
Anonymous Public-Key Quantum Money and Quantum Voting

Alper Çakan∗ Vipul Goyal† Takashi Yamakawa‡

Abstract

Quantum information allows us to build quantum money schemes, where a bank can issue
banknotes in the form of authenticatable quantum states that cannot be cloned or counterfeited:
a user in possession of k banknotes cannot produce k+1 banknotes. Similar to paper banknotes,
in existing quantum money schemes, a banknote consists of an unclonable quantum state and a
classical serial number, signed by bank. Thus, they lack one of the most fundamental properties
cryptographers look for in a currency scheme: privacy. In this work, we first further develop
the formal definitions of privacy for quantum money schemes. Then, we construct the first
public-key quantum money schemes that satisfy these security notions. Namely,

• Assuming existence of indistinguishability obfuscation and hardness of Learning with Er-
rors, we construct a public-key quantum money scheme with anonymity against users and
traceability by authorities.

Since it is a policy choice whether authorities should be able to track banknotes or not, we
also construct an untraceable money scheme, where no one (not even the authorities) can track
banknotes.

• Assuming existence of indistinguishability obfuscation and hardness of Learning with Er-
rors, we construct a public-key quantum money scheme with untraceability.

Further, we show that the no-cloning principle, a result of quantum mechanics, allows us to
construct schemes, with security guarantees that are classically impossible, for a seemingly
unrelated application: voting !

• Assuming existence of indistinguishability obfuscation and hardness of Learning with Er-
rors, we construct a universally verifiable quantum voting scheme with classical votes.

Finally, as a technical tool, we introduce the notion of publicly rerandomizable encryption
with strong correctness, where no adversary is able to produce a malicious ciphertext and a
malicious random tape such that the ciphertext before and after rerandomization (with the
malicious tape) decrypts to different values! We believe this might be of independent interest.

• Assuming the (quantum) hardness of Learning with Errors, we construct a (post-quantum)
classical publicly rerandomizable encryption scheme with strong correctness.

∗Carnegie Mellon University. acakan@andrew.cmu.edu.
†NTT Research & Carnegie Mellon University. vipul@vipulgoyal.org
‡NTT Social Informatics Laboratories, Tokyo, Japan. takashi.yamakawa@ntt.com.

1

Contents

1 Introduction 4
1.1 Our Results . 5

2 Technical Overview 6
2.1 Definitional Work . 6
2.2 Anonymous and Traceable Construction . 7
2.3 Untraceable Construction . 11
2.4 Quantum Voting . 12
2.5 Rerandomizable Encryption with Strong Correctness 13

3 Related Work 15

4 Preliminaries 16
4.1 Notation . 16
4.2 Digital Signature Schemes . 16
4.3 Puncturable Pseudorandom Functions . 17
4.4 Indistinguishability Obfuscation . 17
4.5 Compute-and-Compare Obfuscation . 18
4.6 Learning with Errors . 18
4.7 Subspace States . 19

5 Rerandomizable Encryption 19
5.1 Construction . 20

6 Definitions 23
6.1 Fresh Banknote Security . 24
6.2 Traceability . 24
6.3 Untraceability . 25

7 Construction with Anonymity and Traceability 26
7.1 Projectiveness . 28
7.2 Correctness . 28
7.3 Proof of Unclonability (Counterfeiting) Security . 28
7.4 Proof of Fresh Banknote Indistinguishability . 33
7.5 Proof of Tracing Security . 35

8 Construction with Untraceability 37
8.1 Proof of Untraceability . 39
8.2 Proof of Unclonability (Counterfeiting) Security . 41

9 Quantum Voting Schemes 45
9.1 Definitions . 45
9.2 Construction . 46

10 Acknowledgements 49

A Additional Definitions 51
A.1 Anonymity . 52

2

B Omitted Proofs 52
B.1 Proof of Lemma 4 . 52
B.2 Proof of Lemma 2 . 53

C Remark on Representing the Public Key 53

3

1 Introduction

The exotic nature of quantum mechanics allows us to build cryptographic primitives that were
once unimaginable, or are outright impossible with classical information alone. For example, one
of the most fundamental results of quantum mechanics, called the no-cloning principle, shows that
arbitrary unknown quantum states cannot be cloned. This simple principle, which provably has no
counterpart in classical world since classical information can always be copied, allowed cryptogra-
phers to build applications that are impossible in a classical world. Starting with the seminal work
of Wiesner [Wie83] which introduced quantum money, a plethora of work built exciting primitives
based on the no-cloning principle. The examples include more realistic version of quantum money
called public-key quantum money [AC12, Zha19], where any user can verify a banknote on their
own without going to the central bank, or even more advanced notions such as copy-protecting
software/functionalities where a user that is given some number of copies of a software cannot
create more copies of it1 [Aar09, CLLZ21, ÇG23].

While quantum money is one of the most important notions in quantum cryptography, unfortu-
nately existing schemes [AC12, Zha19] lack some of the most basic privacy and security guarantees
that cryptographers look for in a currency scheme. In fact, in all known public-key quantum money
schemes, a banknote consists of an unclonable quantum state and a classical serial number which
is signed by the bank. However, this means that any party can track any banknote and learn when
and where it was used simply by recording its serial number, meaning there is no privacy at all. For
example, imagine a scenario where you pay a large sum of money to a merchant. If the merchant
pools the data with other (adversarial) sources, it maybe feasible2 for them to recover a history on
many of these banknotes, potentially revealing your employer, clients and business partners, and
even family members! Similarly an employer who pays you salary can potentially track where you
travel to by collaborating with other sources and tracking, say, your spending at gas stations or
restaurants. Indeed it is hard to imagine privacy in any aspect of your life, if all your spending
can be traced. In fact, privacy and anonymity is the central focus in many cryptocurrency projects
[mon, Zca].

This state of affairs leaves open the following natural question:

Is it possible to construct a publicly verifiable quantum money scheme with privacy
guarantees?

Let us emphasize that the above question is highly non-trivial for the following reason. To satisfy
privacy guarantees, one needs to build a quantum money scheme where the users can create a new
banknote so that the adversarial parties who have seen the banknote before will not be able to
recognize it. However, such a task, while still challenging but doable for classical information (e.g.
rerandomizable signatures [CL04]), seems to be at odds with the main point of quantum money:
unclonability ! While any user should be enabled to create new banknotes, somehow we also need to
make sure that they cannot create k + 1 valid banknotes if they started with k banknotes because
otherwise they can increase the amount of money they have at wish!

Going beyond privacy concerns, one useful property of the existing quantum money schemes is
that since any party can track a banknote, in particular law enforcement can also track a banknote.
This brings us to our next natural question?

Is it possible to construct a publicly verifiable quantum money scheme with privacy
guarantees against users, while still providing traceability for authorities?

1Again, a classical software can always be copied, so this is impossible classically.
2In fact, even innocent amateur efforts that were built for fun, such as wheresgeorge.com, have been able to track

millions of paper dollar banknotes all over the world.

4

https://www.wheresgeorge.com

We note that it is a political choice whether authorities should be able to track banknotes or
not. Therefore, we also ask

Is it possible to construct a publicly verifiable quantum money scheme with privacy
guarantees against everyone, including the bank/authorities?

Finally, we observe an interesting connection between quantum money with privacy (which is
impossible classically) and voting. In both cases, we care about privacy and a security notion
relating to non-increasibility : in quantum money, users should not be able to increase their amount
of money (in particular, given a single banknote, one should not be able to create two banknotes),
and in voting, a single user should be able to vote once. Thus, we ask the following question:

Using quantum information, is it possible to construct voting schemes with advanced
security guarantees that are not possible classically?

1.1 Our Results

In this work, we answer all of these open questions affirmatively.
We construct the first public-key quantum money scheme with anonymity (against users) and

traceability (by the authorities). For anonymity, we require that a malicious user will not be able
distinguish a banknote it has seen before from a freshly minted banknote. For tracing, we require
that no malicious user can produce a banknote with a particular tag (which is hidden inside the
serial numbers, except to authorities) without being given a banknote with that tag to begin with
- meaning that law enforcement can perfectly track banknotes.

Theorem 1 (Informal). Assuming the existence of indistinguishability obfuscation (iO) and a pub-
licly rerandomizable encryption scheme with strong correctness and publicly testable ciphertexts,
there exists a public-key quantum money scheme with anonymity and traceability.

In fact, in our model, we separate authorities into two completely independent entities: the
bank (who mints the banknotes) and the tracing authority. Our scheme satisfies anonymity even
against the bank, and satisfies unclonability (also called counterfeiting security) even against the
tracing authority.

We note that previously, anonymous quantum money had been constructed only3 in the private
key setting [MS10, BS21, AMR20]. However, aside from the impracticality of the private key setting,
the anonymity notion in the private-key setting is also less meaningful: Once we are at the central
bank to verify a banknote, we might as well ask them to replace our banknote with a fresh one. The
previous solutions are based on Haar random states or their computational version, pseudorandom
states; however, in the private-key setting, a trivial solution based on quantum fully homomorphic
encryption also exists, where we can just encrypt banknotes and use the homomorphic encryption
scheme to rerandomize them.

Going further, we construct the first public-key quantum money scheme with anonymity against
all parties (including the bank and the authorities). We call this notion untraceability.

Theorem 2 (Informal). Assuming the existence of iO, a publicly rerandomizable encryption
scheme with strong correctness and publicly testable ciphertexts and a non-interactive zero-knowledge
(NIZK) argument system for NP , there exists a public-key quantum money scheme with untrace-
ability in the common random string model.

3Strictly speaking, [BS21] calls their model almost-public. They simply use an existing private-key quantum
money scheme with pure states (more precisely, pseudorandom quantum states [JLS18]), and an alleged banknote is
compared to user’s existing banknotes to verify it. This requires that the user always has more money than she can
receive. From our point of view, this is not a public-key scheme.

5

Finally, we construct the first voting scheme with universal verifiability (anyone in the world
can verify any vote), privacy against all parties (including voting authority!) and uniqueness (i.e.
no double-voting). We note that a voting scheme satisfying these three properties at the same
time provably cannot exist in a classical voting scheme. Thus, the voting tokens of our scheme are
quantum, but a cast vote is classical.

Theorem 3 (Informal). Assuming the existence of iO, a publicly rerandomizable encryption
scheme with strong correctness and publicly testable ciphertexts and a non-interactive zero-knowledge
(NIZK) argument system for NP , there exists a quantum voting scheme with universal verifiability
and classical votes, in the common random string model.

As discussed, such a scheme cannot exist classically. Even using quantum voting tokens, ours
is the first to achieve these guarantees: there is no previous work achieving universal verifiability
(or classical votes).

We note that while iO is a strong assumption, all of our constructions above imply standard
public-key quantum money, whose all existing constructions in the plain model also use iO4. In
fact, it is one of the key open questions in quantum cryptography to construct public-key quantum
money without iO. Thus, unless a major breakthrough is achieved, our iO assumption is necessary.

To achieve our results, we also introduce the notion of publicly rerandomizable encryption with
strong correctness, where no adversary is able to produce a (malicious) ciphertext whose decryption
result differs between before and after rerandomization (even with a maliciously chosen rerandom-
ization randomness tape); and we construct such a scheme that is secure against quantum adver-
saries. Our schemes also satisfy public testability, where anyone can test whether a ciphertext is
bad (in the above sense, where rerandomization can lead to decrypting to a different message),
such that there does not exist a ciphertext that passes this test but decrypts to different values
before/after rerandomization. We note that this notion is useful in constructions/proofs that use
indistinguishability obfuscation, where merely computational hardness of finding bad ciphertexts
would not be sufficient. Our results/constructions here are classical and we believe they might be
of independent interest.

Theorem 4 (informal). Assuming hardness of Learning with Errors (LWE) [Reg09], there exits a
publicly rerandomizable encryption with publicly testable ciphertexts and strong correctness.

Thus, instantiating our constructions with our publicly rerandomizable encryption scheme with
strong correctness, and the NIZK argument system with the LWE-based (post-quantum) construc-
tion of Peikert-Shiehian [PS19] (which is in the common random string model), all of our quantum
money and quantum voting schemes can be based on iO and LWE.

2 Technical Overview

2.1 Definitional Work

We first review our model. In a quantum money scheme, we consider a bank that produces quantum
banknotes that can be publicly verified, and the first security requirement is counterfeiting security
(also called unclonability). For counterfeiting security, we require that any efficient adversary that
has the public verification key and k banknotes produced by the bank, is not to able to produce
k + 1 valid banknotes, for any k (not a-priori bounded).

4We note that there are some candidate constructions based on non-standard ad-hoc assumptions

6

Prior work ([MS10, AMR20, BS21]) has introduced the notion of anonymity for quantum
money schemes (albeit in the privately verifiable money setting). In their anonymity security
game ([AMR20, BS21]), an adversary observes some banknotes, and later he is (depending on a
challenge bit) either given those banknotes in the same order or in a permuted order; and the
security requirement is that he cannot tell which case it is. We note that one downfall of private-
key setting (apart from impracticality) is that achieving anonymity is not as interesting: once at
the central bank to verify a banknote, we might as well also ask the central bank to replace our
banknote with a fresh one. We first move onto the publicly verifiable banknote setting (dubbed
public-key quantum money or PKQM for short), which is the ultimate goal in quantum money
literature. Further, we introduce a new security notion called fresh banknote indistinguishability
security. In this game, the adversary is given either the banknote it has seen before (in fact created
itself in our model) or a freshly minted banknote. We require that the adversary cannot tell which
case it is with probability better than 1/2 + negl(λ). By a simple hybrid argument, one can see
that this security notion implies the previous anonymity notions.

Going beyond anonymity, we also introduce the notion of traceability for quantum money. While
the notion of traceability has a long history in cryptography, our work is the first to formally define
it for quantum money. In this setting, we allow the bank/mint to include a tag value in each
banknote. In the security game, we require that an adversary that obtains some banknotes from
the bank with various tag values is not able to produce a valid banknote with a new tag value.
In fact, we require that even the number of banknotes with each tag value cannot be increased.
Thus, our security notion implies that all that an adversary can do, while still outputting valid
banknotes, is to permute the banknotes given to it, and drop some of them! This allows the
authorities to correctly track banknotes. We will always consider traceability (by the authorities)
alongside anonymity (against users), which makes the problem highly non-trivial.

Before moving onto our final security model, untraceability, a couple of further remarks about
our models is in order. First, we note that in our models, we consider two separate independent
entities: the central bank/mint (who creates the banknotes) and a tracing authority. In real
life, these entities can be two independent governmental organizations. We require that the bank
can produce banknotes on its own (with no help from the tracing authority), while the tracing
authority can trace banknotes on its own (with no help from the bank). In fact, we require that
the anonymity holds against even the bank itself, who produced the banknotes in the first place!
Further, we require that unclonability and tracing security also holds against the tracing authority.

Finally, we introduce the notion of untraceability for the first time. In this setting, we require
that there are no entities, including the bank or the government, that is able to track banknotes.
Here, we require that fresh banknote security applies to even a malicious bank that is allowed to
choose the banknotes and even the verification key maliciously. Due to our strong anonymity model,
this security notion follows easily in the trusted setup model5. However, ad-hoc/application-based
trusted structured setup models are highly undesirable. Thus, we consider untraceability in the
common random string model, which is a much weaker and more realistic assumption. We refer
the reader to Section 6 for formal definitions.

2.2 Anonymous and Traceable Construction

Background on Subspace State Quantum Money [AC12, Zha19] The starting point of
our construction is the subspace-state based public-key quantum money scheme of Aaronson -

5We can imagine a trusted setup that honestly creates the quantum money scheme, but deliberately forgets the
tracing key and only outputs the minting key secretly/directly to the central bank. Since our anonymity security
applies even against the bank, the security follows.

7

Christiano [AC12], which originally used classical ideal oracles but was also proven secure using
iO by Zhandry [Zha19]. We note that, to date, subspace states (and their close relatives, such
as subspace-coset states) are the only known public-key quantum money schemes with provable
security based on standard assumptions.

