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Abstract

The no-cloning principle has played a foundational role in quantum information and cryptography.
Following a long-standing tradition of studying quantum mechanical phenomena through the lens of
interactive games, Broadbent and Lord (TQC 2020) formalized cloning games in order to quantitatively
capture no-cloning in the context of unclonable encryption schemes.

The conceptual contribution of this paper is the new, natural, notion of Haar cloning games together
with two applications. In the area of black-hole physics, our game reveals that, in an idealized model
of a black hole which features Haar random (or pseudorandom) scrambling dynamics, the information
from infalling entangled qubits can only be recovered from either the interior or the exterior of the black
hole—but never from both places at the same time. In the area of quantum cryptography, our game helps
us construct succinct unclonable encryption schemes from the existence of pseudorandom unitaries,
thereby, for the first time, bridging the gap between “MicroCrypt” and unclonable cryptography.

The technical contribution of this work is a tight analysis of Haar cloning games which requires us
to overcome many long-standing barriers in our understanding of cloning games:

• Are there cloning games which admit no non-trivial winning strategies? Resolving this particular
question turns out to be crucial for our application to black-hole physics. Existing work analyzing
the n-qubit BB84 game and the subspace coset game only achieve the bounds of 2−0.228n and
2−0.114n+o(n), respectively, while the trivial adversarial strategy wins with probability 2−n.
We show that the Haar cloning game is the hardest cloning game, by demonstrating a worst-case
to average-case reduction for a large class of games which we refer to as oracular cloning games.
We then show that the Haar cloning game admits no non-trivial winning strategies.

• All existing works analyze 1 7→ 2 cloning games; can we prove bounds on t 7→ t + 1 games for
large t? Such bounds are crucial in our application to unclonable cryptography. Unfortunately,
the BB84 game is not even 2 7→ 3 secure, and the subspace coset game is not t 7→ t + 1 secure
for a polynomially large t. We show that the Haar cloning game is t 7→ t+ 1 secure provided that
t = o(log n/ log log n), and we conjecture that this holds for t that is polynomially large (in n).

Answering these questions provably requires us to go beyond existing methods (Tomamichel, Fehr,
Kaniewski and Wehner, New Journal of Physics 2013). In particular, we show a new technique for
analyzing cloning games with respect to binary phase states through the lens of binary subtypes, and
combine it with novel bounds on the operator norms of block-wise tensor products of matrices.
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1 Introduction

Quantum no-cloning [WZ82] is a central property of quantum information. Roughly speaking, it says that no
quantum procedure exists which can copy an unknown quantum state. This insight has even led to the design
of new cryptographic primitives, starting with Wiesner’s remarkable quantum money scheme [Wie83].

Monogamy of entanglement [Ter04] is another fundamental property of quantum information in which
the no-cloning property manifests itself—it says that quantum correlations are "monogamous", and thus
cannot be shared freely among multiple parties. For example, if Alice and Bob are maximally entangled and
share an n-qubit Einstein-Podolsky-Rosen (EPR) pair [EPR35] of the form

|EPRn⟩AB =
1√
2n

∑
x∈{0,1}n

|x⟩A ⊗ |x⟩B

then any third party, say Charlie, must be completely decoupled from them. Formally, for every tripartite
quantum state ρABC ∈ D(HA ⊗ HB ⊗ HC) with the property that TrC[ρABC] = EPRnAB, where EPRnAB is
the density matrix which corresponds to the maximally entangled state, it must necessarily be the case that
ρABC = EPRnAB ⊗ σC for some residual state σC.

Throughout history, the nature of quantum information has been fruitfully studied through the lens
of interactive games. The celebrated works of Bell [Bel64] and those of Clauser, Horne, Shimony and
Holt [CHSH69] initiated the study of so-called non-local games. Since then, many fundamental properties
of quantum entanglement have been characterized in terms of optimal success probabilities of winning
particular games [Mer90, Ara02, Har93, GHZ89, RUV12, TFKW13, JNV+21, KLVY23].

1.1 Games Galore: Monogamy Games and Cloning Games

Monogamy of Entanglement Games. Tomamichel, Fehr, Kaniewski and Wehner [TFKW13] introduced
the notion of a monogamy of entanglement game in order to characterize entanglement monogamy using
the language of non-local games. A monogamy of entanglement game G with respect to the question set Θ,
answer set X and measurement set {Aθ

x}θ∈Θ,x∈X is an interactive game played by three players: a trusted
referee called Alice, as well as two colluding and adversarial parties called Bob and Charlie.

1. (Setup phase) Bob and Charlie prepare a tripartite quantum state ρ ∈ D(HA ⊗ HB ⊗ HC). They
send register A to Alice, and hold onto registers B and C, respectively. Afterwards, they are no longer
allowed to communicate for the remainder of the game.

2. (Question phase) Alice samples a random question θ ∼ Θ, and then applies the corresponding
measurement {Aθ

x}x∈X to her register A. Afterwards, Alice announces the question θ to both Bob
and Charlie, and keeps the measurement outcome in X to herself.

3. (Answer phase) Bob and Charlie independently output a guess for Alice’s outcome by applying the
measurements {Bθ

x}x∈X and {Cθ
x}x∈X to their registers B and C, respectively.

4. (Outcome phase) Bob and Charlie win if they both guess Alice’s outcome correctly.

Here, we associate a particular strategy S employed by Bob and Charlie with the tuple consisting of the
initial state ρ and the positive operator-valued measurements {Bθ

x}θ∈Θ,x∈X and {Cθ
x}θ∈Θ,x∈X . The value

of a particular strategy S for the monogamy game G is defined as the average winning probability

ωS(G) := E
θ∼Θ

∑
x∈X

Tr
[
(Aθ

x ⊗Bθ
x ⊗Cθ

x)ρABC

]
.
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We let ω(G) denote the maximal value of the game, i.e., the optimal winning probability over all strategies.
An upper bound on the value of a monogamy game therefore limits the extent to which Bob and Charlie can
simultaneously maintain a quantum correlation with Alice who holds a register outside of their view.

Tomamichel, Fehr, Kaniewski and Wehner [TFKW13] studied a particular monogamy of entanglement
game GBB84 that appears naturally in the context of quantum key distribution and the BB84 protocol [BB84].
Here, the game GBB84 consists of question and answer sets Θ = X = {0, 1}n and projective measurements
{Aθ

x}θ,x∈{0,1}n with Aθ
x = Hθ |x⟩⟨x|Hθ, where H denotes the Hadamard gate and Hθ := Hθ1 ⊗ · · · ⊗ Hθn .

Specifically, they showed that the optimal success probability of the game is given by

ω(GBB84) = cos2
(π
8

)n
≈ 2−0.228n. (1)

As an immediate application of the bound, [TFKW13] proved the security of a one-sided device independent
quantum key-distribution protocol, as well as the soundness of a one-round position verification scheme.

Bounds on monogamy games, such as the one shown in [TFKW13], have since proven useful in many
other areas of quantum cryptography, particularly in the area of unclonable cryptography. This has led
to the development of unclonable encryption schemes [BL20], quantum copy-protection [Aar09, CMP22,
CLLZ21, AKL+22], unclonable decryption keys [GZ20], unclonable proofs [GMR23], and much more.

Cloning Games. The class of interactive games which are relevant for unclonable cryptography are known
as cloning games [AKL23]. Broadly speaking, these games underlie the security of so-called unclonable
encryption schemes which were first studied by Broadbent and Lord [BL20]. A general 1 7→ 2 cloning game
G17→2 with respect to the question set Θ, answer set X , and ensemble of unitaries {Uθ}θ∈Θ of dimension |X |
is the following interactive game played by a trusted challenger, say Alice, as well as an adversary consisting
of a cloner Φ and two additional players, say Bob and Charlie.

1. (Setup phase) Alice samples random x ∼ X and θ ∼ Θ, and sends Uθ |x⟩A to the cloner Φ.

The cloner Φ splits the state into two registers B and C, which he then forwards to Bob and Charlie,
respectively. Afterwards, the players may no longer communicate for the rest of the game.

2. (Question phase) Bob and Charlie both receive the string θ.

3. (Answer phase) Bob and Charlie independently output a guess for the element x.

4. (Outcome phase) Bob and Charlie win if they both guess x correctly.

We illustrate the cloning game G17→2 in Figure 1. A strategy S for the game G17→2 consists of a cloning map
Φ and a pair of positive operator-valued measurements B = {Bθ

x}θ∈Θ,x∈X and C = {Cθ
x}θ∈Θ,x∈X . The

value1 of a particular strategy S for the cloning game G17→2 is defined as the average winning probability

ωS(G17→2) = E
θ∼Θ

E
x∼X

Tr
[(

Bθ
x ⊗Cθ

x

)
ΦA→BC(Uθ |x⟩⟨x|A U

†
θ )
]
.

Similar to a monogamy of entanglement game, we use ω(G17→2) to denote the optimal winning probability
over all joint strategies given by Φ, B and C. Note that there always exists a trivial strategy that succeeds
with probability 1/|X |: the cloner Φ simply forwards the state Uθ |x⟩ to Bob, who can easily recover x once
θ becomes available, whereas Charlie simply guesses a random element in X .

1We emphasize that an upper bound on the success probability of a cloning game implies something stronger than the conven-
tional no-cloning theorem [WZ82]: if the cloner Φ can copy the state Uθ |x⟩, then Φ can certainly send the two copies to Bob and
Charlie and ensure that they win the game. However, there may be other strategies for Φ that do not involve direct cloning but may
nevertheless provide the players with enough information to simultaneously recover x during the guessing phase.
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Figure 1: 1 7→ 2 cloning game.

Although cloning games are syntactically quite different from monogamy games, they turn out to be
closely related. Indeed, the paradigm introduced by Broadbent and Lord [BL20] implicitly2 shows that the
general 1 7→ 2 cloning game in Figure 1 is in fact equivalent to a special class of monogamy games, where

• The tripartite state ρ ∈ D(HA ⊗ HB ⊗ HC) which is shared between Alice, Bob and Charlie is the
result of applying a cloning channel ΦA′→BC to one half of an EPR pair, i.e.,

ρABC = (IA ⊗ ΦA′→BC)(|EPR⟩⟨EPR|AA′).

• Alice’s measurement
{
Aθ
x

}
θ∈Θ,x∈X on register A is a projective rank-1 measurement of the form

Aθ
x = Ūθ |x⟩⟨x| Ū †θ , where Ūθ denotes the complex conjugate of Uθ.

Therefore, the standard approach for deriving upper bounds on the value of cloning games is by analyzing
the corresponding monogamy of entanglement game. To this day, the majority of unclonable cryptography
is rooted in either n-qubit BB84 states with Uθ = Hθ [TFKW13, BL20] or subspace coset states over Fn2 ,
where Uθ encodes a shift of a random n/2-dimensional subspace A ⊂ Fn2 [CLLZ21, CV22].

Limitations on Cloning Games. Despite their success in the field of unclonable cryptography, many
fundamental gaps in our understanding of cloning games remain; in particular:

• Optimal games: Prior work on cloning games for X = {0, 1}n has shown the upper bounds
cos2

(
π
8

)n and
√
e cos

(
π
8

)n in the case of BB84 states [TFKW13] and subspace coset states [CV22],
respectively. In contrast, a trivial strategy always succeeds with probability 2−n, and this holds for any
cloning game. Are there especially hard cloning games which have asymptotically optimal bounds of
the form O(2−n)? Closing this gap has important consequences, which we discuss in Section 2.2.

