even in the variants with compressed public
keys uov-pkc+skc and uov-pkc, where a large fraction of the coefficients is expanded from
a short seed, the part P(3)

i still needs to be stored explicitly and contains around m3/2
coefficients in Fq. Here, one factor m comes from the number of polynomials m in the
public map P, but the remaining factor m2/2 depends on the dimension of the oil space
dim(O) = m, which are chosen to be equal in UOV.

2.3 MAYO, QR-UOV and SNOVA
In [7], Beullens presented MAYO, a signature scheme that also employs the oil-and-vinegar
principle but reduces the dimension of the oil space from m to o drastically, which in turn
reduces the number of coefficients in P(3)

i to mo2/2 and eventually shrinks down the public
key size. The problem is that one can not simply decrease the dimension of the oil space
from m to o, with o≪ m and continue as before, since the system P ′(v, o) = t−P(v) in
Equation (2) becomes a system of m linear equations in o variables and bears no solution
with high probability. Thus an adaption to the signing and verification procedure was
necessary and the following solution was suggested: The public key map P is stretched
into a larger whipped map P∗ : Fkn

q → Fm
q , such that it accepts k input vectors s ∈ Fn

q .
This is realized by setting

P∗(s1, . . . , sk) :=
k∑

i=1
EiiP(si) +

∑
1≤i<j≤k

EijP ′(si, sj), (3)

where the matrices Eij ∈ Fm×m
q are fixed system parameters with the property that all

their non-trivial linear combinations have rank m. The map P∗ vanishes on the subspace
Ok = {(o1, . . . , ok)| with oi ∈ O for all i ∈ [k]} of dimension ko. This gives back some
degrees of freedom when looking for a solution in the new domain Fkn

q , i.e. the system
obtained from

P∗(v1 + o1, . . . , vk + ok) = t (4)

after randomly sampling and inserting (v1, . . . , vk) ∈ Fkn
q , is a system of m linear equations

in ko variables. Consequently, if the parameters need are chosen such that ko > m, it
possible to sample signatures s = (s1, . . . , sk) = (v1 + o1, . . . , vk + ok) similar as before,
despite the small dimension of the initial oil space O.

Another attempt in reducing the public key size of UOV is made by QR-UOV. It
is very similar to UOV, except that elements of a quotient ring Fq[x]/(f) are employed,
instead of just finite field elements Fq. Let l be a positive integer and f ∈ Fq[x]. Then
any element g of the quotient ring Fq[x]/(f) uniquely defines a l × l matrix Φf

g over Fq

such that (1, x, . . . , xl−1) · Φf
g = (g, xg, . . . , xl−1g). The mapping from g to its polynomial

matrix Φf
g is an injective ring homomorphism from Fq[x]/(f) to Fl×l

q and every element
of Af := {Φf

g ∈ Fl×l
q |g,∈ Fq[x]/(f)} can be represented by only l elements in Fq. For the

construction of QR-UOV, the central maps Fi and public maps Pi are set to be composed
of such matrices. This additional structure allows that not every element of these maps
are stored since l2 entries of Φf

g can be represented by just l coefficients of g.

7

SNOVA also work with quotient rings, but apply even more structure to the central
and public maps. The central map F = [F1, . . . , Fm] : Rn → Rm is defined by

Fi =
l2∑

α=1
Aα ·

(∑
(j,k)∈Ω

Xj(Qα1Fi,jkQα1)Xk

)
·Bα,

where the Fi,jk are randomly chosen from R, Aα and Bα are invertible elements randomly
chosen from R, and Qα1, Qα2 are invertible matrices randomly chosen from Fq[S]. Here
R is the matrix ring F(l×l)

q and Fq[S] is a commutative symmetric subring of R. Like in
UOV, the public matrices are then set to fulfill the equation Pi = Fi ◦ T and therefore, are
of similar type than the central matrices.
For more details about MAYO, QR-UOV, and SNOVA we refer to the respective specifica-
tions given in [11, 20, 43].

2.4 One Vinegar or One Oil Vector Is (In Many Cases) Sufficient for
Complete Key Recovery

With respect to signature schemes, it is always an interesting task to determine the amount
of data that is necessary to forge signatures, especially from an adversarial point of view.
When the secret key is just a seed, as in MAYO, it might become infeasible to recover this
seed with side-channel attacks. But it still is useful to obtain information about the values
of the expanded seed. Conversely, in uov-classic the secret key is of enormous size and
only a fraction of it suffices to forge signatures. However, for UOV-based signature schemes,
there is a pretty and common answer to this problem: knowledge of the employed oil space
O allows to efficiently generate signatures. Even more, there are algebraic methods, that
allow to recover the entire space in polynomial time as soon as one or several (depending
on the concrete dimensions) oil vectors o ∈ O are found.
Regarding MAYO, it was already clear from the description in [7, Section 4.1] that one oil
vector is enough to efficiently recover O. The case for UOV was treated in [2] and [35],
where again only a single oil vector is needed, since all existing UOV parameter sets fulfill
the equation n−m ≤ 2m.

In [35], Pebereau also elaborated on the very unbalanced case, i.e when n > 3m. In
this scenario, there might be several oil vectors needed for polynomial time key recovery,
namely β of them, where β is the smallest integer such that n − βm ≤ 2m holds. This
becomes interesting, since some parameter sets suggested by QR-UOV and SNOVA lie in
the very unbalanced case with n ≥ 6m or even up to n ≥ 9m. In these cases, the security
of the scheme might already be compromised when one or two oil vectors are leaked, but
attackers are only able to forge signatures in polynomial time, when they get their hands
on β of them.

However, if it is possible to reveal one oil vector by means of a physical attack, repeating
it on several signing procedures will probably leak more of them. Thus, the attack strategy
remains the same, even in the very unbalanced case. Most of the time obtaining an
vinegar vector v is equally strong, since the corresponding oil vector o can be recovered by
subtracting it from the signature s = v + o. Consequently, every time one of them is used
in a computation, it has to be protected against physical attacks.

3 Fault Attacks on UOV-Based Signatures
In this section, we study the vulnerability of UOV-based signature schemes towards fault
attacks. We investigate existing fault attacks on UOV-based signature schemes and provide
a more complete catalog of vulnerabilities by also presenting new attacks. Our analysis
results in a list of functions that need to be protected in order to achieve an implementation

8

that is more resistant to fault attacks.
We first analyze the vulnerability of UOV, as this scheme builds the base for all remaining
signature schemes analyzed in this work. Subsequently, we explain how these attacks
translate to the MAYO signature scheme and its current Cortex M4 implementation.
Finally, we consider the case of the remaining UOV-based signatures, QR-UOV and
SNOVA. We expect these rather young schemes to be subject to various algorithmical
changes and code modifications in the future, thus the findings of this work can be seen as
a starting point towards their physical security and as a general estimation whether the
respective scheme might be vulnerable to this kind of attack.

To provide a better overview of the existing, transferred, and new vulnerabilities, we
summarize the findings of this section in Table 1.

Table 1: Overview of existing and new fault attacks on UOV, MAYO, QR-UOV, and
SNOVA. Regarding the feasibility of the attacks, we refer to the specifications submitted
to the NIST call for additional signatures in mid-2023. When there are differences
between the three UOV-variants uov-classic, uov-pkc and uov-pkc+skc, deterministic
and randomized MAYO or the variants SNOVA-esk and SNOVA-ssk, we list them individually
in the given order. With ✓ we state that an attack is possible, while ✗ means the opposite.
By ⋆ we denote that an attack is generally possible, but the technical execution is more
difficult than in the initially presented attack.