A subspace-state is a state consisting of equal superposition over all elements of a subspace, that
is, it is

∑
v∈A

1
2n/4 |v⟩ =: |A⟩, where A is a linear subspace of the vector space Fn

2 . The subspace-state
quantum money construction works as follows. The bank’s secret key is simply a (post-quantum)
classical signature scheme. To mint a banknote, the bank simply samples a random subspace A
of dimension n/2, and signs the obfuscated membership checking programs iO(A), iO(A⊥) for the
subspace A and its orthogonal complement A⊥. Then, the banknote is the state |A⟩, together with
the progras and the signature on them. Here, we can consider the string iO(A)||iO(A⊥) as the
serial number of the banknote. To verify an alleged banknote (|ψ⟩, sn = iO(A)||iO(A⊥), sig), one
verifies the signature sig on the serial number sn, then coherently runs the first program iO(A)
on the state |A⟩, verifying that the output is 1. After rewinding, we apply quantum Fourier
transform (QFT) to the state |ψ⟩, and this time coherently evaluate the second program iO(A⊥) to
verify that it outputs 1. [AC12] shows that this primal/orthogonal basis (more accurately, called
computational/Hadamard basis) verification implements a projection onto |A⟩, thus correctness
follows. The counterfeiting security follows in two steps. First, they show that for a random
subspace A of dimension n/2; no adversary can produce |A⟩ ⊗ |A⟩ given |A⟩ and the membership
checking programs. In the general setting where any number of banknotes is in circulation, they
show that the security of the bank’s classical signature scheme is sufficient to reduce to the single
banknote setting. After all, by signature security, any supposed banknote produced by the adversary
will have to use one of the original serial numbers produced by the bank, thus the adversary cannot
create its own banknotes by sampling subspace states: it has to try and clone one of the subspace-
states produced by the bank, which is only produced as a single copy. Thus the reduction to 1→ 2
setting follows.

Challenges for Anonymity Observe that the subspace-based quantum money scheme is triv-
ially trackable. Each valid banknote contains a serial number and the bank’s signature on the
serial number. Thus, much like paper banknotes, simply recording serial numbers is sufficient to
track banknotes: whenever we receive and validate a banknote, we can simply search for the serial
number in our database.

An initial attempt to provide anonymity might be to draw from the classical literature, and
for example to use re-randomizable signatures [CL04]. We first note that, most of the existing
constructions depend on number-theoretic assumptions and to the best of our knowledge, there
are no known post-quantum re-randomizable digital signature constructions in the plain model.
Setting this issue aside, this initial attempt is still trivially broken, since while the signature is
rerandomizable, the message (the serial number) will stay the same, which uniquely identifies the
banknote. Going further, one might imagine a solution where the signature is rerandomized along
with the message (serial number) inside, and we can imagine a scheme such that somehow the
subspace state can still be verified with this updated serial number, to preserve correctness of the
scheme. While this would be challenging to achieve, it is still not sufficient. Observe that only
information needed to perfectly recognize a banknote is its old classical serial number. Imagine the
following scenario. We (the adversary) have two banknotes (|A1⟩, sn1, sig1), (|A2⟩, sn2, sg2). Later
on, the challenger rerandomizes these banknotes, and gives us back one of the banknotes (b ∈ {1, 2})
as (|ψ⟩, sn′, sig′). We can simply perform the computational basis/Hadarmard basis verification on
|ψ⟩ using the old serial number sn1 that we had recorded. Since this dual basis test implements a

8

projection onto the subspace state |A1⟩, our test will accept |ψ⟩ with probability ⟨A1|ψ⟩. In the
case b = 1, this value equals ⟨A1|A1⟩ = 1. In the case b = 2, this value will be equal to ⟨A1|A2⟩,
which is exponentially small in expectation. Thus, using this simple test, we can recognize which
banknote we got back almost perfectly! In fact, this test can performed coherently by the Gentle
Measurement Lemma [Aar16], so that we do not even damage the banknote at all while doing the
test!

Thus, we can see that the only way to provide anonymity is to actually change (rerandomize)
the quantum state itself too! Here, a viable candidate could be using fully homomorphic encryption
for quantum messages to rerandomize our quantum states, since homomorphism is known to be
closely related to rerandomization in classical cryptography. However, this would completely forego
the most important property, public-verifiability, since the users cannot verify encrypted banknotes.
Another idea could be to try and sign the quantum parts of the banknotes, and try to construct
a signature and message rerandomizable signature scheme for quantum messages. However, it is
known that signing quantum messages is impossible [AGM21].

This brings us to the fundamental challenge in this task. We need to build a scheme where the
users can create essentially a new quantum state, so that the adversarial parties who have seen the
banknote before will not be able recognize it. However, at the same time we also need to make
sure that these states are unclonable and that users cannot create more quantum states than what
they already have!

Solution Step 1: Rerandomizing Quantum States First step of our solution is to build a
new quantum money scheme (without anonymity), though the quantum state part of our scheme
will still be essentially subspace states. In our scheme, the banknote will consist of a serial number
id, and the quantum state will be a superposition over the elements of the subspace obtained by
pseudorandomly applying a rotation-reflection-scaling to the canonical n/2-dimensional subspace
ACan = Span(e1, . . . , en/2) ⊆ Fn

2 (i.e. it is the subspace consisting of all vectors whose last n/2
components are 0). More formally, the quantum part of the banknote will be the state |T · ACan⟩ =∑

v∈ACan

1
2λ/4
|T (v)⟩, where T is the full rank linear mapping Fλ

2 → Fλ
2 sampled using the randomness

F (K, id) where F is a pseudorandom function (PRF) and id is the serial number of the banknote.
The bank’s secret key will simply be the PRF key K. Finally, the public key will be an obfuscated
program P that takes as input a vector v ∈ Fλ

2 , a bit b ∈ {0, 1} and a serial number id. The
obfuscated program first recovers the hidden full rank linear map Tid using the hardcoded PRF
key K and the input id. For b = 0, the program computes w = T−1(v), and verifies if its last n/2
entries are 0 (that is, it checks w ∈ ACan). For b = 1, the program computes w′ = TT(v) and verifies
if w′ ∈ A⊥Can. We show that testing P (·, b = 0, id) in superposition, then applying QFT and testing
P (·, b = 1, id) in superposition implements a projection onto the state |Tid · ACan⟩, thus correctness
is satisfied.

Now, we move onto adding anonymity to our construction. First observation is that the set
of full rank linear mappings on Fn

2 has a nice structure (under composition/multiplication): it is
the general linear group GL(n,F2). This means that we can re-randomize a (full-rank) map T by
simply multiplying with a fresh random (full-rank) map T ′, due to group rerandomization property.
However, we cannot allow the users to rerandomize using any T ′, because the banknote would lose
its consistency with the serial number-quantum state mapping induced by F (K, ·), since the user
will not be able to come up with the new serial number. In fact, in general, given T, T ′, id, it might
not be possible to come up with a new serial number id′ such that the randomness F (K, id′) gives
us the full rank map T ′′ satisfying T ′′ = T ′ · T . To solve this, we include an obfuscated program
PReRand as part of the public key that allows the user to renrandomize the banknote consistently.

9

On input id, the program will first re-randomize id using some IdReRandomizeAlgorithm to obtain
id′, and then generate Tid′ using the randomness F (K, id′). Finally, it will output a canonical
representation of the map T ∗ = T ′ · T−1, along with id′. Given T ∗, the user can convert its
banknote |T · ACan⟩ into |T ′ · ACan⟩ by applying the mapping T ∗ coherently/in-superposition. Note
applying T ∗ coherently is possible since (i) T ∗ is a bijection and (ii) it is efficiently implementable in
both directions T ∗, (T ∗)−1 given the description T ∗. Thus, we achieve a meaningful rerandomization
algorithm while preserving correctness after rerandomization.

Solution Step 2: Non-intersecting/Traceable Rerandomization Cones Since the quan-
tum part of our scheme are subspace states, to prove the unclonability of our scheme, we will need
to reduce to the unclonability of subspace states, which are only 1-copy→ 2-copy unclonable. Now,
consider the chain (or more accurately, the tree/cone) of rerandomizations for a serial number id
that consists of the initial serial number id, and then (each possible) rerandomization of id, and
then rerandomizations of those values and so on. Let us denote this as Cid. Now consider these
cones for each of the k initial banknotes that the adversary obtains, Cid1 , . . . ,Cidk . Now, observe
that if any of these cones intersect at any point, say Cidi and Cidj at id∗, in a way that an efficient
adversary can find, then the adversary can simply emulate the path (i.e. the malicious rerandom-
ization random tape choices) that leads to this intersection on the banknotes idi, idj to obtain two
copies of the exact same state |Tid∗ · ACan⟩! However, we need to reduce to the 1-copy → 2-copy
unclonability of our quantum states. Thus, we need to design a serial number re-randomization
algorithm where the adversaries cannot find such intersections of the rerandomization cones.

In fact going further, we observe that while non-intersecting (to efficient adversaries) reran-
domization cones is sufficient to prevent identical-copy attacks, it is not sufficient to actually give a
reduction to 1→ 2 unclonability and prove security. Observe that to be able to achieve a reduction
to 1→ 2 unclonability, the reduction algorithm will need to place the subspace state |A⟩ it receives
from its challenger at some index ∈ [k], and once the adversary produces k + 1 banknotes, the
reduction will need to somehow extract two identical copies of |A⟩ using these states. This means
the reduction itself actually needs to mount a partial tracing attack, so that it can track back the
forged banknotes produced by the adversary to find two that are rooted at the same initial subspace
state, and undo the rerandomizations and convert these forged banknotes to two copies of |A⟩.

To resolve this issue, we show that a rerandomizable encryption scheme with strong reran-
domization correctness gives us exactly what we want. In our money scheme, the serial num-
bers will be rerandomizable public-key encryption (RPKE) ciphertexts (that encrypt tags) and
IdReRandomizeAlgorithm will simply be the rerandomization algorithm of the RPKE scheme (and
the rest of the money scheme is as described above). By the rerandomization security of the RPKE
scheme, we will be able to prove anonymity easily. Further, the notion of strong rerandomization
correctness gives us the tracable non-intersecting cone property we needed to achieve unclonability.
First, let us define strong rerandomization correctnes, which is a notion we introduce for the first
time and we believe it might be of independent interest. For this notion, we require that for any
(malicious) ciphertext string ct and (malicious) random tape r chosen by an efficient adversary, we
have Dec(sk, ct) = Dec(sk,ReRand(pk, ct; r)). Applying this transitively, we can see that (efficient)
cones of any two serial numbers will not intersect. Finally, the decryption algorithm of the RPKE
scheme gives us exactly the traceability we wanted from our rerandomization cones to do our un-
clonability reduction! Thus, we are able to prove unclonability and anonymity security using a
rerandomizable encryption scheme with strong rerandomization correctness. For technical reasons
relating to use of iO, we actually require strong correctness with public testing - see Section 2.5.

10

2.3 Untraceable Construction

Our starting point is our anonymous and traceable quantum money scheme. The main challenging
point in this setting is the fact that all parties (users and the bank) are mutually distrustful.
The first issue is that, in the untraceability game, the adversary gets to choose all the values
including the public key of the scheme (which includes PReRand). Thus, the adversary can simply
use the corresponding decryption key to decrypt the serial numbers and obtain the hidden tags it
placed inside them, and hence track the banknotes. Further, even if we hypothetically trusted the
adversary to not use the decryption key of the RPKE scheme to track banknotes, it can still create
a malicious obfuscated program PReRand′ so that the new banknote state we end up with after
rerandomization includes a hidden signal that depends on the old serial number! Note that we
cannot trust the user to rerandomize their serial numbers themselves with no checks either, since
that would break down our unclonability argument.

Solution Step 1: Proofs of Projectiveness Our solution is to include, as part of the verifi-
cation key, a non-interactive zero-knowledge (NIZK) argument showing that the money scheme
(with its maliciously chosen keys) is still projective. More formally, the NIZK argument will
prove that there exists a (hidden) serial number - quantum state mapping M such that com-
putational/Hadamard basis verification using PMem(·, b = 0, id)/PMem(·, b = 1, id) implements a
projection onto the state |M(id)⟩. Thus, any user (as part of banknote verification) can rerandom-
ize a banknote and test again using the new id′, and once the test passes, the user is assured that he
has the state |M(id′)⟩. If the test does not pass, either the initial banknote was not valid at all (i.e.
a counterfeiting attack) or it was designed to be tracked (which also makes it invalid)! With the
proof of projective, we are now assured that if the adversary really does not have the decryption key
for RPKE, then |M(id′)⟩ is indistinguishable from |M(id∗)⟩ where id∗ is a fresh ciphertext, since
the indistinguishability would follow from indistinguishability of id′ versus id∗, so it still applies
even though the adversary knowsM . Finally, the zero knowledge property is needed since revealing
M to the users would allow them to clone states trivially. We note that post-quantum NIZKs based
on LWE can be constructed in the common random string model [PS19].

Solution Step 2: Truly Random Public Keys However, there is still a major issue: obviously
we cannot trust the adversary to not create a decryption key that corresponds to the public key. To
solve this, we will simply use a truly random string as the public rerandomization key. However, we
seem to be at a dead-end: we need to prove, at the same time, that no one can track banknotes, while
the unclonability proof (as we discussed) needs to mount a partial tracking attack. Our solution
is to construct a rerandomizable encryption scheme with strong rerandomization correctness with
testing that also satisfies (i) pseudorandom public (encryption) keys, (ii) simulatable testing keys
(Section 2.5) and (iii) statistical rerandomization security for truly uniformly random public keys.
This allows us to do the following: In the actual construction, the users use (part of) the common
random string (CRS) as the public key of the RPKE scheme. For the unclonability proof, we rely
on the pseudorandom public keys property of the RPKE scheme: The reduction simulates the
cloning adversary while planting an actual public key of our RPKE scheme (which the reduction
samples together with the corresponding decryption key sk) as the last part of the CRS, instead of
a truly random string. Due to the pseudorandom public keys property of RPKE, this means that
the adversary still succeeds, while the reduction can also mount the partial tracking attack using
sk as discussed before. Finally, we use the property (ii) because we cannot embed the ciphertext
testing key inside the common uniformly random string, since such a key obviously cannot be
pseudorandom. Thus, in the actual construction we use the simulated ciphertext testing key.

11

For anonymity, we will be able to rely on property (iii) since we are rerandomizing the ciphertexts
using a truly random string. More precisely, as discussed above, we first rely on the soundness of
the NIZK argument system to show that if the adversary succeeds, there exists a mapping M as
defined above. However, for the challenger to start outputting |M(id′)⟩ directly instead of running
adversary’s malicious rerandomization program, we need to recover M . At this point, we switch
to an unbounded challenger that does recover M by trying all possibilities. The final step is to
replace |M(id′)⟩ with |M(id∗)⟩ relying on the rerandomization security of RPKE. Fortunately, by
property (iii), we can indeed do so even with an unbounded challenger/reduction. Note that in
the RPKE we end up constructing (Section 5), we will only have computational rerandomization
for honest public keys (which comes with a secret key), but we do have statistical rerandomization
when a truly random string is used as the public key.

2.4 Quantum Voting

In a voting scheme, we would like to allow users to vote for various candidates, while ensuring that
their choices are private (privacy), and also ensuring that they cannot vote twice (uniqueness).
Finally, we would also like to ensure that the final tallies are calculated correctly. The best possible
notion for the latter is the so-called universal verifiability setting, where voters post their votes on
a public bulletin board, and anyone in the world is able to verify all the posted votes (and hence
the final tallies). We note that universal verifiability cannot be achieved by voting schemes such as
the ones based on homomorphic encryption, since the votes will need to be decrypted by the owner
of the secret key, and revealing this secret key would trivially defeat privacy of votes. In fact, the
combination of all three of these properties, (i) universal verifiability, (ii) privacy, (iii) uniqueness,
cannot be achieved by any fully classical voting scheme. If the casting of a particular voting token
is indistinguishable (to everyone) from casting of a fresh voting token, then an adversary can simply
vote twice as follows. It creates copies of its initial voting token, rerandomizes these copies, and votes
twice (or more) using all these tokens. The bulletin board cannot reject the second vote, since due
to privacy, from its viewpoint, these votes are indistinguishable from someone else’s (who has not
voted yet) vote. Note that the impossibility persists even in trusted setup and ideal oracle models
- it only (and crucially) relies on cloning the voting tokens (i.e. rewinding an adversary). However,
this means that the attack does not work if the voting tokens are (unclonable) quantum states. This
brings us to our construction. Our construction will be similar to our untraceable quantum money
construction. A voting token will be the tuple of states |Tct,1 · ACan⟩⊗ · · ·⊗ |Tct,2·λ · ACan⟩ (together
with the serial number ct) where (Tct,1, . . . , Tct,2·λ) is a tuple of full rank linear maps sampled
using the randomness F (K, ct). After rerandomizing these states (same as in our money scheme,
generalized to 2·λ states), to vote for a particular candidate c ∈ [λ], the user samples a random tag6

r ← {0, 1}λ and measures the i-th state in the computational basis if the i-th bit (c||r)i = 0, and
in the Hadamard basis (i.e. QFT-and-measure) if (c||r)i = 1. The measurement results v1, . . . , v2·λ
along with the rerandomized serial number ct′ and c, r will be the user’s (classical) vote for the
candidate c. Anyone can verify a vote by simply checking PMem(vk, c||r, v1|| . . . ||v2·λ) = 1. Thus,
our scheme satisfies universal verifiability.

