
A Composability Treatment of Bitcoin’s Transaction Ledger with
Variable Difficulty

Juan Garay1 Yun Lu2 Julien Prat3 Brady Testa4 Vassilis Zikas5

1 Texas A&M University garay@tamu.edu
2 University of Victoria yunlu@uvic.ca

3 CREST, Ecole Polytechnique, IP Paris Julien.Prat@ensae.fr
4 Texas A&M University btesta@tamu.edu

5 Georgia Tech vzikas@gatech.edu

Abstract. As the first proof-of-work (PoW) permissionless blockchain, Bitcoin aims at maintaining
a decentralized yet consistent transaction ledger as protocol participants (“miners”) join and leave as
they please. This is achieved by means of a subtle PoW difficulty adjustment mechanism that adapts to
the perceived block generation rate, and important steps have been taken in previous work to provide
a rigorous analysis of the conditions (such as bounds on dynamic participation) that are sufficient for
Bitcoin’s security properties to be ascertained.
Such existing analysis, however, is property-based, and as such only guarantees security when the proto-
col is run in isolation. In this paper we present the first (to our knowledge) simulation-based analysis
of the Bitcoin ledger in the dynamic setting where it operates, and show that the protocol abstraction
known as the Bitcoin backbone protocol emulates, under certain participation restrictions, Bitcoin’s
intended specification. Our formulation and analysis extend the existing Universally Composable treat-
ment for the fixed-difficulty setting, and develop techniques that might be of broader applicability, in
particular to other composable formulations of blockchain protocols that rely on difficulty adjustment.

Keywords: Bitcoin, dynamic participation, universal composability.

1 Introduction

Nakamoto’s introduction of the Bitcoin protocol [30] put forth the novel notion of blockchains
to solve the continuous (distributed) consensus problem (cf. [16]), also known in the distributed
computing literature as state machine replication [35]. Nakamoto’s protocol was designed to emulate
the concept of a secure financial ledger: Users would be able to spend or receive BTCs provided
they own the BTCs they are trying to use, while being prevented from “double-spending” them.
Broadly speaking, the security of Bitcoin is guaranteed by the cryptographic primitive known as
Proof of Work (PoW) [14], in which participants known as “miners” solve moderately difficult
cryptographic puzzles to earn the right to insert the next block. As of 2024, the Bitcoin protocol is
still up and “humming,” boasting a market cap of over USD 1.3T.

This nascent protocol quickly garnered the attention of wide range of researchers who investi-
gated its properties and vulnerabilities. One of the first rigorous and property-based treatments of
blockchains was presented by Garay et al. [17]. They examined the basic case of static difficulty
(i.e., fixed but unknown number of participants) and defined two properties: common prefix and
chain quality. A third property, chain growth, was also discussed in [17], and made explicit in [25].
They provide an abstract description of the Bitcoin protocol as a distributed protocol, termed the
Bitcoin backbone, and then proceed to demonstrate that, under specific parameter assumptions, the
protocol upholds the aforementioned properties in the cryptographic sense—i.e., they hold except

with negligible probability in the security parameter. The initial formalization in [17] assumed a
synchronous network. Subsequently, Pass et al. [31] examined the blockchain protocol also in the
static participation setting, but in the more realistic bounded-delay network setting (sometimes
also referred to as the “partially synchronous” setting [13]), where there is an (unknown) upper
bound on the communication delay, and proved properties similar to the above.

The need for a composable ledger. The above first works paved the way for a deeper understanding
of the Bitcoin protocol and proved tight conditions for their security properties. However, while such
property-based analysis is an excellent first approximation for proving the security of cryptographic
protocols, and has traditionally been the first step in any cryptographic study of novel protocol
concepts, it is known that, especially in the presence of malicious protocol participants, who might
arbitrarily misbehave, such a property-based treatment tends to miss important aspects of the
functionality offered by the primitive being analyzed, that might affect its security under more
adversarial scenarios [8, 12]. In addition, such property-based analysis typically gives guarantees
about the protocol running in isolation, which might no longer hold when the protocol is run
alongside other protocols (or even another execution of the same protocol) and/or used by other
protocols as a subroutine. This is particularly problematic for ledger protocols, such as Bitcoin,
which, on one hand, has spawned several variants of itself running in parallel and has seeded a
plethora of alternative blockchain-based ledger protocols, and on the other hand, it is meant to
be utilized by higher-level constructions for many applications such as secure transactions, fair
contract signing, NFTs, and more.

The literature has recognized the above shortcomings of the property-based treatment, and
has proposed the simulation paradigm as the means to offer such stronger composable security
guarantees. In more detail, in simulation-based security (cf. [7, 23, 27, 28, 34]), the first step is
to completely describe the desired behavior that the distributed protocol/primitive should have
even in the presence of an attacker, instead of listing some properties that should not be violated.
The idea is to capture the desired behavior of the primitive by defining how a (centralized) fully
trusted party—the so-called ideal functionality—could best offer the services of the distributed
protocol to its users. The simulation-based paradigm, then, requires that any attack (captured by
a cryptographic adversary) to the protocol can be simulated as an attack to (an invocation) of the
ideal functionality. Formally, this means that for any adversary attacking the actual protocol, there
exists an ideal adversary (the simulator) attacking the (ideal evaluation of) the functionality which
yields an indistinguishable input/output behavior between the real and the ideal execution.

Importantly, by requiring that no (computationally bounded) distinguisher be able to discern
between the real and ideal executions—not even one that spawns/observes executions of other
protocols in parallel, or creates higher-level protocols that utilize the primitive being analyzed—the
paradigm ensures that the protocol is secure for its specification/functionality in any context. This
yields so-called composition theorems that solve the property-based definitions’ nuisances pointed
to above. Namely, the protocol’s security guarantees remain the same even when the protocol being
composed with other protocols (or itself), or when it is used as a subroutine in a higher-level
protocol.

The first simulation-based analysis of the Bitcoin (backbone) protocol was done by Badertscher
et al. [4], who used the state-of-the-art and by far most commonly used simulation-based secu-
rity framework, namely, Canetti’s Universal Composability (UC) framework [9]. In a nutshell, they
captured, for the first time, the behavior of the Bitcoin backbone protocol by means of a UC
functionality, called the Bitcoin Ledger functionality; provided a UC abstraction of the backbone

2

protocol; and proved that it UC-emulates the above functionality. Along the way, they also pro-
vided the way to capture assumptions such as an honest majority of hashing power—which has
been known to be necessary even for the property-based security analyses [17, 31]—by defining
appropriate resources as UC hybrid functionalities6, and providing a UC-friendly way for capturing
such assumptions by means of so-called functionality wrappers (cf. [22])7. For example, the above
assumption of an honest majority of hashing power was captured by abstracting the hash func-
tion as a random-oracle hybrid (functionality) and wrapping it to enforce that the adversarially
controlled parties/miners (collectively) are allowed less queries than the honest miners (cf. [21]).

Beyond fixed-difficulty analysis. As discussed, all the above analyses assume an abstraction of
Bitcoin in which the difficulty value for a PoW to be successful is fixed and the number of parties
in the protocol is always within some fixed bound. While this analysis is very useful as a first step, it
does not capture reality—indeed, because of its “permissionlessness,” Bitcoin is a dynamic protocol,
where participants join and leave the network unpredictably and at will. To account for this, Bitcoin
changes the difficulty of the PoW according to the density of the recently produced blocks and the
corresponding timestamps: If blocks are being produced too quickly, then the difficulty increases,
while if blocks are being produced too slowly, then the difficulty decreases. It is known that there
are attacks against such a difficulty adjustment mechanism, as presented in [6, 15, 29], making the
formal examination of Bitcoin’s blockchain protocol in the dynamic difficulty setting imperative.

In fact, shortly after the first property-based analyses of the Bitcoin backbone protocol, Garay
et al. [18] were able to extend their treatment to this variable difficulty realm. Their new analysis
captured the folklore belief that for the Bitcoin difficulty adjustment mechanism to work the par-
ticipation fluctuation needs to be “smooth,” a condition that they captured by placing restrictions
on changes to the number of active parties in the protocol at any given time. In more detail, this
was achieved in [18] by parameterizing the environment—which in [18] is in charge of spawning
and removing parties—in such a way that it is (γ, s)-respecting. In a nutshell, within any s rounds
of the protocol execution, the ratio between the largest and smallest number of participants must
be bounded by γ. It is worth noting that this use of the term environment in [18] is not intended
to capture simulation-based indistinguishability, and is therefore different from its utilization in
UC—in fact, restricting the environment in such a way would preclude universal composition!

Thus, the above state of affairs left, once again, an important open question/gap in the literature:

Can we devise a UC treatment of (the) Bitcoin (backbone protocol) which incorporates, as
in [18], the dynamic participation of miners?

Our work answers the above question in the affirmative, by providing such an analysis. Inter-
estingly, such an analysis needs to adapt the original UC Ledger functionality from [5] to make a
list of features explicit, such as the trade-offs between liveness/chain-growth and chain quality. In
passing, we note that while such a UC treatment of proof-of-stake blockchain protocols with dy-
namic availability exists [2], to our knowledge, no such analysis was previously done for PoW-based
blockchains, which, given both the timing of the protocols and their market relevance, is somewhat
surprising.

6 Those are functionalities available to the protocol in the real world that abstract resources that the protocol might
use.

7 Recall that the primary purpose of this technique is to fine-tune those ideal functionalities that, while conveying
the essence of the cryptographic task at hand, might lack the level of detail required by the particular setting or
realization.

3

The balance of the paper is organized as follows. In Section 2 we present some basic blockchain
terminology, network assumptions and the resources available to the protocol, and an abridged
Universal Composability background. In Section 3 we present our UC abstraction of Bitcoin’s
PoW-based lottery system in the dynamic participation setting, while in Section 4 we present our
formulation of the ideal ledger functionality supporting dynamic participation. Finally, in Section 5
we present our ledger protocol abstraction, ModularLedger, which realizes the ideal ledger func-
tionality above while using the PoW lottery functionality. For ease of readability, complementary
material, and detailed specifications of some functionalities and protocols, are presented in the
appendix.

2 Preliminaries

2.1 Blockchain Essentials

We present the fundamentals of PoW-based blockchains below. We refer the reader to [17, 33] for
a more detailed discussion of the topic in the fixed difficulty setting, and to [18] in the variable
difficulty setting.

Blockchain basics. A blockchain C = B1, . . . ,Bn is a (finite) sequence of blocks where each block
Bi = ⟨pi, sti, ni, Ti, ti⟩ is a quintuple consisting of the (hash) pointer to the previous block pi, the
state block sti containing transactions, the target for the hash value Ti, the timestamp ti, and the
nonce ni. The head of a chain C is denoted head(C) = Bn, and length length(C) = n. The sequence
of the first length(C)− k blocks of C, i.e (C⌈k = B1, . . . ,Blength(C)−k) is denoted C⌈k. Note that C⌈k

itself is also a valid chain. If we have two chains C1, C2, and write C1 ⪯ C2, we mean that C1 is a
prefix of C2.

In a blockchain C, the state s⃗t = st1 ∥ · · · ∥ stn contains the data of the ledger, i.e., transactions
in Bitcoin. To allow for an abstract representation of this information, we map each state block
s⃗t = blockifyB(N⃗) following the notation introduced in [26] and adopted in [4]. Here, N⃗ is a vector
of transactions. A special type of initial block called the genesis block also exists. It is defined as
G = ⟨⊥, gen,⊥, T0, 0⟩; gen is the genesis state, while T0 refers to the initial target difficulty for the
PoW.

Dynamic participation and variable PoW difficulty. To account for dynamic participation
of parties and thus fluctuations in hashing power, Bitcoin performs a target recalculation procedure
in which participants take the time stamps of the previous m blocks, and compare the average
time to generate a block against the ideal time btgt (in Bitcoin, m = 2048 and btgt = 10 minutes).
Further, a dampening filter τ prevents the change in difficulty over a single epoch from exceeding
a multiple of [1τ , τ]. This is necessary to avoid certain attacks on the target recalculation function,
such as the ‘difficulty raising attack’ [6], in which an adversary forges his timestamps to successfully
manipulate the difficulty. In Bitcoin, τ is set to 4.

When discussing the validity of a chain, we make a distinction between syntactic correctness
and semantic correctness. In a nutshell, syntactic correctness refers to the structure of the metadata
(e.g., pointers, timestamps, difficulty, etc.), while semantic correctness ensures that the data itself
is meaningful and properly formed, such as having valid transactions.

In more detail, syntactic correctness is defined with regards to a blockchain C, an initial difficulty
parameter (the ‘target’) T0 ∈ [2κ] where κ is a security parameter, a hash function H : {0, 1}∗ →

4

{0, 1}κ such that for all i > 1 blocks Bi ∈ C, we have that H[Bi−1] = pi. That is, the hash of a
block should be the same as the pointer in the next block. Note that in the dynamic participation
setting, the difficulty is not a constant, and is dependent on the previous timestamps. We require
that if i < j then two timestamps ti, tj must satisfy ti < tj . Additionally, for chain C⌈i and the
corresponding state s⃗t = s⃗t1 ∥, . . . , ∥, s⃗ti, it holds that H[Bi] < gettarget(s⃗t) is true for all i > 1.
The function gettarget, described in Sec. 3.2, calculates the target based on previous timestamps
and is used within the overall algorithm for checking syntactic correctness.

Blockchains can also have multiple blocks that extend a single block, branching out into mul-
tiple directions. For example, a fork at block Bi−1 would have H[Bi−1] = pi = pi′ where i ̸= i′.
Near universally, this is an undesirable event. This is naturally represented as a tree T . Because
participants in the protocol will potentially have differing views from each other, a tree structure
is a natural representation of a party’s overall view.

