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Abstract

We propose a Polynomial Commitment Scheme (PCS), called BrakingBase, which allows a
prover to commit to multilinear (or univariate) polynomials with n coefficients in O(n) time.
The evaluation protocol of BrakingBase operates with an O(n) time-complexity for the prover,
while the verifier time-complexity and proof-complexity are O(λ log2 n), where λ is the secu-
rity parameter. Notably, BrakingBase is field-agnostic, meaning it can be instantiated over any
field of sufficiently large size. Additionally, BrakingBase can be combined with the Polynomial
Interactive Oracle Proof (PIOP) from Spartan (Crypto 2020) to yield a Succinct Non-interactive
ARgument of Knowledge (SNARK) with a linear-time prover, as well as poly-logarithmic com-
plexity for both the verifier runtime and the proof size. We obtain our PCS by combining the
Brakedown and Basefold PCS. The commitment protocol of BrakingBase is similar to that of
Brakedown. The evaluation protocol of BrakingBase improves upon Brakedown’s verifier work
by reducing it through multiple instances of the sum-check protocol. Basefold PCS is employed
to commit to and later evaluate the multilinear extension (MLE) of the witnesses involved in
the sum-check protocol at random points. This includes the MLE corresponding to the parity-
check matrix of the linear-time encodable code used in Brakedown. We show that this matrix
is sparse and use the Spark compiler from Spartan to evaluate its multilinear extension at a
random point. We implement BrakingBase and compare its performance to Brakedown and
Basefold over a 128 bit prime field.

*Partially supported by the Prime Minister’s Research Fellowship, India. The work was done when the author was
a research intern at Arithmic labs.



1 Introduction

A Succinct Non-interactive Argument of Knowledge (SNARK) for an NP relation R allows a
prover to convince a verifier that it possesses a (private) witness w corresponding to a public
input x, such that (x, w) ∈ R. The prover achieves this by producing a proof π, where both the
size of π and the verifier’s runtime complexity for checking its correctness are sublinear relative
to the size of the circuit computing R. SNARKs are crucial in numerous real-world applications
where computations must be verified repeatedly by many resource-constrained parties. In such
scenarios, a single resource-intensive party acts as the prover, generating a proof π that asserts
the validity of a required computation. Resource-constrained parties can then quickly verify this
computation by running the verifier algorithm with inputs x and π. If the verifier algorithm ac-
cepts, they can be confident with very high probability that the computation is correct. A classic
example of this concept in action is validity-rollups, which are used to scale layer one blockchains
like Ethereum.

Most SNARKs are constructed by combining information-theoretic protocols known as Polyno-
mial Interactive Oracle Proofs (PIOPs) with a Polynomial Commitment Scheme (PCS). In a PIOP,
the verifier is provided with oracle access to certain polynomials, in addition to receiving the proof
itself. A PIOP becomes concrete with the integration of a PCS, enabling the prover to commit to
a polynomial and subsequently reveal its evaluation at specific points to the verifier in a secure
manner. The parameters of both PIOPs and PCS significantly influence the overall quality of a
SNARK. Specifically, for a circuit of size T that computes R, PIOPs exist that operate over any
field, with a prover runtime of O(T), while the verifier’s runtime and proof complexity remain
O(log T) (for example Spartan [Set20]). However, this is not universally true for PCS, as its perfor-
mance often becomes a critical bottleneck in the efficiency of a SNARK. Furthermore, the security
or efficiency requirements of the PCS may restrict the SNARK to operate over certain types of
fields, limiting flexibility. Our primary contribution in this work is a novel PCS scheme, denoted
as BrakingBase. To provide context for our results, we briefly review the different types of PCS
that have been studied, examining the various considerations involved.

Polynomial Commitment Schemes (PCS) with various trade-offs have been extensively studied in
recent years and can generally be classified along two main axes: (a) trusted vs. transparent setup,
and (b) field-dependent vs. field-agnostic. A PCS with a preprocessed trusted setup involves a
secret trapdoor that must be securely destroyed after generation. In contrast, a transparent setup
requires no secret trapdoors, which can simplify deployment. Examples of PCS with a trusted
setup include KZG [KZG10], Zeromorph [KT24], and KZG-FFT [GNS24]. In comparison, trans-
parent setups are used in schemes such as Bulletproof [BBB+18], Dory [Lee21], FRI [BBHR18],
Ligero [AHIV17], Brakedown [GLS+23], and Basefold [ZCF24]. Additionally, the security or effi-
ciency requirements of a PCS can determine whether it, and by extension the resulting SNARK, is
field-dependent or field-agnostic. Field-dependent PCS can be instantiated only over fields with
specific properties, typically prime fields of large order. For example, KZG and Dory require bi-
linear pairings, restricting their operation to large fields where pairing-friendly elliptic curves can
be defined.

Recently, there has been significant interest in designing PCS that can operate over smaller-sized
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fields [DP23, HLP24]. The motivation behind this is rooted in the observation that witness val-
ues in practical SNARKs tend to be much smaller than the fields they are embedded in, and the
associated constraints on these witnesses can often be expressed over smaller fields. If SNARKs
are restricted to construction over large fields, a substantial embedding cost is introduced. For
instance, in the Jolt zkVM [AST24], most witness values are around 32 bits, yet the Surge PCS
scheme employed in Jolt requires elliptic curves, which necessitate a prime field of 252 bits to
ensure 126 bits of security. Thus, a secure and efficient PCS that can operate over smaller fields,
when combined with a field-agnostic PIOP, can enable the deployment of SNARKs over relatively
smaller-sized fields, yielding significant practical performance improvements.

Brakedown and Basefold introduced the concept of field-agnostic PCS, which can operate over
fields of any characteristic, provided they are sufficiently large. This adaptability allows SNARKs
to be deployed over fields selected based on application-specific constraints, rather than being re-
stricted by the security and efficiency requirements of the PCS. Field-agnostic PCS are commonly
constructed using the following approach: (a) design an Interactive Oracle Proof of Proximity
(IOPP) to verify whether a given vector is close to a predetermined linear error-correcting code,
and (b) derive a PCS from this IOPP. The second step is well-established, as a PCS can be effi-
ciently constructed from an IOPP by using Merkle commitments to secure the prover’s messages.
We propose a new field-agnostic PCS, denoted BrakingBase, based on this paradigm. Below, we
provide a brief overview of existing PCS schemes built on this paradigm and later compare the
performance of BrakingBase with them.

The earliest PCS scheme based on the above approach was derived from the Fast Reed-Solomon
Interactive Proof of Proximity (FRI). This scheme achieves a PCS with a prover runtime of O(n log n)
and verifier runtime and proof complexity of Oλ(log2 n).1 However, for FRI’s prover to be ef-
ficient, the underlying field must contain large multiplicative cyclic subgroups, particularly of
large powers of 2. This makes FRI field-dependent rather than field-agnostic. Although EC-FFT
[BCKL22, BCKL23] reduces this restriction, it raises the prover costs to O(n log2 n). Circle Starks
extend the EC-FFT approach to enable FRI over prime fields of order p, provided p + 1 is divis-
ible by a large power of 2. Basefold introduced the notion of foldable linear codes and provided
an IOPP for them, producing a field-agnostic PCS with a prover runtime of O(n log n) and veri-
fier runtime and proof complexity of Oλ(log2 n).2 Ligero, implicitly, provides an IOPP-based PCS
with prover runtime of O(n log n) and verifier runtime and proof complexity of Oλ(

√
n). While

Ligero’s prover is faster than those of FRI and Basefold, it has a significantly larger proof size and
is field-dependent due to its reliance on an IOPP for RS codes. Ligero++ [BFH+20] further reduces
the verifier runtime and proof complexity of Ligero to Oλ(log2 n) by composing the Ligero PCS
with an inner-product argument from [ZXZS20], though it remains field-dependent. Brakedown
replaces Ligero’s IOPP for RS codes with an IOPP for linear-time encodable codes. It also con-
structs an expander-graph-based, linear-time encodable code that operates over any sufficiently
large field, yielding a PCS with a prover runtime of O(n) and verifier runtime and proof com-
plexity of Oλ(

√
n). Orion[XZS22] and Hyperplonk[CBBZ23] later improved Brakedown’s verifier

1Throughout, we let n be the size of the coefficient vector of the polynomial used in the PCS, and λ be the security
parameter.

2We remark that the commitment protocols of FRI and Basefold run in O(n log n), whereas the evaluation prover
runs in O(n) time.
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PCS Field Agnostic? Commit time Prover time Verifier time Proof size
FRI No O(n log n) O(n) O(λ log2 n) O(λ log2 n)

Ligero No O(n log n) O(n) O
(√

λn
)

O
(√

λn
)

Brakedown Yes O(n) O(n) O
(√

λn
)

O
(√

λn
)

Ligero++ No O(n log n) O(n) O
(

λ log2 n
)

O
(

λ log2 n
)

BaseFold Yes O(n log n) O(n) O(λ log2 n) O(λ log2 n)
BrakingBase Yes O(n) O(n) O(λ log2 n) O(λ log2 n)

Table 1: Asymptotic costs of different PCSes for security parameter λ and a polynomial in k vari-
ables; n := 2k.

complexity to Oλ(log2 n) using general SNARK and proof composition techniques, though they
remain field-dependent.

In summary, Brakedown and Basefold are currently the only two PCS that are field-agnostic. Our
proposed PCS, denoted BrakingBase, leverages both Brakedown and Basefold in combination to
achieve a more performant PCS compared to either of them. The prover in BrakingBase operates
in O(n) time, with the verifier runtime and proof complexity being Oλ(log2 n). Table 1 provides
a performance comparison of BrakingBase with other PCS schemes. Additionally, BrakingBase can
be combined with the PIOP from Spartan to construct a SNARK with a linear-time prover, poly-
logarithmic verifier runtime and proof complexity over any sufficiently large field. Notably, to
our knowledge, this work is the first to achieve a SNARK with both a linear-time prover and poly-
logarithmic proof size across all fields of sufficiently large size. Recently, [BCF+24] introduced
Blaze, a PCS with a linear-time prover and poly-logarithmic proofs over binary fields. However,
this PCS is restricted to fields of characteristic 2; see Section 1.2 for a more detailed comparison.

We organize the remaining paper as follows: In Section 1.1, we present a technical overview of
BrakingBase, and in Section 1.2 we provide a more detailed comparison of BrakingBase with all
the relevant PCS. In Section 3, we give the protocols corresponding to BrakingBase and prove its
correctness. Finally, in Section 4, we compare concretely the performance of BrakingBase with
Basefold and Brakedown.

1.1 Technical Overview

This section provides a high-level overview of our PCS, denoted BrakingBase. Throughout, we
explain BrakingBase as PCS for multilinear polynomials, but the discussion here can be easily
adapted to the setting of univariate polynomials. The prover starts with a multilinear polynomial
in ` variables, defining n := 2`. The goal of the prover is to compute a commitment to this poly-
nomial and subsequently prove that the committed polynomial evaluates to a specified value at
a verifier-chosen point. Throughout this work, we focus on polynomials represented in the La-
grange basis over the set {0, 1}`, that is a polynomial is represented as a vector of its evaluations
over the boolean hypercube. As stated previously, BrakingBase achieves O(n) commitment and
evaluation prover time, and O(λ log2 n) verifier time and proof-complexity. To construct our PCS,
we compose Brakedown’s PCS [GLS+23] with the BaseFold PCS [ZCF24]. Before we proceed, we
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note that for a vector p ∈ Fn, we use p̃ to denote the multilinear extension (MLE) corresponding to
p (see Section 2 for a definition of MLE). We begin by outlining Brakedown’s PCS and then detail
the composition process.