Our scheme also satisfies privacy, against all parties, including the government/voting authority
that creates the voting tokens (and it is allowed to create the tokens and keys maliciously). The
privacy proof follows in the same way as the untraceablity proof of our quantum money scheme.
Finally, uniqueness. For this property, we rely on the so-called direct product hardness of subspace
states [BDS23], which says that no efficient adversary, given |A⟩, can produce vectors v, w such

6A serial number for the cast votes that the voter creates

12

that v ∈ A (computational basis) and w ∈ A⊥ (Hadamard basis). Through the same arguments
as in the unclonability proof of our untraceable money scheme (where reduced unclonability of our
scheme to 1→ 2 unclonability of subspace states), we will be able to reduce the uniqueness security
of our scheme to the direct product hardness of subspace states. In particular, we will show that
no efficient adversary, given k voting tokens (modeling a group of malicious voters cooperating)
can output k + 1 valid cast votes, each with different tags r. We note that this in particular (with
k = 0) means that non-eligible parties (i.e. parties who did not receive a token) will not be able
vote at all. Thus, during tallying/verification, all one needs to do is (i) verify each submitted cast
vote V using the public key, (ii) check that the exact same tag r has not appeared before7.

Finally, we re-emphasize that the cast votes in our scheme are classical, meaning that the voters
will not need to transmit quantum states to vote.

We refer the reader to Section 9 for the full construction and the proofs.

2.5 Rerandomizable Encryption with Strong Correctness

In this section, we introduce the notion of rerandomizable public-key encryption with strong reran-
domization correctness and discuss our solution. For rerandomizable encryption, the most common
security notion is the following. In the security game, the challenger samples a random a bit b ∈
{0, 1}, and if b = 0, the adversary (who has pk) is given an honest encryption ct← RPKE.Enc(pk,m)
of a message m of its choice, and also an honest rerandomization ct′ ← RPKE.ReRand(pk, ct) of ct.
If b = 1, the adversary is given the honest encryption ct← RPKE.Enc(pk,m), and an independent
fresh encryption ct′ ← RPKE.Enc(pk,m). We require that no adversary can predict the challenge
case b with probability better than 1/2+ negl(λ). A strengthening of this notion requires the same
for any string ct (rather than for honestly randomly sampled ciphertexts).

Definitions However, as discussed previously, this rerandomization guarantee alone (while suf-
ficient for anonymity) is not sufficient for our unclonability proofs. On top of this guarantee, we
also require that an efficient adversary cannot come up with a malicious ciphertext and a malicious
random tape for RPKE.ReRand that leads to different decryptions before and after rerandomization.
We say that such a scheme satisfies (I) strong (rerandomization) correctness. While this notion is
interesting in its own right, it will not be sufficient in iO-based constructions. While efficient ad-
versaries cannot come up with bad ciphertexts, note that such ciphertexts might still exist, whereas
in iO-based security proofs one needs to prove that two circuits (e.g., the initial circuit and the one
that rejects bad ciphertexts) are completely equivalent - as opposed to just proving the hardness
of finding an input where the circuits have different output. Thus, we also introduce the notion of
(II) strong correctness with public testing, where the public key includes a testing key. We require
that there does not exist a malicious ciphertext ct and a malicious random tape s such that

• RPKE.Test(pk, ct) = GOOD.

• RPKE.Dec(sk, ct) ̸= RPKE.Dec(sk,RPKE.ReRand(pk, ct); s)

Since the testing key is public, an encryption scheme satisfying this notion can be utilized even
with iO-based proofs, since the original obfuscated circuit in the actual construction can already
test and reject bad ciphertexts.

We introduce two more stronger notions. First, we consider (III) strong correctness with simu-
latable (public) testing keys. This notion is the same as our previous notion of public testing, with
the addition that we split public key into two parts (encryption/rerandomization key and testing

7If it has, only the first counts.

13

key), and we require that the testing key can be simulated (indistinguishable from real testing
keys) using only the public encryption key (in fact, our constructions will need only the security
parameter 1λ to simulate). Such a notion is useful in our untraceable quantum money and voting
schemes, since we will not be able to include the testing key in the truly uniformly random common
string (CRS). We finally introduce (IV) strong correctness with simulatable all-accept testing keys.
In this case, we require that the scheme has a simulatable testing key such that it accepts all strings
ct as good. This notion allows us to construct schemes (even with iO-based proofs) that do not
use any ciphertext testing (or testing key) at all - at least in the original construction. Since the
simulated keys always accept, the original constructions do not need to test, whereas in the proof
(in an indistinguishable manner) we can start testing ciphertexts and reject bad ones, thus rely on
the strong correctness guarantees discussed above.

We note that there are no existing post-quantum rerandomizable encryption schemes that sat-
isfies any of these four security notions (even the simplest one, plain strong correctness (I)). We
also note that approaches like fully homomorphic encryption or bootstrapping does not work, since
they use honest randomness to refresh cipertexts that have been honestly sampled and have been
honestly computed on - no maliciousness is allowed in any part. Bad ciphertexts for such schemes
can easily be produced efficiently.

In this work, we construct various schemes that satisfy all of the notions defined above, based
solely on hardness of Learning with Errors [Reg09].

Background on Regev’s PKE Our starting point is the well-known Regev’s public-key encryp-
tion scheme [Reg09], based on the Learning with Errors (LWE) problem. Let n(λ),m(λ) denote
the vector space dimension and the number of samples respectively, χ(λ) denote the error distri-
bution, B(λ) denote the bounds for the values in the support of χ(λ) (i.e. χ(λ) ⊆ [−B,B]) and
q(λ) denote the modulus. The scheme is as follows, where all operations are performed modulo q
(i.e., in Zq). The public key is (A, y) and the secret key is s, where A ← Zn×m

q , s ← Zn
q , e ← χm

and yT = sT ·A+ eT. To encrypt a bit b ∈ {0, 1}, we sample a random binary vector r ← {0, 1}m
and output (A · r, yT · r + b · ⌊ q2⌋). To rerandomize a ciphertext ct = (⃗a, c), we simply add a fresh
encryption of 0 to it, which gives us (⃗a + A · r′, c + yT · r′). Using LWE and leftover hash lemma
[ILL89], one can show that rerandomization security is satisfied for any ct. Finally, to decrypt
ct = (⃗a, c), we compute |c− sT · a⃗| and decrypt to 0 if the value is less than q/4, and decrypt to 1
otherwise.

Thwarting Malicious Rerandomization Attacks with Hidden Shifts While Regev’s PKE
satisfies rerandomization security, it does not satisfy even the plain strong correctness property
(I). Note that even honestly rerandomizing an honest ciphertext roughly O(q/B) times is likely
to produce a bad ciphertext (decrypting to a different value after one more rerandomization).
Thus, as our first step, we move to the subexponential modulus-to-noise ratio LWE regime where
q = subexp(λ), and B = poly(λ). Then, no polynomial number of honest rerandomizations on
honest ciphertexts will produce bad ciphertexts. However, the adversary can still easily produce
a malicious bad ciphertext: for example, consider (⃗a, q/4 − 2 − k) where a⃗ is any vector and k
is a random value in [−m · B,m · B]. This ciphertext will decrypt to 0 initially, whereas after
rerandomizing it will decrypt to 1 with probability roughly 1/k = 1/poly(λ).

Our solution is to use hidden shifts. We update our scheme so that the protected decryption key
includes a hidden shift value L, selected uniformly at random from [0, q/16]. To decrypt ct = (⃗a, c),

14

we now test |c− sT · a⃗− L| < q/4. Now, we prove that a ciphertext (⃗a, c) can be bad only if

Turns 0→ 1 : c− sT · a⃗ ∈ [q/4−m ·B + L, q/4− 1 + L] ∪ [3q/4 + 1 + L, 3q/4 +m ·B + L]

Turns 1→ 0 : c− sT · a⃗ ∈ [q/4 + L, q/4 +m ·B − 1 + L] ∪ [3q/4−m ·B + 1 + L, 3q/4 + L]

Since L is unpredictable, no adversary (even given the secret s) will be able to produce a bad
ciphertext except with subexponentially small probability.

Testing Ciphertexts and Obfuscating Evasive Programs As discussed above, in most ap-
plications, we will also need to be able to publicly test if a given ciphertext is bad, that is, if it
can decrypt to different values before and after (malicious) rerandomization. By above, (once s
and a⃗ are fixed) the set of bad ciphertexts (⃗a, c) is actually evasive - the program that checks for
bad ciphertexts would output 0 (meaning, not bad) almost everywhere, except for a set of size
O(m ·B) = poly(λ). This means that if we can obfuscate this program, we would be done. Unfor-
tunately, obfuscating evasive programs in general is impossible [BBC+14]. However, observe that
in our case, the set of accepting points actually has a nice structure: they are consecutive! As a
result, we actually only need point function obfuscation. We can simply use the point function
obfuscation for the point q/4+L. To test a ciphertext (⃗a, c), we can simply run the point function
with values c − sT · a⃗ +m · B, c − sT · a⃗ +m · B + 1, . . . , c − sT · a⃗ −m · B + 1 for the lower two
ranges, and then similarly with c− sT · a⃗+m ·B−1− q/2, . . . , c− sT · a⃗−m ·B− q/2 for the higher
two ranges. Note that this is only ≤ 4m · B = poly(λ) tests. The only remaining issue is that we
are actually using the secret decryption key s for testing. Our solution is that, instead of point
function obfuscation, above we use compute-and-compare (CC) obfuscation [WZ17] (which can be
constructed from LWE) and obfuscate the compute-and-compare function fs(x) =

? TARGET where
fs((⃗a, c)) = c− sTa and the target point is TARGET = q/4 + L. Since q/4 + L is subexponentially
unpredictable, by CC obfuscation guarantee, our public testing program will hide both L and s!

Pseudorandom Public Keys and Simulatable Testing Keys For our untraceable schemes,
we need that the public keys of our scheme be pseudorandom. Our scheme described above can
already be shown to have pseudorandom encryption keys (A, yT) by LWE. However, the ciphertext
testing key is an obfuscated evasive program which outputs 0 almost everywhere. Thus, it obviously
is not a pseudorandom string. However, due to CC obfuscation security, we can actually simulate
our testing key by obfuscating the program that always outputs 0! This means that we can simply
use the encryption key (which is pseudorandom) as our public encryption key, while users can
simulate the ciphertext testing key on their own.

3 Related Work

Aaroson-Christiano [AC12] constructs public-key quantum money from subspace states in the ideal
classical oracle model. Zhandry [Zha19] later showed that the same construction is still secure when
instantiated with indistinguishability obfuscation.

In the private-key setting; Ji et al [JLS18] shows that pseudorandom quantum states can be
constructed from one-way functions. Since pseudorandom quantum states are indistinguishable
from Haar random states, which gives identical/pure state quantum money in the private-key set-
ting, they automatically satisfy anonymity. Alagic et al [AMR20] constructs anonymous quantum
money in private key setting with a stateful (updated each time a new banknote is issued) bank.
Behera and Sattath [BS21] gave a construction where banknotes are pseudorandom states and a
received banknote is compared to existing banknotes to verify.

15

Okamoto et al [OST08] propose a quantum voting scheme (based conjugate coding) with quan-
tum votes that satisfies privacy and uniqueness, but not universal verifiability (only the voting
token creator can verify votes). There are also various classical voting schemes based on various
assumptions [Adi08, FOO93], however, as discussed, they cannot satisfy all the desired properties
at the same time.

4 Preliminaries

4.1 Notation

Unless otherwise specified, adversaries are stateful quantum polynomial time (QPT) and our cryp-
tographic assumptions are implicitly post-quantum. We write ← to denote a random sampling
from some distribution or uniform sampling from a set.

4.2 Digital Signature Schemes

In this section we introduce the basic definitions of signatures schemes.

Definition 1. A digital signature scheme with message spaceM consists of the following algorithms
that satisfy the correctness and security guarantees below.

• Setup(1λ) : Outputs a signing key sk and a verification key vk.

• Sign(sk,m) : Takes the signing key sk, returns a signature for m.

• Verify(vk,m, s) : Takes the public verification key vk, a message m and supposed signature s
for m, outputs 1 if s is a valid signature for m.

Correctness We require the following for all messages m ∈M.

Pr

[
Verify(vk,m, s) = 1 :

sk, vk ← Setup(1λ)
s← Sign(sk,m)

]
= 1.

Adaptive existential-unforgability security under chosen message attack (EUF-CMA)
Any QPT adversary A with classical access to the signing oracle has negligible advantage in the
following game.

1. Challenger samples the keys sk, vk ← Setup(1).

2. A receives vk, interacts with the signing oracle by sending classical messages and receiving
the corresponding signatures.

3. A outputs a message m that it has not queried the oracle with and a forged signature s for
m.

4. The challenger outputs 1 if and only if Ver(vk,m, s) = 1.

If A outputs the message m before the challenger samples the keys, we call it selective EUF-CMA
security.

16

4.3 Puncturable Pseudorandom Functions

In this section, we recall puncturable pseudorandom functions.

Definition 2 ([SW14]). A puncturable pseudorandom function (PRF) is a family of functions
{F : {0, 1}c(λ) × {0, 1}m(λ) → {0, 1}n(λ)}λ∈N+ with the following efficient algorithms.

• F.Setup(1λ) : Takes in a security parameter and outputs a key in {0, 1}c(λ).

• F (K,x) :8 Takes in a key and an input, outputs an evaluation of the PRF.

• F.Puncture(K,S) : Takes as input a key and a set S ⊆ {0, 1}m(λ), outputs a punctured key.

We require the following.

Correctness. For all efficient distributions D(1λ) over the power set 2{0,1}
m(λ)

, we require

Pr

∀x ̸∈ S F (KS , x) = F (K,x) :
S ← D(1λ)

K ← KeyGen(1λ)
KS ← Puncture(K,S)

 = 1.

Puncturing Security We require that any stateful QPT adversary A wins the following game
with probability at most 1/2 + negl(λ).

1. A outputs a set S.

2. The challenger samples K ← KeyGen(1λ) and KS ← Puncture(K,S)

3. The challenger samples b← {0, 1}. If b = 0, the challenger submits KS , {F (K,x)}x∈S to the
adversary. Otherwise, it submits KS , {ys}s∈S to the adversary where ys ← {0, 1}n(λ) for all
s ∈ S.

4. The adversary outputs a guess b′ and we say that the adversary has won if b′ = b.

Theorem 5 ([SW14, GGM86, Zha12]). Let n(·),m(·) be efficiently computable functions.

• If (post-quantum) one-way functions exist, then there exists a (post-quantum) puncturable
PRF with input space {0, 1}m(λ) and output space {0, 1}n(λ).

• If we assume subexponentially-secure (post-quantum) one-way functions exist, then for any
c > 0, there exists a (post-quantum) 2−λ

c
-secure9 puncturable PRF against subexponential

time adversaries, with PRF input space {0, 1}m(λ) and output space {0, 1}n(λ).

4.4 Indistinguishability Obfuscation

In this section, we recall indistinguishability obfuscation.

Definition 3. An indistinguishability obfuscation scheme iO for a class of circuits C = {Cλ}λ
satisfies the following.

8We overload the notation and write F to both denote the function itself and the evaluation algorithm.
9While the original results are for negligible security against polynomial time adversaries, it is easy to see that

they carry over to subexponential security. Further, by scaling the security parameter by a polynomial and simple
input/output conversions, subexponentially secure (for any exponent c′) one-way functions is sufficient to construct
for any c a puncturable PRF that is 2−λc

-secure.