Attack description Source Initially Feasible in Target
for current version

Fix vinegar vector
Rainbow UOV: ✓ UOV.Sign Line 4

[3, 4, 24] UOV MAYO: ✓ [11] Alg.8 Line 16,18
[26, 29, 40] MAYO QR-UOV: ✓ [20] Alg.2 Line 10

SNOVA: ✓ [43] Alg.11 Line 8

[30] LUOV

UOV: ✓ | ✓ | ⋆
Rowhammer on MAYO: ⋆ uncompressed
oil space O QR-UOV: ⋆ secret key in memory

SNOVA: ✓ | ⋆

[21, 24, 29]

UOV: ✓ | ✓ | ⋆
Bit flip on stored Rainbow MAYO: ✓ | ✗ uncompressed
secret matrices UOV QR-UOV: ⋆ secret key in memory

SNOVA: ✗

[38] MAYO

UOV: ✓ UOV.Sign Line 11
Prevent addition MAYO: ✓ [11] Alg.8 Line 45
of oil and vinegar QR-UOV: ✗ [20] Alg.2 Line 18

SNOVA: ✗ [43] Alg.11 Line 14

This work UOV

UOV: ✗ UOV.Sign Line 7
Disturb linear MAYO: ✓ | ✗ [11] Alg.8 Line 27,32
system setup QR-UOV: ✗ [20] Alg.2 Line 11,12

SNOVA: ✗ [43] Alg.11 Line 9,10

3.1 Existing Attacks

In the following, we discuss fault attacks against UOV-based schemes that are present in
the literature. If the attack was initially not developed for UOV itself, we try to give a
detailed analysis of its applicability to UOV.

9

3.1.1 Fault injection to fix the vinegar vector.

There has been a series of works [3, 4, 26, 29, 40] studying the effectiveness of an instruction
skip in Line 4 of Figure 3. These works set the number of necessary faulted signatures
to m = n − v, which lies in the range from several dozens to hundreds, depending on
the security level. Using the findings in [2], [35] and [28] it is now clear that one faulted
signature is enough for efficient key-recovery. This can be obtained by the following
observations.

If the instruction skip is applied successfully, it leads to the reusage of the vinegar
variables that are still stored in v from a previous signing process. Denote the unfaulty
previous signature by s and the faulty signature by s̃. The oil vectors o and õ, which are
computed during the respective signature generation and added to the vinegar vector v,
are different, but both are elements of the oilspace O. Thus, we have

s̃− s = (v + õ)− (v− o) = õ− o ∈ O,

since O is a linear subspace of Fn
q . With a secret oil vector at hand, full key recovery can

be achieved in a matter of seconds.
In [26], the authors present two attacks - an absorption skipping and absorption abort

attack - directly on the SHAKE256 function that is used to derive the vinegar vectors.
These lead to an predictable output of the sampling and therefore reveal the vinegar
vectors vi. They do not make any assumptions about the memory initialization of the
device. Since they present this attack specifically on MAYO, we will resume to this in
Section 3.3.

3.1.2 RowHammer to alter a value in O.

In [30], the authors present a Rowhammer attack to cause bit flips in the secret trans-
formation T in LUOV and show how this can be exploited to recover individual bits of
T. Repeated execution of the fault attack leads to partial knowledge of the secret T, one
bit for every faulty signature. Once enough key bits of T are recovered, the attacker can
apply algebraic analysis techniques to increase the efficiency of the attack and limit the
number of faulty signatures that need to be obtained for a full key recovery.
Briefly summarized, the QuantumHammer attack works as follows. The secret data is
stored in the DRAMs in memory cells. There is a certain threshold of the voltage level
that determines whether a capacitor represents a binary one or zero. If one manages to
activate neighboring rows rapidly, this can cause variations in the voltage level of the
victim cells due to induction. When a certain threshold is passed, this results in a bit-flip
from 0 to 1 or vice versa. Since the attacker does not know at which entry of the secret
transformation T the bit flip occurred, he needs to apply a bit-tracing algorithm to locate
the faulted spot and learn the initial value of the flipped bit. The bit flip in T causes an
error in the last part of the signing algorithm in LUOV, where the (vinegar part of the)
signature is finally computed bys1

...
sv

 =

t11 · · · t1m

...
tv1 · · · tvm

×
 o1

...
om

+

v1
...

vv

 . (5)

Thus, a bit flip of the entry tij leads to a faulty signature entry s̃i, where the erroneous
entry s̃i differs from the correct one si by oj . The bit-tracing algorithm now tries to correct
the faulted signature by successively adding the values ok for k ∈ {1, . . . , m} to the entries
sl for l ∈ {1, . . . , v}. Once the signature is corrected, the position (i, j) of the induced bit
flip is successfully located. This works particularly well, since the entries tij in LUOV
are binary, while the values ol are elements of a larger field, depending on the parameter

10

choice, e.g., of F28 . Therefore, the chances that different bit flips in T , say at position tij

and tik, cause the same error in s are rather small, since then oj = ok needs to hold. For
more details, please see [30, Section 3.3].

This attack can be transferred to UOV, since the targeted operation in Equation (5)
similarly appears in the signing algorithm of UOV, see Line 11 of Figure 3. Here, the
oilspace O takes the role of the linear transformation T and they behave equivalently.
Since the second block of Ō = (O, Im) is the identity, the values in x ∈ Fm

q are visible to
any attacker as the last m entries of the signature s, analogically to the vector o in LUOV.

However, when it comes to the bit-tracing algorithm we need to be more careful,
since in UOV the entries ti,j are not binary anymore, but elements of F28 as well. Let
si =

∑m
l=1 til · ol + vi be the entry of the unfaulted signature vector. Introducing a single

bit flip to tij results in an faulted entry s̃i =
∑m

l=1 til · ol + vi + fij · oj , with fij ∈ F28

having hamming weight 1. Now, if we have fij · oj = fik · ok, for two different indices j ̸= k,
this implies a bit flip corresponding to fij results in the same faulted signature entry s̃i as
a bit flip corresponding to fik would. The bit-tracing algorithm is still able to correct the
faulted signature, but would not be able to decide if the deviation results from fij or fik

and thus, could not uniquely determine the position of the introduced bit flip.

3.1.3 Bit flip in matrices of esk.

See [21, 24, 29] for this attack. It is shown that changing a single coefficient of Fi leads to
reduction of the UOV instance to a smaller one. Recent UOV implementations, including
the NIST submission [12], are not working with the central maps Fi anymore, but include
the public matrices P(1)

i and auxiliary matrices Si = (P(1)
i + P(1)⊤

i)O + P(2)
i in their secret

key. However, this is merely a change in notation, since the former blocks F(1)
i and F(2)

i of
Fi were defined just like that. The analysis [21, 24, 29] can be applied to the new setting
accordingly and a single altered coefficient in P(1)

i or Si, leads to faulted signature s′,
such that P(s′) and t indeed deviate in exactly one entry. This difference than allows
conclusions about the used oil space O.

3.1.4 Fault injection to skip the addition of the vinegar and oil parts.

This fault attack targets the addition in Line 11 of Figure 3, where the vinegar and oil
part are added to receive the signature s = v + o. It highly depends on the chosen
implementation, but if an attacker is able to exclude the vinegar part by an instruction
skip, this is threatening. If there is a way to avoid the contribution of v, this directly
reveals s = o in the signature, which enables key recovery. Currently, this is implemented
via a memcpy call that copies v to s, so this line needs to be protected.

Remark 1. Sampling the vinegar vector v is randomized by including the salt as input to
the expand function in Line 4 of Figure 3. If we would deal with a deterministic approach
instead, where the signing procedure generates the same vinegar vector v and outputs
identical signatures when a message is signed twice, an adversary could exploit the faulted
signature s′ = v as follows: Subtracting the un-faulted signature s of the same message
s− s′ = v + Ox− v = Ox = o reveals an oil vector.
A similar strategy that also only works in the deterministic setting, is to disturb the
computation of the oil vector during signing. If one is able to enforce the computation of a
different solution x′ to the linear system, then this again reveals an oil vector. Subtracting
the two signatures s′ − s = v + Ox′ − v−Ox = O(x− x′) would cancel out the identical
vinegar values and reveal an non-zero oil vector, since x′ ̸= x. A similar strategy is applied
by the following fault attack.

11

3.2 New Attack

In addition to the attacks gathered in the section above, we identified the following spots,
where exploits by an adversary are conceivable and countermeasures should be applied.

3.2.1 Fault injection to disturb linear system setup (skip the new assignment of L).

Disturbing the linear system Lx = t− y leads to a different solution x′, which might lead
to key recovery in the deterministic setting, as explained in Remark 1. Thus, skipping Line
5 of Figure 3 and some or all of the loop in Line 6-7. Hereby, it is important that not a
single row of L remains all zero due to the fault attack. This would imply that the system
is not solvable, which results in a second iteration of the signing loop, where v and L are
refreshed. However, this strategy is only successful when the signature is deterministic
and thus, current implementations are not vulnerable.

