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Abstract

We put forth Oblivious State Preparation (OSP) as a cryptographic primitive that unifies
techniques developed in the context of a quantum server interacting with a classical client.
OSP allows a classical polynomial-time sender to input a choice of one out of two public observ-
ables, and a quantum polynomial-time receiver to recover an eigenstate of the corresponding
observable – while keeping the sender’s choice hidden from any malicious receiver.

We obtain the following results:

• The existence of (plain) trapdoor claw-free functions implies OSP, and the existence of
dual-mode trapdoor claw-free functions implies round-optimal (two-round) OSP.

• OSP implies the existence of proofs of quantumness, test of a qubit, blind classical dele-
gation of quantum computation, and classical verification of quantum computation.

• Two-round OSP implies quantum money with classical communication, classically-verifiable
position verification, and (additionally assuming classical FHE with log-depth decryp-
tion) quantum FHE.

Thus, the OSP abstraction helps separate the cryptographic layer from the information-theoretic
layer when building cryptosystems across classical and quantum participants. Indeed, several
of the aforementioned applications were previously only known via tailored LWE-based con-
structions, whereas our OSP-based constructions yield new results from a wider variety of
assumptions, including hard problems on cryptographic group actions.

Finally, towards understanding the minimal hardness assumptions required to realize OSP,
we prove the following:

• OSP implies oblivious transfer between one classical and one quantum party.

• Two-round OSP implies public-key encryption with classical keys and ciphertexts.

In particular, these results help to ”explain” the use of public-key cryptography in the known
approaches to establishing a ”classical leash” on a quantum server. For example, combined
with a result of Austrin et al. (CRYPTO 22), we conclude that perfectly-correct OSP cannot exist
unconditionally in the (quantum) random oracle model.
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1 Introduction

One of the central concepts driving research in quantum cryptography over the past decade has
been that of a “classical leash” on quantum systems [RUV13]. In other words, how can we en-
able a classical device, using just classical communication, to exert some element of control over a
quantum mechanical system?

In a major conceptual advance from 2018 [BCM+18], the use of (public-key) cryptography
was identified as a useful tool for establishing this desired control over a quantum server. There
has since been an explosion of results on classical-client quantum-server protocols, ranging from
proofs of quantumness under quantum-hard assumptions [BCM+18], certifiable randomness gen-
eration [BCM+18], quantum homomorphic encryption with classical ciphertexts [Mah18a], classi-
cal verification of quantum computation [Mah18b], self-testing a single quantum device [MV21],
position verification [LLQ22], secure quantum computation [Bar21], and quantum money [RS19,
Shm22] with classical communication, and proofs of contextuality [ABCC24], among others.

The resounding success of this line of work begs a deeper understanding of the basic principles
underlying the paradigm introduced in [BCM+18]. For example, [BCM+18] based their results on
the existence of a fairly ad-hoc and unwieldy cryptographic primitive: a noisy trapdoor claw-
free function (TCF) with an adaptive hardcore bit. This primitive has only been shown to exist
from the learning with errors (LWE) assumption,1 and several followups, including many of the
aforementioned results, inherited the use of this primitive. This raises the following (informal)
question.

Is there a conceptually-simple and easy-to-instantiate primitive that suffices for building
powerful classical-client quantum-server applications?

We note that some partial progress has been made towards a more “generic” approach to con-
structing some of these end applications. For example, a recent line of work [KMCVY21, KLVY23,
NZ23] has yielded classical verification of quantum computation from the assumption of quantum
fully-homomorphic encryption (QFHE), and [GV24] has shown that QFHE follows from any clas-
sical FHE (with decryption in NC1) plus an appropriate notion of “dual-mode” trapdoor claw-free
functions (with no need for an adaptive hardcore bit). However, as we show, these approaches
can still be generalized much further.

Another aspect of [BCM+18]’s approach that demands further investigation is their use of
public-key (i.e. trapdoor-based) cryptography. This has been justified informally by observing
that, because the classical client is computationally weaker than the quantum server, we need to
introduce some mechanism for the client to gain the “upper hand” on the server. One way to do
this is to introduce asymmetric cryptography, allowing the client to send the server a public key
while keeping the secret key to themselves. However, as far as we are aware, nothing more than
this informal intuition has been proposed in an attempt to address the following fundamental
(and again, informal) question.

Is public-key cryptography necessary to establish a classical leash on a quantum server?

As an example meant to further illustrate the importance of this question, we note that progress
in this direction may shed more light on the recent breakthrough techniques of Yamakawa-Zhandry

1[AMR22] has shown how to obtain a weaker variant of the adaptive hardcore bit property from hard problems on
cryptographic group actions.
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[YZ24] for establishing quantum advantage. Indeed, while they show that proofs of quantumness
exist in the random oracle model, which can be heuristically instantiated using a cryptographic
hash function (i.e. symmetric cryptography), their techniques have so far resisted attempts at con-
structing, say, a test of a qubit, verifiable delegation of quantum computation, or other “classical
leash”-style primitives mentioned above. Establishing the necessity of public-key cryptography
for these primitives would explain this gap. While we do not completely close this question, our
results do show that the principles underlying current approaches to classical-leash primitives (in-
spired by [BCM+18, KMCVY21], etc.) also yield public-key style primitives. We provide further
details on these results later in the introduction.

1.1 Oblivious state preparation

Aiming to make progress on these two motivating questions, we put forth the idea of Oblivi-
ous State Preparation (OSP) as a unifying cryptographic primitive in the realm of classical-client
quantum-server protocols.

OSP is simple to describe. It is a protocol that takes place between a classical sender and a
quantum receiver. The classical sender has as input a bit 𝑏 ∈ {0, 1}which specifies a choice of one
of two public observables. We usually take one to be 𝑍 and the other to be𝑋 , but in principle they
could be arbitrary. At the end of the protocol, the receiver outputs a quantum state. We require
two properties.

• Correctness: If the receiver is honest, their output is an eigenstate of the observable chosen
by the sender, and the sender receives a description of this state. In the usual “standard”
case, this means that when 𝑏 = 0, the receiver outputs either |0⟩ or |1⟩, and when 𝑏 = 1, the
receiver outputs either |+⟩ or |−⟩.

• Security: Any quantum polynomial-time (QPT) malicious receiver has negl(𝜆) advantage in
guessing the sender’s input bit 𝑏.

OSP highlights an inherent cryptographic property of quantum information arising from the
uncertainty principle. That is, it is not necessarily possible to determine the basis of a given state,
even though this basis information is well-defined and fixed by the description of the state. In-
deed, given the resource of quantum communication, information-theoretically secure OSP is triv-
ial. In this work, however, OSP always refers to the classical-communication case. At a high level,
we ask, (1) what cryptography is necessary to obtain OSP, i.e. the ability for a classical client to,
roughly speaking, set up an instance of the uncertainty principle on a quantum server, and (2)
what are the applications of this ability.

In fact, the idea of OSP for the 𝑍 and 𝑋 observables as described above has been previously
proposed by [CCKW19] under the name “malicious 4-states QFactory with basis-blindness.” They
showed that such a protocol can be obtained from a TCF with a particular type of “homomorphic,
hardcore predicate”. However, in order to derive most applications, they required an additional
and conjectured verifiability property (see also [CCKW21]). In this work, we give OSP a more
general treatment as a primitive, show that it is possible to relax the assumptions under which it
can be built, and vastly expand its set of applications.
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1.2 Results

1.2.1 Constructions

As mentioned above, researchers beginning with [BCM+18] identified the usefulness of (variants
of) trapdoor claw-free functions (TCFs) in realizing applications such as a test of a qubit, quantum
fully-homomorphic encryption, and classical verification of quantum computation. While several
variants of TCFs have appeared over the years, e.g. extended, dual-mode, with adaptive hardcore
bit, etc., we show that perhaps the most stripped down notion of a TCF suffices to build OSP.

We define a (plain) TCF as a family of functions 𝑓 that can be sampled along with a trapdoor
td. The guarantee, roughly, is that there is a (QPT preparable) distribution 𝒟 over inputs such
that with some inverse polynomial probability over 𝑥← 𝒟, 𝑥 has exactly one sibling 𝑥′ (similarly
weighted by 𝒟) such that 𝑓(𝑥) = 𝑓(𝑥′), and moreover, both 𝑥 and 𝑥′ can be recovered given 𝑓(𝑥)
and td. Finally, claw-freeness demands that no QPT adversary can recover any such “claw” 𝑥
and 𝑥′ given only the description of 𝑓 . Building on techniques from [BGKM+23], we show the
following.

Theorem 1.1 (Informal). (Plain) TCFs imply OSP.

Our construction of OSP from plain TCFs requires multiple of rounds of interaction. How-
ever, a desirable feature for some applications is limited interaction. The best we can hope for is
two-round OSP, i.e. one message from the sender followed by one from the receiver.2 Adapting
techniques from [GV24], we show that TCFs with an additional dual-mode property imply such
two-round OSP.

Theorem 1.2 (Informal). Dual-mode TCFs imply two-round OSP.

Briefly, a dual-mode TCF is similar to a plain TCF except that the function may be sampled in
an “injective” mode, where there are no collisions, and it is computationally difficult to distinguish
this from the normal “lossy” mode. We note that dual-mode (and thus plain) TCFs are known from
LWE [BCM+18] and from the “extended linear hidden shift” assumption on cryptographic group
actions [AMR22, GV24].

In what follows, we will highlight the power of OSP by establishing several classical-client
quantum-server applications, as well as cryptographic implications. We will build everything
from “standard” OSP, where the two observables are 𝑍 and 𝑋 . However, it is meaningful to
consider OSP for any pair of non-commuting observables, in particular pairs that may not be
maximally anti-commuting. We begin to explore the landscape of OSP as a more general primitive,
and in particular establish the following result.

Theorem 1.3 (Informal). OSP for any pair of two-outcome observables that are at a 1/poly angle implies
standard (𝑍 and 𝑋) OSP.

1.2.2 Applications

From OSP. We show that OSP is sufficient to obtain several classical-client quantum-server pro-
tocols of interest.

2No one-message OSP can be secure. Indeed, the message from sender to receiver would have to fix the description
of the desired state 𝐻𝑏 |𝑠⟩, and correctness would imply that the receiver could then generate multiple copies of this
state, eventually enough to determine the basis with near certainty.
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Theorem 1.4 (Informal). OSP implies proofs of quantumness, a test of a qubit, blind classical delegation
of quantum computation, and classical verification of quantum computation.

A few remarks on these results are in order. The proof of quantumness from OSP can be
seen as a modular instantiation of the template proposed by [KMCVY21] and later tweaked by
[BGKM+23] and [ABCC24]. In particular, we show that a single instance of OSP suffices to imple-
ment a “computational Bell test” between the client and server based on the CHSH game.

Blind classical delegation of quantum computation allows a classical client to outsource a
quantum computation of its choice to a quantum server without leaking anything about the actual
description of the computation. In a major breakthrough, [Mah18a] gave the first construction of
this primitive by building quantum fully-homomorphic encryption (QFHE) from LWE. This approach
of course relies on techniques that at least imply classical fully-homomorphic encryption, and,
to the best of our knowledge, fully-homomorphic encryption has remained the only solution to
blind classical delegation of quantum computation that has been made explicit in the literature.3

While perhaps folklore, we formalize the fact that classical FHE is not required for blind classical
delegation of quantum computation, showing that OSP suffices.

In another major breakthrough, [Mah18b] designed a protocol that allows a classical client
to verifiably delegate a BQP computation to a potentially cheating quantum server. Since then,
classical verification of quantum computation (CVQC) has remained a central primitive of study
in quantum cryptography [Zha22, BKL+22, CLLW22, NZ23, GKNV24, MNZ24]. However, until
now, all known constructions relied on the hardness of LWE. As a corollary of our result, we
show that CVQC follows from any (plain) TCF, and thus from hard problems on cryptographic
group actions. In a nutshell, we formalize the fact that the recent approach of [KLVY23, NZ23]
establishing CVQC from QFHE can in fact be instantiated from any (potentially interactive, non-
compact) blind classical delegation of quantum computation protocol, and thus, from any OSP.

From two-round OSP. Our next batch of results makes use of two-round OSP.

Theorem 1.5 (Informal). Two-round OSP implies (privately-verifiable) quantum money with classical
communication, position verification with classical communication, and (assuming classical FHE with de-
cryption in NC1) QFHE.

Briefly, the first two results go via the intermediate primitive of a “1-of-2 puzzle” [RS19], which
we build from OSP using similar techniques to our CHSH-based proof of quantumness. Then, we
appeal to [RS19], who showed that 1-of-2 puzzles imply privately-verifiable quantum money with
classical communication, and [LLQ22], who showed that 1-of-2 puzzles imply position verification
with classical communication. Prior to our work, the only construction of 1-of-2 puzzles, due to
[RS19], relied specifically on LWE (via TCFs with the adaptive hardcore bit property).4

The third result on QFHE follows by adapting the recent techniques of [GV24], who showed
how to construct QFHE from any classical FHE (with decryption in NC1) and dual-mode TCFs.
We observe that, in fact, any two-round OSP suffices in place of the dual-mode TCF.

3[CCKW21] show how to realize blind classical delegation of quantum computation but only against an honest-but-
curious server, using their protocol for “pseudo-secret random qubit generator.”

4We note that a recent concurrent and independent work has shown how to construct classically-verifiable position
verification from certified randomness protocols [ACC+24].
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Discussion. Before moving on, it is worth pointing out that each of these results individually
do not require deep new techniques. Rather, they mostly follow by adapting, modularizing, and
generalizing existing approaches in the literature. However, in our view, the identification of OSP
as a simple primitive that yields all of these applications is useful, both as a pedagogical tool and
to enhance future research. OSP abstracts away the cryptographic essence of major protocols in
the area, allowing for easy, information-theoretic design of protocols that call an underlying OSP
functionality. This separates the “cryptographic layer” from the “information-theoretic layer” in
the design of these protocols. In some cases, this modular approach also allows us to broaden the
set of assumptions under which these applications are known to exist.

1.2.3 Implications

Finally, given the broad reach of OSP, we seek to understand the cryptography necessary in order
to realize it. Our results on this are summarized as follows.

Theorem 1.6 (Informal). OSP implies commitments and oblivious transfer (OT) with classical commu-
nication (where one party is completely classical), while two-round OSP implies public-key encryption.

So what can we conclude about OSP from these results? As mentioned earlier, one of the origi-
nal motivations for our work was to “justify” the use of public-key cryptography in the recent line
of work aimed at establishing a classical leash on quantum systems. Progress towards this goal
can be appreciated by noting that the techniques introduced in [BCM+18, Mah18a, Mah18b, KM-
CVY21] all at the very least provide some way to perform an OSP between the classical client and
quantum server, and thus, by our result, also provide a way to build OT with classical communi-
cation.

So far, the community does not have any approach for building OT with classical communi-
cation from minicrypt assumptions, or even from arbitrary trapdoor functions. Thus, our result
helps explain why the known constructions of OSP require TCFs, which are more structured than
even injective trapdoor functions. In fact, in the classical setting, we actually have an oracle sepa-
ration between OT and injective trapdoor functions [GKM+00].

However, it remains an open question to give such strong oracle separations in the quantum
setting. Progress came when [ACC+22] showed that perfectly correct key agreement between one
classical and one quantum party does not exist in the quantum random oracle model. This notion
of key agreement is implied by the perfectly correct variant of our notion of OT between one
classical and one quantum party, and thus, we obtain the following corollary.

Corollary 1.7 (Informal). Perfectly correct OSP does not exist in the quantum random oracle model.

This leaves a sliver of possibility that non-perfectly-correct OSP can yet be constructed without
public-key assumptions. However, we have established that if one can build OSP from minicrypt
primitives (say, by adapting the techniques of [YZ24]), or even from arbitrary trapdoor functions,
then this would also represent a major breakthrough in cryptography more generally - a construc-
tion of classical-communication OT from new assumptions.
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2 Technical Overview

2.1 Realizing oblivious state preparation

We show that OSP follows from any trapdoor claw-free function (TCF), i.e. we don’t require an
additional adaptive hardcore bit or dual-mode property. Our presentation abstracts out the key
role of the TCF, which is to generate a claw-state correlation. That is, we define a “claw-state
generator” (CSG) as any protocol between a classical sender and quantum receiver that outputs
1√
2
(|0, 𝑥0⟩+ |1, 𝑥1⟩) to the receiver and 𝑥0, 𝑥1 ∈ {0, 1}𝑛 to the sender.5 We say that the protocol has

search security if no QPT receiver can output both (𝑥0, 𝑥1) except with negligible probability.
Now, we show that CSG with search security implies OSP by relying on a sub-protocol from

[BGKM+23].6 After the CSG is performed, the sender chooses two random strings 𝑟0, 𝑟1 ← {0, 1}𝑛
and sends them to the receiver. The receiver then maps

1√
2
(|𝑥0⟩+ |𝑥1⟩)→

1√
2
(|𝑥0⟩ |𝑥0 · 𝑟0⟩+ |𝑥1⟩ |𝑥1 · 𝑟1⟩) ,

and measures all but the last qubit in the Hadamard basis to obtain a string 𝑑, which it returns to
the sender.

It is easy to check that if 𝑥0 · 𝑟0 = 𝑥1 · 𝑟1, then the receiver obtain a standard basis eigenstate,
while if 𝑥0 · 𝑟0 ̸= 𝑥1 · 𝑟1, then the receiver obtains a Hadamard basis eigenstate. Moreover, which
eigenstate obtained can be computed by the sender, who knows 𝑥0, 𝑥1, and 𝑑. To see why this is
secure, note that the bit that determines the basis is equal to 𝑥0 ·𝑟0⊕𝑥1 ·𝑟1 = (𝑥0, 𝑥1) ·(𝑟0, 𝑟1). Thus,
by Goldreich-Levin, any adversarial receiver that can predict the basis of their received state can
be used to extract an entire claw (𝑥0, 𝑥1), which breaks the search security of the CSG.

Now, while the protocol above implements random-input OSP where the sender ends up with
a random choice of basis, it is generically possible to reorient this into a chosen-input OSP, which
we show in Lemma 4.3. Finally, we note that in the body, we also construct OSP with the optimal
round-complexity of two (i.e. one message from the sender followed by one from the receiver), by
assuming a slightly stronger variant of TCFs, namely dual-mode TCFs. This construction adapts
the recent techniques of [GV24], and we refer the reader to Section 5.2 for details.

2.2 Applications

2.2.1 Proofs of quantumness

Our first use case for OSP is to instantiate a “computational Bell test”, first introduced by [KM-
CVY21]. The resulting protocol is essentially a generalized presentation of [ABCC24]’s recent
proof of quantumness protocol, in which they instantiated the OSP using an “encrypted CNOT”
operation based on a structured type of TCF.

Consider the server’s state at the end of an OSP protocol: If the client’s input was 𝑎 = 0, they
obtain |𝑥⟩ for some bit 𝑥, and if the client’s input was 𝑎 = 1, they obtain 𝐻 |𝑥⟩ for some bit 𝑥. This
is exactly the same as Bob’s state in the CHSH game once (honest) Alice provides an answer 𝑥 on

5Technically, we call this a differentiated-bit CSG, since the first qubit holds a bit that differentiates the two members
of the claw state. It is easy to show that one can generically add the differentiated-bit property to any CSG, while
maintaining search security (see Lemma 4.6).

6Later, we will actually show that OSP implies CSG (with an even stronger security property called indistinguisha-
bility security), meaning that these notions are in fact equivalent.

9



input question 𝑎. Indeed, in the CHSH game, Alice and Bob initially share an EPR pair, and Alice
measures her half in the standard basis if 𝑎 = 0 and in the Hadamard basis in 𝑎 = 1. This suggests
the following proof of quantumness protocol.

• The verifier samples 𝑎 ← {0, 1} and performs an OSP with the prover in order to deliver
𝐻𝑎 |𝑥⟩.

• The parties “complete” the CHSH game as follows. The verifier samples 𝑏 ← {0, 1} and
sends it to the prover. If 𝑏 = 0, the prover measures their state in the 𝑋 +𝑍 basis to obtain 𝑦,
and if 𝑏 = 1, the prover measures their state in the 𝑋 −𝑍 basis to obtain 𝑦, and sends 𝑦 back
to the verifier.7

• The verifier runs the CHSH verification predicate, accepting if 𝑥⊕ 𝑦 = 𝑎 · 𝑏.

By a standard analysis of the CHSH game, an honest QPT prover following the strategy out-
lined above makes the verifier accept with probability cos2(𝜋/8) > 0.85. Now, consider any clas-
sical polynomial-time prover. Note that an equivalent way to write the verification predicate is to
accept if 𝑦 = 𝑥⊕ 𝑎 · 𝑏. Given any classical prover that wins with probability 3/4 + 1/poly, we can
rewind them to extract answers on both 𝑏 = 0 and 𝑏 = 1 that simultaneously accept with probabil-
ity at least 1/2+1/poly. That is, we can obtain 𝑦0 = 𝑥 and 𝑦1 = 𝑥⊕𝑎with probability 1/2+1/poly.
However, this contradicts the security of the OSP, since 𝑦0 ⊕ 𝑦1 = 𝑎, and OSP demands that no
polynomial-time adversary has noticeable advantage in guessing the basis choice 𝑎.

2.2.2 1-of-2 puzzles

Next, we extend the above ideas to realize more applications, via the intermediate primitive of 1-
of-2 puzzles. Introduced by [RS19], a 1-of-2 puzzle consists of four algorithms defined as follows.

• KeyGen(1𝜆)→ (pk, vk). The PPT key generation algorithm takes as input the security param-
eter 1𝜆 and outputs a public key pk and a secret verification key vk.

• Obligate(pk) → (|𝜓⟩ , 𝑦): The QPT obligate algorithm takes as input the public key, and out-
puts a classical obligation string 𝑦 and a quantum state |𝜓⟩.

• Solve(|𝜓⟩ , 𝑏)→ 𝑎: The QPT solve algorithm takes as input a state |𝜓⟩ and a bit 𝑏 ∈ {0, 1} and
outputs a string 𝑎.

• Ver(vk, 𝑦, 𝑏, 𝑎) → {⊤,⊥}: The PPT verify algorithm takes as input the verification key vk, a
string 𝑦, a bit 𝑏 ∈ {0, 1}, and a string 𝑎, and either accepts or rejects.

Correctness requires that on either challenge 𝑏 ∈ {0, 1}, the Solve algorithm produces an ac-
cepting answer 𝑎, while security stipulates that no QPT adversary can simultaneously produce an
accepting answer 𝑎0 on challenge 𝑏 = 0 and an accepting answer 𝑎1 on challenge 𝑏 = 1. This
is clearly an inherently quantum primitive that has been shown by prior work to imply both
(privately-verifiable) quantum money with classical communication [RS19], and position verifica-
tion with classical communication [LLQ22].

7To be concrete, these bases are defined as 𝑋 +𝑍 = {cos(𝜋/8) |0⟩+ sin(𝜋/8) |1⟩ ,− sin(𝜋/8) |0⟩+ cos(𝜋/8) |1⟩}, and
𝑋 − 𝑍 = {cos(−𝜋/8) |0⟩+ sin(−𝜋/8) |1⟩ ,− sin(−𝜋/8) |0⟩+ cos(−𝜋/8) |1⟩} .
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Our idea to obtain a 1-of-2 puzzle is as follows. The KeyGen and Obligate algorithms will run
𝜆 parallel instances of two-round OSP on a uniformly random sender’s bit 𝑟 ← {0, 1}.8 This
results in a state (𝐻𝑟)⊗𝜆 |𝑠⟩, where 𝑠 is a 𝜆-bit string. Now, challenge 𝑏 = 0 asks for a string that
matches 𝑠 on at least 0.85 fraction of indices, while challenge 𝑏 = 1 asks for a string that matches
𝑠⊕ (𝑟, . . . , 𝑟) on at least 0.85 fraction of indices. Roughly, this is a 𝜆-parallel repetition of the above
proof of quantumness, all using the same verifier bit 𝑟. Thus, correctness follows from measuring
all states in the 𝑋 + 𝑍 basis when 𝑏 = 0, and in the 𝑋 − 𝑍 basis when 𝑏 = 1 (and a tail bound).
We can also establish a weak form of security. Suppose a (quantum) adversary has a 1/2 + 1/poly
probability of passing both challenges simultaneously. Then, by XORing its answers and taking
the majority bit, we have that with 1/2 + 1/poly, this adversary can be used to predict the bit 𝑟, a
contradiction to the security of the two-round OSP. Finally, to obtain a full-fledged 1-of-2 puzzle
(i.e. with negligible security), we appeal to an amplification lemma of [RS19] that is itself based on
the parallel repetition for weakly verifiable puzzles of [CHS05].

2.2.3 Blind delegation

Next, we show that OSP is sufficient to obtain blind classical delegation of any quantum computa-
tion. While there are likely several routes to showing this, our approach essentially instantiates the
protocol of [Bro15] using OSP in place of quantum communication from the client to the server.

In full generality, our definition of blind delegation allows the classical client to delegate the
computation of some publicly-known quantum operation 𝑄 that takes as input a private classical
string 𝑥 from the client and a quantum state on register 𝒱 from the server. At the end of the
protocol, the prover recovers the output 𝑄(𝑥,𝒱) up to a quantum one-time pad 𝑋𝑟𝑍𝑠 with keys
(𝑟, 𝑠) known to the client. Note that this implies the ability to deliver to the client a classical output,
by having the prover measure the output register and deliver the result to the client, which will
be correct up to a classical one-time pad defined by 𝑟.

We show that OSP implies this notion as follows.9 First, we write the circuit 𝑄 as a sequence
of alternating Clifford operations and 𝑇 † gates 𝑄 = 𝐶ℓ+1𝑇

†𝐶ℓ . . . 𝐶2𝑇
†𝐶1, where 𝑇 † is the 𝜋/4

rotation clockwise around the XY plane. To begin the protocol, the client sends 𝑥 ⊕ 𝑟inp, where
𝑥 is their input and 𝑟inp is a classical one-time pad. As is typically the case, Clifford operations
are straightforward: the server can apply them directly to the current state of the system, and the
client can perform a corresponding update to their one-time pad keys. On the other hand, each
time we come to a 𝑇 † gate, we will use one instance of OSP (and thus some interaction).

The idea is that 𝑇 †𝑋𝑟𝑍𝑠 |𝜓⟩ = (𝑃 †)𝑟𝑋𝑟𝑍𝑠𝑇 † |𝜓⟩, and so applying the 𝑇 † reduces to what we
call an encrypted phase gate. That is, the client holds a private bit 𝑟, the server holds a single-qubit
quantum state |𝜓⟩,10 and we want the server to obtain 𝑃 𝑟 |𝜓⟩ after interaction, potentially up to
some Pauli error (concretely, our protocol will result in 𝑍𝑚𝑃 𝑟 |𝜓⟩, where 𝑚 is known to the client).