17

Correctness. For all λ,C ∈ Cλ and inputs x, Pr
[
C̃(x) = C(x) : C̃ ← iO(1λ, C)

]
= 1.

Security. Let B be any QPT algorithm that outputs two circuits C0, C1 ∈ C of the same size, along
with auxiliary information, such that Pr

[
∀x C0(x) = C1(x) : (C0, C1,Raux)← B(1λ)

]
≥ 1−negl(λ).

Then, for any QPT adversary A,∣∣∣∣Pr[A(iO(1λ, C0),Raux) = 1 : (C0, C1,Raux)← B(1λ)
]
−

Pr
[
A(iO(1λ, C1),Raux) = 1 : (C0, C1,Raux)← B(1λ)

]∣∣∣∣ ≤ negl(λ).

4.5 Compute-and-Compare Obfuscation

In this section, we recall the notion of compute-and-compare obfuscation [WZ17].

Definition 4 (Compute-and-compare program). Let f : {0, 1}a(λ) → {0, 1}b(λ) be a function and
y ∈ {0, 1}b(λ) be a target value. The following program P , described by (f, y, z), is called a compute-
and-compare program.

P (x) : Compute f(x) and compare it to y. If they are equal, output 1. Otherwise, output 0.

A distribution D of such programs (along with quantum auxiliary information Raux) is called
sub-exponentially unpredictable if for any QPT adversary, given the auxiliary information Raux

and the description of f , the adversary can predict the target value y with at most subexponential
probability.

Definition 5. A compute-and-compare obfuscation scheme for a class of distributions consists of
efficient algorithms CCObf.Obf and CCObf.Sim that satisfy the following. Consider any distribution
D over compute-and-compare programs, along with quantum auxiliary input, in this class.

Correctness. For any function (f, y, z) in the support of D, Pr[∀x D′(x) = D(x) : D′ ← CCObf.Obf(f, y)]
≥ 1− negl(λ).

All-Zero Simulation Program output by CCObf.Sim satisfy P (x) = 0 for all x.

Security (CCObf.Obf(f, y),Raux) ≈ (CCObf.Sim(1λ, |f |, |y|),Raux) where (f, y),Raux ← D(1λ).

Theorem 6 ([WZ17, CLLZ21]). Assuming the hardness of LWE, there exists compute-and-compare
obfuscation for any class of sub-exponentially unpredictable distributions.

4.6 Learning with Errors

Definition 6. Let m(λ), n(λ), q(λ) be integers and χ(λ) be a probability distribution over Zq. The
(m,n, q, χ)-LWE assumption says that the following distributions are indistinguishable to any QPT
adversary

(A, sT ·A+ e) ≈c (A, u)

where A← Zn×m
q , s← Zn

q , e← χm and u← Zm
q .

18

4.7 Subspace States

A subspace state is |A⟩ =
∑

v∈A|v⟩ where A is a subspace of the vector space Fn
2 . We will overload

the notation and usually write A,A⊥ to also denote the membership checking programs for the
subspace A and its orthogonal complement A⊥.

Theorem 7 (1→ 2-Unclonability [Zha19]). Consider the following game between a challenger and
an adversary A.

ExpA(1
λ)

1. The challenger samples a subspace A ≤ Fλ
2 of dimension λ/2.

2. The challenger submits |A⟩, iO(A), iO(A⊥) to A.

3. The adversary outputs a (entangled) bipartite register R1,R2.

4. The challenger applies the projective measurement {|A⟩⟨A|, I − |A⟩⟨A|}, and outputs 1 if the
measurement succeeds. Otherwise, it outputs 0.

Then, for any QPT adversary A, we have Pr
[
ExpA(1

λ) = 1
]
≤ negl(λ).

Theorem 8 (Direct Product Hardness [SW22]). Consider the following game between a challenger
and an adversary A.

ExpA(1
λ)

1. The challenger samples a subspace A ≤ Fλ
2 of dimension λ/2.

2. The challenger submits |A⟩, iO(A), iO(A⊥) to A.

3. The adversary outputs two vectors v, w ∈ Fλ
2 .

4. The challenger checks if v ∈ A and w ∈ A⊥, and outputs 1 if so. Otherwise, it outputs 0.

Then, for any QPT adversary A, we have Pr
[
ExpA(1

λ) = 1
]
≤ negl(λ).

5 Rerandomizable Encryption

In this section, we first recall rerandomizable encryption, then introduce some new security notions
and give secure constructions.

Recall that a rerandomizable encryption (RPKE) scheme is a public-key encryption with an ad-
ditional efficient randomized algorithm ReRandomize(pk, ct). We require rerandomization security.

Definition 7 (Rerandomization Security). A rerandomizable encryption scheme RPKE is said to
satisfy rerandomization security10 if for any efficient adversary A, we have

Pr

b′ = b :

pk, sk ← RPKE.Setup(1λ)
s← A(pk)

s0 ← RPKE.ReRand(pk, s)

s1 ← RPKE.Enc(pk, 0p(λ))
b′ ← A(sb)

 ≤ 1

2
+ negl(λ).

10Some work consider the weaker notion where an honest ciphertext is rerandomized rather than adversarial s.

19

We also introduce a related security notion called statistical rerandomization security for truly
random public keys. For this, we require that if a truly random pk is used instead of RPKE.Setup,
then the above security holds for unbounded A.

Now we introduce the notion of strong correctness, which says no efficient adversary can find a
malicious ciphertext and randomness tape such that decryption of the ciphertext before and after
rerandomization differ.

Definition 8 (Strong Correctness Security). A rerandomizable encryption scheme RPKE is said
to satisfy strong correctness if for any efficient adversary A, we have

Pr

m ̸= m′ :

pk, sk ← RPKE.Setup(1λ)
ct, r ← A(pk)

ct′ = RPKE.ReRand(pk, ct; r)
m = RPKE.Dec(sk, ct)
m′ = RPKE.Dec(sk, ct′)

 ≤ negl(λ).

We now introduce a stronger notion, called strong correctness with public testing. This requires
that there exists a public ciphertext testing procedure such that there simply does not exist a
malicious ciphertext (i) that passes the verification and (ii) whose decryption result before and
rerandomization can differ. This can be considered a statistical version, and it will be a useful
property in iO-based proofs.

Definition 9 (Strong Correctness with Public Testing). A rerandomizable encryption scheme
RPKE is said to satisfy strong correctness with public testing if

Pr
pk,sk←RPKE.Setup(1λ)

[∃ct, r s.t.
RPKE.Test(pk, ct) = 1 ∧

RPKE.Dec(sk, ct) ̸= RPKE.Dec(sk,RPKE.ReRand(pk, ct; r))
] ≤ negl(λ).

Finally, we introduce two more notions that are useful in our constructions. The first is called
simulatable testing key property. In this setting, we consider the public testing key ptk separately
from the public encryption key pk. We require that there is a test key simulation algorithm such
that (RPKE.SimulateTestKey(pk), pk) is (computationally) indistinguishable from (ptk, pk) where
(pk, ptk, sk) ← RPKE.Setup(1λ). Finally, if the simulated test key output by SimulateTestKey
satisfies RPKE.Test(ptk, ct) = 1 for all strings ct, then we call it simulatable all-accept testing key.
This property allows us to not use any ciphertext testing in actual constructions, and use RPKE.Test
only in security proofs.

5.1 Construction

In this section, we give a rerandomizable encryption scheme based on LWE (Section 4.6) that
satisfies all of the security properties discussed above: (i) rerandomization security, (ii) strong
correctness, (iii) strong correctness with public testing, (iv) simulatable all-accept testing keys, (v)
pseudorandom public encryption keys and (vi) statistical rerandomization with truly random public
keys. Also honest ciphertexts can be honestly rerandomized any polynomial number of times while
staying good.

Letm(λ), n(λ) denote LWE dimension and number of samples parameters, χ(λ) denote the error
distribution, B(λ) denote the bounds for the values in the support of χ(λ) (i.e. χ(λ) ⊆ [−B,B])
and q(λ) denote the modulus; with q(λ) = subexp(λ) and B = poly(λ). All algebra in the scheme
will implicitly be in Zq. Let ℓ(λ) denote the length of plaintexts. Finally, let CCObf be a compute-
and-compare obfuscation scheme for subexponentially unpredictable distributions (Definition 5),
which exists assuming LWE (Theorem 6).

20

RPKE.Setup(1λ)

1. Sample A← Zn×m
q , s← Zn

q and e← χm.

2. Compute yT = sT ·A+ eT.

3. For i ∈ [ℓ(λ)]

1. Sample Li ← [0, ⌊ q
16⌋].

2. Let Pi be the compute-and-compare program that on input (⃗a, c) computes fs(⃗a, c) and
compares it to ⌊ q4⌋ + Li and outputs 1 on equality and 0 otherwise; where fs(⃗a, c) :=
(c− sT · a). Sample OPi ← CCObf(Pi).

4. Set pk = (A, y), ptk = (OPi)i∈[ℓ(λ)] and sk = (s, (Li)i∈[ℓ(λ)]). Output pk, ptk, sk.

RPKE.Enc(pk, µ)

1. Parse (A, y) = pk.

2. For i ∈ [ℓ(λ)]

1. Sample ri ← {0, 1}m

2. Compute cti = (A · r, yT · r + µi · ⌊ q2⌋).

3. Output (cti)i∈[ℓ(λ)].

RPKE.ReRand(pk, ct)

1. Sample (ct′i)i∈[ℓ(λ)] ← RPKE.Enc(pk, 0ℓ(λ)).

2. Output (cti + ct′i)i∈[ℓ(λ)].

RPKE.Test(ptk, ct)

1. Parse (OPi)i∈[ℓ(λ)] = ptk.

2. Parse ((⃗ai, ci)i∈[ℓ(λ)] = ct.

3. For i ∈ [ℓ(λ)]

1. For sh ∈ [−m · B + 1,m · B]
⋃
[2 · ⌊ q4⌋ − m · B, 2 · ⌊ q4⌋ − 1 + m · B] ⊂ Zq, check if

OPi((⃗ai, ci + sh)) = 1, if not, output 0 and terminate.

4. Output 1.

RPKE.SimulateTestKey(1λ)

1. Output CCObf.Sim(1λ, 1m(λ), 1n(λ), 1q(λ))

21

RPKE.Dec(sk, ct)

1. Parse (s, (Li)i∈[ℓ(λ)]) = sk.

2. Parse ((⃗ai, ci)i∈[ℓ(λ)] = ct.

3. For i ∈ [ℓ(λ)], check if |ci − sTa⃗i − Li| < ⌊ q4⌋. If so, set µi = 0, otherwise set µi = 1.

4. Output µ.

Theorem 9. RPKE satisfies CPA security.

Proof. Observe that the ciphertexts and the public key are the same as Regev’s PKE, thus the
result follows by [Reg09].

Theorem 10. RPKE satisfies rerandomization security, statistical rerandomization security for
truly random public keys and pseudorandom public key property.

Proof. The first prove the statistical rerandomization security. For simplicity we will consider
single bit messages. Observe that a ciphertext (⃗a, c) is rerandomized by adding (A · r, yT · r) where
r ← {0, 1}m and (A, y) is the public key. However, when the public key (consider it as a matrix
by adding yT as a row to A) is truly random, then by a simple application of leftover hash lemma
[ILL89], we get that (A ·r, yT ·r) is also truly random. Similarly, a fresh encryption of 0 will also be
a truly (independent) random string by leftover hash lemma. Hence, the statistical reradomization
follows.

For pseudorandomness, observe that the public key is simply LWE samples. Thus by LWE
security (Section 4.6) it is indistinguishable from a truly random matrix.

To see rerandomization security, we simply combine the above two properties.

Theorem 11. RPKE satisfies strong rerandomization correctness, strong rerandomization correct-
ness with testing and simulatable all-accept testing keys property.

Proof. We will first prove strong rerandomization correctness with testing. For simplicity we will
prove the single bit plaintext case ℓ = 1, the general case follows by the same argument. Let (⃗a, c)
be a (malicious) ciphertext. Since we decrypt it by checking |c− sT · a⃗− L| < ⌊ q4⌋, observe that it
decrypts to 0 if and only if c− sT · a⃗ ∈ [L, ⌊ q4⌋+ L− 1]

⋃
[q − ⌊ q4⌋+ 1 + L, q − 1 + L]. Similarly, it

decrypts to 1 if and only if c− sT · a⃗ ∈ [⌊ q4⌋+L, q−⌊ q4⌋+L]. To rerandomize, we add (A · r, yT · r)
and get (⃗a + A · r, c + yT · r). To decrypt this, we check |c + yT · r − sT · (⃗a + A · r) − L| < ⌊ q4⌋,
but we have c + yT · r − sT · (⃗a + A · r) − L = c − sT · a⃗ + eT · r where e is the error vector and
r ← {0, 1}m(λ), since yT = sT · A + eT. However, observe that eT · r ∈ [−m · B,m · B] since the
error distribution satisfies χ ⊆ [−B,B]. Thus, for decryption of the original ciphertext and the
rerandomized ciphertext to potentially differ, the original value c− sT · a⃗ needs to be near rounding
thresholds. More formally, we need to have c − sTa⃗ ∈ [⌊ q4⌋ + L −m · B, ⌊ q4⌋ + L +m · B − 1] or
c−sTa⃗ ∈ [q−⌊ q4⌋+L−m ·B+1, q−⌊ q4⌋+L+m ·B]. By correctness of CCObf, this is exactly what
our test algorithm Test is checking, thus strong rerandomization correctness with testing follows.

Now, observe that the target values ⌊ q4⌋ + Li of the compute-and-compare programs Pi are
subexponentially unpredictable. Thus, by the security of CCObf, the obfuscated programs OPi

are indistinguishable from obfuscations of all zero programs. Hence, simulatable all-accept testing
property follows. Further, we can argue strong rerandomization correctness as follows. Consider
the strong rerandomization correctness game and call it the first hybrid, Hyb0. In Hyb1, we mod-
ify the challenger so that the challenger first tests adversary’s malicious ciphertext choice using

22

RPKE.Test(ptk, s) where ptk ← RPKE.SimulateTestKey(1λ), and if it does not pass, the adversary
automatically loses. However, by all-accepting simulated key property, Hyb0 ≡ Hyb1. In Hyb2,
we instead use the actual testing key rather than the simulated one. By simulated key security,
we have Hyb1 ≈ Hyb2. Finally, we have Pr[Hyb2 = 1] ≤ 1/2 + negl(λ) by strong rerandomization
correctness with testing security.

6 Definitions

In this section, we give the formal definitions for quantum money schemes that support privacy
and tracing.

Definition 10 (Quantum Money with Privacy and Tracing). A quantum money scheme Bank
consists of the following efficient algorithms.

• Setup(1λ): Takes in a security parameter, outputs a minting key mk, a tracing key tk and a
public verification key vk.

• GenBanknote(mk, t): Takes in the minting key mk and a tag t, outputs a quantum banknote
register.

• Verify(vk,R): Takes in the public key and a quantum register R, outputs 0 or 1.

• ReRandomize(vk,R): Takes in the public key and a quantum register R, outputs the updated
register.

• Trace(tk,R): Takes in the tracing key and a quantum register R, outputs a tag value or ⊥.

We will require the following properties.

Definition 11 (Correctness). For any tag t ∈ {0, 1}t(λ),

Pr

b = 1 :
vk,mk, tk ← Bank.Setup(1λ)
R← Bank.GenBanknote(mk, t)

b← Bank.Verify(vk,R)

 ≥ 1− negl(λ).

We will also consider projectiveness, which requires that Verify(vk, (sn, ·)) implements a rank-1
projector.

We now define correctness after rerandomization, which says that a valid banknote will stay
valid after rerandomization.

Definition 12 (Correctness After Rerandomization). For any efficient algorithm B,

Pr

b = 0 ∨ b′ = 1 :

vk,mk, tk ← Bank.Setup(1λ)
R← B(vk,mk, tk)

b← Bank.Verify(vk,R)
R← Bank.ReRandomize(vk,R)

b′ ← Bank.Verify(vk,R)

 ≥ 1− negl(λ).

Finally, we will require that banknotes do not grow in size with rerandomization, and call this
property compactness11.