3.3 Transferability to MAYO

The functionalities of UOV are a subset of those needed to implement MAYO. Therefore,
it seems natural to conclude that the listed fault attacks for UOV easily transfer to
MAYO. Although this is more or less true, there are some minutiae to bear in mind. 1)
The applicability of attacks that target the secret key in memory depends on the format
(compressed vs. uncompressed) of the stored keys. MAYO always uses compressed keys,
which makes MAYO resistant towards such attacks, although classic UOV is vulnerable.
2) Some attacks depend on the randomization choice of the scheme which might deviate
to UOV. More details on these two aspects can be found in Sections 5.1 and 5.2. 3) While
UOV works with only one pair of oil and vinegar vectors, there are k of them in MAYO.
Nevertheless, a single known oil vector is enough to perform key recovery in polynomial
time. Thus, certain attacks might become technically easier in MAYO, since there are k
targets available, while only one of them needs to be recovered.

3.3.1 Fault injection to fix one or more vinegar vectors.

This fault attack can be easily transferred to MAYO. Current implementations clear
the vinegar vectors at the end of the signing procedure as a security measure to avoid
reusing attacks. However, in MAYO one all-zero vinegar vector will not lead to an
unsolvable system in Line 37 of MAYO.Sign. This is due to the fact that multiple matrices
Mi[j, :] = v⊤

i Lj contribute to the linear part of the system A. Consequently, having some
vi set to zero will not necessarily result in a non-invertible system and another iteration of
the signing loop. Thus, by inserting an instruction skip or loop abort in Line 16 or Line 18
such that one or more (but not all) vinegar vectors remain zero makes the corresponding
oil vector oi visible in the signature. Furthermore, the authors of [26] present three attacks
on this subroutine, in total. Two of them target the absorption phase of the shake256
internally and the other one forces the unknown input to be zero. In all cases the attacker
can predict the outcome of the sampling process which reveals one or more vinegar vectors.
Rightfully predicting randomly sampled intermediate values during the signing phase, by
directly attacking the shake256 function, is disastrous in many cryptographic primitives,
as is also shown, e.g., in [25]. Thus, we only consider the latter attack as scheme-specific
to MAYO, which should be treated with dedicated countermeasures. Instead of zeroing
buffers with sensitive information at the end of signing, overwriting these buffers with
random data is suggested in [26]. Countermeasures of the aforementioned attacks are
discussed in more detail in Section 5.4.

12

3.3.2 RowHammer to alter a value in O.

In MAYO the secret key only contains a seed seedsk. The MAYO.API.sign algorithm
(Algorithm 10 in [11]) employs the two functionalities MAYO.ExpandSK (Algorithm 6 in
[11]) and MAYO.Sign (Algorithm 8 in [11]) to derive the expanded secret key esk from
the seed and sign the message using esk. The secret oil space O, which is the target of the
original fault attack, is therefore not a part of the compressed secret key csk Thus, it is
not stored in memory permanently and less accessible for bit-flip attempts. Furthermore,
the addressed variable is zeroed at the end of the signing procedure as a security measure.
This is not depicted in the pseudo code, but realized in the submitted implementations [11].
Thus we do not deem the attack given in [30] to be technically feasible in this scenario.

However, in case an adversary could manage to insert a bit-flip during signing, while
O is stored as part of esk in the memory, a similar description as in Section 3.1 would
apply, since the oil space takes an equivalent role as in UOV.

3.3.3 Bit flip in matrices of esk.

Let s′ be the faulted signature, that is generated when a single bit-flip is applied to either
of the matrices {P(1)

i , Si} in the expanded secret key, The crucial part of this fault attack
against UOV is that P(s) and t only deviate in one entry. In contrast, the whipped public
map P∗(s1, ..., sk) =

∑k
i=1 EiiP(si) +

∑
1≤i<j≤k EijP ′(si, sj) in MAYO is of different

structure. The
(

k
2
)
-many emulsifier maps Eij and the accumulation of all the transformed

terms ensures that P∗(s′) and t deviate in most of the entries, even if only a single bit-flip
was applied. We confirmed this statement with simulations, where we manually change a
single bit in one of the P(1)

i or Si. Thus, the introduced fault attack can not be transferred
to MAYO, at least not in a straightforward way.
However, for the deterministic variant the situation is different. The bit flips lead to
altered solution vectors x′ = (x′

1, . . . , x′
k). This most likely results in an invalid signature

s′ = (s′
1, . . . , s′

k) = (v1 + Ox′
1, . . . , vk + Ox′

k). But if we compare that to the correct
signature s = (s1, . . . , sk) = (v1 + Ox1, . . . , vk + Oxk) of the same message, we see
that the vinegar part is identical in the deterministic scenario. Consequently, the term
si − s′

i = Oxi + Ox′
i would reveal an oil vector, since Ox′

i ∈ O.

3.3.4 Fault injection to skip the addition of the vinegar and oil parts.

In general, this fault attack also applies to MAYO. In the MAYO signing procedure [11,
Alg.2, Line 45] the sum of k pairs of vinegar and oil vectors is computed. In the current
implementation this is achieved by adding both components into another variable s
via mat_add(vi, Ox, s + i * param_n, ..., 1);. Regarding the fault attack, this
approach is more secure than first copying vi to s, and then adding Ox to it, as it is done
in UOV. However, before the actual addition happens, the vinegar part gets reassigned
via vi = Vdec + i * (param_n - param_o);. If this instruction can be skipped and
vi remains empty or assigned with a certain constant value, then an oil vector can be
recovered with the approach given in Remark 1.

3.3.5 Fault injection to disturb linear system setup (skip the new assignment of A).

There are plenty of options to introduce faults during the linear system set up in [11, Alg.2]
between Line 22 and 33, which might change the solution vectors x’i and therefore also
the resulting oil vectors o’i. In the non-randomized setting this could be exploited, similar
to the description given in Remark 1.

13

3.4 Transferability to QR-UOV and SNOVA
In this section we discuss if and how the fault attacks in Table 1 can be transferred to
QR-UOV and SNOVA. Both schemes employ the quotient ring structure, but this does
not have a large impact on the mentioned attacks.

3.4.1 Fault injection to fix the vinegar vector.

This attack works analogously for QR-UOV and SNOVA. As described in Section 3.1,
the crucial part here is that the signature is composed of an oil and a vinegar vector.
Then, the repeated usage of two identical vinegar vectors makes them canceling each
other out, when those signatures are subtracted from each other. In QR-UOV and
SNOVA this last step of mixing the oil and vinegar terms is represented by applying the
secret linear transformation s = S−1(y1, . . . , yv, yv+1, . . . , yn) in [20, Alg.2, Line 18] or
sig = [T](X0, . . . , Xv−1, X̃0, . . . , X̃o−1) in [43, Alg.11, Line 14], where the first v entries
represent the vinegar and the last o entries represent the oil variables. Due to the block
matrix structure of S and T, with an identity and zero block in the first column, the
vinegar variables contribute unaltered to the signature.

3.4.2 RowHammer to alter a value in S or T .

In general, this attack works as initially described for LUOV or adapted to UOV. However,
QR-UOV and the variant SNOVA-ssk use compressed secret keys. Consequently, the
linear transformations S and T , which are only part of the expanded secret keys, are not
permanently stored in memory at a specific location. Thus, from a technical point of view,
the execution of the fault attack becomes way more difficult. The time slot where the
fault can be induced successfully is reduced to signing time and furthermore, the resulting
bit-flip is not permanent, since the secret key will be expanded again in the next signing
procedure. However, regarding SNOVA-esk the attack would work equivalently to the
original one on LUOV.

3.4.3 Bit flip in matrices of esk.

The transfer of this fault attack is again non-trivial. Considering the notation of QR-UOV
and SNOVA, there are now the matrices Fi,1, Fi,1 and F 11

i , F 12
i , F 21

i under attack. It is
not the quotient-ring structure that determines if a bit-flip in one of these matrices yields
useful information for the attacker, but the structure of the public map. In the verification
of QR-UOV, the signature is evaluated with the bare public map P, similar to UOV.
Therefore, we again are in the case that P(sig′) and t only differ in a single entry, which
is exploitable.