To enable this, the client first uses OSP to transmit a fresh state 𝑍𝑠𝑃 𝑟 |+⟩ to the server, where 𝑠
is known to the client. That is, the client and server engage in an OSP for the𝑋 and 𝑌 observables,
which follows by using “standard” OSP for the 𝑍 and 𝑋 observables and then having the server

8We note that it is possible to define a more interactive version of 1-of-2 puzzles and write down a candidate from
OSP rather than two-round OSP. However, for security we rely on an amplification lemma from [RS19] that crucially
uses the two-round setup, so we leave an exploration of this generalization to future work.

9It is also easy to see that this definition implies OSP as well, meaning OSP is both necessary and sufficient.
10In general, this could be entangled with the rest of their system, but we suppress this in the overview to avoid

clutter.
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apply the appropriate (public) rotation. Now, a straightforward calculation confirms that if the
server applies CNOT from their state |𝜓⟩ onto 𝑍𝑠𝑃 𝑟 |+⟩ and then measures the second register in
the standard basis, the remaining state on the first register will be exactly 𝑃 𝑟 |𝜓⟩ up to some Pauli
𝑍 error.

Security of the delegation protocol is immediate from security of the OSP. One by one, we can
switch the client’s input to each of the OSP instances to 0. Once this is done, the only relevant
information the server obtains from running the protocol is 𝑥 ⊕ 𝑟inp, which perfectly hides the
client’s private input 𝑥.

2.2.4 Verifiable delegation

A protocol for classical verification of arbitrary BQP computation (CVQC) was first shown by
[Mah18b], albeit from a specific type of TCF known only from LWE. Recent work [KLVY23, NZ23,
MNZ24] has explored a different approach that has given us CVQC from the more generic as-
sumption of QFHE. However, QFHE is itself a strong primitive, and is only known from lattices.
In this work, we further generalize the approach, showing that it can be instantiated with any
blind classical delegation of quantum computation protocol in place of the QFHE, and thus from
any OSP.

The starting point for this approach is the “KLVY compiler”, which uses QFHE to compile any
classical-verifier game sound against two non-communicating (but potentially entangled) provers
into a single prover game, with the hope that the semantic security of the QFHE will give sound-
ness against any QPT prover. Given any two-prover game, the compiled protocol is defined as
follows.

• The verifier sends a QFHE encryption Enc(𝑥) of Alice’s question to the prover.

• The prover runs Alice’s strategy under the QFHE to obtain an encryption of her answer
Enc(𝑎), along with some auxiliary quantum state. The prover sends Enc(𝑎) to the verifier.

• The verifier sends Bob’s question 𝑦 in the clear.

• The prover uses its auxiliary state and 𝑦 to obtain Bob’s answer 𝑏, which it sends to the
verifier.

• The verifier decrypts Enc(𝑎) to obtain 𝑎 and applies its verification predicate to (𝑎, 𝑏).

Intuitively, QFHE is used to enforce the non-communicating assumption computationally. That
is, the semantic security of QFHE implies that the first prover operation (Alice) cannot trans-
mit any information about her question 𝑎 to the second prover operation (Bob) that can be effi-
ciently recovered. While we don’t have a general theorem establishing optimal soundness of the
KLVY compiler11 for any game (see [BGKM+23, CMM+24, KMP+24] for progress in this direction),
[NZ23] presented a two-player game for arbitrary BQP computation and showed its soundness
under the KLVY compiler, giving CVQC from QFHE as a corollary.

In this work, we begin by defining what we call the generalized KLVY compiler, which replaces
the first round above with any (potentially interactive, non-compact) blind classical delegation of
quantum computation protocol. Then, in order to simplify the task of proving soundness of the

11Here, we mean soundness against quantum polynomial-time provers. [KLVY23] showed a general theorem estab-
lishing soundness against classical polynomial-time provers.
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generalized KLVY compiler, we define a clean class of strategies for two-prover games, which we
call computationally non-local strategies (Definition 6.19). While the standard notion of a non-local
strategy requires that Alice’s operation {𝐴𝑥}𝑥 and Bob’s operation {𝐵𝑦}𝑦 (where both are written
as sets of strategies parameterized by their question) must be applied to disjoint Hilbert spaces,
say ℋ𝒜 and ℋℬ, our notion relaxes this requirement as follows. It includes any strategy {𝐴𝑥}𝑥 on
ℋ𝒜 ⊗ ℋℬ followed by {𝐵𝑦}𝑦 on ℋℬ such that no QPT distinguisher given the state on register ℬ
output by 𝐴𝑥 can guess 𝑥 with noticeable advantage.

We next prove a theorem (Theorem 6.23) showing that any upper bound on the value of a two-
prover game against computationally non-local strategies is also an upper bound on the sound-
ness of the generalized KLVY-compiled game. While straightforward to show, this theorem is
quite useful. It allows one to forget all of the underlying details of the cryptographic component
when attempting to prove the soundness of a (generalized) KLVY-compiled protocol. Indeed,
prior work (e.g. [KLVY23, NZ23, MNZ24]) carried around clunky notation specific to QFHE in-
cluding public / secret key pairs, ciphertexts, etc., when upper-bounding the soundness of their
compiled non-local games.

Here, we re-visit [NZ23]’s proof strategy, showing that it in fact establishes an upper bound
on any computationally non-local strategy (i.e. not only ones that arise from the use of QFHE).
In particular, there are only a handful of places where QFHE is used in their proof, and each
time it is only used to show that Bob cannot distinguish between two different Alice questions
with better than negligble advantage. Thus, we conclude that CVQC follows generically from any
blind classical delegation of quantum computation protocol, and thus from any OSP.

2.2.5 Encrypted CNOT and applications

Next, we re-visit a notion that was informally introduced in the influential work of [Mah18a],
called “encrypted CNOT”. In [Mah18a], encrypted CNOT was built assuming TCFs with a partic-
ular structural requirement on the claws, and it was incorporated into their construction of quan-
tum FHE (in a non-black-box way). Here, we define encrypted CNOT formally as a special case
of blind classical delegation of quantum computation, which in particular implies that it follows
from any OSP. However, we go a step further, and provide a simple and direct construction of
encrypted CNOT, which in particular shows that if we start with a two-round OSP, then we obtain
a two-round encrypted CNOT.

To be precise, we define encrypted CNOT as a protocol that takes a private bit 𝑏 from the client
and a two-qubit state from the server, and, if 𝑏 = 0, does nothing to the server’s state, while if
𝑏 = 1, applies a CNOT to the server’s state. The output state will only be correct up to a quantum
one-time pad that must be known to the client. To implement this from OSP, we operate in two
steps. Suppose for simplicity that the server initially holds a two qubit state of the form

(𝛼0 |0⟩+ 𝛼1 |1⟩)⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩).

1. First, depending on the bit 𝑏, either entangle the first qubit with a fresh register, or not. This
can be accomplished using OSP as follows. Execute two instances of OSP, where if 𝑏 = 0, the
client inputs are (0, 1) while if 𝑏 = 1, the client inputs are (1, 0). Thus, up to a one-time pad,
the server’s state can now be written as

(𝛼0 |0⟩+ 𝛼1 |1⟩)⊗ |0⟩ ⊗ |+⟩ ⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩) if 𝑏 = 0

(𝛼0 |0⟩+ 𝛼1 |1⟩)⊗ |+⟩ ⊗ |0⟩ ⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩) if 𝑏 = 1.
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The server then applies a CNOT from the 1st to the 3rd qubit and a CNOT from the 2nd to
the 3rd qubit. In the first case, where the 3rd qubit is |+⟩, this has no effect, while in the
second case, this entangles the 1st and 2nd qubit. Then, after measuring the 3rd qubit in the
standard basis, the server’s state becomes (up to a one-time pad)

(𝛼0 |0⟩+ 𝛼1 |1⟩)⊗ |0⟩ ⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩) if 𝑏 = 0

(𝛼0 |00⟩+ 𝛼1 |11⟩)⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩) if 𝑏 = 1.

2. Next, apply CNOT from the 2nd qubit to the 3rd qubit, then “delete” the 2nd qubit by
measuring it in the Hadamard basis. Clearly, in the 𝑏 = 0 case this again has no effect, while
in the 𝑏 = 1 case, this accomplishes a CNOT between the two input qubits. In particular, it
can be confirmed that after this step, the server’s state becomes (up to a one-time pad)

(𝛼0 |0⟩+ 𝛼1 |1⟩)⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩) if 𝑏 = 0

(𝛼0𝛽0 |00⟩+ 𝛼0𝛽1 |1⟩+ 𝛼1𝛽0 |11⟩+ 𝛼1𝛽1 |10⟩) if 𝑏 = 1.

For details (in particular, how the client recovers the one-time pad keys from the OSP informa-
tion and the server’s measurement results), refer to Section 6.5. Here, we mention the applications
we obtain from our encrypted CNOT protocol.

Quantum fully-homomorphic encryption. The first quantum fully-homomorphic encryption
(QFHE) scheme was constructed by [Mah18a]. As alluded to above, the construction combines a
particular encrypted CNOT protocol with a particular classical FHE protocol in a non-black-box
manner in order to achieve QFHE. A recent work of [GV24] pioneered a generic approach to QFHE
from any classical FHE (with log-depth decryption) and any dual-mode TCF. In Section 6.5, we
observe that their work can in fact be seen as constructing QFHE from any (two-round) encrypted
CNOT protocol plus classical FHE (with log-depth decryption), and thus we establish that QFHE
follows from two-round OSP plus classical FHE (with log-depth decryption).

Claw-state generators with indistinguishability security. Recall the notion of a claw-state gen-
erator (CSG) introduced above, which is a protocol that delivers a state 1√

2
(|0, 𝑥0⟩ + (−1)𝑧 |1, 𝑥1⟩)

to a quantum receiver and strings (𝑥0, 𝑥1, 𝑧) to a classical sender.12 We say that such a protocol has
indistinguishability security if for all 𝑖 ∈ [𝑛], no QPT server can predict the bit 𝑥0,𝑖 ⊕ 𝑥1,𝑖 with better
than negl(𝜆) advantage.

In Section 6.5, we show that (two-round) encrypted CNOT can be used to obtain a (two-round)
CSG with indistinguishability security. The construction is straightforward: the sender begins by
sampling a string Δ← {0, 1}𝑛, and the receiver initializes the state |+⟩ℬ⊗|0⟩𝒞1⊗· · ·⊗ |0⟩𝒞𝑛 . Then,
the parties engage in 𝑛 encrypted CNOTs, where the 𝑖’th protocol takes input Δ𝑖 from the sender,
and applies a CNOT from register ℬ to register 𝒞𝑖. It can be confirmed that the receiver ends up
with a state of the form

1√
2
(|0, 𝑥⟩+ (−1)𝑧 |0, 𝑥+Δ⟩) ,

12In full generality, we allow the claw-state to have a phase specified by the bit 𝑧, as long as this bit is known to the
sender.
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where 𝑥 ∈ {0, 1}𝑛 and 𝑧 ∈ {0, 1} can be recovered by the sender. Crucially, note that XOR of the
two members of the claw is equal to Δ, and thus, breaking indistinguishability security of the CSG
yields an attack on the encrypted CNOT protocol.

Combined with our construction of OSP from Section 2.1, this shows that OSP and CSG (with
either search or indistinguishability security) are equivalent. Moreover, the notion of a CSG with
indistinguishability security will be central to our implications in the next section establishing
cryptographic lower bounds for constructing OSP.

2.3 Implications

Our next goal is to understand what cryptographic hardness is necessary for OSP. Towards ad-
dressing this, we show that OSP implies commitments and oblivious transfer (where one partici-
pant only requires classical capabilities), and that two-round OSP implies public-key encryption.

2.3.1 Commitments

Our commitment scheme proceeds as follows: the classical committer acts as the sender in 𝜆
executions of an OSP with chosen input basis 𝑏 in all executions. The committer thus obtains bits
𝑠1, . . . , 𝑠𝜆, while an (honest) receiver ends up with 𝐻𝑏 |𝑠1⟩ , . . . ,𝐻𝑏 |𝑠𝜆⟩.

In the decommit phase, the committer reveals 𝑠1, . . . , 𝑠𝜆 along with its comitted bit 𝑏, and the
receiver accepts iff for every 𝑖 ∈ [𝜆], the projection of its 𝑖𝑡ℎ qubit onto 𝐻𝑏 |𝑠𝑖⟩⟨𝑠𝑖|𝐻𝑏 accepts.

The hiding of this commitment against a malicious receiver follows from the fact that OSP
hides the sender input 𝑏 from an arbitrary (malicious) receiver, together with a straightforward
hybrid argument.

To see why this satisfies statistical (sum) binding, consider the state |𝜓⟩ that an honest receiver
ends up with after interacting with an arbitrary malicious committer. For any fixing of this state
|𝜓⟩, the probability that a decommitment to (0, 𝑠0) is accepted is pr0,𝑠0 = ‖ ⟨𝑠0|𝜓⟩ ‖2, and a de-
commitment to (1, 𝑠1) is accepted is pr1,𝑠1 = ‖ ⟨𝑠1|𝐻⊗𝜆 |𝜓⟩ ‖2. Let pr0 denote max𝑠0(pr0,𝑠0) and pr1
denote max𝑠1(pr1,𝑠1). Since for every 𝑠0, 𝑠1,

‖ ⟨𝑠0|𝐻⊗𝜆 |𝑠1⟩ ‖2 =
1

2𝜆
,

we conclude that pr0 + pr1 ≤ 1 + negl(𝑛), as desired.

2.3.2 Oblivious transfer

We obtain oblivious transfer (OT) by building on the notion of a claw-state generator (CSG) with
indistinguishability security, introduced above.13 The basic idea is as follows. The OT receiver
will delegate the preparation of a state

1√
2
(|0, 𝑥0⟩+ (−1)𝑧 |1, 𝑥1⟩)

13Our basic construction achieves a somewhat non-standard definition that we call search security (against a ma-
licious receiver). We also show that, by additionally assuming one-way functions, we can achieve a more standard
indistinguishability-based definition. We refer the reader to Section 7.2 for details.
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to the OT sender, where 𝑥0 and 𝑥1 are single bits. We will take 𝑏 = 𝑥0 ⊕ 𝑥1 to be the receiver’s
choice bit, which, by the indistinguishability security of the CSG, is computationally unpredictable
to any QPT sender. Then, the sender measures their state in the standard basis to obtain two bits
(𝑐, 𝑦), and defines their OT bits to be 𝑟0 = 𝑦, 𝑟1 = 𝑦 ⊕ 𝑐.

Note that if 𝑏 = 0, then 𝑦 = 𝑥0 = 𝑥1 is known to the receiver, while the bit 𝑐 is uniformly
random, meaning 𝑟1 is unpredictable. On the other hand, if 𝑏 = 1, then 𝑥0 = 1 ⊕ 𝑥1, so the bit
𝑟1 = 𝑐 ⊕ 𝑦 is known to the receiver, while the bit 𝑦 is uniformly random, meaning 𝑟0 is unpre-
dictable. However, this analysis relies on the fact that the state measured by the sender is indeed
the desired state 1√

2
(|0, 𝑥0⟩+ (−1)𝑧 |1, 𝑥1⟩). Unfortunately, the notion of CSG (and also the un-

derlying notion of OSP) does not guarantee any verifiability property, meaning that we have no
guarantees on what the OT sender’s state might look like if the OT receiver is acting maliciously
in the CSG protocol. To remedy this, we repeat the CSG protocol several times and use a cut-and-
choose protocol to allow the sender to check that the receiver is behaving (close to) honestly. In
the end, after combining the several protocols, we arrive at a (game-based) notion of oblivious
transfer between a classical (unbounded) receiver and a quantum (polynomial-time) sender. For
full details, please refer to Section 7.2.

2.3.3 Public-key encryption

Finally, we show that two-round OSP implies (CPA-secure) public-key encryption. Our protocol
uses the same building block as the OT protocol from above: a (two-round) CSG for generating
the state

1√
2
(|0, 𝑥0⟩+ (−1)𝑧 |1, 𝑥1⟩)

with indistinguishability security.
The public key in our scheme is the first-round (classical) message msg1 of the CSG protocol,

while the secret key is the secret state of the classical sender who generated this message. To
encrypt a bit 𝑚, use msg1 to generate the above state along with a second-round message msg2,
measure the state in the standard basis to obtain (𝑏, 𝑥𝑏), and output (msg2, 𝑏,𝑚⊕𝑥𝑏) as the cipher-
text.

Given the sender’s state, the key generator can recover the values of 𝑥0, 𝑥1 from msg2 and
thus decrypt the message. However, breaking the CPA security of this scheme reduces to being
able to predict 𝑥𝑏 given msg2 for a random bit 𝑏. In turn, this yields an adversary attacking the
indistinguishability security of the CSG: Given msg1, it prepares a state 1√

2
(|0, 𝑥0⟩+ (−1)𝑧 |1, 𝑥1⟩)

honestly along with msg2, samples a random 𝑏, and runs the PKE adversary to obtain a guess for
𝑥𝑏. Then, it measures its state to obtain (𝑏′, 𝑥𝑏′). If 𝑏 ̸= 𝑏′ (which occurs with probability 1/2), this
adversary then knows 𝑥0 ⊕ 𝑥1, breaking the indistinguishability security of the CSG. Again, we
refer to the body, in particular Section 7.3, for the full details.

3 Preliminaries

Let 𝜆 denote the security parameter. We write negl(·) to denote any negligible function, which
is a function 𝑓 such that for every constant 𝑐 ∈ N there exists 𝑁 ∈ N such that for all 𝑛 > 𝑁 ,
𝑓(𝑛) < 𝑛−𝑐. We write non-negl(·) to denote any function 𝑓 that is not negligible, that is, there exists
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a constant 𝑐 such that for infinitely many 𝑛, 𝑓(𝑛) ≥ 𝑛−𝑐. Finally, we write poly(·) to denote any
polynomial function 𝑓 , that is, there exist constants 𝑐 and 𝑁 such that for all 𝑛 > 𝑁 , 𝑓(𝑛) < 𝑛𝑐.

A probabilistic polynomial-time (PPT) family of circuits {𝐶𝜆}𝜆∈N is a family of randomized
classical circuits with |𝐶𝜆| ≤ poly(𝜆), and a quantum polynomial-time (QPT) family of circuits
{𝑄𝜆}𝜆∈N is a family of quantum circuits with |𝑄𝜆| ≤ poly(𝜆).

Let Tr denote the trace operator. The trace distance between two quantum (mixed) states 𝜌0, 𝜌1,
denoted TD(𝜌0, 𝜌1) is defined as

1

2
‖𝜌0 − 𝜌1‖1,

where ‖ · ‖1 is the trace norm, defined by

‖𝜌‖1 := Tr
√︀
𝜌†𝜌.

The trace distance between two states 𝜌0 and 𝜌1 is an upper bound on the probability that any
(unbounded) algorithm can distinguish 𝜌0 and 𝜌1.

Given two quantum operations 𝑄0, 𝑄1 that take as input a state on register 𝒜, their diamond
distance is defined as

𝐷◇(𝑄0, 𝑄1) := sup
ℬ

max
𝜌𝒜,ℬ
‖(𝑄0 ⊗ ℐℬ)𝜌𝒜,ℬ − (𝑄1 ⊗ ℐℬ)𝜌𝒜,ℬ‖1,

where ℐℬ is the identity matrix on register ℬ. In words, the diamond distance upper bounds the
trace distance between the outputs of 𝑄0 and 𝑄1 on any input (which could be entangled with an
arbitrary auxiliary register ℬ).

We will use the usual convention that 𝑍 refers to the basis {|0⟩ , |1⟩}, 𝑋 refers to the basis
{|+⟩ , |−⟩}, and 𝑌 refers to the basis {𝑃 |+⟩ , 𝑃 |−⟩}, where 𝑃 is the phase gate. We will often refer
to the 𝑋 + 𝑍 and 𝑋 − 𝑍 bases, defined as

𝑋 + 𝑍 = {cos(𝜋/8) |0⟩+ sin(𝜋/8) |1⟩ ,− sin(𝜋/8) |0⟩+ cos(𝜋/8) |1⟩} ,

𝑋 − 𝑍 = {cos(−𝜋/8) |0⟩+ sin(−𝜋/8) |1⟩ ,− sin(−𝜋/8) |0⟩+ cos(−𝜋/8) |1⟩} .

Lemma 3.1 (Gentle measurement [Win99]). Let 𝜌 be a quantum state and let (Π, ℐ −Π) be a projective
measurement such that Tr(Π𝜌) ≥ 1− 𝛿. Let

𝜌′ =
Π𝜌Π

Tr(Π𝜌)

be the state after applying (Π, ℐ − Π) to 𝜌 and post-selecting on obtaining the first outcome. Then,
TD(𝜌, 𝜌′) ≤ 2

√
𝛿.

Lemma 3.2 (Quantum Goldreich-Levin [AC02]). Suppose there exists a string 𝑠 ∈ {0, 1}𝑛, a state |𝜓⟩
on 𝑚 qubits, a unitary 𝑈 on 𝑛 + 𝑚 + 𝑡 qubits that is classically controlled on its first 𝑛 qubits, and an
𝜖 ∈ (0, 1) such that for uniformly random 𝑟 ← {0, 1}𝑛, measuring the last qubit of 𝑈 |𝑥⟩ |𝜓⟩

⃒⃒
0𝑡
⟩︀

yields
𝑟 · 𝑠 with probability at least 1/2+ 𝜖. Then given |𝜓⟩, there exists a quantum algorithm that outputs 𝑠 with
probability at least 4𝜖2 using a single invocation of 𝑈 and 𝑈 †.
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4 Oblivious State Preparation

In this section, we first define a “standard” notion of oblivious state preparation (OSP), and then
investigate variants of the definition. The standard notion we propose enables a quantum server
communicating with a classical client to prepare a single-qubit state in either the standard or
Hadamard basis, without actually learning the basis. This corresponds exactly to the functionality
of “Malicious 4-states QFactory with basis-blindness” proposed by [CCKW19].

However, the concept of OSP is not fundamentally tied to the standard and Hadamard bases.
Conceptually, it captures the ability for a client to enable the preparation of a state in one of two
arbitrary bases on the server’s system. Thus, later in the section we define a generalized notion of
OSP, which enables the angle between the bases to be arbitrary, and we initiate the study of this
generalized notion.

4.1 Basic definitions

Definition 4.1 (Oblivious State Preparation). Oblivious state preparation (OSP) is a protocol that takes
place between a PPT sender 𝑆 with input 𝑏 ∈ {0, 1} and a QPT receiver 𝑅:

(𝑠, |𝜓⟩)← ⟨𝑆(1𝜆, 𝑏), 𝑅(1𝜆)⟩,

where 𝑠 ∈ {0, 1} is the sender’s output and |𝜓⟩ is the receiver’s output. It should satisfy the following
properties.

• Correctness. For any 𝑏 ∈ {0, 1}, let

ΠOSP,𝑏 :=
∑︁

𝑠∈{0,1}

|𝑠⟩⟨𝑠| ⊗𝐻𝑏 |𝑠⟩⟨𝑠|𝐻𝑏.

Then for any 𝑏 ∈ {0, 1},

E
[︁
‖ΠOSP,𝑏 |𝑠⟩ |𝜓⟩ ‖ : (𝑠, |𝜓⟩)← ⟨𝑆(1𝜆, 𝑏), 𝑅(1𝜆)⟩

]︁
= 1− negl(𝜆).

We say that the protocol satisfies perfect correctness if the expectation above is equal to 1.

• Security. For any QPT adversary {Adv𝜆}𝜆∈N,⃒⃒⃒
Pr

[︁
𝑏Adv = 0 : (𝑠, 𝑏Adv)← ⟨𝑆(1𝜆, 0),Adv𝜆⟩

]︁
− Pr

[︁
𝑏Adv = 0 : (𝑠, 𝑏Adv)← ⟨𝑆(1𝜆, 1),Adv𝜆⟩

]︁ ⃒⃒⃒
= negl(𝜆).

We say that the protocol is a two-round OSP if it consists of just two messages: one from the sender
followed by one from the receiver. In this case, we use the following notation to describe the algorithms of
the protocol.

• OSP.Sen(1𝜆, 𝑏) → (msg𝑆 , st𝑆). The PPT sender takes as input the security parameter 1𝜆 and a bit
𝑏, and outputs a message msg𝑆 and state st𝑆 .

• OSP.Rec(msg𝑆) → ( |𝜓⟩ ,msg𝑅). The QPT receiver takes as input the sender’s message msg𝑆 and
outputs its final state |𝜓⟩ and a message msg𝑅.
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• OSP.Dec(st𝑆 ,msg𝑅) → 𝑠. The PPT sender takes as input its state st𝑆 and the receiver’s message
msg𝑅, and produces its output bit 𝑠.

Sometimes, we will refer to the above definition as a chosen-input OSP, in order to distinguish
it from a random-input variant defined below, where the sender does not fix a choice of 𝑏 at the
beginning of the protocol.

Definition 4.2 (Random-Input Oblivious State Preparation). Random-input OSP is a protocol that
takes place between a PPT sender 𝑆 and a QPT receiver 𝑅:

((𝑠, 𝑏), |𝜓⟩)← ⟨𝑆(1𝜆), 𝑅(1𝜆)⟩,

where (𝑠, 𝑏) is the sender’s output and |𝜓⟩ is the receiver’s output. It should satisfy the following properties.

• Correctness. Let
ΠOSP :=

∑︁
𝑠,𝑏∈{0,1}

|𝑠, 𝑏⟩⟨𝑠, 𝑏| ⊗𝐻𝑏 |𝑠⟩⟨𝑠|𝐻𝑏.

Then
E
[︁
‖ΠOSP |𝑠, 𝑏⟩ |𝜓⟩ ‖ : ((𝑠, 𝑏), |𝜓⟩)← ⟨𝑆(1𝜆), 𝑅(1𝜆)⟩

]︁
= 1− negl(𝜆).

• Security. For any QPT adversary {Adv𝜆}𝜆∈N,⃒⃒⃒
Pr

[︁
𝑏Adv = 𝑏 : ((𝑠, 𝑏), 𝑏Adv)← ⟨𝑆(1𝜆),Adv𝜆⟩

]︁
− 1

2

⃒⃒⃒
= negl(𝜆).

Lemma 4.3. Random-input OSP implies (chosen-input) OSP.

Proof. To obtain chosen-input OSP with sender’s choice bit 𝑏, the parties begin by running a
random-input OSP, which (up to negligible trace distance) delivers output 𝐻𝑏′ |𝑠⟩ to the receiver
and (𝑠, 𝑏′) to the sender. The sender then sends the bit 𝑐 = 𝑏 ⊕ 𝑏′ to the receiver, and the receiver
applies𝐻𝑐 to its state to obtain𝐻𝑏 |𝑠⟩. Security follows from the security of the random-input OSP,
which guarantees that the bit 𝑏′ is unpredictable and thus that the bit 𝑐 = 𝑏⊕ 𝑏′ masks the sender’s
choice of 𝑏.