Brakedown Commitment Protocol: The Brakedown PCS leverages a linear error-correcting code
that is computable in linear time. For any vector x, denote its encoding under this code as Enc(x).
To commit to an ` variate multilinear polynomial f , the Brakedown commitment protocol first
represents the evaluations of f over the boolean hypercube {0, 1}` as a matrix A ∈ Fn1×n2 , where
n1, n2 satisfy n = n1 · n2. We assume that n1 and n2 are powers of 2, , with rows and columns of A
indexed by strings in {0, 1}log n1 , and {0, 1}log n2 respectively. The entry of A at row i and column
j, where i ∈ {0, 1}log n1 , and j ∈ {0, 1}log n2 , corresponds to the evaluation of f at the point (i, j). In
the next part of the commitment protocol a matrix C is computed such that each row C(i, ·) is the
encoding Enc(A(i, ·)) for all i ∈ {0, . . . , n1 − 1}. The commitment is then made to the Merkle hash
of C. Note that C ∈ Fn1×ρn2 , where ρ is the reciprocal of the rate of the code.

Brakedown Evaluation Protocol: The evaluation proof of f at (α0, . . . , α`−1) consists of two main
steps: a proximity test and an evaluation check. A subsequent work [DP24] demonstrates that
these two steps can be merged if the evaluation point is chosen uniformly at random; how-
ever, for clarity, we retain the two-step approach. In the proximity test, the Brakedown verifier
sends a randomly chosen vector r ∈ Fn1 to the prover. The prover then responds with a vector
p, which should be the sequence (〈r, A(·, 0)〉 , . . . , 〈r, A(·, n2 − 1)〉), where each entry represents
an inner product of r with columns of the matrix A. The verifier in turn uniformly at random
samples an I ⊆ {0, . . . , n2 − 1} of size Θ(λ) and sends I to the prover. In response, the veri-
fier expects the prover to provide the columns of C for the indices in I; specifically C(·, i) for
al i ∈ I along with their corresponding Merkle proofs. Upon receiving them, it checks all the
Merkle proofs, and that 〈r, C(·, i)〉 is equal to Enc(p)(i) for all i ∈ I. Here Enc(p)(i) denotes
the i-th component of the vector Enc(p)(i). If these checks pass, then with high probability all
rows of C are close to a codeword. For the actual evaluation, the prover sends q, intended to be
(〈αrow, A(·, 0)〉 , . . . , 〈αrow, A(·, n2 − 1)〉), where αrow := ⊗(log n1)−1

i=0 (1− αi, αi). The verifier repeats
the steps of the proximity check with p replaced by q (and with a fresh I). If the checks for q
pass, then with high probability q = (〈αrow, A(·, 0)〉 , . . . , 〈αrow, A(·, n2 − 1)〉). The verifier out-
puts 〈αcol, q〉, where αcol := ⊗`−1

i=log n1
(1− αi, αi); it is easy to see that this is indeed f (α0, . . . , α`−1).

The proof size is max {O(n2), O(λn1)}. Thus, n1, n2 are chosen so as to minimise this maximum
yielding a proof of size O(

√
λn). Also, the verifier’s runtime complexity is equal to Oλ(

√
n) pri-

marily dominated by the computation of Enc(p).

BrakingBase: The commitment protocol of BrakingBase is identical to Brakedown except that we
set n1 = O(log n), and as before n2 = n

n1
. This implies that in the commitment phase the prover

encodes vectors of size n
O(log n) . We will observe later that the choice of n1 guarantees a proof com-

plexity of O(λ log2 n). Conversely, the evaluation protocol of BrakingBase employs proof compo-
sition to achieve poly-logarithmic verifier time and proof-complexity. Although the proof com-
position technique increases the prover’s workload, it remains linear in relation to the size of the
input polynomial’s coefficient vector. The proof composition process is applied consistently for
both the proximity test and the evaluation check. We begin by explaining it for the proximity test.
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In BrakingBase, instead of sending p to the verifier, the prover sends a commitment to (̃p, p′), com-
puted using the BaseFold PCS, where p′ is such that (p, p′) = Enc(p).3 The commitment protocol
of Basefold runs in quasi-linear time in the size of the committed polynomial’s coefficient vector.
Given that the size of the vector (p, p′) is equal to ρ · n2, the evaluation prover takes time O(n)
to commit to (p, p′). Upon receiving the commitment the verifier needs to validate the following
two conditions:

1. For all i ∈ I, 〈r, C(·, i)〉 = (p, p′)(i), and

2. (p, p′) is a codeword.

Item 1 can be efficiently verified using a sum-check protocol, as described below, while the ver-
ification of Item 2 requires much more work and is detailed in the next paragraph. The verifier
samples uniformly at random si ∈ F, for all i ∈ I and defines mask := ∑i∈I si · ei, where ei ∈ Fρ·n2

is the i-th standard basis vector. Then, the prover convinces the verifier using a sum-check proto-
col that

∑
i∈I

si 〈r, C(·, i)〉 = ∑
ḃ∈{0,1}log(ρn2)

m̃ask(ḃ)(̃p, p′)(ḃ).

The LHS in the above expression is explicitly computed by the verifier using the columns of C,
C(·, i) for all i ∈ I, sent by the prover, whereas the sum-check protocol reduces evaluating RHS to

verifying the evaluation of m̃ask and (̃p, p′) at a random point. The evaluation of m̃ask is computed

by the verifier in O(λ log n) time, and the evaluation of (̃p, p′) is verified using the evaluation pro-
tocol of Basefold. The prover in the evaluation protocol of Basefold operates linearly in relation
to the size of the concerned polynomials coefficient vector, whereas the verifier time and proof-

complexity remain poly-logarithmic. This ensures that the claimed evaluation of (̃p, p′) can be
validated with prover running in O( n

log n ) time, and the verifier time and proof-complexity equal

to O(λ log2 n). We remark here that since the columns of C for all column indices in I are sent to
the verifier explicitly, we must set n1 = O(log n) in order to achieve poly-logarithmic proof size.

To verify Item 2 we rely on the parity check matrix of the code. If C is a linear code mapping
messages in Fn2 to codewords in Fρ·n2 , then the parity check matrix of C is an H ∈ Fρn2×(ρ−1)·n2

such that any v ∈ Fρ·n2 is a codeword if and only if vH = 0. Thus Item 2 can be verified by
ensuring that the following polynomial in Equation 1 over ẏ variables is formally zero.4

∑
ḃ∈{0,1}log(ρn2)

(̃p, p′)(ḃ) · H̃(ḃ, ẏ) (1)

It follows from the Schwartz-Zippel lemma that it is sufficient for the verifier to sample a random
u̇ and the prover to demonstrate that

∑
ḃ∈{0,1}log(ρn2)

(̃p, p′)(ḃ) · H̃(ḃ, u̇) = 0.

3Such a p′ exists as the linear code of Brakedown is systematic.
4Here we require ḃ ∈ dlog(ρn2)e but avoid ceil-floor notation for clarity.
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The above relation can be proved using a sum-check protocol which reduces the problem to check-

ing the evaluation of (̃p, p′) and H̃ at a random point. As discussed in the above paragraph the

claimed evaluation of (̃p, p′) can be done using the evaluation protocol of Basefold. It remains to
argue how the verifier can validate the claimed value of H̃ at a random point. Since the code is
generated in the setup phase of the PCS, a commitment to H̃ can be given to the verifier as a part
of its public parameters. H̃ is a multilinear polynomial in log ρ · n2 + log((ρ − 1) · n2) variables
and opening an evaluation of H̃ using an existing PCS (for example Basefold) would be costly in
terms of prover runtime. Specifically, it would prevent achieving a linear-time evaluation prover
for BrakingBase. We get around this problem by showing that H is a sparse matrix, that is, we
show that it has O

(
n

log n

)
non-zero entries. Consequently we use Spark, the sparse polynomial

commitment scheme from [Set20] to commit to H̃. Spark simplifies the evaluation of H̃ by re-
ducing it to the evaluation of a constant number of polynomials, each with coefficient vectors of
size O

(
n

log n

)
, at a random point. These are then committed to and validated using the BaseFold

evaluation procedure.

Thus far, we have described proof composition for the proximity testing step. Since the evaluation
step closely resembles proximity testing, we can apply a similar composition strategy. Specifically,

the prover commits to (̃q, q′), where q′ is such that (q, q′) = Enc(q), and then proves the analogs
of Items 1 and 2. Additionally, the prover must show that q̃(αlog n1 , . . . , α`) = y where y is the
claimed evaluation f (α0, . . . , α`−1). As in the proximity test, each of these requirements reduces to

evaluating (̃q, q′), H̃ at various random points.

Observe that validating Items 1 and 2 in both the proximity test and the evaluation check ulti-
mately reduces to verifying the evaluations of multiple polynomials, each with coefficient vectors
of size O

(
n

log n

)
, at various random points. In the above exposition, we used the BaseFold evalua-

tion protocol to verify each polynomial individually. Instead, we now apply a batched sum-check
protocol (similar to [CBBZ23]) to reduce this task to verifying the evaluations of multiple polyno-
mials at a single random point. We then employ the batched evaluation protocol of BaseFold to
verify all of them simultaneously. This reduction allows us to concretely reduce the proof size.

1.2 Related Work

Comparison with Orion. [XZS22] introduced Orion, a PCS with O(n) commitment and prover
time, Oλ(log2 n) verifier time and proof-complexity. Orion achieves these metrics by combin-
ing the Brakedown PCS with Virgo [ZXZS20], a general-purpose SNARK for arithmetic circuits.
We now briefly compare our results with this PCS. First, since Virgo is not field-agnostic, nei-
ther is Orion. Second, the proof composition in Orion differs from the approach used in this
work; we briefly discuss their composition method here. [XZS22] constructs an arithmetic circuit
that takes p and C(·, i) for all i ∈ I as inputs, computes Enc(p), and checks that for all i ∈ I,

〈r, C(·, i)〉 = Enc(p)(i). They show that this circuit has size O
(

n
log n

)
and depth O(log n). The

prover commits to the inputs of this circuit using FRI and verifies that the circuit outputs 1 us-
ing Virgo. Since this circuit must encode p and the linear code of Brakedown is random, it lacks
a uniform wiring pattern. Because Virgo relies on the GKR protocol, [XZS22] also needs to use
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Spark to commit to the circuit’s wiring predicates. We believe that our approach, which avoids
using a general-purpose SNARK and relies on Spark compiler for only opening a single sparse
polynomials, is a more lightweight method for proof composition.5

Comparison with Blaze [BCF+24]. In a parallel work, [BCF+24] introduced Blaze, a PCS with
O(n) commitment and prover time, as well as O(λ log2 n) verifier time and evaluation proof size,
achieved by combining a Brakedown-style PCS with Basefold. Rather than using Brakedown’s
linear code to commit to the polynomial, Blaze employs a distinct linear-time computable code
called the Repeat, Accumulate, Accumulate (RAA) code. RAA codes offer better relative distance
and faster encoding than Brakedown’s linear code, which allows the verifier to work with fewer
columns C(·, i), resulting in smaller proofs. However, RAA codes are currently only defined over
binary fields, i.e., fields with characteristic 2, meaning Blaze is not field-agnostic. Additionally,
like Brakedown’s linear code, RAA codes rely on a randomized construction. While a randomly
sampled Brakedown code fails to achieve a “good” distance with a probability at most 2−100, a
randomly sampled RAA code has a higher probability of failing to achieve a “good” distance.
For example, the specific RAA code instances in [BCF+24] have failure probabilities ranging from
2−25.4 to 2−92.2. Note that the soundness of the PCS depends on the code having a good distance.