SNOVA, in contrast, has the whipping structure of MAYO, as pointed out by Beullens
in [9]. In Corollary 2 he states that the SNOVA public map can be written as P(U) =∑l−1

j=0
∑l−1

k=0 Ej,kB(uj , uk), where the matrices Ej,k have a block diagonal structure with
m identical blocks of size F(l2×l2)

q on the diagonal. This goes well with the result of our
simulations, where a bit-flip introduced to one of the matrices F 11

i , F 12
i , or F 21

i , caused
the vectors P(sig) and t to deviate in l2 entries. Thus, the mentioned fault attack can not
be applied to SNOVA, at least not without profound modification.

3.4.4 Fault injection to skip the addition of the vinegar and oil parts.

QR-UOV and SNOVA are both randomized schemes. As a result, the only way to mount
this attack is to stop the vinegar variables - and only them - from contributing to the
signature (see Remark 1).

14

We analyzed the submitted reference implementation from QR-UOV and came to
the conclusion that this is not possible with a first-order fault attack. The signature is
computed via sig->s[i] = Fql_sub(vineger[i], t);, where the vinegar part vineger
is not altered or reassigned beforehand and the oil part is encoded in t. Skipping this
instruction would detain both parts from appearing in s.

In SNOVA the case is a little different. They first copy the vinegar entry to the
signature gf16m_clone(signature...[index], X...[index]); and afterwards add the
oil entry to it. However, since this is done entry-wise, aborting the loop or similar strategies
would not be successful, as they also prevent the remaining oil entries from contributing.
Thus, both schemes do not seem to be vulnerable regarding that attack. Remarkably, this
is not due to the quotient ring structure, but to their current implementation details.

3.4.5 Fault injection to disturb linear system setup.

As concluded in Section 3.2, this attack only works in the deterministic setting. Since
both QR-UOV and SNOVA do not expand the vinegar variables from a fixed seed, but
generate them randomly, the given attack is not feasible.

4 Side-Channel Attacks on UOV-Based Signatures
In this section, we investigate the security of UOV-based signature schemes in terms of
side-channel attacks. Similar to the previous section, we first recall and transfer existing
attacks to UOV. With the goal of being as exhaustive as possible, we then consider
further potential vulnerabilities. The resulting attacks are subsequently adapted to MAYO,
QR-UOV, and SNOVA. Table 2 presents an overview of this section.

4.1 Existing Attacks
The following attacks against UOV or a familiar scheme are present in the literature. Both
existing attacks target the UOV.Sign routine shown in Figure 3 and focus on subroutines
where secret data is multiplied with public values.

4.1.1 Power analysis of the evaluation of the vinegar vector.

The target of this side-channel attack is the computation y = [v⊤P(1)
i v]i∈[m] given in

Line 9 of Figure 3. The vinegar vector v is multiplied from both sides to m matrices P(1)
i

containing public values. This marks an evident entrance door for side channel attacks via
power analysis. In [2] the authors showed how to exploit this vulnerability with a profiling
attack, that gets along with only a single attack trace. In the profiling phase, the entries vi

of v are set by hand to certain known values. Then, the considered function is called and
power traces are gathered - labeled with the respective value in vi as reference. During the
attack phase, the power trace of the execution of y = [v⊤P(1)

i v]i∈[m] with the unknown
(and secret) vector v is recorded and compared to the reference traces. The attack trace is
likely to have the highest correlation to the reference trace where the identical value vi

is used. In this manner, the entries of v are revealed, which in turn exposes a secret oil
vector o and enables complete secret key recovery.

4.1.2 Power analysis of the linear subspace matrix multiplication.

The authors of [32] present a differential power analysis (DPA) on the multiplication of
the linear transformation T with the intermediate vector x, that is the solution to the
derived linear system. In our notation here, the transformation T is replaced by the basis
Ō of the linear subspace O. Therefore, this attack can be seen as a power analysis of

15

Table 2: Overview of existing and new side-channel attacks on UOV, MAYO, QR-UOV, and
SNOVA. Regarding the feasibility of the attacks, we refer to the specifications submitted
to the NIST call for additional signatures in mid-2023. When there is a difference between
deterministic and randomized MAYO, we list them individually in the given order. With
✓ we state that an attack is possible. By ⋆ we denote that an attack is generally possible,
but the technical execution is more difficult than in the initially presented attack.

Description: Source Initially Feasible in Target
Power analysis ... for

[2] UOV

UOV: ✓ UOV.Sign Line 9
of vinegar MAYO: ✓ [11] Alg.8 Line 30
evaluation QR-UOV: ✓ [20] Alg.2 Line 12

SNOVA: ✓ [43] Alg.8 Line 3,4

[32]

UOV: ⋆ UOV.Sign Line 11
of secret matrix RainbowMAYO: ✓ | ⋆ [11] Alg.8 Line 44
multiplication UOV QR-UOV: ⋆ [20] Alg.2 Line 18

SNOVA: ⋆ [43] Alg.11 Line 14

This work UOV

UOV: ✓ UOV.Sign Line 7
of linear MAYO: ✓ [11] Alg.8 Line 27,32
system setup QR-UOV: ✓ [20] Alg.2 Line 11

SNOVA: ✓ [43] Alg.9 Line 3,4,14,26

This work UOV

UOV: ✓ UOV.ExpandSK Line 4
of secret MAYO: ✓ [11] Alg.6 Line 17
key expansion QR-UOV: ✓ [20] Alg.2 Line 7

SNOVA: ✓ [43] Alg.6 Line 6,7

This work UOV

UOV: ✓ UOV.CompactKeyGen Line 6
during key MAYO: ✓ [11] Alg.5 Line 16
generation QR-UOV: ✓ [20] Alg.1 Line 5

SNOVA: ✓ [43] Alg.5 Line 5

the matrix vector multiplication in Line 11 of Figure 3. The attack takes advantage of
the fact that some entries of the vector x are part of the signature, since they are not
altered by the identity block of Ō, resp. T . In more detail, we have Ōx = [Ox, x] and
s = [v, 0m] + [Ox, x]. Thus, during the computation of Ox, the secret entries in O are
multiplied with known values and are consequently vulnerable to DPA.

The authors in [32] require a few dozen of repeated computations of Ox to recover
the entries in O by using correlation coefficients. At the time they performed this attack
on Rainbow and UOV, these schemes used a deterministic approach. This allowed the
authors to make the valid assumption that x will not change when the same message is
signed repeatedly. In the current randomized implementation, the solution vector x will
change with every signing procedure, since every time a new vinegar vector v is sampled,
leading to a completely different linear system Lx = t− y.

Hence, the attack will not work in the presented form and needs to be adapted to the
new setting. However, we still believe the considered function Ox needs to be protected,
since sensitive data is multiplied with public values, which could be exploited with more
evolved analysis methods, like profiling or machine learning techniques.

4.2 New Attacks
Power analysis attacks are possible on various other spots of the UOV functionalities. In
UOV.ExpandSK and UOV.CompactKeyGen there is a bulk of matrix multiplications that

16

involve the secret matrix O and public values stored in P(1)
i and P(2)

i , which is clearly
vulnerable. Regarding the algorithm UOV.Sign, we additionally identified the following
operation where caution is required.

4.2.1 Power analysis of the computation of L.

In Line 7 of Figure 3 the linear part L of the system of equations in Line 10 is computed.
Hereby, the i-th row of L is given by v⊤Si. Both components involved are unknown to an
attacker, which makes it harder to mount a successful power analysis attack than in the
considered scenarios above, where one component is public. However, the matrices Si are
part of the expanded secret key, and, consequently, remain constant over various signing
procedures with the same secret key. If Hamming weight information about one of the
factors and their product is leaked, we have seen that blind side-channel attacks [16, 37]
can exploit this and reveal information about the considered factors v and Si.

4.2.2 Power analysis of the computation of Si during secret key expansion.

The multiplication in Line 4 of Figure 2 could be analyzed similarly to the side-channel
attack against Line 9 of Figure 3. This is also critical and needs to be countered. In the
variant uov-pkc+skc compressed secret keys are used and the mentioned procedure is part
of the signing process. Regarding the other two variants uov and uov-pkc, where the Si

are already part of the key, this functionality is attributed to key generation.