11We note that, for compact schemes, we can also simply make re-randomization the last step of the verification
algorithm

23

We now define counterfeiting (i.e unclonability) security for quantum money schemes. The
security requires that any (QPT) adversary that obtains k banknotes will note be able to produce
k + 1 banknotes. While our security notion is quite similar to previous counterfeiting definitions
(such as [AC12]), we will require unclonability security even against an adversary that has the
tracing key. We give the formal game-based definition in Appendix A.

6.1 Fresh Banknote Security

Previous work has defined a privacy notion, called anonymity, where an adversary either gets back
their banknotes in the original order or in permuted order (see Appendix A.1). We introduce a
new, stronger security notion called indistinguishability from fresh banknotes.

Definition 13 (Indistinguishability from Fresh Banknotes). Consider the following game between
a challenger and an adversary A.

QM− FRESH− INDA(1
λ)

1. Sample vk,mk, tk ← Bank.Setup(1λ).

2. Submit vk,mk to A.

3. Adversary A outputs a register R0.

4. Run Bank.Verify(vk,R0). If it fails, output 0 and terminate.

5. Run Bank.ReRandomize(vk,R0).

6. Sample R1 ← Bank.GenBanknote(mk, 0t(λ)).

7. Submit Rb to the adversary A.

8. Adversary A outputs a bit b′.

9. Output 1 if and only if b′ = b.

We say that the quantum money scheme Bank satisfies fresh banknote indistinguishability if
for any QPT adversary A, we have

Pr
[
QM− FRESH− INDA(1

λ) = 1
]
≤ 1

2
+ negl(λ).

Theorem 12. Any quantum money scheme that satisfies basic fresh banknote indistinguishability
also satisfies anonymity.

The proof follows by a simple hybrid argument.

6.2 Traceability

In this section, we introduce tracing security for public-key quantum money.

Definition 14 (Tracing Security). Consider the following game between the challenger and an
adversary A.

24

PKQM− TRACINGA(1
λ)

1. Initialize the list12 TAGS = [].

2. Sample vk,mk, tk ← Bank, Setup(1λ).

3. Submit vk, tk to A.

4. Banknote Query Phase: For multiple rounds, A queries for a banknote by sending a tag

t ∈ {0, 1}t(λ). For each query, the challenger executes Rbn ← Bank.GenBanknote(mk, t) and
submits Rbn to the adversary. The challenger also adds t to the list TAGS.

5. A outputs a value k and a k-partite register (Ri)i∈[k].

6. For i ∈ [k], the challenger tests Bank.Verify(vk,Ri) = 1 and adds the output of Bank.Dec(tk,Ri)
to the list TAGS′. If any of the tests output 0, the challenger outputs 0 and terminates.

7. The challenger checks if the list SORT(TAGS′) is a sublist of SORT(TAGS). If so, it outputs
0. Otherwise, it outputs 1.

6.3 Untraceability

In this section, we introduce the notion of untraceability for quantum money for the first time. We
will require that the banknotes are anonymous to everyone, including the malicious bank. We will
consider this model in the common random string model.

Definition 15 (Untraceability). Consider the following game between a challenger and an adver-
sary A.

PKQM− UNTRACEA(1
λ)

1. Sample crs← {0, 1}q(λ).

2. Submit crs to the adversary A.

3. Adversary A outputs keys vk,mk and a register R0.

4. Run Bank.Verify(vk,R0). If it fails, output 0 and terminate.

5. Sample R1 ← Bank.GenBanknote(mk).

6. Run Bank.Verify(vk,R1). If it fails, output 0 and terminate.

7. Sample b← {0, 1}.

8. Submit Rb to the adversary A.

9. Adversary A outputs a bit b′.

10. Output 1 if and only if b′ = b.

We say that the quantum money scheme Bank satisfies untraceability if for any QPT adversary
A, we have

Pr
[
PKQM− UNTRACEA(1

λ) = 1
]
≤ 1

2
+ negl(λ).

12In particular, it can contain the same element multiple times.

25

7 Construction with Anonymity and Traceability

In this section, we give our public-key quantum money construction and prove that it satisfies
unclonability, fresh banknote security, and tracing security.

We assume the existence of the following primitives that we use in our construction: (i) iO,
subexponentially secure indistinguishability obfuscation, (ii) RPKE, a rerandomizable public key
encryption scheme with strong correctness and public testing (Definition 9) and (iii) F , a subex-
ponentially secure puncturable PRF with input length p1(λ) and output length p2(λ).

We also utilize the following primitives that we only use in our security proofs: (i) SKE, a
private-key encryption scheme with pseudorandom ciphertexts, and (ii) DS, a signature scheme.

We also set the following parameters: t(λ) to be the desired tag length, sg(λ) to be the signature
length of DS for messages of length λ+ t(λ), c(λ) to be the ciphertext size of SKE for messages of
length λ+ sg(λ), p1(λ) to be the ciphertext size of RPKE for messages of length t(λ) + c(λ), p2(λ)
to be the randomness size of the algorithm SampleFullRank, and p3(λ) to be the randomness size
of the algorithm PKE.ReRandomize.

We now move onto our construction. Let ACan denote the canonical λ/2-dimensional subspace
of Fλ

2 defined as Span(e1, . . . , eλ/2) where ei ∈ Fλ
2 is the vector that has 1 at the i-th index and 0

at all the others.

Bank.Setup(1λ)

1. Sample K ← F.Setup(1λ).

2. Sample pk, sk ← RPKE.Setup(1λ).

3. Sample OPMem← iO(PMem) where PMem is the following program.

PMemK(id, v, b)

Hardcoded: K

1. T = SampleFullRank(1λ;F (K, id)).

2. Compute w = T−1(v) if b = 0; otherwise, compute w = TT(v).

3. Output 1 if w ∈ ACan if b = 0 and if w ∈ A⊥Can if b = 1. Otherwise, output 0.

4. Sample OPReRand← iO(PReRand) where PReRand is the following program13.

PReRandK(id, s)

Hardcoded: K, pk

1. Check if RPKE.Test(pk, id) = 1. If not, output ⊥ and terminate.

2. id′ = RPKE.ReRand(pk, id; s).

3. T1 = SampleFullRank(1λ;F (K, id)).

4. T2 = SampleFullRank(1λ;F (K, id′)).

13We note that if we make the stronger assumption of RPKE with all-accepting simulatable testing keys, we can
actually remove the RPKE.Test line from the construction.

26

5. Output id′, T2 · T−11 .

5. Set vk = (OPMem,OPReRand).

6. Set mk = (K, pk).

7. Set tk = sk.

8. Output vk,mk, tk.

Bank.GenBanknote(mk, tag)

1. Parse (K, pk) = mk.

2. Sample ict← {0, 1}c(λ).

3. Sample ct← RPKE.Enc(pk, tag||ict).

4. T = SampleFullRank(1λ;F (K, ct)).

5. Set |$⟩ =
∑

v∈A|T (v)⟩.

6. Output ct, |$⟩.

Bank.Verify(vk,R)

1. Parse (OPMem,OPReRand) = vk.

2. Parse (id,R′) = R.

3. Run OPMem coherently on id,R′, 0. Check if the output is 1, and then rewind (as in Gentle
Measurement Lemma [Aar16]).

4. Apply QFT to R′.

5. Run OPMem coherently on id,R′, 1. Check if the output is 1, and then rewind.

6. Output 1 if both verifications passed above. Otherwise, output 0.

Bank.ReRandomize(vk,R)

1. Parse (OPMem,OPReRand) = vk.

2. Parse (ct,R′) = R.

3. Sample s← {0, 1}p3(λ).

4. ct′, T = OPReRand(ct, s).

5. Apply the linear map T : Fλ
2 → Fλ

2 coherently14 to R′.

6. Output ct′,R′.

14That is, in superposition. Note that since T is an efficient (in both directions) bijection, we can indeed apply it
in superposition with no garbage left.

27

Bank.Trace(tk,R)

1. Parse sk = tk.

2. Parse (ct,R′) = R.

3. Compute pl = RPKE.Dec(sk, ct).

4. If pl = ⊥, output ⊥. Otherwise, output first t(λ) bits of pl.

Theorem 13. Bank satisfies correctness after rerandomization and projectiveness.

See Section 7.1 and Section 7.2 for the proofs.

Theorem 14. Bank satisfies fresh banknote indistinguishability (Definition 13).

See Section 7.4 for the proof.

Theorem 15. Bank satisfies tracing security (Definition 14).

See Section 7.5 for the proof.

Theorem 16. Bank satisfies counterfeiting security (Definition 19).

See Section 7.3 for the proof.

7.1 Projectiveness

Let T be a full rank linear map. Observe that a vector v satisfies T−1(v) ∈ ACan if and only if
v ∈ A∗ where A∗ is the set {T (w) : w ∈ ACan}, which is a subspace of dimension λ/2 since T is a
full rank linear map. Similarly, we can show that a vector v satisfies TT(v) ∈ A⊥Can if and only if
v ∈ (A∗)⊥. Note that TT(v) ∈ A⊥Can if and only if ⟨TT · v, u⟩ = 0 for all u ∈ ACan. However, this
inner product is equal to ⟨v, T · u⟩, and as u ranges over all ACan, T · u ranges over all A∗. Thus,
we get that the above is equivalent to ⟨v, u′⟩ = 0 for all u′ ∈ A∗, which is equivalent to v ∈ (A∗)⊥.

The above shows that our verification algorithm is equivalent to the subspace state verification
algorithm (for the subspace A∗) of Aaronson-Christiano [AC12], which they prove implements a
projection onto the subspace. Thus, projectiveness of our scheme follows.

7.2 Correctness

We prove correctness after rerandomization. For a banknote ct, |ψ⟩ that has been verified, we know
by projectiveness that |ψ⟩ =

∑
v∈ACan

|T (v)⟩ where T = SampleFullRank(1λ;F (K, ct)). During reran-

domization, OPReRand outputs ct′ and T ′′ = T ′ · T−1 where T ′ = SampleFullRank(1λ;F (K, ct′)).
Applying T ′′ in superposition, we get the state

∑
v∈ACan

|T ′′(v)⟩, which is perfectly the state for the
serial number ct′′.

7.3 Proof of Unclonability (Counterfeiting) Security

We prove counterfeiting security (i.e. unclonability) through a sequence of hybrids, each of which
is constructed by modifying the previous one. We implicitly pad all the iO obfuscated programs
to an appropriate size.

Hyb0 : The original game PKQM− CFA(1
λ).

28

Hyb1 : First, at the beginning of the game, the challenger samples isk ← SKE.Setup(1λ). It
also initializes a stateful counter cnt = 0 and a list CT = []. Further, we modify the way the
challenger mints banknotes. Instead of calling Bank.GenBanknote(mk, tag), it now executes the
following subroutine for each query.

Minting Subroutine(tag)

1. Parse (K, pk) = mk.

2. Add 1 to cnt.

3. Sample ict← SKE.Enc(isk, cnt||0sg(λ)).

4. Sample ct← RPKE.Enc(pk, tag||ict).

5. Add ct to the list CT.

6. T = SampleFullRank(1λ;F (K, ct)).

7. Set |$⟩ =
∑

v∈ACan
|T (v)⟩.

8. Output ct, |$⟩.

Hyb2 : We change the way the challenger verifies the banknotes output by the adversary. Instead
of executing Verify, it instead executes the following subroutine for each banknote.

Verify Subroutine(R)

1. Parse (OPMem,OPReRand) = vk.

2. Parse (id,R′) = R.

3. Parse pl1||pl2 = RPKE.Dec(sk, id) with |pl1| = t(λ), |pl2| = c(λ).

4. Compute ipl1||ipl2 = SKE.Dec(isk, pl2) with |ipl1| = λ and |ipl2| = sg(λ).

5. Check if ipl1 ∈ [k]. Output 0 and terminate the subroutine if not.

6. Run OPMem coherently on id,R′, 0. Check if the output is 1, and then rewind.

7. Apply QFT to R′.

8. Run OPMem coherently on id,R′, 1. Check if the output is 1, and then rewind.

9. Output 1 if both verifications passed above. Otherwise, output 0.

Hyb3 : We now sample i∗ ← [k] and also initialize the list INDICES = [] at the beginning of the
game. We also modify the verification subroutine so that each ipl1 value is added to INDICES. At
the end of the game, the challenger (in addition to the previous checks) also checks if i∗ appears at
least twice in INDICES, and outputs 0 if not.

29

Hyb4 : We sample K ′ ← F.Setup(1λ) and a random full rank linear map T ∗ : Fλ
2 → Fλ

2 at the
beginning of the game. We also compute A∗ = T ∗(ACan) and create the following function/program.

MK′,CTi∗ (ct) =

{
SampleFullRank(1λ;F (K ′, id)), if id ̸= CTi∗

I, if id = CTi∗

Further, we now sample OPMem and OPReRand as OPMem ← iO(PMem′) and OPReRand ←
iO(PReRand′).

PMem′K(id, v, b)
Hardcoded: K, sk, isk, i∗, T ∗,MK′,CTi∗

1. Parse pl1||pl2 = RPKE.Dec(sk, id) with |pl1| = t(λ), |pl2| = c(λ).

2. Parse ipl1||ipl2 = SKE.Dec(isk, pl2) with |ipl1| = λ, |ipl2| = sg(λ).

3. If ipl1 = i∗, set T =MK′,CTi∗ (id) · T
∗. Otherwise T = SampleFullRank(1λ;F (K, id)).

4. Compute w = T−1(v) if b = 0; otherwise, compute w = TT(v).

5. Output 1 if w ∈ ACan if b = 0 and if w ∈ A⊥Can if b = 1. Otherwise, output 0.

PReRand′K(id, s)
Hardcoded: K, pk, sk, isk, i∗, T ∗,MK′,CTi∗

1. Check if RPKE.Test(pk, id) = 1. Otherwise, output ⊥ and terminate.

2. Parse pl1||pl2 = RPKE.Dec(sk, id) with |pl1| = t(λ), |pl2| = c(λ).

3. Parse ipl1||ipl2 = SKE.Dec(isk, pl2) with |ipl1| = λ, |ipl2| = sg(λ).

4. id′ = RPKE.ReRand(pk, id; s).

5. If ipl1 = i∗, set T1 =MK′,CTi∗ (id) · T
∗. Otherwise, T1 = SampleFullRank(1λ;F (K, id)).

6. Parse pl′1||pl′2 = RPKE.Dec(sk, id′) with |pl′1| = t(λ), |pl′2| = c(λ).

7. Parse ipl′1||ipl′2 = SKE.Dec(isk, pl′2) with |ipl′1| = λ, |ipl′2| = sg(λ).

8. If ipl′1 = i∗, set T2 =MK′,CTi∗ (id
′) · T ∗. Otherwise, T2 = SampleFullRank(1λ;F (K, id′)).

9. Output id′, T2 · T−11 .

Finally, we modify the minting subroutine as follows.

Minting Subroutine(R)

1. Parse (K, pk) = mk.

2. Add 1 to cnt.

3. Sample ict← SKE.Enc(isk, cnt||0sg(λ)).

30

4. Sample ct← RPKE.Enc(pk, tag||ict).

5. If cnt = i∗, set |$⟩ =
∑

v∈A∗ |v⟩ and jump to the final step.

6. T = SampleFullRank(1λ;F (K, ct)).

7. A = T (ACan).

8. Set |$⟩ =
∑

v∈A|v⟩.

9. Output ct, |$⟩.

Hyb5 : At the beginning of the game, after we sample T ∗, we also sample P0 ← iO(A∗) and

P1 ← iO((A∗)⊥). Further, we now sample OPMem as OPMem← iO(PMem′′) .

PMem′′K(id, v, b)
Hardcoded: K, sk, isk, i∗,P0,P1

1. Parse pl1||pl2 = RPKE.Dec(sk, id) with |pl2| = c(λ).

2. Parse ipl1||ipl2 = SKE.Dec(isk, pl2) with |ipl1| = λ and |ipl3| = sg(λ).

3. If ipl1 = i∗,

1. Set T =MK′,CTi∗ (id).

2. Compute w = T−1(v) if b = 0; otherwise, compute w = (T−1)T(v).

3. Output the output Pb(v) and terminate.

4. If ipl1 ̸= i∗,

1. Set T = SampleFullRank(1λ;F (K, id)).

2. Compute w = T−1(v) if b = 0; otherwise, compute w = (T)T(v).

3. Output 1 if w ∈ ACan if b = 0 and if w ∈ A⊥Can if b = 1. Otherwise, output 0.

Hyb6 : We now sample OPReRand as OPReRand← iO(PReRand′′) .