4.2 Claw-state generators

Next, we define (variants of) a claw-state generation (CSG) protocol, and show that CSG implies
OSP. Later, in section Section 6.5, we will show that in fact OSP implies CSG, meaning that these
notions are equivalent.

Definition 4.4 (Claw-State Generator). A claw-state generator (CSG) is a protocol that takes places
between a PPT sender 𝑆 and a QPT receiver 𝑅:

((𝑥0, 𝑥1, 𝑧), |𝜓⟩)← ⟨𝑆(1𝜆, 𝑛), 𝑅(1𝜆, 𝑛)⟩,

where the sender’s output consists of 𝑥0, 𝑥1 ∈ {0, 1}𝑛 and 𝑧 ∈ {0, 1}, and |𝜓⟩ is the receiver’s output. It
should satisfy the following notion of correctness, and, depending on the setting, it should also satisfy either
search security or indistinguishability security.
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• Correctness. Let

ΠCSG :=
∑︁

𝑥0 ̸=𝑥1∈{0,1}𝑛,𝑧∈{0,1}

|𝑥0, 𝑥1, 𝑧⟩⟨𝑥0, 𝑥1, 𝑧| ⊗
1

2
(|𝑥0⟩+ (−1)𝑧 |𝑥1⟩)(⟨𝑥0|+ (−1)𝑧 ⟨𝑥1|) .

Then

E
[︁
‖ΠCSG |𝑥0, 𝑥1, 𝑧⟩ |𝜓⟩ ‖ : ((𝑥0, 𝑥1, 𝑧), |𝜓⟩)← ⟨𝑆(1𝜆, 𝑛), 𝑅(1𝜆, 𝑛)⟩

]︁
= 1− negl(𝜆).

We say that the protocol has perfect correctness if the above probability is equal to 1.

• Search security. For any QPT adversary {Adv𝜆}𝜆∈N,

Pr
[︁
𝑥Adv = (𝑥0, 𝑥1) : ((𝑥0, 𝑥1, 𝑧), 𝑥Adv)← ⟨𝑆(1𝜆, 𝑛),Adv𝜆⟩

]︁
= negl(𝜆).

• Indistinguishability security. For any QPT adversary {Adv𝜆}𝜆∈N and any 𝑖 ∈ [𝑛],⃒⃒⃒
Pr

[︁
𝑏Adv = 𝑥0,𝑖 ⊕ 𝑥1,𝑖 : ((𝑥0, 𝑥1, 𝑧), 𝑏Adv)← ⟨𝑆(1𝜆, 𝑛),Adv𝜆⟩

]︁
− 1

2

⃒⃒⃒
= negl(𝜆).

We say that the protocol is a two-round CSG if it consists of just two messages: one from the sender
followed by one from the receiver. In this case, we use the following notation to describe the algorithms of
the protocol.

• CSG.Sen(1𝜆, 𝑛) → (msg𝑆 , st𝑆). The PPT sender takes as input the security parameter 1𝜆 and out-
puts a message msg𝑆 and state st𝑆 .

• CSG.Rec(msg𝑆) → ( |𝜓⟩ ,msg𝑅). The QPT receiver takes as input the sender’s message msg𝑆 and
outputs its final state |𝜓⟩ and a message msg𝑅.

• CSG.Dec(st𝑆 ,msg𝑅) → (𝑥0, 𝑥1, 𝑧). The PPT sender takes as input its state st𝑆 and the receiver’s
message msg𝑅, and produces its output (𝑥0, 𝑥1, 𝑧).

We also define a version of a claw-state generator where the honest receiver obtains 1√
2
(|0, 𝑥0⟩+

(−1)𝑧 |1, 𝑥1⟩), that is, where the two members of the claw are differentiated by the first bit.

Definition 4.5 (Differentiated-Bit Claw-State Generator). A differentiated-bit claw-state generator is
defined exactly like a claw-state generator except that the correctness property is stated as follows. Let

ΠDBCSG :=
∑︁

𝑥0 ̸=𝑥1∈{0,1}𝑛,𝑧∈{0,1}

|𝑥0, 𝑥1, 𝑧⟩⟨𝑥0, 𝑥1, 𝑧|⊗
1

2
(|0, 𝑥0⟩+ (−1)𝑧 |1, 𝑥1⟩)(⟨0, 𝑥0|+ (−1)𝑧 ⟨1, 𝑥1|) .

Then

E
[︁
‖ΠDBCSG |𝑥0, 𝑥1, 𝑧⟩ |𝜓⟩ ‖ : ((𝑥0, 𝑥1, 𝑧), |𝜓⟩)← ⟨𝑆(1𝜆, 𝑛), 𝑅(1𝜆, 𝑛)⟩

]︁
= 1− negl(𝜆).

It is straightforward to obtain a differentiated-bit CSG with search security from a (plain) CSG
with search security.
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Lemma 4.6. CSG with search security (Definition 4.4) implies differentiated-bit CSG with search security
(Definition 4.5).

Proof. The protocol for differentiated-bit CSG goes as follows. First, run a plain CSG. Then, the
sender samples a uniformly random 𝑦 conditioned on 𝑦 · 𝑥0 = 0 and 𝑦 · 𝑥1 = 1, and sends 𝑦 to the
receiver. Finally, the receiver applies the map

1√
2
(|𝑥0⟩+ (−1)𝑧 |𝑥1⟩)→

1√
2
(|𝑦 · 𝑥0, 𝑥0⟩+ (−1)𝑧 |𝑦 · 𝑥1, 𝑥1⟩ =

1√
2
(|0, 𝑥0⟩+ (−1)𝑧 |1, 𝑥1⟩).

Correctness is immediate, and security follows by reduction. In particular, the reduction to the
security of the CSG will run the adversary for differentiated-bit CSG, sample a truly uniform 𝑦
to feed to the adversary in the last round, and return the adversary’s guess 𝑥Adv. The 𝑦 will be
properly distributed with probability 1/2, and thus the reduction succeeds with probability at
least half that of the differentiated-bit CSG adversary.

Next, we prove that OSP follows from any CSG with search security.

Theorem 4.7. CSG with search security implies OSP.

Proof. We show how to use the differentiated-preimage variant of CSG to build a random-input
OSP, and then appeal to Lemma 4.6 to obtain differentiated-preimage CSG from CSG, and Lemma 4.3
to obtain (chosen-input) OSP from random-input OSP. The main idea is to use Goldreich-Levin,
similar to how it is used in [BGKM+23], in order to use a distinguisher for the OSP basis to obtain
a predictor for the claw-state. The protocol is given in Fig. 1.

OSP from CSG

• The sender 𝑆 and receiver𝑅 begin by running a differentiated-bit CSG, which delivers (𝑥0, 𝑥1, 𝑧)
to 𝑆 and (up to negligible trace distance) 1√

2
(|0, 𝑥0⟩+ (−1)𝑧 |1, 𝑥1⟩) to 𝑅, where 𝑥0, 𝑥1 ∈ {0, 1}𝑛

and 𝑧 ∈ {0, 1}.

• Next, 𝑆 samples 𝑟0, 𝑟1 ← {0, 1}𝑛 and sends them to 𝑅.

• Using 𝑟0, 𝑟1, the receiver 𝑅 applies the operation that maps

1√
2
(|0, 𝑥1⟩+ |1, 𝑥1⟩)→

1√
2
(|0, 𝑥0⟩ |𝑟0 · 𝑥0⟩+ (−1)𝑧 |1, 𝑥1⟩ |𝑟1 · 𝑥1⟩),

and then measures all but the last qubit in the Hadamard basis to obtain a string 𝑑 ∈ {0, 1}𝑛+1,
which it returns to 𝑆. 𝑅 outputs its remaining qubit.

• 𝑆 sets 𝑏 := (𝑥0, 𝑥1) · (𝑟0, 𝑟1). If 𝑏 = 0, then 𝑆 sets 𝑠 := 𝑥0 · 𝑟0 = 𝑥1 · 𝑟1. If 𝑏 = 1, then 𝑆 sets
𝑠 := 𝑧 ⊕ 𝑑 · (1, 𝑥0 ⊕ 𝑥1). 𝑆 outputs (𝑠, 𝑏).

Figure 1: Random-input OSP from any differentiated-bit claw-state generator.

First, we argue correctness. If the sender’s output is 𝑏 = (𝑥0, 𝑥1) · (𝑟0, 𝑟1) = 0 and 𝑠 = 𝑥0 · 𝑟0 =
𝑥1 · 𝑟1, then the receiver’s state before their final measurement is (negligibly close to)

1√
2
( |0, 𝑥0⟩+ (−1)𝑧 |1, 𝑥1⟩)⊗ |𝑠⟩ .
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So their Hadamard basis measurement has no effect on the last qubit, and their output state will
be |𝑠⟩ = 𝐻𝑏 |𝑠⟩.

Next, if the sender computes 𝑏 = (𝑥0, 𝑥1) · (𝑟0, 𝑟1) = 1, then the receiver’s state before their
final measurement is either (negligibly close to)

1√
2
( |0, 𝑥0⟩ |0⟩+ (−1)𝑧 |1, 𝑥1⟩ |1⟩) or

1√
2
( |0, 𝑥0⟩ |1⟩+ (−1)𝑧 |1, 𝑥1⟩ |0⟩) .

Either way, a standard calculation shows that if they measure all but their last qubit in the
Hadamard basis to obtain 𝑑, the last qubit becomes 𝑍𝑧⊕𝑑·(1,𝑥0⊕𝑥1) |+⟩ = 𝐻 |𝑠⟩, for 𝑠 = 𝑧 ⊕ 𝑑 ·
(1, 𝑥0 ⊕ 𝑥1).

Now, we establish security. Suppose there exists Adv = {Adv𝜆}𝜆∈N that has non-negl(𝜆) advan-
tage in the OSP security game. Then there must be some non-negl(𝜆) probability that, after Adv
and 𝑆 interact in the CSG protocol, Adv still has non-negl(𝜆) advantage conditioned on the interaction
so far.

That is, let |𝜓⟩ be the state of Adv𝜆 right after the conclusion of the CSG protocol, and define
𝐵 to be the routine that takes 𝑟0, 𝑟1 ∈ {0, 1}𝑛 as input, runs the remainder of Adv’s strategy using
state |𝜓⟩ and strings (𝑟0, 𝑟1), and outputs Adv𝜆’s guess for 𝑏. Then we have that

Pr
|𝜓⟩

[︂
E

𝑟0,𝑟1←{0,1}𝑛
[𝐵( |𝜓⟩ , (𝑟0, 𝑟1)) = (𝑥0, 𝑥1) · (𝑟0, 𝑟1)] =

1

2
+ non-negl(𝜆)

]︂
= non-negl(𝜆).

Now, we appeal to Lemma 3.2, which implies that there exists a 𝐵′ such that when 𝐵 has
non-negl(𝜆) advantage given advice state |𝜓⟩, 𝐵′( |𝜓⟩) has non-negl(𝜆) probability of outputting
(𝑥0, 𝑥1). But this yields an adversary that breaks the security of the CSG with non-negl(𝜆) proba-
bility, completing the proof.

4.3 OSP with generalized angle

Next, we consider a generalized notion of OSP, where the protocol is defined by any choice of two
(not necessarily mutually unbiased) single-qubit bases. By post-processing with an appropriate
rotation, we can without loss of generality consider one basis to be { |+⟩ , |−⟩} and the other to be
a rotated basis on the XY plane of the Bloch sphere. For example, by having the receiver apply
a Hadamard gate followed by a

√
𝑋 rotation to their state received as output from the protocol

described in Definition 4.1, we have that if 𝑏 = 0, the receiver obtains either |+⟩ or |−⟩ and if
𝑏 = 1, the receiver obtains either 1√

2
( |0⟩+ 𝑖 |1⟩) or 1√

2
( |0⟩ − 𝑖 |1⟩).

While this is an example of OSP with mutually unbiased bases (two bases at a maximum
angle), one can consider OSP with arbitrary angle between the chosen bases. For any angle 𝜃 ∈
[2𝜋], we define |+𝜃⟩ := 1√

2
( |0⟩+ 𝑒𝑖𝜃 |1⟩). Then, OSP with mutually unbiased bases corresponds to

OSP with basis { |+⟩ , 𝑍 |+⟩} or basis { |+𝜋/2⟩ , 𝑍 |+𝜋/2⟩}. For any 𝜖 ∈ (0, 1], we define 𝜖-OSP to be
an OSP with bases { |+⟩ , 𝑍 |+⟩} and { |+𝜖𝜋/2⟩ , 𝑍 |+𝜖𝜋/2⟩}, defined formally as follows.

Definition 4.8 (𝜖-OSP). An OSP with generalized angle, or 𝜖-OSP, is a protocol that takes place between
a PPT sender 𝑆 with input 𝑏 ∈ {0, 1} and a QPT receiver 𝑅:

(𝑠, |𝜓⟩)← ⟨𝑆(1𝜆, 𝑏), 𝑅(1𝜆)⟩,
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where 𝑠 ∈ {0, 1} is the sender’s output and |𝜓⟩ is the receiver’s output. It should satisfy the following
properties.

• Correctness. For any 𝑏 ∈ {0, 1}, let

Π𝜖-OSP,𝑏 :=
∑︁

𝑠∈{0,1}

|𝑠⟩⟨𝑠| ⊗ 𝑍𝑠 |+𝑏𝜖𝜋/2⟩⟨+𝑏𝜖𝜋/2|𝑍𝑠.

Then for any 𝑏 ∈ {0, 1},

E
[︁
‖Π𝜖-OSP,𝑏 |𝑠⟩ |𝜓⟩ ‖ : (𝑠, |𝜓⟩)← ⟨𝑆(1𝜆, 𝑏), 𝑅(1𝜆)⟩

]︁
= 1− negl(𝜆).

• Security. For any QPT adversary {Adv𝜆}𝜆∈N,⃒⃒⃒
Pr

[︁
𝑏Adv = 0 : (𝑠, 𝑏Adv)← ⟨𝑆(1𝜆, 0),Adv𝜆⟩

]︁
− Pr

[︁
𝑏Adv = 0 : (𝑠, 𝑏Adv)← ⟨𝑆(1𝜆, 1),Adv𝜆⟩

]︁ ⃒⃒⃒
= negl(𝜆).

In this work, we give constructions of “standard” OSP (with 𝜖 = 1), and focus on deriving
implications of this notion. However, it would be useful to know if this flavor of OSP is in some
sense the “minimal” OSP assumption, and more generally, how 𝜖-OSP relates for various choices
of 𝜖. While we do not fully resolve these questions in this work, we do show that 𝜖-OSP implies
OSP for many choices of 𝜖. In particular, we show the following claim.14

Claim 4.9. For any rational constant 𝜖 ∈ (0, 1] that can be written as 𝜖 = 𝑐/𝑑 where 𝑐 is an odd integer, it
holds that 𝜖-OSP implies OSP. In particular, for any constant 𝑛, 1/𝑛-OSP implies OSP.15

Proof. The main idea is to use the fact that given two states 𝑍𝑠1 |+𝜑1⟩ and 𝑍𝑠2 |+𝜑2⟩, it is possible
to produce the state 𝑍𝑠1⊕𝑠2 |+𝜑1+𝜑2⟩ with probability 1/2. That is, we can sum the angles of the
states using a procedure that succeeds with probability 1/2 (this procedure is used, for example,
in Kuperberg’s algorithm [Kup05]). This follows by simply applying a CNOT from the first to the
second state, and then measuring the second state in the standard basis. If the result is 0, the first
state is now 𝑍𝑠1⊕𝑠2 |+𝜑1+𝜑2⟩. To confirm this, we have

CNOT (𝑍𝑠1 |+𝜑1⟩ ⊗ 𝑍𝑠1 |+𝜑2⟩)

=
1

2
CNOT (𝑍𝑠1 ⊗ 𝑍𝑠2)

(︁
|0⟩+ 𝑒𝑖𝜑1 |1⟩

)︁(︁
|0⟩+ 𝑒𝑖𝜑2 |1⟩

)︁
=

1

2

(︀
𝑍𝑠1⊕𝑠2 ⊗ 𝑍𝑠2

)︀ (︁
|00⟩+ 𝑒𝑖𝜑2 |01⟩+ 𝑒𝑖𝜑1 |11⟩+ 𝑒𝑖(𝜑1+𝜑2) |10⟩

)︁
=

1

2

(︀
𝑍𝑠1⊕𝑠2 ⊗ 𝑍𝑠2

)︀ (︁(︁
|0⟩+ 𝑒𝑖(𝜑1+𝜑2) |1⟩

)︁
|0⟩+ 𝑒𝑖𝜑2

(︁
|0⟩+ 𝑒𝑖(𝜑1−𝜑2) |1⟩

)︁
|1⟩

)︁
=

1√
2
𝑍𝑠1⊕𝑠2 |+𝜑1+𝜑2⟩ |0⟩+

1√
2
𝑍𝑠2𝑒𝑖𝜑1 |+𝜑1−𝜑2⟩ |1⟩ .

14Ideally, we would like to show the implication for any rational 𝜖, but the current approach does not appear to work
for 𝜖 = even/odd.

15In fact, our proof shows that 𝜖-OSP implies OSP even for any inverse-polynomial 𝜖 = 1/poly(𝜆). Thus, OSP with
any small enough but still non-trivial angle implies standard OSP. We note that [DK16] has established similar results
in the information-theoretic setting.
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Now, for simplicity suppose that 𝑑 is a power of 2 (a similar procedure works for arbitrary 𝑑),
and let 𝜆 be the security parameter. Given input 𝑏 ∈ {0, 1}, the parties will run 8log 𝑑𝜆 = 𝑑3𝜆 =
poly(𝜆) many 𝜖-OSP protocols with sender input 𝑏. The receiver is now in possession of 8log 𝑑𝜆
many states (negligibly close to) 𝑍𝑠 |+𝑏𝜖𝜋/2⟩, each with potentially different 𝑠. The receiver now
runs a procedure to “sum” 𝑑 of them together. If 𝑏 = 0, this results in a state

𝑍𝑠
′ |+⟩ ∈ { |+⟩ , |−⟩} ,

whereas if 𝑏 = 1, this results in a state

𝑍𝑠
′ |+𝑑𝜖𝜋/2⟩ = 𝑍𝑠

′ |+𝑐𝜋/2⟩ ∈
{︀
|+𝜋/2⟩ , 𝑍 |+𝜋/2⟩

}︀
,

where the final inclusion uses the fact that 𝑐 is an odd integer, and 𝑠′ is the XOR of all the 𝑠
corresponding to states involved in the sum.

To obtain the desired sum, the receiver operates in layers. Given 8𝑘𝜆 pairs of states at angle
𝜑, the receiver splits them into 4𝑘𝜆 pairs of states, and applies the above CNOT-and-measure
procedure to each pair. The expected number of “successes” is 2𝑘𝜆, and by Chernoff, there will
be at least 𝑘𝜆 successes with all but negl(𝜆) probability. Thus, with all but negl(𝜆) probability, the
receiver obtains 𝑘𝜆 states at angle 2𝜑.

Now, starting with 8log 𝑑𝜆 many states at angle 𝜑 and operating for log 𝑑 layers, the receiver
will end up with 𝜆 ≥ 1 state at angle 2log 𝑑𝜑 = 𝑑𝜑. This establishes correctness of the OSP protocol.

Finally, security of the OSP protocol follows by a standard hybrid argument from the security
of the 𝜖-OSP protocol, which we have simply repeated 𝑑3𝜆 times.

We conclude this section by proving a natural structural lemma about OSP, and more gener-
ally 𝜖-OSP. It shows that in the honest case, the sender’s output 𝑠 must be (negligibly) close to
uniformly random for either choice of 𝑏 ∈ {0, 1}. That is, an honest run of 𝜖-OSP produces a
uniformly random eigenstate of the observable specified by 𝑏 (though we caution that this is no
longer necessarily true when the receiver is adversarial).

Lemma 4.10. For any 𝜖 ∈ (0, 1] such that 𝜖 ≥ 1/poly(𝜆), any secure 𝜖-OSP protocol, and any 𝑏 ∈ {0, 1},
it holds that ⃒⃒⃒

Pr
[︁
𝑠 = 0 : (𝑠, |𝜓⟩)← ⟨𝑆(1𝜆, 𝑏), 𝑅(1𝜆)⟩

]︁
− 1

2

⃒⃒⃒
= negl(𝜆).

Proof. Suppose otherwise, and without loss of generality suppose that when 𝑏 = 1, the probability
that 𝑠 = 0 is equal to 1/2 + 𝛿 for some 𝛿 = non-negl(𝜆) (the other cases are symmetric). We show
that this would contradict the security of the 𝜖-OSP. Consider an adversary Adv that participates as
an honest receiver, measures their final state in the 𝑌 basis { |+𝜋/2⟩ , 𝑍 |+𝜋/2⟩}, and guesses 𝑏 = 1
if they obtain outcome |+𝜋/2⟩. First note that, no matter what the distribution on 𝑠 is when 𝑏 = 0,
we have that ⃒⃒⃒

Pr[Adv = 1 : 𝑏 = 0]− 1

2

⃒⃒⃒
= negl(𝜆),

since measuring either the |+⟩ or |−⟩ state in the 𝑌 basis yields a uniformly random outcome.
Next, let

𝜖′ := cos2
(︁
(1− 𝜖)𝜋

4

)︁
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be the probability of obtaining outcome |+𝜋/2⟩ when measuring the state |+𝜖𝜋/2⟩ in the 𝑌 basis,
and note that 𝜖′ ≥ 1/2 + 1/poly(𝜆) whenever 𝜖 ≥ 1/poly(𝜆). Then to complete the proof, we have
that

Pr [Adv = 1 : 𝑏 = 1] ≥
(︂
1

2
+ 𝛿

)︂
𝜖′ +

(︂
1

2
− 𝛿

)︂
(1− 𝜖′)− negl(𝜆)

=
1

2
− 𝛿 + 2𝛿𝜖′ − negl(𝜆)

≥ 1

2
+

2𝛿

poly(𝜆)
− negl(𝜆)

=
1

2
+ non-negl(𝜆).

5 Constructions

In this section, we provide constructions of OSP from trapdoor claw-free functions (TCFs).
In Section 5.1, we show how to construct OSP from any (plain) TCF, meaning we assume

no extra properties such as dual-mode or adaptive hardcore bit. Moreover, all that we require
from the TCF is that there is some inverse-polynomial probability that an image has exactly two
preimages (which can be obtained efficiently using the trapdoor), and otherwise it can have 1 or 3
or more (as long as the trapdoor correctly identifies these as “bad” images).

In Section 5.2, we show how to obtain a two-round OSP by assuming an extra dual-mode prop-
erty of the TCF. A dual-mode TCF (dTCF) can be sampled in either a disjoint mode or lossy mode.
Again, we only assume that there is some inverse polynomial probability that an image has two
preimages in lossy mode, and we use the amplification lemma for dTCFs recently established by
[GV24] in order to show that such dTCFs still imply two-round OSP.

Before coming to the constructions, we provide definitions of TCFs.

Definition 5.1 (Trapdoor claw-free function). A trapdoor claw-free function (TCF) consists of a PPT
parameter generation algorithm Gen(1𝜆)→ pp, sp and a keyed family of PPT computable functions{︂{︁

𝐹pp : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)
}︁
(pp,·)∈Gen(1𝜆)

}︂
𝜆∈N

.

There exists a family of distributions {︁
{𝒟pp}(pp,·)∈Gen(1𝜆)

}︁
𝜆∈N

over {0, 1}𝑛(𝜆) and a PPT algorithm Invert(sp, 𝑦) such that the following properties are satisfied.

• Efficient state preparation. There is a QPT algorithm that, given any (pp, ·) ∈ Gen(1𝜆), outputs
a state within negligible trace distance of the state

|𝜓pp⟩ :=
∑︁

𝑥∈{0,1}𝑛(𝜆)

√︁
𝒟pp(𝑥) |𝑥⟩ .
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• Efficient inversion. For any (pp, ·) ∈ Gen(1𝜆), let Claw𝜆 ⊆ {0, 1}𝑚(𝜆) be the set of 𝑦 ∈ {0, 1}𝑚(𝜆)

such that there exists exactly two 𝑥0, 𝑥1 ∈ {0, 1}𝑛(𝜆) such that 𝐹pp(𝑥0) = 𝐹pp(𝑥1) = 𝑦, and⃒⃒⃒ 𝒟pp(𝑥0)

𝒟pp(𝑥0) +𝒟pp(𝑥1)
− 𝒟pp(𝑥1)

𝒟pp(𝑥0) +𝒟pp(𝑥1)

⃒⃒⃒
= negl(𝜆).

Then there exists 𝛿(𝜆) = 1/poly(𝜆) such that

Pr

⎡⎢⎢⎣𝐹pp(𝑥0) = 𝐹pp(𝑥1) = 𝑦 :

(pp, sp)← Gen(1𝜆)
𝑥← 𝒟pp

𝑦 := 𝐹pp(𝑥)
{𝑥0, 𝑥1} ← Invert(sp, 𝑦)

⎤⎥⎥⎦ ≥ 𝛿(𝜆),
and for all 𝑦 /∈ Claw𝜆, Invert(sp, 𝑦) = ⊥.

• Claw-free. For any QPT adversary {Adv𝜆}𝜆∈N,

Pr

[︂
𝐹pp(𝑥0) = 𝐹pp(𝑥1) :

(pp, sp)← Gen(1𝜆)
{𝑥0, 𝑥1} ← Adv𝜆(pp)

]︂
= negl(𝜆).

Next, we define a dual-mode variant of TCFs.

Definition 5.2 (Dual-mode trapdoor claw-free function). A dual-mode trapdoor claw-free function
(dTCF) consists of a PPT parameter generation algorithm Gen(1𝜆, 𝜇)→ pp, sp that takes as input a “mode”
bit 𝜇 ∈ {0, 1}, and a keyed family of PPT computable functions16{︂{︁

𝐹pp : {0, 1} × {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)
}︁
(pp,·)∈Gen(1𝜆,𝜇)

}︂
𝜇∈{0,1},𝜆∈N

.

There exists a family of distributions{︁
{𝒟pp}(pp,·)∈Gen(1𝜆,𝜇)

}︁
𝜇∈{0,1},𝜆∈N

over {0, 1}𝑛(𝜆) and a PPT algorithm Invert(sp, 𝑏, 𝑦) such that the following properties are satisfied.

• Efficient state preparation. There is a QPT algorithm that, given any (pp, ·) ∈ Gen(1𝜆, 𝜇), outputs
a state within negligible trace distance of the state

|𝜓pp⟩ :=
∑︁

𝑥∈{0,1}𝑛(𝜆)

√︁
𝒟pp(𝑥) |𝑥⟩ .