Semantic correctness is defined with respect to the state s⃗t encoded in the chain. We follow
the approach of [4] and model semantic correctness via a predicate ValidTxB, and an associated
predicate isvalidstate. Such predicates are dependent on the particular blockchain application being
analyzed. In addition, semantic validity requires that the state begins with a genesis state, and
that the beginning of each block contains a “coinbase” transaction which entitles the block miner
to claim the block reward and fees.

A chain C is valid if it satisfies syntactic correctness and semantic correctness: for s⃗t associated

with C, we have validStructm,T0,τ,btgt

B
(C)∧ isvalidstate(s⃗t) is true. In the variable difficulty setting, the

“longest chain” is the chain which cumulatively has the largest difficulty, implemented by algorithm
maxvalid.

Ctemp ← ϵ,Dmax ← 0
for i = 1 to k do

D ← 0
Parse s⃗t from Ci
if validStruct

m,T0,τ,btgt

B
(Ci) ∧ isvalidstate(s⃗t) then

Parse Ci as C = B1, . . . ,Bn

for j = 0 to n do
D ← D + 1/Tj

end for
if D > Dmax then

Dmax ← D, Ctemp ← Ci
end if

end if
end for
return Ctemp

Algorithm maxvalid
m,T0,τ,btgt

B
(C1, . . . , Ck)

Below is the definition of the validStruct algorithm, which describes how syntactic correctness
can be programmatically verified. It is similar to syntactic correctness in the static difficulty case,
with a couple of key differences. First, timestamps must be in order, that is that a block bi that
comes before bi′ cannot have a timestamp that is greater than the timestamp of bi′ . Finally, the
difficulty must be calculated per block based on information provided in the previous blocks. We
also provide the definition of isvalidstate. We use it as described in [4] with no modifications.

5

res← true
T ← gettarget(s⃗t,m, T0, τ, btgt)
if (length(C) = 0) or (H[head]) ≥ T then

res← false
else if (length(C) = 1) then

res← (C = G)
else
C′ ← C
⟨s′, st, n′, T ′, t′⟩ ← head(C′)
repeat
C′ ← C

′⌈1

B := ⟨s, st, n, T, t⟩ ← head(C′)
con1← (H[B] ̸= s′)
con2← (length(C′) > 1 and H[B] ≥ T)
con3← (length(C′) = 1 and B ̸= G)
con4← (T ̸= gettarget(C′,m, T0, τ, btgt))
con5← (t′ < t)
if con1 or con2 or con3 or con4 or con5 then

res← false
else
⟨s′, st′, n′, T ′, t′⟩ ← ⟨s, st, n, T, t⟩

end if
until res = false or length(C′) = 1

end if
return res

Algorithm validStruct
m,T0,τ,btgt

B
(C)

Let s⃗t := st1 ∥ . . . , ∥ stn
for each sti do

Extract the transaction sequence t⃗xi ← txi,1, . . . , txi,ni contained in sti
end for
s⃗t

′ ← gen
for i = 1 to n do

if the first transaction in t⃗xi is not a coin-base transaction return false
N⃗ ← txi,1
for j = 2 to | ⃗txi| do

st← BlockifyB(N⃗)

if ValidTxB(txi,j , s⃗t
′ ∥ st) return false

N⃗i ← N⃗i ∥ txi,j
end for
s⃗t

′ ← s⃗t
′ ∥ sti

end for
return true

Algorithm isvalidstate(s⃗t)

There have been property-based treatments of blockchains in the variable difficulty setting,
notably [18] and the follow-up work in [19]. These elaborate on the need to restrict the rate at
which parties join and leave the protocol in order to prove the protocol cryptographically secure (i.e.,
that the protocol satisfies certain properties later in this section. except with negligible probability).
Intuitively, the ideal properties rely on the difficulty remaining (somewhat) stable over the execution

6

of the protocol. This requires the participation in the protocol to not fluctuate too much over a
defined period. To this end, they propose the following notion of a (γ, s)-respecting sequence. Let
nr be the number of active parties in round r:

Definition 1 ([18]). For γ ∈ R+, a sequence is called (nr)r∈N (γ, s)-respecting if for any set S of
at most s consecutive rounds, maxr∈S nr ≤ γ ·minr∈S nr.

That is, within any s number of consecutive rounds, the ratio between the minimum and maximum
number of parties is bounded by γ. In [18], the sequence of parties executing the protocol n =
{nr}r∈N is thus required to be a (γ, s)-respecting sequence. This restriction is necessary to prove
two properties: common prefix and chain quality, discussed further in Appendix A.

2.2 Protocol Resources and Network Assumptions

In this section we describe the resources, specified as ideal UC functionalities (see Section 2.3),
available to the protocol in the variable difficulty setting. We also describe assumptions about the
network model.

– The clock: Ḡclock [4,24] is a global functionality ensuring that the protocol proceeds in synchro-
nized rounds.8 Specific to the variable difficulty setting, the clock also provides the timestamps
used in the target recalculation function. Ḡclock works by enforcing protocol participants to
register with a register command. Note that this enforces a regularity condition necessary
for global functionalities, and having individual parties register with the functionality before
interacting with it. We refer to the session id for the clock as cid. In a nutshell, the clock
clock-read keeps track of a counter τcid, associated with each different session, a party set P,
and variable dP associated with each party P . After receiving inputs from every party in the
session, the clock increments its value. Registered parties in a valid session can query the clock
by sending a message (clock-read, cid), to whom Ḡclock returns (clock-read, cid, τcid).

– The random oracle: FRO models an idealized hash function. FRO keeps an internal table H
of input-output pairs. Upon receiving input x ∈ {0, 1}∗ from a party, the functionality queries
H[x]. If the value is present, then it returns H[x]. If it is not, then a value y is sampled uniformly
at random from {0, 1}κ, and is saved in the table as H[x] = y. This value is returned to the party
that requested it. In Bitcoin, FRO is used in particular for the computation and verification of
PoWs. Restricting the number of queries to the oracle is accomplished by means of a wrapper
Wq(Fκ

RO), which ignores queries beyond the allotted amount.
– The message diffusion functionality: Fdiff. This functionality allows parties to broadcast

messages across the Bitcoin network, to share new transactions and extensions to the blockchain.
Fdiff maintains a party set, and a list of messages for which it keeps track of the current time
remaining before the message can be received (see below).

The above ideal functionalities are described in detail in Appendix B.

We use Fdiff presented above as our mechanism for communication among parties. Because
the UC framework natively operates in the asynchronous model, where messages are not guaran-
teed to be delivered in order, it is necessary to model eventual, bounded delivery—the so-called
‘bounded-delay network’ model (cf. [13]; see also [24]), where there exists an unknown delay ∆ in

8 The underlying assumption here, following [4, 19], is that Bitcoin’s timestamping mechanism works and can be
abstracted as such ideal functionality. See [19] for its detailed analysis.

7

the delivery of messages, measured in number of rounds. Fdiff is based on the model described
in [4, 20, 32]. In particular, this means that ∆ is unknown to the participants in the protocol, an
immediate consequence of which is that a protocol operating in this circumstance cannot use ∆
directly (say, as a time-out). Our formulation incorporates this fact, even under arbitrary protocol
composition. Initially, the delay is set to 0. The adversary then sets the delay parameter ∆ by
passing (set-delay, sid, n) to Fdiff, which it stores.

Any message sent by a party Ps ∈ P to Fdiff with command (multicast, sid,m), is stored
internally in a buffer with a timer associated with each copy of the message to be sent to all
parties. The adversary is forwarded the content of the message, along with all of the message IDs.
The adversary then can swap message IDs and enforce arbitrary delays (up to ∆).

2.3 Universal Composability Background

Universal Composability (UC), proposed by Ran Cannetti, is a framework for analyzing the security
of cryptographic protocols under arbitrary composition [9]. We present here an executive summary ..
In short, a proof of universal composability aims to show that the execution of a real-world protocol
Π is indistinguishable from an idealized functionality F with a simulator S to an environment Z.
Typically, F is modelled as a trusted party that cannot be corrupted by the adversary.

UC models the environment, protocol participants/parties, the simulator, and the adversary as
Interactive Turing Machines (ITM), which are provided special externally writable tapes. These
tapes model communication between participants, the environment, and the adversary A—they
include an input tape, subroutine-output tape, and a backdoor tape accessible by A.

Universal Composability also has the ability to model dynamic participation. Various protocols,
including Bitcoin, are designed to operate so that parties come and go, as opposed to being fixed at
the start of execution. An ITM can spawn another machine by calling an external-write command
with a forced-write flag.

Two important instructions are also included: external-write and read-next-message. The former
instruction potentially places the content of its output message tape onto the tape of another ITM,
or potentially spawns a new ITM who will have the output placed on its tape. The latter instruction,
as the name implies, allows the machine to automatically place any of its tape heads in position to
read the next message.

An instance M of an ITM M, also referred to as an ITI, contains the contents of its identity
tape (the code µ and identity string id), implying that M = (µ, id). We say that a configuration of
an ITM M describes all of the contents of its tapes, including current pointer locations. This can
be viewed as a snapshot of the state of computation of the ITM. We also define a configuration of
an instance M to be a configuration of an ITM M if M = (µ, id) is consistent with the identity
tape in the ITM M. The model itself contains no explicit assumptions on synchronicity; instead
such assumptions are modelled as ideal functionalities which may be later composed with other
protocols.

UC uses probability ensembles to describe the output of an execution of a protocol π. execπ,A,Z
(x) is to be understood as the random variable that results from the output of an execution of pro-
tocol π, with an adversary A, in the presence of environment Z, on input x ∈ {0, 1}∗. Consequently,
we define the probability ensemble as execπ,A,Z = execπ,A,Z(x)x∈{0,1}∗ The corresponding ensem-
ble and random variable definition for the ideal world is execπ′,S,Z = execπ,S,Z(x)x∈{0,1}∗ We
provide some essential definitions below:

8

Definition 2. Two probability distribution ensembles are considered to be indistinguishable from
each other, (i.e X,Y), if for any c, d ∈ N ,∃k0 ∈ N s.t ∀k > k0 and ∀z ∈ ∪κ≤kd{0, 1}κ, we have
that

|Pr(X(k, z) = 1)− Pr(Y (k, z) = 1)| < k−c.

Below, we define the meaning of a protocol UC-emulating a functionality. The definition below
is for the computationally bounded setting; it is worth noting that a similar definition exists for
statistical security.

Definition 3. Let π and F be a PPT protocol and an ideal functionality respectively. If for any
polytime adversary A, we have a polytime simulator S such that for any polytime environment Z,
we have that the probability ensembles are indistinguishable from each other, (i.e that execπ,A,Z ≈
execF ,S,Z), then we say that protocol π UC-emulates functionality F .

The notion of UC-emulation is necessary to describe how protocols can be composed. In general,
we want to show that a protocol π, with some reliance on an ideal functionality F , can provide the
same security guarantees as π that runs with some real-world protocol ϕ, as long as ϕ UC-emulates
F .

Let ρ, π, ϕ be protocols, where ϕ is a subroutine protocol of ρ. When we write ρϕ→π, we mean
the protocol ρ, where every invocation of ϕ is replaced by calls to π. We present the simplified
UC-composition theorem present in [9].

Definition 4. Let ρ, ϕ, π be protocols where ψ is a subroutine of ρ, π UC-emulates ϕ, and π is
identity compatible with ρ and ϕ. Then protocol ρϕ→π UC-emulates ρ.

Dynamic participation. The UC framework contains mechanisms necessary to model protocols
in which the number of participants/parties is not fixed during the execution of the model. To
mediate the protocol’s procession, a special control function is introduced. The control function is
described as C : {0, 1}∗ → {allow, disallow}. In UC, control functions are paired up with ITMs to
form a system of ITMs. These system ITMs are defined as S = (I, C), where I refers to the initial
ITM, and C, the control function.

A external-write instruction has parameters that can specify whether or not to create a new
ITM process. Specifically, for a machine M = (µ, id), on an external-write command, we parse the
contents of M ’s outgoing message tape as (f,M ′, t, r,M,m). Here, f ∈ {0, 1} is interpreted as the
forced-write flag, M ′ is the extended identity of the recipient ITM, t ∈ {input, subroutine-output,
backdoor}, r ∈ {0, 1} is the reveal-sender-id flag, M is the extended identity of the sending ITM,
and m ∈ {0, 1}∗ is the message.

When this instruction is executed, the control function C first is queried on (f,M ′, t, r,M,m).
If the output is disallow, then the message is not passed, and the initial ITM is instead activated.
If f = 1, then we interpret the value M ′ as M ′ = (µ′, id′). If the output is allow, f = 1, and M ′ =
(µ′, id′) is in the system, then the messagem is inserted into the tape ofM ′. If the reveal-sender-idr =
1, then we also insert (µ, id) into M ′ tape. Execution is passed to M ′.

If the output is allow, f = 1, and M ′ = (µ′, id′) is not in the system, then we spawn a new
machineM ′ with code (µ′, id′). The random tape is populated as it was for the initial ITM. Through
this mechanism, we allow new machines to be created, which can correspond to a variety of events,
such as a new participant joining the protocol. We say that M invoked M ′.

9

Global setup. Sometimes, the mechanisms and protocols that we desire to model in the UC
framework are shared by other protocols. Without careful review, the security guarantees of a UC
proof may not hold. These are referred to as global subroutines. A prominent example appears
in [11]: Consider the circumstance in which a UC non-interactive zero knowledge protocol (NIZK)
π attempts to naively use a random oracle H(·). That same hash function can be used by anyone
else in order to verify any resulting proof from the NIZK protocol, which contradicts the definition
of the NIZK functionality. This is of course, problematic: it renders our ability to use certain
primitives or models less effective.