Comparison with Ligero++ [BFH+20]. Ligero++ achieves a PCS with O(λ log2 n) verifier time
and evaluation proof size by composing the Ligero PCS with an inner product argument from
[ZXZS20]. The Ligero PCS is similar to the Brakedown PCS, but it uses the Reed-Solomon (RS)
code instead of the linear-time computable code used in Brakedown, simplifying the composition
step. To commit to f , [BFH+20] write the evaluations of f in a matrix A ∈ F

n
log n×log n, derive C′

from A such that for all i, C′(i, ·) = Enc(A(i, ·)), and then obtain C from C′ such that for all j,
C(·, j) = Enc(C′(·, j)). The commitment to f is constructed in two steps: first, build Merkle trees
corresponding to each column of C, and then use the Merkle roots of the columns to build a fi-
nal Merkle tree whose root serves as the commitment to f . Since the size of every row of C is
O(log n), p will have size O(log n), allowing the verifier to compute Enc(p) independently. Here,
p is the vector sent by the prover in the first step (see Section 1.1 for further details). Addition-
ally, the Merkle roots corresponding to the columns of C serve as commitments to the univariate
polynomial corresponding to the columns of C′. These commitments, along with the inner prod-
uct argument from [ZXZS20], are used to check that for all i ∈ I, 〈r, C(·, i)〉 = Enc(p)(i). This
approach is only possible because of the use of the RS code. However, due to the reliance on the
RS code, the Ligero++ PCS is not field-agnostic, and its commitment time is O(n log n).

2 Preliminaries

Notations. N denotes the set of natural numbers. Throughout we assume n = 2` for ` ∈ N. H
is used to denote a hash function. Let i ∈ [0, n− 1], and let (i0, . . . , i`−1) be its binary representa-
tion. Then given i, we use to-bits(i) to denote its binary representation, and given (i0, . . . , i`−1),
val(i0, . . . , i`−1) = i to denote the decimal value of its corresponding binary string We use F to
denote a finite field, F[X0, . . . , Xn−1] and F≤1[X0, . . . , Xn−1] to denote the set of polynomials and

5A recent work [dHS24] identified a security vulnerability in Orion’s proof composition step and proposed a method
to secure it.
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multilinear polynomials in n variables respectively. A multilinear polynomial f in ` variables is
represented using its n = 2` Lagrange coefficients over the boolean hypercube. In this we view f
as a vector in Fn, whose i-th entry for i ∈ [0, n− 1] is equal to f (to-bits(i)). We use the notation
Oλ(·) to hide poly(λ) factors.

Definition 2.1. Let v ∈ Fn be a vector for n = 2k. Then the multilinear extension of v, denoted by
ṽ, is the unique multilinear polynomial in F[x0, . . . , xk−1] such that ṽ(b0, . . . , bk−1) = v∑k−1

i=0 2ibi
for

all (b0, . . . , bk−1) ∈ {0, 1}k.

Matrices appearing in our PCS scheme are denoted by capital letters A, B, C. Further, for a matrix
A ∈ Fn×m and i ∈ [n], j ∈ [m], A(i, ·) denotes its i-th row, A(·, j) denotes its j-th column, and
A(i, j) denotes its (i, j)-th entry. We shall use bold lowercase letter to denote vectors. For a vector
v, we shall denote its i-th entry by vi or vi. We shall denote vectors of variables as ẋ, ẏ, etc. and
points in the boolean hypercube as ḃ etc. For any ` ∈ N, we define a multilinear polynomial ẽq
such that ẽq(ȧ, ḃ) = 1 for any ȧ, ḃ ∈ {0, 1}` if and only if ȧ = ḃ.

Linear codes. A linear code of size n and dimension k is a k dimensional sub-space C of Fn. Let
v1, . . . , vk ∈ C be a basis of C and define E ∈ Fk×n to be the matrix with rows v1, . . . , vk. Then E
is said to be the generating matrix of C; it maps messages in Fk to codewords in C. We shall use
Enc(u) to denote the codeword corresponding to the message u ∈ Fk. The rate of C is the ratio k

n ;
throughout this article we shall use ρ to denote the inverse of the rate. For any two u, v ∈ Fn, let
∆(u, v) denote the Hamming distance between u and v; i.e. the number of coordinates in which
u and v differ. Then the distance of C is defined to be d := minu 6=v∈C ∆(u, v). Observe that since
C is a vector space, d = minv 6=0∈C {i : vi 6= 0}. We shall use δ := d

n to denote the relative distance
of C. A code of size n, dimension k, and distance d is generally referred to as an (n, k, d) code.
An (n, k, d) code C is said to be systematic if for all u ∈ Fk, there exists a u′ ∈ Fn−k such that
Enc(u) = (u, u′).

Extend {v1, . . . , vk} to a basis {v1, . . . , vn} of Fn. Define H ∈ F(n−k)×n to be the matrix whose rows
are vk+1, . . . , vn. Observe that a v ∈ Fn is in C if and only if vH = 0. H is called the parity check
matrix of C.

We now mention some of the lemmas that shall be used crucially to prove the knowledge sound-
ness of the PCS.

Lemma 2.2 (Lemma 12.1 of [Tha22]). Let X, Y be jointly distributed random variables and E(X, Y) be an
event such that PrX,Y[E(X, Y)] ≥ ε. Let S :=

{
x : PrY[E(X, Y)|X = x] ≥ ε

2

}
. Then PrX[X ∈ S] ≥ ε

2 .

Lemma 2.3 (Lemma 9 of [ZCF24]). Let Φ :M∗ → {0, 1} be any predicate such that for any (m1, . . . , mi) ∈
Mi where Φ(m1, . . . , mi) = 1,

Prmi+1∈RM[Φ(m1, . . . , mi+1) = 1] ≥ 1− negl(λ).

Let N = poly(λ). For any ε > 0, there exists an extractor Ext which runs in time T ∈ O
(

λ
ε

)
, and given

oracle access to any algorithm A where Prm∈RM[A(m) = 1] ≥ ε, the following holds:

Pr
[

Φ(m1, . . . , mN) = 1 ∧
A(mi) = 1 ∀i ∈ [N]

∣∣∣ (m1, . . . , mN)← ExtA
]
≥ 1− T · negl(λ).
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Lemma 2.4 ([AHIV17]). Let C ⊂ Fn be any linear code with relative distance δ and v1, . . . , vm ∈
Fm be such that their closest codewords in C are u1, . . . , um ∈ Fm. Further suppose that for E :={

j ∈ [n] : ∃i ∈ n s.t. vi,j 6= ui,j
}

, |E| ≤ δ
3 n. Then

Prr1,...,rm∈RF

[
∑

i∈[m]

rivi has distance ≥ |E| from any codeword in C
]
≥ 1− |E|+ 1

|F| .

2.1 Interactive Oracle Proofs and Arguments of Knowledge

Interactive Proofs for a relation R enables any prover to convince a verifier that it possesses a
(private) witness w corresponding to publicly known x such that (x, w) ∈ R. Polynomial In-
teractive Oracle Proofs (IOPs) are special interactive proofs where the prover only sends poly-
nomial oracles to the verifier, that is the messages of the prover constitute of bounded degree
polynomials, and the verifier only queries them at desired points. Given a pair of probabilistic
interactive algorithms P, V, we denote 〈P, V〉 (x; w) as the output of the interaction of P and V,
where x is publicly known, and w is privately known to P. Let R = {(x, w)} be a relation and
L = {x | ∃w such that (x, w) ∈ R} be the language corresponding to it. Next, we formally define
Arguments of Knowledge (AoK).

Definition 2.5 (Succinct Argument of Knowledge). An Argument of Knowledge (AoK) for a rela-
tion R constitutes of a probabilistic algorithm Gen(1λ) that takes as input the security parameter
λ and outputs public parameters pp, together with a pair of probabilistic algorithms 〈P, V〉 satis-
fying:

1. Completeness: For all λ ∈N, pp← Gen(1λ), and for every (x, w) ∈ R the following holds:

Pr {〈P, V〉 (pp, x; w) = 1} = 1

2. Knowledge-Soundness: For any pair PPT algorithms P1, P2 there exists an PPT algorithm Ext
such that the following holds:

Pr
{

(x, w) /∈ R
〈P2, V〉 (pp, x; st) = 1

∣∣∣ pp← Gen(1λ), (x, st)← P1(pp, 1λ)
w← ExtP2(pp, )

}
= negl(λ)

3. The AoK is succinct if the communication complexity between the prover and the verifier,
and the verifier run-time is poly-logarithmic in the size of the circuit corresponding toR.

Remark 1: The notion of succinctness we consider is stricter than previous works like [AHIV17,
GLS+23], where the requirement is only sub-linear. We work with the above definition as the
AoK’s we propose in this work has poly-logarithmic proof-size and verifier tun-time.

Remark 2: It is well-known (see [BCS16]) how to construct AoK’s from polynomial IOPs using
Merkle commitments. Our PCS, BrakingBase is in principle an IOP from which an AoK is ob-
tained using these standard techniques.

Remark 3: An AoK is public coin if the random bits sampled by the verifier is public. Succinct
Non-interactive Argument of Knowledge (SNARK) is a one-round public-coin AoK, that is, the
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prover sends the message to the verifier and consequently verifier outputs either 1 or 0. The pro-
tocols we design in this work are public-coin interactive arguments rendered into a SNARK using
a Fiat-Shamir transform in the Random Oracle Model (ROM).

Remark 4: We do not consider zero-knowledge in this work, as we believe it can be attained using
minor adaptations and standard techniques to our protocols.

2.2 Polynomial Commitment Scheme

A Polynomial Commitment Scheme (PCS) for multilinear polynomials is a tuple of four protocols
pc = (Gen,Commit,Open,Eval) defined as follows:

1. pp ← Gen(λ, `): Gen takes as input the security parameter and the number of variables in a
multilinear polynomial and outputs the public parameters pp.

2. µ ← Commit(pp, f ): Commit takes as input the the public parameters pp and a multilinear
polynomial f ∈ F≤1[X0, . . . , Xn−1] and outputs a commitment to it, denoted µ.

3. b ← Open(pp, f , µ, u): Open takes as input the the public parameters pp, a multilinear poly-
nomial f ∈ F≤1[X0, . . . , Xn−1], a commitment µ and an opening hint u, and outputs 1 if µ is
a commitment to f and 0 otherwise.

4. b ← Eval 〈P, V〉 (pp, µ, α̇, y; f ): Eval is an interactive protocol between a probabilistic prover
P and a verifier V. The public inputs are the public parameters pp, a commitment µ, a point
α̇ ∈ F` and a value y ∈ F. The prover additionally receives the Lagrange coefficients of the
multilinear polynomial f ∈ F≤1[X0, . . . , Xn−1]. P attempts to convince V that f (α̇) = y, and
V outputs 1 if it is convinced and 0 otherwise.

pc = (Gen,Commit,Open,Eval) must additionally satisfy binding, completeness, and knowledge-
soundness as given below.

Definition 2.6 (Binding). For any PPT adversary A, and ` ≥ 1 the following holds:

Pr
{

pp← Gen(1λ, `), (µ, f0, f1)← A(pp, `)
Open(pp, µ, f0) = b0, Open(pp, µ, f1) = 1, and f0 6= f1

}
= negl(λ)

Definition 2.7 (Completeness). For any f ∈ F≤1[X0, . . . , Xn−1] the following holds:

Pr
{
pp← Gen(1λ, `), µ← Commit(pp, f ), 1← Open(pp, µ, f ),

Eval 〈P, V〉 (pp, µ, α̇, y; f ) = 1 and f (α̇) = y

}
= 1

Definition 2.8 (Knowledge-Soundness). Eval is an AoK for the following relation given pp ←
Gen(λ, `):

R =
{
(µ, α̇, y; f ) | f ∈ F≤1[X0, . . . , Xn−1], α̇ ∈ F`, y ∈ F, f (α̇) = y

}
We additionally require the PCS to be succinct as defined below.