PReRand′′K(id, s)
Hardcoded: K, pk, sk, isk, i∗,MK′,CTi∗

1. Check if RPKE.Test(pk, id) = 1. Otherwise, output ⊥ and terminate.

2. Parse pl1||pl2 = RPKE.Dec(sk, id) with |pl2| = c(λ).

3. Parse ipl1||ipl2 = SKE.Dec(isk, pl2) with |ipl1| = λ and |ipl2| = sg(λ).

4. id′ = RPKE.ReRand(pk, id; s).

5. If ipl1 = i∗, set T1 =MK′,CTi∗ (id). Otherwise, T1 = SampleFullRank(1λ;F (K, id)).

31

6. If ipl1 = i∗, set T2 =MK′,CTi∗ (id
′). Otherwise, T2 = SampleFullRank(1λ;F (K, id′)).

7. Output id′, T2 · T−11 .

Lemma 1. Hyb0 ≈ Hyb1.

Proof. These hybrids differ in two places. First, the challenger executes the minting procedure
directly instead of calling Bank.GenBanknote. This is only a semantic change and makes no differ-
ence. Second, we replace the random strings ict ← {0, 1}c(λ) with ciphertexts of SKE. Thus, the
security follows by the pseudorandom ciphertext security of SKE, since the experiments do not use
sk and can be simulated only using the ciphertexts.

Lemma 2. Hyb1 ≈ Hyb2.

Proof. We will show that by strong rerandomization correctness property, any banknote whose
serial number decrypts to a value outside [k] is rooted (i.e is a rerandomization of) at a subspace
state that was not even given to the adversary. Thus, the result then will follow by unlearnability
of subspaces (we can also think of this as 0→ 1 unclonability).

We give a formal proof in Appendix B.2.

Lemma 3. Pr[Hyb3 = 1] ≥ Pr[Hyb2=1]
k

Proof. Observe that all ipl1 added to INDICES are required to be in [k], whereas the list at the end
will have size k+ 1 (assuming the challenger has not terminated with output 0 already). Thus, by
pigeonhole principle, there is a value i∗∗ ∈ [k] such that it appears in INDICES more than once.
Our random guess i∗ will satisfy i∗ = i∗∗ with probability 1/k.

Lemma 4. Hyb3 ≈ Hyb4.

Proof. This follows through a hybrid argument using the puncturing security of the PRF and the
security iO, where we create hybrids over all strings id. Through sufficient padding, the result
follows by subexponential security of the PRF scheme and iO.

We give a formal proof in Appendix B.1.

Lemma 5. Hyb4 ≈ Hyb5.

Proof. We will show that the programs PMem′ and PMem′′ have the same functionality. Then, the
result follows by the security of iO.

The behaviour of the two programs can possibly differ only on inputs such that ipl = i∗.
However, by the same argument as in the proof of projectiveness of our scheme, we know that
PMem′ implements membership checking programs for the subspaces A∗, (A∗)⊥ when ipl = i∗. By
correctness of the obfuscation used to create P0,P1; PMem′′ does the same thing. Thus, we get
that the programs PMem′ and PMem′′ have the same functionality, and the result follows by the
security of iO.

Lemma 6. Hyb5 ≈ Hyb6.

Proof. Observe that by the strong rerandomization correctness of RPKE, there does not exist id and
s such that RPKE.Test(pk, id) = 1, but id and id′ = ReRand(pk, ct; s) decrypt to different values.
Thus, in PReRand′, we know that id and id′ will decrypt to the same value pl2, which will decrypt
to the same value ipl1 due to deterministic decryption of SKE. Thus, separately decrypting id′ to
obtain ipl′1 versus directly using ipl1 instead makes no difference. Further, this means that for both

32

id and id′, we will be in the same case with respect to the test ipl1 =
? i∗. Therefore, the factor T ∗

cancels outs when we compute T2 · T−11 = (MK′,CTi∗ (id
′) · T ∗) · (MK′,CTi∗ (id) · T

∗)−1. Therefore,
the programs PReRand′,PReRand′′ have exactly the same functionality. The result follows by the
security of iO.

Lemma 7. Pr[Hyb6 = 1] = negl(λ).

Proof. Suppose otherwise for a contradiction. This result follows by the 1→ 2 unclonability of the
subspace state |A∗⟩. Observe that this hybrid can be simulated using only a single copy of |A∗⟩
along with iO(A∗), iO((A∗)⊥) (by sampling the other keys e.g. K,K ′ ourselves). At the end, we
know that at least two of the forged banknotes are such that their serial numbers decrypt to i∗.
Let ctj and ctℓ denote the serial numbers of these banknotes. We also know that by projectiveness
of the verification, these two banknote states (when they pass the verification) will be exactly∣∣MK′,CTi∗ (ctj) ·A

∗〉 and
∣∣MK′,CTi∗ (ctℓ) ·A

∗〉. However, since we (the reduction) sample K ′, we
can actually take both of these back to |A∗⟩ by applying (MK′,CTi∗ (ctj))

−1, (MK′,CTi∗ (ctℓ))
−1 in

superposition, and obtain two copies of |A∗⟩. However, this means that we cloned |A∗⟩ with non-
negligible probability, which is a contradiction by Theorem 7.

Now, suppose for a contradiction that there exists a QPTA such that Pr
[
PKQM− CFA(1

λ) = 1
]

is non-negligible. Then, we get that Pr[Hyb6 = 1] is also non-negligible, which is a contradiction by
Lemma 7.

7.4 Proof of Fresh Banknote Indistinguishability

We will prove security through a sequence of hybrids, each of which is obtained by modifying the
previous one. Let A be a QPT adversary.

Hyb0 : The original game QM− FRESH− INDA(1
λ).

Hyb1 : In the re-randomization step (in Step 5), instead of performing ReRandomize(vk,R0), we
instead execute the following subroutine.

Rerandomize Subroutine

1. Parse (ct∗,R′0) = R0.

2. Sample s∗ ← {0, 1}p3(λ).

3. ct∗∗0 = RPKE.ReRand(pk, ct∗; s∗).

4. T1 = SampleFullRank(1λ;F (K, ct∗)).

5. T ∗0 = SampleFullRank(1λ;F (K, ct∗∗0)).

6. Set M∗ = (T ∗0) · T
−1
1 .

7. Apply the linear map M∗ : Fλ
2 → Fλ

2 coherently to R′0.

8. Set R0 = (ct∗∗0 ,R
′
0).

33

Hyb2 : In the rerandomization subroutine, we replace the line

ct∗∗0 = RPKE.ReRand(pk, ct∗; s∗)

with
ct∗∗0 ← RPKE.Enc(pk, 0t(λ)+c(λ)).

Hyb3 : We further modify the rerandomization subroutine as follows.

Rerandomize Subroutine

1. Parse (ct∗,R′0) = R0.

2. Sample ct∗∗0 ← RPKE.Enc(pk, 0t(λ)+c(λ)).

3. T ∗0 = SampleFullRank(1λ;F (K, ct∗∗0)).

4. A∗0 = T ∗0 (ACan).

5. Set R′0 =
∑

v∈A∗ |v⟩.

6. Set R0 = (ct∗∗0 ,R
′
0).

Hyb4 : In the challenge phase, for the case b = 1, instead of executing

R1 ← GenBanknote(mk, 0t(λ))

we execute

ct∗∗1 ← RPKE.Enc(pk, 0t(λ)+c(λ))

T ∗1 = SampleFullRank(1λ;F (K, ct∗∗1))

R′1 =
∑

v∈ACan

|T ∗1 (v)⟩

R1 = (ct∗∗1 ,R
′
1)

Lemma 8. Hyb0 ≈ Hyb1.

Proof. Hyb1 simply unwraps ReRandomize(vk,R0), including having the challenger execute the code
of the program PReRand rather than using OPReRand. By correctness of iO, the result follows.

Lemma 9. Hyb1 ≈ Hyb2.

Proof. The result follows by rerandomization security of RPKE (Definition 7).

Lemma 10. Hyb2 ≈ Hyb3.

Proof. As proven in the proof of correctness after rerandomization, once we rerandomize a banknote
to the new serial number ct∗∗0 , our banknote state becomes the perfect banknote state associated
with ct∗∗. Thus the result follows.

Lemma 11. Hyb3 ≡ Hyb4.

34

Proof. In this hybrid the challenger simply executes the minting itself, rather than calling Bank.GenBanknote.
This is only a semantic change.

Lemma 12. Pr[Hyb4 = 1] ≤ 1/2.

Proof. The results follows due to the fact that two challenge cases b = 0 and b = 1 are completely
symmetrical.

Thus, we get Pr
[
QM− FRESH− INDA(1

λ) = 1
]
≤ 1/2 + negl(λ), completing the proof.

7.5 Proof of Tracing Security

We will prove security through a sequence of hybrids, each of which is constructed by modifying
the previous one. Let A be a QPT adversary.

Hyb0: The original game PKQM− TRACINGA(1
λ).

Hyb1: At the beginning of the game, the challenger initializes a stateful counter for tags, cnt(t),

that is initially set to 0 for each tag. It also initializes the lists PL = [], PL′ = []. It also samples

isk ← SKE.Setup(1λ)

ivk, isgk ← DS.Setup(1λ).

We also modify the way the challenger answers banknote queries. Instead of executing

Rbn ← GenBanknote(mk, tag)

on a query for tag, it instead executes the following subroutine.

Minting Subroutine(tag)

1. Parse (K, pk) = mk.

2. Increase cnt(tag) by 1.

3. Sample sig ← DS.Sign(sk, tag||cnt(tag)).

4. Sample ict← SKE.Enc(isk, cnt(tag)||sig).

5. Add tag||cnt(tag) to the list PL.

6. Sample ct← RPKE.Enc(pk, tag||ict).

7. T = SampleFullRank(1λ;F (K, ct)).

8. Set |$⟩ =
∑

v∈ACan
|T (v)⟩.

9. Output ct, |$⟩.

Hyb2: We change the way the challenger verifies the banknotes output by the adversary. Instead
of executing Verify, it instead executes the following subroutine for each banknote.

35

Verify Subroutine(R)

1. Parse (OPMem,OPReRand) = vk.

2. Parse (id,R′) = R.

3. Parse pl1||pl2 = RPKE.Dec(sk, id) with |pl1| = t(λ), |pl2| = c(λ).

4. Parse ipl1||ipl2 = SKE.Dec(isk, pl2) with |ipl1| = λ, |ipl2| = sg(λ).

5. Check if DS.Verify(ivk, pl1||ipl1, ipl2) = 1. Output 0 and terminate the subroutine if the
checks fail.

6. Add ipl1||ipl2 to the list PL′.

7. Run OPMem coherently on id,R′, 0. Check if the output is 1, and then rewind.

8. Apply QFT to R′.

9. Run OPMem coherently on id,R′, 1. Check if the output is 1, and then rewind.

10. Output 1 if both verifications passed above. Otherwise, output 0.

Hyb3: In the verification subroutine, after checking DS.Verify(ivk, pl1||ipl1, ipl2) = 1, the chal-
lenger also checks if ipl1||ipl2 ∈ PL, and outputs 0 and terminates if not.

Hyb4: We add an additional winning condition at the end of the game: If the list PL′ contains
any duplicate elements, the challenger outputs 0 and hence the adversary loses.

Lemma 13. Hyb0 ≈ Hyb1.

Proof. Since the adversary does not have the secret key isk, the result follows by the semantic
security of SKE.

Lemma 14. Hyb1 ≈ Hyb2.

Proof. As in Lemma 2, this follows due to 0→ 1 unclonability (i.e. unlearnability) of the subspace
states. The proof follows similarly to Lemma 2 (proven in Appendix B.2). The main difference in
this case is that we will need to perform the rooted at original banknote (banknotes whose serial
numbers decrypt to one of the original tags) versus outside banknote test for tag values chosen
by the adversary, whereas in Lemma 2 the original set was just [k], which is efficiently. In this
case, thanks to the hidden signatures isig, we can still verify that a tag is one of the original tags
efficiently without having to hardcode all the tag values inside the iO program.

Lemma 15. Hyb2 ≈ Hyb3.

Lemma 16. Observe that the adversary only obtains signatures for the elements of PL. Thus, the
result follows by the unforgeability security of the signature scheme DS.

Lemma 17. Hyb3 ≈ Hyb4.

Proof. Observe that this is essentially unclonability of each indiviual banknote: Any duplicate
value in PL′ means that a banknote with that payload value was cloned. Thus, the proof follows
similarly to the proof of unclonability of our scheme (especially hybrids Hyb3 through Hyb6 in
Section 7.3).

36

Lemma 18. Pr[Hyb4 = 1] = 0.

Proof. Observe that at the end of the game, if the challenger already has not terminated with 0, we
will have that PL′ will be a subset of PL. Further, for the adversary to win the game, each element
in PL′ can appear once. Finally, note that PL,PL′ actually contains the tags (with a multiplicity
counter attached to each tag) of the banknotes given to the adversary and the banknotes output
by the adversary, respectively. Thus, combining these means that TAGS′ will contain the same tags
as TAGS, but fewer or equal multiplicity for each tag. This implies that SORT(TAGS′) is a sublist
of SORT(TAGS). Hence, the adversary loses surely in Hyb4.

By above, we conclude that Pr
[
PKQM− TRACINGA(1

λ) = 1
]
= negl(λ) for any QPT adversary

A.

8 Construction with Untraceability

In this section, we give our public-key quantum money construction with untraceability, in the
common (uniformly) random string model. In our scheme, verification automatically rerandomizes
a banknote.

We assume the existence of the following primitives that we use in our construction. (i) iO,
subexponentially secure indistinguishability obfuscation, (ii) RPKE, a rerandomizable public key
encryption scheme with strong correctness, public testing, pseudorandom public encryption keys,
simulatable testing keys and statistical rerandomization security for truly random public keys (Def-
inition 7), (iii) F , a subexponentially secure puncturable PRF with input length p1(λ) and output
length p2(λ), and (iv) NIZK, a non-interactive zero knowledge argument system in the common
random string model (CRS) for the language L defined below.

We also set the following parameters: p1(λ) to be the ciphertext size of RPKE for messages
of length λ, p2(λ) to be the randomness size of the algorithm SampleFullRank, p3(λ) to be the
randomness size of the algorithm PKE.ReRandomize, q1(λ) to be the CRS length of NIZK, q2(λ) to
be the public key size of RPKE, q(λ) = q1(λ) + q2(λ) to be the CRS length of our scheme.

Finally, we define the NP language L as consisting of x such that

∃K, r x = iO(PMemK ; r)

Setup(crs)

1. Parse15 crsnizk||pk = crs with |crsnizk| = q1(λ) and |pk| = q2(λ).

2. Sample K ← F.Setup(1λ).

3. Sample random tape riO and compute OPMem = iO(PMem; riO) where PMem is the following
program.

PMemK(id, v, b)

Hardcoded: K

1. T = SampleFullRank(1λ;F (K, id)).

15See Appendix C for a remark on representing the public key as a binary string.

37

2. Compute w = T−1(v) if b = 0; otherwise, compute w = TT(v).

3. Output 1 if w ∈ ACan if b = 0 and if w ∈ A⊥Can if b = 1. Otherwise, output 0.

4. Sample ptk ← RPKE.SimulateTestKey(pk).

5. Sample OPReRand← iO(PReRand) where PReRand is the following program16.

PReRandK(id, s)

Hardcoded: K, pk, ptk

1. Check if RPKE.Test(ptk, id) = 1. If not, output ⊥ and terminate.

2. id′ = RPKE.ReRand(pk, id; s).

3. T1 = SampleFullRank(1λ;F (K, id)).

4. T2 = SampleFullRank(1λ;F (K, id′)).

5. Output T2 · T−11 .

6. Sample the proof π ← NIZK.Prove(crsnizk, x = OPMem, w = (K, riO)).

7. Set vk = (OPMem,OPReRand, π).

8. Set mk = (K, pk).

9. Output vk,mk.

GenBanknote(mk)

1. Parse (K, pk) = mk.

2. Sample ct← RPKE.Enc(pk, 0λ).

3. T = SampleFullRank(1λ;F (K, ct)).

4. Set |$⟩ =
∑

v∈ACan
|T (v)⟩.