• Quantum pseudorandomness: A recent line of work [Kre21, AQY22, AGQY22, BCQ23] showed
how to build quantum cryptography from pseudorandom states and unitaries, which are potentially
weaker than than one-way functions [Kre21]. To this day, however, the worlds of quantum pseudoran-
domness and unclonable cryptography have been completely disconnected, as observed in [MPSY24,
AMP24]. This begs the question: do pseudorandom unitaries give rise to interesting unclonable cryp-
tographic primitives? The analysis of Haar cloning games, where Uθ is a Haar unitary (or, a unitary
from a design), is far beyond the scope of existing techniques, as we explain in Section 2.1.

2We give a formal proof of this equivalence in Appendix A. At a high level, the statement follows from the ricochet property of
EPR pairs, which allows Alice to “teleport” Uθ |x⟩ into the cloner’s register by appropriately measuring her half of the EPR pair.
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• Applications beyond cryptography: Can cloning games offer new insights in other scenarios where
no-cloning and monogamy of entanglement play an important role, such as in black-hole physics?
Recent works studied idealized models of black holes which rely on Haar random or pseudorandom
unitary dynamics [HP07, KP23, EFL+24], which begs the question: can cloning games with Haar
random unitaries help us understand how quantum information gets scrambled inside of a black hole?

• Multi-copy security: Can we extend 1 7→ 2 cloning games towards t 7→ t + 1 cloning games?
Here, the cloner Φ receives t identical copies of the initial state, i.e., (Uθ |x⟩)⊗t, and there are t + 1
players P1, . . . ,Pt+1 who simultaneously seek to recover x. This was posed as an open question
in [MPSY24, AMP24], where the latter initiated the study of multi-copy security in the context of
revocable quantum cryptography. Not only is prior work limited to 1 7→ 2 cloning games, all existing
unclonable cryptography becomes completely insecure if t is allowed to grow polynomially [AMP24].

1.2 Our Work: Haar Cloning Games

In this work, we overcome many prior limitations in our understanding of cloning games; in particular, we
make progress on all of the aforementioned questions. We give an overview of our contributions below.

Oracular Cloning Games. We significantly generalize the notion of a 1 7→ 2 cloning game, and initiate
the study of t 7→ t+1 cloning games (see Section 6.2). Inspired by [AMP24], we also define a new relaxation
of cloning games which we call oracular cloning games: rather than reveal the string θ in the clear as part
of the guessing phase, we instead allow the players to query oracles for the unitary Uθ and its inverse U †θ .
The main advantage behind this relaxation is that it allows us to consider pseudorandom unitaries in the
context of cloning games. Thanks to this model, we can invoke the security of pseudorandom unitaries and
analyze Haar cloning games instead; note that this switch is generally not possible in the standard notion of
a cloning game (since in this case the secret key θ will eventually be disclosed to the adversaries).

Worst-Case to Average-Case Reductions. Motivated by the question of whether 1 7→ 2 cloning games
with asymptotically optimal bounds exist, we ask: which cloning game is the “hardest” of all? Our first
technical contribution is a worst-case to average-case reduction for t 7→ t+1 cloning games; we argue that
a Haar cloning game instantiated with a Haar random (or pseudorandom) unitary is at least as hard as any
other cloning game. At a high level, our proof exploits the invariance of the Haar measure over the unitary
group. Thanks to this observation, we can indirectly analyze cloning games which are instantiated using
a pseudorandom unitary or a unitary design—we simply pass to another cloning game that is technically
easier to analyze. We give a proof of our worst-case to average-case reduction in Section 6.3.

New Techniques for Cloning Games with Binary Phase States. Because all existing constructions for
1 7→ 2 cloning games fail in the t 7→ t + 1 setting [AMP24], this forces us to seek out new candidates
beyond BB84 states and subspace coset states. One natural candidate is to consider pseudorandom unitaries
Uθ, where θ describes the key. However, because such cloning games appear difficult to analyze directly,
we instead focus on binary phase states as a alternative candidate for t 7→ t + 1 cloning games—thanks to
our worst-case to average-case reduction, such an analysis suffices. Specifically, we study states of the form

|ψfx⟩ = 2−n/2
∑

y∈{0,1}n
(−1)f(y)+⟨x,y⟩ |y⟩ .

4



In other words, we let |ψfx⟩ = Uθ |x⟩, where Uθ := UfH
⊗n and where Uf is a diagonal phase operator for a

Boolean function f : {0, 1}n → {0, 1} which is of the form

Uf =
∑

y∈{0,1}n
(−1)f(y) |y⟩⟨y| .

Similar binary phase states have been considered in the context of quantum pseudorandomness [JLS18,
BS19, Col23], and have been shown to be computationally indistinguishable from a Haar random state (even
with a polynomial number of copies). Our contributions for analyzing binary phase states are two-fold:

• We show that existing techniques are fundamentally insufficient for showing asymptotically optimal
bounds of the form O(2−n), even in the 1 7→ 2 setting. In Section 7.2, we analyze a corresponding
binary phase monogamy game using standard techniques which are rooted in [TFKW13]. We prove
a bound of the form Õ(2−n/2) for a particular class of functions f , which significantly improves on
prior bounds but is far from the desired bound of O(2−n). We show that this is an inherent limitation
of the [TFKW13] technique; as we show in Section 7.3, we cannot hope to prove a better upper bound
than this for any monogamy game of the desired form using their techniques.

• We develop fundamentally new techniques for analyzing binary phase states in the t 7→ t+1 oracular
cloning game setting. Thanks to these techniques, we can show the first asymptotically optimal bound
O(2−n), provided3 that t = o(log n/ log log n) and that all players only make one query to Uf .
Thanks to this restriction, it suffices to analyze simple binary phase twirls of the form

E
f
Tr
[
U⊗2t+1
f ΞU⊗2t+1

f ρ
]
,

for some Hermitian operator Ξ and state ρ that we unpack in Section 9.1. Expressions of this form
have previously been studied in terms of binary types, such as in [AGQY22]. However, in our setting,
binary types do not appear to have sufficient structure to obtain the kinds of spectral bounds we would
need to bound the above expression. To get around this barrier, we introduce a refinement of binary
types which we refer to as binary subtypes. These are much more structured and combinatorial in
nature, and essentially reduce the task of bounding the above expression to analyzing the operator
norms of block-wise tensor products of matrices. We go more into detail in Section 2.1 and Section 8.

Resolving Central Questions. To demonstrate the full potential of our new insights into cloning games,
we give two applications of our techniques which help resolve fundamental open questions in the field.

• Black Hole Cloning Games: In Section 4, we analyze a new three-player game which is designed to
capture monogamy and no-cloning in the context of evaporating black holes (see Fig. 2). Our results
offer new quantitative insights into the black hole information paradox [Haw76, Pre92, HP07] and
suggest that, in an idealized model of a black hole which features Haar random (or pseudorandom)
scrambling dynamics, the information from infalling entangled qubits can only be recovered from
either the interior or the exterior of the black hole—but never from both places at the same time.

• Unclonable Cryptography in "MicroCrypt": In Section 5, we give an affirmative answer to an open
question which was recently posed in [MPSY24]; namely: do interesting unclonable cryptographic
primitives exist, even in a world in which P = NP? We construct succinct unclonable encryption
schemes from the existence of pseudorandom unitaries; thereby, for the first time, bridging the gap
between the worlds of quantum pseudorandomness and unclonable cryptography.

3With that said, we remark that this construction could very well be secure even for t that is polynomially large in n.
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Figure 2: Black Hole Cloning Game. Entangled particles emerge near the boundary and form a k-qubit
EPR pair |EPR⟩B′B, of which register B′ falls inside of the black hole, and register B is given to Alice. The
interior of the black hole, modeled as |0n−k⟩I, together with the k infalling qubits in register B′, undergo a
scrambling process. Here, the internal dynamics of the black hole are described a random n-qubit unitary
time-evolution operator U which gets applied to registers B′I. A quantum channel ΦIB′→HR processes the
internal qubits into two registers: a register H corresponding to the qubits within the event horizon, and
a register R corresponding to the emitted Hawking radiation. Charlie (who falls inside of the black hole)
receives register H, whereas Bob (who is a distant observer) receives register R. The two observers are
allowed to have some knowledge of the internal dynamics U , and thus receive oracles for U and U †. Finally,
Alice measures B, and Bob and Charlie win if they simultaneously guess her outcome correctly.

In the remainder of the introduction, we give an overview for each of our main applications. First,
in Section 1.3, we discuss our contributions to black-hole physics. Then, in Section 1.4, we discuss our
contributions to quantum cryptography. Next, in Section 2, we give a detailed technical overview.

1.3 Application: Black Hole Cloning Games

What happens when entangled particles fall into a black hole? Does the information get destroyed, or is
it effectively conserved and eventually radiates out in some scrambled form? This question has puzzled
physicists for many decades. The endeavour of trying to reconcile the predictions of quantum mechanics
and general relativity has led to the famous black hole information paradox [Haw76, Pre92].

In this section, we first provide some relevant context on the black hole information paradox, and then
give an overview of how we revisit the problem using the language of cloning games.

Black-Hole Radiation Decoding. In his seminal work, Hawking [Haw76] made the remarkable prediction
that black holes are not completely black—they slowly emit what is now known as Hawking radiation at a
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rate per unit time which scales like ∼ n−1/2, where n denotes the number of qubits or internal degrees of
freedom of the black hole. This means that it would take time ∼ n3/2 for the black hole to radiate away
a signficant fraction of its qubits [Bek72]. Hayden and Preskill [HP07] proposed a thought experiment
that illustrates the black-hole information loss problem: Suppose that Alice throws k qubits into a black
hole, which are maximally entangled with a second register in her possession. For simplicity, we assume
that the black hole initially consists of n − k qubits. After a long period of time, another distant observer,
say Bob, uses the intercepted Hawking radiation (say, in the form of photons) which he has collected in
the meantime, feeds it into his quantum computer and applies an appropriate computation that will decode
Alice’s quantum state. In principle, Bob only needs k many qubits of Hawking radiation to perform such a
decoding. Hayden and Preskill asked: how long would Bob have to wait before he finally starts to observe
correlations between the outgoing Hawking radiation and the entangled infalling matter near the boundary?
To answer this question, they made the following crucial assumption: black holes are extremely strong and
efficient information scramblers—their internal dynamics can be modeled as a more or less random unitary
time-evolution. This view has since been widely adopted as an idealized model of black holes [AMPS13,
HH13, KP23, EFL+24] and has also led to the so-called fast scrambling conjecture [SS08, Sho18].

Because genuine Haar random dynamics are known to have exponential quantum circuit complexity
with overwhelming probability [Kni00], Hayden and Preskill instead opted for a weaker notion of Haar ran-
domness; namely, that of a unitary 2-design. They showed that after slightly more than half of the black hole
has evaporated (sometimes called the Page time), Bob finally starts to observe correlations between Alice’s
infalling qubits and the outgoing radiation. This led them to conclude that black holes act as information
mirrors: while Alice’s information remains concealed up until the half-way point, it then starts to emerge
fairly quickly in the form of scrambled Hawking radiation.