Definition 2.9 (Succinctness). In a succinct PCS the size of the commitment µ is poly(λ) ·O(1),
and Eval is a succinct AoK for the relation in Definition 2.8.
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2.3 BaseFold PCS

Recently [ZCF24] proposed a PCS for multilinear polynomials, BaseFold, which can be thought
of a generalization of the FRI PCS. They define foldable linear codes which generalize the Reed-
Solomon code used by FRI and then show how to obtain a PCS from any foldable linear code with
a ‘good’ distance. We now briefly describe foldable linear codes and their PCS.

Let C0 be an (n0, k0, d0) linear code. A foldable linear code C` with C0 as the base code is defined
recursively as follows: Let E0 be the generator matrix for C0. For all i ∈ [`], let ni = 2ni−1 and
ki = 2ki−1. Let Ti, T′i ∈ Fni−1×ni−1 be some diagonal matrices. Then Ci is defined to be the code with
size ni and dimension ki with the generator matrix

Ei :=
[

Ei−1 Ei−1
Ei−1Ti −Ei−1Ti.

]
.

[ZCF24] show that if for all i ∈ [`], Ti, T′i are picked independently and uniformly at random
from F, then C` has a good distance (provided that |F| is large). Notice that the Reed-Solomon
code is also a foldable code. Further using a recursive encoding procedure similar to that of the
Reed-Solomon code, a codeword can be computed in time O(n` log n`). For ease of exposition, we
assume for the rest of this section that k0 = 1.

Let f be a multilinear polynomial with degree `, let f be its coefficient vector, and let c` denote
codeword in C` corresponding to f. Then commitment to f is the root of the Merkle tree with en-
tries of c` as leaves. Let us denote this commitment by c`. Let α̇ ∈ F` and suppose that the prover
wants to prove that f (α̇) = y. The evaluation procedure of BaseFold can be divided into two
phases, a commitment phase and a query phase. The commitment phase is an ` round protocol
with a folding process and a sum-check running in parallel. We first describe the folding process
and then the sum-check.

In the first round, the verifier sends a random challenge r`−1 to the prover. Let c(1)` and c(2)` denote
the first and second half of c` respectively. Note that because of the foldable nature of the code,
there exist c′, c′′ ∈ C`−1 such that c(1)` = c′ + T`c′′ and c(2)` = c′ + T′`c

′′. Also, c′, c′′ can be easily
computed from c`, T`, T′` in O(n`) by solving n`−1 systems of linear equations in two variables.
The prover computes c′, c′′, defines c`−1 := c′+ r`−1, and sends c`−1, the root of a Merkle tree with
entries of c`−1 as leaves to the verifier. In general, in the i-th round the above process is repeated
but with the random challenge r`−i and with c`−i+1 in place of c`. Observe that if the prover were
honest, then c0 is the codeword in C0 corresponding to f (ṙ) where ṙ = (r0, . . . , r`−1).

Now f (α̇) = ∑ḃ∈{0,1}` ẽq(α̇, ḃ) f (ḃ). For a moment, let us assume that the prover computed
c`−1, . . . , c0 honestly. Then the prover can prove that f (α̇) = y as follows: it proves that y =

∑ḃ∈{0,1}` ẽq(α̇, ḃ) f (ḃ) using a sum-check protocol. If this sum-check is run in parallel with the
folding process described above and with the same randomness, then after the last round of sum-
check, the verifier will have y′ := ẽq(α̇, ṙ) · f (ṙ). It can then verify that c0 is indeed y′

ẽq(α̇,ṙ) . If as
assumed c`−1, . . . , c0 are computed honestly, then this convinces the verifier that f (α̇) = y. It is
then verified in the query phase that c`−1, . . . , c0 are indeed computed honestly. The query phase
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of BaseFold is the same as that of the FRI PCS; for all i ∈ [`], the verifier queries random coordi-
nates in ci and verifies that these are computed honestly from the two appropriate coordinates of
ci+1.

3 A PCS with Linear-Time Prover and Poly-Logarithmic Verifier

In this section, we present a novel PCS BrakingBase. The commitment and evaluation prover
of BrakingBase takes time linear in the size of the coefficient vector of the witness polynomial,
whereas the communication complexity and the verifier run-time of BrakingBase is poly-logarithmic
in the the size of the coefficient vector of the witness polynomial. Hence, BrakingBase is a suc-
cinct PCS. We describe BrakingBase for multilinear polynomials but it can be easily adapted to
the case of univariate polynomials. In Section 3.1, we present the generator algorithm that given
the security parameter outputs the required public parameters, and in Section 3.2, we present the
commitment and open algorithms. Finally, in Section 3.3, we present the evaluation protocol for
BrakingBase. In conclusion, in this section we present the BrakingBase succinct PCS scheme, which
we formally note in the theorem below, and prove it in Appendix A.

Theorem 3.1. The tuple of protocols (BrakingBase.Gen,BrakingBase.Commit,BrakingBase.Open,BrakingBase.
Eval) presented in Protocols 1, 2, 3, 4 together form a succinct PCS. For a multilinear polynomial in k vari-
ables and n = 2k, the commitment time and the time complexity of the evaluation prover of the PCS are
O(n), while the verifier complexity and proof size are O(λ log2 n).

3.1 The Pre-processing Phase

Algorithm 1 generates the public parameters required in BrakingBase. Let H ← G(λ) be a hash
function with λ bits of security . Algorithm 1 takes as input ` the bound on the number of variables
in the set of multilinear polynomials. It outputs public parameters pp = (ppP , ppV ). ppP is given
to the prover and ppV is given to the verifier. In Step 1, E0 ∈ F

n
`×ρ1

n
` is constructed recursively by

sampling adjacency matrices of degree d bipartite expander graphs of progressively smaller sizes.
Here, n = 2` and ρ1 is the rate of the linear code. Further, let δ1 be the relative distance of this
linear code. It is shown in [GLS+23] that δ1 is a constant as long as the sampled bipartite graphs
are ‘good’ expander graphs (see Section B for details).

In Steps 2-6, the algorithm constructs encoding matrices for the Basefold code, following a recur-
sive approach with rate ρ2. The smallest encoder matrix E1 ∈ F2×ρ2 is generated first, where each
entry is sampled uniformly at random for a message length of 2. Then, for each i ∈

{
2, . . . , log cn

`

}
(with c an absolute constant), the encoding matrix Ei is constructed using ni := 2i and ki := ρ2ni
as follows:

1. A random matrix Ti ∈ Fki×ki is sampled.

2. The encoding matrix Ei is set by expanding Ei−1 as follows:

Ei :=
[

Ei−1 Ei−1
Ei−1Ti −Ei−1Ti.

]
.
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The Basefold evaluation procedure requires the verifier to access random entries of Ti for i ∈{
2, . . . , log cn

`

}
. To facilitate this, Step 5 constructs a Merkle tree mti using the hash function H.

The leaves of mti are set to the hashes of the non-zero entries of Ti. The root of mti, denoted tcTi is
the commitment to Ti.

In Step 7, the algorithm computes commitments to certain polynomials that enable evaluating the
MLE of the parity check matrix corresponding to E0 at a random point. We denote the parity check
matrix as H and elaborate on this next. The Eval protocol of BrakingBase requires the verifier to
check a linear relation between two committed vectors specified by H, and this eventually requires
the prover to open the MLE H̃ at a random point. We show in Appendix B that H is sparse; in par-
ticular, it has at most cn

` non-zero entries, where c ≤ 32 is a constant. Thus we can use the sparse
polynomial commitment scheme from Spartan [Set20] to commit to the parity check matrices. The
sparse PCS enables reducing the problem of evaluating a multilinear polynomial in 2 log n

` vari-
ables to evaluating 9 polynomials in log cn

` variables (see Section C for details of the sparse PCS).
Among these 9 polynomials, 7 polynomials are only dependent on the entries of H. Hence, these
7 polynomials, denoted H̃row, H̃col, H̃val, H̃read_ts,row, H̃final_ts,row, H̃read_ts, col, H̃final_ts,col are com-
mitted to using the Basefold.Commit algorithm. We note here that the Basefold.Commit uses H to
execute its hash based commitments (details in Section 2.3).

Algorithm 1 BrakingBase.Pre-processing
Input: ` the bound on the number of variables in the set of multilinear polynomials.

1. Let n = 2`. Compute E0 ∈ F
n
`×ρ1

n
` the encoding matrix of Brakedown’s [GLS+23] linear code

for messages of length n
` .

/* Generate encoding matrices for Basefold’s [ZCF24] code for appropriate lengths. */
2. Sample a random E1 ∈ F2×2ρ2 .
3. for i ∈

{
2, . . . , log cn

`

}
do

4. Let ni := 2i, ki := ρ2ni. Sample a random diagonal matrix Ti ∈ Fki×ki . Define

Ei :=
[

Ei−1 Ei−1
Ei−1Ti −Ei−1Ti.

]
5. Use hash function H to build a Merkle tree mti constituting of the diagonal elements of Ti

as its hashed leaves, and denote tcTi as its root.
6. end for
7. Let H ∈ Fρ1

n
`×(ρ1−1) n

` be the parity check matrix corresponding to E0. Use the the sparse poly-
nomial commitment scheme spark from [Set20] to commit to H̃ (in Section B we show that H
has sparsity at most cn

` ). spark uses a mulitlinear PCS as blackbox, and in our case requires pre-
processed commitments to 7 multilinear polynomials of length at most cn

` (see Section C for
details). These 7 polynomials are denoted H̃row, H̃col, H̃val, H̃read_ts,row, H̃final_ts,row, H̃read_ts, col,
H̃final_ts,col and let tcrow, tccol, tcval, tcread_ts,row, tcfinal_ts,row, tcread_ts, col, tcfinal_ts,col be their com-
mitments computed using Basefold.

8. Let ppP = {E0, . . . , Elog cn
`

, H}, and ppV = {tcT1 , . . . , tcTlog cn
`

, tcrow, tccol, tcval, tcread_ts,row,

tcfinal_ts,row, tcread_ts, col, tcfinal_ts,col}. Output pp = (ppP , ppV ).
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3.2 The Commit and Open Algorithms

Algorithm 2 commits to a polynomial f in ` variables. It takes as input the public parameters
ppP , and the Lagrange coefficients of f , and outputs a commitment c to f . We assume that f is
itself a vector in Fn constituting of its Lagrange coefficients ordered as given in Section 2. In Step
1, the algorithm computes a matrix A ∈ F`× n

` using the Lagrange coefficients of f ; the Lagrange
coefficients populate A in row-major fashion, that is, the first n

` entries constitute the first row, the
next n

` entries constitute the second row and so on. In Step 2, the matrix C ∈ F
n
`×ρ1

n
` is computed

by setting C(i, ·) = A(i, ·) · E0 for all 0 ≤ i < `. Finally in Step 3, the the columns of C are hashed
into the leaves of the Merkle tree mtC using H, and the root of mtC, denoted c is the commitment
to f that is given as output by the algorithm.

Algorithm 2 BrakingBase.Commit

P ’s input: ppP the public parameters, and f a multilinear polynomial in ` variables.
Output: Commitment tc to f .