5. Output ct, |$⟩.

Verify(crs, vk,R)

1. Parse crsnizk||pk = crs with |pk| = q2(λ).

2. Parse (OPMem,OPReRand, π) = vk.

3. Check17 if NIZK.Verify(crsnizk, x = OPMem, π) = 1. If not, output 0 and terminate.

4. Parse (id,R′) = R.

5. Run OPMem coherently on id,R′, 0. Check if the output is 1, and then rewind.

16We note that if we make the stronger assumption of RPKE with all-accepting simulatable testing keys, we can
actually remove the RPKE.Test line from the construction.

17We note that in reality, a user can just perform this verification only once on vk and later on keep using vk.

38

6. Apply QFT to R′.

7. Run OPMem coherently on id,R′, 1. Check if the output is 1, and then rewind.

8. If any verification failed, output 0 and terminate.

9. Sample s← {0, 1}p3(λ).

10. T = OPReRand(id, s).

11. Compute id′ = RPKE.ReRand(pk, id; s).

12. Apply the linear map T : Fλ
2 → Fλ

2 coherently to R′.

13. Run OPMem coherently on id′,R′, 0. Check if the output is 1, and then rewind.

14. Apply QFT to R′.

15. Run OPMem coherently on id′,R′, 1. Check if the output is 1, and then rewind.

16. If any verification failed, output 0. Otherwise, output 1.

Theorem 17. Bank satisfies correctness and projectiveness.

The proof of this theorem follows similarly to Section 7.1 and Section 7.2.

Theorem 18. Bank satisfies untraceability (Definition 15).

See Section 8.1 for the proof.

Theorem 19. Bank satisfies counterfeiting security (Definition 19).

See Section 8.2 for the proof.

8.1 Proof of Untraceability

We will prove security through a sequence of hybrids, each of which is obtained by modifying the
previous one. Let A be a QPT adversary.

Hyb0 : The original game PKQM− UNTRACEA(1
λ).

Hyb1 : In the verification steps (Step 4 and 6 of the experiment), instead of performing Bank.Verify(vk,R),
the challenger executes the code of Bank.Verify directly on vk,R. Further, instead of verifying the
proof π inside vk twice (in Step 4 and 6), it performs it only once when A outputs vk at Step 3.

Hyb2 : After verifying the NIZK argument π at Step 3, the challenger executes the following.
It iterates over all strings K, r and checks if OPMem (parsed from vk as in Bank.Verify) satisfies
OPMem = iO(PMemK ; r). If the challenger finds such a value, it sets K∗, r∗ to these value. If it
cannot find such a value, it outputs 0 and terminates.

Note that from this hybrid onwards, the challenger (and the experiments) will be exponential
time.

Hyb3 : We change the way the challenger performs the banknote verification.

39

Verify Subroutine(R)

1. Parse crsnizk||pk = crs with |pk| = q2(λ).

2. Parse (OPMem,OPReRand, π) = vk.

3. Parse (id,R′) = R.

4. Compute Tid = SampleFullRank(1λ;F (K∗, id)).

5. Coherently run the following on R′: On input v, check if T−1id (v) ∈ ACan. Check if the output
is 1, and then rewind.

6. Apply QFT to R′.

7. Coherently run the following on R′: On input v, check if TT
id(v) ∈ A⊥Can. Check if the output

is 1, and then rewind.

8. If any verification failed, output 0 and terminate.

9. Sample s← {0, 1}p3(λ).

10. T = OPReRand(id, s).

11. Compute id′ = RPKE.ReRand(pk, id; s).

12. Apply the linear map T : Fλ
2 → Fλ

2 coherently to R′.

13. Compute Tid′ = SampleFullRank(1λ;F (K∗, id′)).

14. Coherently run the following on R′: On input v, check if T−1id′ (v) ∈ ACan. Check if the output
is 1, and then rewind.

15. Apply QFT to R′.

16. Coherently run the following on R′: On input v, check if TT
id′(v) ∈ A⊥Can. Check if the output

is 1, and then rewind.

17. If any verification failed, output 0. Otherwise, output 1.

Hyb4 : Let idb the initial serial number and id′b be the rerandomized serial number (id′b =
RPKE.ReRand(pk, idb; s)) obtained during verification subroutine for Rb. We change the chal-
lenge output behaviour of the challenger. Instead of sending Rb to the adversary A in the chal-

lenge case b, it instead sends (id′b, |ψb⟩) to the adversary where |ψb⟩ =
∑

v∈ACan

∣∣∣Tid′b(v)〉 and

Tid′b = SampleFullRank(1λ;F (K∗, id′b)).

Lemma 19. Hyb0 ≡ Hyb1.

Proof. This is only a semantic change.

Lemma 20. Hyb1 ≈ Hyb2.

40

Proof. By the computational soundness of NIZK, if it was the case that OPMem ̸∈ L, then the proof
π produced by QPT adversary A would pass verification with only negligible probability. Thus,
if the challenger has not already terminated, we know that the proof π passed and (except with
negligibly small probability), OPMem ∈ L. Hence, by definition of the language L, there exists K, r
such that OPMem = iO(PMemK ; r), which the challenger will be able to find through exhaustive
search.

Lemma 21. Hyb2 ≡ Hyb3.

Proof. The change here is that the challenger executes the code PMemK∗ directly instead of using
OPMem. However, we have at this point that OPMem = iO(PMemK∗ ; r∗). By perfect correctness
of iO, the result follows.

Lemma 22. Hyb3 ≡ Hyb4.

Proof. As shown in Section 7.1, the verification procedure implemented here is projective. Thus, in
Hyb3 the challenger is already outputting (id′b, |ψb⟩) in the challenge phase, and there is no change
between Hyb3 and Hyb4.

Lemma 23. Pr[Hyb4 = 1] ≤ 1
2 + negl(λ).

Proof. First note that the public key pk is a truly random key, since it is taken from the CRS. Thus,
by the statistical rerandomization security using truly random public key property (Definition 7), the
ciphertexts id′0, id

′
1 (which are rerandomizations of id0, id1) are indistinguishable to the adversary,

thus the challenge banknotes (id′0, |ψ0⟩), (id′1, |ψ1⟩) are also indistinguishable. Note that this still
applies even though the adversary knows K∗ - since the security comes from indistinguishability
of id′0, id

′
1. Finally, we note that while the challenger/experiments are exponential time, we are

relying on statistical rerandomization security, thus the security indeed applies.

Combining the above shows Pr[PKQM− UNTRACEA = 1] ≤ 1
2 + negl(λ), completing the proof.

8.2 Proof of Unclonability (Counterfeiting) Security

We will prove security through a sequence of hybrids, each of which is obtained by modifying the
previous one. The proof will follow similarly to Section 7.3 after Hyb3. Let A be a QPT adversary.

Hyb0 : The original game PKQM− CFA(1
λ).

Hyb1 : At the beginning, the challenger samples pk, ptk, sk ← RPKE.Setup(1λ). Then, instead of

sampling the CRS as crs← {0, 1}q(λ), it samples crsnizk ← {0, 1}q1(λ) and sets crs = crsnizk||pk.

Hyb2 : During Bank.Setup, instead of sampling ptk ← RPKE.SimulateTestKey(pk), the challenger

instead uses ptk it obtained from RPKE.Setup(1λ).

Hyb3 : During Bank.Setup, instead of sampling crsnizk ← {0, 1}q1(λ), the challenger instead

simulates it as (crsnizk, st) ← NIZK.SimulateCRS(1λ). Then, instead of honestly proving π ←
NIZK.Prove(crsnizk, x = OPMem, w = (K, riO)), the challenger instead simulates the NIZK proof π
as π ← NIZK.SimulateProof(st,OPMem).

41

Hyb4 : First, the challenger initializes a stateful counter cnt = 1 at the beginning. Further,
we change the way the challenger samples banknotes. During minting, instead of sampling ct ←
RPKE.Enc(pk, 0λ), it now samples ct← RPKE.Enc(pk, cnt) and adds 1 to cnt afterwards.

Hyb5 : First, the challenger initializes a list PL = [] at the beginning. Further, we change the
verification subroutine of the challenger applied to adversary’s forged banknotes. For a banknote
(id,R), after verifying the banknote, the challenger additionally performs the following check. It
computes pl = RPKE.Dec(sk, id), adds pl to the list INDICES and checks if pl ∈ [k]. If not, it
outputs 0 and terminates.

Hyb6 : At the beginning of the game, the challenger samples a random index i∗. Also, we will set
id∗ to the serial number of the i∗-th banknote produced by the challenger. Further, we require an
additional condition for the adversary to win. At the end of the game, the challenger checks if i∗

appears at least twice in INDICES. If not, the challenger outputs 0 and the adversary loses.

Hyb7 : The challenger samples K ′ ← F.Setup(1λ) and a random full rank linear map T ∗ : Fλ
2 →

Fλ
2 at the beginning of the game. We also compute A∗ = T ∗(ACan) and create the following

function/program.

MK′,CTi∗ (ct) =

{
SampleFullRank(1λ;F (K ′, id)), if id ̸= id∗

I, if id = id∗

Further, we now sample OPMem as OPMem← iO(PMem′) instead of sampling a random tape riO
and setting OPMem = iO(PMem; riO). We also change sampling of OPReRand to OPReRand ←
iO(PReRand′).

PMem′K(id, v, b)
Hardcoded: K, sk, isk, i∗, T ∗,MK′,CTi∗

1. Compute pl = RPKE.Dec(sk, id).

2. If pl = i∗, set T =MK′,CTi∗ (id) · T
∗. Otherwise T = SampleFullRank(1λ;F (K, id)).

3. Compute w = T−1(v) if b = 0; otherwise, compute w = TT(v).

4. Output 1 if w ∈ ACan if b = 0 and if w ∈ A⊥Can if b = 1. Otherwise, output 0.

PReRand′K(id, s)
Hardcoded: K, ptk, sk, isk, i∗, T ∗,MK′,CTi∗

1. Check if RPKE.Test(ptk, id) = 1. Otherwise, output ⊥ and terminate.

2. Compute pl = RPKE.Dec(sk, id).

3. id′ = RPKE.ReRand(pk, id; s).

4. If pl = i∗, set T1 =MK′,CTi∗ (id) · T
∗. Otherwise, T1 = SampleFullRank(1λ;F (K, id)).

5. Compute pl′ = RPKE.Dec(sk, id′).

42

6. If pl′ = i∗, set T2 =MK′,CTi∗ (id
′) · T ∗. Otherwise, T2 = SampleFullRank(1λ;F (K, id′)).

7. Output T2 · T−11 .

Finally, we modify the minting subroutine as follows.

Minting Subroutine(R)

1. Parse (K, pk) = mk.

2. Add 1 to cnt.

3. Sample ct← RPKE.Enc(pk, 0λ).

4. If cnt = i∗, set id∗ = ct and |$⟩ =
∑

v∈A∗ |v⟩, and jump to the final step.

5. T = SampleFullRank(1λ;F (K, ct)).

6. Set |$⟩ =
∑

v∈ACan
|T (v)⟩.

7. Output ct, |$⟩.

Hyb8 : At the beginning of the game, after we sample T ∗, we also sample P0 ← iO(A∗) and

P1 ← iO((A∗)⊥). Further, we now sample OPMem as OPMem← iO(PMem′′) .

PMem′′K(id, v, b)
Hardcoded: K, sk, isk, i∗,P0,P1

1. Compute pl = RPKE.Dec(sk, id).

2. If pl = i∗,

1. Set T =MK′,CTi∗ (id).

2. Compute w = T−1(v) if b = 0; otherwise, compute w = (T−1)T(v).

3. Output the output Pb(v) and terminate.

3. If ipl1 ̸= i∗,

1. Set T = SampleFullRank(1λ;F (K, id)).

2. Compute w = T−1(v) if b = 0; otherwise, compute w = (T)T(v).

3. Output 1 if w ∈ ACan if b = 0 and if w ∈ A⊥Can if b = 1. Otherwise, output 0.

Hyb9 : We now sample OPReRand as OPReRand← iO(PReRand′′) .

PReRand′′K(id, s)
Hardcoded: K, ptk, sk, isk, i∗,MK′,CTi∗

1. Check if RPKE.Test(ptk, id) = 1. Otherwise, output ⊥ and terminate.

2. Compute pl = RPKE.Dec(sk, id).

3. id′ = RPKE.ReRand(pk, id; s).

43

4. If pl = i∗, set T1 =MK′,CTi∗ (id). Otherwise, T1 = SampleFullRank(1λ;F (K, id)).

5. If pl = i∗, set T2 =MK′,CTi∗ (id
′). Otherwise, T2 = SampleFullRank(1λ;F (K, id′)).

6. Output T2 · T−11 .

Lemma 24. Hyb0 ≈ Hyb1

Proof. The result follows from the pseudorandom public encryption key property of RPKE.

Lemma 25. Hyb1 ≈ Hyb2

Proof. The result follows from the indistinguishability of simulated testing keys and honest testing
keys of RPKE.

Lemma 26. Hyb2 ≈ Hyb3.

Proof. The result follows by the computational zero knowledge security of NIZK.

Lemma 27. Hyb3 ≈ Hyb4.

Proof. The result follows from the CPA-security of RPKE.

Lemma 28. Hyb4 ≈ Hyb5.

Proof. This result follows essentially from 0 → 1 unclonability of subspace states and by strong
rerandomization correctness of RPKE. This proof follows similarly to Lemma 2.

Lemma 29. Pr[Hyb6 = 1] ≥ Pr[Hyb5=1]
k .

Proof. The adversary outputs k + 1 forged banknotes, thus |INDICES| = k + 1. However, all the
values in INDICES are between 1 and k. Thus, there exists i∗∗ such that i∗∗ appears at least twice
in INDICES, and the random i∗ satisfies i∗ = i∗∗ with probability 1/k.

Lemma 30. Hyb6 ≈ Hyb7.

Proof. Follows similarly to Lemma 4.

Lemma 31. Hyb7 ≈ Hyb8.

Proof. Observe that by correctness of the iO used to sample P1,P2, the programs PMem′,PMem′′.
Thus, the result follows by the security of iO used to sample OPMem.

Lemma 32. Hyb8 ≈ Hyb9.

Proof. This follows similarly to Lemma 6: Note that due to strong rerandomization correctness
of RPKE, there does not exist id and s such that RPKE.Test(tpk, id) = 1 but RPKE.Dec(sk, id) ̸=
RPKE.Dec(sk,RPKE.ReRand(pk, id; s)). Thus, in PReRand′, we have that pl and pl′ always have the
same value. Thus, the tests pl =? i∗ and pl′ =? i∗ will always go to the same case, and as a result
the factor T ∗ will be cancelled out when T2 · T−11 is computed. Hence, PReRand′ and PReRand′′

have exactly the same functionality, and the result follows by security of iO.

Lemma 33. Pr[Hyb9 = 1] ≤ negl(λ).

Proof. The result follows by the 1→ 2 unclonability of subspace states. The proof follows similarly
to Lemma 7: we can show that from the forged banknotes of the adversary, we can convert two
of them to |A∗⟩, whereas the experiment can be simulated given a single copy |A∗⟩. This means
cloning |A∗⟩, which is a contradiction by Theorem 7.

44

9 Quantum Voting Schemes

9.1 Definitions

In this section, we recall security notions for voting schemes. We will be working in the universal
verifiability setting: The users will cast their votes by posting them on a public bulletin board, and
anyone can verify the validity of a cast vote using the public-key. Further, we will be working in
the common (uniformly) random string model and will allow voting tokens to be quantum states
(however, voting is done by simply posting a classical string on the bulletin board).

The first requirement we have is correctness. In the quantum voting tokens setting, we extend
the correctness notion to also apply against malicious voting tokens and verification keys. A voter
will be assured that their vote will be correctly verified by the public.

Definition 16 (Correctness against Malicious Keys and Tokens). For any efficient algorithm B
and candidate choice c,

Pr

b = 0 ∨ b′ = 1 :

R, vk ← B(vk,mk, tk)
b← QV.VerifyVotingToken(vk,R)

vo← QV.Vote(R, c)
b′ ← QV.VerifyVote(vk, vo, c)

 = 1.

We also introduce the notion of privacy against authorities, where privacy of votes holds against
everyone, including the voting authority that creates the voting tokens. For our privacy require-
ment, we require that a vote from a token that the adversary has seen is indistinguishable from a
vote from a fresh voting token. By a simple hybrid argument, this easily implies indistinguishability
of votes of any two voters. In fact, we require privacy even for tokens created by the adversary.