Future work [1,3,10] poses and elaborates on the following question: Under what circumstances
can a protocol designer use a protocol available beyond the protocol under examination?. One cru-
cial component of the answer can be found in [1], which introduces the notion of a “subroutine”
respecting requirement. Informally, a protocol π is considered to be subroutine respecting when for
any session of π that occurs, four constraints are kept. First, no main party or sub-party passes
input to a machine not part of the session, they reject all incoming subroutine output from a ma-
chine not within the session, no sub-party will pass its subroutine output to another machine not
in the session, and the sub-parties of the session will reject inputs passed from a machine that is
not a main party or a subroutine of a main party. This acts as a restriction on how the protocol
and subroutine interacts with machines outside of the protocol. It is shown in [1] that a subroutine
respecting restriction is necessary to show UC emulation with global subroutines. The reader is
invited to explore the aforementioned works for further detail.

3 Modeling Bitcoin’s Dynamic Participation in the UC Framework

We introduce the abstraction of the PoW-based lottery system in the dynamic participation and
variable difficulty setting. We follow the convention in [4] to incorporate these aspects into a ‘State
Exchange’ functionality (FStX(P, ∆, pH , pA); see below for details). Such an approach is useful be-
cause it allows us to modularize the protocol so that we can analyze the major components of the
protocol separately. Here, this means that we first analyze the lottery procedure before applying it
to the Bitcoin backbone protocol. When parameters are clear from context or unneeded, we also
refer to this as FStX. At a high level, FStX handles extending the chain state, and propagating
the resulting chains to the other participants while obeying the delay constraint. Upon receiving
(submit-new, sid, s⃗t, st) from a party, FStX runs a Bernoulli experiment with the given proba-
bility, extending the state on success. FStX also stores an internal buffer M⃗ of states that parties
may not have yet received; those parties can send (fetch-new, sid) to retrieve them if the message
delay has been satisfied.

The formulation in [4], however, only applies to the fixed number of participants and dif-
ficulty setting. Here we extend the formulation to the dynamic participation/variable difficulty
setting by applying the “functionality wrapping” technique (cf. [22]; see also [21]). We will then
show that this (wrapped) functionality is UC-realized by a protocol we call StateExchange, in the
(Wq(Fκ

RO),Fdiff)-hybrid model. Later on, in Section 4, we will use this functionality to realize,
under certain constraints, a ledger functionality that captures Bitcoin in the permissionless setting
where it is intended to operate. A glossary of parameters that will be used in our specifications
and analyses can be found in Table 1 (Section 5.)

10

3.1 The Lottery Mechanism

As mentioned above, the ‘State Exchange’ functionality FStX(P, ∆, pH , pA) from [4] for the static
setting handles the process of extending the state of the blockchain as well as propagating the result
of the extension to the other participants. In particular, it takes as parameters P, the party set for
that invocation, ∆, the maximal delay for a message, and pH (pA), the probability of an honest
party (resp. corrupted party) successfully querying the functionality to extend the state. (The full
specification of the static functionality can be found in Appendix B.)

Next, we introduce our wrapped functionality, which will manage the current set of active
parties, compute the target value for the PoW accordingly, and capture the restrictions on the
environment (recall Definition 1) that will ensure the realization of the underlying functionality.
Let stx-params = {T0,m, btgt, τ, γ, s}. The full specification of our wrapper functionality, Wstx-params

(FStX(P, ∆, pH , pA)), appears below. We proceed to describe its various aspects.

The functionality maintains a party set P ← ∅, and a set C = {C1, . . . , Cn}, where Ci = |P| at round i. The
functionality maintains a set of trees for each party TP of 3-tuple (s⃗t, T⃗ , τ⃗s), where each s⃗t is unique. The
functionality also maintains a value ∆ ∈ N, initialized to 0. It also registers with the global clock functionality
Ḡclock

Setting the delay :
Upon receiving (set-delay, sid, d) from the adversary A, if d ∈ N and set-delay has never been received by
this functionality, then set ∆ = d. Return (set-delay, sid, ok)

Registration :
Upon receiving any register or de-register command, sends (clock-read, cid) to Ḡclock to receive the
answer (clock-read, cid, τL)

– Upon receiving (register, sid) from some party P (or from A on behalf of a corrupted P) Let i refer to the
current round
1. If |P|+ 1 > γ · Cj for any j ∈ [τL − s, τL], then return (register, sid,⊥). Otherwise, proceed.
2. Set P = P ∪ {P}, set C[τL] = |P| and initialize the tree TP ← gen where each rooted path corresponds

to a valid state the party has received. Return (register, sid, P) to the caller.
– Upon receiving (de-register, sid) from some party P ∈ P (or from A on behalf of a corrupted P ∈ P)

1. If |P| − 1 < γ · Cj for any j ∈ [τL − s, τL], then do nothing. Otherwise, proceed.
2. Set P := P \ {P}, set C[τL] = |P|, and return (de-register, sid, P) to the caller.

Submit/receive new states :

– Upon receiving (submit-new, sid, s⃗t, st) from some participant Ps ∈ P, if isvalidstateB(s⃗t ∥ st) = 1 and
(s⃗t, ·, ·) ∈ TP , then do the following:
1. Set T ← gettargetm,T0,τ,btgt

(s⃗t)

2. Set pH ← 1− (1− T
2κ

)q, pA ← T
2κ

and forward (submit-new, sid, s⃗t, st) to FStX(P,∆, pH , pA)
3. Upon response (success, sid,B), if B = 1, then add (s⃗t ∥ st, T, τL) to TP and send (continue, sid) to
FStX(P,∆, pH , pA).

4. Send (success, sid,B , T, τL) to Ps

– Upon receiving any other input, forward the request to FStX(P,∆, pH , pA), and return its response.

Functionality W stx-params(FStX(P,∆, pH , pA))

Because it is necessary to capture certain restrictions to guarantee the basic blockchain proper-
ties—common prefix, chain quality and chain growth (cf. —we do so by having the wrapper reject
any communication that would violate these restrictions. This applies in particular to the case of

11

the (γ, s)-respecting sequence, which occurs during registration and de-registration; if the envi-
ronment activates participants so that they attempt to register/deregister too quickly, Wstx-params

(FStX(P, ∆, pH , pA)) ignores the message. The set C provides the necessary context from previous
rounds so that the wrapper knows how many participants were present, and is able to determine if
a violation occurs.

The wrapper handles the party management, passing off the current party set as a parameter to
FStX to handle the message handling and state extension. Upon receiving a request to attempt to
extend the state, Wstx-params(FStX) first calculates the target difficulty from the provided s⃗t. From
this, Wstx-params(FStX) calculates the appropriate probabilities pH , pA, then passes off the result to
FStX(P, ∆, pH , pA).

The wrapper also handles timestamps and PoW target values by storing the corresponding
entry for each st in the tree. This is necessary to properly handle any calculations of the PoW
difficulty in future calls to the ideal functionality, as well as be able to calculate the probabilities
pA, pH .

Thus, from the perspective of FStX(P, ∆, pH , pA), the functionality operates as if it were in
the static-difficulty case per invocation. Upon receiving message (submit-new, sid, s⃗t, st) from
the wrapper Wstx-params(·), functionality FStX(P, ∆, pH , pA) samples a Bernoulli distribution with
the probabilities passed in as a parameter. If B = 1, the party ‘wins’ the lottery, and the result
is forwarded back to the wrapper, which, upon responding to continue, FStX(P, ∆, pH , pA) creates
new messages with separate message ids into its internal buffer M⃗ .

Regarding message delays, the adversary A can enforce a delay up to ∆ on the state propagation
messages by sending (delay, sid, T,mid) to the wrapper, which forwards it to FStX(P, ∆, pH , pA) as
a parameter. Additionally, the adversary is able to swap messages in the buffer, given two mid,mid′,
provided they exist. Note that modeling the delay ∆ as a value that the adversary sets instead of
a parameter to the functionality is necessary since we are operating under the assumption that ∆
itself is finite but unknown. Having ∆ be fixed as a parameter would leak information about the
delay and as such violate this assumption. Passing off ∆ from the wrapper to FStX does not expose
the value to the participants, as all interaction with the functionality occurs through the wrapper,
which instead keeps it hidden.

Finally, note that the honest and adversarial probabilities are not equal, similarly to the analysis
in [17] and [4]. This is because the adversary is not obligated to follow the protocol. The honest
parties do follow the protocol, and this means that their probability of success is the probability of
receiving at least one success within the q PoW-solving (mining) attempts. When the probability
of solving a PoW is p, this results in the expression 1− (1− p)q.

3.2 Implementing the Lottery Mechanism

To implement the State Exchange functionality, it is necessary for the protocol to implement the
PoW system, as well as to handle the message diffusion. As usual, the party is expected to register
and deregister with the relevant functionalities, Fbc

diff and Wq(Fκ
RO). Toward the first aim, upon

receiving (submit-new, sid, s⃗t, st), the party first checks the validity of the state, and if it finds a
corresponding state in its tree, then it attempts to run the hash calculation q times (recall that it
is assumed that the parties have a bound q on the number of RO calls per round [17,18]).

If the party ‘wins’ the PoW lottery through the RO calls, the extended state is appended to
the tree T . The process then propagates the message via Fbc

diff. To implement the fetching aspects
of the State Exchange functionality, the party sends (fetch, sid) to Fbc

diff, parses the output for

12

valid chains, adds them to T , and then extracts the states from the chains. The protocol is shown
below.

Initialization:
The protocol maintains a tree TP of all valid chains the party sees. Initially it contains the genesis chain (G).

Registration/De-registration:

– Upon receiving (register, sid) do the following: send (register, sid) to Fbc
diff, Ḡclock and Wq(Fκ

RO) and
output (register, sid, P)

– Upon receiving (de-register, sid), send (de-register, sid) to Fbc
diff, Ḡclock and Wq(Fκ

RO). Set all variables
back to their initial values and return (de-register, sid, P)

Exchange: Exchange queries are only answered once registered.

– Upon receiving (submit-new, sid, s⃗t, st) do

if isvalidstateB(s⃗t ∥ st) = 1 then
if there exists C ∈ T with s⃗t then
Cnew ← extendchainT0,m,btgt(C, st, q, τ)
Send (clock-read, cid) to Ḡclock, receive (clock-read, cid, τL)
Compute T ← gettargetm,T0,τ,btgt(s⃗t)
if Cnew ̸= C then

Update the local tree, i.e add Cnew to T
Output (success, sid, 1, T, τL)

else
Output (success, sid, 0, T, τL)

end if
Send (multicast, sid, Cnew) to Fbc

diff

end if
end if

– Upon receiving (fetch-new, sid) do the following:

Send (fetch, sid) to Fbc
diff and denote the response by (fetch, sid, b)

Extract all valid chains C1, . . . , Ck from b and add them to T
Extract states s⃗t1, . . . , s⃗tk from C1, . . . , Ck and output them

Protocol StateExchangeT0,m,btgt,q,τ (P)

Note that in contrast to [4], protocol StateExchange takes additional parameters as well, which
are used by the extendchain algorithm. Upon executing the protocol for the first time, the party P is
expected to first register with Fbc

diff and Wq(Fκ
RO). StateExchange uses two subroutines: isvalidstate

and extendchain, both introduced in [4]. The former is responsible for taking a state vector as input
and ensuring that all blocks in the state are composed of valid transactions, including the first
transaction which is required to be a coinbase transaction. isvalidstate is presented in Section 2.1;
extendchain is depicted below. extendchain takes in the epoch length m, the expected block gen-
eration time btgt, the initial difficulty T0, the number of RO queries per round q, the dampening
factor τ , and the chain and state C, st respectively. The algorithm first computes the new target
value based on the previous timestamps, and for q attempts, the party calculates the hash of the
block, which is accepted if its value is below the previously derived target. The party will also
periodically fetch messages from the network to receive new chains C1, . . . , Ck that other parties
have been working on, storing the valid chains in its own internal tree.

13

Input: Chain C is valid with state s⃗t. The state s⃗t ∥ st is valid.

Set B← ⊥
s← H[head(C)]
Compute T ← gettargetm,T0,τ,btgt(s⃗t)
for i ∈ {1, . . . , q} do

Choose nonce n uniformly at random from {0, 1}κ and set B← ⟨s, st, n, T, τ⟩
if H[B] < T then

break
end if

end for
if B ̸= ⊥ then
C ← C ∥ B

end if
return C

Algorithm extendchainT0,m,btgt(C, st, q, τ)

1. Calculate i = ⌊ |s⃗t|
m
⌋, e = |s⃗t| mod m

2. If i = 0, then return T = T0

3. Parse s⃗t = (st1, T1, t1)|| . . . ||(stn, Tn, tn)
4. Set Tdiff = ti·m−1 − t(i−1)·m

5. Set T = Tdiff
m·btgt · T(i−1)·m.

6. If T > τT(i−1)·m, then set T = τT(i−1)·m. If T < τT(i−1)·m, then set T = τ
T(i−1)·m

.

7. Return T

Algorithm gettargetm,T0,τ,btgt(s⃗t)

We now state the main result of this section.

Theorem 1. Protocol StateExchangeq,T0,τ,m(P) UC-realizes functionality Wstx-params(FStX) in the
(Wq(Fκ

RO),Fbc
diff)-hybrid model.