1. Compute A ∈ F`× n
` by arranging the Lagrange coefficients of f in row-major fashion.

2. Compute C ∈ F
n
`×ρ1

n
` such that ∀i ∈ n

` , C(i, ·) := A(i, ·) · E0. Here E0 is part of ppP , and is as
described in Section 3.1.

3. Compute the Merkle tree whose leaves are hashes of the columns of C, and output its root c
as the commitment f .

Algorithm 3 is the opening protocol for BrakingBase. It takes as input ppP the public parameters, f
a multilinear polynomial in ` variables, c the commitment to f , and p a set of distinct Merkle paths
against c, and outputs 1 if it accepts, and 0 otherwise. Steps 1-2 of the algorithm are the same as
BrakingBase.Commit. In Step 3, the algorithm checks that paths in p are consistent with c. The sets
J and J′ are as defined in Step 4. Let C′ be the matrix such that for j ∈ J, C′(·, j) = pj, and for j /∈ J,
C′(·, j) = 0. It is easily seen that the check in Step 4 ensures that ∆(C, C′) ≤ δ1

2 , where δ1 is the
distance of the linear code corresponding to E0.

Algorithm 3 BrakingBase.Open
P ’s input: ppP the public parameters, f a multilinear polynomial in ` variables, c the commitment
to f , and p a set of distinct Merkle paths against c.
Output: 1 if accept and 0 if reject.

1. Compute A ∈ F`× n
` by arranging the Lagrange coefficients of f in row-major fashion.

2. Compute C ∈ F
n
`×ρ1

n
` such that ∀i ∈ n

` , C(i, ·) := A(i, ·) · E0.
3. Check that the Merkle paths in p are consistent with tc.
4. Let J ⊂ {0, . . . , ρ1 · n− 1} be the set of of indices corresponding to which we have paths in p.

Hence, for every j ∈ J, we have pj ∈ p such that pj,col-data is the data hashed to obtain the leaf
in pj. Now, let J′ =

{
j | j ∈ J, pj,col-data = C(·, j)

}
. If |J′| ≥ δ1

2 then output 1 and 0 otherwise.
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3.3 The evaluation phase

Protocol 4 states the evaluation protocol of BrakingBase. The public input of the protocol is (pp, c, α̇, y),
where (ppP , ppV ) are the public parameters of the protocol generated by BrakingBase.Gen, c is the
commitment to a polynomial f ∈ F≤1[X0, . . . , X`−1], α̇ ∈ F` and y ∈ F. The public input is given
as input to both the prover P and the verifier V ; P and V receive ppP and ppV parts of the pp
respectively. The prover additionally receives the Lagrange coefficients of f . As part of Theorem
3.1, we show that Protocol 4 is a succinct AoK for the following relation:

R = {(c, α̇, y; f ) | f ∈ F≤1[X0, . . . , Xn−1], pp← BrakingBase.Gen(λ),

c← BrakingBase.Commit(pp, f ), α̇ ∈ F`, y ∈ F, f (α̇) = y}.

The evaluation protocol conceptually has two parts: proximity test, and evaluation test. Both of
them are very similar and are executed in parallel. The goal of proximity check is to ensure that
all the rows of C (see Algorithm 2, Step 2) are close to codewords, and the evaluation test is the
actual evaluation protocol. The proximity test can be avoided if α̇ is sampled uniformly at random
from F` [DP24]. Next, we explain Protocol 4. We note that Protocol 4 and its explanation below
use objects defined in Sections 3.1, and 3.2.

Steps 1-3: In Step 1, V samples an r ∈ F` uniformly at random and sends it P . In Step 2 P com-
putes α = ⊗log `−1

i=0 (1− α̇`−i, α̇`−i). At this step, P also computes p := r · A ∈ F
n
` , q := α · A ∈ F

n
`

and p′, q′ ∈ Fρ1·( n
`−1) such that (p, p′) = p · E0, (q, q′) = q · E0. Since the linear code correspond-

ing to E0 is systematic, such p′ and q′ exist. In Step 3 the polynomials p̃, p̃′, q̃, q̃′ are committed
to using the Basefold.Commit procedure.6 The commitments to p̃, p̃′, q̃, q̃′ are denoted cp, cp′ , cq,
cq′ respectively. At this point in the protocol, V has two objectives: a) check (p, p′) and (q, q′) are
indeed the linear combinations of the rows of C computed using the elements of r and α, respec-
tively, b) check (p, p′) and (q, q′) are indeed encodings of p and q respectively. Steps 4-8 and Steps
9-13 correspond to checking (a) and (b) respectively.

Steps 4-7: Checking (a) is accomplished by sampling an I ⊆
{

0, . . . , ρ1 · n
` − 1

}
uniformly at ran-

dom of size Θ(λ) (see Step 4), and ∀i ∈ I, verifying that (p, p′)i = 〈r, C(·, i)〉, (q, q′)i = 〈α, C(·, i)〉.
The latter part is checked in Step 6 using two sum-check protocols running in parallel and with the
same randomness as explained next. Before that, we note that in Step 5, the i-th column of C and
its associated Merkle proof is sent by P to V , and V in turn checks that C(·, i) is consistent with
the commitment c known to it. In Step 6, V samples si ∈r F ∀i ∈ I and sets mask := ∑i∈I si · ei.
Here ei ∈ Fρ1· n` is the i-th standard basis vector. Then, P and V engage in sum-check protocols to
verify that

∑
i∈I

si 〈r, C(·, i)〉 = ∑
ḃ∈{0,1}log(ρ1 ·

n
`
)

m̃ask(ḃ)(̃p, p′)(ḃ)

and
∑
i∈I

si 〈α, C(·, i)〉 = ∑
ḃ∈{0,1}log(ρ1 ·

n
`
)

m̃ask(ḃ)(̃q, q′)(ḃ).

6The polynomials are supposed to be in cn
` variables and the commitment is computed by encoding their evaluation

vectors using E cn
`

.
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The verifier can compute the left-hand side (LHS) of the above equations succinctly because it has
knowledge of r, α, si, and C(·, i) for every i ∈ I. On the other hand, the right-hand side (RHS)

involves evaluating the polynomials m̃ask(ẋ) · (̃p, p′)(ẋ), and m̃ask(ẋ)(̃q, q′)(ẋ) over the boolean
hypercube. The verifier validates the RHS in the above equations by engaging in a sum-check pro-
tocol with the prover P . The sum-check protocol eventually reduces the task of verifying these

equations to checking the evaluations of m̃ask(ẋ), (̃p, p′)(ẋ), and (̃q, q′)(ẋ) at a random point β̇. In
Step 7, P provides the evaluations of these polynomials at β̇, which the verifier will use to com-
plete the sum-check protocol. However, the final verification of these evaluations is deferred to
Step 14.

Steps 8-9: In order to check (p, p′) and (q, q′) are indeed encodings of p and q respectively, it is
sufficient to check

(p, p′) · H = 0 (2)
(q, q′) · H = 0 (3)

where H ∈ F
ρ1n
` ×(ρ1−1) n

` is the parity check matrix of the code corresponding to E0. The MLE of H
is expressed with log(ρ1 · n

` ) variables in ẋ, and log( n
` ) variables in ẏ. The Lagrange basis in ẋ and

ẏ variables are used to index the rows and columns of H respectively. Hence, Equations (4) and
(5) hold if and only if the following equations hold respectively:

∑
ḃ∈{0,1}log(ρ1 ·

n
`
)

(̃p, p′)(ḃ) · H̃(ḃ, ẏ) = 0 (4)

∑
ḃ∈{0,1}log(ρ1 ·

n
`
)

(̃q, q′)(ḃ) · H̃(ḃ, ẏ) = 0 (5)

V checks this by sampling a u̇ ∈ F
n
` uniformly at random in Step 8, and checking

∑
ḃ∈{0,1}log(ρ1 ·

n
`
)

(̃p, p′)(ḃ) · H̃(ḃ, u̇) = 0 (6)

∑
ḃ∈{0,1}log(ρ1 ·

n
`
)

(̃q, q′)(ḃ) · H̃(ḃ, u̇) = 0 (7)

It is easy to see that Equations (4), and (5) imply Equations (6) and (7) respectively, whereas a sim-
ple argument using the Schwartz-Zippel lemma shows that the other direction holds with high
probability over the random choice of u̇ (see Proof of Lemma A.2 in Appendix A). Equations (6)
and (7) are checked using sum-check protocols running in parallel, where the sum-check poly-

nomials are (̃p, p′)(ẋ) · H̃(ẋ, u̇) and (̃q, q′)(ẋ) · H̃(ẋ, u̇), respectively. At the end of the sum-check

protocols, V needs to check the evaluations of (̃p, p′)(ẋ), (̃q, q′)(ẋ), and H̃(ẋ, u̇) at a random point
say γ̇ ∈ Flog(ρ1· n` ). Since ρ1 < 2, we have that γ̇ ∈ Flog( n

` )+1. Letting γ̇ = (γ0, . . . , γlog( n
` )
), it is

easily seen that
(

p̃, p′
)
(γ̇) and

(
q̃, q′

)
(γ̇) can be evaluated using the evaluations of p̃, p̃′, q̃, and

q̃′ at (γ0, . . . , γlog( n
` )−1) as follows:(

p̃, p′
)
(γ̇) = (1− γlog( n

` )
) · (p̃(γ0, . . . , γlog( n

` )−1)) + γlog( n
` )
· (p̃′(γ0, . . . , γlog( n

` )−1))
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(
q̃, q′

)
(γ̇) = (1− γlog( n

` )
) · (q̃(γ0, . . . , γlog( n

` )−1)) + γlog( n
` )
· (q̃′(γ0, . . . , γlog( n

` )−1))

Hence, checking evaluations
(

p̃, p′
)

, and
(

q̃, q′
)

at γ̇ is reduced to checking the evaluations of

p̃, p̃′, q̃, and q̃′ at (γ0, . . . , γlog( n
` )−1). To validate the evaluation of H̃ at (γ̇, u̇) the protocol lever-

ages the sparsity of H, which contains at most c · n
` non-zero entries (where c is a constant). In

Step 10, P and V employ the Spark commitment scheme from [Set20]. This approach reduces the
evaluation problem to validating the values of the polynomials H̃erow, H̃ecol, H̃val at θ̇1, as well
as checking the evaluations of H̃row, H̃col, H̃read_ts,row, H̃final_ts,row, H̃read_ts, col, H̃final_ts,col, H̃erow,
H̃ecol at θ̇2. Among the nine polynomials stated above, seven of them have been committed to by
BrakingBase.Gen protocol. These are namely, H̃row, H̃col, H̃val, H̃read_ts,row, H̃final_ts,row, H̃read_ts, col,
H̃final_ts,col. The remaining two polynomials H̃erow and H̃erow committed to by P in Step 8. The
details of this reduction using the Spark PCS is given in Appendix C.

Steps 14-15: In Step 14, the protocol uses the Batch-Evaluate protocol (as outlined in Section 5) to
optimise the evaluation checks. This approach reduces the verification of evaluations from Steps
8, 12, and 13, which involve multiple polynomials evaluated at various points, into a simpler task:
checking the evaluations of these polynomials at a single, common point. Among these evalua-
tion checks, the protocol also checks that the evaluation of q̃ at (α`−1, . . . , αlog n

`−1) ∈ Flog n
`−` is

equal to y (see Step 14). It is easily seen that f (α̇) = y if and only if q = α · A, and q̃ evaluates to
y at (α`−1, . . . , αlog n

`−1). Note that in its last step, Batch-Evaluate uses the evaluation protocol of
Basefold to check the evaluation of all the required polynomials at a single point ζ̇.