• Efficient inversion. For any 𝜇 ∈ {0, 1} and 𝑏 ∈ {0, 1},17

Pr

⎡⎣Invert(sp, 𝑏, 𝑦) = 𝑥 :
(pp, sp)← Gen(1𝜆, 𝜇)

𝑥← 𝒟pp

𝑦 := 𝐹pp(𝑏, 𝑥)

⎤⎦ = 1− negl(𝜆).

16Notice that, as compared to plain TCFs, dual-mode TCFs take an extra bit of input. We will require that each claw
has one preimage that starts with 0 and one that starts with 1, which is important for the amplification lemma of [GV24].

17Note that this property implies that with overwhelming probability over (pp, sp)← Gen(1𝜆, 𝜇) and 𝑥← 𝒟pp, 𝑥 has
no siblings 𝑥′ such that 𝐹pp(𝑏, 𝑥) = 𝐹pp(𝑏, 𝑥

′). That is, 𝐹pp(0, ·) and 𝐹pp(1, ·) are effectively injective.
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• Dual-mode.

– Disjoint mode (𝜇 = 0): For any 𝑏 ∈ {0, 1},

Pr

⎡⎣∃𝑥′ s.t. 𝐹pp(1− 𝑏, 𝑥′) = 𝑦 :
(pp, sp)← Gen(1𝜆, 0)

𝑥← 𝒟pp

𝑦 := 𝐹pp(𝑏, 𝑥)

⎤⎦ = negl(𝜆).

– Lossy mode (𝜇 = 1): There exists 𝛿(𝜆) = 1/poly(𝜆) such that for any 𝑏 ∈ {0, 1},

Pr

⎡⎣ ∃𝑥′ s.t. 𝐹pp(1− 𝑏, 𝑥′) = 𝑦 :
(pp, sp)← Gen(1𝜆, 1)

𝑥← 𝒟pp

𝑦 := 𝐹pp(𝑏, 𝑥)

⎤⎦ ≥ 𝛿(𝜆),
and for any 𝜈(𝜆) = non-negl(𝜆),

Pr

⎡⎣ ∃𝑥′ s.t. 𝐹pp(1− 𝑏, 𝑥′) = 𝑦

∧
⃒⃒⃒

𝒟pp(𝑥)
𝒟pp(𝑥)+𝒟pp(𝑥′)

− 𝒟pp(𝑥′)
𝒟pp(𝑥)+𝒟pp(𝑥′)

⃒⃒⃒
≥ 𝜈(𝜆) :

(pp, sp)← Gen(1𝜆, 1)
𝑥← 𝒟pp

𝑦 := 𝐹pp(𝑏, 𝑥)

⎤⎦ = negl(𝜆),

where this last requirement enforces that there are (effectively) no “unbalanced” claws.

• Mode indistinguishability. For any QPT adversary {Adv𝜆}𝜆∈N,⃒⃒⃒
Pr

[︁
Adv𝜆(pp) = 1 : (pp, sp)← Gen(1𝜆, 0)

]︁
−Pr

[︁
Adv𝜆(pp) = 1 : (pp, sp)← Gen(1𝜆, 1)

]︁ ⃒⃒⃒
= negl(𝜆).

Remark 5.3. Dual-mode (and thus plain) TCFs are known from LWE [BCM+18] (even with polynomial
modulus-to-noise ratio, since we can take 𝛿 = 1 − 1/poly) and from the “extended linear hidden shift”
assumption on cryptographic group actions [AMR22, GV24].

5.1 OSP from plain TCFs

Theorem 5.4. Any TCF satisfying Definition 5.1 implies OSP (Definition 4.1).

Proof. This follows fairly immediately by using the TCF to construct a claw-state generator (Defi-
nition 4.4), and then appealing to Theorem 4.7, which shows how to construct OSP from any CSG.
Let 𝛿 = 𝛿(𝜆) be the parameter from the efficient inversion property of the TCF. Then the CSG is
constructed as follows.

• 𝑆 samples (sp, pp)← Gen(1𝜆) and sends pp to 𝑅.

• Run the following at most 𝜆/𝛿 times. If the protocol has not terminated at that point, 𝑅
outputs ⊥, and 𝑆 samples 𝑥0, 𝑥1 ← {0, 1}𝑛 and outputs (𝑥0, 𝑥1, 0).

– 𝑅 prepares a state within negligible trace distance of |𝜓pp⟩, applies 𝐹pp in superposition
to a fresh register, and measures that register to obtain 𝑦.

– 𝑅 sends 𝑦 to 𝑆. If Invert(sp, 𝑦) = {𝑥0, 𝑥1}, 𝑆 outputs (𝑥0, 𝑥1, 0), instructs 𝑅 to terminate,
and 𝑅 outputs its state. Otherwise, if Invert(sp, 𝑦) = ⊥, 𝑆 instructs 𝑅 to repeat.
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Correctness of the CSG follows first by noting that the probability that the parties never con-
tinue from the loop is at most (1 − 𝛿)𝜆/𝛿 ≤ 𝑒−𝜆 = negl(𝜆). Then, when Invert(sp, 𝑦) = {𝑥0, 𝑥1},
we know that 𝑅’s state is negligibly close to 1√

2
(|𝑥0⟩+ |𝑥1⟩), by the efficient state preparation and

efficient inversion properties of the TCF.
To show security of the CSG, first note that any adversary with noticeable probability of guess-

ing 𝑆’s output (𝑥0, 𝑥1) must cause 𝑆 to terminate at some point during the loop, since otherwise
(𝑥0, 𝑥1) is uniformly random and independent of their view. Then, consider the following re-
duction to the claw-freeness of the TCF. The reduction receives pp from its challenger, samples
a random round 𝑖 ← [𝜆/𝛿], runs the adversary and instructs them to terminate on the 𝑖’th in-
vocation of the loop, and returns the adversary’s guess for (𝑥0, 𝑥1). With probability at least
1/(𝜆/𝛿) = 1/poly(𝜆), this matches the adversary’s view in the real protocol, which means that
the reduction has a noticeable probability of outputting a claw (𝑥0, 𝑥1).

5.2 Two-round OSP from dual-mode TCFs

In [GV24], it is shown that any dTCF satisfying Definition 5.2 (i.e. with any 𝛿 = 1/poly(𝜆)) implies
the following variant of dTCF with a phase computation property that succeeds with all but negligi-
ble probability. Note that we also relax the inversion property to a partial inversion property, which
only requires that the first bit 𝑏 of the preimage be recovered. This allows for the possibility that
the functions 𝐹pp(0, ·) and 𝐹pp(1, ·) are non-injective.

Definition 5.5 (dTCF with efficient phase computation). A dTCF with efficient phase computation
consists of a PPT parameter generation algorithm Gen(1𝜆, 𝜇) → pp, sp that takes as input a “mode” bit
𝜇 ∈ {0, 1}, and a keyed family of PPT computable functions{︂{︁

𝐹pp : {0, 1} × {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)
}︁
(pp,·)∈Gen(1𝜆,𝜇)

}︂
𝜇∈{0,1},𝜆∈N

.

There exists a family of distributions{︁
{𝒟pp}(pp,·)∈Gen(1𝜆,𝜇)

}︁
𝜇∈{0,1},𝜆∈N

over {0, 1}𝑛(𝜆) and PPT algorithms PartialInvert(sp, 𝑦) and PhaseInvert(sp, 𝑦, 𝑑) such that the following
properties are satisfied.

• Efficient state preparation. There is a QPT algorithm that, given any (pp, ·) ∈ Gen(1𝜆, 𝜇), outputs
a state within negligible trace distance of the state

|𝜓pp⟩ :=
∑︁

𝑥∈{0,1}𝑛(𝜆)

√︁
𝒟pp(𝑥) |𝑥⟩ .

• Efficient partial inversion. For any 𝜇 ∈ {0, 1},

Pr

⎡⎢⎢⎣𝐵 = {𝑏 : ∃𝑥 s.t. 𝐹pp(𝑏, 𝑥) = 𝑦} :

(pp, sp)← Gen(1𝜆, 𝜇)
𝑥← 𝒟pp

𝑦 := 𝐹pp(𝑏, 𝑥)
𝐵 ← PartialInvert(sp, 𝑦)

⎤⎥⎥⎦ = 1− negl(𝜆).
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• Dual-mode.

– Disjoint mode (𝜇 = 0): For any 𝑏 ∈ {0, 1},

Pr

⎡⎣∃𝑥′ s.t. 𝐹pp(1− 𝑏, 𝑥′) = 𝑦 :
(pp, sp)← Gen(1𝜆, 0)

𝑥← 𝒟pp

𝑦 := 𝐹pp(𝑏, 𝑥)

⎤⎦ = negl(𝜆).

– Lossy mode (𝜇 = 1): For any (pp, ·) ∈ Gen(1𝜆, 1), 𝑦 ∈ {0, 1}𝑚(𝜆), and 𝑑 ∈ {0, 1}𝑛(𝜆), define

𝑤pp,𝑦,𝑑,0 :=
∑︁

𝑥:𝐹pp(0,𝑥)=𝑦

(−1)𝑑·𝑥
√︁
𝒟pp(𝑥), 𝑤pp,𝑦,𝑑,1 :=

∑︁
𝑥:𝐹pp(1,𝑥)=𝑦

(−1)𝑑·𝑥
√︁
𝒟pp(𝑥),

and re-normalize

̃︀𝑤pp,𝑦,𝑑,0 :=
𝑤pp,𝑦,𝑑,0√︁

𝑤2
pp,𝑦,𝑑,0 + 𝑤2

pp,𝑦,𝑑,1

, ̃︀𝑤pp,𝑦,𝑑,1 :=
𝑤pp,𝑦,𝑑,1√︁

𝑤2
pp,𝑦,𝑑,0 + 𝑤2

pp,𝑦,𝑑,1

.

Then for any 𝑑 ∈ {0, 1}𝑛(𝜆), there exists 𝜈(𝜆) = negl(𝜆) such that

Pr

⎡⎢⎢⎢⎢⎣
⃒⃒⃒ ̃︀𝑤pp,𝑦,𝑑,0 − (−1)𝑠 ̃︀𝑤pp,𝑦,𝑑,1

⃒⃒⃒
≤ 𝜈(𝜆) :

(pp, sp)← Gen(1𝜆, 1)
𝑏← {0, 1}
𝑥← 𝒟pp

𝑦 := 𝐹pp(𝑏, 𝑥)
𝑠← PhaseInvert(sp, 𝑦, 𝑑)

⎤⎥⎥⎥⎥⎦ = 1− negl(𝜆).

• Mode indistinguishability. For any QPT adversary {Adv𝜆}𝜆∈N,⃒⃒⃒
Pr

[︁
Adv𝜆(pp) = 1 : (pp, sp)← Gen(1𝜆, 0)

]︁
−Pr

[︁
Adv𝜆(pp) = 1 : (pp, sp)← Gen(1𝜆, 1)

]︁ ⃒⃒⃒
= negl(𝜆).

Lemma 5.6 ([GV24], Amplication for dTCFs). Any dTCF satisfying Definition 5.2 implies a dTCF with
efficient phase computation (Definition 5.5).18

Now, we show how to construct OSP from any dTCF satisfying Definition 5.5.

Theorem 5.7. Any dTCF with efficient phase computation (Definition 5.5) implies two-round OSP.

Proof. The construction is given in Fig. 2. Security follows immediately from the mode indistin-
guishability property of the dTCF, so it remains to argue correctness.

In the case that 𝑏 = 0, the efficient partial inversion and disjoint mode properties of the dTCF
imply that with all but negligible probability, (1) all of 𝑦’s preimages begin with the same bit 𝑠,
and thus the receiver’s state on ℬ collapses to a standard basis state |𝑠⟩, and (2) the PartialInvert
algorithm will return this 𝑠 given (sp, 𝑦), so the sender will obtain the correct description of the
receiver’s state.

18Technically, [GV24] assume that the dTCF input to their amplification lemma has claws that are perfectly balanced,
as opposed to almost perfectly balanced, but it can be confirmed that their amplification lemma holds even when the
claws are 1− negl(𝜆) balanced.
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In the case that 𝑏 = 1, the receiver’s state after measuring 𝑦 is

∝
∑︁

𝑥:𝐹pp(0,𝑥)=𝑦

√︁
𝒟pp(𝑥) |0⟩ℬ |𝑥⟩𝒳 +

∑︁
𝑥:𝐹pp(1,𝑥)=𝑦

√︁
𝒟pp(𝑥) |1⟩ℬ |𝑥⟩𝒳 .

Thus, after measuring 𝒳 in the Hadamard basis to obtain 𝑑, the state collapses to a state

∝
∑︁

𝑥:𝐹pp(0,𝑥)=𝑦

(−1)𝑑·𝑥
√︁
𝒟pp(𝑥) |0⟩+

∑︁
𝑥:𝐹pp(1,𝑥)=𝑦

(−1)𝑑·𝑥
√︁
𝒟pp(𝑥) |1⟩ = 𝑤pp,𝑦,𝑑,0 |0⟩+ 𝑤pp,𝑦,𝑑,1 |1⟩ ,

which after normalizing, is equal to

̃︀𝑤pp,𝑦,𝑑,0 |0⟩+ ̃︀𝑤pp,𝑦,𝑑,1 |1⟩ .

The efficient phase computation property implies that with all but negligible probability, the
sender outputs 𝑠 such that | ̃︀𝑤pp,𝑦,𝑑,0 = (−1)𝑠 ̃︀𝑤pp,𝑦,𝑑,1| = negl(𝜆), in which case the receiver’s state
is negligibly close to 𝑍𝑠 |+⟩. This completes the proof.

Two-round OSP from dTCF

• OSP.Sen(1𝜆, 𝑏): Sample (pp, sp)← Gen(1𝜆, 𝑏), and define msg𝑆 := pp, and st𝑆 := sp.

• OSP.Rec(msg𝑆): Prepare a state within negligible trace distance of |+⟩ℬ |𝜓pp⟩𝒳 , apply 𝐹pp in
superposition to a fresh register, and measure that register to obtain 𝑦. Then, measure register
𝒳 in the Hadamard basis to obtain 𝑑 ∈ {0, 1}𝑛. Finally, output the remaining qubit on register
ℬ and set msg𝑅 := (𝑦, 𝑑).

• OSP.Dec(st𝑆 ,msg𝑅):

– If 𝑏 = 0, compute 𝑠← PartialInvert(sp, 𝑦), and output 𝑠.

– If 𝑏 = 1, compute 𝑠← PhaseInvert(sp, 𝑦, 𝑑), and output 𝑠.

Figure 2: A consruction of two-round OSP from any dTCF with efficient phase computation
(Definition 5.5), which is known from any dTCF (Definition 5.2).

6 Applications

In this section, we move to the applications of OSP, establishing the following results.

• Section 6.1: OSP implies proofs of quantumness (as well as a “test of a qubit” and certifiable
randomness).

• Section 6.2: Two-round OSP implies 1-of-2 puzzles, which previous work has shown implies
(privately-verifiable) quantum money with classical communication, and position verifica-
tion with classical communication.

• Section 6.3: OSP implies blind classical delegation of quantum computation.
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• Section 6.4: Blind classical delegation generically implies verifiable classical delegation, so
we can conclude that OSP implies verifiable classical delegation.

• Section 6.5: (Two-round) OSP implies (two-round) encrypted CNOT, which yields claw-state
generators with indistinguishability security and (additionally assuming classical FHE with
log-depth decryption) quantum FHE.

6.1 Proofs of quantumness

Definition 6.1 (Proof of quantumness). A proof of quantumness protocol is an interaction between a
QPT prover and a PPT verifier

{⊤,⊥} ← ⟨𝑃 (1𝜆), 𝑉 (1𝜆)⟩,

where {⊤,⊥} is the output of the verifier. There exists 𝜖(𝜆), 𝛿(𝜆) with 𝜖(𝜆)− 𝛿(𝜆) = 1/poly(𝜆) such that
the following properties hold.

• Completeness.
Pr

[︁
⊤ ← ⟨𝑃 (1𝜆), 𝑉 (1𝜆)⟩

]︁
≥ 𝜖(𝜆).

• Soundness. For any PPT adversary {Adv𝜆}𝜆∈N,

Pr
[︁
⊤ ← ⟨Adv𝜆, 𝑉 (1𝜆)⟩

]︁
≤ 𝛿(𝜆) + negl(𝜆).

Theorem 6.2. OSP (Definition 4.1) implies a proof of quantumness (Definition 6.1).

Proof. We describe the protocol in Fig. 3. The construction and proof follow the presentation in
[ABCC24], which is based on ideas originated in [KMCVY21].

Proof of quantumness from OSP

• The verifier samples 𝑟 ← {0, 1} and acts as the sender in an OSP with the prover. The verifier
receives a bit 𝑠 and the prover receives a state (negligibly close to) 𝐻𝑟 |𝑠⟩.

• The verifier samples 𝑎← {0, 1} and sends 𝑎 to the prover.

• If 𝑎 = 0, the prover measures their state in the 𝑋 + 𝑍 basis, and if 𝑎 = 1, the prover measures
their state in the 𝑋 − 𝑍 basis, to obtain a bit 𝑏. The prover sends 𝑏 to the verifier.

• The verifier accepts if 𝑏 = 𝑠⊕ 𝑟 · 𝑎.

Figure 3: Proof of quantumness from OSP.

First we show that the protocol has completeness 𝜖 > 0.85. By applying gentle measure-
ment (Lemma 3.1), we can take the prover’s state at the conclusion of the OSP protocol to be
exactly 𝐻𝑟 |𝑠⟩, and only lose a negl(𝜆) factor in the final bound. By a standard calculation, mea-
suring 𝐻𝑟 |𝑠⟩ in the X+Z basis yields 𝑠 with probability cos2(𝜋/8), and measuring 𝐻𝑟 |𝑠⟩ in the X-Z
basis yields 𝑠 ⊕ 𝑟 with probability cos2(𝜋/8). Thus, the verifier accepts with probabilty at least
cos2(𝜋/8)− negl(𝜆) > 0.85.
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Now, we show that the protocol has soundness 𝛿 = 0.75. To see this, suppose a PPT prover
Adv = {Adv𝜆}𝜆∈N has advantage 0.75 + non-negl(𝜆) in the protocol. Now consider the following
procedure Adv′ attacking the security of the OSP protocol.

• Interact as Adv in the OSP protocol and let stAdv be the state of Adv at the conclusion of the
OSP protocol.

• Run Adv(stAdv, 0)→ 𝑏0 and Adv(stAdv, 1)→ 𝑏1 to obtain a final-round answer on each possi-
ble question 𝑎 ∈ {0, 1} from the verifier.

• Output 𝑏0 ⊕ 𝑏1 as the guess for 𝑟.

Let 𝐷 be the distribution over (stAdv, 𝑟, 𝑠) that results from running the OSP protocol with Adv
on a random input 𝑟, and defining 𝑠 to be the sender’s output. For any (stAdv, 𝑟, 𝑠) in the support
of 𝐷 and any 𝑎 ∈ {0, 1}, define 𝑝stAdv,𝑟,𝑠[𝑎] := Pr[Adv(stAdv, 𝑎) = 𝑠⊕ 𝑟 · 𝑎].

Then we have that

Pr
[︀
Adv′ = 𝑟

]︀
≥ E

(stAdv,𝑟,𝑠)←𝐷
[𝑝stAdv,𝑟,𝑠[0] · 𝑝stAdv,𝑟,𝑠[1]]

≥ E
(stAdv,𝑟,𝑠)←𝐷

[𝑝stAdv,𝑟,𝑠[0] + 𝑝stAdv,𝑟,𝑠[1]− 1]

= 2 E
(stAdv,𝑟,𝑠)←𝐷

[︂
1

2
(𝑝stAdv,𝑟,𝑠[0] + 𝑝stAdv,𝑟,𝑠[1])

]︂
− 1

= 2(0.75 + non-negl(𝜆))− 1

= 0.5 + non-negl(𝜆),

where the second inequality follows from the fact that 𝑥 · 𝑦 ≥ 𝑥+ 𝑦− 1 for any 𝑥, 𝑦 ∈ [0, 1], and
the second equality follows from the fact that

E
(stAdv,𝑟,𝑠)←𝐷

[︂
1

2
(𝑝stAdv,𝑟,𝑠[0] + 𝑝stAdv,𝑟,𝑠[1])

]︂
is exactly Adv’s advantage in the proof of quantumness. This yields a contradiction to the security
of OSP, completing the proof.

To conclude this section, we note that Fig. 3 fits the protocol template from [BGKM+23, Fig-
ure 1] (unsurprisingly, since it is essentially a more modular presentation of the protocol from
[BGKM+23, Section 5.3]), and thus inherits the results established by [BGKM+23] about this class
of proof of quantumness protocols. In particular it implies (1) a “test of a qubit” ([BGKM+23,
Theorem 4.7]), meaning that any quantum prover with advantage close to cos2(𝜋/8) must be using
(close to) anti-commuting operators in the final round, and (2) the ability to generate certifiable
randomness from a quantum prover. We refer the reader to [BCM+18, BGKM+23, Vid20, MAF23]
for formal definitions and more discussion on the notions of test of a qubit and certifiable ran-
domness. We stress that, in general, proofs of quantumness (e.g. Shor’s algorithm [Sho97] and
Yamakawa-Zhandry [YZ24]) do not always imply a test of a qubit, but our OSP-based proof of
quantumness does since it fits the template described in [BGKM+23].
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6.2 1-of-2 puzzles

Next, we show that two-round OSP implies a 1-of-2 puzzle, which was originally defined by [RS19].
In words, a 1-of-2 puzzle is a task with two challenges such that a prover can answer either but
not both simultaneously. It is a useful abstraction, as it has been shown to imply both privately-
verifiable quantum money [RS19] and position verification with classical communication [LLQ22].
We begin by providing the definition.

Definition 6.3 (1-of-2 puzzle [RS19]). A 1-of-2 puzzle consists of four algorithms with the following
syntax.

• KeyGen(1𝜆)→ (pk, vk). The PPT key generation algorithm takes as input the security parameter 1𝜆

and outputs a public key pk and a secret verification key vk.

• Obligate(pk) → (|𝜓⟩ , 𝑦): The QPT obligate algorithm takes as input the public key, and outputs a
classical obligation string 𝑦 and a quantum state |𝜓⟩.

• Solve(|𝜓⟩ , 𝑏) → 𝑎: The QPT solve algorithm takes as input a state |𝜓⟩ and a bit 𝑏 ∈ {0, 1} and
outputs a string 𝑎.

• Ver(vk, 𝑦, 𝑏, 𝑎) → {⊤,⊥}: The PPT verify algorithm takes as input the verification key vk, a string
𝑦, a bit 𝑏 ∈ {0, 1}, and a string 𝑎, and either accepts or rejects.

We say the puzzle is an 𝜖(𝜆)-1-of-2 puzzle if it satisfies the following properties.

• Completeness.

Pr

⎡⎢⎢⎣⊤ ← Ver(vk, 𝑦, 𝑏, 𝑎) :

(pk, vk)← KeyGen(1𝜆)
(|𝜓⟩ , 𝑦)← Obligate(pk)

𝑏← {0, 1}
𝑎← Solve(|𝜓⟩ , 𝑏)

⎤⎥⎥⎦ = 1− negl(𝜆).

• Soundness. For any QPT adversary {Adv𝜆}𝜆∈N,

Pr

[︂
⊤ ← Ver(vk, 𝑦, 0, 𝑎0) ∧ ⊤ ← Ver(vk, 𝑦, 1, 𝑎1) :

(pk, vk)← KeyGen(1𝜆)
(𝑦, 𝑎0, 𝑎1)← Adv𝜆(pk)

]︂
≤ 𝜖(𝜆)+negl(𝜆).

We call a 1-of-2 puzzle strong if 𝜖 = 0, and note the following amplification theorem due to
[RS19]. We will then construct an 𝜖-1-of-2 puzzle for 𝜖 = 0.5 from OSP, which gives a strong 1-of-2
puzzle as a corollary.

Theorem 6.4 ([RS19]). For any 𝜖 = 1− 1/poly(𝜆), an 𝜖-1-of-2 puzzle implies a strong 1-of-2 puzzle.

Theorem 6.5. Two-round OSP (Definition 4.1) implies an 𝜖-1-of-2 puzzle (Definition 6.3) for 𝜖 = 0.5.

Proof. Let (OSP.Sen,OSP.Rec,OSP.Dec) be any two-round OSP protocol (see Definition 4.1). We
define the 1-of-2 puzzle as follows.

• KeyGen(1𝜆): Sample 𝑟 ← {0, 1} and for 𝑖 ∈ [𝜆], sample (msg𝑆,𝑖, st𝑆,𝑖) ← OSP.Sen(1𝜆, 𝑟).
Define pk := (msg𝑆,1, . . . ,msg𝑆,𝜆) and vk := (st𝑆,1, . . . , st𝑆,𝜆).
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• Obligate(pk): For each 𝑖 ∈ [𝜆], run (|𝜓𝑖⟩ ,msg𝑅,𝑖)← OSP.Rec(msg𝑆,𝑖). Define |𝜓⟩ := (|𝜓1⟩ , . . . , |𝜓𝜆⟩)
and 𝑦 := (msg𝑅,1, . . . ,msg𝑅,𝜆).

• Solve(|𝜓⟩ , 𝑏): If 𝑏 = 0, measure each |𝜓𝑅,𝑖⟩ in the 𝑋 + 𝑍 basis and if 𝑏 = 1, measure each
|𝜓𝑅,𝑖⟩ in the 𝑋 − 𝑍 basis. This results in a string 𝑎 ∈ {0, 1}𝜆.

• Ver(vk, 𝑦, 𝑏, 𝑎): For each 𝑖 ∈ [𝜆], set 𝑠𝑖 := OSP.Dec(st𝑆𝑖 ,msg𝑅,𝑖), define 𝑠 := (𝑠1, . . . , 𝑠𝜆), and
define 𝑠 ⊕ 𝑟 := (𝑠1 ⊕ 𝑟, . . . , 𝑠𝜆 ⊕ 𝑟). If 𝑏 = 0, accept iff Δ(𝑎, 𝑠) ≥ 0.85 and if 𝑏 = 1, accept iff
Δ(𝑎, 𝑠⊕ 𝑟) ≥ 0.85.

A standard calculation shows that for each 𝑖 ∈ [𝜆], Pr[𝑎𝑖 = 𝑠𝑖] = cos2(𝜋/8) > 0.85 if 𝑏 = 0 and
Pr[𝑎𝑖 = 𝑠𝑖 ⊕ 𝑟] = cos2(𝜋/8) > 0.85 if 𝑏 = 1. Moreover, for each 𝑏 ∈ {0, 1}, these 𝜆 events are inde-
pendent. Thus, by a standard tail bound, for each 𝑏 ∈ {0, 1}we have that Pr[Ver(vk, 𝑦, 𝑏, 𝑎) = ⊤] =
1− negl(𝜆).