Do Black Holes Clone Information? While the Hayden-Preskill thought experiment [HP07] suggests
that the information which is thrown into a black hole is conserved (and ultimately comes out in the form of
scrambled Hawking radiation), it does beg the question: what would an infalling observer, say Charlie, see as
he falls towards the singularity (rather than intercept radiation from the outside). From Charlie’s perspective,
Alice’s qubits fall towards the singularity and never leave. But from Bob’s perspective, who stays outside of
the event horizon, the qubits eventually come out in the form of scrambled Hawking radiation. This seems to
lead us to the conclusion that there are two identical copies of Alice’s qubits, thereby violating the principle
of quantum no-cloning [WZ82]. This begs the question: are black holes quantum cloning machines? In an
attempt to resolve such paradoxes, Susskind, Thorlacius and Uglum [STU93], as well as ’t-Hooft [’t 85],
proposed the notion of black hole complementarity—it states that the two supposed copies of Alice’s qubits
are not really distinct; rather, they represent two complementary ways of viewing the same quantum system.
Concretely, black hole complementarity rests on the following three postulates [STU93]:

1. The entire process—from the formation to the evaporation of the black hole—can be described within
the context of standard quantum theory. In particular, the evolution of the black hole can be thought
of as a unitary quantum channel which takes as input the set of qubits belonging to the interior of
the black hole—together with Alice’s infalling qubits—and converts them into a global pure state of
which a subsystem constitutes the outgoing Hawking radiation, as viewed by a distant observer.

2. Outside of the black hole’s event horizon, physics can be described to a good approximation by a set
of semi-classical field equations that are consistent with Hawking’s predictions [Haw76].

3. A black hole is a quantum system with discrete energy levels, as viewed by a distant observer.
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When taken together, the three postulates above assert that standard quantum theory, semi-classical general
relativity and statistical thermodynamics are all valid as a foundation for the study of black hole evolution.
Importantly, these postulates alone appear to suffice at preventing any single observer from ever witnessing
an actual violation of no-cloning in a physically meaningful scenario [STU93, HP07].

A series of works [AMPS13, HH13, Aar16, Bra23] have since explored yet another related paradox—
the Firewall Paradox—which has put black hole complementarity into doubt, and has led to the belief
that black-hole radiation decoding must be computationally intractable as a way of avoiding paradoxes.
Subsequent work by Brakerski [Bra23] draws an even more explicit connection to quantum cryptography
and views this observation as a physical justification for the existence of secure quantum cryptography itself.
The computational complexity of black-hole radiation decoding has since also been solidified as a central
quantum information-processing task within the framework of unitary complexity [BEM+23].

To this day, however, the black hole information paradox remains—for the most part—unresolved, and
is still an on-going research area.

This Work: Revisiting the Black Hole Information Paradox. We seek to extend our existing under-
standing of the black hole information paradox in two ways. The first is that we would like to provide a
new and quantitative characterization of cloning and entanglement monogamy which arises in the context
of evaporating black holes. Many seminal works [CHSH69, TFKW13] have quantified and enhanced our
understanding of physical principles (e.g., the nature of entanglement) through the formulation and analysis
of certain interactive games; our first goal is to do the same for the black hole information paradox:

Question One: Can we give a quantitative bound on the extent to which two observers—one
falling inside of a black hole, and another intercepting its Hawking radiation from a
distance—can simultaneously recover information from infalling entangled qubits?

Ideally, such a statement would be proven under assumptions that are consistent with the postulates of black
hole complementarity [STU93, ’t 85]. While most prior works on black-hole radiation decoding focus on
the perspective of an outside observer [HP07, AMPS13, HH13, Bra23], a more recent work has also found
it useful to take considerations from the black hole interior into account [AEH+22].

As it turns out, however, such an information-theoretic analysis seems to lie way beyond the scope of
existing techniques. (We refer the reader to Section 2.1 for a discussion of the fundamental limitations
of existing techniques.) This is mainly due to the fact that black holes are to be modeled as information
scramblers that feature Haar random (or pseudorandom [KP23, EFL+24]) dynamics.

Secondly, we aim to revisit prior attempts for how to model the decoder’s knowledge of the internal
dynamics of the black hole. In the highly influential Hayden-Preskill thought experiment [HP07], the authors
assume that the decoder (say, Bob) holds a quantum memory that is maximally entangled with the qubits
in the interior of the black hole. In other words, Bob is an extremely powerful observer that has complete
control over the black hole and its resulting radiation. As noted by Hayden and Preskill, we would ideally
like a more realistic model that captures Bob’s knowledge of the black hole dynamics without giving him
direct control over the black hole, which begs the question:

Question Two: Are there alternative—and perhaps more reasonable—models that capture the
fact that the decoder has knowledge of the internal dynamics of the black hole?

We believe that an affirmative answer to these questions could offer new and valuable insights into the
black-hole information paradox.
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Our Approach. To address Question One, we cast the black-hole information paradox into the form of a
cloning game. At the beginning of the game, Alice throws her entangled qubits into the black hole. Later,
at the end of the game, two spatially separated “adversaries” called Bob and Charlie will attempt to decode
Alice’s state—either as an outside observer with access to the emitted Hawking radiation (say, Bob), or as
an infalling observer who has access to the black hole’s internal qubits (say, Charlie). Moreover, in line with
prior works [HP07, HH13, KP23, EFL+24], we model the black hole’s internal evolution in between as a
“scrambling process” which is the result of some random unitary time-evolution U , followed by a quantum
channel Φ that processes the internal qubits into two systems: one corresponding to the qubits within the
event horizon of the black hole, and another corresponding to the emitted Hawking radiation. While Φ is
typically assumed to be a unitary channel, we do not enforce any additional restrictions beyond the fact
that it is a completely-positive and trace-preserving map. As in a conventional monogamy of entanglement
game, it is crucial that Bob and Charlie do not communicate while the decoding phase is taking place, which
also consistent with our modeling assumption that Charlie falls towards the singularity of the black hole,
whereas Bob remains a distant outside observer.

To address Question Two, we grant the adversaries Bob and Charlie oracle access to the internal scram-
bling dynamics U , as well as its inverse U †. Additionally, we assume that Bob and Charlie have a complete
description of the physical process Φ that results in the outgoing radiation. While Bob (and also Charlie) no
longer has the ability to exercise direct control the black hole dynamics (as in the Hayden-Preskill model),
he does have the power (via the oracle for U †) to essentially “unscramble” the black hole’s time evolution at
will. Here, the oracle access to the unitaries U,U † is meant to reflect the possibility that Bob and Charlie are
powerful observers who have obtained some knowledge on the physical equations and parameters governing
the black hole’s evolution (see Figure 3 for a circuit representation of Bob’s and Charlie’s strategy).

Our modeling assumptions behind our black hole cloning game appear entirely consistent with the pos-
tulates of black hole complementarity [STU93, ’t 85]; in the sense that all components of our black hole
cloning game are modeled according to the existing understanding of physics and Hawking radiation:

• we model the entire process of black hole evolution as a (possibly unitary) quantum channel which
takes as input the set of qubits belonging to the interior—together with Alice’s infalling qubits—and
converts them into a global (possibly pure) state of which a subsystem constitutes outgoing radiation;

• we assume that Hawking radiation is a valid phenomenon—it enables Bob to intercept outgoing radia-
tion in the form of qubits that he can process on his quantum computer. Meanwhile, Charlie is simply
a free falling observer that encounters nothing unique or strange when passing the event horizon; and

• we assume that Bob and Charlie have knowledge of the internal dynamics of the black hole, say as the
result of statistical mechanical and thermodynamic considerations—in analogy to how deciphering
the contents of a burning book is possible, at least in principle, by observing its smoke and ashes.4

Therefore, we believe that black hole cloning games offer a reasonable characterization of quantum cloning
in the context of evaporating black holes. In Section 1.5, we discuss further improvements to our modeling
assumptions which could potentially make our game even more realistic from a physical perspective.

Defining Black Hole Cloning Games. With the above in mind, we now sketch our formulation of the
black hole information paradox as a particular cloning game (see Section 4 for a formal definition).

We consider the following interactive game GBH (as illustrated in Figure 2) between a trusted party called
Alice and two colluding and adversarial parties called Bob and Charlie.

4This analogy was also used in the work of Hayden and Preskill [HP07].
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1. (Setup phase) A tripartite quantum state ρ ∈ D(HI ⊗HB′ ⊗HB) is prepared, where

ρ =
(
|0n−k⟩⟨0n−k|I ⊗ |EPR

k⟩⟨EPRk|B′B

)
.

Here, k denotes the number of qubits in the registers B and B′. Next, Alice receives register B.

2. (Time-evolution phase) An n-qubit scrambling unitary U ∼ ν is selected uniformly at random from
an ensemble ν = {Uθ}θ∈Θ, and the internal registers of the black hole evolve according to the unitary
quantum channel

(
U · U †

)
IB′→IB′ which is applied to registers IB′ of the state ρ. Afterwards, a (not

necessarily unitary) quantum channel ΦIB′→HR is applied to IB′ and produces registers H and R (This
should be thought of as the black hole’s final internal state and Hawking radiation, respectively).

3. (Guessing phase) Charlie and Bob receive the registers H and R, respectively.5 They also receive
oracles for both U and U †, but may no longer communicate. They independently perform the oracle-
aided measurements {HU,U†

x }x∈{0,1}k and {RU,U†
x }x∈{0,1}k and each output a k-bit string.

4. (Outcome phase) Alice measures B is measured in the computational basis, resulting in x ∈ {0, 1}k.
Charlie and Bob win if they both guessed x correctly.

Here, we associate with S a particular strategy which is specified by Charlie’s and Bob’s measurements. The
value of a particular strategy S for the game GBH is defined as the average winning probability

ωS(GBH) := E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ |x⟩⟨x|B
)(

ΦIB′→HR ⊗ IB
)

((
U · U †

)
IB′→IB′ ⊗ IB

)(
|0n−k⟩⟨0n−k|I ⊗ |EPR

k⟩⟨EPRk|B′B

)]}
.

Moreover, we denote by ω(GBH) the maximal value of the game, i.e., the optimal winning probability over all
possible strategies employed by Bob and Charlie. Let us remark that the tripartite state ρ is not adversarially
prepared by Bob and Charlie (unlike in typical monogamy games [TFKW13]); rather, it is generated by an
external process (say, nature) over which the players have no control. While this is also true of the ΦIB′→HR

cloning channel in practice, our bounds will hold even if Φ is chosen adversarially by Bob and Charlie.
In Theorem 4.4, we prove the following result without any restrictions on the choice of channel Φ but

where, for technical reasons (which we unpack in detail in Section 2.2), we let ν be a unitary 3-design and
assume that Bob and Charlie employ single-query strategies only. We visualize what Bob and Charlie’s
strategies might look like in Figure 3, and we mention further potential improvements in Section 1.5.