Algorithm 4 BrakingBase.Evaluate

Public input: pp, c, α̇ ∈ F`, y ∈ F.
P ’s private input: f a multilinear polynomial in ` variables
Output: 1 if V accepts, and 0 otherwise.

1. V picks r ∈r F` and sends it to P .
2. P defines α = ⊗log `−1

i=0 (1− α̇`−i, α̇`−i). P computes p := rA, q := αA and p′, q′ s.t. (p, p′) =
pE0, (q, q′) = qE0.

3. P computes cp, cp′ , cq, cq′ , the commitments to p̃, p̃′, q̃, q̃′, respectively using BaseFold PCS
and sends them to V .

/* Verifying that (p, p′) and (q, q′) are indeed the linear combinations of the rows of C. */
4. V samples a set I ⊆

{
0, . . . , ρ1

n
` − 1

}
uniformly at random of size Θ(λ) and sends it to P .

5. P sends C(·, i) and its associated Merkle proof (with respect to c) to V , and V checks C(·, i)
is consistent with the commitment c for every i ∈ I.

6. V samples si ∈r F ∀i ∈ I and sets mask := ∑i∈I siei, where ei ∈ Fρ n
` is the i-th standard basis

vector.
7. P and V engage in sum-check protocols (in parallel, with the same randomness) to

verify that ∑i∈I si 〈r, C(·, i)〉 = ∑ḃ∈{0,1}log(ρ1 ·
n
`
) m̃ask(ḃ)(̃p, p′)(ḃ) and ∑i∈I si 〈α, C(·, i)〉 =

∑ḃ∈{0,1}log(ρ1 ·
n
`
) m̃ask(ḃ)(̃q, q′)(ḃ). At the end of the sum-checks, V needs to evaluate

p̃, p̃′, q̃, q̃′ at a point, say β̇, whereas V evaluates m̃ask on its own.
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8. P sends the evaluations of p̃, p̃′, q̃, q̃′ at β̇ to V . V checks that these are consistent with the
claims made during the sum-checks. If not, then it outputs 0 and halts. The check to ensure
the values sent are the evaluations of the above polynomials at β̇ is postponed to Steps 14-15.

/* Verifing that (p, p′)H = 0 and (q, q′)H = 0. */
9. V picks u̇ ∈R Fdlog n

` e and sends it to P .
10. P sends the commitments to two multilinear polynomials H̃erow and H̃ecol in log cn

` vari-
ables. The commitments are computed using Basefold.Commit algorithm. The polynomials
H̃erow, H̃ecol are used to evaluate H̃ using spark [Set20].

11. P and V engage in sum-checks to verify that ∑
ḃ∈{0,1}dlog ρ1

n
` e (̃p, p′)(ḃ)H̃(ḃ, u̇) = 0 and

∑
ḃ∈{0,1}dlog ρ1

n
` e (̃q, q′)(ḃ)H̃(ḃ, u̇) = 0. At the end of the sum-checks, V needs to evaluate

(̃p, p′), (̃q, q′) at a point say γ̇, and H̃ at (γ̇, u̇).
12. P sends the evaluations of p̃, p̃′, q̃, q̃′ at γ̇ to V . P also sends the evaluation of H̃ at (γ̇, u̇).
V checks that these are consistent with the claims made during the sum-checks. If not,
then it outputs REJECT and halts. The check to ensure the values sent are the evaluations of
p̃, p̃′, q̃, q̃′ at γ̇ is postponed to Steps 14-15. The check to ensure the correctness of the value
sent as the evaluation of H̃ at (γ̇, u̇) is done at the next step.

13. Use spark [Set20] (see Appendix C), to reduce checking the correctness of claimed evaluation
of H̃ at (γ̇, u̇) to validating the evaluation of H̃erow, H̃ecol, H̃val at θ̇1, and the evaluations of
H̃row, H̃col, H̃read_ts,row, H̃final_ts,row, H̃read_ts, col, H̃final_ts,col, H̃erow, H̃ecol at θ̇2.

/* Evaluating all the polynomials and checking that y = f (α̇). */
14. Run the Batch-Evaluate protocol (Protocol 5). The Batch-Evaluate protocol first reduces a)

checking the evaluations of p̃, p̃′, q̃, q̃′ in Steps 8 and 12, b) checking the evaluation of q̃ at
(α`−1, . . . , αlog n

`−1) ∈ Flog n
`−`, and c) checking the evaluations of H̃row, H̃col, H̃val, H̃read_ts,row,

H̃final_ts,row, H̃read_ts, col, H̃final_ts,col, H̃erow, H̃ecol in Step 13 to checking the evaluation of all the
polynomials involved above at a single random point ζ̇ ∈ Flog cn

` .7 Then it uses Basefold’s
evaluation protocol to check the evaluation of all these polynomials at ζ̇. Output 1 if and only
if Batch-evaluate outputs 1.

3.4 The Batch-Evaluate protocol

The Batch-Evaluate protocol, as outlined in Protocol 5 optimises the problem of validating the
evaluations of a set of polynomials each evaluated at a possibly different point. Instead of checking
each polynomial at a distinct point (relationR1 stated below), Batch-Evaluate reduces it to a single
verification: checking all polynomials at a common point (relationR2 stated below).

R1 =
{
({ct}t∈[k] , {ωt}t∈[k] , {yt}t∈[k] ; { ft}t∈[k]) | ft(ωt) = yt, ωt ∈ F`t ∀t ∈ [k]

}
(8)

R2 =
{
({ct}t∈[k] , ω,

{
y′t
}

t∈[k] ; { ft}t∈[k]) | ∀t ∈ [k] ft(ω) = y′t, ω ∈ F`
}

(9)

7Since all polynomials are in log cn
` or fewer variables, here we treat them as polynomials in exactly log cn

` variables.
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In the above equations, ct is the commitment to a multilinear polynomial ft in `t variables, and ωt
is a point in F`t , and ` = max(`t | t ∈ [k]). We remark that Batch-Evaluate is crucially used in Step
14 of the BrakingBase.Eval protocol to achieve such a reduction, and reduce the proof complexity
of the BrakingBase.Eval protocol.

Algorithm 5 Batch-Evaluate
Public input: {ct}t∈[k] , {ωt}t∈[k] , {yt}t∈[k].
P ’s private input: The Lagrange coefficients of multilinear polynomial ft for t ∈ [k].
Output: 1 if the V accepts and 0 otherwise.

1. V sends r1, . . . , rk ∈R F to P .
2. P and V engage in a sum-check protocol to verify that

∑
t∈[k]

rtωt = ∑
ẋ∈{0,1}`′

(
∑

t∈[k]
rt ẽq(α̇t, ẋ) ft(ẋ)

)
.

At the end of the sum-check protocol, V needs to evaluate f1, . . . , fk at a certain point, say
ζ̇ ∈ F`′ .

3. ∀t ∈ [k], P sends θt := ft(ζ̇) to V . V checks that these evaluations are consistent with the
claims made by P in the sum-check protocol. Then it sends s1, . . . , sk ∈r F to P .

4. P proves to V that ∑t∈[k] st ft(ζ̇) = ∑t∈[k] stθt using the evaluation algorithm of BaseFold PCS.
V simulates a commitment to this polynomial using c1, . . . , ct.

5. V returns 1 if and only if BaseFold’s verifier accepts.

3.5 Completeness and succinctness

The completeness of BrakingBase follows from the descriptions of the Commit and Open in Section
3.2, and Eval in Section 3.3. We now give a running time analysis for the verifier and the prover of
the compiled PCS.

Verifier running time. The verifier running time is dominated by the following:

1. the time spent executing the sum-checks in Steps 7, 11 of BrakingBase.Evalaute,

2. the time spent verifying the Merkle-tree opening proofs for C(·, i) for all i ∈ I,

3. the time spent executing the Spartan verifier in Step 13 of BrakingBase.Evaluate,

4. the verifier time for the sum-check in Step 3 of BrakingBase.Batch-Evaluate, and

5. the time spent evaluating ∑t∈[k] st ft using BaseFold PCS in Step 4 of Batch-Evaluate.

Items 1 and 4 requires O(log n) time. Item 2, requires O(λ log n) time assuming P commits to C
as follows: hashes every column of C, and then use the hashes as the leaves of the Merkle tree
whose root is the commitment c. Using the techniques from [SL20], Item 3 can also be made to re-
quire O(log n) time. Finally, Item 5 requires O(λ log2 n) time. Thus, the verifier time is O(λ log2 n).

Prover running time. The dominant factor in P ’s running time are:
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1. time required to commit to p̃, p̃′, q̃, q̃′ in Step 3.

2. the run-time of the sum-check provers called on Steps 7, 11 BrakingBase.Evaluate,

3. the run-time of Spartan’s prover called on Step 13, and

4. the run-time of BaseFold’s prover called on Step 4 of Batch-Evaluate.

All four require O( n
` log n

` ) = O(n) time.

Proof Size: As the proof size is upper bounded by the verifier’s running time, the proof size is
O
(

λ log2 n
)

.

4 Implementation

In this section, we describe the concrete costs of BrakingBase and compare these costs with those
of the BaseFold and Brakedown PCS. All experiments are conducted on a QCT Rack Mount server
with 46 cores and 256 GB of RAM, running Ubuntu 22.04.5 LTS. For comparison, we use the Base-
Fold and Brakedown implementations available at [Bas]. Experiments are performed on poly-
nomials with 20 to 28 variables over a 128-bit field, with parameters for all three PCS chosen to
ensure at least 100 bits of security. We evaluate four metrics: commitment time, evaluation prover
time, proof size, and verifier time. For each k ∈ {20, . . . , 28}, we run the commitment algorithm
and the evaluation protocol 10 times on polynomials with k variables, then report the average val-
ues for all four metrics in Figure 1. We also apply an optimization suggested by [DP24] to reduce
the proof size: specifically, the proximity test and the evaluation check are combined under the
assumption that the point at which the polynomial is evaluated is sampled uniformly at random.
Below, we briefly discuss how BrakingBase compares with the BaseFold and Brakedown PCS.

Comparison with BaseFold. For polynomials with more than 25 variables, the commitment time
of BaseFold is approximately 12× that of BrakingBase. This difference arises because the com-
mitment time for the BaseFold PCS is O(n log n), whereas for BrakingBase, it is O(n). However,
the evaluation prover and verifier of BrakingBase are slower than those of BaseFold by factors of
approximately 3.5× and 3×, respectively. Importantly, due to the batch evaluation protocol de-
scribed in Section 3, the evaluation protocol needs to be executed only once in a SNARK setting.
As a SNARK may require commitments to multiple polynomials, a PCS with a slower evalua-
tion prover but faster commitments is advantageous over one with a faster evaluation prover but
slower commitments. Additionally, while the proof-size of BrakingBase exceeds that of BaseFold
up to 24 variables, beyond this, BrakingBase produces smaller proofs. We note that the proof sizes
of BaseFold could be further optimized since the current implementation at [Bas] writes both the
left and right nodes along a Merkle path.