4.2.3 Power analysis of the computation of P
(3)
i during key generation.

The same holds for the matrix multiplications during key generation, depicted in Line 6 of
Figure 1. If an adversary is able to retrieve side-channel information here, these operations
also need to be protected, following the same reasoning.

4.3 Transferability to MAYO, QR-UOV, and SNOVA
The task of theoretically transferring the discussed side-channel attacks to MAYO, QR-
UOV, and SNOVA is considerably less complicated than it was for the fault attacks. On
one hand this is due to the fact that certain implementation choices, like the utilization
of compressed keys, have a smaller impact on the effectiveness of side-channel attacks.
On the other hand, also the scheme-specific properties are less critical here, since all four
schemes contain the typical UOV-like work flow: Generate the vinegar vector(s), compute
the constant and linear part of the system of equations, solve the linear system via Gauss,
multiply the solution with the oil space to receive corresponding oil vector(s), and finally
add the vinegar and oil part together. Thus, the vulnerable subroutines listed in Table 2
need to be executed some way or the other, and whether the scheme uses elements of the
field F24 or F28 or of a quotient ring Fq[x]/(f), like QR-UOV and SNOVA, is not decisive
for the theoretical applicability of the attack, since they also boil down to multiplications
over a huge amount of field elements.

The practical execution of the attack, in contrast, will depend heavily on the chosen
implementation. In [10], the MAYO team announced that they will change their spec-
ification from a bit- to a nibble-sliced representation for their keys etc. Among other
things, they present an efficient implementation of MAYO on the Arm Cortex-M4, where
the costly matrix multiplications are based on the Method of the Four Russians. This
method deviates from previous approaches and to the best of our knowledge, there are no
reported side-channel attacks against such implementations in the literature. To perform
such a side-channel analysis could pose some interesting challenges and therefore, provides
a charming open research questions.

17

For the remaining schemes QR-UOV and SNOVA, there are currently no Arm Cortex-
M4 implementations available, so a concrete analysis of their side-channel security cannot
yet be performed. Nevertheless, we hope Table 2 with the respective code lines can provide
a good orientation about the vulnerable functions, which need to be treated with caution.

5 Implementation Guidelines
In this section, we present implementation guidelines and dedicated countermeasures to
protect implementations of UOV-based signature schemes against the physical attacks
presented in this work.

During our research, we identified several theoretical attack vectors - both existing
and new ones - that do not lead to physical attacks in practice since the current UOV
and MAYO implementations are not vulnerable against them. However, we realized that
the implementation decisions that prevent these attacks do not seem to be motivated by
preventing physical attacks, primarily. As an example, the utilization of compressed keys
first and foremost serves the purpose of reducing key sizes, but at the same time it prevents
fault attacks that alter the secret key in memory (cf. Sections 3.3 and 5.2). Hence, we
do not consider it correct to term these parts of the implementations countermeasures,
in contrast to concrete modifications of implementations with the aim of making the
implementations more resistant towards physical attacks. Still, we consider it important
to list also these implementation decisions in this section to emphasize their importance
for physical attack security, which is why we term this section implementation guidelines
instead of countermeasures.

5.1 Randomized Signatures
From a physical security point of view, it is desirable to utilize a randomized signature
generation process. For the considered UOV implementation this is already the case. In
Line 1 of Figure 3 the salt is generated randomly. This salt (among others) contributes
as input to the Hash and Expand functions that are used to derive the target vector t ∈ Fm

q

and the vinegar vector v ∈ Fn−m
q . Thus, if the same message is signed twice, the generated

signatures (and most of the intermediate values) are different. In contrast, the considered
MAYO implementation offers both options - random and deterministic - that determine
how the salt is derived in Line 10 of the signing algorithm. If the signature computation is
deterministic, this is beneficial for an attacker. Subtracting signatures of identical messages
leads to vinegar parts canceling each other out, possibly revealing non-zero oil vectors, if
one of the two latter fault attacks in Table 1 is applied correctly. Thus, we recommend
the usage of the randomized version to prevent both of these attacks. Furthermore, this
helps to mitigate side-channel analysis with the goal of obtaining the sampled vinegar
vectors. If the vinegar vectors vary between different signing processes, it will be much
harder to apply differential power analysis methods. Nevertheless, we suggest masking as
an additional countermeasure, see Section 5.5.

5.2 Compressed Keys
In addition to the obvious advantage of reduced key sizes, the use of compressed keys is
also beneficial with respect to physical security. If the secret key only consists of a seed,
there are less options to introduce exploitable faults while it is stored in memory. Recently,
[21] and [30] showed that bit flips introduced to an uncompressed secret key can lead to
serious leakage. Even when the precise spot of occurrence is unknown at first, there are
methods to localize the bit flips and use them to achieve full key recovery. Moreover,

18

[30] practically executed the attack on LUOV, emphasizing its relevance for UOV-based
schemes.

Using compressed keys prevents both fault attacks described in this work that target
the secret key in memory, namely the Rowhammer attack on the secret matrix O and the
one introducing bit flips on the secret matrices.

5.3 Counter RowHammer Fault Attack
However, there are scenarios where key compression techniques are undesirable, e.g., in
order to enable a faster signing process. Here, we introduce a method to prevent the
RowHammer fault attack on the secret subspace O for such scenarios. To be precise, it
is not the secret subspace O which is stored in memory, but a certain basis of it. Right
now this basis is represented in standard form, such that the identity part Im×m can be
omitted and only the remaining O ∈ Mm×(n−m)(Fq) is stored. This method is memory
efficient, but the standard form for a given oil space is unique, hence fixed. This enables
the bit tracing algorithm used in the RowHammer attack.

Instead one could compute m random - though linearly independent - vectors of O and
store this modified basis instead. During signing, we would load the modified basis from
memory, compute its standard form and continue signing like usual. Afterwards we again
transform the basis to a random one by building random linear combinations. This way,
the explicit form of the secret key, i.e., the basis of the subspace O, would change with
every signature generation, while the secret information remains the same.

The resulting overhead is obvious. On one hand, the size of the matrix to be stored
increases from Mm×(n−m)(Fq) to Mm×n(Fq). At first glance, this seems like a considerable
drawback, but the fraction of the expanded secret key that is consumed by O or its
enlarged version is rather small compared to the matrices Si that are also part of the secret
key. Thus, the expanded key size would only increase from 238 to 240 KB in uov-Ip.

On the other hand, the effort to compute the standard form at the beginning of the
signature generation and the randomized basis at the end, will increase the signing time
slightly.

5.4 Modify Vinegar Variable after Usage
The fault attack that leads to re-using or zeroing (most of) the vinegar variables belongs to
the most prominent ones in literature, see, e.g., [3, 24, 29, 40]. It leads to valid signatures,
since the actual signing process is unaltered by the fault. Only the vinegar variables are
forced to values that are either known by the attacker, or have been used before. The part
of signing that computes the actual solution to the equation P(v + o) = t is executed
correctly and therefore finds a correct signature. Thus, unlike many fault attacks, it can
not be detected by a validity check.

Instead, one actively needs to ensure that the sampled vinegar variables are sound
and vary across consecutive signing procedures. To this end, we suggest the following
modification. After the sampled vinegar variables are used in Line 7 and 9 of Figure 3, we
add a vector with random values to it, i.e., v += r. Since the vinegar vector v is added to
the signature s via s += v towards the end of the signing process, the component r needs
to be removed from the derived signature at the end by appending the instruction s += r.

Obviously this countermeasure could be circumvented with two additional instruction
skips, which would lead to a third-order fault attack altogether. An attacker who is
able to introduce three independent faults, however, could probably attack a signature
algorithm in a simpler way and is therefore not considered a relevant scenario in this
work. Irrespective of this, depending on how the additional random value r is chosen,
this countermeasure can even be circumvented more easily: When r is designed to be a
new variable with randomly sampled values, the assignment of the random value to the

19

variable r might be skipped, resulting in r = 0. In this case, the countermeasure would
be completely circumvented by a single instruction skip, leading to a second-order fault
attack altogether, which can be considered to be realistic [14]. To avoid such second-order
fault attack, we instead suggest to not initialize r with randomly sampled values, but to
use already existing intermediate values of the signing procedure and directly add them to
v. For instance, we can make use of the unknown entries of the vectors r := v⊤ ·Si for any
i ∈ {1, . . . , m}, that are used to compose the linear system which is solved during signing.