Theorem 1.1 (Informal, see Theorem 4.4 for formal statement). Let n, k ∈ N be integers with n ≥ k
and let ν = {Uθ}θ∈Θ be an n-qubit unitary 3-design. Then, for any quantum channel Φ (of appropriate
dimensions), the maximal single-query value of the black hole cloning game GBH (as illustrated in Figure 2)
with respect to ν and Φ is at most

sup
strategies S

ωS(GBH) = O(2−k) ,

where the supremum ranges over all oracle-aided strategies S employed by Bob and Charlie that only make
a single oracle query (to either Uθ or U †θ ), for any given θ.

5Here, we allow both Charlie and Bob to have any number of auxiliary registers. In our scenario, we imagine that Charlie jumps
into the black hole with additional qubits of his choice, and that Bob has access to registers outside of the black hole. This is
essentially without loss of generality—we can always absorb additional reference systems by re-defining the channel Φ.
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V1

U or U †

V2

|0⟩

|0⟩

|0⟩

Hawking
radiation R

Output
x ∈ {0, 1}k

Figure 3: Visualization of Bob’s quantum computation in our black hole cloning game. He takes the inter-
cepted Hawking radiation in register R as input, adds any number of ancilla qubits (in the |0⟩ state) of his
choosing, and applies an initial unitary V1 to the entire system. He then makes one oracle query to either
U or U †, where U is the black hole’s scrambling unitary. Finally, he applies an additional unitary V2 then
measures the last k qubits to produce his guess x ∈ {0, 1}k. The diagram for Charlie’s strategy would be
similar, except the input would consist of the black hole’s internal qubits in register H.

Implications to Black-Hole Physics. Theorem 1.1 yields the first quantitative bound on the extent to
which two observers, Bob and Charlie, can simultaneously recover information from k infalling entangled
qubits that emerge near the boundary of a black hole. In fact, our bound of O(2−k) is also optimal (up to
constant factors), since there always exists a particular Hawking radiation channel Φ together with a trivial
strategy S that attains it: we can consider a variant of the black hole cloning game where Φ is the channel
that converts the entirety of all the qubits inside of the black hole into radiation (i.e., acting as the identity),
which would allow Bob to perfectly recover the information from Alice’s system by simply applying the
inverse of the scrambling unitary. Now Charlie can guess randomly and succeed with probability 2−k.

We believe that our bound has several interesting implications. First, it suggests that the moment Bob has
produced a register which is nearly maximally correlated with Alice’s infalling qubits, then any additional
qubits that lie within the black hole’s event horizon (i.e., in Charlie’s system), must be almost completely
uncorrelated from them. Second, such a strong decoupling result is achieved for any choice of Hawking
radiation channel Φ—it arises precisely because of the strong scrambling properties of the unitary 3-design
itself. By contrast, the same would not be true for a classical model of black-hole scrambling [HP07],
say in the form of a random reversible circuit or a random permutation6. Despite the fact that a random
permutation is already exponentially complex (i.e., requires exponential-sized circuits with overwhelming
probability), it is simply not scrambling enough to allow for a similar decoupling to hold. In summary, our
results suggest that, in an idealized model of a black hole which features Haar random (or pseudorandom)
scrambling dynamics, the information from infalling entangled qubits can only be recovered from either the
interior or the exterior of the black hole, though never from both places at the same time.

6Interestingly, one could interpret the one-round variant of the sponge construction which underlies the international hash
standard SHA-3 [BDPA11, CP24, CPZ24] as a classical model of black hole scrambling, where the scrambling unitary is given by
a random permutation and the Hawking radiation channel is an erasure channel that selects a subset of the final output bits.
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1.4 Application: Unclonable Cryptography in “MicroCrypt”

In this section, we describe our applications to quantum cryptography; specifically, for how to construct
succinct unclonable encryption schemes from the existence of pseudorandom unitaries. This allows us to
fully bridge the gap between the world of quantum pseudorandomness and unclonable cryptography.

Unclonable Cryptography. Cloning games have played a foundational role in the field of unclonable
cryptography—a branch of quantum cryptography that capitalizes on quantum no-cloning [WZ82] to achieve
guarantees of “unclonable security” which are completely impossible classically. These include uclonable
encryption [BL20, AKL23, KT23, AKY24], encryption with unclonable decryption keys [GZ20], unclon-
able commitments and proofs [GMR23], quantum copy-protection [AKL+22, CMP22], and unclonable
quantum advice [BKL23]. Most of these constructions rely at minimum on the existence of post-quantum
one-way functions, placing unclonable cryptography in “Post-Quantum MiniCrypt” [Imp95].7

Quantum Cryptography in “MicroCrypt”. Meanwhile, another line of work [JLS18, BS19, MPSY24,
MH24, BHHP24] has introduced and constructed notions of pseudorandom quantum states and unitaries.
These are implied by the existence of post-quantum one-way functions; however, the reverse implication is
not known. In fact, recent work [Kre21, AIK22, KQST23] has provided evidence that such an implication
is unlikely to exist. This has led to the development of new and inherently quantum assumptions [BHHP24,
PQS24]. As a result, the quantum cryptographic landscape includes yet another world, sometimes referred
to as “MicroCrypt”, which is potentially even weaker than that of MiniCrypt.

Moreover, pseudorandom states have proven to be powerful cryptographic tools in quantum cryptogra-
phy, implying commitments [MY22] and oblivious transfer [BCKM21, GLSV21], and more. The fact that
such powerful primitives live in MicroCrypt begs the following question:

Does unclonable cryptography exist in MicroCrypt?

In fact, the authors of [MPSY24] explicitly asked whether pseudorandom unitaries (which have eluded
major cryptographic application so far) imply the existence of unclonable cryptographic primitives.

Multi-Copy Unclonable Cryptography. Previous works on unclonable cryptography have exclusively
focused exclusively on the case of 1 7→ 2 cloning games, e.g. in the case of unclonable encryption [BL20],
the adversarial cloner is given only one copy of a ciphertext state and aims to provide two receivers, say Bob
and Charlie, with sufficient information to later recover the plaintext message.

These cryptographic primitives could naturally be extended to t 7→ t+1 security: in the case of unclon-
able encryption, the cloner receives t identical copies of a ciphertext state and aims to provide t+1 receivers
with enough information to later recover the plaintext message. This begs the following question:

Can we construct t 7→ t+ 1 unclonable cryptography from well-founded assumptions?

This would resolve a question which was recenly left open in [AMP24], who asked whether the desirable
property of multi-copy security is within reach in unclonable cryptography more generally.

7The work by [BL20] does imply an information-theoretic construction of unclonable encryption based on BB84 states; how-
ever, this lacks succinctness as the size of the encryption and decryption keys scales with the message length n rather than just the
security parameter λ.

12



Our Results. In this work, we make progress towards these foundational questions, and give an affirmative
answer to both of them. Our main result of this section is the following:

Theorem 1.2 (Informal, see Theorems 5.4 and 5.5 for formal statements). We show the following statements:

1. Assuming the existence of pseudorandom unitaries, there exists a deterministic unclonable encryption
scheme with succinct keys which satisfies oracular 1 7→ 2 search security (i.e., the adversaries are
computationally bounded and only given oracle access to encryption and decryption functionality).

2. If the message space is X = {0, 1}n and we fix t = o(log n/ log log n) then, assuming the existence
of post-quantum pseudorandom functions, there exists a deterministic unclonable encryption scheme
with succinct keys satisfies oracular t 7→ t+1 search security, provided that the adversaries are com-
putationally bounded and can only make a single oracle query to either the encryption or decryption
functionality.

Remark 1. Although we only prove security for t = o(log n/ log logn), we remark that our construction
is plausibly secure for t that is an arbitrary polynomial in n (unlike previous constructions based on BB84
states [BL20] and coset states [CLLZ21]).

Our proof of the first result uses a worst-case to average-case reduction for cloning games, which can
be thought of as an additional cryptographic application of pseudorandom unitaries8 which was previously
not known. Our proof of the second result uses our machinery for analyzing cloning games based on
binary phase states, which we unpack further in Section 2. We visualize the landscape of some unclonable
cryptographic primitives relative to the worlds of MicroCrypt, Post-Quantum Minicrypt, and Post-Quantum
Obfustopia in Figure 4.

1.5 Open Questions

Any improvement to our analysis of cloning games would immediately yield applications to either or both
of the black hole and unclonable encryption settings. We list some of these questions here:

1. Can the security of the underlying 1 7→ 2 oracular cloning game (i.e., as in Construction 3) be proven
even if Bob and Charlie can adaptively make any polynomial number of queries to the encoding
underlying unitary and its inverse?

This would immediately imply the security of our black hole cloning game against arbitrary Bob
and Charlie strategies, when instantiated with a pseudorandom unitary (PRU) rather than a unitary
design. Due to their highly efficient (and yet strong) scrambling properties, pseudorandom unitaries
are believed to be an excellent theoretical model of black hole dynamics [KP23, EFL+24].

2. More tantalizingly, can this security be shown if the PRU secret key θ is given to Bob and Charlie in
the clear, rather than in the form of an oracle? This still plausibly satisfies unclonable security, but is
highly counterintuitive; the PRU security guarantee does not say anything about what could happen
in a game where the secret key θ is eventually leaked.

In our black hole cloning game, this would allow us to prove much stronger quantitative statements,
even in the scenario in which Bob and Charlie have complete knowledge of the internal scrambling
dynamics of the black hole.

8To the best of our knowledge, the use of pseudorandom unitaries in the context of efficient worst-case to average-case reductions
has not previously appeared.
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Figure 4: A visualization of some primitives in unclonable cryptography and the assumptions that are known
to imply them (we focus here on primitives that are relatively well-understood and related to monogamy
of entanglement games). We segment these assumptions into three worlds, loosely following [Imp95]:
Obfustopia, MiniCrypt, and MicroCrypt. MicroCrypt is a world where we only assume the existence of
pseudorandom states and unitaries, which could plausibly hold even if P = NP [KQST23]. Powerful cryp-
tographic primitives such as bit commitments [MY22] and oblivious transfer [BCKM21, GLSV21] have
been shown to exist in MicroCrypt; however, prior to our work, it was not known how to instantiate any
unclonable cryptography with succinct keys in MicroCrypt. Our work takes a first step in this direction
by showing that pseudorandom unitaries imply search-secure succinct unclonable encryption in an oracle
model.
(∗We note for clarity that the existing results on indistinguishability-secure unclonable encryption all come
with some kind of caveat e.g. existing in an oracle model and requiring that the adversaries are disentan-
gled [BL20], or requiring quantum decryption keys [AKY24].)
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3. Can we make our modeling assumptions in our definition of black hole cloning games in Section 4
more physically realistic? For example, can we model the (initial) internal qubits of the black hole as
a more general quantum state (potentially even entangled with the exterior) rather than as the all-zero
state |0n−k⟩? What if the scrambling dynamics do not just affect internal qubits, but also external
qubits? And lastly, what if the scrambling dynamics is in the form of a Haar random isometry?

4. Can we use the language of interactive games to offer new quantitative insights into information
scrambling in other chaotic quantum systems, besides black holes?

5. Can we achieve any of the above stronger security guarantees for t 7→ t + 1 cloning games? Or as
a starting point: can we prove security against players P1, . . . ,Pt+1 that are free to make multiple
non-adaptive queries to Uθ, U

†
θ ?