Proof. The proof proceeds similarly to Lemma 7.1 in [4]. We define a series of hybrid worlds to
argue that the distribution on the joint views between StateExchangeq,T0,τ,m(P) and Wstx-params

(FStX(P, ∆, pH , pA)) are indistinguishable from one another.
The simulator simstx is described in full below. In a nutshell, it simulates the random oracle

by storing a table, and if a new entry is queried, it samples a new random value, only termi-
nating when a collision is found. The simulator also stores a tree T . When receiving a message
(submit-new, sid, s⃗t, Ps, (P1, ˆmid1), . . . , (Pn, ˆmidn)), if an extension to the state occurs, the simu-
lator finds a corresponding chain C ∈ T , and sets the hash of the block to be strictly less than the
required target before adding it to the tree. Whether or not an extension occurs, the simulator gen-
erates message ids, appending a unique message to each party with an associated delay parameter
where the message contains the chain.

Let HYB0A,Z refer to the random experiment of StateExchangeq,T0,τ,m(P). When clear from
context, we use shorthand HYB0A,Z := HYB0. Next, let HYB1A,Z act as HYB0, with the difference
being that HYB1 may abort with collision-error or tree-error. Let HYB2Z refer to the
experiment Wstx-params(FStX(P, ∆, pH , pA)) with simstx (i.e exec(Wstx-params(FStX(P,∆,pH ,pA)),simstx,Z))

We start by showing that HYB1 ≈ HYB0. collision-error occurs when H[v] = H[v′] where
v, v′ ∈ {0, 1}κ and v ̸= v′. By definition, the probability of a two hashes colliding is O(2−κ), and

14

the probability of a hash collision throughout a polynomial length execution is O(poly(κ) · 2−κ)
by the union bound. This implies a collision, and thus collision-error occurs with negligible
probability in κ

Let event refer to the circumstance where H[(s ∥ · ∥ · ∥ · ∥ ·)] is queried but no v exists where
H[v] = s, but later a party queries v′ such that H[v′] = s. By definition of hash collision, the
probability over the execution is O(poly(κ) · 2−κ) by the union bound. This occurs with negligible
probability in κ.

If event doesn’t occur, and no collision occurs, tree-error doesn’t occur. We prove by con-
tradiction: assume that HYB1A,Z aborts with tree-error w/ noticeable probability. Let C =
B1, . . . ,Bn such at C is the shortest valid chain in HYB1A,Z where C ∈ T but B1, . . . ,Bn−1 /∈ T .
By definition of valid chain, H[sn ∥ stn ∥ nn ∥ Tn ∥ tn] < gettarget(s⃗t,m, T0, τ, btgt).

However, by assumption we know that no valid chain has sn as the hash of it’s last block,
otherwise it would be in T . This means that no such query was made to H[v] = sn. This implies
either a collision occurred, or event occurred, which contradicts our assumption. Thus, we conclude
tree-error occurs only with negligible probability.

Consider that in the hybrid world, changing Ti or ti after querying the random oracle would
result in a different hash. This only would go unnoticed if for some Bi ̸= B′

i where the timestamps
or the target differ, that H[Bi] = H[Bi′], which only happens when there is a collision. Thus,
HYB1 ≈ HYB0.

Finally, we show that HYB2 ≈ HYB1. Recall that queries in the HYB1 world store the results
of failed queries (i.e H[Bi] > gettarget(s⃗t,m, T0, τ, btgt)), but queries in HYB2 do not. Consider
a failed query H[Bi]. If and only if a later query H[Bi′] = H[Bi] is made would the executions
be distinguishable. This occurs only when there is a collision, which again only occurs with prob-
ability O(poly(κ) · 2−κ). Therefore, we conclude that HYB2 ≈ HYB1, which concludes the proof.

Initialization:
Set up a tree of valid chains T ← {(G)} and an empty network buffer M⃗ . Set up an empty random oracle table
H and set H[G] to a uniform value in {0, 1}κ. If the simulator ever tries to add a colliding entry to H, abort
with collision-error.

Simulating the Random Oracle:

– Upon receiving (eval, sid, v) for Wq(Fκ
RO) from A on behalf of corrupted P ∈ Pa do the following:

1. If H[v] is already defined, output (eval, sid, v,H[v]).
2. If v is of the form (s, st, n, T, τ), and there exists a chain C = B1, . . . ,Bn such that H[Bn] = s proceed

as follows. If C /∈ T abort with tree-error. Otherwise continue. Extract the state s⃗t from C and
extract the state block st from v. Send (submit-new, sid, s⃗t, st) to W stx-params(FStX(P,∆, pH , pA)) and
denote by (success, B) the output of W stx-params(FStX(P,∆, pH , pA)).

3. If B ̸= 1, or the above condition is not true, set v to a uniform random value in {0, 1}κ and output
(eval, sid, v,H[v]).

4. If B = 1, set H[v] to some uniformly random value in {0, 1}κ < gettarget(s⃗t,m, T0, τ, btgt) and output
(eval, sid, v,H[v]).

Simulating the Network:

– Upon receiving (multicast, sid, (mi1 , Pi1), . . . , (miℓ , Piℓ)) for F
bc
diff from A on behalf of corrupted P ∈ P

with {Pi1 , . . . , Piℓ} ⊆ Pnet proceed as follows:

Simulator simstx

15

1. For each (mij , Pij) where mij is a chain in T extract the state s⃗tij from mij , and send

(submit-new, sid, s⃗t, Pij) to W stx-params(FStX(P,∆, pH , pA)). Store the message-ID ˆmidij returned by
W stx-params(FStX(P,∆, pH , pA)) with midij . Note that if P has not yet received that state, it is first
fetched by A on behalf of P and if an unknown state is encoded, a random oracle query is simulated for
the input to simulate the chain’s validity and its possible inclusion into T .

2. For all remaining messages that could not be parsed as states, simply inject them as chunk messages to
W stx-params(FStX(P,∆, pH , pA)) to obtain their mid.

3. Denote the obtained message-IDs by midi1 , . . . ,midiℓ , initialize ℓ new variables

Dmid1 := · · · := Dmidℓ := 1, set M⃗ := M⃗ ∥ (mi1 ,midi1 , Dmidi1
) ∥ · · · ∥ (miℓ ,midiℓ , Dmidiℓ

)
4. Output (multicast, sid, (mi1 , Pi1 ,midi1), . . . , (miℓ , Piℓ ,midiℓ))

– Upon receiving (fetch, sid) for Fbc
diff from A on behalf of corrupted P ∈ Pnet proceed as follows.

1. Fetch in the name of party P from W stx-params(FStX(P,∆, pH , pA)) and compute the list of message
identifiers mid1, . . . ,midℓ for which Dmidi ≤ 0.

2. Let M⃗P
0 denote the subvector M⃗ formed by all tuples (m,mid, Dmid, P) in the same order as they appear

in M⃗ , where mid appears in the above list. Delete all entries in M⃗P
0 from M⃗ , and send M⃗P

0 to A
– Upon receiving a message (delays, sid, (Tmidi1

,midi1), . . . , (Tmidiℓ
,midiℓ)) do the following for each pair

(Tmid,mid) in this message:

1. If Tmid is a valid delay (i.e it encodes an integer in unary notation) and mid is a message-ID registered in
the current M⃗ , set Dmid := max {1, Dmid + Tmid}; otherwise ignore this tuple.

2. If the simulator knows a corresponding FStX-message-ID m̂id for mid send (delay, sid, Tmid, m̂id) to
W stx-params(FStX(P,∆, pH , pA))

– Upon receiving a message (swap, sid,mid1,mid2) from the adversary do the following:

1. If mid1 and mid2 are message-IDs registered in the current M⃗ , then swap the tuples in M⃗ .
2. If the simulator knows for both mid1 and mid2 FStX-message-IDs mid1 and mid2 send

(swap, sid, ˆmid1, ˆmid2) to W stx-params(FStX(P,∆, pH , pA)).
3. Output (swap, sid) to A.

Interaction with the State Exchange Functionality :

– Upon receiving (submit-new, sid, s⃗t, Ps, (P1, ˆmid1), . . . , (Pn, ˆmidn)) from W stx-params(FStX(P,∆, pH , pA))
where s⃗t = st1, . . . , stk and {P1, . . . , Pn} := Pnet proceed as follows

1. If there exist a chain C ∈ T with state s⃗t generate new unique message-IDs mid1, . . . ,midn, initialize
D1 := · · · := Dn = 1, set M⃗ ∥ (C,midi1 , Dmidi1

, P1) ∥ · · · ∥ (C,midiℓ , Dmidi1
, Pn), and store the

message-IDs ˆmidi along the message-IDs midi. Output (multicast, sid, C, Ps, (P1,mid1), . . . , (Pn,midn))
to the adversary.

2. Otherwise find a chain C′ in T with state st1, . . . , stk−1. Choose a random nonce n and set
Bk = (H[Bk−1], stk, n, Tk, tk) and set H[Bk] to a uniform random value in {0, 1}κ strictly smaller than
Tk = gettarget(s⃗t,m, T0, τ, btgt). Add the chain C = C′ ∥ Bk to T .
Generate new unique message-IDs mid1, . . . ,midn, initialize D1 := · · · := Dn = 1, set
M⃗ ∥ (C,midi1 , Dmidi1

, P1) ∥ · · · ∥ (C,midiℓ , Dmidi1
, Pn), and store the message-IDs ˆmidi. Output

(multicast, sid, C, Ps, (P1,mid1), . . . , (Pn,midn)) to the adversary.

⊓⊔

4 The Ledger Functionality with Dynamic Participation

In this section we present our formulation of the ledger functionality supporting dynamic participa-
tion. We follow a similar approach to the previous section’s, by appropriately “wrapping” the ledger
functionality for the static setting in [4], which participants interact with instead. In a nutshell, [4]’s
static functionality Ḡledger abstracts the process of maintaining and extending a distributed ledger.
(The full specification of Ḡledger is presented in Appendix B.)

16

Let ledger-params = {windowSize, γ,Validate,ExtendPolicy,Blockify, predict-time}, where
windowSize, s ∈ N and γ ∈ R. We refer to our dynamic-participation functionality as W ledger-params

(Ḡledger). The list of parameters capture the restrictions that are sufficient for the protocol in
Section 5 below to UC-realize the ledger. The full specification of W ledger-params(Ḡledger) is given
below, followed by an explanation of its various aspects.

Parameters:windowSize, s ∈ N, γ ∈ R; Algorithms Validate, ExtendPolicy, Blockify, predict-time.
Clock-time: The functionality maintains a variable τL that is kept in-sync with clock-time: Upon any activation
(and thus also initialization), the ledger first sends (clock-read, cid) to Ḡclock to receive the answer
(clock-read, cid, τL), then proceeds with the remaining actions.
Variables and initialization: The functionality initializes state, sep, NxtBC, I⃗TH ← ϵ, buffer← ∅, ∆ = 0 as well
as party sets P,H,PDS ← ∅. It also keeps track of the cardinality per round of the party sets, indexed by i i.e
(Pi,Hi,PDS,i) The functionality also keeps track of a set C = {C1, . . . , Cn}, where Ci = |P| at round i

Setting Delay :
Upon receiving (set-delay, sid, d) from the adversary A, if d ∈ N and set-delay has never been received by
this functionality, then set ∆ = d.

γ, s Restriction Enforcement:

– Upon receiving (register, sid) from some party P (or from A on behalf of a corrupted P), if
|P|+ 1 > γ · Cj for any j ∈ [τL − s, τL], then do nothing. Otherwise, forward the request to Ḡledger.

– Upon receiving (de-register, sid) from some party P ∈ P (or from A on behalf of a corrupted P ∈ P), if
|P| − 1 < γ · Cj for any j ∈ [τL − s, τL], then do nothing. Otherwise, forward the request to Ḡledger.

Party Set Management:
Upon any other input I received from a party Pi ∈ P or from the adversary A the following steps are taken:

1. If Pi ∈ H or if I is a corruption message from A targeting Pi ∈ H, then update I⃗TH ← I⃗TH ∥ (I, Pi, τL). If a
party Pi gets corrupted, additionally update H ← H \ {Pi}, PDS ← PDS \ {Pi}

2. Let P̂ := {P ∈ PDS |τreg
P < τL − 4∆}. Set PDS := PDS \ {P̂}.

3. If the message was not received from Ḡledger, forward the message, along with the appropriate parameters
and variables that this functionality stores.

Restrictions

1. Upon any message (resource-check, sid, p, x) from Ḡ′ledger , where x ∈ {0, 1}∗,
p ∈ {ledger-startup, ledger-growth}
– If p = ledger-startup, parse x as τ⃗state, h⃗f, T⃗ , do the following:

(a) Find the minimum interval in the timestamps during startup. Let
j ∈ [0, τL − maxTimewindow], i ∈ [j + maxTimewindow, τL].

Then lr ← minj,i(
windowSize+|n∈[|τ⃗state|]:j≤τ⃗state[n]≤i|

i−j+1
)

(b) ar ←
∑t

i=s∧h⃗f[i]=1(Ti)

(c) If lr < windowSize
maxTimewindow

∨ ar > δ − 3ϵ, then set inv = 1

– If p = ledger-growth, parse x as τ⃗state, h⃗f, T⃗ , do the following:
(a) For all (s, t) such that s ∈ [1, |τ⃗state| − ℓ+ 1] and t ∈ [s+ ℓ− 1 |τ⃗state|] set inv← 1 if∑t

i=s(Ti]) < chaingrowth(s, t) for any s,t
(b) ar ← maxs=1,...|τ⃗state|−(ℓ+2∆)+1;t=s+(ℓ+2∆)−1 ...,|τ⃗state|(

∑t
i=s∧h⃗f[i]=1(Ti))

(c) If ar < δ − 3ϵ, then set inv = 1
2. Return (resource-check, inv) to Ḡledger

Functionality W ledger-params(Ḡledger)

Our ledger formulation also enforces the γ, s restrictions in order to prevent too many parties
from entering or leaving in a short time. The wrapper also handles party management for the

17

honest parties H, the party set P, and the honest but de-synchronized parties PDS . The latter is
necessary to model, as a de-synchronized party is effectively unable to extend the blockchain with
its computing resources. Worse, under the model, the parties may end up inadvertently extending
the adversary’s chain.