Comparison with Brakedown. For polynomials with more than 25 variables, the commitment
and evaluation prover times of BrakingBase are approximately 1.9× and 155× those of Brakedown,
respectively. However, BrakingBase offers a significantly faster verifier and smaller proof-sizes,
as both the proof-size and verifier time for BrakingBase are Oλ(log2 n), compared to Oλ(

√
n) for

Brakedown. Specifically, for polynomials with 28 variables, the proofs produced by BrakingBase
are ≈ 2.7× smaller, and the verifier time is reduced by ≈ 2.8×.
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Figure 1: Performance of BaseFold, Brakedown, and BrakingBase PCS on 128 bit fields.
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A Knowledge Soundness of BrakingBase

In this section we prove that BrakingBase is knowledge sound. In particular, we prove that the
IOPP version of BrakingBase is knowledge sound. In the IOP version, instead of commitments to
the polynomials, i.e. roots of some Merkle trees, the verifier is given oracle access to the vector
from which the Merkle tree was constructed. [BCS16] prove that any such IOPP can be compiled
into a succinct argument using Merkle hashes. Our BrakingBase PCS can be thought of as having
been obtained from its IOP version by using this compiler. Because of the knowledge soundness
of this compiler, the knowledge soundness of the IOP version of BrakingBase implies the sound-
ness of BrakingBase as a PCS.

We first prove that the Batch-Evaluate protocol is knowledge sound. Since we are proving knowl-
edge soundness for the IOP version of Batch-Evaluate, the public input now contains oracles {Ot}k
instead of commitments {ct}k.

Lemma A.1 (Knowledge Soundness of Batch Evaluate). Let k = poly(λ) and m = 2`. Suppose that
Batch-Evaluate accepts with probability 1

poly(λ) on public input {Ot}t∈[k] , {ω̇t}t∈[k] , {yt}t∈[k]. Then there
exists an extractor Ext running in time poly(n, λ) which outputs multilinear polynomials { ft}t∈[k] ∈
F[x0, . . . , x`−1], such that ∆(Enc2( ft)8,Ot) ≤ δ2

3 · ρ2m and ft(ω̇t) = yt for all t ∈ [k] with probability
1− negl(λ).

Proof. Let r = (r1, . . . , rk), s = (s1, . . . , sk). Then, from the hypothesis of the lemma, we have that,

Prr,ζ̇,s,ρ[Batch-evaluate accepts] ≥ 1
poly(λ)

,

8Define Enc1 and Enc2
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where ρ is the randomness used by BaseFold’s evaluation procedure. Thus, from Lemma 2.2, for
at least 1

2·poly(λ) =
1

poly(λ) fraction of r, ζ̇,

Prs,ρ
[
Batch evaluate accepts|r, ζ̇

]
≥ 1

2 · poly(λ)
=

1
poly(λ)

.

Again by applying Lemma 2.2, for at least 1
2·poly(λ) =

1
poly(λ) fraction of s,

Prρ

[
Batch evaluate accepts|r, ζ̇, s

]
≥ 1

2 · poly(λ)
=

1
poly(λ)

.

The above is equivalent to

Prρ

[
BaseFold’s evaluation procedure accepts on public input ∑

t∈[k]
stOt, ζ̇, and ∑

t∈[k]
stθt|r, ζ̇, s

]
≥ 1

poly(λ)
.

Then from Theorem 7 of [ZCF24], there exists a multilinear polynomial fs ∈ F[x0, . . . , x`−1] such
that fs(ζ̇) = ∑t∈[k] stθt and ∆(Enc2( fs), ∑t∈[k] stOt) <

δ2
3 · ρ2m. Since this happens for 1

poly(λ) frac-
tion of s, Lemma 2.4 implies that there must exist multilinear polynomials { ft}t∈[k] ∈ F[x0, . . . , x`−1]

such that ∆(Enc2( ft),Ot) < δ2
3 · ρ2m for all t ∈ [k]. As ∆(Enc2( fs), ∑t∈[k] stOt) < δ2

3 · ρ2m and
∆(Enc2(∑t∈[k] st ft), ∑t∈[k] stOt) < δ2

3 · ρ2m, by triangle inequality, ∆(Enc2(∑t∈[k] st ft), fs) < 2·δ2
3 ·

ρ2m. Thus fs = ∑t∈[k] st ft. Moreover as for 1
poly(λ) > 1

|F| fraction of s, ∑t∈[k] st ft(ζ̇) = ∑t∈[k] stθt,

θt = ft(ζ̇) for all t ∈ [k].

So far we have proved that for at least 1
poly(λ) fraction of r, ζ̇, ft(ζ̇) = θt and ∆(Enc2( ft),Ot) <

δ2
3 · ρ2m for all t ∈ [k]. Once again Lemma 2.2 implies that for at least 1

2·poly(λ) = 1
poly(λ) fraction

of r, this happens with probability at least 1
2·poly(λ) = 1

poly(λ) over the random choice of ζ̇; let us
call all such r ‘good’. Then for any good r the check on Step 3 and soundness of the sum-check
protocol together imply that

∑
t∈[k]

rtyt = ∑
ẋ∈{0,1}`

(
∑

t∈[k]
rt ẽq(ω̇t, ẋ) ft(ẋ)

)
= ∑

t∈[k]
rt ∑

ẋ∈{0,1}`
ẽq(ω̇t, ẋ) ft(ẋ) = ∑

t∈[k]
rt ft(ω̇t).

As the above holds for at least 1
poly(λ) >

1
|F| fraction of r, yt = ∑ẋ∈{0,1}` ẽq(ω̇t, ẋ) ft(ẋ) = f (ω̇t) for all

t ∈ [k]. Hence, we have shown the existence of multilinear polynomials { ft}t∈[k] ∈ F[x0, . . . , x`−1]

satisfying ∆(Enc2( ft),Ot) <
δ2
3 · ρ2m for all t ∈ [k]. We now show how these polynomials can be

computed in time poly(n, λ).

Observe that to compute { ft}t∈[k] it is sufficient to find r, ζ̇ such that for at least 1
poly(λ) fraction of

s,

Prρ

[
BaseFold’s evaluation procedure accepts on public input ∑

t∈[k]
stOt, ζ̇, and ∑

t∈[k]
stθt|r, ζ̇, s

]
≥ 1

poly(λ)
.
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Call such r, ζ̇ ‘good’. Then we can find linearly independent s(1), . . . , s(k) such that the above holds
for all of them, use BaseFold’s extraction procedure to obtain fs(t) , and solve a system of linear
equations to obtain { ft}t∈[k].

Suppose that we have good r, ζ̇. Let M := Fk and Φ : M∗ → {0, 1} be a predicate such that
Φ(s(1), . . . , s(m)) = 1 if and only if s(1), . . . , s(m) are linearly independent. Observe that

Prs(m) [Φ(s(1), . . . , s(m)) = 1 | s(1), . . . , s(m−1)] ≥ 1− k
|F| = 1− negl(λ).

Further, let A be an algorithm such that A(s) = 1 if and only if BaseFold’s extractor Ext1 out-
puts a polynomial fs satisfying ∆(∑t∈[k] stOt,Enc2( fs)) < δ2

3 · ρ2m and fs(ζ̇) = ∑t∈[k] stθt. Then
from Theorem 4 of [ZCF24], Prs∈RM [A(s) = 1] ≥ 1− negl(λ) and its running time is poly(n, λ).
Since k = poly(λ), 2.3 implies that there exists an extractor Ext2 which given oracle access to A
outputs linearly independent s(1), . . . , s(m) (i.e. Φ(s(1), . . . , s(m)) = 1) such that ∀u ∈ [k], Ext1 out-
puts a polynomial fs(u) satisfying ∆(∑t∈[k] su,tOt, fs(t)) < δ2

3 · ρ2m and fs(t)(ζ̇) = ∑t∈[k] su,tωt (i.e.
A(s(t))) = 1) with probability 1− negl(λ). Furthermore, the running time of Ext2 is polynomial in
λ and the running time A. Thus it runs in time poly(λ, n).

Consider an Ext′ that runs Ext2 to obtain s(1), . . . , s(m), runs Ext1 for each s(u) to find fs(m) , and fi-
nally computes { ft}t∈[k] in time poly(λ, n) by solving a system of linear equations. If ∆(Enc2( ft),Ot) <
δ2
3 · ρ2m and ft(ω̇t) = yt for all t ∈ [k], Ext′ outputs { ft}t∈[k], else it reports failure. Note that the

running time of Ext′ is poly(n, λ) and its success probability is 1− negl(λ). To finish off the proof,
observe that since at least 1

poly(λ) fraction of r, ζ̇ are good, it is not difficult to see that if we run

Ext′ poly(λ) times, then we are bound to have run it for good r, ζ̇ at least once with probability
1− negl(λ). This yields the desired extractor Ext.

We now prove that BrakingBase satisfies binding. Since we are proving the knowledge soundness
of the IOP version of the PCS, the public input will contain (oracle access) to the matrix C rather
than a commitment c to the root of a Merkle tree of C.

Lemma A.2 (Binding). Suppose that a PPT adversary A causes V to accept an evaluation proof with
probability 1

poly(λ) on public input C, α̇, y. Then there exists a multilinear f ′ ∈ F[x1, . . . , x`] such that
f ′(α̇) = y and if A′ := the coefficients of f ′ written as an `× n

` matrix, then for all i ∈ {0, . . . , `− 1},
∆(Enc1(A′(i, ·)), C(i, ·)) ≤ δ1

3 .

Proof. Let s := {si}i∈I . We have that

Prr,I,s,β̇,u̇,γ̇,θ̇1,θ̇2,ρ[V accepts] ≥ 1
poly(λ)

,

where ρ is the randomness used in Batch-Evaluate. An application of Lemma 2.2 implies that for
at least 1

poly(λ) fraction of r, I, s, β̇, u̇, γ̇, θ̇1, θ̇2,

Prρ[Batch-Evaluate accepts|r, I, s, β̇, u̇, γ̇, θ̇1, θ̇2] ≥
1

poly(λ)
.
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Let us call all r, I, s, β̇, u̇, γ̇, θ̇1, θ̇2 for which the above holds good. Lemma A.1 implies that with
probability 1− negl(λ), Ext outputs p̃, p̃′, q̃, q̃′, such that tcp, tcp′ , tcq, tcq′ are their commitments,
respectively, using BaseFold’s PCS. Again applying Lemma 2.2 to the set of good r, I, s, β̇, u̇, γ̇, θ̇1, θ̇2
implies that for at least 1

poly(λ) fraction of r, I, s, β̇, Steps 9-14 of Evaluate succeed with probability at

least 1
poly(λ) . Thus the soundness of Spark and the sum-checks in Step 11 implies that (p, p′)H = 0

and (q, q′)H = 0. As H is the parity check matrix corresponding to the code with encoding matrix
E0, this means that (p, p′) = pE0 and (q, q′) = qE0.

We again apply Lemma 2.2 to get a 1
poly(λ) fraction of r, I such that the sum-checks on Step 7 suc-

ceed with probability at least 1
poly(λ) ; here the probability is over s, β̇. Thus the soundness of sum-

check and the fact that s is randomly chosen implies that 〈r, Ci〉 = (p, p′)i and 〈α, Ci〉 = (q, q′)i for
all i ∈ I. Because of the former, Lemma 2.4 implies that J := |j : ∃i s.t. C(i, j) 6= C′(i, ·)| ≤ δ1

3 ·
ρ1n
` ,

where C′ ∈ F`× n
` is such that C′(i, ·) is the unique codeword closest to C(i, ·).

Now suppose that (q, q′) 6= αC′. Then since ∆((q, q′), αC′) ≥ δ1 · ρ1n
` and ∆(αC′, αC) ≤ δ1

3 ·
ρ1n
` ,

∆((q, q′), αC) ≥ 2δ1
3 ·

ρ1n
` . Hence the probability that (q, q′)i = 〈αC(·, i)〉 for all i ∈ I is at most

(1− 2δ1
3 )Θ(λ) = negl(λ), a contradiction. Hence, (q, q′) = αC. Define A′ to be the matrix such that

A′(i, ·)E0 = C′(i, ·) for all i ∈ I and f ′ to be the polynomial whose coefficients are the entries of A.
Then f ′(α̇) = αTC′α′ = 〈q, α′〉 = q̃(α̇′).