As far as applications to unclonable cryptography go, the following questions naturally arise:

1. What other unclonable cryptography primitives can be instantiated in MicroCrypt?

2. Can we obtain unclonable encryption with the stronger notion of indistinguishability security that we
usually require of encryption schemes? (Our notion of unclonable security takes the form of “search
security”.) This is an important but difficult problem that recent works have made some progress
on [BL20, KT23, AKL23, AKY24].

3. Which unclonable cryptography primitives have natural, constructible, and applicable t 7→ t + 1
analogues, besides unclonable encryption?

Organization of the Paper. In Section 2, we provide an overview of our techniques with pointers to
the corresponding technical sections. We then present some preliminaries in Section 3. In Section 4, we
formally define black hole cloning games and provide a proof using our technical results on cloning games
in later sections to prove an upper bound on the value of the black hole cloning game. In Section 5, we
define the notion of succinct unclonable encryption schemes and show that it exists in an oracle model,
assuming the existence of pseudorandom unitaries. We also provide a first result towards establishing multi-
copy security of the same scheme. In Section 6, we formally define monogamy of entanglement games and
cloning games, and prove a worst-case to average-case reduction for cloning games. We then revisit existing
techniques for analyzing monogamy games in Section 7, and establish that they will not suffice for our black
hole application. Finally, in Sections 8 and 9, we introduce our novel notion of subtypes and apply this to
prove the desired monogamy bound.
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2 Technical Overview

This technical overview is structured as follows:

1. In Section 2.1, we review the existing techniques for analyzing cloning games, explain their limita-
tions, and then outline our techniques for circumventing these issues.

2. In Section 2.2, we explain the application of our results to black hole physics, in particular highlighting
the necessity of obtaining an asymptotically optimal O(2−n) cloning bound.

3. In Section 2.3, we discuss the application of our results to unclonable cryptography: first in terms of
obtaining it from “MicroCrypt” (assumptions that are believed to be weaker than one-way functions),
and secondly in terms of obtaining multi-copy secure unclonable encryption.

2.1 Sections 6-9: Analyzing Cloning Games

For simplicity, we will focus for most of this technical overview on 1 7→ 2 cloning games, and we will
consider the case where the players Bob and Charlie are each allowed only one query to either Uθ or U †θ .
One can think of Uθ as being Haar random for now; we will specify the right pseudorandom object to
instantiate this as we go along.

Lemma 9.1 and Appendix A: Analyzing an Equivalent Special Monogamy Game. As sketched in Sec-
tion 1.1, we can analyze cloning games by equivalently recasting them as a special type of monogamy game.
In a cloning game, Alice sends the cloner Φ the state Uθ |x⟩. Instead, we could imagine that Alice and Φ
share several EPR pairs, and later on in the game (even after the cloning phase) Alice can apply a measure-
ment

{
Aθ
x := Ūθ |x⟩⟨x| Ū †θ

}
x∈{0,1}n

on her side to induce the state Uθ |x⟩ on the cloner’s side. This yields

a monogamy of entanglement game with the following two restrictions:

• As already mentioned, Alice’s measurements Aθ
x must take the form Ūθ |x⟩⟨x| Ū †θ .

• The tripartite state ρ shared by Alice, Bob, and Charlie is the Choi state of the cloning channel Φ.
Concretely, we must have the special form

ρABC = (IA ⊗ ΦA′→BC)(|EPR⟩⟨EPR|AA′). (2)

This equivalence was first observed and used by [BL20] and follows from the ricochet property of EPR pairs,
which we formally state in Section 3.1. The technical benefit of doing this is that it enables us to get a handle
on the cloning channel Φ by absorbing it into the state shared by the players in the equivalent monogamy
game. Now we can focus on Bob and Charlie’s measurements, which can be handled using spectral bounds
as first observed by [TFKW13]. As we will see, our work builds a different suite of techniques for spectral
bounds that are useful for monogamy games.

Section 6.3: Worst-Case to Average-Case Reduction for Cloning Games. Our task has now been re-
duced to analyzing the value of a particular type of monogamy game where the unitary Uθ is sampled from
the Haar measure on the unitary group U(d), for d = 2n. Analyzing this game directly boils down to proving
spectral bounds on the mixed Haar twirl of a certain operator Ξ; informally, expressions of the form:
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∥∥∥∥ E
U∼U(d)

[(
U ⊗ U ⊗ Ū

)
Ξ
(
U ⊗ U ⊗ Ū

)†]∥∥∥∥
∞
.

Expressions of this form have been studied by [EW01, GO23, GBO23] using mixed Schur-Weyl duality, but
their techniques appear to be very unwieldy in our setting. Instead, we take a two-step approach which is
based on the following insight: cloning games instantiated with a Haar (pseudo)random unitary are, in some
sense, strictly harder for the adversaries to win than any other cloning game.

This suggests the following approach:

1. Argue that for any distribution D supported on U(d), we have:

sup
strategies S

ωS(G;U ∼ U(d)) ≤ sup
strategies S

ωS(G;U ∼ D). (3)

2. Find a convenient distribution D such that we can more easily show that

sup
strategies S

ωS(G;U ∼ D) ≤ O(2−n),

perhaps by passing first to an equivalent monogamy game as stated earlier.

We prove the worst-case-to-average-case reduction captured in Item 1 in Section 6.3. The high-level idea
is to use Haar invariance; we can convert samples U ∼ D to samples W ∼ U(d) by simply sampling
V ∼ U(d) and defining W := V U . So given several copies of a state U |ψ⟩ with U sampled from D, we
can simply sample V to be Haar random and apply V to U |ψ⟩.

Instantiating this requires being able to sample V that appears Haar random, together with a classical
description of it. There are two regimes of interest to us:

• In the query-bounded setting (as is the case for our black hole cloning game), this can be achieved
using mixed unitary designs, which we formally define in Section 3.2. We also show that the more
standard notion of a unitary t-design (studied and constructed in [Haf22, MPSY24, SHH24]) will also
work as a mixed unitary design without modification.

• In the unbounded-query setting, where the adversaries can adaptively make any polynomial number
of queries, this can be achieved using pseudorandom unitaries, which were constructed by [MPSY24,
MH24]. We formally define these in Section 3.3. In this case, we will obtain Equation (3) but incur
an additive negl(λ) security loss on the RHS.

It now remains to address Item 2, which we do by analyzing the corresponding monogamy games. The key
challenge is to find any monogamy game with X = {0, 1}n and value O(2−n), subject to the restrictions
stated at the beginning of Section 2.1, and we additionally restrict Bob and Charlie to make a single oracle
query to Uθ or U †θ (for technical reasons). We first revisit existing techniques and explain why they are
insufficient for this goal, then introduce our new techniques for achieving this.

Starting Point: [TFKW13]. In order to analyze the BB84 monogamy game, the work by [TFKW13] uses
two beautiful ideas:
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1. The value of a particular monogamy game can be bounded independently of the state ρABC shared by
the 3 players, noting that ρABC is PSD and has trace 1.

ω(G) = E
θ∼Θ

∑
x∈X

Tr
[
(Aθ

x ⊗Bθ
x ⊗Cθ

x)ρABC

]
= Tr

[(
E
θ∼Θ

∑
x∈X

Aθ
x ⊗Bθ

x ⊗Cθ
x

)
ρABC

]

≤

∥∥∥∥∥ E
θ∼Θ

∑
x∈X

Aθ
x ⊗Bθ

x ⊗Cθ
x

∥∥∥∥∥
∞

.

This reduces the task of bounding the value of a monogamy game to bounding an operator norm.

2. This operator norm can in turn be bounded just in terms of pairwise overlaps between the Aθ
x’s, which

the designer of the game is free to choose. As we state in Theorem 7.1, the authors of [TFKW13]
show that ∥∥∥∥∥ E

θ∼Θ

∑
x∈X

Aθ
x ⊗Bθ

x ⊗Cθ
x

∥∥∥∥∥
∞

≤ 1

|Θ|
+
|Θ| − 1

|Θ|
· max
θ,θ′∈Θ
θ ̸=θ′

max
x,x′∈X

∥∥∥Aθ
xA

θ′
x′

∥∥∥
∞
.

We refer the reader to Theorem 7.1 for a formal statement.

In the BB84 monogamy game where Θ = X = {0, 1} and Aθ
x = Hθ |x⟩⟨x|Hθ, it is straightforward to

see that
∥∥∥Aθ

xA
θ′
x′

∥∥∥
∞

= 1√
2
, and hence ω(GBB84) ≤ 1

2 + 1
2
√
2
. The work by [TFKW13] also extends this to

“parallel-repeated” BB84 games with |Θ| = |X | = {0, 1}n (see Theorem 6.4) for a formal definition, and
show that

ω(G⊗nBB84) ≤ cos2
(π
8

)n
≈ 2−0.228n.

Hence we have an n-bit monogamy game with value ≤ 2−0.228n. In fact, this is tight; [TFKW13]
exhibits a simple strategy achieving this bound. However, for our black hole application, we require a tight
bound (up to constant factors) of O(2−n). We explain how we do this in the forthcoming paragraphs.

Section 7: Better Bounds from Binary Phase States. The security of the BB84 monogamy game is
fundamentally limited, both in terms of the value of the 1 7→ 2 monogamy game (which we just saw), and
its multi-copy security (which we will discuss in Section 2.3). To improve on this, we instead consider
binary phase states. For any function f : {0, 1}n → {0, 1} from some function family F, we define

Uf =
∑

x∈{0,1}n
(−1)f(x) |x⟩⟨x| ,

and consider the monogamy game defined by X = {0, 1}n, Θ = F, and

Af
x = UfH

⊗n |x⟩⟨x|H⊗nUf .

In other words, Af
x is a projector onto the state

|ψfx⟩ := UfH
⊗n |x⟩ = 2−n/2

∑
y∈{0,1}n

(−1)f(y)+⟨x,y⟩ |y⟩ ,
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and our proposed distribution D over unitaries is obtained by first sampling f from some function family F
and outputting UfH

⊗n.
The state |ψf0 ⟩, where F is a post-quantum pseudorandom function (PRF) family [Zha21a], has previ-

ously been considered by [JLS18, BS19] as a construction of a pseudorandom state, owing to its multi-copy
security. We include additional information about the answer x in the phase as a means of “encrypting” x
within this state. Intuitively, these states enjoy better security than BB84 states due to the fact that for any f ,
the basis

{
|ψfx⟩ : x ∈ {0, 1}n

}
is highly entangled across the n qubits. In the BB84 case, the measurement

basis is entirely disentangled across the n qubits, and this hurts security. In fact, [AK21] describes a generic
attack on cloning games where the measurement basis is entirely disentangled across qubits.

As a first step, in Section 7.2 we analyze this binary phase monogamy game instantiated with F being
a PRF family, using the aforementioned techniques by [TFKW13]. We show a bound on this monogamy
game of essentially Õ(2−n/2), which is better than the BB84 case but still not the desired O(2−n). This
is in fact an inherent limitation of the [TFKW13] technique; as we show in Section 7.3, we cannot hope to
prove a better upper bound than this for any monogamy game of the desired form using their techniques.