Assuming the above restrictions are satisfied, our wrapper forwards all of the queries it receives
to the ledger. In ExtendPolicy and DefaultExtension(I⃗T

H , state, buffer, NxtBC, sep), the ledger function-
ality forwards the necessary information back to the wrapper in order to compute whether the
proposed ledger extension has a high-enough number of honestly generated blocks, and that the
ledger is not introducing blocks too slowly. DefaultExtension(I⃗T

H , state, buffer, NxtBC, sep) is triggered
upon an adversarial attempt to include an extension that is not admissible (e.g, by including too
many adversarial blocks in one period). This default extension is disadvantageous for the adversary,
and so the adversary will attempt to prevent its invocation.

The adversary can also set the state slackness via the command set-slack, supplemented
with a list of (Pi, statei) pairs. The adversary is allowed to violate this constraint for the case of
de-synchronized parties, as they do not yet have a complete view of what is going on in the network.

5 Bitcoin as a Variable-Difficulty Ledger Protocol

In this section we present our ledger protocol, ModularLedger, which realizes the functionality
W ledger-params(Ḡledger) above. The ledger protocol is presented in Section 5.1. The protocol assumes
access to theWstx-params(FStX) functionality from Section 3.2. A party first sends (register, sid) to
Wstx-params(FStX) and awaits its response. If the party receives an affirmative response (register,
sid, P), the party proceeds to register with F tx

diff and Ḡclock. Otherwise, the party is considered to
be unregistered. This process is similar for de-registration.

Parameter Meaning

ϵ Quality of concentration of variables.

windowSize Cutoff parameter for common prefix.

δ Advantage of honest parties, such that tr ≤ (1− δ)hr holds true for every round.

∆ Maximum delay parameter for communication on the network. Note that the delay
parameter is unknown to the parties.

m Size of an epoch in blocks.

btgt The intended average time between successful proof of works. In Bitcoin, this value
is 10 minutes.

τ Dampening factor for the target recalculation. τ = 4 in Bitcoin.

γ, s Values that describe the maximum fluctuation of participation with a given period
of time. See definition 1.

ℓ Size of the interval used in the analysis.

T0 The initial target difficulty for the first epoch.

κ, λ These are the security parameters. κ corresponds to the hash size; λ corresponds
to the probability that desired properties do not hold.

Table 1. Glossary of important parameters.

18

5.1 Protocol Specification

The reason this sequential approach is necessary is to enforce the (γ, s)-respecting sequence on the
party protocol. In order to keep the F tx

diff, Ḡclock functionalities canonical, we enforce the (γ, s)
requirement on the Wstx-params(FStX) side. If we had allowed the registration for F tx

diff, Ḡclock to
occur simultaneously with the registration for Wstx-params(FStX), then a mismatch could occur in
party sets for the functionalities when Wstx-params(FStX) rejects registration, rendering the party
registered with some of the functionalities, but not the others.

We provide an overview of the important parameters used in the protocol and analysis in
Table 1.

Variables and Initial Values:

– The protocol stores a local (working) state Cloc and associated timestamp and target vectors ⃗τloc, ⃗Tloc

respectively, which initially contains the genesis state.
– It additionally manages a separate chain Cexp and associated timestamp and target vectors ⃗τexp, ⃗Texp

respectively to store the current chain whose encoded state s⃗t is exported as the ledger state (initially this
chain contains the genesis block).

– Variable isInit stores the initialization status. Initially this variable is false.
– buffer contains the list of transactions obtained from the network. Initially this buffer is empty.
– A flag Welcome to indicate whether an indication was received that a new party joined the network

(initially Welcome = 0).
– Two variables doneWork and doneUpdate (initialized to false) that indicate whether the respective round

actions have been executed.
– The party stores its registration status to the hybrid functionalities internally. We do not introduce an

explicit name for this variable.

Registration/De-Registration

– Upon receiving (register, sid) this party sends (register, sid) to W stx-params(FStX(P,∆, pH , pA)). If this
party receives (register, sid, P) then this party sends (register, sid) to F tx

diff, Ḡclock and outputs
(register, sid, P). If the party receives (register, sid,⊤), then return (register, sid,⊤)

– Upon receiving (de-register, sid), send (de-register, sid) to W stx-params(FStX(P,∆, pH , pA)) If this party
receives (de-register, sid, P), then send (de-register, sid) to F tx

diff and Ḡclock. Set all variables back to
their initial values and return (de-register, sid, P). However, if the party receives (de-register, sid,⊤)
(from W stx-params(FStX)), then return (de-register, sid,⊤)

Ledger Queries
Ledger queries are only answered once registered.

– Upon receiving (submit, sid, tx), set buffer← buffer ∥ tx, and send (multicast, sid, tx) to F tx
diff.

– Upon receiving (read, sid) send (clock-read, cid) to Ḡclock, receive as answer (clock-read, cid, τ) and
proceed as follows:

if τ corresponds to an update mini-round and isInit and ¬doneUpdate then
Execute sub-protocol FetchInformation and set doneUpdate← true.

end if
Let s⃗t be the encoded state in Cexp
Return (read, sid, s⃗t

windowSize
)

– Upon receiving (maintain-ledger, sid,minerID) execute in a
(maintain-ledger, sid,minerID)-interruptible manner the following:
1. If isInit = false, then set all variables to their initial values, set isInit← true and output

(multicast, sid,new-party) to F tx
diff

2. Execute sub-protocol Ledger-Maintenance

Protocol ModularLedgerT0,m,btgt,q,τ,windowSize(P)

19

Sub-Protocol FetchInformation

Send (fetch-new, sid) to W stx-params(FStX)
Denote the response from W stx-params(FStX) by (fetch-new, sid, (s⃗t1, T1, τ1), . . . , (s⃗tk, Tk, τk))
Find the largest state s⃗ti from among (s⃗tloc, s⃗texp, s⃗t1, . . . , s⃗tk) (ordering resolves ties) and do the following:
1. (s⃗tloc, Tloc, τloc)← (s⃗ti, Ti, τi)
2. (s⃗texp, Texp, τexp)← (s⃗ti, Ti, τi)

Send (fetch, sid) to F tx
diff; denote the response from F tx

diff as (fetch, sid, b)
Extract all received transactions (tx1, . . . , txk)
Set buffer← buffer ∥ (tx1, . . . , txk) from b
If a new-party message was received, set Welcome← 1. Otherwise, set Welcome← 0.
Remove all transactions from buffer which are invalid with respect to s⃗t

windowSize
loc

Sub-Protocol LedgerMaintenance
This sub-protocol is executed in a (maintain-ledger, sid,minerID)-interruptible manner

1. Send (clock-read, cid) to Ḡclock receive as answer (clock-read, cid, τ), and proceed according to the
following case distinction.

2. If τ corresponds to a working mini-round

if ¬doneWork then
Let s⃗t be the encoded state in Cloc
Set buffer′ ← buffer
Parse buffer as sequence (tx1, . . . , txn)
Set N⃗ ← txcoin−base

minerID

Set st← BlockifyB(N⃗)

repeat
Let (tx1, . . . , txk) be the current list of (remaining) transactions in buffer′

for i = 1 to n do
if ValidTxB(txi, s⃗t ∥ st) = 1 then

N⃗ ← N⃗ ∥ txi
Remove tx from buffer
Set st← BlockifyB(N⃗)

end if
end for

until N⃗ does not increase anymore
Execute ExtendState(st)
If the flag Welcome = 1, send (multicast, sid, buffer) to F tx

diff. Otherwise, give up activation.
end if
Set doneWork← true, doneUpdate← false and send (clock-update, cid) to Ḡclock

3. If τ corresponds to an update mini-round

if ¬doneUpdate then
Execute FetchInformation

end if
Set doneUpdate← true, doneWork← false, and send (clock-update, cid) to Ḡclock

Sub-Protocol ExtendState(st)

Send (submit-new, sid, s⃗tloc, st) to W stx-params(FStX)
Denote the response from W stx-params(FStX) by (success, sid, B, T, τ)
if B = 1 then

Update the local state, i.e (s⃗tloc, ⃗Tloc, ⃗τloc)← (s⃗tloc, ⃗Tloc, ⃗τloc) ∥ (st, T, τ)
end if

20

Let τL be the current ledger time (computed from I⃗TH)
Read τ⃗state and h⃗f from the passed state sep
N⃗df ← ϵ
Set N⃗0 ← txcoinbaseminerID of an honest miner
Sort buffer according to the time stamps and let t⃗x = (tx1, . . . , txn) be the transactions in buffer
st← BlockifyB(N⃗0)

repeat
Let t⃗x = (tx1, . . . , txn) be the current list of (remaining) transactions
for i = 1 to n do

if ValidTxB(txi, state ∥ st) = 1 then

N⃗0 ← N⃗0 ∥ txi
Remove txi from t⃗x

Set st← Blockify(N⃗0)
end if

end for
until N⃗0 does not increase anymore
c← 0
if |state| < windowSize− 1 then

while |state|+ c < windowSize− 1 do
if c > 0 then

Set N⃗c ← txcoinbaseminerID of an honest miner
end if
N⃗df ← N⃗df ∥ N⃗c

τ⃗state ← τ⃗state ∥ τL
c← c+ 1

end while
end if
τ⃗state ← τ⃗state ∥ τL
return N⃗df

Algorithm DefaultExtension(I⃗TH , state, buffer, NxtBC, sep)

N⃗df ← DefaultExtension(I⃗TH , state, buffer, NxtBC, sep)
Let τL be the current ledger time (computed from I⃗TH)
Read τ⃗state and h⃗f from the passed state sep. If the state is empty, initialize two empty vectors.
Parse NxtBC as a vector ((hF lag1, NxtBC1), · · · , (hF lagn, NxtBCn))
target← gettargetm,T0,τ,btgt(state)
N⃗ ← ϵ
if |state| ≥ windowSize then

τlow ← τ⃗state[|state| − windowSize+ 1
else

τ⃗state ← 0
end if
for each list NxtBCi of transaction IDs do

N⃗i ← ϵ
Use the exid contained in N⃗i to determine the list of transactions
Let t⃗x = (tx1, . . . , tx|N⃗i|) denote the transactions of N⃗i

if tx1 is not a coin-base transaction then
inv← 1, goto [terminate]

else

Algorithm ExtendPolicy(I⃗TH , state, buffer, NxtBC, τ⃗state)

21

N⃗i ← txi
for j = 2 to |NxtBCi| do

sti ← BlockifyB(N⃗i)

if ValidTxB(txj , state ∥ s⃗ti) = 0 then
inv← 1, goto [terminate]

end if
N⃗i ← N⃗i ∥ txj

end for
sti ← BlockifyB(N⃗i)

end if
hF lag ← 1
for each BTX = (tx, txid, τ ′, Pi) ∈ buffer of an honest party Pi with time τ ′ < τ − Delay

2
do

if ValidTxB(txj , state ∥ s⃗ti) = 1 but tx /∈ N⃗i then
hF lag ← 0

end if
end for
N⃗ ← N⃗ ∥ N⃗i

T⃗ ← T⃗ ∥ target
state← state ∥ sti
τ⃗state ← τ⃗state ∥ τL, h⃗f← h⃗f ∥ hF lagi and store those vectors in sep.
if |state| ≥ windowSize then

τlow ← τ⃗state[|state| − windowSize+ 1]
else

τ⃗state ← 0
end if

end for
if τL < maxTimewindow ∧ state = ϵ then

return ϵ
end if
inv← 0
if |state| < windowSize then ▷ Ensure a timely startup with enough honest blocks

Send (resource-check, sid, ledger-startup, (τ⃗state, h⃗f, T⃗)) to W (Ḡledger)
end if
if |state| ≥ windowSize then ▷ Ensure ledger growth limits and enough blocks

Send (resource-check, sid, ledger-growth, (τ⃗state, h⃗f, T⃗)) to W (Ḡledger)
end if
[terminate]:
if inv = 0 then

return N⃗ and new state sep
else

T⃗ ← T⃗ ∥ target ∥ · · · ∥ target (extended by |N⃗df| elements) and store the vectors in sep
τ⃗state ← τ⃗state ∥ τL ∥ · · · ∥ τL, h⃗f← h⃗f ∥ 1 ∥ · · · ∥ 1 (extended by |N⃗df| elements) and store the vectors in sep
return N⃗df and new state sep

end if

There are some additional details regarding the protocol which warrant further discussion. First
I⃗T
H , which is used extensively by Ḡledger and its wrapper. It is understood to be the timed honest

input sequence, containing all of the messages given to a main ITI by the environment or adversary.
It consists of 3-tuples (xi, idi, τi), where xi is the i-th input sent to idi, at timestamp τi (derived
from the global clock).

Definition 5 ([19]). A Ḡclock-hybrid protocol has a predictable synchronization pattern iff there
exist an efficiently computable algorithm predict-time(·) such that for any possible execution of
Π in a session sid (i.e for any adversary and environment, and any choice of random coins) the

22

following holds: If I⃗T
H = ((x1, id1, τ1), . . . , (xm, idm, τm)) is the corresponding timed honest-input

sequence for this session, then for any i ∈ [m− 1] :

predict-time((x1, id1, τ1), . . . , (xi, idi, τi)) = τi+1.

Armed with an algorithm predict-time that complies with the above constraint, we can enforce
the progression of time in the ideal functionality. Without, parties would need to manage it alone,
which can complicate analysis. See [4] for more details.