Now, suppose towards contradiction that there exists a QPT Adv = {Adv𝜆}𝜆∈N such that

Pr

[︂
⊤ ← Ver(vk, 𝑦, 0, 𝑎0)
∧ ⊤ ← Ver(vk, 𝑦, 1, 𝑎1)

:
(pk, vk)← KeyGen(1𝜆)
(𝑦, 𝑎0, 𝑎1)← Adv𝜆(pk)

]︂
=

1

2
+ non-negl(𝜆).

This implies that with probability 1/2 + non-negl(𝜆), the majority bit in 𝑎0 ⊕ 𝑎1 is equal to 𝑟.
However, by a standard hybrid argument, the security of the two-round OSP implies that 𝑟 cannot
be predicted with better than negl(𝜆) advantage, a contradiction.

Corollary 6.6. Two-round OSP implies a strong 1-of-2 puzzle.

In turn, we obtain the following results as corollaries from prior work.

• [RS19]: Two-round OSP implies privately-verifiable quantum money with classical commu-
nication.

• [LLQ22]: Two-round OSP implies position verification with classical communication.

6.3 Blind delegation

We first give a very general definition for blind delegation of quantum computation with a classi-
cal client. It allows the client to delegate the computation of an arbitrary publicly-known quantum
operation that takes a quantum input (provided by the server, and potentially entangled with an
auxiliary system held by the server) and a private classical input (chosen by the client). After in-
teraction, the server is able to obtain the (potentially quantum) output up to a one-time pad with
keys known to the client.

Definition 6.7 (Blind Classical Delegation of Quantum Computation). Letℋ𝒱 ,ℋ𝒲 be Hilbert spaces
of arbitrary dimension, and let 𝑄 : {0, 1}*×ℋ𝒱 → ℋ𝒲 be a polynomial-size quantum circuit that takes as
input a classical string 𝑥 and a state on register 𝒱 , and outputs a state on register𝒲 . A protocol for blind
classical delegation of quantum computation consists of an interaction

(𝒲, (𝑟, 𝑠))← ⟨𝑆(1𝜆, 𝑄,𝒱), 𝐶(1𝜆, 𝑄, 𝑥)⟩

between
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• a QPT server 𝑆(1𝜆, 𝑄,𝒱) with input the security parameter 1𝜆, circuit 𝑄, and state on register 𝒱 ,
and

• a PPT client 𝐶(1𝜆, 𝑄, 𝑥) with input the security parameter 1𝜆, circuit 𝑄, and classical string 𝑥.

At the end of the interaction, the server outputs a state on register 𝒲 and the client outputs classical
strings (𝑟, 𝑠). The protocol must satisfy the following properties.

• Correctness. For any circuit 𝑄 and input 𝑥, let IDEAL[𝑄, 𝑥] be the map from 𝒱 → 𝒲 defined by
𝑄(𝑥, ·), and let REAL[𝑄, 𝑥]𝜆 be the map from 𝒱 → 𝒲 induced by running the protocol

(𝒲, (𝑟, 𝑠))← ⟨𝑆(1𝜆, 𝑄,𝒱), 𝐶(1𝜆, 𝑄, 𝑥)⟩

and then applying 𝑋𝑟𝑍𝑠 to𝒲 . Then for any 𝑄 and 𝑥,

𝐷◇ (REAL[𝑄, 𝑥]𝜆, IDEAL[𝑄, 𝑥]) = negl(𝜆).

• Security. For any circuit 𝑄, QPT adversary {Adv𝜆}𝜆∈N, and two strings 𝑥0, 𝑥1, it holds that⃒⃒⃒⃒
Pr

[︁
𝑏Adv = 0 : (𝑏Adv, (𝑟, 𝑠))← ⟨Adv𝜆, 𝐶(1𝜆, 𝑄, 𝑥0)⟩

]︁
− Pr

[︁
𝑏Adv = 0 : (𝑏Adv, (𝑟, 𝑠))← ⟨Adv𝜆, 𝐶(1𝜆, 𝑄, 𝑥1)⟩

]︁ ⃒⃒⃒⃒
= negl(𝜆),

where 𝑏Adv denotes a single bit output by Adv𝜆 after the interaction (which could result from an
arbitrary QPT operation applied to its state after the interaction).

Remark 6.8. Note that the above definition implies that if 𝑄 has a classical output, then the client can
obtain this output with one extra message from the server. That is, suppose 𝑄 : {0, 1}* × ℋ𝒱 → {0, 1}*.
Then at the conclusion of the protocol defined above, the server has a classical output 𝑦⊕𝑟, and the client has
the one-time pad key 𝑟 (note that 𝑠 is irrelevant once the output has been measured in the standard basis).
Then, the server returns 𝑦 ⊕ 𝑟 to the client, who recovers the output 𝑦. In this case, we denote the protocol

𝑦 ← ⟨𝑆(1𝜆, 𝑄,𝒱), 𝐶(1𝜆, 𝑄, 𝑥)⟩,

where 𝑦 is the client’s output.

Towards showing that OSP implies blind classical delegation of arbitrary quantum computa-
tion, we first show that it implies what we call an “encypted phase” protocol.

Definition 6.9 (Encrypted phase). A protocol for encrypted phase is the special case of blind classical
delegation of quantum computation whereℋ𝒱 = ℋ𝒲 is a single-qubit register, the client’s private input is
a bit 𝑏 ∈ {0, 1}, and 𝑄(𝑏,𝒱) is the identity if 𝑏 = 0 and applies a phase gate 𝑃 to 𝒱 if 𝑏 = 1.

Lemma 6.10. OSP (Definition 4.1) implies encrypted phase.

Proof. We first describe the protocol.

• The server and client begin by running an OSP protocol, where the client plays the role of the
sender with bit 𝑏 equal to the client’s input bit 𝑏, and the server plays the role of the receiver.
Then, the server applies a Hadamard gate followed by a

√
𝑋 gate to their output state. Up

to a negligible trace distance, this results in the state
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– 𝑍𝑠 |+⟩ if 𝑏 = 0,

– 𝑍𝑠𝑃 |+⟩ if 𝑏 = 1,

where 𝑠 is the sender’s output bit. Letℳ be the name of the output state’s register.

• Next, the server applies a CNOT gate from register 𝒱 to registerℳ, and then measuresℳ
in the standard basis to obtain a bit 𝑚. The server sends 𝑚 to the client, and outputs 𝒱 .

• If 𝑏 = 0, the client outputs (0, 𝑠) and if 𝑏 = 1, the client outputs (0, 𝑠⊕𝑚).

Security follows immediately from the security of OSP, so it remains to check correctness. Let
𝛼0 |0⟩𝒱 + 𝛼1 |1⟩𝒱 be the input state on register 𝒱 (note that it could be entangled with some auxil-
iary register, i.e. 𝛼0 |0⟩𝒱 |𝜓0⟩+ 𝛼1 |1⟩𝒱 |𝜓1⟩, but we suppress writing the auxiliary register to avoid
clutter).

In the case 𝑏 = 0, we have that

CNOT (𝛼0 |0⟩𝒱 + 𝛼1 |1⟩𝒱)⊗ 𝑍
𝑠 |+⟩ℳ

= (𝑍𝑠𝒱 ⊗ 𝑍𝑠ℳ)CNOT (𝛼0 |0⟩𝒱 + 𝛼1 |1⟩𝒱)⊗ |+⟩ℳ
= (𝑍𝑠𝒱 ⊗ 𝑍𝑠ℳ) (𝛼0 |0⟩𝒱 + 𝛼1 |1⟩𝒱)⊗ |+⟩ℳ ,

so measuringℳ does not affect the state on 𝒱 . Thus, the server is left with their original state
up to a 𝑍𝑠 error, which is the desired outcome.

In the case 𝑏 = 1, we have that

CNOT (𝛼0 |0⟩𝒱 + 𝛼1 |1⟩𝒱)⊗ 𝑃𝑍
𝑠 |+⟩ℳ

=
1√
2
(𝑍𝑠𝒱 ⊗ 𝑍𝑠ℳ)CNOT (𝛼0 |0⟩𝒱 + 𝛼1 |1⟩𝒱)⊗ (|0⟩ℳ + 𝑖 |1⟩ℳ)

=
1√
2
(𝑍𝑠𝒱 ⊗ 𝑍𝑠ℳ) (𝛼0 |0⟩𝒱 |0⟩ℳ + 𝑖𝛼0 |0⟩𝒱 |1⟩ℳ + 𝛼1 |1⟩𝒱 |1⟩ℳ + 𝑖𝛼1 |1⟩𝒱 |0⟩ℳ)

=
1√
2
(𝑍𝑠𝒱 ⊗ 𝑍𝑠ℳ) ((𝛼0 |0⟩𝒱 + 𝑖𝛼1 |1⟩𝒱) |0⟩ℳ + (𝑖𝛼0 |0⟩𝒱 + 𝛼1 |1⟩𝒱) |1⟩ℳ) .

So if the measured bit 𝑚 = 0, the remaining state is

𝑍𝑠𝒱 (𝛼0 |0⟩𝒱 + 𝑖𝛼1 |1⟩𝒱) ,

which is the desired outcome, and if the measured bit 𝑚 = 1, the remaining state is

𝑍𝑠𝒱 (𝑖𝛼0 |0⟩𝒱 + 𝛼1 |1⟩𝒱) = 𝑍𝑠𝒱 (𝛼0 |0⟩𝒱 − 𝑖𝛼1 |1⟩𝒱) = 𝑍𝑠⊕1𝒱 (𝛼0 |0⟩𝒱 + 𝑖𝛼1 |1⟩𝒱) ,

which is again the desired outcome.

Next, we show that the ability to perform an encrypted phase implies blind classical delegation
of quantum computation for arbitrary quantum operations.

Theorem 6.11. Any protocol for encrypted phase (Definition 6.9) implies blind classical delegation of
quantum computation (Definition 6.7).

36



Proof. Given any circuit 𝑄, write it using Clifford and 𝑇 † gates, where 𝑇 † =
√
𝑃 †. That is, 𝑄

can be written as 𝐶ℓ+1𝑇
†𝐶ℓ𝑇

† . . . 𝐶2𝑇
†𝐶1, where each 𝐶𝑖 is Clifford. We will use the fact that for

any polynomial-size Clifford 𝐶 and one-time padded state 𝑋𝑟𝑍𝑠 |𝜓⟩, it holds that 𝐶𝑋𝑟𝑍𝑠 |𝜓⟩ =
𝑋𝑟′𝑍𝑠

′
𝐶 |𝜓⟩, where 𝑟′ and 𝑠′ are efficiently computable from 𝐶, 𝑟, and 𝑠. Moreover, for a single

qubit state |𝜓⟩, it holds that 𝑇 †𝑋𝑟𝑍𝑠 |𝜓⟩ = (𝑃 †)𝑟𝑋𝑟𝑍𝑠𝑇 † |𝜓⟩.
Given a protocol for encrypted phase (Definition 6.9), we describe a protocol for blind classical

delegation of quantum computation:

• Given inputs (1𝜆, 𝑄, 𝑥), the client writes 𝑄 = 𝐶ℓ+1𝑇
†𝐶ℓ𝑇

† . . . 𝐶2𝑇
†𝐶1, where each 𝐶𝑖 is Clif-

ford and the 𝑖’th 𝑇 † gate is applied to qubit 𝑡𝑖 of the server’s register 𝒱 .

• The client samples a classical one-time pad 𝑟inp and sends 𝑥⊕ 𝑟inp to the server. Throughout
the protocol, the client will hold the classical keys for a quantum one-time pad applied to
the server’s register 𝒱 (which we consider to now include the encrypted input 𝑥⊕ 𝑟inp). The
client initializes these keys to (𝑟, 𝑠) := ((𝑟inp, 0, . . . , 0), (0, . . . , 0)).

• For 𝑖 ∈ [ℓ], perform the following steps.

– The server applies 𝐶𝑖 to register 𝒱 , and the client updates the quantum one-time pad
keys (𝑟, 𝑠) according to 𝐶𝑖.

– The server applies a 𝑇 † gate to qubit 𝑡𝑖.
– Let 𝑏𝑖 be the 𝑋-bit of the one-time pad key on qubit 𝑡𝑖. The server and client apply an

encrypted phase (Definition 6.9) to qubit 𝑡𝑖 with client input equal to 𝑏𝑖.
– The client uses their output (𝑟𝑖, 𝑠𝑖) from the encrypted phase to update the one-time

pad key on qubit 𝑡𝑖.

• The server applies the final Clifford 𝐶ℓ+1 to register 𝒱 and outputs 𝒱 , and the client does
the final one-time pad update according to 𝐶ℓ+1 and outputs their final one-time pad keys
(𝑟out, 𝑠out).

Correctness is straightforward using the properties listed prior to the description of the proto-
col. Security follows from a standard hybrid argument: Starting from the final 𝑇 † gate, we switch
the client’s input to the encrypted phase to 0. Once this is completed, the protocol no longer de-
pends on the client’s initial classical one-time pad 𝑟inp, and thus we can switch between client
inputs 𝑥0 and 𝑥1 without affecting the view of the server.

Thus, we obtain the following corollary.

Corollary 6.12. OSP implies blind classical delegation of quantum computation (Definition 6.7).

In fact, we also observe the following, which shows that OSP is both necessary and sufficient
for blind classical delegation of quantum computation.

Claim 6.13. Blind classical delegation of quantum computation according to Definition 6.7 implies OSP.

Proof. Let 𝑄 be the circuit that takes as input a bit 𝑏 (and no quantum input) and outputs the
state 𝐻𝑏 |0⟩. To perform OSP, the sender inputs their bit 𝑏 to a classical delegation protocol for
𝑄, with the receiver acting as the server. The receiver ends up with a state (negligibly close to)
𝑋𝑟𝑍𝑠𝐻𝑏 |0⟩ = 𝐻𝑏 |𝑥⟩, where 𝑥 = 𝑟 if 𝑏 = 0 and 𝑥 = 𝑠 if 𝑏 = 1, and the sender ends up with (𝑟, 𝑠).
Thus, the sender outputs 𝑥 = 𝑟 if 𝑏 = 0 and 𝑥 = 𝑠 if 𝑏 = 1 to complete the description of the OSP
protocol.
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6.4 Verifiable delegation

In this section, we show that blind classical delegation of quantum computation (Definition 6.7)
generically implies verifiable classical delegation of quantum computation, which then gives veri-
fiable delegation from OSP as a corollary. Previously, it was shown by [NZ23] that QFHE, which
is a special case of blind delegation, implies verifiable delegation. Here, we observe that their
approach, which builds on the “KLVY compiler” of [KLVY23] can be generalized to establish the
result from any blind delegation. We begin by defining verifiable delegation, which we call classi-
cal verification of quantum computation (CVQC).

Definition 6.14 (Classical Verification of Quantum Computation). Classical verification of quantum
computation (CVQC) is an interaction between a QPT prover and PPT verifier on input an instance 𝑥

{⊤,⊥} ← ⟨𝑃 (1𝜆, 𝑥), 𝑉 (1𝜆, 𝑥)⟩,

where {⊤,⊥} is the verifier’s output. For any language ℒ in BQP, there exists some 𝜖(𝜆), 𝛿(𝜆) with 𝜖(𝜆)−
𝛿(𝜆) = 1/poly(𝜆) such that the following properties hold.

• Completeness. For any 𝑥 ∈ ℒ,

Pr
[︁
⊤ ← ⟨𝑃 (1𝜆, 𝑥), 𝑉 (1𝜆, 𝑥)⟩

]︁
≥ 𝜖(𝜆).

• Soundness. For any 𝑥 /∈ ℒ and QPT adversary {Adv𝜆}𝜆∈N,

Pr
[︁
⊤ ← ⟨Adv𝜆, 𝑉 (1𝜆, 𝑥)

]︁
≤ 𝛿(𝜆) + negl(𝜆).

This section is dedicated to proving the following theorem.

Theorem 6.15. Blind classical delegation of quantum computation (Definition 6.7) implies classical veri-
fication of quantum computation (Definition 6.14).

Corollary 6.16. OSP implies classical verification of quantum computation.

6.4.1 Nonlocal games and the KLVY compiler

Towards proving this theorem, we recall the KLVY compiler, which uses QFHE to compile any
nonlocal game into a single-prover protocol. In this subsection, we observe that the KLVY com-
piler can be instantiated with any (potentially interactive, non-compact) blind delegation protocol,
which yields what we call the generalized KLVY compiler. We also define a set of nonlocal game
strategies that we call computationally nonlocal strategies. This definition provides a clean way to
establish soundness of the generalized KLVY compiler - soundness of any compiled game can be
upper-bounded by the value of the best computationally nonlocal strategy for that game.

First, we present standard definitions of (families of) nonlocal games, as well as nonlocal strate-
gies for these games.

Definition 6.17 (Nonlocal game). A nonlocal game 𝐺 = (𝑄,𝑉 ) is specified by a distribution 𝑄 over
pairs (𝑥, 𝑦) ∈ {0, 1}𝑛1 × {0, 1}𝑛2 and a verification predicate 𝑉 (𝑥, 𝑦, 𝑎, 𝑏) ∈ {0, 1}, where 𝑎 ∈ {0, 1}𝑚1

and 𝑏 ∈ {0, 1}𝑚2 . A family of nonlocal games 𝒢 = {𝒢𝜆}𝜆∈N is a set of games parameterized by 𝜆, where
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each 𝒢𝜆 is itself a set of games 𝐺 ∈ 𝒢𝜆. Each game 𝐺 ∈ 𝒢 is defined by a distribution 𝑄𝐺 over pairs
(𝑥, 𝑦) ∈ {0, 1}𝑛1,𝐺 × {0, 1}𝑛2,𝐺 and a verification predicate 𝑉𝐺(𝑥, 𝑦, 𝑎, 𝑏) ∈ {0, 1}, where 𝑎 ∈ {0, 1}𝑚1,𝐺

and 𝑏 ∈ {0, 1}𝑚2,𝐺 . For any game 𝐺 ∈ 𝒢, we define 𝜆𝐺 to be the choice of 𝜆 such that 𝐺 ∈ 𝒢𝜆. We say
that the family of games is efficient if there exists a polynomial 𝑝(·) and a procedure that, for any 𝐺 ∈ 𝒢,
samples from 𝑄𝐺 and computes 𝑉𝐺 in time 𝑝(𝜆𝐺).

Definition 6.18 (Nonlocal strategy). A nonlocal strategy S for game 𝐺 consists of the following.

• A state |𝜓⟩ ∈ ℋ𝒜 ⊗ℋℬ.

• For every 𝑥 ∈ {0, 1}𝑛1 , a projective measurement {𝐴𝑥𝑎}𝑎 acting onℋ𝒜 with outcomes 𝑎 ∈ {0, 1}𝑚1 .

• For every 𝑦 ∈ {0, 1}𝑛2 , a projective measurement {𝐵𝑦
𝑏 }𝑏 acting onℋℬ with outcomes 𝑏 ∈ {0, 1}𝑚2 .

The value of this strategy is given by

𝜔(𝐺,S ) := E
(𝑥,𝑦)←𝑄

∑︁
𝑎,𝑏

𝑉 (𝑥, 𝑦, 𝑎, 𝑏) ⟨𝜓|𝐴𝑥𝑎 ⊗𝐵
𝑦
𝑏 |𝜓⟩ .

A strategy S for a family of games 𝒢 consists of a strategy

S𝐺 =
(︁
|𝜓𝐺⟩ , {𝐴𝑥𝑎,𝐺}𝑎, {𝐵

𝑦
𝑏,𝐺}𝑏

)︁
for each 𝐺 ∈ 𝒢. We say that S is efficient if |𝜓⟩ is QPT-preparable and {𝐴𝑥𝑎,𝐺}𝑎 and {𝐵𝑦

𝑏,𝐺}𝑏 are
QPT-implementable.

Next, we present our new definition of a computationally nonlocal strategy.

Definition 6.19 (Computationally nonlocal strategy). A computationally nonlocal strategy C for a
family of games 𝒢 = {𝒢𝜆}𝜆 consists of the following for each 𝐺 ∈ 𝒢.

• A QPT-preparable state |𝜓𝐺⟩ ∈ ℋ𝒜,𝐺 ⊗ℋℬ,𝐺.

• For every 𝑥 ∈ {0, 1}𝑛1,𝐺 , a QPT-implementable unitary 𝑈𝑥𝐺 acting on ℋ𝒜,𝐺 ⊗ ℋℬ,𝐺. For each
𝑎 ∈ {0, 1}𝑚1,𝐺 , define

𝐴𝑥𝑎,𝐺 := |𝑎⟩⟨𝑎|𝑈𝑥𝐺,

where the projection |𝑎⟩⟨𝑎| is applied to some specified sub-register ofℋ𝒜,𝐺.

• For every 𝑦 ∈ {0, 1}𝑛2,𝐺 , a QPT-implementable projective measurement {𝐵𝑦
𝑎,𝐺}𝑏 acting on ℋℬ,𝐺

with outcomes 𝑏 ∈ {0, 1}𝑚2,𝐺 .

For this to be a valid computationally nonlocal strategy, the “Alice” operations must satisfy the following
property. There exists a negligible function 𝜇(𝜆) such that for any sequence of games {𝐺𝜆}𝜆∈N where each
𝐺𝜆 ∈ 𝒢𝜆, QPT distinguisher {𝑀𝜆, 𝐼 −𝑀𝜆}𝜆 acting only on ℋℬ,𝐺𝜆

, and sequence of pairs of questions
{𝑥0,𝜆, 𝑥1,𝜆 ∈ {0, 1}𝑛1,𝐺𝜆}𝜆,⃒⃒⃒⃒∑︁

𝑎

⟨𝜓𝐺𝜆
|𝐴𝑥0,𝜆,†𝑎,𝐺𝜆

𝑀𝜆𝐴
𝑥0,𝜆
𝑎,𝐺𝜆
|𝜓𝐺𝜆

⟩ −
∑︁
𝑎

⟨𝜓𝐺𝜆
|𝐴𝑥1,𝜆,†𝑎,𝐺𝜆

𝑀𝜆𝐴
𝑥1,𝜆
𝑎,𝐺𝜆
|𝜓𝐺𝜆

⟩
⃒⃒⃒⃒
≤ 𝜇(𝜆).
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That is, Alice’s questions must be computationally hidden by the state passed from the Alice operation
to the Bob operation. The value of this strategy is a function 𝜔(𝐺,C ) of the game 𝐺 ∈ 𝒢, defined by

𝜔(𝐺,C ) := E
(𝑥,𝑦)←𝑄𝐺

∑︁
𝑎,𝑏

𝑉𝐺(𝑥, 𝑦, 𝑎, 𝑏) ⟨𝜓𝐺|𝐴𝑥,†𝑎,𝐺𝐵
𝑦
𝑏,𝐺𝐴

𝑥
𝑎,𝐺 |𝜓𝐺⟩ .

We say that the computationally nonlocal value of 𝒢 is upper-bounded by a function 𝜔𝐶(𝐺) if for all
computationally nonlocal strategies C , there exists a negligible function 𝜈(𝜆) such that for any sequence of
games {𝐺𝜆}𝜆∈N where each 𝐺𝜆 ∈ 𝒢𝜆, it holds that

𝜔(𝐺𝜆,C ) ≤ 𝜔𝐶(𝐺𝜆) + 𝜈(𝜆).

Remark 6.20. We will sometimes refer to a computationally nonlocal strategy C for some fixed game 𝐺
(such as the CHSH game). In this case, we view 𝐺 as a family of games 𝒢 = {𝒢𝜆}𝜆 = {𝐺}𝜆. That is, each
𝒢𝜆 just consists of 𝐺 itself, and C consists of one strategy for each 𝜆 ∈ N.

The following remark formalizes a simple claim about computational indistinguishability.

Remark 6.21. By following the arguments in [NZ23, Lemma 7, Lemma 8], it is straightforward to see that
the Alice operations for any computationally nonlocal strategy C must also satisfy the following. There
exists a negligible function 𝜇(𝜆) such that for any sequence of games {𝐺𝜆}𝜆∈N where each 𝐺𝜆 ∈ 𝒢𝜆, QPT-
implementable POVM {{𝑀𝛾,𝜆}𝛾}𝜆 with outcomes in 𝛾 ∈ [0, 1] acting only on ℋℬ,𝐺𝜆

, and sequence of
pairs of questions {𝑥0,𝜆, 𝑥1,𝜆 ∈ {0, 1}𝑛1,𝐺𝜆}𝜆,⃒⃒⃒⃒∑︁

𝑎

∑︁
𝛾

𝛾 ⟨𝜓𝐺𝜆
|𝐴𝑥0,𝜆,†𝑎,𝐺𝜆

𝑀𝛾,𝜆𝐴
𝑥0,𝜆
𝑎,𝐺𝜆
|𝜓𝐺𝜆

⟩ −
∑︁
𝑎

∑︁
𝛾

𝛾 ⟨𝜓𝐺𝜆
|𝐴𝑥1,𝜆,†𝑎,𝐺𝜆

𝑀𝛾,𝜆𝐴
𝑥1,𝜆
𝑎,𝐺𝜆
|𝜓𝐺𝜆

⟩
⃒⃒⃒⃒
≤ 𝜇(𝜆).

Next, we state the “generalized” version of the KLVY compiler, where in place of a QFHE
protocol, we use any blind classical delegation of quantum computation protocol (Definition 6.7).

Definition 6.22 (Generalized KLVY Compiler). Let 𝒢 be a family of nonlocal games, let Π = ⟨𝑆,𝐶⟩ be
a blind classical delegation of quantum computation protocol, and let S be an efficient nonlocal strategy
for 𝒢. For each 𝐺 ∈ 𝒢, let 𝐴𝐺 : {0, 1}𝑛1,𝐺 × ℋ𝒜 → {0, 1}𝑚1,𝐺 be the QPT circuit that performs the
Alice measurement of S𝐺 and 𝐵𝐺 : {0, 1}𝑛2,𝐺 × ℋℬ → {0, 1}𝑚2,𝐺 be the QPT circuit that performs the
Bob measurement of S𝐺. The KLVY-compiled protocol KLVY[𝒢,Π,S ] is an interaction between a QPT
prover Prove and a PPT verifier Ver that is parameterized by a game 𝐺 ∈ 𝒢𝜆 ⊂ 𝒢, and operates as follows.

1. The verifier samples (𝑥, 𝑦)← 𝑄𝐺.

2. Let |𝜓𝐺⟩ ∈ ℋ𝒜 ⊗ ℋℬ be the initial state used in S𝐺. The prover and verifier engage in a blind
classical delegation of quantum computation protocol (with classical output, see Remark 6.8)

𝑎← ⟨𝑆(1𝜆, 𝐴𝐺, |𝜓𝐺⟩), 𝐶(1𝜆, 𝐴𝐺, 𝑥)⟩,

with the prover playing the role of the server 𝑆 and the verifier playing the role of the client 𝐶.