Definition 17 (Privacy). Consider the following game between a challenger and a stateful adver-
sary A.

QVS− PRIVACYA(1
λ)

1. Sample crs← {0, 1}q(λ).

2. Submit crs to the adversary A.

3. Adversary A outputs keys vk,mk, a register R0 and candidate choice c.

4. Run QV.VerifyVotingToken(vk,R0). If it fails, output 0 and terminate.

5. Sample R1 ← QV.GenVotingToken(mk).

6. Run QV.VerifyVotingToken(vk,R1). If it fails, output 0 and terminate.

7. Sample b← {0, 1}.

8. Sample vo← QV.Vote(Rb, c).

9. Submit vo to the adversary A.

10. Adversary A outputs a bit b′.

11. Output 1 if and only if b′ = b.

45

We say that the quantum voting scheme QV satisfies privacy if for any QPT adversary A, we
have

Pr
[
QVS− PRIVACYA(1

λ) = 1
]
≤ 1

2
+ negl(λ).

We remark that our scheme will actually satisfy the stronger notion where the voting token
(or a fresh token) is returned to the adversary (without being cast, as a quantum state), and the
adversary still will not be able to win the privacy game. This trivially implies the definition above.

The final essential property we require is uniqueness: adversaries should not be able to more
than once.

Definition 18 (Uniqueness). Consider the following game between a challenger and an adversary
A.

QVS− UNIQUEA(1
λ)

1. Sample vk,mk ← QV.Setup(1λ) and submit vk to A.

2. Token Query Phase: For multiple rounds, A queries for a voting token and the challenger
executes Rtoken ← QV.GenVotingToken(mk) and submits Rtoken to the adversary. Let k be the
number of queries made by the adversary.

3. A outputs k + 1 cast-votes (voi = (ci, si, ℓi))i∈[k+1] where ci denotes the candidate choice and
ℓi denotes the tag18.

4. The challenger tests QV.Verify(vk, (ci, si, ℓi)) = 1 for i ∈ [k + 1]. It also checks that all tags
ℓi are unique. It outputs 1 if all the tests pass; otherwise, it outputs 0.

We say that the quantum voting scheme QV satisfies uniqueness security if for any QPT adversary
A,

Pr
[
PKQM− CFA(1

λ) = 1
]
≤ negl(λ).

9.2 Construction

In this section, we give our universally verifiable quantum voting scheme construction, in the
common random string model. In our scheme, verifying a voting token automatically rerandomizes
it. Our scheme will be similar to our untraceable quantum money scheme (Section 8), with the
main difference being that it will contain 2 · λ money states in voting tokens.

We assume the existence of the same primitives as in Section 8.

QV.Setup(crs)

1. Parse crsnizk||pk = crs with |crsnizk| = q1(λ) and |pk| = q2(λ).

2. Sample K ← F.Setup(1λ).

3. Sample random tape riO and compute OPMem = iO(PMem; riO) where PMem is the following
program.

18A voter assigned serial number that is part of the cast-vote.

46

PMemK(id, (vi)i∈[2·λ], b)

Hardcoded: K

1. Parse r1|| . . . ||r2λ = F (K, id) into 2 · λ equal size strings.

2. For i ∈ [2 · λ],
1. Set Ti = SampleFullRank(1λ; ri).

2. Compute wi = T−1(v) if bi = 0; otherwise, compute wi = TT(vi).

3. Check if wi ∈ ACan if bi = 0 and if wi ∈ A⊥Can if bi = 1.

3. If all the checks pass, output 1. Otherwise, output 0.

4. Sample ptk ← RPKE.SimulateTestKey(pk).

5. Sample OPReRand← iO(PReRand) where PReRand is the following program19.

PReRandK(id, s)

Hardcoded: K, pk, ptk

1. Check if RPKE.Test(ptk, id) = 1. If not, output ⊥ and terminate.

2. id′ = RPKE.ReRand(pk, id; s).

3. Parse r1|| . . . ||r2λ = F (K, id) into 2 · λ equal size strings.

4. Parse r′1|| . . . ||r′2λ = F (K, id′) into 2 · λ equal size strings.

5. For i ∈ [2 · λ],
1. Set Ti,1 = SampleFullRank(1λ; ri).

2. Set Ti,2 = SampleFullRank(1λ; r′i).

3. Set Ti,out = Ti,2 · T−1i,1 .

6. Output (Ti,out)i∈[2·λ]

6. Sample the proof π ← NIZK.Prove(crsnizk, x = OPMem, w = (K, riO)).

7. Set vk = (OPMem,OPReRand, π).

8. Set mk = (K, pk).

9. Output vk,mk.

QV.GenVotingToken(mk)

1. Parse (K, pk) = mk.

2. Sample ct← RPKE.Enc(pk, 0λ).

3. Parse r1|| . . . ||r2λ = F (K, ct) into 2 · λ equal size strings.

4. For i ∈ [2 · λ],
19We note that if we make the stronger assumption of RPKE with all-accepting simulatable testing keys, we can

actually remove the RPKE.Test line from the construction.

47

1. Ti = SampleFullRank(1λ; ri).

2. Set |$i⟩ =
∑

v∈ACan
|Ti(v)⟩.

5. Output ct,
⊗

i∈[2·λ]|$i⟩.

QV.VerifyVotingToken(crs, vk,R)

1. Parse crsnizk||pk = crs with |pk| = q2(λ).

2. Parse (OPMem,OPReRand, π) = vk.

3. Check if NIZK.Verify(crsnizk, x = OPMem, π) = 1. If not, output 0 and terminate.

4. Parse (id,R′) = R.

5. Run OPMem coherently on id,R′, 02·λ. Check if the output is 1, and then rewind.

6. Apply QFT to R′.

7. Run OPMem coherently on id,R′, 12·λ. Check if the output is 1, and then rewind.

8. If any verification failed, output 0 and terminate.

9. Sample s← {0, 1}p3(λ).

10. (T1, . . . , T2·λ) = OPReRand(id, s).

11. Compute id′ = RPKE.ReRand(pk, id; s).

12. For i ∈ [2 · λ], apply the linear map Ti : F
λ
2 → Fλ

2 coherently to the i-th part of the register
R′.

13. Run OPMem coherently on id,R′, 02·λ. Check if the output is 1, and then rewind.

14. Apply QFT to R′.

15. Run OPMem coherently on id′,R′, 12·λ. Check if the output is 1, and then rewind.

16. If any verification failed, output 0. Otherwise, output 1.

QV.Vote(R, c)

1. Sample r ∈ {0, 1}λ.

2. Parse (id, (R′i)i∈[2·λ]) = R.

3. For i ∈ [2 ·λ]: If (c||r)i = 0, measure R′i in the computational basis to obtain vi. If (c||r)i = 1,
measure R′i in the Hadamard basis (i.e. QFT-and-measure) to obtain vi.

4. Output c, (id, (vi)i∈[2·λ]), r.

48

QV.VerifyCastVote(R, c, vo)

1. Parse (OPMem,OPReRand, π) = vk.

2. Parse (id, (vi)i∈[2·λ], r) = vo.

3. Check if OPMem(id, (vi)i∈[2·λ], c||r).

Theorem 20. QV satisfies correctness against malicious tokens and keys.

Proof. By the same argument as in the projectiveness proof of our quantum money schemes Sec-
tion 7.1, we can show that the token verification algorithm of our scheme projects onto a perfect
token. Thus, the result follows.

Theorem 21. QV satisfies privacy.

Proof. This follows similarly to the untraceability of our quantum money scheme (Section 8.1).

Theorem 22. QV satisfies uniqueness security.

Proof. Through the same proof (generalized to multiple subspace states) as the unclonability proof
of our quantum money scheme (Section 8.2), we can reduce the uniqueness security of our scheme
to the direct product hardness of subspace states (Theorem 8), since creating k+1 valid votes with
all different tags will amount to adversary finding v, w with v ∈ A and w ∈ A⊥.

10 Acknowledgements

Alper Çakan was supported by the following grants of Vipul Goyal: NSF award 1916939, DARPA
SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC
center for financial services innovation award, and a Cylab seed funding award.

References

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th Annual
IEEE Conference on Computational Complexity, pages 229–242, 2009.

[Aar16] Scott Aaronson. The complexity of quantum states and transformations: From quantum
money to black holes, 2016.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In Pro-
ceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC
’12, page 41–60, New York, NY, USA, 2012. Association for Computing Machinery.

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In USENIX security symposium,
volume 17, pages 335–348, 2008.

[AGM21] Gorjan Alagic, Tommaso Gagliardoni, and Christian Majenz. Can you sign a quantum
state? Quantum, 5:603, December 2021.

[AMR20] Gorjan Alagic, Christian Majenz, and Alexander Russell. Efficient simulation of ran-
dom states and random unitaries. In Advances in Cryptology–EUROCRYPT 2020:
39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part III 39, pages 759–787.
Springer, 2020.

49

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Obfuscation for evasive functions. In Theory of Cryptography Conference, pages
26–51. Springer, 2014.

[BDS23] Shalev Ben-David and Or Sattath. Quantum Tokens for Digital Signatures. Quantum,
7:901, January 2023.

[BS21] Amit Behera and Or Sattath. Almost public quantum coins. QIP, 2021.

[ÇG23] Alper Çakan and Vipul Goyal. Unclonable cryptography with unbounded collusions.
Cryptology ePrint Archive, Paper 2023/1841, 2023.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In Annual international cryptology conference, pages 56–72.
Springer, 2004.

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and
applications to unclonable cryptography. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, pages 556–584, Cham, 2021. Springer Inter-
national Publishing.

[FOO93] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme
for large scale elections. In Advances in Cryptology—AUSCRYPT’92: Workshop on the
Theory and Application of Cryptographic Techniques Gold Coast, Queensland, Australia,
December 13–16, 1992 Proceedings 3, pages 244–251. Springer, 1993.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, aug 1986.

[ILL89] Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random generation
from one-way functions. In Proceedings of the twenty-first annual ACM symposium on
Theory of computing, pages 12–24, 1989.

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states. In Ad-
vances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part III 38, pages
126–152. Springer, 2018.

[mon] The monero project. https://www.getmonero.org/. Accessed: 2024-11-06.

[MS10] Michele Mosca and Douglas Stebila. Quantum coins. Error-correcting codes, finite
geometries and cryptography, 523:35–47, 2010.

[OST08] Tatsuaki Okamoto, Koutarou Suzuki, and Yuuki Tokunaga. Quantum voting scheme
based on conjugate coding. NTT Technical Review, 6(1):1–8, 2008.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for np from (plain)
learning with errors. In Annual International Cryptology Conference, pages 89–114.
Springer, 2019.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):1–40, 2009.

50

https://www.getmonero.org/

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. In Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, STOC ’14, page 475–484, New York, NY, USA, 2014. Association
for Computing Machinery.

[SW22] Or Sattath and Shai Wyborski. Uncloneable decryptors from quantum copy-protection,
2022.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, jan 1983.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs un-
der lwe. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 600–611, 2017.

[Zca] Zcash. https://z.cash. Accessed: 2024-11-06.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science, pages 679–687, 2012.

[Zha19] Mark Zhandry. Quantum lightning never strikes the same state twice. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, pages 408–438,
Cham, 2019. Springer International Publishing.

A Additional Definitions

Definition 19 (Counterfeiting Security). Consider the following game between the challenger and
an adversary A.

PKQM− CFA(1
λ)

1. Sample vk,mk, tk ← Bank.Setup(1λ) and submit vk, tk to A.

2. Banknote Query Phase: For multiple rounds, A queries for a banknote by sending a tag
t. For each query, the challenger executes Rbn ← Bank.GenBanknote(mk, t) and submits Rbn

to the adversary. Let k be the number of queries made by the adversary.

3. A outputs a (k + 1)-partite register (Ri)i∈[k+1].

4. The challenger tests Bank.Verify(vk,Ri) = 1 for i ∈ [k + 1]. It outputs 1 if all the tests pass;
otherwise, it outputs 0.

We say that the quantum money scheme Bank satisfies counterfeiting security if for any QPT
adversary A,

Pr
[
PKQM− CFA(1

λ) = 1
]
≤ negl(λ).

51

https://z.cash

A.1 Anonymity

In this section, we introduce various anonymity notions for public-key quantum money. Similar
to previous work [AMR20, BS21], our anonymity definition either randomly permutes or does not
touch the banknote registers, according to a random bit; and the adversary needs to predict which
case it is. However, our definition is significantly stronger than previous work: The adversary
receives the minting key at the beginning whereas in previous definitions it received it at the final
step of the security game. This also means that unlike previous definitions, we do not need to have
a banknote query phase: the adversary can mint its own challenge banknotes.

Definition 20 (Anonymity). Consider the following game between a challenger and an adversary
A.

PKQM− ANONA(1
λ)

1. Sample vk,mk, tk ← Bank.Setup(1λ).

2. Submit vk,mk to A.

3. Adversary A outputs a value k and a (possibly entangled) k-partite register (Ri)i∈[k].

4. Run Bank.Verify(vk,Ri) for i ∈ [k]. If any of them fails, output 0 and terminate.

5. Run Bank.ReRandomize(vk,Ri) for i ∈ [k].

6. Sample a permutation π : [k]→ [k] and a bit b.

7. If b = 0, submit (Ri)i∈[k]; otherwise, submit (Rπ(i))i∈[k] to the adversary A.

8. Adversary A outputs a bit b′.

9. Output 1 if and only if b′ = b.

We say that the quantum money scheme Bank satisfies anonymity if for any QPT adversary
A, we have

Pr
[
PKQM− ANONA(1

λ) = 1
]
≤ 1

2
+ negl(λ).

B Omitted Proofs

B.1 Proof of Lemma 4

This lemma follows by a (standard) PRF puncturing argument where we create hybrids for all
strings id. In each hybrid j, we will switch to the new serial number - linear map association for
all id satisfying id < j. To go from j to j + 1, we do a small number of subhybrids where we
first puncture the PRF key at j, replace the associated T with a truly random sample. We also
puncture K ′. This allows us to switch over to the new mapping, and then depuncture K ′ and K.

52

B.2 Proof of Lemma 2

To prove this, first we do the same argument as in Appendix B.1 to switch to a completely new
association between serial numbers and linear maps T for any serial number id that decrypts to
a value not in [k]. Then, by the same argument as in the rest of the unclonability proof and as
in Lemma 7, we can show that if the adversary forges any valid banknote whose serial number
decrypts to a value ̸∈ [k], we can extract a subspace state |A∗⟩, with using only iO(A∗), iO((A∗)⊥).
This is a contradiction to the unlearnability (or 0→ 1 unclonability) of subspaces.

C Remark on Representing the Public Key

A remark here is in order. In our RPKE constructions, we will have that the public key is a matrix
in Zm×n

q , not a binary string. However, we can always represent such a matrix entrywise, where
each number Zq can be publicly and canonically represented as a binary string of length ⌈log2(q)⌉
(any extra binary strings can be rolled over and assigned to unique values in Zq), and we can
efficiently go back and forth between any value in Zq and any binary string in {0, 1}⌈log2(q)⌉. Thus,
without loss of generality we can assume that the public key is a binary string.

53

	Introduction
	Our Results

	Technical Overview
	Definitional Work
	Anonymous and Traceable Construction
	Untraceable Construction
	Quantum Voting
	Rerandomizable Encryption with Strong Correctness

	Related Work
	Preliminaries
	Notation
	Digital Signature Schemes
	Puncturable Pseudorandom Functions
	Indistinguishability Obfuscation
	Compute-and-Compare Obfuscation
	Learning with Errors
	Subspace States

	Rerandomizable Encryption
	Construction

	Definitions
	Fresh Banknote Security
	Traceability
	Untraceability

	Construction with Anonymity and Traceability
	Projectiveness
	Correctness
	Proof of Unclonability (Counterfeiting) Security
	Proof of Fresh Banknote Indistinguishability
	Proof of Tracing Security

	Construction with Untraceability
	Proof of Untraceability
	Proof of Unclonability (Counterfeiting) Security

	Quantum Voting Schemes
	Definitions
	Construction

	Acknowledgements
	Additional Definitions
	Anonymity

	Omitted Proofs
	Proof of lem:switchtokprim
	Proof of lem:zerocopunlearn

	Remark on Representing the Public Key