To extend the ledger, parties first execute LedgerMaintenance. Here, the party first runs the
FetchInformation sub-protocol, where the party fetches the most recent messages from Wstx-params

(FStX) and then updates its own local chain. Then, the party gathers the transactions in its buffer,
formats them with a coinbase transaction, and encodes them in a state. The ExtendState sub-
protocol is then invoked, where the party attempts to query the (wrapped) lottery functionality
to determine if it is allowed to extend the state. Of course, this operation corresponds to solving
successful PoWs.

5.2 Protocol Analysis

As in [4], the protocol is run in an (maintain-ledger, sid,minerID)- interruptible manner. The
idea is that when a party passes a message to another machine, it loses control of the execution,
despite the fact that the remaining steps are necessary for the correctness of the protocol. This
interruptiblity requirement can be satisfied by storing an anchor; for a protocol of m steps, if we
relinquish activation on step i < m, then we store i + 1 in the associated anchor; otherwise, we
store i = 2. We are now ready to state our main theorem.

Theorem 2. Assume that the parameter constraints specified in Table 2 are satisfied. Then proto-
col ModularLedgerT0,m,btgt,q,τ,windowSize UC-realizes W ledger-params(Ḡledger) in the (Ḡclock,Wstx-params

(FStX),Fdiff)-hybrid model.

Constraint # Restriction

1 [1− (1 + δ)γ2f]∆ > 1− ϵ

2 2ℓ+ 6∆ ≤ ϵm
2(1+δ)γ2f

3 s ≥ 2(1 + δ)γ2m/f

4 windowSize = ϵm

5 ϵ ≤ δ
8
≤ 1

8

6 ℓ = (4(1+3ϵ)

ϵ2f [1−(1+δ)+γ2f]∆+1 ·max(∆, τ) · γ3 · λ)
7 tr ≤ (1− δ)hr

8 chaingrowth(u, v) = (1− ϵ)[1− (1 + δ)γ2f]∆(1/2κ)
∑v−∆

i=u+∆(|Pi| − |Hi|)
Table 2. Admissible parameters for the protocol execution.

23

Proof. Now, we need to show that execModularLedgerT0,m,btgt,q,τ,windowSize,A,Z ≈ execW(Ḡledger),simstx,Z ;
essentially, that the execution of the protocol in the real world against the adversary is indistin-
guishable from the execution of the ideal functionality in the ideal world against a simulator. We
provide the code of our simulator below. In a nutshell, we will show the restrictions on the wrapper
are necessary to uphold the functionality, as well as desirable properties for the ledger.

As in the work of [4] (e.g., Theorem 7.9), the simulator itself is able to simulate the protocol with-
out issue, but is limited by the restrictions imposed upon it, including the ExtendPolicy(I⃗T

H , state,
buffer, NxtBC, τ⃗state), the restriction on party registration, and the common prefix. We start with
the following observation about the simulator: simstx will not introduce parties into its simula-
tion beyond that of the (γ, s) restriction. This is obvious, as if it did, then it would be trivial to
distinguish from the real world.

We first turn our attention to the problem of common prefix, and show that it is satisfied with
overwhelming probability. First, observe that:

Lemma 1. If for some η ∈ N a sequence (nr)r∈N is (γ, s + η)-respecting, then it is also (γ, s)-
respecting.

Proof. The proof is straightforward, assume a sequence (nr)r∈N is (γ, s+ η)-respecting, but is not
(γ, s)-respecting. This implies there is some set S of size s in which maxr∈S nr

minr∈S nr
≥ γ If that is true,

that implies that there is some set S′ of size s + η in which
maxr∈S′ nr

minr∈S′ nr
≥ γ is also true, which

contradicts our assumption. ⊓⊔

Now, because of the restriction on s, we know that the (γ, s)-respecting restriction on party count
also is a (γ, 2(1+δ)γ2m/f)-respecting sequence as well. Because of the restrictions in 2, we can apply
theorem 3 to conclude that these restrictions enforce typical executions and ensure that parties
do not enter or leave too quickly. This directly shows that the ModularLedgerT0,m,btgt,q,τ,windowSize

implements the common prefix restrictions on the ledger functionality. Consistency follows as a
direct consequence, by applying Theorem 7

Now, we turn our attention to the lower bound for chain growth. This restriction is captured
by chaingrowth, which requires that a minimum amount of difficulty has been contributed on the
chain within a given amount of time. Recall that from Definition 7, we have that a typical execution
bounds the random variable Q(S) such that (1−ϵ)[1−(1+δ)γ2f]∆(1/2κ)

∑
r∈S(nS) < Q(S), where

S is a set consisting of at least ℓ consecutive rounds. Also, because of the restrictions in Table 2,
the execution in the real world is typical by 3.

We know that by the restriction on s, and by applying lemma 1, we can then directly apply
Theorem 5 to our circumstance. In particular, it applies with overwhelming probability, as typ-
ical executions occur with overwhelming probability due to Theorem 3. Therefore, we have that
ModularLedgerT0,m,btgt,q,τ,windowSize implements the chain growth restrictions on the ledger function-
ality.

Chain quality follows a similar pattern. We know that we know that by the restriction on s,
and by again applying lemma 1, we can then directly apply Theorem 5. This again means that in
the real world, the adversary cannot contribute too many blocks in a given period of time under
the restrictions of Table 2.

Now, by Theorem 8 we conclude that the resulting ledger satisfies the Liveness property. The
theorem follows.

24

Initialization:
The simulator internally manages a simulated state-exchange functionality (through its wrapper W stx-params

(FStX(P,∆, pH , pA)), and a simulated network Fdiff. An honest miner P registered to ḠBledger is simulated as
registered in all simulated functionalities. Moreover the simulator maintains the local state s⃗tP and the buffer of
transactions bufferP of such a party. Upon any activation, the simulator will query the current party set from the
ledger (and simulate the corresponding message they send out to the network in the first maintain-ledger
activation after registration), query all activations from honest parties I⃗TH , and read the current clock value to
learn the time. In particular, the simulator knows which parties are honest and synchronized and which parties
are de-synchronized.

General Structure:
The simulator internally runs adversary A in a black-box way and simulates the interaction between A and the
(emulated) hybrid functionalities. The inputs from A to the clock are relayed (and the replies given back to A).

Messages from the Clock:

– Upon receiving (clock-update, cid, P), first check whether the clock for the challenge session has advanced
from time τ to τ + 1 due to this clock-update activation. If this is the case then do the following:
1. If P is the identity of the ledger functionality, then inspect I⃗TH (obtained via a read request) and check

which miner P has issued the last (maintain-ledger, sid,minerID) request. Conclude the final step of
(the interruptible computation of) SimulateMining(PminerID, τ) for this party. And in case τ is a
working mini-round, execute ExtendLedgerState before sending the final (clock-update, cid, P) to
the adversary.

2. If P is not the identity of the ledger functionality and τ is a working mini-round, then execute
ExtendLedgerState before outputting (clock-update, cid, P) to A

If no such clock advancement occurs, then do the following:
1. If the identity P corresponds to this ledger functionality, then inspect I⃗TH (obtained via a read request)

and check which miner P has issued the last (maintain-ledger, sid,minerID) request. Conclude the
final step of (the interruptilble computation of) SimulateMining(PminerID, τ) for this party.

2. If P is not the identity of the ledger functionality, then just output (clock-update, cid, P) to A

Message from the Ledger:

– Upon any input from the ledger, the simulator first inspects I⃗TH (obtained by reading from the ledger
functionality) and obtains the time τ and if τ is an update mini-round, it executes, for each party P that
had I = (read, sid) in this round, the fetch-information step of procedure SimulateMining before
proceedings with the specific actions below.

– Upon receiving (submit, BTX) from ḠBledger where BTX := (tx, txid, τ, P) forward (multicast, sid, tx) to the
simulated network Fdiff in the name of P . Output the answer of Fdiff to the adversary.

– Upon receiving (maintain-ledger, sid,minerID) from ḠBledger, extract from I⃗TH (obtained by reading from
the ledger functionality) the identity Pi that issued this query. If Pi is already done in this mini-round, then
ignore the request. Otherwise, execute (as an interruptible computation) the procedure
SimulateMining(PminerID, τ) for this party.

Simulation of the State Exchange Functinonality:

– Upon receiving (set-delay, sid, n) from the adversary A, relay the input to the simulated W stx-params(FStX),
and return whatever response is received to A

– Upon receiving (submit-new, sid, s⃗t, st) from A on behalf of a corrupted P ∈ Pstx, then relay it to the
simulated W stx-params(FStX), and do the following:

1. When W stx-params(FStX) returns (success, B) give this reply to A.
2. If the current mini-round is an update mini-round, then execute ExtendLedgerState

– Upon receiving (fetch-new, sid) from A (on behalf of a corrupted P), forward the request to the simulated
W stx-params(FStX) and return whatever is returned to A.

Simulator simledg

25

– Upon receiving (send, sid, s, P ′) from A on behalf of some corrupted party P , do the following:
1. Forward the request to the simulated W stx-params(FStX).
2. If the current mini-round is an update mini-round, then execute ExtendLedgerState.
3. Return to A the return value from W stx-params(FStX).

– Upon receiving (swap, sid,mid,mid′) from A, forward the request to the simulated W stx-params(FStX) and
return whatever is returned to A

– Upon receiving (delay, sid, T,mid) from A, forward the request to the simulated W stx-params(FStX) and do
the following:

1. Query the ledger state state
2. Execute AdjustView(state)
3. Return to A the output of W stx-params(FStX)

Simulation of the Network (over which transactions are sent) :

– Upon receiving (multicast, sid, (mi1 , Pi1), . . . , (miℓ , Piℓ)) with list of transactions from A on behalf of some
corrupted P ∈ Pnet, then do the following:
1. Submit the transactions to the ledger on behalf of this corrupted party, and receive the transaction id

txid for each transaction
2. Forward the request to the internally simulated Fdiff, which replies for each message with a message-ID

mid
3. Remember the association between each mid and the corresponding txid

4. Provide A with whatever the network outputs.
– Upon receiving (an ordinary input) (multicast, sid,m) from A on behalf of some corrupted P ∈ Pnet, then

execute the corresponding steps 1. to 4. as above.
– Upon receiving fetch-new, sid) from A on behalf of some corrupted P ∈ Pnet, forward the request to the

simulated Fdiff and return whatever is returned to A.
– Upon receiving (delay, sid, (Tmidi1

,midi1), . . . , (Tmidiℓ
,midiℓ)) from A, forward the request to the simulated

Fdiff and return whatever is returned to A.
– Upon receiving (swap, sid,mid,mid′) from A, forward the request to the simulated Fdiff and return

whatever is returned to A.

Simulation of Corruptions:

– Upon corruption of a party P ∈ P, corrupt the party in all hybrid functionalities and the clock, and
remember this party as corrupted. If the corruption leads to a clock advancement, then execute the sane
steps as above upon a (clock-update, cid, P) from Ḡclock

procedure SimulateMining(P, τ)

Simulate the (interruptible) mining procedure of P of the ledger protocol:
if time-tick τ corresponds to a working mini-round and P is not done yet then

Execute Step 2 of the mining protocol. This includes:
-Define the next state block st using the transaction set bufferP
-Send (submit-new, sid, s⃗t, st) to simulated functionality W stx-params(FStX)
-If successful, store ((s⃗tP ∥ st), (T⃗ ∥ T), (τ ∥ τs)) as the new s⃗tP , T⃗ , τ⃗
-If successful, distribute the new state via W stx-params(FStX)
-If done with all actions, the last action is outputting (clock-update, cid, P) to A

else if time-tick τ corresponds to an update sub-round and P is not done yet then
Execute Step 3 of the mining protocol. This means that if the new information has not been fetched in this

round already, then the following is executed:
-Fetch transactions (tx1, . . . , txu) (on behalf of P) from simulated Fdiff and add them to bufferP
-Fetch states (s⃗t1, T1, τ1) . . . , (s⃗ts, T1, τ1) (on behalf of P) from the simulated W stx-params(FStX) and

update s⃗tP
-If done with all actions, the last action is outputting (clock-update, cid, P) to A

end if

procedure ExtendLedgerState

26

Consider all honest and snychronized players P:
-Let s⃗t be the longest state among all states s⃗tP or states contained in a receiver buffer M⃗P with delay 1

(and hence is a potential output in the next round)

Compare s⃗t
⌈windowSize

with the current state state of the ledger

if |state| > |s⃗t⌈windowSize| then ‘
Execute AdjustView(state)

end if
if state is not a prefix of s⃗t

⌈windowSize
then

Abort the simulation (due to inconsistency)
end if
Define the difference diff to be the block sequence s.t state ∥ diff = s⃗t

⌈windowSize

Let n← |diff|
for each block diffj , j = 1 to n do

Map each transaction tx in this block to its unique transaction ID txid
If a transaction does not yet have a txid, then submit it to the ledger and receive the corresponding txid

from ḠBledger
Let listj = (txidj,1, . . . , txidj,ℓj) be the corresponding list for this block.