3. The verifier sends 𝑦 to the prover.

4. The prover runs 𝑏← 𝐵𝐺(𝑦,ℬ) and sends 𝑏 to the verifier.
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5. The verifier outputs 𝑉𝐺(𝑥, 𝑦, 𝑎, 𝑏).

This interaction is denoted
𝑏Ver ← ⟨Prove(1𝜆, 𝐺),Ver(1𝜆, 𝐺)⟩,

where 𝑏Ver denotes the bit output by Ver.
The completeness of KLVY[𝒢,Π,S ] is defined by a function

𝑐(𝐺) := Pr
[︁
𝑏Ver = 1 : 𝑏Ver ← ⟨Prove(1𝜆, 𝐺),Ver(1𝜆, 𝐺)⟩

]︁
,

and KLVY[𝒢,Π,S ] has soundness 𝑠(𝐺) if for any QPT adversary {Adv𝜆}𝜆∈N

Pr
[︁
𝑏Ver = 1 : 𝑏Ver ← ⟨Adv𝜆𝐺(1

𝜆, 𝐺),Ver(1𝜆, 𝐺)⟩
]︁
≤ 𝑠(𝐺).

Finally, we prove the main theorem of this subsection. Essentially, we show that the compu-
tational nonlocal value of any game 𝐺 upper bounds the soundness of the (generalized) KLVY
compiled version of 𝐺.

Theorem 6.23. Let 𝒢 be a family of nonlocal games, let Π be a blind classical delegation of quantum compu-
tation protocol, and let S be an efficient nonlocal strategy for 𝒢. Then the completeness of KLVY[𝒢,Π,S ]
satisfies

𝑐(𝐺) ≥ 𝜔(𝐺,S )− negl(𝜆𝐺),

and, for any upper bound 𝜔𝐶(𝐺) on the computationally nonlocal value of 𝒢, KLVY[𝒢,Π,S ] has soundness

𝑠(𝐺) ≤ 𝜔𝐶(𝐺) + negl(𝜆𝐺),

where 𝜆𝐺 is defined to be the 𝜆 such that 𝐺 ∈ 𝒢𝜆.

Proof. The completeness claim follows directly from the correctness of the blind delegation pro-
tocol Π. The soundness claim follows by observing that any Adv interacting in KLVY[𝒢,Π,S ]
defines a computationally nonlocal strategy for 𝒢. This can be argued as follows, where for con-
venience we will drop parameterizations by 𝐺 and 𝜆. Consider purifying the interaction between
Adv and Ver during the second step of the protocol (the blind delegation step), and then measur-
ing the verifier’s output 𝑎. For each verifier input 𝑥, this defines a unitary 𝑈𝑥 that is applied to
initial state |0⟩𝒜 |𝜓⟩ℬ, where |𝜓⟩ is the initial state of Adv, ℋℬ includes the working register of Adv
along with the register that holds the transcript of communication between Adv and Ver, and ℋ𝒜
is the register required to implement the operations of Ver. Then 𝐴𝑥𝑎 is defined as |𝑎⟩⟨𝑎|𝑈𝑥, i.e. the
unitary 𝑈𝑥 followed by a standard basis projection onto the verifier’s output 𝑎 on a sub-register of
ℋ𝒜. It follows immediately from the security of Π that there exists a negligible function 𝜇(𝜆) such
that for any QPT distinguisher {𝑀, 𝐼 −𝑀} acting only onℋℬ, and 𝑥0, 𝑥1 ∈ {0, 1}𝑛1 ,⃒⃒⃒⃒∑︁

𝑎

⟨𝜓| ⟨0|𝐴𝑥0,†𝑎 𝑀𝐴𝑥0𝑎 |𝜓⟩ |0⟩ −
∑︁
𝑎

⟨𝜓| ⟨0|𝐴𝑥1,†𝑎 𝑀𝐴𝑥1𝑎 |𝜓⟩ |0⟩
⃒⃒⃒⃒
= negl(𝜆),

which shows that this is a valid computationally nonlocal strategy.
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6.4.2 The CHSH game

Next, we recall the CHSH game, which is an important building block in the CVQC protocol of
[NZ23].

Definition 6.24 (CHSH). The CHSH game is defined by question distribution (𝑥, 𝑦) ← {0, 1} × {0, 1}
and predicate 𝑉 (𝑥, 𝑦, 𝑎, 𝑏) that accepts iff 𝑥 · 𝑦 = 𝑎⊕ 𝑏, where answers 𝑎, 𝑏 ∈ {0, 1}.

An important lemma from [NZ23] establishes a rigidity property of the KLVY-compiled CHSH
game. That is, any strategy in the (QFHE-based) KLVY-compiled game that approaches the op-
timal value of cos2(𝜋/8) for nonlocal strategies must be such that the Bob operations nearly anti-
commute. It is not hard to see that the same holds for any computationally nonlocal strategy,19

and in fact this claim was already essentially shown by [BGKM+23, Theorem 4.7].

Theorem 6.25. Let 𝜔CHSH = cos2(𝜋/8). Fix any computationally nonlocal strategy for the CHSH game
with value 𝜔CHSH− 𝛿(𝜆), and, dropping the parameterization by 𝜆, let 𝐵0 := 𝐵0

0 −𝐵0
1 , 𝐵

1 := 𝐵1
0 −𝐵1

1 be
binary observables defined by the “Bob” measurements. Then for any 𝑥 ∈ {0, 1}, it holds that∑︁

𝑎∈{0,1}

⟨𝜓|𝐴𝑥,†𝑎 {𝐵0, 𝐵1}2𝐴𝑥𝑎 |𝜓⟩ ≤ 𝑂(𝛿(𝜆)) + negl(𝜆).

Proof. This follows readily from [BGKM+23, Theorem 4.7], following their arguments in Section
5.4.20 It can also be verified that a proper adaptation of Lemma 34 from [NZ23] yields this claim
using a different proof technique.

6.4.3 The [NZ23] BQP verification game

Now, we define the [NZ23] family of nonlocal games for verifying arbitrary BQP computation.21

The family 𝒢 consists of a game 𝐺[𝐻] for each XX/ZZ local Hamiltonian

𝐻 =
∑︁

𝑊∈{𝑋,𝑍},𝑖 ̸=𝑗∈[𝜆]

𝑝𝑊,𝑖,𝑗𝑊 (𝑒𝑖 + 𝑒𝑗),

where
∑︀

𝑊,𝑖,𝑗 𝑝𝑊,𝑖,𝑗 = 1. Before coming to the formal specification of the nonlocal game 𝐺[𝐻]
associated with 𝐻 , we provide a high-level overview.

To begin with, two provers Alice and Bob share several halves of EPR pairs, and Alice prepares
a minimum eigenvalue state |𝜓⟩ for𝐻 . Alice’s question instructs her to either (1) Teleport the state
to Bob, (2) participate in an anti-commutation (CHSH) game, or (3) participate in a Commutation
game. Bob’s question is always a single bit that instructs him to either measures all of his halves
of EPR pairs in the standard basis or the Hadamard basis, and return the results.

In the teleportation case, an honest Alice simply teleports |𝜓⟩ to Bob and returns the teleporta-
tion errors to the verifier. The verifier now either samples an XX or a ZZ term of the Hamiltonian

19Note that strategies in the QFHE-based KLVY-compiled game are a special case of computationally nonlocal strate-
gies.

20Our formalization of computationally nonlocal strategies is slightly more general than [BGKM+23]’s quantum
device formalization (since a computationally nonlocal strategy does not necessarily have to be defined by some prover
interacting in a protocol), but it is straightforward to verify that their techniques apply to our more general setting.

21We note that the same set of games should suffice for verifying arbitrary QMA languages as well, by providing
sufficient copies of the witness state to the prover, but we follow [NZ23] and stick to BQP for this exposition.
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to match Bob’s question, and can then recover the outcome of measuring |𝜓⟩ with that term by
combining Bob’s answers with Alice’s teleportation errors. In the case that Alice and Bob are hon-
est, repeating this round multiple times suffices to estimate the minimum eigenvalue of𝐻 . In fact,
as long as Bob’s operations are (nearly) isometric to a tensor of 𝑍 observables when his question
asks for standard basis measurements and a tensor of 𝑋 observables when his question asks for
Hadamard basis measurements, we can conclude that the parties cannot on average convince the
verifier that 𝐻 has a significantly lower eigenvalue that it really has. The purpose of the CHSH
and Commutation questions is to enforce this structure on Bob’s operations. Combined, they yield
a variant of the Pauli braiding test [NV17, Gri20].

Now, for the purpose of CVQC, we care about the value of any computationally nonlocal strat-
egy for this family of games. First, it is imperative that if the strategy passes the CHSH test, then
we can conclude that Bob’s operations anti-commute. This indeed follows in the computationally
nonlocal setting, as discussed in Section 6.4.2. It turns out that the only other crucial property is
that Bob cannot change his strategy based on whether Alice received a Teleport, CHSH, or Com-
mutation question. This clearly holds for any computationally nonlocal strategy, not just those
that arise from the use of QFHE. While these are the main ideas, we now give a precise descrip-
tion of the [NZ23] family of games that can be run through the generalized KLVY compiler to
yield CVQC from any blind classical delegation of quantum computation protocol.

The game 𝐻[𝐺]. Define 𝒢𝜆 to be the set of games 𝐺[𝐻] where 𝐻 is a 𝜆-qubit Hamiltonian. Let
𝛽 = 𝛽(𝜆), 𝛼 = 𝛼(𝜆) ∈ [−1, 1] be functions of the security parameter, and let 𝜅 = Θ((𝛽 − 𝛼)2) be a
parameter to be set later. The game𝐺[𝐻] will allow us to decide whether the minimum eigenvalue
of 𝐻 is smaller than 𝛼 or larger than 𝛽.

Given 𝐻 , define 𝐷𝑋 to be the renormalized distribution over 𝑋(𝑒𝑖 + 𝑒𝑗) operators induced by
𝐻 , and define 𝐷𝑍 analogously. Define 𝐷𝑄 to be 𝑈𝜆 × 𝐷𝑋 , where 𝑈𝜆 is the uniform distribution
over {0, 1}𝜆. Then for any 𝐻 , the game 𝐺[𝐻] is defined as follows.

• 𝑄𝐺[𝐻]: Sample the Alice question 𝑞𝐴 and Bob question 𝑞𝐵 by choosing one of the following
options, where the first two are chosen with probability (1 − 𝜅)/2 and the last one with
probability 𝜅.

– CHSH. Sample (𝑎, 𝑏) ← 𝑈𝜆 × 𝐷𝑋 conditioned on 𝑎 · 𝑏 = 1 (later, we will refer to this
distribution as 𝐷1

𝑄). Sample 𝑥, 𝑦 ← {0, 1}, and set 𝑞𝐴 = (CHSH, (𝑎, 𝑏, 𝑥)) and 𝑞𝐵 = 𝑦.

– Commutation. Sample (𝑎, 𝑏) ← 𝑈𝜆 × 𝐷𝑋 conditioned on 𝑎 · 𝑏 = 0 (later, we will refer
to this distribution as 𝐷0

𝑄). Sample 𝑦 ← {0, 1}, and set 𝑞𝐴 = (Commutation, (𝑎, 𝑏)) and
𝑞𝐵 = 𝑦.

– Teleport. Sample 𝑦 ← {0, 1} and set 𝑞𝐴 = Teleport and 𝑞𝐵 = 𝑦.

• 𝑉𝐺[𝐻]: Receive Alice answer 𝑠𝐴 (of varying size) and Bob answer 𝑠𝐵 ∈ {0, 1}𝜆. Compute the
following, determined by the type of Alice question.

– CHSH. Let 𝑧 := (1− 𝑦)(𝑎 · 𝑠𝐵) + 𝑦(𝑏 · 𝑠𝐵), and output 1 iff 𝑠𝐴 + 𝑧 = 𝑥 · 𝑦.

– Commutation. Let 𝑧 := (1− 𝑦)(𝑎 · 𝑠𝐵) + 𝑦(𝑏 · 𝑠𝐵), and output 1 iff (𝑠𝐴)𝑦 = 𝑧.

– Teleport. Sample 𝑤 such that 𝑤 = 0 with probability
∑︀

𝑖,𝑗 𝑝𝑋,𝑖,𝑗 and 𝑤 = 1 with prob-
ability

∑︀
𝑖,𝑗 𝑝𝑍,𝑖,𝑗 . If 𝑤 ̸= 𝑞𝐵 then output 1. Otherwise, sample a term 𝑊 (𝑒𝑖 + 𝑒𝑗) from
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the distribution induced by 𝑝𝑊,𝑖,𝑗 , where 𝑊 = 𝑋 if 𝑤 = 0 and 𝑊 = 𝑍 if 𝑤 = 1. Parse
𝑠𝐴 = (𝑧, 𝑥), where 𝑧, 𝑥 ∈ {0, 1}𝜆, and compute the following.

* If 𝑊 = 𝑍, output 1 iff (−1)(𝑠𝐵)𝑖+(𝑠𝐵)𝑗+(𝑠𝐴)𝑖+(𝑠𝐴)𝑗 = −1.

* If 𝑊 = 𝑋 , output 1 iff (−1)(𝑠𝐵)𝑖+(𝑠𝐵)𝑗+(𝑠𝐴)𝜆+𝑖+(𝑠𝐴)𝜆+𝑗 = −1.

Finally, we obtain a classical verification protocol for BQP (Definition 6.14) from blind classical
delegation of quantum computation by combining the following theorem with Theorem 6.23, thus
proving Theorem 6.15.

Theorem 6.26 (Adaptation of Theorem 46 from [NZ23]). Let 𝒢[YES] be the family of games 𝒢 restricted
to those defined by a Hamiltonian 𝐻 with lowest eigenvalue at most 𝛼. There exists an efficient nonlocal
strategy S with value

𝜔(𝐺,S ) ≥ 1

2
(1− 𝜅)(1 + 𝜔CHSH) + 𝜅(1− 1

4
𝛼)

for all 𝐺 ∈ 𝒢[YES]. Next, let 𝒢[NO] be the family of games 𝒢 restricted to those defined by a Hamilto-
nian 𝐻 with lowest eigenvalue at least 𝛽. Then there exists a choice of 𝜅 = Θ((𝛽 − 𝛼)2) such that the
computationally nonlocal value of 𝒢[NO] is upper-bounded by

𝜔𝐶(𝐺) =
1

2
(1− 𝜅)(1 + 𝜔CHSH) + 𝜅(1− 1

4
𝛼)− 1

8
𝜅(𝛽 − 𝛼).

The proof of this theorem follows readily from arguments made in [NZ23]. For completeness,
we give an overview of their main claims written in our notation in Appendix A.

6.5 Encrypted CNOT and applications

[Mah18a] informally introduced the notion of a (two-round) “encrypted CNOT” protocol as a
sub-routine in her construction of quantum fully-homomorphic encryption. Here, we define en-
crypted CNOT formally as a special case of blind classical delegation of quantum computation. In
particular, this means that it follows generically from any OSP, due to the results from Section 6.3.

However, we also provide a simple and direct protocol for encrypted CNOT which in particu-
lar implies that two-round encrypted CNOT follows from any two-round OSP. Finally, we discuss
applications of encrypted CNOT to quantum fully-homormophic encryption and claw-state gen-
erators with indistinguishability security (Definition 4.4).

Definition 6.27 (Encrypted CNOT). An encrypted CNOT protocol is the special case of blind classical
delegation of quantum computation (Definition 6.7) where ℋ𝒱 = ℋ𝒲 is a two-qubit register, the client’s
private input is a bit 𝑏 ∈ {0, 1}, and 𝑄(𝑏, (𝒱0,𝒱1)) is the identity if 𝑏 = 0 and applies a CNOT gate from
𝒱0 to 𝒱1 if 𝑏 = 1. We say that the protocol is two-round if it just consists of one message from the client
followed by one message from the server:

• E-CNOT.Gen(1𝜆, 𝑏) → (msg𝐶 , st𝐶): The PPT client takes as input the security parameter 1𝜆 and a
bit 𝑏 and outputs a message msg𝐶 and state st𝐶 .

• E-CNOT.Apply((𝒱0,𝒱1),msg𝐶) → ((𝒱0,𝒱1),msg𝑆): The QPT server takes as input the client’s
message msg𝐶 , performs an operation on the registers 𝒱0,𝒱1, and produces a message msg𝑆 .

• E-CNOT.Dec(st𝐶 ,msg𝑆)→ (𝑟, 𝑠): The PPT decoding algorithm takes as input the client’s state st𝐶
and the server’s message msg𝑆 and outputs one-time pad keys (𝑟, 𝑠).
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Theorem 6.28. OSP (resp. two-round OSP) implies encrypted CNOT (resp. two-round encrypted CNOT).

Proof. Encrypted CNOT from OSP follows generically from Corollary 6.12, so we focus on the two-
round case. We first describe the protocol, where (OSP.Sen,OSP.Rec,OSP.Dec) is any two-round
OSP.

• E-CNOT.Gen(1𝜆, 𝑏): Sample OSP first-round messages

(OSP.msg𝑆,0,OSP.st𝑆,0)← OSP.Sen(1𝜆, 𝑏), (OSP.msg𝑆,1,OSP.st𝑆,1)← OSP.Sen(1𝜆, 1− 𝑏),

and define

msg𝐶 := (OSP.msg𝑆,0,OSP.msg𝑆,1), st𝐶 := (OSP.st𝑆,0,OSP.st𝑆,1).

• E-CNOT.Apply((𝒱0,𝒱1),msg𝐶): Generate OSP states and second-round messages(︀
|𝜓0⟩𝒪0

,OSP.msg𝑅,0
)︀
← OSP.Rec(OSP.msg𝑆,0),

(︀
|𝜓1⟩𝒪1

,OSP.msg𝑅,1
)︀
← OSP.Rec(OSP.msg𝑆,1).

Apply CNOT𝒱0→𝒪1 ,CNOT𝒪0→𝒪1 ,CNOT𝒪0→𝒱1 , measure𝒪0 in the Hadamard basis to obtain
bit 𝑚0, and measure 𝒪1 in the standard basis to obtain bit 𝑚1. Define

msg𝑆 := (OSP.msg𝑅,0,OSP.msg𝑅,1,𝑚0,𝑚1),

and output (𝒱0,𝒱1).

• E-CNOT.Dec(st𝐶 ,msg𝑆): Decode OSP output bits

𝑡0 ← OSP.Dec(OSP.st𝑆,0,OSP.msg𝑅,0), 𝑡1 ← OSP.Dec(OSP.st𝑆,1,OSP.msg𝑅,1),

and compute the one-time pad keys 𝑟, 𝑠 as follows.

– If 𝑏 = 0: 𝑟 = (0, 𝑡0), 𝑠 = (𝑡1, 0).

– If 𝑏 = 1: 𝑟 = (0,𝑚1 ⊕ 𝑡1), 𝑠 = (𝑚0 ⊕ 𝑡0, 0).

Security is immediate from the security of the OSP. Thus, it remains to check correctness, which
we check separately for 𝑏 = 0 and 𝑏 = 1. To avoid clutter, we will assume that registers 𝒱0,𝒱1 hold
pure states 𝛼0 |0⟩+𝛼1 |1⟩ and 𝛽0 |0⟩+𝛽1 |1⟩, but note that correctness extends readily to the setting
where 𝒱0,𝒱1 may be entangled with each other and with auxiliary systems.

First, suppose that 𝑏 = 0. We will break the server’s actions into two stages: (1) apply
CNOT𝒱0→𝒪1 ,CNOT𝒪0→𝒪1 and measure 𝒪1, and (2) apply CNOT𝒪0→𝒱1 and measure 𝒪0. By the
correctness of OSP, we have that right before the measurement in the first stage, the state of the
system on registers (𝒱0,𝒪0,𝒪1) is (negligibly close to)

CNOT𝒱0→𝒪1CNOT𝒪0→𝒪1𝑋
0,𝑡0,0𝑍0,0,𝑡1

(︀
(𝛼0 |0⟩+ 𝛼1 |1⟩)𝒱0 ⊗ |0⟩𝒪0

⊗ |+⟩𝒪1

)︀
= 𝑋0,𝑡0,𝑡0𝑍𝑡1,𝑡1,𝑡1CNOT𝒱0→𝒪1CNOT𝒪0→𝒪1

(︀
(𝛼0 |0⟩+ 𝛼1 |1⟩)𝒱0 ⊗ |0⟩𝒪0

⊗ |+⟩𝒪1

)︀
= 𝑋0,𝑡0,𝑡0𝑍𝑡1,𝑡1,𝑡1

(︀
(𝛼0 |0⟩+ 𝛼1 |1⟩)𝒱0 ⊗ |0⟩𝒪0

⊗ |+⟩𝒪1

)︀
.

Thus, measuring 𝒪1 in the standard basis has no affect on the remaining system. Next, we
write the state of the system on registers (𝒱0,𝒱1,𝒪0) right before the measurement in the second
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stage, which we imagine implementing by applying a Hadamard gate and then measuring in the
standard basis.

𝐻𝒪0CNOT𝒪0→𝒱1𝑋
0,0,𝑡0𝑍𝑡1,0,𝑡1

(︀
(𝛼0 |0⟩+ 𝛼1 |1⟩)𝒱0 ⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩)𝒱1 ⊗ |0⟩𝒪0

)︀
= 𝑋0,𝑡0,𝑡1𝑍𝑡1,0,𝑡0𝐻𝒪0CNOT𝒪0→𝒱1

(︀
(𝛼0 |0⟩+ 𝛼1 |1⟩)𝒱0 ⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩)𝒱1 ⊗ |0⟩𝒪0

)︀
= 𝑋0,𝑡0,𝑡1𝑍𝑡1,0,𝑡0

(︀
(𝛼0 |0⟩+ 𝛼1 |1⟩)𝒱0 ⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩)𝒱1 ⊗ |+⟩𝒪0

)︀
Thus, measuring 𝒪0 in the standard basis has no affect on the system (𝒱0,𝒱1), which is

𝑋0,𝑡0𝑍𝑡1,0
(︀
(𝛼0 |0⟩+ 𝛼1 |1⟩)𝒱0 ⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩)𝒱1

)︀
,

as desired.
Next, suppose 𝑏 = 1. We break the server’s actions into two stages in the same manner. By the

correctness of OSP, we have that right before the measurement in the first stage, the state of the
system on registers (𝒱0,𝒪0,𝒪1) is (negligibly close to)

CNOT𝒱0→𝒪1CNOT𝒪0→𝒪1𝑋
0,0,𝑡1𝑍0,𝑡0,0

(︀
(𝛼0 |0⟩+ 𝛼1 |1⟩)𝒱0 ⊗ |+⟩𝒪0

⊗ |0⟩𝒪1

)︀
= 𝑋0,0,𝑡1𝑍0,𝑡0,0CNOT𝒱0→𝒪1CNOT𝒪0→𝒪1

(︀
(𝛼0 |0⟩+ 𝛼1 |1⟩)𝒱0 ⊗ |+⟩𝒪0

⊗ |0⟩𝒪1

)︀
= 𝑋0,0,𝑡1𝑍0,𝑡0,0

(︂
1√
2
𝛼0 |000⟩+

1√
2
𝛼0 |011⟩+

1√
2
𝛼1 |101⟩+

1√
2
𝛼1 |110⟩

)︂
= 𝑋0,0,𝑡1𝑍0,𝑡0,0

(︂
1√
2
(𝛼0 |00⟩+ 𝛼1 |11⟩) |0⟩+

1√
2
(𝛼0 |01⟩+ 𝛼1 |10⟩) |1⟩

)︂
=

∑︁
𝑐∈{0,1}

1√
2
𝑋0,𝑐,𝑡1𝑍0,𝑡0,0

(︂
(𝛼0 |00⟩+ 𝛼1 |11⟩)⊗ |𝑐⟩

)︂

=
∑︁

𝑚1∈{0,1}

1√
2

(︂
𝑋0,𝑚1⊕𝑡1𝑍0,𝑡0 (𝛼0 |00⟩+ 𝛼1 |11⟩)

)︂
⊗ |𝑚1⟩ ,

where the last equality follows by a change of variables 𝑚1 = 𝑐⊕ 𝑡1. Now, the server measures the
last register (𝒪1) in the standard basis to obtain 𝑚1, and then applies the second stage. We write
the state of the system on registers (𝒱0,𝒱1,𝒪0) right before the measurement in the second stage,
which again we implement by applying a Hadamard gate and then measuring in the standard
basis. Below, the one-time pad keys are always written in the order (𝒱0,𝒱1,𝒪0).

𝐻𝒪0CNOT𝒪0→𝒱1𝑋
0,0,𝑚1⊕𝑡1𝑍0,0,𝑡0

(︁
(𝛼0 |00⟩+ 𝛼1 |11⟩)𝒱0,𝒪0

⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩)𝒱1
)︁

= 𝑋0,𝑚1⊕𝑡1,𝑡0𝑍0,0,𝑚1⊕𝑡1𝐻𝒪0CNOT𝒪0→𝒱1

(︁
(𝛼0 |00⟩+ 𝛼1 |11⟩)𝒱0,𝒪0

⊗ (𝛽0 |0⟩+ 𝛽1 |1⟩)𝒱1
)︁

= 𝑋0,𝑚1⊕𝑡1,𝑡0𝑍0,0,𝑚1⊕𝑡1𝐻𝒪0 (𝛼0𝛽0 |000⟩+ 𝛼0𝛽1 |010⟩+ 𝛼1𝛽0 |111⟩+ 𝛼1𝛽1 |101⟩)𝒱0,𝒱1,𝒪0

= 𝑋0,𝑚1⊕𝑡1,𝑡0𝑍0,0,𝑚1⊕𝑡1 1√
2

(︂(︀
𝛼0𝛽0 |00⟩+ 𝛼0𝛽1 |01⟩+ 𝛼1𝛽0 |11⟩+ 𝛼1𝛽1 |10⟩

)︀
|0⟩

+
(︀
𝛼0𝛽0 |00⟩+ 𝛼0𝛽1 |01⟩ − 𝛼1𝛽0 |11⟩ − 𝛼1𝛽1 |10⟩

)︀
|1⟩

)︂
=

∑︁
𝑐∈{0,1}

1√
2
𝑋0,𝑚1⊕𝑡1,𝑡0𝑍𝑐,0,𝑚1⊕𝑡1

(︁
𝛼0𝛽0 |00⟩+ 𝛼0𝛽1 |01⟩+ 𝛼1𝛽0 |11⟩+ 𝛼1𝛽1 |10⟩

)︁
⊗ |𝑐⟩
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=
∑︁

𝑚0∈{0,1}

1√
2
𝑋0,𝑚1⊕𝑡1𝑍𝑚0⊕𝑡0,0

(︁
𝛼0𝛽0 |00⟩+ 𝛼0𝛽1 |01⟩+ 𝛼1𝛽0 |11⟩+ 𝛼1𝛽1 |10⟩

)︁
𝒱0,𝒱1

⊗ 𝑍𝑚1⊕𝑡1 |𝑚0⟩𝒪0
,

where the equality follows by a change of variables 𝑚0 = 𝑐 ⊕ 𝑡0. Thus, measuring 𝒪0 in the
standard basis to obtain 𝑚0 yields the final state

𝑋0,𝑚1⊕𝑡1𝑍𝑚0⊕𝑡0,0 (𝛼0𝛽0 |00⟩+ 𝛼0𝛽1 |01⟩+ 𝛼1𝛽0 |11⟩+ 𝛼1𝛽1 |10⟩)𝒱0,𝒱1 ,

as desired.