Sections 8 and 9.1-9.3: Binary Types and Extending Them to Subtypes. In order to attain the desired
bound of O(2−n), we will hence need to turn to new techniques. As a first attempt, let us try to retain Item 1
of the [TFKW13] technique and find alternative ways to bound the operator norm of interest. In order to
get a better handle on the projectors Bf

x and Cf
x, we will now restrict Bob and Charlie by giving them one

oracle query to Uf (which is its own inverse), rather than actually revealing f . With these constraints, we
can model Bob and Charlie’s projectors as follows:

Bf
x = UfP

† |x⟩⟨x|PUf ;

Cf
x = UfQ

† |x⟩⟨x|QUf ,

for unitaries P,Q. (In reality, we later also allow Bob and Charlie additional ancillary workspace qubits; we
define this generalization in Definition 6.8. Moreover, we assume without loss of generality that Bob and
Charlie do not perform any preprocessing before making their query to Uf , by absorbing this preprocessing
into the cloning channel Φ that constructs their initial states.) Although this is quite restrictive, notice
that a single query to Uf is actually sufficient if we only wanted one player (Bob, say) to recover x from
|ψfx⟩ = UfH

⊗n |x⟩. The operator we now need to bound the ℓ∞ norm of has the following form:

E
f∼F

[ ∑
x∈{0,1}n

Af
x ⊗Bf

x ⊗Cf
x

]

= E
f∼F

[
U⊗3f

 ∑
x∈{0,1}n

(
H⊗n |x⟩⟨x|H⊗n

)
⊗
(
P† |x⟩⟨x|P

)
⊗
(
Q† |x⟩⟨x|Q

)
︸ ︷︷ ︸

=:Ξ

U⊗3f

]
.

Let us assume from now that F is the family of all functions from {0, 1}n → {0, 1} (we can make this
switch provided F is 6-wise uniform). In this case, this expression is known as a binary phase twirl applied
to the operator Ξ, and this object is well-understood [JLS18, BS19, AGQY22] in terms of binary types,
which were recently used by [AGQY22]. We present these definitions in Section 8.3. In the simple case
above, a binary type λ is specified by a subset Tλ ⊆ {0, 1}n with |Tλ| ∈ {1, 3}. We say that a vector
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x ∈ [2n]3 matches λ if every string in Tλ appears an odd number of times in x, while every string outside
Tλ appears an even number of times in x. Then, it can be shown that:

E
f∼F

[
U⊗3f ΞU⊗3f

]
=
∑
λ

ΠλΞΠλ , where Πλ :=
∑

x∈[2n]3 matches λ

|x⟩⟨x|

is the projector onto vectors matching λ. The projectors {ΠλΞΠλ} are mutually orthogonal, so it suffices
to bound ∥ΠλΞΠλ∥∞ for each type λ.

To the best of our knowledge, it appears difficult to directly bound these operator norms. Informally, the
reason is that the combinatorial structure arising from a type λ entangles registers together; if we consider
the type defined by Tλ = {x∗} for some string x∗, then strings of the form (x∗, y, y), (y, x∗, y), or (x∗, y, y)
would all match λ. It would be much cleaner if we could just analyze strings from one of these categories
at a time.

This is exactly what we do, and we formalize this using a novel notion of subtypes (defined formally
in Section 8.2). Informally, a subtype would capture all strings matching just one of the above categories
e.g. {(y, x∗, y)}y∈{0,1}n . We denote subtypes by µ and their corresponding subtype projectors by Πµ.
In Section 8.2.2, we show that to bound ∥ΠλΞΠλ∥∞ for a type λ, it suffices to bound ∥ΠµΞΠµ∥∞ for a
subtype µ. This added structure allows us to prove better spectral bounds, which we present in Section 9.3.

It turns out that this technique allows us to prove the desired bound ofO(2−n) for 1 7→ 2 cloning games,
albeit with the restriction that Bob and Charlie can only make one query each to Uf . At a very high level, the
“product structure” of subtypes enables us to leverage a simple but novel spectral bound on the column-wise
tensor product of several matrices, which we present in Lemma 3.22.

Sections 9.4 and 9.5: Towards Multi-Copy Security. One could also define a “t 7→ t+1” cloning game,
where the cloner receives the t-copy state (Uθ |x⟩)⊗t, and there are now t + 1 players P1, . . . ,Pt+1 with
respective registers P1, . . . ,Pt+1 who need to all simultaneously guess x, given a single query to an oracle
for Uθ, U

†
θ . (In other words, the setting we have considered so far is when t = 1.) In this setting, the operator

we want to bound is

2n(t−1)
∑

x∈{0,1}n

[
(Ax)

⊗t ⊗
t+1⊗
i=1

Pi,x

]
.

(We include the 2n(t−1) factor to compensate for the fact that these measurements are incomplete; we are
post-selecting on Alice’s tmeasurements all yielding the same outcome; see Lemma 9.1 for a formal deriva-
tion.) In this setting, we note that previous candidate constructions used for cloning games based on BB84
or coset states [BL20, AKL+22] are provably insecure if t is allowed to be an arbitrary polynomial:

• BB84 states can be broken even when t = 2; the adversary can measure one copy in the standard
basis and the other copy in the Hadamard basis, and send the results of all measurements to the three
receivers P1, P2, P3.

Once the BB84 bases θ ∈ {0, 1}n have been revealed, the receivers can all reconstruct the message x.

• Coset states of dimension d ≤ n can be broken with t = O(d) copies; the adversary can simply
measure all the copies in the standard basis to recover a classical description of the subspace, then
send this to the three players.
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In contrast, binary phase states are secure for an arbitrary number of polynomial copies, so one might
plausibly hope for unclonable t 7→ t + 1 security for any (polynomially bounded) t. In other words, we
would ideally like to show the following (see Section 9.1 for a derivation):

∥ΠλΞΠλ∥∞ = 2n(t−1) ·

∥∥∥∥∥∥Πλ

 ∑
x∈{0,1}n

(
H⊗n |x⟩⟨x|H⊗n

)⊗t ⊗ t+1⊗
i=1

(
P†i |x⟩⟨x|Pi

)Πλ

∥∥∥∥∥∥
∞

≤ Ot(2−n).

Surprisingly, this is false even for t = 2; we provide a counterexample showing this in Section 9.5. We
finally outline how we manage to circumvent this problem in a restricted setting, as an additional contribu-
tion and stepping stone towards the goal of t 7→ t + 1 unclonable cryptography. The restriction we impose
on the t+1 players is analogous to the restriction we imposed on Bob and Charlie in the black hole setting:
each player can be an arbitrary quantum algorithm that makes a single query to the phase oracle Uf .

We note that our construction is plausibly secure when t is an arbitrary polynomial in the security
parameter and the players are completely unrestricted; however, we are currently only able to prove security
in this restricted setting.

Specializing to Cloning Games. The issue is the loss incurred by using Item 1 of the [TFKW13] technique
to dispose of the shared state ρA,P1→t+1 . This step is tight if ρA,P1→t+1 can be an arbitrary mixed state as in a
monogamy game. However, in the special case of cloning games, ρA,P1→t+1 is not arbitrary! In our case,
the shared state will be the result of applying some channel to the right half of tn EPR pairs. This can be
seen from Equation (2) (appropriately generalized to the multi-copy setting). In other words, if we apply a
partial trace to remove the P1→t+1 registers, the residual state on A should be proportional to I2n×2n .

This structure may seem mild, but it turns out to be enough to complete our analysis; we present this
in Section 9.4. At a high level, we show that for any subtype µ such that Ξ places high weight on the image
of Πµ, the shared state ρA,P1→t+1 must place low weight on the image of Πµ. These effects roughly cancel
each other out, and thus we are able to prove a bound of Ot(2−n), provided that the t+1 players only make
a single query to either Uθ or U †θ .

Section 3.4: Spectral Bounds on Blockwise Tensor Products. In the special case that the t+1 players do
not have any ancilla qubits and can only apply unitaries, the subtype formalism together with Lemma 3.22
and a simple technical observation suffice to prove the desired bound. This simple technical observation
is that if we have three matrices A,B,C ∈ Cd×d such that A,B are unitary and all entries of C have
magnitude ≤ 1, then the entrywise product of A,B,C has operator norm ≤ 1. This can be shown by using
well-known bounds relating the operator norm of a matrix to the ℓ1 norms of its rows and columns (see
Lemmas 3.15 and 3.16).

However, this is unreasonably restrictive. In order to accommodate the possibility of the t + 1 players
using ancilla qubits, we require a stronger version of this observation that allows A,B to be d × d block
matrices (i.e. they each comprise d2 blocks). For example, when d = 2 we would need to show that∥∥∥∥[c1,1A1,1 ⊗B1,1 c1,2A1,2 ⊗B1,2

c2,1A2,1 ⊗B2,1 c2,2A2,2 ⊗B2,2

]∥∥∥∥
∞
≤ 1,

provided that
[
A1,1 A1,2

A2,1 A2,2

]
,

[
B1,1 B1,2

B2,1 B2,2

]
are unitary and |ci,j | ≤ 1 for all i, j. Proving this turns out to

be much more technically challenging, although elementary; we present this result and its proof in Theo-
rem 3.19. Given that this theorem is a purely linear algebraic statement unrelated to monogamy games, we
are hopeful that it might be useful elsewhere in quantum information and even in other areas.
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Our techniques to obtain better bounds than [TFKW13] for t 7→ t + 1 cloning games (including when
t = 1) thus require a complete overhaul of their framework, albeit at the expense of restricting the t + 1
players to make a single query to a decryption oracle, and restricting attention to cloning games rather than
arbitrary monogamy games. We note however that the vast majority of monogamy games encountered in
physics and cryptography are of a form that can be equivalently formulated as cloning games.

2.2 Section 4: Application to Black-Hole Physics

As one application of our techniques, we study the notion of a black hole cloning game—a three-player
non-local game which is designed to capture the unclonability of quantum information in the context of
evaporating black holes. We show an asymptotically tight upper bound on the success probability of a
particular variant of the game.

While our notion of a black hole cloning game is syntactically different from the cloning and monogamy
games studied by [TFKW13, BL20], we believe it nevertheless captures unclonability in a similar spirit.
Given the similarity between our black hole cloning game and the games studied in [TFKW13, BL20], this
begs the question of whether one can indeed interpret one as an instance of the other. We show that the
analysis of black hole cloning games is inextricably linked to the existence of standard monogamy games
which have asymptotically optimal bounds of the form O(2−n)—well beyond the pre-existing upper bound
of 2−0.228n in Equation (1).

The bulk of our work in Section 4 is to show that the maximal value ω(GBH) can always be related to
the maximal value of a related (but standard) cloning game Gclone. Specifically, we show that the game GBH

emerges as a special case of Gclone in which we post-select on the event that Alice’s sampled message y takes
the form y = x||0n−k, for some x ∈ {0, 1}k. Because this event occurs with probability 2−n+k, this allows
us to deduce that

sup
strategies S

ωS(Gclone) ≥ 2−n+k · ω(GBH).