This countermeasure can be seen as an approach to randomize the data stored in v after
its usage, which is also suggested by [26]. Since v is added to the signature s subsequently,
this furthermore employs the idea of infective computing [22]. The component r is a secret
error, which needs to be removed finally. If an injected fault skips the addition of this error,
the output of the algorithm will be incorrect and can not be exploited by an attacker.

5.5 Masking against Power Analysis
The listed side-channel attacks in Section 4 all follow a similar concept, namely the
power analysis of certain matrix vector multiplications, that ultimately boil down to field
multiplications in Fq. The field is rather small, e.g., q ∈ {24, 28} in UOV or q = 24 in
MAYO, and 32-bit processors, like the ARM Cortex-M family, treat multiple field elements
at once. Even though this hampers Hamming weight analysis of the secret or vulnerable
values, it has been shown that DPAs [32] or profiling attacks [2] are possible.

The most common countermeasure to prevent power analysis attacks is masking.
Currently, to the best of our knowledge there are no masked implementations of UOV-
based signature schemes available. In this work, we bridge this gap by providing a first
masked version of UOV and MAYO. The goal is to protect the vulnerable intermediate
values, mainly the oil and vinegar vectors, whenever they are used, and thereby protect
against the existing and newly developed attacks in Section 4.1 and Section 4.2. Since
the majority of the utilized functions in signing (and key generation) is linear, they are
straightforward to mask. In the following, we provide an overview of the affected lines
in the pseudo code and the measures we implemented to mitigate their vulnerability.
Therefore, we refer to the pseudocode of UOV, especially the signing algorithm in Figure
3.

• The original implementation uses shake256 [1] to generate the vinegar vector v ∈ Fn
q .

In fact it only samples n − m entries of v, as the last m entries are set to zero.
Instead, we propose to use a masked version masked_shake256 [5] to sample two
(additive) shares of these entries, that will be used for computations later on and are
combined at the end of the signing procedure.

• Line 7, compute v⊤Si, the linear part of the system of linear equations: In this
step we compute the coefficients of the linear part of the system of equations that
needs to be solved during signing. Hereby, the vinegar vector v is multiplied with
numerous matrices Si, which are part of the (expanded) secret key and do not
change in subsequent signature generations. Each resulting vector represents a row
in the matrix L that constitutes the linear system. The matrices Si are defined by
Si ← (P(1)

i + P(1)⊤
i)O + P(2)

i (see Line 4 of Figure 2) and contain information about
the secret oil space O. Therefore, we split them randomly into two additive shares.
Since the function v⊤ ·Si is linear in both components and the vinegar vector already
arrives in two shares, we need to compute it four times, one for each combination of
the respective two components.

• Line 9, compute v⊤P(1)
i v, which contributes to the constant part of the system of

linear equations: In [2] the authors perform a profiled side-channel attack against

20

this operation. Since the values in P(1)
i are public, they can take those matrices as

given in the public key and collect profiling traces of this operation for various known
values of v. After the profiling phase has finished, only a single attack trace of this
operation with the used vinegar vector v is needed to recover its actual value. Thus,
masking the vector v is not an option, since an attacker could just recover the value
of both shares with this kind of single trace attack. Instead, we suggest to mask
the values given in P(1)

i . To collect meaningful profiling traces it is crucial that an
attacker knows the exact value of P(1)

i . By masking the entries of these matrices, we
prohibit this strategy and render the collected profiling traces useless. Consequently,
we compute y0 = v⊤P(1)

i,0 v and y1 = v⊤P(1)
i,1 v for the two shares P(1)

i,0 and P(1)
i,1 and

continue with the additive shares y0 and y1, which contribute to the constant part
of the system of linear equations.

• Line 10, solve Lx = t − y for x: At this point we already arrive with two shares
y0 and y1 of y. Since we do not want an attacker to get track of the value y, we
suggest to continue with these two shares and compute two solutions x0 and x1 of
the linear systems Lx0 = t−y0 and Lx1 = −y1. Their sum x = x0 + x1 gives us the
coefficients of the oil vector, since Lx = L(x0 +x1) = Lx0 +Lx1 = t−y0−y1 = t−y
just like in the original implementation.

• Line 11, add together vinegar and oil vector: First, we compute two shares o0 and
o1 of the oil vector. To this end, we split the oil space randomly into two additive
shares O0 and O1. Now, we can compute o0 = O0x and o1 = O1x. We do not need
to work with the shares of x anymore, since x itself is leaked as part of the signature
to the public anyway. Finally, to receive the signature s, we add up all the shares
s = v0 + v1 + o0 + o1 .

We implemented these countermeasures as described above and measured their overhead.
The practical results are presented in Section 6. As one could expect, masking the functions
in Line 7 and 9 is responsible for the majority of the total overhead induced by masking
UOV. These functions are quite expensive themselves and the vast amount of randombytes
that is required to generate the shares of the involved matrices also contributes significantly
to the increased number of clock cycles, as detailed in Section 6.

6 Practical Results
This section firstly presents the performance evaluation of our protected implementations
for UOV and MAYO. As there is currently no Cortex-M4 implementation of QR-UOV and
SNOVA publicly available, the practical part of this work focus on UOV and MAYO. In this
section, we further provide experimental results in terms of side-channel resistance. For all
evaluation purposes, we use existing, unprotected implementations for NIST security level I
of both schemes as a basis. More precisely, our implementations are based on the respective
optimized UOV (ov-Ip-pkc/m4f) and MAYO (mayo1/m4f) Cortex-M4 implementation
available within the pqm4 [27] library.

To increase compatibility, all changes were applied within the respective signing function
itself, i.e. the signature of the function remains unchanged. Note that our findings (cf.
Section 5) and implemented measures can be easily applied to other parameter sets.

6.1 Performance Results
In this section we present some performance figures of our first-order masked implementation
of UOV and MAYO.

21

Table 3: Memory requirements for each implementation. Code, data and BSS size listed
are in bytes, stack usage in 210 byte (i.e., KiB).

Scheme Impl. Library size Stack usage
Code Data BSS keygen sign verify

ov-Ip-pkc m4f 80 006 0 0 15.2 5.1 2.5
m4f-flash 80 062 0 0 401.6 5.1 2.5
masked-m4f-flash 213 076 0 0 401.6 264.4 2.5

MAYO1 m4f 16 513 8 0 72.7 110.8 430.3
masked-m4f 17 630 8 0 72.7 217.2 430.3

For benchmarking, we target the ST NUCLEO-L4R5ZI board featuring an Arm Cortex-
M4F core with 640 KB of RAM and 2 MB of flash memory. All randomness required for
masking is generated using the internal hardware random number generator available on
that board. We used the arm-none-eabi-gcc compiler (version 13.3.1) with the compiler
flags -O3 -std=gnu99 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-
d16 for compilation.

For the targeted parameter set (ov-Ip) of UOV, the combined size of the expanded
secret key and the expanded public key is 516 KB. Due to the 640 KB of RAM, both
expanded keys fit into the RAM. However, in order to obtain the required space for
masking within the 640 KB of RAM on the ST NUCLEO-L4R5ZI board, we applied
the approach [13, 15] of writing the keys to flash memory. Table 3 presents the memory
requirements of our protected implementations compared to the existing versions. In the
case of UOV, it shows 1) the increase of stack usage during the key generation due to
writing keys to the flash memory, 2) the additional stack usage when signing due to our
implemented masking measures, and 3) the increase of code size required for masking.
Whereas in the case of MAYO, the additional memory requirement is significantly lower, as
the size of the RAM is sufficient for masking without writing the keys to the flash memory.

Table 4 compares the performance of protected and unprotected versions of UOV.
Thereby, we differentiate between certain subroutines (cf. Section 5) to clarify the cost
of each measure. In addition to the masked implementation, we implemented blinding
as an alternative protecting method for two suitable and most costly subroutines based
on the following approach. The functions v⊤Si and v⊤Piv are linear with respect to
the used matrices, so blinding works in a straightforward way. We multiply them with
random values ri ∈ Fq\{0} beforehand and nullify its effect by multiplying the result with
r−1

i . Note that we use different random values ri for each of the matrices Si and Pi for
i ∈ {1, . . . , m}.