Application: QFHE. [Mah18a] combined a particular classical FHE protocol with a particular
two-round encrypted CNOT protocol in a non-black-box way in order to achieve quantum FHE.
However, [GV24] recently pioneered a generic approach to constructing quantum FHE from any
classical FHE (with log-depth decryption) and any dual-mode TCF. Implicit in their work is that,
in fact, one can use any two-round encrypted CNOT protocol, and thus (due to our work) any
two-round OSP. We confirm this in the following theorem.

Theorem 6.29 (Adapted from [GV24]). Given any FHE with decryption in NC1 and any two-round
encrypted CNOT, there exists QFHE.

Corollary 6.30. Given any FHE with decryption in NC1 and any two-round OSP, there exists QFHE.

Proof. In [GV24, Section 5], it is shown that classical FHE (with decryption in NC1) plus a proce-
dure for generating a “hidden Bell pair” is sufficient to construct quantum FHE. We now describe
the requirements for the hidden Bell pair procedure, where Enc refers to a classical FHE encryp-
tion.

• Before the procedure begins, the client holds a bit 𝜇 and the server holds a state

𝑋𝑟𝑍𝑠
(︂

1√
2

(︀
|0⟩𝒲0

⃒⃒
𝜑00

⟩︀
+ |1⟩𝒲0

⃒⃒
𝜑10

⟩︀)︀
⊗ 1√

2

(︀
|0⟩𝒲1

⃒⃒
𝜑01

⟩︀
+ |1⟩𝒲1

⃒⃒
𝜑11

⟩︀)︀)︂
,

where the one-time pad (𝑟, 𝑠) is on registers𝒲0,𝒲1, along with encryptions Enc(𝑠, 𝑟) of the
one-time pad keys.

• The client runs a parameter generation algorithm (pp, sp)← Gen(1𝜆, 𝜇) and publishes pp,Enc(sp).
We requires that pp is a semantically secure encryption of 𝜇.

• The server runs a procedure to obtain a state that is negligibly close in trace distance to

𝑋𝑟′𝑍𝑠
′
(︂

1√
2

(︁
|00⟩𝒲𝜇,𝒲2

⃒⃒
𝜑0𝜇

⟩︀
+ |11⟩𝒲𝜇,𝒲2

⃒⃒
𝜑1𝜇

⟩︀)︁
⊗ 1√

2

(︁
|0⟩𝒲1−𝜇

⃒⃒
𝜑01−𝜇

⟩︀
+ |1⟩𝒲1−𝜇

⃒⃒
𝜑11−𝜇

⟩︀)︁)︂
,

where the one-time pad (𝑠′, 𝑟′) is applied to registers 𝒲0,𝒲1,𝒲2. The server also obtains
encryptions Enc(𝑟′, 𝑠′) of the one-time pad keys.

It is straightforward to implement such a procedure given a two-round encrypted CNOT:
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• The client’s parameter generation algorithm runs (msg𝐶,0, st𝐶,0) ← E-CNOT.Gen(1𝜆, 𝜇) and
(msg𝐶,1, st𝐶,1)← E-CNOT.Gen(1𝜆, 1−𝜇), and sets pp := (msg𝐶,0,msg𝐶,1) and sp := (st𝐶,0, st𝐶,1).

• The server initializes register𝒲2 to |+⟩𝒲2
, applies

((𝒲0,𝒲2),msg𝑆,0)← E-CNOT.Apply((𝒲0,𝒲2),msg𝐶,0),

applies
((𝒲1,𝒲2),msg𝑆,1)← E-CNOT.Apply((𝒲1,𝒲2),msg𝐶,1),

and finally uses Enc(𝑟, 𝑠),Enc(sp) = Enc(st𝐶,0, st𝐶,1) and msg𝑆,0,msg𝑆,1 to homomorphically
obtain Enc(𝑟′, 𝑠′) under the FHE.

Correctness is straightforward, as 𝜇 determines whether the CNOT is applied from𝒲0 to𝒲2

or from𝒲1 to𝒲2. Security follows immediately from the security of the encrypted CNOT.

Application: CSG. Finally, we return to the notion of a claw-state generator (CSG), as defined in
Section 4.2. There, it was shown that any CSG with search security implies OSP. Here, we show (a
strengthening of) the reverse implication: Any OSP implies CSG with indistinguishability security.
This implication goes via the intermediate primitive of encrypted CNOT.

Theorem 6.31. Encrypted CNOT (resp. two-round encrypted CNOT) implies differentiated-bit CSG (resp.
two-round CSG) with indistinguishability security, for any 𝑛 = poly(𝜆).

Corollary 6.32. OSP (resp. two-round OSP) implies differentiated-bit CSG (resp. two-round CSG) with
indistinguishability security, for any 𝑛 = poly(𝜆).

Proof. We give the protocol in the two-round case, which can also be instantiated with any (not
necessarily two-round) encrypted CNOT to yield a (not necessarily two-round) CSG. Let

(E-CNOT.Gen,E-CNOT.Apply,E-CNOT.Dec)

be any two-round encrypted CNOT.

• CSG.Sen(1𝜆, 𝑛): Sample a uniformly random string Δ← {0, 1}𝑛, and for each 𝑖 ∈ [𝑛], sample

(E-CNOT.msg𝐶,𝑖,E-CNOT.st𝐶,𝑖)← E-CNOT(1𝜆,Δ𝑖).

Define

msg𝑆 := (E-CNOT.msg𝐶,1, . . . ,E-CNOT.msg𝐶,𝑛), st𝑆 := (E-CNOT.st𝐶,1, . . . ,E-CNOT.st𝐶,𝑛).

• CSG.Rec(msg𝑆): Initialize a register ℬ to |+⟩ℬ. For each 𝑖 ∈ [𝑛], initialize a register 𝒞𝑖 to |0⟩𝒞𝑖
and apply

((ℬ, 𝒞𝑖),E-CNOT.msg𝑆,𝑖)← E-CNOT.Apply((ℬ, 𝒞𝑖),E-CNOT.msg𝐶,𝑖).

Output the state on registers ℬ, 𝒞1, . . . , 𝒞𝑛, and define

msg𝑅 := (E-CNOT.msg𝑆,1, . . . ,E-CNOT.msg𝑆,𝑛).
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• CSG.Dec(st𝑆 ,msg𝑅): For each 𝑖 ∈ [𝑛], compute

((𝑟𝑖,0, 𝑟𝑖,1), (𝑠𝑖,0, 𝑠𝑖,1))← E-CNOT.Dec(E-CNOT.st𝐶,𝑖,E-CNOT.msg𝑆,𝑖),

define

𝑟0 :=
⨁︁
𝑖∈[𝑛]

𝑟𝑖,0 ∈ {0, 1}, 𝑟 := (𝑟1,1, . . . , 𝑟𝑛,1) ∈ {0, 1}𝑛, 𝑠 :=

⎛⎝⨁︁
𝑖∈[𝑛]

𝑠𝑖,0, 𝑠1,1, . . . , 𝑠𝑛,1

⎞⎠ ∈ {0, 1}𝑛+1,

and output
𝑥0 = 𝑟 ⊕ 𝑟0 ·Δ, 𝑥1 = 𝑟 ⊕ (1− 𝑟0) ·Δ, 𝑧 = 𝑠 · (1,Δ).

Observe that, by the correctness of the encrypted CNOT protocol, the state on registers (ℬ, 𝒞1, . . . , 𝒞𝑛)
output by CSG.Rec is (negligibly close to)

𝑋
⨁︀

𝑖∈[𝑛] 𝑟𝑖,0,𝑟1,1,...,𝑟𝑛,1𝑍
⨁︀

𝑖∈[𝑛] 𝑠𝑖,0,𝑠1,1,...,𝑠𝑛,1

(︂
1√
2
|0, 0𝑛⟩+ 1√

2
|1,Δ⟩

)︂
= 𝑋𝑟0,𝑟𝑍𝑠

(︂
1√
2
|0, 0𝑛⟩+ 1√

2
|1,Δ⟩

)︂
=

1√
2
|0, 𝑟 ⊕ 𝑟0 ·Δ⟩+ (−1)𝑠·(1,Δ) 1√

2
|1, 𝑟 ⊕ (1− 𝑟0) ·Δ⟩ ,

and thus correctness holds. Indistinguishability security follows immediately from the secu-
rity of the encrypted CNOT, since for each 𝑖 ∈ [𝑛], 𝑥0,𝑖 ⊕ 𝑥1,𝑖 = Δ𝑖.

7 Implications

In this section, we show that OSP implies both commitments and oblivious transfer with one
classical party, while two-round OSP implies public-key encryption with classical public keys and
ciphertexts. The purpose of exploring this direction is to place lower bounds on the cryptography
necessary to build OSP.

7.1 Commitments from OSP

Definition 7.1 (Commitment). A (statistically-binding, computationally-hiding) commitment between a
classical committer and quantum receiver consists of an interaction

(stCom, |𝜓⟩Rec)← ⟨Com(1𝜆, 𝑏),Rec(1𝜆)⟩,

where Com is a PPT machine with input bit 𝑏 ∈ {0, 1} and Rec is a QPT machine, along with algorithms
(Open,Ver) with the following syntax.

• Open(stCom) → (𝑏, 𝑠) is a PPT algorithm that takes as input the committer’s state stCom and pro-
duces a bit 𝑏 and opening information 𝑠.

• Ver(|𝜓⟩Rec , 𝑏, 𝑠) → {⊤,⊥} is a QPT algorithm that takes as input the receiver’s state |𝜓⟩Rec, a bit
𝑏, and opening information 𝑠, and either accepts or rejects.
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Correctness requires that for any 𝑏 ∈ {0, 1},

Pr

[︂
Ver(|𝜓⟩Rec , 𝑏, 𝑠) = ⊤ :

(stCom, |𝜓⟩Rec)← ⟨Com(1𝜆, 𝑏),Rec(1𝜆)⟩
(𝑏, 𝑠)← Open(stCom)

]︂
= 1− negl(𝜆).

The commitment satisfies computational hiding if for any QPT adversarial receiver {Adv𝜆}𝜆∈N,⃒⃒⃒⃒
Pr

[︁
𝑏Adv = 0 : (stCom, 𝑏Adv)← ⟨Com(1𝜆, 0),Adv𝜆⟩

]︁
− Pr

[︁
𝑏Adv = 0 : (stCom, 𝑏Adv)← ⟨Com(1𝜆, 1),Adv𝜆⟩

]︁ ⃒⃒⃒⃒
= negl(𝜆).

The commitment satisfies statistical binding if for any unbounded adversarial committer {Adv𝜆}𝜆∈N,

Pr

⎡⎣Ver(|𝜓⟩Rec , 𝑏, 𝑠) = ⊤ :
(stAdv, |𝜓⟩Rec)← ⟨Adv𝜆,Rec(1𝜆)⟩

𝑏← {0, 1}
𝑠← Adv𝜆(stAdv, 𝑏)

⎤⎦ ≤ 1

2
+ negl(𝜆).

Theorem 7.2. OSP implies a commitment between a classical committer and quantum receiver.

Proof. Given any OSP, consider the following commitment scheme.

• For all 𝑖 ∈ [𝜆], execute an OSP between the committer playing the role of the sender with
input 𝑏 and the receiver playing the role of the OSP receiver. Each execution results in
an output 𝑠𝑖 for the sender a state |𝜓𝑖⟩ for the receiver. Define stCom := (𝑏, 𝑠1, . . . , 𝑠𝜆) and
|𝜓⟩Rec := |𝜓1⟩ ⊗ · · · ⊗ |𝜓𝜆⟩.

• Open(stCom) outputs 𝑏, 𝑠 = (𝑠1, . . . , 𝑠𝜆).

• Ver(|𝜓⟩Rec , 𝑏, 𝑠) measures |𝜓⟩Rec in the standard basis if 𝑏 = 0 or the Hadamard basis if 𝑏 = 1,
and accepts if the outcome is 𝑠.

Correctness is straightforward from the correctness of OSP, and hiding follows from the secu-
rity of OSP via a standard hybrid argument.

To show binding, consider any state |𝜓⟩Rec that the receiver could have after interacting with
Adv𝜆 in the commit phase. Note that for any 𝑠0, 𝑠1,

Pr[Ver(|𝜓⟩Rec , 0, 𝑠0) = ⊤] = ‖ ⟨𝑠0|𝜓⟩Rec ‖
2 and Pr[Ver(|𝜓⟩Rec , 1, 𝑠1) = ⊤] = ‖ ⟨𝑠1|𝐻

⊗𝜆 |𝜓⟩Rec ‖
2.

Let
𝑠0 := max

𝑠
{Pr[Ver(|𝜓⟩Rec , 0, 𝑠) = ⊤]} and 𝑠1 := max

𝑠
{Pr[Ver(|𝜓⟩Rec , 1, 𝑠) = ⊤]} ,

meaning that in the binding game, the adversary’s optimal strategy given 𝑏 is to output 𝑠𝑏.
Then since

‖ ⟨𝑠0|𝐻⊗𝜆 |𝑠1⟩ ‖2 =
1

2𝜆
= negl(𝜆),

we conclude that

Pr[Ver(|𝜓⟩Rec , 0, 𝑠0) = ⊤] + Pr[Ver(|𝜓⟩Rec , 1, 𝑠1) = ⊤] ≤ 1 + negl(𝜆),

which completes the proof.
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Remark 7.3. Even though the above commitment satisfies a standard notion of statistical binding (sum
binding), it is unclear if the effective committed bit can actually be extracted (even inefficiently) from an
adversarial committer. Note that this is always possible in both the fully-classical and fully-quantum set-
ting. Intuitively, the difficulty here arises from the fact that the span of receiver states that can be (perfectly)
opened to 0 and the span of receiver states that be (perfectly) opened to 1 are equivalent: the span is the entire
Hilbert space. Thus, we cannot define an inefficient projective measurement that successfully distinguishes
these spaces. We mention this both out of curiosity, and also because in the next section we will actually
use an inefficiently-extractable commitment scheme. Since we are not able to show that our OSP-based
commitment is inefficiently-extractable, we rely on a one-way-function based commitment for this purpose.

7.2 OT from OSP

First, we define a notion of game-based oblivious transfer (OT) with one-sided statistical security,
where one party (the receiver) is classical and the other party (the sender) is quantum. For security,
we allow the receiver to be an unbounded algorithm, but require the adversarial sender to be QPT.

Definition 7.4 (OT with one-sided statistical security between classical receiver and quantum
sender). Oblivious transfer (OT) with one-sided statistical security is a protocol that takes place between a
PPT receiver 𝑅 with input 𝑏 ∈ {0, 1} and a QPT sender 𝑆:

(𝑟, (𝑟0, 𝑟1), 𝜏)← ⟨𝑅(1𝜆, 𝑏), 𝑆(1𝜆)⟩,

where 𝑟0, 𝑟1 ∈ {0, 1}𝑛 is the sender’s output, 𝑟 ∈ {0, 1}𝑛 is the receiver’s output, and 𝜏 is the (classical)
transcript of communication produced during the protocol. We require the following properties.

• Correctness. For any 𝑏 ∈ {0, 1},

Pr
[︁
𝑟 = 𝑟𝑏 : (𝑟, (𝑟0, 𝑟1), 𝜏)← ⟨𝑅(1𝜆, 𝑏), 𝑆(1𝜆)⟩

]︁
= 1− negl(𝜆).

We say the protocol satisfies perfect correctness if the above probability is equal to 1.

• Security against a QPT sender. For any QPT adversarial sender {Adv𝜆}𝜆∈N,⃒⃒⃒
Pr

[︁
𝑏Adv = 0 : (𝑟, 𝑏Adv, 𝜏)← ⟨𝑅(1𝜆, 0),Adv𝜆⟩

]︁
− Pr

[︁
𝑏Adv = 0 : (𝑟, 𝑏Adv, 𝜏)← ⟨𝑅(1𝜆, 1),Adv𝜆⟩

]︁ ⃒⃒⃒
= negl(𝜆).

We consider two different security properties that may hold against an unbounded receiver.

• Search security against an unbounded receiver. For any unbounded adversarial receiver Adv,

Pr
[︁
𝑟Adv = (𝑟0, 𝑟1) : (𝑟Adv, (𝑟0, 𝑟1), 𝜏)← ⟨Adv, 𝑆(1𝜆)⟩

]︁
= negl(𝜆).

• Indistinguishability security against an unbounded receiver. For this definition, we restrict our
attention to the case where 𝑛 = 1 (i.e. 𝑟0, 𝑟1 are single bits). There exists an unbounded extractor Ext
such that for any unbounded adversarial receiver Adv,⃒⃒⃒⃒

⃒Pr
[︂
𝑟1−𝑏,Adv = 𝑟1−𝑏 :

((𝑟0,Adv, 𝑟1,Adv), (𝑟0, 𝑟1), 𝜏)← ⟨Adv, 𝑆(1𝜆)⟩
𝑏← Ext(𝜏)

]︂
− 1

2

⃒⃒⃒⃒
⃒ = negl(𝜆).
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We first provide a construction of OT with search security against an unbounded receiver,
assuming only a differentiated-bit CSG with indistinguishability security (defined in Definition 4.4
and constructed from OSP in Section 6.5).

Since search security is a somewhat non-standard notion of OT security, we also show how to
tweak the construction to obtain indistinguishability security by additionally using an inefficiently-
extractable commitment (defined in Appendix B). We use a fully-classical (post-quantum) inefficiently-
extractable commitment, which is known from any (post-quantum) one-way function [Nao91].
Our protocols are given in Fig. 4 and Fig. 5.

OT with search security from OSP

• For each 𝑖 ∈ [2𝜆]:

– The classical receiver 𝑅 and quantum sender 𝑆 engage in a differentiated-bit CSG with
indistinguishability security where 𝑅 plays the role of the sender CSG.Sen and 𝑆 plays the
role of the receiver CSG.Rec:

((𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖), |𝜓𝑖⟩)← ⟨CSG.Sen(1𝜆, 1),CSG.Rec(1𝜆, 1)⟩.

In the case that both parties are honest, the state |𝜓𝑖⟩ obtained by the sender is (negligibly
close to)

|𝜓𝑖⟩ =
1√
2
(|0, 𝑥0,𝑖⟩+ (−1)𝑧𝑖 |1, 𝑥1,𝑖⟩) .

• 𝑆 samples a uniformly random subset 𝑇 ⊂ [2𝜆] of size 𝜆 and sends 𝑇 to 𝑅. Define 𝑇 := [2𝜆] ∖ 𝑇 .

• Given input bit 𝑏, 𝑅 defines 𝑏𝑖 := 𝑏⊕𝑥0,𝑖⊕𝑥1,𝑖 for all 𝑖 ∈ 𝑇 , and defines 𝑟 to be the concatenation
of the bits {𝑥0,𝑖}𝑖∈𝑇 . 𝑅 sends {𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖}𝑖∈𝑇 , {𝑏𝑖}𝑖∈𝑇 to 𝑆, and outputs 𝑟.

• For each 𝑖 ∈ 𝑇 , 𝑆 attempts to project |𝜓𝑖⟩ onto the state 1√
2
(|0, 𝑥0,𝑖⟩ + (−1)𝑧𝑖 |1, 𝑥1,𝑖⟩). If any

measurement fails, output 𝑟0, 𝑟1 ← {0, 1}𝑛 sampled uniformly at random. Otherwise, for all
𝑖 ∈ 𝑇 , measure |𝜓𝑖⟩ in the standard basis to obtain bits (𝑐𝑖, 𝑦𝑖), and define 𝑟0,𝑖 := 𝑦𝑖 ⊕ 𝑏𝑖 · 𝑐𝑖 and
𝑟1,𝑖 := 𝑦𝑖 ⊕ (1⊕ 𝑏𝑖) · 𝑐𝑖. Finally, define 𝑟0 to be the concatenation of all bits {𝑟0,𝑖}𝑖∈𝑇 and 𝑟1 to be
the concatenation of all bits {𝑟1,𝑖}𝑖∈𝑇 , and output (𝑟0, 𝑟1).

Figure 4: A protocol for OT with search security against an unbounded receiver, assuming only
claw-state generators with indistinguishability security (which follow from OSP).

Theorem 7.5. The protocol in Fig. 4 (resp. Fig. 5) satisfies OT with search (resp. indistinguishability)
security against an unbounded receiver (Definition 7.4). That is, OSP implies OT with search security,
while OT plus one-way functions implies OT with indistinguishability security.

Proof. We write out the proofs for the protocol in Fig. 5, and note that essentially the same proof
strategy works to show security of the protocol in Fig. 4. In what follows, we prove correctness,
security against a QPT sender, and indistinguishability security against an unbounded receiver.

Correctness. We need to show that for any 𝑏 ∈ {0, 1}, the receiver’s output 𝑟 is equal to the
sender’s output 𝑟𝑏 with overwhelming probability. To see this, it suffices to show that for all 𝑖 ∈ 𝑇 ,
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OT with indistinguishability security from OSP plus OWF

• For each 𝑖 ∈ [2𝜆]:

– The classical receiver 𝑅 and quantum sender 𝑆 engage in a differentiated-bit CSG with
indistinguishability security where 𝑅 plays the role of the sender CSG.Sen and 𝑆 plays the
role of the receiver CSG.Rec:

((𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖), |𝜓𝑖⟩)← ⟨CSG.Sen(1𝜆, 1),CSG.Rec(1𝜆, 1)⟩.

In the case that both parties are honest, the state |𝜓𝑖⟩ obtained by the sender is (negligibly
close to)

|𝜓𝑖⟩ =
1√
2
(|0, 𝑥0,𝑖⟩+ (−1)𝑧𝑖 |1, 𝑥1,𝑖⟩) .

– 𝑅 and 𝑆 engage in an inefficiently-extractable commitment, with𝑅 playing the role of Com
and 𝑆 playing the role of Rec:

(stCom,𝑖, stRec,𝑖, 𝜏𝑖)← ⟨Com(1𝜆, (𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖)),Rec(1
𝜆)⟩.

• 𝑆 samples a uniformly random subset 𝑇 ⊂ [2𝜆] of size 𝜆 and sends 𝑇 to 𝑅. Define 𝑇 := [2𝜆] ∖ 𝑇 .

• For each 𝑖 ∈ 𝑇 , 𝑅 computes the opening to its commitment ((𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖), 𝑤𝑖) ← Open(stCom,𝑖).
Then, given input bit 𝑏, 𝑅 defines 𝑏𝑖 := 𝑏 ⊕ 𝑥0,𝑖 ⊕ 𝑥1,𝑖 for all 𝑖 ∈ 𝑇 , and defines 𝑟 :=

⨁︀
𝑖∈𝑇 𝑥0,𝑖.

Finally, 𝑅 sends {𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖, 𝑤𝑖}𝑖∈𝑇 , {𝑏𝑖}𝑖∈𝑇 to 𝑆, and outputs 𝑟.

• For each 𝑖 ∈ 𝑇 , 𝑆 checks that Ver(stRec, (𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖), 𝑤𝑖) = ⊤, and attempts to project |𝜓𝑖⟩ onto
the state 1√

2
(|0, 𝑥0,𝑖⟩ + (−1)𝑧𝑖 |1, 𝑥1,𝑖⟩). If any verification check or measurements fails, output

𝑟0, 𝑟1 ← {0, 1} sampled uniformly at random. Otherwise, for all 𝑖 ∈ 𝑇 , measure |𝜓𝑖⟩ in the
standard basis to obtain bits (𝑐𝑖, 𝑦𝑖), and define 𝑟0,𝑖 := 𝑦𝑖 ⊕ 𝑏𝑖 · 𝑐𝑖 and 𝑟1,𝑖 := 𝑦𝑖 ⊕ (1 ⊕ 𝑏𝑖) · 𝑐𝑖.
Finally, define

𝑟0 :=
⨁︁
𝑖∈𝑇

𝑟0,𝑖, 𝑟1 :=
⨁︁
𝑖∈𝑇

𝑟1,𝑖,

and output (𝑟0, 𝑟1).

Figure 5: A protocol for OT with indistinguishability security against an unbounded receiver,
assuming CSG plus one-way functions. The differences from the OT protocol in Fig. 4 are high-
lighted in red.

it holds that (with overwhelming probability) 𝑥0,𝑖 = 𝑦𝑖⊕ (𝑏⊕ 𝑏𝑖) · 𝑐𝑖, where 𝑏𝑖 = 𝑏⊕ 𝑥0,𝑖⊕ 𝑥1,𝑖, and
(𝑐𝑖, 𝑦𝑖) are obtained by measuring a state that is (negligibly close to)

1√
2
(|0, 𝑥0,𝑖⟩+ |1, 𝑥1,𝑖⟩)

in the standard basis. This is easy to check by plugging in the two choices of (𝑐𝑖, 𝑦𝑖) = (0, 𝑥0,𝑖)
and (𝑐𝑖, 𝑦𝑖) = (1, 𝑥1,𝑖).
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Security against a QPT sender. This follows directly from the indistinguishability security of the
CSG. Indeed, the only information that the sender obtains about 𝑏 are the bits 𝑏𝑖 = 𝑏 ⊕ 𝑥0,𝑖 ⊕ 𝑥1,𝑖,
and the security of CSG implies that each bit 𝑥0,𝑖 ⊕ 𝑥1,𝑖 is computationally unpredictable to the
QPT sender.

Security against an unbounded receiver. First, we define the unbounded-time extractor Ext.
Given the classical transcript 𝜏 of the OT protocol, Ext identifies the transcripts 𝜏Com,1, . . . , 𝜏Com,2𝜆
of the commitment protocols, along with the set 𝑇 and bits {𝑏𝑖}𝑖∈𝑇 . It runs the unbounded-time
extractor for the commitment scheme on each {𝜏Com,𝑖}𝑖∈𝑇 to obtain {(𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖)}𝑖∈𝑇 , and outputs
𝑏 = maj{𝑏𝑖 ⊕ 𝑥0,𝑖 ⊕ 𝑥1,𝑖}𝑖∈𝑇 .