Output (next-block, listj) to ḠBledger (receiving (next-block, ok) as an immediate answer)
end for
Execute AdjustView(state ∥ diff)

procedure AdjustView(state)

pointers← ϵ
for each honest and synchronized party Pi do

Using the simulated functionality FStX do the following:
-Let s⃗t be the longest state among s⃗tPi and those contained in the receiver buffer M⃗Pi with delay 1

Determine the pointer pti s.t s⃗t
⌈windowSize

= state|pti
if such a pointer value does not exist then

Abort simulation (due to inconsistency)
end if
if Party Pi has not executed step 3 of the mining protocol in this current mini-round then

pointers← pointers ∥ (Pi, pti)
end if

end for

Output (set-slack, pointers) to ḠBledger
pointers← ϵ
desyncStates← ϵ
for each honest and de-synchronized party Pi do

Using the simulated functionality W stx-params(FStX) do the following:
-Let s⃗t be the longest state among s⃗tPi and those contained in the receiver buffer M⃗Pi with delay 1

if Party Pi has not executed step 4 of the mining protocol in this current mini-round then

Set the pointer pti to be s⃗t
⌈windowSize

= state|pti
pointers← pointers ∥ (Pi, pti)

desyncStates← desyncStates ∥ (Pi, s⃗t
⌈windowSize

)
end if

end for

Output (set-slack, pointers) to ḠBledger
Output (desync-state, desyncStates) to ḠBledger

⊓⊔

27

References

1. C. Badertscher, R. Canetti, J. Hesse, B. Tackmann, and V. Zikas. Universal composition with global subroutines:
Capturing global setup within plain UC. Cryptology ePrint Archive, Paper 2020/1209, 2020.

2. C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas. Ouroboros genesis: Composable proof-of-stake
blockchains with dynamic availability. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018,
pages 913–930. ACM Press, Oct. 2018.

3. C. Badertscher, J. Hesse, and V. Zikas. On the (ir)replaceability of global setups, or how (not) to use a global
ledger. Cryptology ePrint Archive, Paper 2020/1489, 2020.

4. C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger: A composable treatment.
In J. Katz and H. Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, volume 10401 of
Lecture Notes in Computer Science, pages 324–356. Springer, 2017.

5. C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger: A composable treatment.
In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356. Springer,
Heidelberg, Aug. 2017.

6. L. Bahack. Theoretical bitcoin attacks with less than half of the computational power (draft). Cryptology ePrint
Archive, Paper 2013/868, 2013. https://eprint.iacr.org/2013/868.

7. J. Camenisch, S. Krenn, R. Küsters, and D. Rausch. iUC: Flexible universal composability made simple. In S. D.
Galbraith and S. Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 191–221. Springer,
Heidelberg, Dec. 2019.

8. R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):143–
202, Jan. 2000.

9. R. Canetti. Universally composable security. J. ACM, 67(5):28:1–28:94, 2020.
10. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global setup. Cryptology

ePrint Archive, Paper 2006/432, 2006.
11. R. Canetti, A. Jain, and A. Scafuro. Practical UC security with a global random oracle. In G.-J. Ahn, M. Yung,

and N. Li, editors, ACM CCS 2014, pages 597–608. ACM Press, Nov. 2014.
12. R. Cohen, J. Garay, and V. Zikas. Completeness theorems for adaptively secure broadcast. In H. Handschuh and

A. Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023, pages 3–38, Cham, 2023. Springer Nature
Switzerland.

13. C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence of partial synchrony. J. ACM,
35(2):288–323, 1988.

14. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In E. F. Brickell, editor, Advances in
Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages 139–147. Springer,
1992.

15. I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable, 2013.
16. J. A. Garay and A. Kiayias. SoK: A consensus taxonomy in the blockchain era. In S. Jarecki, editor, CT-

RSA 2020, volume 12006 of LNCS, pages 284–318. Springer, Heidelberg, Feb. 2020.
17. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications. In

E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part II, volume 9057 of Lecture Notes in Computer Science, pages 281–310. Springer, 2015.

18. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol with chains of variable difficulty.
In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 291–323. Springer,
Heidelberg, Aug. 2017.

19. J. A. Garay, A. Kiayias, and N. Leonardos. Full analysis of nakamoto consensus in bounded-delay networks.
IACR Cryptol. ePrint Arch., page 277, 2020.

20. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications. J. ACM,
71(4):25:1–25:49, 2024.

21. J. A. Garay, A. Kiayias, R. M. Ostrovsky, G. Panagiotakos, and V. Zikas. Resource-restricted cryptography:
Revisiting MPC bounds in the proof-of-work era. In A. Canteaut and Y. Ishai, editors, Advances in Cryptology
- EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II, volume 12106 of Lecture Notes in Computer
Science, pages 129–158. Springer, 2020.

28

https://eprint.iacr.org/2013/868

22. J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using signatures. J. Cryptol.,
19(2):169–209, 2006.

23. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. In Proceedings
of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, page 291–304, New York, NY,
USA, 1985. Association for Computing Machinery.

24. J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous computation. In Theory
of Cryptography Conference, pages 477–498. Springer, 2013.

25. A. Kiayias and G. Panagiotakos. Speed-security tradeoffs in blockchain protocols. Cryptology ePrint Archive,
Paper 2015/1019, 2015. https://eprint.iacr.org/2015/1019.

26. A. Kiayias, H.-S. Zhou, and V. Zikas. Fair and robust multi-party computation using a global transaction ledger.
In Proceedings, Part II, of the 35th Annual International Conference on Advances in Cryptology — EUROCRYPT
2016 - Volume 9666, page 705–734, Berlin, Heidelberg, 2016. Springer-Verlag.

27. Y. Lindell. How to Simulate It – A Tutorial on the Simulation Proof Technique, pages 277–346. Springer
International Publishing, Cham, 2017.

28. U. Maurer and R. Renner. Abstract cryptography. In B. Chazelle, editor, ICS 2011, pages 1–21. Tsinghua
University Press, Jan. 2011.

29. D. Meshkov, A. Chepurnoy, and M. Jansen. Revisiting difficulty control for blockchain systems. Cryptology
ePrint Archive, Paper 2017/731, 2017. https://eprint.iacr.org/2017/731.

30. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. http://bitcoin.org/bitcoin.pdf.
31. R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. In J.-S. Coron

and J. B. Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, pages 643–673, Cham, 2017. Springer
International Publishing.

32. R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. In J. Coron
and J. B. Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings,
Part II, volume 10211 of Lecture Notes in Computer Science, pages 643–673, 2017.

33. R. Pass and a. shelat. Micropayments for decentralized currencies. In I. Ray, N. Li, and C. Kruegel, editors,
ACM CCS 2015, pages 207–218. ACM Press, Oct. 2015.

34. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems. In D. Gritzalis,
S. Jajodia, and P. Samarati, editors, ACM CCS 2000, pages 245–254. ACM Press, Nov. 2000.

35. F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Comput.
Surv., 22(4):299–319, 1990.

29

https://eprint.iacr.org/2015/1019
https://eprint.iacr.org/2017/731
http://bitcoin.org/bitcoin.pdf

A Property-based Treatment of Variable Difficulty (cont’d)

Previous work in the static, property-based analysis of Bitcoin [17,31] define what it means for
a typical execution to occur by defining bounds on which random variables based on events in the
execution must obey. [19] follows with the same approach.

Their work occurs in a similar model to our work. First, they model the hash functionality as a
random oracle, identical to our approach. They operate in the partial synchronous model, in which
a delay factor ∆ is finite, but unknown to the parties, even during runtime. Parties are permitted
access to a diffusion functionality that enables parties to broadcast messages.

Several important random variables are defined with respect to an execution. Firstly, Dr, which
is to be understood as equal to the sum of the difficulties of all blocks that the honest party
computes at a given round r. Correspondingly, for a set S of rounds, or set J , we define D(S) to
be the sum of the difficulties of all blocks the honest party computes for all rounds in S, that is
D(S) =

∑
r∈S(Dr). nr, as in our work, represents the number of honest parties in the system. Qr

is the maximum difficulty among all blocks computed by the honest parties at a given round r if
no other block was honestly mined during rounds [r, r +∆].

At any given round, the probability that a single miner out of n parties queries successfully to
the oracle at a target T is

f(T, n) = 1− (1− T

2κ
)n ≤ Tn

2κ

On inputs T0, n0, they refer to the value as f(T0, n0) = f . The authors then define the notion of
a typical execution, the idea being that certain bounds can be defined on the random variables, and
that these typical executions occur with overwhelming probability. We highlight their definitions
and resulting theorem toward this end.
Definition 6 ([19]). An insertion occurs when given a chain C with two consecutive blocks B and B′, a block
B∗ is created after B′ is such that B,B∗, B′ form three consecutive blocks of a valid chain. A copy occurs if the same
block exists in two different positions. A prediction occurs when a block extends one with later creation time.

Definition 7 (Typical Execution [19]). An execution E is typical if the following hold.

– For any set S of at least ℓ consecutive good rounds,

(1− ϵ)[1− (1 + δ)γ2f]∆(1/2κ)n(S) < Q(S) ≤ D(S) < (1 + ϵ)1/2κ

– For any set J of consecutive adversarial queries and α(J) =
2(1

ϵ
+ 1

3
)λ

T (J)
,

A(J) <
|J |
2κ

+max(
ϵ|J |
2κ

, τα(J))

B(J) <
|J |
2κ

+max(
ϵ|J |
2κ

, α(J))

– No insertions, no copies, and no predictions occurred in E

Note that n(S) =
∑

r∈S nr

Theorem 3 ([19]). Assuming the ITM system (Z, C) runs for L steps, the probability of the event ”E is not
typical” is bounded by O(L2)(e−λ + 2κ)

Their work then shows that because an execution is typical with overwhelming probability, the
common prefix, chain quality and chain growth properties can be proven. From there, one can show
that with these underlying blockchain properties, we can make guarantees about the behaviour of

30

the application layer. These are most notably the ledger properties Consistency and Liveness. In
our work, we apply these results to the UC setting to enforce that the ideal world specification is
sufficiently restricted enough to be realized by the real world protocol.

Definition 8 ([18]). The common prefix property Qcp with parameter k ∈ N states that for any two parties

P1, P2 holding chains C1, C2 at rounds r1, r2, with r1 ≤ r2, it holds that C
⌈k
1 ⪯ C2

At a high level, the common prefix property guarantees that if a party removes the most recent
k blocks from his version of the blockchain, the resulting blockchain will be the prefix of any other
(honest) party’s blockchain. In other words, all participants will agree on the blocks more than
k-blocks deep. This is instrumental to show that transactions on the blockchain will eventually be
‘settled,’ with all the participants agreeing on its inclusion.

Let viewP
Π,A,Z represent a random variable ensemble that results from the view of a party P

upon completion of an execution of protocol Π, with environment Z and adversary A, with no
auxiliary information passing (e.g, standalone execution.) We omit P from the expression to mean
the concatenation of all party’s views: viewΠ,A,Z .

Definition 9 ([18]). The chain quality property Qcp with parameters µ ∈ R and ℓ ∈ N, states that for any party
P with chain C in viewΠ,A,Z and any segment of that chain of difficulty d such that the first block of the segment
was computed at least ℓ rounds earlier than the last block, the blocks that the honest parties have contributed in the
segment have total difficulty at least µ · d .

At a high level, chain quality guarantees that no adversary will be able to contribute too many
blocks of high difficulty to the blockchain in any large enough segment. This is important to prevent
the adversary from obtaining too much control.

It is shown in [18] that common prefix and chain quality hold with overwhelming probability
(in κ) during the execution of the abstraction of the Bitcoin protocol. To this end, they define
the meaning of a ’typical’ execution, and show that such executions imply the aforementioned
properties will hold.

In the context of implementing a ledger, we are also interested in defining desirable traits at
the application layer. The key distinction is that at the blockchain level, we are interested in the
behaviour of the data structure, where as at the application layer we are interested in how the
selected application behaves on top of the blockchain. Let L represent the ledger that contains the
sequence of transactions that are settled, and L̂ represent the full ledger.

Definition 10 ([18]). A ledger satisfies Consistency, if for any two honest parties P1, P2 reporting L1,L2 at

rounds r1 ≤ r2, it holds that L1 is a prefix of L̂2.

Definition 11 ([18]). A ledger satisfies Liveness with a wait-time parameter u ∈ N when, if a transaction tx

is provided to all honest parties for u consecutive rounds, it holds that for any player P , tx is in L.

Theorem 4 ([19]). For a typical execution in a (γ, (1+δ)γ2m
f

)-respecting environment, the common-prefix
property holds for parameter (ϵm).

Theorem 5 ([19]). For a typical execution in a (γ, (1+δ)γ2m
f

)-respecting environment, the chain quality property
holds with parameters ℓ+ 2∆ and µ = δ − 3ϵ

Theorem 6 ([19]). Suppose that at round u of an execution E an honest party broadcasts a chain of difficulty
d. Then, by round v, every honest party has received a chain of difficulty at least d+Q(S), where S = {r : u+∆ ≤
r ≤ v −∆}

31

Theorem 7 ([19]). For a typical execution in a (γ, (1+δ)γ2m
f

)-respecting environment, consistency is satisfied
by setting the settled transactions to be those reported more than ϵm blocks deep.

Theorem 8 ([19]). For a typical execution in a (γ, (1+δ)γ2m
f

)-respecting environment, Liveness is satisfied for

depth ϵm with wait-time (4γ2+1)ϵm
f

.

B The Ideal Functionalities in Detail

B.1 The Random Oracle Functionality

We use a standard definition for a random oracle, with a κ security parameter. We adopt the
functionality used by Baderscher et al. [4]. In short, the random oracle functionality will internally
store a table of queried values and their hash. If a value is queried that has not been queried
previously, a random value is added to the table and returned.

Initialization :
The functionality initializes the party set P ← ∅. It initializes a function table H ← ∅ (we write H[x] = ⊥ to
denote the fact that no assignment has been made)

Registration :

– Upon receiving (register, sid) from some party P (or from A on behalf of a corrupted P), set
P = P ∪ {P}, and return (register, sid, P) to the caller.

– Upon receiving (de-register, sid) from some party P ∈ P (or from A on behalf of a corrupted P ∈ P), set
P := P \ {P} and return (de-register, sid, P) to the caller.