Lemma A.3. Suppose that a PPT adversary A causes V to accept an evaliuation proof with probability
1

poly(λ) on public input C, α̇, y. Then there exists an extractor Ext running in time poly(n, λ) which
outputs a multilinear polynomial f ∈ F[x0, . . . , x`−1] such that C is the commitment to f computed using
BaseFold PCS and f (α̇) = val with probability 1− negl(λ).

Proof. From the hypothesis of the lemma, we have that,

Prr,ρ[V accepts] ≥ 1
poly(λ)

where ρ is the randomness used by rest of the evaluation procedure. LetM := F` and Φ :M∗ →
{0, 1} be a predicate which such that Φ(r1, . . . , rm) = 1 if and only if r1, . . . , rm are linearly in-
dependent. Observe that Prrm [Φ(r1, . . . , rm) = 1|Φ(r1, . . . , rm−1) = 1] ≥ 1− m

|F| = 1− negl(λ).
Further, let A be an algorithm such that A(r) = 1 if and only if the verifier accepts. Note that
Pr[A(r) = 1] ≥ 1

poly(λ) and from the proof of the above lemma, (p, p′) = 〈r, C′〉. Hence, Lemma
2.3 implies that there exists an extractor Ext3 which given oracle access to A outputs linearly inde-
pendent r1, . . . , r n

`
such that ∀u ∈ n

` , the verifier accepts and therefore (p, p′) = 〈ru, C′〉. Ext then
extracts C′ (defined in Lemma A.2) by solving a system of linear equations. The first n

` columns of
C′ give A′ (defined in the previous lemma).

Proof of Theorem 3.1. We proved that BrakingBase is complete and succinct in Section 3.5. Lemma
A.3 proves that it is also knowledge sound.
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B Parity check matrix for Brakedown’s linear code

In this section we show that the parity check matrix for Brakedown’s linear code is sparse. We
first recall how their linear code is computed.

Let 0 < α < 1, 0 < β < α
1.28 , r > 1+2β

1−α , cn, dn > 3 be some parameters. Let Gn,m,c denote
the set of all bipartite graphs G = (L, R, E) where |L| = n, |R| = m, and every vertex in L
has exactly c neighbours in R. To encode a message of length n, we first define An, Aαn, . . . as
the bi-adjacency matrices of graphs sampled uniformly at random from Gn,αn,cn ,Gαn,α2n,cαn

, . . . and
also define Bn, Bαn, . . . , as the bi-adjacency matrices of graphs sampled uniformly at random from
Grαn,(r−1−rα)n,dn ,Grα2n,(r−1−rα)αn,dαn

, . . .. Then matrices Mn, Mαn, . . ., Nn, Nαn, . . . are created by re-
placing every non-zero entry in An, Aαn, . . . and Bn, Bαn, . . ., respectively, by a random field ele-
ment.

The code is defined recursively. For any m ∈
{

n, αn, α2n, . . .
}

, let Encm(x) denote the code-
word corresponding to an x ∈ Fm. Then for an x ∈ Fm, Encm(x) := (x, z, w) ∈ Frm where
z := Encαm(z′), z′ := xAm, w := zBm. It is shown in [GLS+23] that there exist values of
cn, cαn , . . . dn, dαn, . . . such that this code has rate 1

r and relative distance δ := β
r . Moreover, they

show that c := limn→∞ cn and d := limn→∞ dn are both Θ(1). Thus the time required to compute
Encn(x) = cnn + dnrαn+ time required to compute Encαn(z′). Hence time required to compute
Encn(x) is

(cn · n + cαn · αn + cα2n · α2n + . . .) + (dn · rαn + dαn · rα2n + dα2n · rα3n + . . .)

= (cn + rα · dn)n + (cαn + rα · dαn)αn + (cα2n + rα · dα2n)α
2n + · · ·

≈ (c + rα · d)(n + αn + α2n + · · · )
= Θ(n).

Let Hm ∈ Frm×(r−1)m be the parity check matrix for the code with message length m.

Claim B.1. For all m ∈
{

n, αn, α2n, . . .
}

, Hm looks like: Am 0m×(r−1)αm 0m×(r−1−rα)m
−I′αrm×αm Hαm Bm

0(r−1−rα)m×αm 0(r−1−rα)m×(r−1)αm −I(r−1−rα)m×(r−1−rα)m

 ,

where 0a×b ∈ Fa×b is the all zeros matrix, I(r−1−rα)m×(r−1−rα)m ∈ F(r−1−rα)m×(r−1−rα)m is the identity
matrix, and I′αrm×αm ∈ Fαrm×αm is obtained by appending (r− 1)αm many all zero rows to the αm× αm
identity matrix .

Proof. For an x ∈ Fm, let Encm(x) = (x, z, w) and z′ := xAm. Observe that because of the way the
code is defined, the first αm many entries of z are z′. Then, it is easy to see that

(
x z w

) Am 0m×(r−1)αm 0m×(r−1−rα)m
−I′αrm×αm Hαm Bm

0(r−1−rα)m×αm 0(r−1−rα)m×(r−1)αm −I(r−1−rα)m×(r−1−rα)m

 =
(
0 zHαm 0

)
= 0
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where the last equality follows from the fact that Hαm is the parity check matrix for a code with
message length αm.

Conversely, suppose that for some (x, z, w), where x ∈ Fm, z ∈ Frαm, w ∈ F(r−1−rα)m,

(
x z w

) Am 0m×(r−1)αm 0m×(r−1−rα)m
−I′αrm×αm Hαm Bm

0(r−1−rα)m×αm 0(r−1−rα)m×(r−1)αm −I(r−1−rα)m×(r−1−rα)m

 = 0.

Since Hαm is the parity check matrix for the code with message length αm, z is a valid codeword.
Then xAm − zI′αrm×αm = 0 implies that the first αm entries of z are z′ := xAm. Thus z = Encαm(z′).
Also, zBm −wI(r−1−rα)m×(r−1−rα)m = 0 means that w = zBm. Hence (x, z, w) is a valid codeword.

For all m ∈
{

n, αn, α2n, . . .
}

let s(m) denote the number of non-zero entries in Hm. Then,

s(n) = cn · n + αn + s(αn) + dn · rαn + (r− 1− rα)n
= (cn + rα · dn)n + (r + α− 1− rα)n + s(αn)

= (cn + rα · dn)n + (cαn + rα · dαn)αn + (cα2n + rα · dα2n)α
2n + · · ·

+ (r + α− 1− rα)(n + αn + α2n + · · · )
≈ (c + rα · d + r + α− 1− rα)(n + αn + α2n + · · · )
= Θ(n).

C The Spark sparse polynomial commitment scheme

In this section we give a brief overview of the Spark sparse polynomial commitment scheme pro-
posed in [Set20]. Since we use Spark to commit to the multilinear extension of a sparse matrix we
describe Spark in this case.

Let M ∈ Fn×n be a matrix with only m non-zero entries. Let ẋ, ẏ ∈ Fn and M̃ ∈ F≤1[ẋ, ẏ] be the
multilinear extension of M. Fix any PCS and for any k ∈ N, n = 2k let its commitment time and
evaluation prover time for a polynomial in k variables be Tc(n) and Te(n) respectively. Notice that
committing to M̃ directly using this PCS will require Tc(n2) time. Spark is a PCS with commit time
O(Tc(m) + Tc(n)) and evaluation prover time O(Tc(m) + Te(m) + Te(n)).9 Let val, row, col ∈ Fm

be such that the i-th coordinate of val is the i-th non-zero entry of M and the i-th coordinates of row
and col are row index and column index of this entry, respectively. Let to-bits : F→ {0, 1}log |F| be
a function mapping field elements to their binary representation. Then it is not difficult to see that

M̃(ẋ, ẏ) = ∑
k̇∈{0,1}log m

ṽal(k̇) · ẽq(ẋ, to-bits(r̃ow(k̇))) · ẽq(ẏ, to-bits(c̃ol(k̇))).

Thus, to commit to M̃, the prover can simply commit to ṽal, r̃ow, c̃ol; this requires 3 · Tc(m) time.

For any α̇, β̇ ∈ Flog n, the prover can prove that M̃(α̇, β̇) = y, the prover can

9For ease of exposition, we assume that m is a power of 2.
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1. Commit to two multilinear polynomials ẽrow, ẽcol in log m variable each,

2. Prove to the verifier that y = ∑k̇∈{0,1}log m ṽal(k̇) · ẽrow(k̇) · ẽcol(k̇), and

3. Prove that for all k̇ ∈ {0, 1}log m, ẽrow(k̇) = ẽq(α̇, to-bits(r̃ow(k̇))) and ẽcol(k̇) = ẽq(β̇, to-bits(c̃ol(k̇))).

Item 2 can be proved using a sum-check protocol while Item 3 is proved using offline memory
checking that we now describe. We only focus on proving ẽrow(k̇) = ẽq(α̇, to-bits(r̃ow(k̇))) since
the other expression can be proved in a similar manner.

Consider a memory will n cells which are indexed by elements in F and whose i-th cell contains
ẽq (α̇, to-bits(i)). The prover wants to prove that for all k̇ ∈ {0, 1}log m, ẽrow(k̇) was obtained by
reading from the r̃ow(k̇)-th location of this memory. [Set20] considers a process in which there is
a read time-stamp associated with every cell in the memory and whenever a cell is read, its read
time-stamp is incremented by 1. Let read-ts ∈ Fm be the vector whose k̇-th entry is the read time-
stamp of to-bits(r̃ow(k̇)) at the time of the k̇-th read. Let final-ts ∈ Fn be the vector containing
the final values of all the read time-stamps. Then [Set20] shows that it is enough to prove that
WS = RS ∪ S, where

WS := {(i, ẽq (α̇, to-bits(i)) , 0) : i ∈ [n]} ∪
{(

row(k̇), ẽrow(k), r̃ead-ts(k̇) + 1
)

: k̇ ∈ {0, 1}log m
}

,

RS :=
{(

row(k̇), ẽrow(k), r̃ead-ts(k̇)
)

: k̇ ∈ {0, 1}log m
}

S :=
{(

i, ẽq (α̇, to-bits(i)) , fĩnal-ts(to-bits(i))
)

: i ∈ [n]
}

.

WS = RS ∪ S can be proved by showing that for variables x, y, ∏(a,b,c)∈WS(a + bx + cx2 − y) and
∏(a,b,c)∈RS(a + bx + cx2 − y) ·∏(a,b,c)∈S(a + bx + cx2 − y) are the same polynomials. This is estab-
lished by picking γ, τ ∈R F and proving using a grand-product check that ∏(a,b,c)∈WS(a + bγ +

cγ2 − τ) = ∏(a,b,c)∈RS(a + bγ + cγ2 − τ) ·∏(a,b,c)∈S(a + bγ + cγ2 − τ). Notice that the verifier can
evaluate all the three polynomials involved in the above expression if it is provided with commit-

ments to read-ts and final-ts. Thus the prover also commits to ˜read-tsrow, ˜final-tsrow, ˜read-tscol, ˜final-tscol

along with ṽal, r̃ow, c̃ol in the commitment phase.

Observe that since the read time-stamps are incremented by 1 after every read, we must have that
the characteristic of F is at least the number of m. So the PCS described above is not field agnostic.
However there is an easy way to fix this: let g be the generator of the multiplicative group of
F. Then initialize all the read time-stamps to g and after every read, multiply the current read
time-stamp by g. Now we only require that |F| ≥ m.
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