This approach is less powerful than masking every single entry of these matrices, but it
still ensures that the values in Si do not remain identical over various signing procedures
and the values in Pi are not open to public anymore. Table 4 shows that 1) the masked
version is about 5× slower than the unprotected implementation and 2) blinding is in total
almost 2× slower than masking.

Table 5 compares the performance of protected and unprotected versions of MAYO.
Similar to UOV, we present the performance results of each implemented subroutine. The
present figures show that the overhead of masking is in total smaller than 2×. Although
we followed the same approach for both schemes, the slowdown for UOV is significantly
larger compared to MAYO.

22

Table 4: Cortex-M4F cycle counts for our protected implementations in comparison to the
optimized unprotected implementation of ov-Ip-pkc. Note that the implementation with
blinding only differs from the masked implementation in two subroutines.

Pseudo code Subroutine UOV [this work] [this work]
unprotected masking with blinding

Line 4 Sample vinegar vectors 13 455 132 363 132 363SHAKE256

Line 7 Linear part of system 1 083 775 6 816 989 12 069 951
L = v⊤ · Si

Line 9 Constant part of system 903 390 3 721 735 8 359 110
y = v⊤ · Pi · v

Line 10 Solve linear system 435 349 872 866 872 866Solve Lx = t− y for x

Line 11 Add oil and vinegar 26 633 109 454 109 454
s = v + Ox

CM of Modify vinegar after usage - 768 768Sec. 5.4 v = v + r

Total cycle counts for signing 2 478 708 11 840 264 21 916 475

6.2 Side-channel evaluation
In this section, we present evaluation results for potential side-channel leakages of an
unprotected compared to our masked implementation of UOV. All experiments regarding
leakage evaluation were carried out using the ChipWhisperer tool chain [31, 42] in Python
(version 3.9.5) and performed on a ChipWhisperer-Lite board with an STM32F405 target
board featuring an Arm Cortex-M4 core with 192 KB of RAM and 1 MB of flash memory.

Since all vulnerable subroutines (cf. Table 4), with the exception of SHAKE, boil
down to multiplications, we focus our efforts on the most costly function gfmat_prod
which multiplies a vector v with matrices Si. Therefore, our implementation for side-
channel evaluation only provides the gfmat_prod function and all required subroutines for
generating traces.

For leakage evaluation, we applied the commonly used Welch’s t-test methodology [39].
More precisely, we used the fixed vs. random (FvR) approach. Thereby, we multiply a
random vinegar vector with fixed matrices or random matrices, resp. In this case, these
matrices represent part of the (extended) secret key.

As shown in Figure 4a, the unmasked implementation is highly leaking by presenting
very high t-values in the range of about (100,−100), confirming the threat induced by the
leakages. In contrast, the t-values for the masked implementation depicted in Figure 4b
are all in the required range of (−4.5, 4.5).

7 Conclusion
In this work we conducted an extensive literature review of all existing physical attacks on
UOV-based signature schemes and identified further attack vectors. Since all analyzed
schemes share a large amount of operations that are contributed to the oil-and-vinegar
principle, the theoretical idea behind the attacks transfers really well across the schemes,
both for side-channel and fault attacks. Even the utilization of the quotient ring structure
in QR-UOV and SNOVA had no impact on the transferability. The technical realization,

23

Table 5: Cortex-M4F cycle counts for various subroutines within the expanding and signing
procedure in comparison to the unprotected implementation of MAYO1.

Pseudo code Subroutine MAYO [this work]
unprotected masking

[11] Alg.6 Line 17
Secret key expansion 2 165 338 5 343 609
Li = (P (1)

i + P
(1)T
i)O + P

(2)
i

[11] Alg.8 Line 16
Sample vinegar vectors & randomizer 40 775 394 917SHAKE256

[11] Alg.8 Line 27
Linear part of system 524 900 1 782 457
Mi[j, :] = vT

i Lj

[11] Alg.8 Line 30
Constant part of system 1 969 234 3 782 901
u = vT

i P
(1)
a vi

[11] Alg.8 Line 38
Solve linear system 928 381 1 858 051Solve Ax = y for x

[11] Alg.8 Line 45
Add vinegar and oil terms 105 209 188 488
si = (vi + Oxi) || xi

Total cycle counts for signing 9 122 185 16 783 809

however, depends highly on the given implementation.
We conclude that certain implementation choices, namely the utilization of compressed

keys and employing a randomized signing process, has a positive impact on the resistance
against fault attacks. The remaining fault attacks can be covered by dedicated counter-
measures, with only a small overhead. Note, that we only covered first-order fault attacks
in this work.

However, we see a greater risk with regard to side-channel attacks. In every scheme
we analyzed, sensitive values are multiplied with huge amounts of public data, which
represents a major gateway for power analysis methods. This observation is confirmed
by our TVLA conducted on unprotected multiplication routines of UOV. To this end, we
present a first-order masked version of both UOV and MAYO on the basis of their existing
optimized Cortex-M4 implementations available within the pqm4 library. The results are
supposed to serve as a first assessment of the overhead one can expect when applying
masking countermeasures to UOV-based schemes. We observed that the produced overhead
is smaller for MAYO than for UOV and identified two reasons for that. First, the amount of
random bytes that are necessary to split the matrices into two shares is considerably smaller
in MAYO, due to smaller parameters. Second, there are some subroutines in MAYO, i.e.,
the multiplication with public emulsifier maps and the accumulation of these products,
where we concluded masking is not required. Thus, the share of sensitive operations is a
little higher in UOV than in MAYO.

24

0 2500 5000 7500 10000 12500 15000 17500 20000

time [samples]

−100

−50

0

50

t-
va

lu
e

(a) Unmasked

0 2500 5000 7500 10000 12500 15000 17500 20000

time [samples]

−4

−2

0

2

4

t-
va

lu
e

(b) Masked

Figure 4: Evaluation of the t-test after 10,000 traces for 20 000 samples traced during the
computation of the gfmat_prod function. The range of the t-values is significantly lower
for the masked (b) than for the unmasked version (a). The red lines in (b) indicate the
threshold for side-channel leakage.

References
[1] FIPS PUB 202: SHA-3 standard: Permutation-based hash and extendable-output

functions. Federal Information Processing Standards Publication 202. National Insti-
tute of Standards and Technology, U.S. Department of Commerce, 5 2015.

[2] Thomas Aulbach, Fabio Campos, Juliane Krämer, Simona Samardjiska, and Marc
Stöttinger. Separating oil and vinegar with a single trace side-channel assisted Kipnis-
Shamir attack on UOV. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):221–
245, 2023.

[3] Thomas Aulbach, Tobias Kovats, Juliane Krämer, and Soundes Marzougui. Recovering
rainbow’s secret key with a first-order fault attack. In Lejla Batina and Joan Daemen,
editors, Progress in Cryptology - AFRICACRYPT 2022, pages 348–368, Cham, 2022.
Springer Nature Switzerland.

[4] Thomas Aulbach, Soundes Marzougui, Jean-Pierre Seifert, and Vincent Quentin
Ulitzsch. Mayo or may-not: Exploring implementation security of the post-quantum
signature scheme mayo against physical attacks. Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2024.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Building power
analysis resistant implementations of Keccak. Second SHA-3 Candidate Conference,
2010.

[6] Ward Beullens. Improved cryptanalysis of UOV and rainbow. In Anne Canteaut
and François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT

25

2021 - 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part
I, volume 12696 of Lecture Notes in Computer Science, pages 348–373. Springer, 2021.

[7] Ward Beullens. MAYO: practical post-quantum signatures from oil-and-vinegar maps.
In Riham AlTawy and Andreas Hülsing, editors, Selected Areas in Cryptography -
28th International Conference, SAC 2021, Virtual Event, September 29 - October 1,
2021, Revised Selected Papers, volume 13203 of Lecture Notes in Computer Science,
pages 355–376. Springer, 2021.

[8] Ward Beullens. Breaking rainbow takes a weekend on a laptop. In Yevgeniy Dodis
and Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd
Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA,
USA, August 15-18, 2022, Proceedings, Part II, volume 13508 of Lecture Notes in
Computer Science, pages 464–479. Springer, 2022.

[9] Ward Beullens. Improved cryptanalysis of SNOVA. IACR Cryptol. ePrint Arch., page
1297, 2024.