Therefore, in order to obtain an asymptotically optimal bound of the form ω(GBH) = O(2−k), it suffices
to show that the related monogamy game Gclone has a maximal value of supstrategies S ωS(Gclone) = O(2−n).
Crucially, we require an O(2−n) bound; a bound of the form O(2−cn) for any c < 1 is insufficient.
This would yield ω(GBH) ≤ 2−k · 2n(1−c), which is a completely trivial bound if we assume n ≫ k (which
is likely since presumably the black hole is a much larger system than the set of qubits Alice throws inside).

Thus in order to analyze GBH, we need to prove a O(2−n) bound on the corresponding 1 7→ 2 cloning
game. As explained in Section 2.1, our work is the first to do this (albeit in a restricted query setting). This
completes our overview of our analysis of the black hole cloning game, and the proof of Theorem 4.4.

2.3 Section 5: Application to Unclonable Cryptography

As another application of our techniques for analyzing cloning games, we study the notion of succinct un-
clonable encryption, and show that it is implied by the existence of pseudorandom unitaries, thus providing
the first connection between the worlds of quantum pseudorandomness and unclonable cryptography.

Unclonable Encryption from Pseudorandom Unitaries. Our first contribution towards connecting un-
clonable cryptography and quantum pseudorandomness is encapsulated in Theorem 5.4, where we show
that the existence of pseudorandom unitaries is sufficient to instantiate search-secure succinct unclonable
encryption in an oracle setting. To do this, we use the same worst-case to average-case reduction that we
outlined in Section 2.1 and will flesh out in Section 6.3. For the distribution D, we simply use the BB84
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cloning game and the analysis by [TFKW13, BL20] i.e. we sample θ ← {0, 1}n and output the unitary Hθ.
While this gives us a security bound of 2−0.228n + negl(λ) rather than the ideal O(2−n) + negl(λ), this is
not a crucial difference for this application (unlike in the black hole setting); moreover, the analysis of the
BB84 cloning game has the advantage that it does not need to restrict Bob’s and Charlie’s strategies.

Towards Multi-Copy Unclonable Encryption. We also consider the natural extension of unclonable
encryption to the multi-copy setting: the cloner now receives t copies of the ciphertext state (Uθ |x⟩)⊗t, and
must then forward some information to t + 1 players who will later be given oracle access to encryption
and decryption functionality. To the best of our knowledge, our work is the first to consider this notion of
multi-copy security, and we are optimistic that this notion might be naturally applicable to other primitives
in unclonable cryptography.

Using our analysis of t 7→ t+1 cloning games presented in Section 2.1, we are able to construct search-
secure succinct t 7→ t+ 1 unclonable encryption in the restricted setting where t = o(log n/ log log n) and
the adversaries may only make one query to encryption/decryption oracles (but are otherwise computation-
ally unbounded). We provide a formal statement in Theorem 5.5.

We emphasize that our construction is the first that could even be plausibly secure in the setting where t
can be an a priori unbounded polynomial in λ, n and the t+1 players are given the secret key θ in the clear.
While our results are far from this ideal goal, we view our techniques as providing a stepping stone towards
an ideal security result for unclonable encryption. We are also optimistic that our results and techniques
might be adaptable to other problems in unclonable cryptography.

3 Preliminaries

3.1 Quantum Computation

For a comprehensive background, we refer to [NC16]. We denote a finite-dimensional complex Hilbert
space by H, and we use subscripts to distinguish between different systems (or registers). For example, we
let HA be the Hilbert space corresponding to a system A. The tensor product of two Hilbert spaces HA and
HB is another Hilbert space denoted by HAB = HA ⊗HB. The Euclidean norm of a vector |ψ⟩ ∈ H over
the finite-dimensional complex Hilbert space H is denoted as ∥ψ∥ =

√
⟨ψ|ψ⟩. Let L(H) denote the set of

linear operators over H. A quantum system over the 2-dimensional Hilbert space H = C2 is called a qubit.
For n ∈ N, we refer to quantum registers over the Hilbert space H =

(
C2
)⊗n as n-qubit states. We use

the word quantum state to refer to both pure states (unit vectors |ψ⟩ ∈ H) and density matrices ρ ∈ D(H),
where we use the notation D(H) to refer to the space of positive semidefinite matrices of unit trace acting
onH. The trace distance of two density matrices ρ, σ ∈ D(H) is given by

TD(ρ, σ) =
1

2
∥ρ− σ∥1.

A quantum channel Φ : L(HA) → L(HB) is a linear map between linear operators over the Hilbert spaces
HA andHB. Oftentimes, we use the compact notation ΦA→B to denote a quantum channel between L(HA)
and L(HB). We say that a channel Φ is completely positive if, for a reference system R of arbitrary size, the
induced map IR⊗Φ is positive, and we call it trace-preserving if Tr [Φ(X)] = Tr [X], for all X ∈ L(H). A
quantum channel that is both completely positive and trace-preserving is called a quantum CPTP channel.
A unitary U : L(HA) → L(HA) is a special case of a quantum channel that satisfies U †U = UU † = IA.
When U acts on a density matrix ρ, it maps ρ 7→ UρU †, and we will denote this channel by U · U †.

23



Whenever d = 2n, we refer to the group of unitaries acting on n qubits as U(d). An isometry is a linear map
V : L(HA) → L(HB) with dim(HB) ≥ dim(HA) and V †V = IA. A projector Π is a Hermitian operator
such that Π2 = Π, and a projective measurement is a collection of projectors {Πi}i such that

∑
iΠi = I. A

positive-operator valued measure (POVM) is a set of Hermitian positive semidefinite operators {Mi} acting
on a Hilbert spaceH such that

∑
iMi = I.

Given a bipartite state ρAB, the partial trace TrB captures the residual state of the system on just the A
register. TrB is thus defined as a linear map from L(HA ⊗HB) → L(HA) that maps R ⊗ S 7→ Tr [S] · R.
Given a multipartite operator X ∈ L(HA ⊗ HB ⊗ HC), the partial transpose applies a transpose to only
some of these systems. For example, the partial transpose X 7→ X⊤B with respect to the second system is
defined as a linear map satisfying X1 ⊗X2 ⊗X3 7→ X1 ⊗X⊤2 ⊗X3. We can also define a SWAP operator
that acts on say registers A and C; this is a linear map that will map X1 ⊗X2 ⊗X3 7→ X3 ⊗X2 ⊗X1.

Operators. Define the following unitary operators:

• Phase oracle: For f : {0, 1}n → {0, 1} we let

Uf =
∑

x∈{0,1}n
(−1)f(x) |x⟩⟨x| .

• Multi-bit Pauli operator: For m ∈ {0, 1}n, let

Zm =
∑

x∈{0,1}n
(−1)⟨x,m⟩ |x⟩⟨x| .

• Hadamard: The n-qubit Hadamard operator is defined by

H⊗n = 2−n/2
∑

x,y∈{0,1}n
(−1)⟨x,y⟩ |x⟩⟨y| .

Choi-Jamiołkowski isomorphism. Let HA be a d-dimensional Hilbert space with an orthonormal basis
denoted by {|1⟩ , . . . , |d⟩}. Let |Ω⟩ =

∑
i∈[d] |i⟩ ⊗ |i⟩ be the vectorization of the identity Id =

∑
i∈[d] |i⟩⟨i|.

Then, the Choi-Jamiołkowski isomorphism J(Φ) ∈ L(HB ⊗HA′) with respect to a linear map of the form
Φ : L(HA)→ L(HB) is defined as

J(Φ) = (ΦA→B ⊗ IA′)(|Ω⟩⟨Ω|) =
∑
i,j∈[d]

Φ(|i⟩⟨j|)⊗ |i⟩⟨j| .

We use the following well known fact.

Lemma 3.1. Let Φ : L(HA)→ L(HB) be a linear map. Then, for any |ψ⟩ ∈ S(HA) and |ϕ⟩ ∈ S(HB),

⟨ϕ|Φ(|ψ⟩⟨ψ|) |ϕ⟩ = ⟨ϕ| ⊗ ⟨ψ̄| J(Φ) |ϕ⟩ ⊗ |ψ̄⟩ ,

where the complex conjugation is taken with respect to the computational basis. Equivalently, we have:

Tr [|ϕ⟩⟨ϕ|Φ(|ψ⟩⟨ψ|)] = Tr
[(
|ϕ⟩⟨ϕ| ⊗ |ψ̄⟩⟨ψ̄|

)
J(Φ)

]
.

By linearity, we immediately obtain the following corollary:

Corollary 3.2. Let Φ : L(HA)→ L(HB) be any linear map. Then, for any Hermitian operators P ∈ L(HB)
and Q ∈ L(HA), it holds that

Tr [PΦ(Q)] = Tr
[(
P⊗ Q̄

)
J(Φ)

]
.
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3.2 Mixed Unitary Designs

In this section, we formally define the Haar measure [Sim95] and define a new and more general version of
a mixed unitary t-design which also allows for inverses with respect to the adjoint of the unitary.

Definition 3.3 (Haar measure). Let d ∈ N denote the dimension. The Haar measure µH is the unique left
and right unitarily-invariant measure over the unitary group U(d); that is, for every (possibly matrix-valued)
integrable function f with domain L(Cd) and every unitary V ∈ U(d),∫

U(d)
f(U) dµHU =

∫
U(d)

f(U · V ) dµHU =

∫
U(d)

f(V · U) dµHU.

For brevity, we oftentimes denote the expectation of f over the Haar measure by

E
U∼U(d)

[f(U)] =

∫
U(d)

f(U) dµHU.

Vectorization Formalism. For a linear operator Λ ∈ L(Cd), we consider the corresponding vectorization
map vec : L(Cd)→ (Cd)⊗2 which is defined as follows:

Λ =
∑
i,j∈[d]

Λ(i,j) |i⟩⟨j| 7→ vec(Λ) := |Λ⟩⟩ =
∑
i,j∈[d]

Λ(i,j) |i⟩ ⊗ |j⟩ .

We are also going to use the so-called ABC-rule [Mel24]: for any linear operators A,B,C ∈ L(Cd),

|ABC⟩⟩ = (A⊗C⊺) |B⟩⟩.

Non-Adaptive Mixed Unitary Designs. In this section, we introduce a generalization of the standard
notion of a unitary t-design which also accounts for inverse queries (to the adjoint of the unitary). We
exclusively consider exact designs; in particular, exact unitary 3-designs via the Clifford group [Web16].

Definition 3.4 (Mixed-Adjoint Moment Operator). Let ν be an ensemble of unitary operators over Cd.
Then, we define the mixed-adjoint (p, q)-moment operatorM(p,q)

ν,adj : L(C
d)→ L(Cd) by

M(p,q)
ν,adj(O) := E

U∼ν

[
(U⊗p ⊗ (U †)⊗q)O(U⊗p ⊗ (U †)⊗q)†

]
for a linear operator O ∈ L((Cd)⊗(p+q)). Similarly, we let M(p,q)

U(d),adj denote the mixed-adjoint (p, q)-
moment operator with respect to the Haar measure over the unitary group Ud.

Definition 3.5 (Non-Adaptive Mixed Unitary (p, q)-Design). Let ν be an ensemble of unitary operators
over Cd. Then, ν is a (non-adaptive) unitary (p, q)-design if, for every O ∈ L((Cd)⊗(p+q)),

E
U∼ν

[
(U⊗p ⊗ (U †)⊗q)O(U⊗p ⊗ (U †)⊗q)†

]
= E

U∼U(d)

[
(U⊗p ⊗ (U †)⊗q)O(U⊗p ⊗ (U †)⊗q)†

]
.