– Upon receiving (get-registered, sid) from A, the functionality returns the response
(get-registered, sid,P) to A

RO queries :

– Upon receiving (eval, sid, x) from some party P ∈ P (or from A on behalf of a corrupted P ∈ P), do the
following:
1. If H[x] = ⊥ then sample a value of y uniformly at random from {0, 1}κ and set H[x]← y
2. Return (eval, sid, x,H[x]) to P

Functionality Fκ
RO

Additionally, their work describes a wrapper for the random oracle that encapsulates the notion
of q query bounded parties. If the adversary attempts to access the random oracle beyond its allowed
amount, the wrapper ignores the query. Otherwise, it will forward the request to the random oracle.

Initialization :
The functionality manages the variable counter (initially 0) and set the corrupted parties P ′ in the session. For
each party P ∈ P ′ it manages variables countP .
Initially P ′ = ∅ and counter = 0
Registration :

– The wrapper does not interact with the adversary as soon as the adversary tries to exceed its budget of q
queries per corrupted party. Registration-queries and their replies are simply relayed without modifications.

Relaying inputs to the random oracle :

Functionality Wq(Fκ
RO)

32

– Upon receiving (eval, sid, x) from A on behalf of a corrupted party P ∈ P ′, then first execute
Round-Reset. Then, set countP ← countP + 1 and only if countP ≤ q, forward the request to FRO and
return to A whatever FRO returns.

– Any other request from any participant or the adversary is simply relayed to the underlying functionality
without any further action and the output is given to the destination specified by the hybrid functionality.

Standard UC Corruption Handling :

– Upon receiving (corrupt, sid, P) from the adversary, set P ′ ← P ′ ∪ {P}. If P has issues t > 0 random
oracle queries in this round, set countP ← t. Otherwise set countP ← 0.

Procedure Round-Reset :

– Send (clock-read, cid) to Ḡclock and receive (clock-read, cid, τ) from Ḡclock. If |τ − counter| > 0, then set
countP ← 0 for each participant P ∈ P ′ and set counter← τ .

B.2 The Diffuse Functionality

Fdiff is an ideal functionality for multicast, in which the participants are able to broadcast messages
over the network. We use a similar approach to [4], except that we enforce the delay to be set by
the adversary.

Initialization:
The functionality initializes the party set P ← ∅ and a list (of messages) M⃗ ← []. It also maintains a variable
∆ ∈ N, initialized to 0.

Setting Delay:
Upon receiving (set-delay, sid, n) from the adversary A, if n ∈ N and set-delay has never been received by
this functionality, then set ∆ = n. Return (set-delay, sid, ok)

Registration:

– Upon receiving (register, sid) from some party P (or from A on behalf of a corrupted P), set P = P ∪ {P}
and return (register, sid, P to the caller

– Upon receiving (de-register, sid) from some party P (or from A on behalf of a corrupted P), set
P = P ∪ {P} and return (de-register, sid, P) to the caller.

Network Capabilities:

– Upon receiving (multicast, sid,m) from Ps ∈ P (or from A on behalf of Ps if corrupted), where
P = {P1, . . . , Pn} denotes the current party set, do:
1. Choose n new unique message-IDs mid1, . . . ,midn,
2. Initialize 2n new variables Dmid1 := DMAX

mid1 := · · · := Dmidn := DMAX
midn := 1

3. Set M⃗ := M⃗ ∥ (m,mid1, Dmid1 , P1) ∥ · · · ∥ (m,midn, Dmidn , Pn),
4. Send (multicast, sid,m, Ps, (P1,mid1), . . . , (Pn,midn)) to the adversary.

– Upon receiving (fetch, sid) from Pi ∈ P (or from A on behalf of Ps if corrupted):
1. For all tuples (m,mid, Dmid, Pi) ∈ M⃗ set Dmid := Dmid − 1.
2. Let M⃗Pi

0 denote the subvector M⃗ including all tuples of the form (m,mid, Dmid, Pi) with Dmid ≤ 0 (in the

same order as they appear in M⃗). Delete all entries in M⃗Pi
0 from M⃗ .

3. Output M⃗Pi
0 to Pi (if Pi is corrupted, give M⃗Pi

0 to A).

Additional Adversarial Capabilities:

– Upon receiving (multicast, sid, (mi1 , Pi1), . . . , (miℓ , Piℓ) from the adversary with {P1ℓ , . . . , Piℓ} ⊆ P, do:

Functionality Fdiff

33

1. Choose ℓ new unique message-IDs mid1, . . . ,midℓ,
2. Initialize ℓ new variables Dmidi1

:= DMAX
midi1

:= · · · := Dmidiℓ
:= DMAX

midiℓ
:= 1

3. Set M⃗ := M⃗ ∥ (mi1 ,midi1 , Dmidi1
, Pi1) ∥ · · · ∥ (miℓ ,midiℓ , Dmidiℓ

, Piℓ),
4. Send (multicast, sid, (mi1 , Pi1 ,midi1), . . . , (miℓ , Piℓ ,midiℓ) to the adversary.

– Upon receiving (delays, sid, (Tmidi1
,midi1), . . . , (Tmidiℓ

,midiℓ) from the adversary do the following for each

pair (Tmidij
,midij): If D

MAX
midij

+ Tmidij
≤ ∆ and mid is a message-ID registered in the current M⃗ , set

Dmidij
:= Dmidij

+ Tmidij
and set DMAX

midij
:= DMAX

midij
+ Tmidij

; otherwise, ignore this pair.

– Upon receiving (swap, sid,mid,mid′) from the adversary, if mid and mid′ are message-IDs registered in hte
current M⃗ , then swap the triples (m,mid, Dmid, ·) and (m,mid′, Dmid′ , ·) in M⃗ . Return (swap, sid) to the
adversary.

– Upon receiving (get-registered, sid) from A, the functionality returns the response
(get-registered, sid,P) to A

B.3 The Static State Exchange Functionality

Initialization :
The functionality initializes a buffer M⃗ which contains successfully submitted states which have not yet been
delivered to (some parties) in P. It also manages a buffer Nnet of adverbially injected chunk messages (that
might not correspond to valid states).

Submit/receive new states :

– Upon receiving (submit-new, sid, s⃗t, st) from some participant Ps ∈ P, if isvalidstateB(s⃗t ∥ st) = 1 and
s⃗t ∈ TP , then do the following:
1. Sample B according to a Bernoulli-Distribution with parameter pH (or pA if Ps is dishonest).
2. If B = 1, set s⃗tnew ← s⃗t ∥ st and add s⃗tnew to TPs . Else, set s⃗tnew ← s⃗t.
3. Output (success, sid,B) to Ps

4. On response (continue, sid) where P = {P1, . . . Pn} choose n new unique message-IDs mid1, . . . ,midn,
initalize n new variables Dmid1 := DMAX

mid1 := · · · := Dmidn := DMAX
midn := 1, set

M⃗ := M⃗ ∥ (s⃗tnew,mid1, Dmid1 , P1) ∥ · · · ∥ (s⃗tnew,midn, Dmidn , Pn), and send
(submit-new, sid, s⃗tnew, Ps, (P1,mid1), . . . , (Pn,midn)) to the adversary.

– Upon receiving (fetch-new, sid) from a party P ∈ P or A (on behalf of P), do the following:
1. For all tuples (s⃗t,mid, Dmid, P) ∈ M⃗,Nnet set Dmid := Dmid − 1
2. Let M⃗P

0 denote the subvector of M⃗ including all tuples of the form (s⃗t,mid, Dmid, P) where Dmid ≤ 0 (in
the same order as they appear in M⃗ . For each tuple (s⃗t,mid, Dmid, P) ∈ M⃗P

0 add s⃗t to TP . Delete all
entries in M⃗P

0 from M⃗ and send M⃗P
0 to P . If P is corrupted, provide additionally Nnet to the adversary.

Further adversarial influence on the network :

– Upon receiving (send, sid, s⃗t, P ′) from A on behalf of some corrupted P ∈ P, if P ′ ∈ P and s⃗t ∈ TPs ,
choose a new unique message-ID mid, initialize D := 1, add (s⃗t,mid, Dmid, P

′) to M⃗ , and return
(send, sid, s⃗t, P ′,mid) to A. If s⃗t /∈ T , then conduct the same steps except that (s⃗t,mid, Dmid, P

′) is added
to Nnet

– Upon receiving (swap, sid,mid,mid′) from A, if mid and mid′ are message-IDs registered in the current M⃗ ,
swap the corresponding tuples in M⃗ . Return (swap, sid) to A.

– Upon receiving (delay, sid, T,mid) from A, if T is a valid delay, mid is a message-ID for a tuple
(s⃗t,mid, Dmid, P) in the current M⃗ and DMAX

mid + T ≤ ∆, set Dmid := Dmid + T and set DMAX
mid = DMAX

mid + T
– Upon receiving (get-registered, sid) from A the functionality returns the response

(get-registered, sid, P) to A

Functionality FStX(P,∆, pH , pA)

B.4 The Static Ledger Functionality from [4]

34

Party Management:

– Upon receiving (register, sid) from some party P (or from A on behalf of a corrupted P), set
P = P ∪ {P}, set C[τL] = |P|, initialize ptP ← 1, stateP ← ϵ, and τreg

P ← τL. If P is an honest party and if

H = ∅ send (register, cid) to Ḡclock. If P is honest then update I⃗TH and set H ← H∪ {P} and if
additionally τreg

P > 0 holds, set PDS ← PDS ∪ {P}. Return (register, sid, P) to the caller.
– Upon receiving (de-register, sid) from some party P ∈ P (or from A on behalf of a corrupted P ∈ P), set
P ← P \ {P}, H ← H \ {P}, PDS ← PDS \ {P}, and set C[τL] = |P|. If H = ∅, send (de-register, cid) to
Ḡclock. If P is honest then update I⃗TH . Return (de-register, sid, P) to the caller.

Upon receiving forwarded input from the wrapper, do the following:

Honest Party Operations:
If Pi ∈ H then additionally take the following steps:

1. (N⃗ , s′)← ExtendPolicy(I⃗TH , state, NxtBC, buffer; sep). Reset NxtBC← ϵ and store sep ← s′.
2. If N⃗ ̸= ϵ then parse N⃗ = (N⃗1, . . . , N⃗ℓ) and update state← state ∥ Blockify(N⃗1) ∥ · · · ∥ Blockify(N⃗ℓ).
3. For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then buffer← buffer \ {BTX}.
4. If ∃P ∈ H \ PDS s.t ptP /∈ [|state| − windowSize+ 1, |state|], then set ptPk

← |state| for all Pk ∈ H \ PDS .

General Party Operations:
If the input I is a ledger instruction from a party Pi ∈ P (or from A on behalf of a corrupted party Pi ∈ P),
execute the respective code:

- Submitting a transaction: If I = (submit, sid, tx) do the following:

1. Choose a unique transaction ID txid and set BTX← (tx, txid, τL, Pi)
2. if Validate(BTX, state, buffer) = 1, then buffer← buffer ∪ {BTX}.
3. Output (submit, BTX) to A

- Reading the state: If I = (read, sid) then do the following: if Pi ∈ H \ PDS then set
statei := state|min{pti,|state}. Return (read, sid, statei) to the caller.

- Maintaining the ledger state: If I = (maintain-ledger, sid,minerID) and Pi ∈ H and
predict-time(I⃗TH) > τreg

P then send (clock-update, cid) to Ḡclock. Else send I to A.

If the input I is an additional adversarial capability (received on the backdoor tape from A) execute the
respective code:

- The adversary reading the state: If I = (read, sid), then return (state, buffer, I⃗TH) to A.
- The adversarial proposing the next block:
If I = (next-block, (txid1, . . . , txidℓ)), update NxtBC as follows:

1. Set listOfTxid ← ϵ
2. For i = 1, . . . , ℓ do: if there exists a BTX = (tx, txid,minerID, τL, Pi) ∈ buffer with ID txid = txidi

then set listOfTxid := listOfTxid∥ txidi.
3. Finally set NxtBC := NxtBC ∥listOfTxid and output (next-block, ok) to A

- The adversary setting state-slackness: If I = (set-slack, (Pi1 , p̂ti1), . . . , (Piℓ , p̂tiℓ)), with {Pi1 , . . . , Piℓ} ⊆ H
then do the following: If for all Pij ∈ H \ PDS , j ∈ [ℓ] : |state| − p̂tij < windowSize and p̂tij ≥ |stateij |, then
update pti1 := p̂ti1 for every j ∈ |ℓ|. Return (set-slack, ok) to A

- The adversary setting the state for desyncronized parties: If
I = (desync-state, (Pi1 , state

′
i1), . . . , (Piℓ , state

′
i1)), with {Pi1 , . . . , Piℓ} ⊆ PDS then set stateij := state′ij for

each j ∈ [ℓ] and return (desync-state, ok) to A.
- The adversary obtaining the set of registered parties If I = (get-registered, sid), then return
(get-registered, sid,P) to A.

- The adversary corrupting a party : If I = (corrupt, sid, Pi) and predict-time(I⃗TH) > τL then send
(clock-update, cid) to Ḡclock. Else return I to A

Functionality Ḡledger

35

	Introduction
	Preliminaries
	Blockchain Essentials
	 Protocol Resources and Network Assumptions
	Universal Composability Background

	Modeling Bitcoin's Dynamic Participation in the UC Framework
	The Lottery Mechanism
	Implementing the Lottery Mechanism

	The Ledger Functionality with Dynamic Participation
	Bitcoin as a Variable-Difficulty Ledger Protocol
	Protocol Specification
	Protocol Analysis

	Property-based Treatment of Variable Difficulty (cont'd)
	 The Ideal Functionalities in Detail
	The Random Oracle Functionality
	The Diffuse Functionality
	The Static State Exchange Functionality
	The Static Ledger Functionality from BMTZ17