[10] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J. Kannwischer.
Nibbling MAYO: optimized implementations for AVX2 and cortex-m4. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2024(2):252–275, 2024.

[11] Ward Beullens, Fabio Campos, Sophía Celi, Basil Hess, and Matthias J. Kannwis-
cher. MAYO. Technical report, National Institute of Standards and Technol-
ogy, 2023. Available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures.

[12] Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias J. Kannwischer,
Jacques Patarin, Bo-Yuan Peng, Dieter Schmidt, Cheng-Jhih Shih, Chengdong Tao,
and Bo-Yin Yang. UOV. Technical report, National Institute of Standards and
Technology, 2023. Available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

[13] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer, Bo-Yuan
Peng, Cheng-Jhih Shih, and Bo-Yin Yang. Oil and vinegar: Modern parameters and
implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):321–365,
2023.

[14] Johannes Blömer, Ricardo Gomes da Silva, Peter Günther, Juliane Krämer, and
Jean-Pierre Seifert. A practical second-order fault attack against a real-world pairing
implementation. In FDTC, pages 123–136. IEEE Computer Society, 2014.

[15] Ming-Shing Chen and Tung Chou. Classic McEliece on the ARM cortex-m4. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):125–148, 2021.

[16] Christophe Clavier and Léo Reynaud. Improved blind side-channel analysis by
exploitation of joint distributions of leakages. In Wieland Fischer and Naofumi Homma,
editors, CHES 2017, volume 10529 of LNCS, pages 24–44. Springer, Heidelberg,
September 2017.

[17] Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques Patarin, Albrecht
Petzoldt, Dieter Schmidt, and Bo-Yin Yang. Rainbow. Technical report, National
Institute of Standards and Technology, 2020. Available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

26

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

[18] Jintai Ding, Joshua Deaton, Vishakha, and Bo-Yin Yang. The nested subset dif-
ferential attack - A practical direct attack against LUOV which forges a signature
within 210 minutes. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 329–347. Springer, Heidel-
berg, October 2021.

[19] Jintai Ding, Boru Gong, Hao Guo, Xiaoou He, Yi Jin, Yuansheng Pan, Dieter
Schmidt, Chengdong Tao, Danli Xie, and Ziyu Yang, Bo-Yin Zhao. TUOV. Technical
report, National Institute of Standards and Technology, 2023. Available at https:
//csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

[20] Hiroki Furue, Yasuhiko Ikematsu, Fumitaka Hoshino, Tsuyoshi Takagi, Kan Yasuda,
Toshiyuki Miyazawa, Tsunekazu Saito, and Akira Nagai. QR-UOV. Technical
report, National Institute of Standards and Technology, 2023. Available at https:
//csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

[21] Hiroki Furue, Yutaro Kiyomura, Tatsuya Nagasawa, and Tsuyoshi Takagi. A new
fault attack on uov multivariate signature scheme. In International Conference on
Post-Quantum Cryptography, pages 124–143. Springer, 2022.

[22] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective computation
and dummy rounds: Fault protection for block ciphers without check-before-output.
In Alejandro Hevia and Gregory Neven, editors, LATINCRYPT 2012, volume 7533
of LNCS, pages 305–321. Springer, Heidelberg, October 2012.

[23] Louis Goubin, Benoît Cogliati, Jean-Charles Faugére, Pierre-Alain Fouque, Robin
Larrieu, Gilles Macario-Rat, Brice Minaud, and Jacques Patarin. PROV. Technical
report, National Institute of Standards and Technology, 2023. Available at https:
//csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

[24] Yasufumi Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai. General fault attacks
on multivariate public key cryptosystems. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, pages 1–18. Springer,
Heidelberg, November / December 2011.

[25] Sönke Jendral. A single trace fault injection attack on hedged crystals-dilithium.
IACR Cryptol. ePrint Arch., page 238, 2024.

[26] Sönke Jendral and Elena Dubrova. MAYO key recovery by fixing vinegar seeds. IACR
Cryptol. ePrint Arch., page 1550, 2024.

[27] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4:
Testing and benchmarking NIST PQC on ARM cortex-m4. IACR Cryptol. ePrint
Arch., page 844, 2019.

[28] Namhun Koo and Kyung-Ah Shim. Security analysis of reusing vinegar values in
UOV signature scheme. IEEE Access, 12:137412–137417, 2024.

[29] Juliane Krämer and Mirjam Loiero. Fault attacks on UOV and Rainbow. In Ilia
Polian and Marc Stöttinger, editors, COSADE 2019, volume 11421 of LNCS, pages
193–214. Springer, Heidelberg, April 2019.

[30] Koksal Mus, Saad Islam, and Berk Sunar. QuantumHammer: A practical hybrid
attack on the LUOV signature scheme. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1071–1084. ACM Press,
November 2020.

27

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

[31] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-source platform
for hardware embedded security research. In Emmanuel Prouff, editor, Constructive
Side-Channel Analysis and Secure Design, pages 243–260, Cham, 2014. Springer
International Publishing.

[32] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. Side-channel
attacks on post-quantum signature schemes based on multivariate quadratic equations
- rainbow and UOV -. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):500–523,
2018.

[33] Jacques Patarin. The oil and vinegar signature scheme, 1997.

[34] Jacques Patarin, Benoît Cogliati, Jean-Charles Faugére, Pierre-Alain Fouque, Louis
Goubin, Robin Larrieu, Gilles Macario-Rat, and Brice Minaud. VOX. Technical
report, National Institute of Standards and Technology, 2023. Available at https:
//csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

[35] Pierre Pébereau. One vector to rule them all: Key recovery from one vector in uov
schemes. In International Conference on Post-Quantum Cryptography, pages 92–108.
Springer, 2024.

[36] Albrecht Petzoldt, Enrico Thomae, Stanislav Bulygin, and Christopher Wolf. Small
public keys and fast verification for ultivariate uadratic public key systems. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages
475–490. Springer, 2011.

[37] Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, and Anupam Chattopadhyay. Machine
learning based blind side-channel attacks on pqc-based kems-a case study of kyber kem.
In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD),
pages 01–07. IEEE, 2023.

[38] Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane Krämer, and Jean-
Pierre Seifert. Hamayo: A fault-tolerant reconfigurable hardware implementation
of the MAYO signature scheme. In COSADE, volume 14595 of Lecture Notes in
Computer Science, pages 240–259. Springer, 2024.

[39] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear
roadmap for side-channel evaluations. In Tim Güneysu and Helena Handschuh, editors,
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of
Lecture Notes in Computer Science, pages 495–513. Springer, 2015.

[40] Kyung-Ah Shim and Namhun Koo. Algebraic fault analysis of uov and rainbow with
the leakage of random vinegar values. IEEE Transactions on Information Forensics
and Security, 15:2429–2439, 2020.

[41] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. Efficient key recovery for all
HFE signature variants. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part I, volume 12825 of LNCS, pages 70–93, Virtual Event, August 2021. Springer,
Heidelberg.

[42] NewAE Technology. Repository of ChipWhisperer tool chain - commit a9527b5, 2023.
https://github.com/newaetech/chipwhisperer.

[43] Lih-Chung Wang, Chun-Yen Chou, Jintai Ding, Yen-Liang Kuan, Ming-Siou Li, Bo-
Shu Tseng, Po-En Tseng, and Chia-Chun Wang. SNOVA. Technical report, National
Institute of Standards and Technology, 2023. Available at https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures.

28

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://github.com/newaetech/chipwhisperer
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

	Introduction
	State of the Art and Related Work
	Contribution
	Organization

	Background
	Notation
	UOV
	MAYO, QR-UOV and SNOVA
	One Vinegar or One Oil Vector Is (In Many Cases) Sufficient for Complete Key Recovery

	Fault Attacks on UOV-Based Signatures
	Existing Attacks
	New Attack
	Transferability to MAYO
	Transferability to QR-UOV and SNOVA

	Side-Channel Attacks on UOV-Based Signatures
	Existing Attacks
	New Attacks
	Transferability to MAYO, QR-UOV, and SNOVA

	Implementation Guidelines
	Randomized Signatures
	Compressed Keys
	Counter RowHammer Fault Attack
	Modify Vinegar Variable after Usage
	Masking against Power Analysis

	Practical Results
	Performance Results
	Side-channel evaluation

	Conclusion
	References