For any {0, 1}-valued random variable 𝑠 sampled during the protocol, we define

Bias(𝑠) :=
⃒⃒⃒
Pr[𝑠 = 0 | st𝑅]−

1

2

⃒⃒⃒
,

where st𝑅 is the final state of the receiver at the conclusion of the protocol. That is, Bias(𝑠)
captures that advantage that any unbounded receiver has in guessing the bit 𝑠 at the conclusion
of the protocol. Our goal is to show that Bias(𝑟1⊕𝑏) = negl(𝜆). Towards showing this, we prove
the following claim.

Claim 7.6. Consider running the commitment scheme extractor on all commitment transcripts {𝜏Com,𝑖}𝑖∈[2𝜆]
to obtain {(𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖)}𝑖∈[2𝜆]. Define

|𝜓𝑖⟩ :=
1√
2
(|0, 𝑥0,𝑖⟩+ |1, 𝑥1,𝑖⟩)

and let |𝜓′𝑖⟩ be the state obtained by the sender after the 𝑖’th CSG protocol (note that these states are unen-
tangled with each other). Then with probability 1 − negl(𝜆), either (1) one of the sender’s measurements
fails, or (2) for at least 7𝜆/4 indices 𝑖 ∈ [2𝜆], it holds that | ⟨𝜓𝑖|𝜓′𝑖⟩ |2 ≥ 1− 1/25.

Proof. Suppose that condition (2) does not hold. We will show that this implies that with proba-
bility 1− negl(𝜆), one of the sender’s measurements fails, which suffices to show the claim.

First note that due to the extractability property of the commitment, there is only negl(𝜆) prob-
ability that the receiver can open any commitment 𝑖 to a value other than the value (𝑥0,𝑖, 𝑥1,𝑖, 𝑧𝑖)
that was extracted. Thus, with all but negl(𝜆) probability, the sender attempts to project each |𝜓′𝑖⟩
for 𝑖 ∈ 𝑇 onto the state |𝜓𝑖⟩ defined above. Since 𝑇 is sampled as a uniformly random subset of
[2𝜆] of size 𝜆, a straightforward tail bound shows that, except with negl(𝜆) probability, there will
be Ω(𝜆) many indices 𝑖 such that 𝑖 ∈ 𝑇 and | ⟨𝜓𝑖|𝜓′𝑖⟩ |2 < 1− 1/25. For each such 𝑖, the probability
that the sender’s measurments fails is at least 1/25, and these probabilities are independent. Thus
the overall probability of not failing is at most (1− 1/25)Ω(𝜆) ≤ 𝑒−Ω(𝜆) = negl(𝜆).

Now, in the case that one of the sender’s measurements fails, they output uniformly random
bits 𝑟0, 𝑟1, meaning Bias(𝑟1⊕𝑏) = 0. If not, the above claim shows that it suffices to consider the
scenario where condition (2) holds, with only a negl(𝜆) difference in the final bound on Bias(𝑟1⊕𝑏).

In this case, let 𝑆 ⊆ 𝑇 be the set of indices such that (1) | ⟨𝜓𝑖|𝜓′𝑖⟩ |2 ≥ 1 − 1/25 and (2) 𝑏 =
𝑏𝑖 ⊕ 𝑥0,𝑖 ⊕ 𝑥1,𝑖. By the claim above and the definition of 𝑏, we know that |𝑆| ≥ 𝜆/4. For each 𝑖 ∈ 𝑆,
we have that 𝑟1⊕𝑏,𝑖 = 𝑦𝑖 ⊕ (1⊕ 𝑏⊕ 𝑏𝑖) · 𝑐𝑖 = 𝑦𝑖 ⊕ (1⊕ 𝑥0,𝑖 ⊕ 𝑥1,𝑖) · 𝑐𝑖, where (𝑐𝑖, 𝑦𝑖) are obtained by
measuring |𝜓′𝑖⟩ in the standard basis. Note that if instead, (𝑐𝑖, 𝑦𝑖) were obtained by measuring
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|𝜓𝑖⟩ =
1√
2
(|0, 𝑥0,𝑖⟩+ |1, 𝑥1,𝑖⟩)

in the standard basis, then 𝑟1⊕𝑏,𝑖 would be a uniformly random bit (even conditioned on st𝑅).
To see this, note that in the case that 𝑥0,𝑖 = 𝑥1,𝑖 we have that 𝑟1⊕𝑏,𝑖 = 𝑦𝑖 ⊕ 𝑐𝑖 where 𝑦𝑖 is fixed
and 𝑐𝑖 is a uniformly random bit, while in the case that 𝑥0,𝑖 ̸= 𝑥1,𝑖 we have that 𝑟1⊕𝑏,𝑖 = 𝑦𝑖 where
𝑦𝑖 is a uniformly random bit. Thus, by Gentle Measurement (Lemma 3.1), we have that the total
variation distance between 𝑟1⊕𝑏,𝑖 and a uniformly random bit is ≤ 2

√︀
1/25 = 2/5, which implies

that Bias(𝑟1⊕𝑏,𝑖) ≤ 4/5. Finally, noting that each 𝑟1⊕𝑏,𝑖 is an independent random variable (since
the states |𝜓′𝑖⟩ are all unentangled), we have that

Bias(𝑟1⊕𝑏) ≤
∏︁
𝑖∈𝑆

Bias(𝑟1⊕𝑏,𝑖) ≤ (4/5)𝜆/4 = negl(𝜆),

which completes the proof.

Next, we argue that combining this result with [ACC+22, Theorem 3.1] allows us to conclude
the following.

Corollary 7.7. Perfectly correct OSP does not exist in the quantum random oracle model.

Proof. First, it is straightforward to verify that when the protocol in Fig. 4 is instantiated with a
perfectly correct claw-state generator (which can be constructed from a perfectly-correct OSP),
then the resulting protocol is a perfectly-correct OT with search security against an unbounded
receiver.

Next, we confirm that our notion of perfectly-correct OT (with a classical receiver) implies
perfectly-correct key agreement (with one classical party). The key agreement protocol will have
Alice sample a random 𝑏 ← {0, 1} and act as the OT receiver in a protocol with Bob, obtaining
string 𝑟𝑏. Then Alice sends her bit 𝑏 to Bob, and their shared key is defined to be 𝑟𝑏. Any QPT
eavesdropper that can output 𝑟𝑏 with noticeable probability can be used to break the search secu-
rity of the OT. Indeed, by security against a QPT sender, such an eavesdropper will also be able
to output 𝑟1−𝑏 with noticeable probability if the final bit of the transcript they are given is flipped
to 1 − 𝑏. Thus, an adversarial receiver can first run the OT protocol honestly with the sender to
obtain (𝑏, 𝑟𝑏), and then run the eavesdropper on 1− 𝑏 to obtain 𝑟1−𝑏 with noticeable probability.

Finally, we appeal to [ACC+22, Theorem 3.1], which establishes that perfectly-correct key
agreement between one classical and one quantum party does not exist in the quantum random
oracle model. Thus, we conclude that perfectly-correct OSP does not exist in the quantum random
oracle model.

7.3 PKE from two-round OSP

In this section, we show that two-round OSP implies CPA-secure public-key encryption with a
classical key generator / decryptor and a quantum encryptor. In particular, the scheme has classi-
cal keys and ciphertexts. First, we define CPA-secure public-key encryption.

Definition 7.8 (CPA-secure PKE). A CPA-secure public-key encryption scheme with classical key gener-
ator and quantum encryptor consists of the following algorithms.

55



• KeyGen(1𝜆) → (pk, sk): The PPT key generation algorithm takes as input the security parameter
and outputs a public key pk and secret key sk.

• Enc(pk,𝑚) → ct: The QPT encryption algorithm takes as input the public key and a plaintext bit
𝑚 ∈ {0, 1}, and outputs a (classical) ciphertext ct.

• Dec(sk, ct) → 𝑚: The PPT decryption algorithm takes as input the secret key and a ciphertext, and
outputs a plaintext 𝑚.

It should satisfy the following properties.

• Correctness: For any 𝑚 ∈ {0, 1},

Pr
[︁
Dec(sk, ct) = 𝑚 : (pk, sk)← KeyGen(1𝜆), ct← Enc(pk,𝑚)

]︁
= 1− negl(𝜆).

• Security: For any QPT adversary {Adv𝜆}𝜆∈N,⃒⃒⃒
Pr

[︁
Adv𝜆(pk, ct) = 0 : (pk, sk)← KeyGen(1𝜆), ct← Enc(pk, 0)

]︁
− Pr

[︁
Adv𝜆(pk, ct) = 0 : (pk, sk)← KeyGen(1𝜆), ct← Enc(pk, 1)

]︁ ⃒⃒⃒
= negl(𝜆).

We build our scheme from any two-round differentiated-bit CSG with indistinguishability se-
curity (defined in Definition 4.4 and constructed from two-round OSP in Section 6.5). Letting
(CSG.Sen,CSG.Rec,CSG.Dec) be the CSG algorithms, the scheme is constructed as follows.

• KeyGen(1𝜆): Sample (msg𝑆 , st𝑆)← CSG.Sen(1𝜆, 1) and output pk = msg𝑆 and sk = st𝑆 .

• Enc(pk,𝑚): Given a message bit 𝑚 ∈ {0, 1}, sample (|𝜓⟩ ,msg𝑅) ← CSG.Rec(msg𝑆) and
measure |𝜓⟩ in the standard basis to obtain bits (𝑏, 𝑥𝑏). Output ct := (msg𝑅, 𝑏,𝑚⊕ 𝑥𝑏).

• Dec(sk, ct): Parse ct = (msg𝑅, 𝑏,𝑚
′), run (𝑥0, 𝑥1, 𝑧) ← CSG.Dec(st𝑆 ,msg𝑅), and output 𝑚 =

𝑚′ ⊕ 𝑥𝑏.

Theorem 7.9. The scheme described above satisfies Definition 7.8.

Proof. First, we show correctness. By the correctness of CSG, the state |𝜓⟩ sampled by Enc is (neg-
ligibly close to) 1√

2
(|0, 𝑥0⟩ + (−1)𝑧 |1, 𝑥1⟩), where the bits (𝑥0, 𝑥1, 𝑧) can be recovered by running

(𝑥0, 𝑥1, 𝑧) ← CSG.Dec(st𝑆 ,msg𝑅). Thus, given 𝑏, the decryptor can determine 𝑥𝑏, and unmask
𝑚⊕ 𝑥𝑏 to recover the message.

Next, we show security. It suffices to show that 𝑥𝑏 is unpredictable, that is, for any QPT adver-
sary {Adv𝜆}𝜆∈N, it holds that

⃒⃒⃒⃒
⃒Pr

⎡⎢⎢⎣Adv𝜆(msg𝑆 ,msg𝑅, 𝑏) = 𝑥𝑏 :

(msg𝑆 , st𝑆)← CSG.Sen(1𝜆, 1)
(|𝜓⟩ ,msg𝑅)← CSG.Rec(msg𝑆)

(𝑥0, 𝑥1, 𝑧)← CSG.Dec(st𝑆 ,msg𝑅)
𝑏← {0, 1}

⎤⎥⎥⎦− 1

2

⃒⃒⃒⃒
⃒ = negl(𝜆).
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Indeed, note that in the real scheme, 𝑏 is obtained by measuring |𝜓⟩ in the standard basis, but
since |𝜓⟩ is (negligibly close to) a uniform superposition over (0, 𝑥0) and (1, 𝑥1), we can imagine
just sampling a random bit 𝑏← {0, 1}, and Adv𝜆 will have negligibly close to the same advantage.

Now, suppose there exists Adv𝜆 that has noticeable advantage in the above game. We use such
an adversary to break the indistinguishability security of the CSG. The CSG adversary will do the
following:

• Receive msg𝑆 from its challenger.

• Run (|𝜓⟩ ,msg𝑅)← CSG.Rec(msg𝑆).

• Sample 𝑏← {0, 1} and run Adv𝜆(msg𝑆 ,msg𝑅, 𝑏) to obtain a guess for 𝑥𝑏.

• Measure |𝜓⟩ in the standard basis to obtain (𝑏′, 𝑥𝑏′).

• If 𝑏 = 𝑏′, output a random bit, and otherwise, if 𝑏 ̸= 𝑏′, output 𝑥𝑏 ⊕ 𝑥𝑏′ .

Note that with probability 1/2, the CSG adversary makes a uniformly random guess, and
otherwise, the CSG makes a guess for 𝑥0 ⊕ 𝑥1 with noticeable advantage, due to the guarantee
on Adv𝜆. Thus the CSG adversary has a noticeable advantage in breaking the indistinguishability
security of the CSG.
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A Adaptation of the proof from [NZ23]

In this section, we overview how the proof of Theorem 6.26 goes, following arguments made in
[NZ23]. Fix some computationally nonlocal strategy C that associates to every 𝐺 ∈ 𝒢[NO] a set(︂

|𝜓𝐺⟩ ,
{︁
𝐴𝑞𝐴𝑠𝐴,𝐺

}︁
𝑠𝐴
,
{︁
𝐵𝑞𝐵
𝑠𝐵 ,𝐺

}︁
𝑠𝐵

)︂
,
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and fix any sequence {𝐺[𝐻]𝜆}𝜆 where 𝐺[𝐻]𝜆 ∈ 𝒢[NO]𝜆 for each 𝜆 ∈ N. From now on, we will
drop the parameterization by 𝜆 and refer to a single game 𝐺[𝐻] parameterized by a Hamiltonian
𝐻 , as well as a fixed strategy (|𝜓⟩ , {𝐴𝑞𝐴𝑠𝐴}𝑠𝐴 , {𝐵

𝑞𝐵
𝑠𝐵 }𝑠𝐵 ), when we really mean an infinite sequence

of games, Hamiltonians and strategies. To prove the theorem, we must show that

E
(𝑞𝐴,𝑞𝐵)←𝑄

∑︁
𝑠𝐴,𝑠𝐵

𝑉 (𝑞𝐴, 𝑞𝐵, 𝑠𝐴, 𝑠𝐵) ⟨𝜓|𝐴𝑞𝐴,†𝑠𝐴
𝐵𝑞𝐵
𝑠𝐵
𝐴𝑞𝐴𝑠𝐴 |𝜓⟩ ≤ 𝜔𝐶 + negl(𝜆).

Following [NZ23], we now introduce some notation. First, for any observable 𝑂, we define
⟨𝑂⟩ := ⟨𝜓|𝑂 |𝜓⟩, where |𝜓⟩ is the state defined by the strategy we fixed above. Next, since 𝑞𝐵 ∈
{0, 1} is just a single bit, and 𝑠𝐵 ∈ {0, 1}𝜆 is a 𝜆-bit string, we will define

{𝑍𝛾}𝛾∈{0,1}𝜆 := {𝐵0
𝑠𝐵
}𝑠𝐵 , , {𝑋𝛾}𝛾∈{0,1}𝜆 := {𝐵1

𝑠𝐵
}𝑠𝐵 ,

and assume wlog that there exist unitaries 𝑈𝑍 , 𝑈𝑋 such that

{𝑍𝛾}𝛾 = {𝑈 †𝑍(|𝛾⟩⟨𝛾| ⊗ 𝐼)𝑈𝑍}𝛾 , {𝑋𝛾}𝛾 = {𝑈 †𝑋(|𝛾⟩⟨𝛾| ⊗ 𝐼)𝑈𝑋}𝛾 .

Finally, we define sets of binary observables {𝑍(𝑎)}𝑎∈{0,1}𝜆 , {𝑋(𝑎)}𝑎∈{0,1}𝜆 as follows:

𝑍(𝑎) :=
∑︁
𝛾

(−1)𝑎·𝛾𝑈 †𝑍(|𝛾⟩⟨𝛾| ⊗ 𝐼)𝑈𝑍 ,

𝑋(𝑎) :=
∑︁
𝛾

(−1)𝑎·𝛾𝑈 †𝑋(|𝛾⟩⟨𝛾| ⊗ 𝐼)𝑈𝑋 .

Now, we adapt several lemmas from [NZ23].

Lemma A.1 (Adaptation of Lemma 36 from [NZ23]). Suppose the strategy succeeds in the CHSH
subtest with probability at least 𝜔CHSH − 𝜖. Then

E
(𝑎,𝑏)←𝐷1

𝑄,

𝑞𝐴:=(CHSH,(𝑎,𝑏,0))

∑︁
𝑠𝐴

⟨𝐴𝑞𝐴,†𝑠𝐴
· |{𝑍(𝑎), 𝑋(𝑏)}|2 ·𝐴𝑞𝐴𝑠𝐴⟩ ≤ 𝑂(𝜖).

Proof. Following [NZ23], for any fixed 𝑎, 𝑏, this can be seen as an instance of a computationally
nonlocal strategy applied to the CHSH game. Thus, the claim follows from Theorem 6.25.

Lemma A.2 (Adaptation of Lemma 37 from [NZ23]). Suppose the strategy succeeds in the commuta-
tion subtest with probability at least 1− 𝜖. Then

E
(𝑎,𝑏)←𝐷0

𝑄,

𝑞𝐴:=(Commutation,(𝑎,𝑏))

∑︁
𝑠𝐴

⟨𝐴𝑞𝐴,†𝑠𝐴
· |[𝑍(𝑎), 𝑋(𝑏)]|2 ·𝐴𝑞𝐴𝑠𝐴⟩ ≤ 𝑂(𝜖).

Proof. Again, for any fixed 𝑎, 𝑏, this can be seen as an instance of a computationally nonlocal
strategy applied to the commutation game described in [NZ23, Section 3]. Thus, this follows
from [NZ23, Lemma 23], which analyzes the commutation game. Since this analysis does not use
the blindness of QFHE at all (which is not required because the commutation game has no Alice
question), there is no change to the proof in our setting.
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Lemma A.3 (Adaptation of Lemma 38 from [NZ23]). Suppose the strategy succeeds in the CHSH
subtest with probability at least 𝜔CHSH = 𝜖, and in the commutation subtest with probability at least 1− 𝜖.
Then

E
(𝑎,𝑏)←𝐷𝑄,
𝑞𝐴:=Tel

∑︁
𝑠𝐴

⟨𝐴𝑞𝐴,†𝑠𝐴
· |(−1)𝑎·𝑏𝑍(𝑎)𝑋(𝑏)−𝑋(𝑏)𝑍(𝑎)|2 ·𝐴𝑞𝐴𝑠𝐴⟩ ≤ 𝑂(𝜖) + negl(𝜆).

Proof. Here, we crucially use the fact that the strategy is computationally nonlocal to switch the
Alice questions in the above lemmas to Tel. Indeed, this lemma is implied by Lemma A.1 and
Lemma A.2 by following the proof of [NZ23, Lemma 38], where equations (192) and (195) follow
in our setting from the fact that the strategy is computationally nonlocal.

Lemma A.4 (Adaptation of Lemma 39 from [NZ23]). For any 𝑢1, 𝑢2 ∈ {0, 1}, it holds that

E
(𝑎,𝑏=(𝑒𝑖+𝑒𝑗))←𝐷𝑄,

𝑞𝐴:=Tel

∑︁
𝑠𝐴:(𝑠𝐴)𝑖=𝑢1,
(𝑠𝐴)𝑗=𝑢2

⟨𝐴𝑞𝐴,†𝑠𝐴
· |(−1)𝑎·𝑏𝑍(𝑎)𝑋(𝑏)𝑍(𝑎)−𝑋(𝑏)| ·𝐴𝑞𝐴𝑠𝐴⟩ ≤ 𝑂(𝜖1/2) + negl(𝜆).

Proof. This is implied by Lemma A.3 by following the proof of [NZ23, Lemma 39] with no changes.

Next, we import the following definitions.

• SWAP isometry. Let ℋ𝒴 and ℋ𝒵 be two copies of (C2)⊗𝜆. The 𝜆-qubit SWAP isometry
𝑉 : ℋℬ → ℋℬ ⊗ℋ𝒴 ⊗ℋ𝒵 is defined by the following expression:

𝑉 |𝜑⟩ =

⎛⎝ 1

2𝜆

∑︁
𝑢,𝑣∈{0,1}𝜆

𝑍(𝑢)𝑋(𝑣)⊗ 𝐼 ⊗ 𝜎𝑍(𝑢)𝜎𝑋(𝑣)

⎞⎠ |𝜑⟩ |+⟩⊗𝜆 .
• Expected verifier outcomes. Let 𝐻𝑋 be 𝐻 restricted to 𝑋𝑋 terms. Let Ê[𝐻𝑋 ] be the ex-

pected value of the meausurement outcome computed by the verifier in a teleport round,
conditioned on 1) 𝑤 = 𝑞𝐵 , so the verifier perform an energy check instead of accepting
automatically, and 2) the verifier choosing an XX term to check. Then

Ê[𝐻𝑋 ] =
∑︁

𝑢1,𝑢2∈{0,1}

(−1)𝑢1+𝑢2 E
(𝑏=𝑒𝑖+𝑒𝑗)←𝐷𝑋 ,

𝑞𝐴:=Tel

∑︁
𝑠𝐴:(𝑠𝐴)𝑖=𝑢1,
(𝑠𝐴)𝑗=𝑢2

⟨𝐴𝑞𝐴,†𝑠𝐴
𝑋(𝑏)𝐴𝑞𝐴𝑠𝐴⟩.

Define Ê[𝐻𝑍 ] analogously, which gives

Ê[𝐻𝑍 ] =
∑︁

𝑣1,𝑣2∈{0,1}

(−1)𝑣1+𝑣2 E
(𝑎=𝑒𝑖+𝑒𝑗)←𝐷𝑍 ,

𝑞𝐴:=Tel

∑︁
𝑠𝐴:(𝑠𝐴)𝜆+𝑖=𝑣1,
(𝑠𝐴)𝜆+𝑗=𝑣2

⟨𝐴𝑞𝐴,†𝑠𝐴
𝑍(𝑎)𝐴𝑞𝐴𝑠𝐴⟩.

Lemma A.5 (Adaptation of Lemmas 43 and 44 from [NZ23]). Define

𝜌𝑠𝐴 := Trℬ,𝒵 [𝑉 𝐴
Tel
𝑠𝐴
|𝜓⟩⟨𝜓|𝐴Tel,†

𝑠𝐴
𝑉 †].
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Then, assuming the strategy succeeds with probability 𝜔CHSH−𝜖 in the CHSH subtest and with probability
1− 𝜖 in the commutation subtest,∑︁

𝑢1,𝑢2

(−1)𝑢1+𝑢2
∑︁

𝑠𝐴:(𝑠𝐴)𝑖=𝑢1,
(𝑠𝐴)𝑗=𝑢2

E
𝑏←𝐷𝑋

Tr[𝜎𝑋(𝑏)𝜌𝑠𝐴 ] ≈𝑂(𝜖1/2)+negl(𝜆) Ê[𝐻𝑋 ].

Moreover, ∑︁
𝑣1,𝑣2

(−1)𝑣1+𝑣2
∑︁

𝑠𝐴:(𝑠𝐴)𝜆+𝑖=𝑣1,
(𝑠𝐴)𝜆+𝑗=𝑣2

E
𝑎←𝐷𝑍

Tr[𝜎𝑍(𝑎)𝜌𝑠𝐴 ] = Ê[𝐻𝑍 ].

Proof. This is implied by Lemma A.4 by following the proofs of [NZ23, Lemma 43] and [NZ23,
Lemma 44] with no changes.

Lemma A.6 (Adaptation of Lemma 45 from [NZ23]). Assuming the strategy succeeds with probability
𝜔CHSH − 𝜖 in the CHSH subtest and with probability 1− 𝜖 in the commutation subtest, there exists a state
𝜌 such that

E
𝑎←𝐷𝑍

Tr[𝜌𝑍(𝑎)𝜌] = Ê[𝐻𝑍 ],

E
𝑏←𝐷𝑋

Tr[𝜌𝑋(𝑏)𝜌] ≈𝑂(𝜖1/2)+negl(𝜆) Ê[𝐻𝑋 ].

Proof. This is implied by Lemma A.5 by following the proof of [NZ23, Lemma 45] with no changes.

Now, following analysis in the proof of [NZ23, Theorem 46] and assuming for contradiction
that the strategy succeeds with probability greater than

1

2
(1− 𝜅)(1 + 𝜔CHSH) + 𝜅(1− 1

4
𝛼)− 1

8
𝜅(𝛽 − 𝛼)

=
1

2
(1− 𝜅)(1 + 𝜔CHSH) + 𝜅(1− 1

4
𝛽) +

1

8
𝜅(𝛽 − 𝛼),

we can conclude that for an appropriate choice of 𝜅 = Θ((𝛽 − 𝛼)2), Lemma A.6 implies that
there exists a state 𝜌 such that Tr[𝐻𝜌] > 𝛽, which gives a contradiction.

B Inefficiently extractable commitments

In this section, we define (post-quantum) classical inefficiently-extractable commitments, which
can be constructed from any post-quantum one-way function [Nao91].

Definition B.1 (Inefficiently-extractable commitment). An inefficiently-extractable commitment be-
tween a classical committer and classical receiver consists of an interaction

(stCom, stRec, 𝜏)← ⟨Com(1𝜆, 𝑏),Rec(1𝜆)⟩,

where 𝜏 is the (classical) transcript of interaction produced by the protocol, along with algorithms (Open,Ver)
with the following syntax.
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• Open(stCom) → (𝑏, 𝑤) is a PPT algorithm that takes as input the committer’s state stCom and pro-
duces a bit 𝑏 and opening information 𝑤.

• Ver(stRec, 𝑏, 𝑤) → {⊤,⊥} is a PPT algorithm that takes as input the receiver’s state stRec, a bit 𝑏,
and opening information 𝑤, and either accepts or rejects.

Correctness requires that for any 𝑏 ∈ {0, 1},

Pr

[︂
Ver(stRec, 𝑏, 𝑤) = ⊤ :

(stCom, stRec, 𝜏)← ⟨Com(1𝜆, 𝑏),Rec(1𝜆)⟩
(𝑏, 𝑤)← Open(stCom)

]︂
= 1− negl(𝜆).

The commitment satisfies (post-quantum) computational hiding if for any QPT adversarial receiver
{Adv𝜆}𝜆∈N, ⃒⃒⃒⃒

Pr
[︁
𝑏Adv = 0 : (stCom, 𝑏Adv)← ⟨Com(1𝜆, 0),Adv𝜆⟩

]︁
− Pr

[︁
𝑏Adv = 0 : (stCom, 𝑏Adv)← ⟨Com(1𝜆, 1),Adv𝜆⟩

]︁ ⃒⃒⃒⃒
= negl(𝜆).

The commitment is inefficiently extractable if there exists an unbounded extractor Ext such that for any
unbounded adversarial committer Adv,

Pr

⎡⎣Ver(stRec, 1− 𝑏, 𝑤) = ⊤ :
(stAdv, stRec, 𝜏)← ⟨Adv,Rec(1𝜆)⟩

𝑏← Ext(𝜏)
𝑤 ← Adv(stAdv, 1− 𝑏)

⎤⎦ = negl(𝜆).
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