Note that a unitary t-design is a special case of the above definition.

Definition 3.6 (Non-Adaptive Unitary t-Design). Let ν be an ensemble of unitary operators over Cd. Then,
ν is a (non-adaptive) unitary t-design if it is a (non-adaptive) unitary (t, q)-design for q = 0.
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We show the following equivalence in terms of the vectorized mixed moment operator.

Lemma 3.7. A unitary ensemble ν over Cd is a (non-adaptive) unitary (p, q)-design if and only if

E
U∼ν

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
= E

U∼U(d)

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
.

Proof. Suppose that ν is a unitary (p, q)-design. Then, for all O ∈ L((Cd)⊗(p+q)), it holds that

M(p,q)
ν,adj(O) =M(p,q)

U(d),adj(O).

By applying the vectorization vec : L((Cd)⊗(p+q))→ ((Cd)⊗(p+q))⊗2 on both sides, we get

|M(p,q)
ν,adj(O)⟩⟩ = |M(p,q)

U(d),adj(O)⟩⟩.

By linearity and the ABC-rule for vec(·), this is equivalent to

E
U∼ν

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
|O⟩⟩ = E

U∼U(d)

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
|O⟩⟩.

Because vec(·) is a bijection between L((Cd)⊗(p+q)) and ((Cd)⊗(p+q))⊗2, the operators above must be
identical on the entire vector space ((Cd)⊗(p+q))⊗2. The converse statement can be shown analogously.

Lemma 3.8. A unitary t-design ν is a mixed unitary (p, q)-design for any p, q with t = p+ q.

Proof. Let t = p+ q. According to Theorem 3.7, it suffices to show that ν satisfies

E
U∼ν

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
= E

U∼U(d)

[
U⊗p ⊗ (U †)⊗q ⊗ Ū⊗p ⊗ (U⊺)⊗q

]
.

By inserting the partial transpose with respect to the 2nd and 4th system, this is equivalent to

E
U∼ν

[
U⊗p ⊗ Ū⊗q ⊗ Ū⊗q ⊗ U⊗p

]T2,4 = E
U∼U(d)

[
U⊗p ⊗ Ū⊗q ⊗ Ū⊗q ⊗ U⊗p

]T2,4 .

After inserting a SWAP between the 2nd and 4th system via F2,4, it is also equivalent to showing that[
F†2,4 E

U∼ν

[
U⊗p ⊗ U⊗q ⊗ Ū⊗p ⊗ Ū⊗q

]
F2,4

]T2,4

=

[
F†2,4 E

U∼U(d)

[
U⊗p ⊗ U⊗q ⊗ Ū⊗p ⊗ Ū⊗q

]
F2,4

]T2,4

.

By assumption, ν is a unitary t-design for t = p+ q, and hence it holds that

E
U∼ν

[
U⊗p ⊗ U⊗q ⊗ Ū⊗p ⊗ Ū⊗q

]
= E

U∼U(d)

[
U⊗p ⊗ U⊗q ⊗ Ū⊗p ⊗ Ū⊗q

]
which yields the desired equality from before.
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Adaptive Mixed Unitary Designs. In this section, we generalize the notion of mixed unitary designs to
algorithms which may query a unitary (and possibly its inverse) adaptively, rather than in parallel.

Definition 3.9 (Adaptive Mixed Unitary (p, q)-Design). Let ν be an ensemble of unitary operators over
Cd. Then, ν is an adaptive unitary (p, q)-design if, for every single-bit output (possibly adaptive) quantum
algorithm A making at most p many queries to a unitary and q many queries to its adjoint,

Pr
[
1← AU,U†

(1⌈log d⌉) : U ∼ ν
]
= Pr

[
1← AU,U†

(1⌈log d⌉) : U ∼ U(d)
]
.

We say that ν is an adaptive mixed unitary t-design if the property above holds for any adaptive quantum
query algorithm A which submits no more than t queries to either U or U †.

We now show that an (exact) non-adaptive mixed unitary t-design is automatically also an (exact) adap-
tive mixed unitary t-design. In the approximate case, this conversion incurs an exponential blow-up.

Theorem 3.10. Any exact non-adaptive unitary t-design is also an exact adaptive mixed unitary t-design.

Proof. Let ν be a non-adaptive unitary t-design over Cd. Suppose thatAU,U†
(1⌈log d⌉) is an adaptive t-query

quantum algorithm that makes p many queries to U and q queries to U †, for U ∈ U(d) and t = p+ q.
The idea is to use a standard gate teleportation approach, similar to [AMR19, Kre21]. Concretely, we

can argue that, for any U ∈ U(d), there exists a non-adaptive algorithm BU,U†
(1⌈log d⌉) that makes p many

parallel queries to U and q many parallel queries to U † such that

Pr
[
1← AU,U†

(1⌈log d⌉)
]
= d2(p+q) Pr

[
1← BU,U†

(1⌈log d⌉)
]
.

This essentially follows from [Kre21, Lemma 23], since the non-adaptive query algorithm has access to both
U and U †. Because ν is a non-adaptive unitary t-design, we know from Theorem 3.8 that ν is also mixed
unitary (p, q)-design. Putting everything together, we get that

Pr
[
1← AU,U†

(1⌈log d⌉) : U ∼ ν
]
= d2(p+q) Pr

[
1← BU,U†

(1⌈log d⌉) : U ∼ ν
]

= d2(p+q) Pr
[
1← BU,U†

(1⌈log d⌉) : U ∼ U(d)
]

= Pr
[
1← AU,U†

(1⌈log d⌉) : U ∼ U(d)
]
.

This proves the claim.

3.3 Pseudorandom Unitaries

Pseudorandom unitaries are ensembles of unitary operators that look indistinguishable from Haar random
unitaries for all computationally bounded observers. These ensembles of unitaries have been first proposed
in [JLS18], and have only very recently been constructed assuming the existence of post-quantum one-way
functions [MPSY24, MH24]. We give a formal definition below.

Definition 3.11 (Pseudorandom Unitary). Let λ be the security parameter, n := n(λ) ∈ N be some polyno-
mial, and d = 2n. An infinite sequence U = {Un}n∈N of n-qubit unitary ensembles Un = {Uθ,n}θ∈{0,1}λ is
a pseudorandom unitary if it satisfies the following conditions:
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• (Efficient computation) For all λ, n, there exists a polynomial-time quantum algorithm Q such that
for all keys θ ∈ {0, 1}λ, and any |ψ⟩ ∈ (C2)⊗n, it holds that

Q(θ, |ψ⟩) = Uθ,n |ψ⟩ .

• (Pseudorandomness) The unitary Uθ,n, for a random key θ ∼ {0, 1}λ, is computationally indistin-
guishable from a Haar random unitary U ∼ U(d). In other words, for any QPT algorithmA, it holds
that

Pr
θ∼{0,1}λ

[AUθ,n,U
†
θ,n(1λ, 1n) = 1]− Pr

U∼U(d)
[AUθ,n,U

†
θ,n(1λ, 1n) = 1] ≤ negl(λ) .

Remark 2. We note that this definition of pseudorandom unitary is quite strong; the adversary A is free
to make its queries adaptively, and moreover it is allowed to query both U and U †, in analogy to strong
pseudorandom permutations. This notion was constructed in recent work by Ma and Huang [MH24].

3.4 Operator Norm Bounds

In this section, we lay out some tools for bounding the operator norm ∥A∥∞ of operators A ∈ Cd×d. For
matrices A,B of the same dimensions, we use A ◦B to denote their entrywise product.

Lemma 3.12 (Well-known). For any matrix A ∈ Cd1×d2 , we have

∥A∥∞ =
√
λmax(A†A) =

√
λmax(AA†) = max {∥Ax∥2 : ∥x∥2 = 1} .

Moreover, if A has rank ≤ 1, then we have λmax(A
†A) = Tr

[
A†A

]
.

Lemma 3.13 (Well-known). For any pair of matrices A ∈ Cd1×d2 and A′ ∈ Cd′1×d′2 such that A′ is a
submatrix of A, we have ∥A′∥∞ ≤ ∥A∥∞.

Lemma 3.14 (Well-known). For A ∈ Cd1×d2 and B ∈ Cd3×d4 , we have ∥A⊗B∥∞ = ∥A∥∞ · ∥B∥∞.

Lemma 3.15. Let A1, . . . ,Ak ∈ Cd×d be unitary matrices with k ≥ 2. Then, the rows and columns of
C = A1 ◦ . . . ◦Ak all have ℓ1 norm ≤ 1.

Proof. In the case of rows, we have:

d∑
j=1

|Ci,j | =
d∑
j=1

|A1;(i,j)| · . . . · |Ak;(i,j)|

≤
d∑
j=1

|A1;(i,j)| · |A2;(i,j)| (all entries of a unitary are ≤ 1)

≤

√√√√√
 d∑
j=1

|A1;(i,j)|2

 ·
 d∑
j=1

|A2;(i,j)|2

 (Cauchy-Schwarz)

= 1.

The case of columns is analogous.
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Lemma 3.16. Let C ∈ Cd1×d2 be such that the ℓ1 norm of each row is ≤ a and the ℓ1 norm of each column
is ≤ b. Then ∥C∥∞ ≤

√
ab.

Proof. For any row i of C†C ∈ Cd2×d2 , we have:

d2∑
j=1

|(C†C)i,j | =
d2∑
j=1

|
d1∑
k=1

C†i,kCk,j |

≤
d2∑
j=1

d1∑
k=1

|Ck,i||Ck,j |

≤ a ·
d∑

k=1

|Ck,i|

≤ ab.

Since the maximum eigenvalue of a square matrix is at most the maximum ℓ1 norm of its rows, we have∥∥C†C∥∥∞ ≤ ab⇒ ∥C∥∞ ≤ √ab.
We also define and state some simple properties of matrix inner products:

Definition 3.17. For matrices A,B ∈ Cd1×d2 , define the inner product

⟨A,B⟩ =
∑

i∈[d1],j∈[d2]

Ai,j ·Bi,j = Tr
[
A†B

]
.

We also define the Frobenius norm ∥A∥F =
√
⟨A,A⟩.

Lemma 3.18. For matrices A,B ∈ Cd×d, we have:

• (Cauchy-Schwarz) |⟨A,B⟩| ≤ ∥A∥F · ∥B∥F .

• (Well-known) If A is Hermitian and B is Hermitian PSD, then we have |⟨A,B⟩| ≤ ∥A∥∞ · Tr [B].

3.4.1 Blockwise Tensor Products

This section is devoted to stating and proving Theorem 3.19, which will serve as our central linear algebraic
workhorse. We will make some comments about this theorem and its proof at the end of this section. We
will then present some straightforward consequences of this theorem in Section 3.4.2, which we will use
directly when analyzing t 7→ t+ 1 cloning games.

Theorem 3.19. Let R,C be positive integers. Let r1, r2, . . . , rR, r′1, r
′
2, . . . , r

′
R, c1, . . . , cC , c

′
1, . . . , c

′
C be

positive integers. For each i ∈ [R], k ∈ [C], let Ai,k ∈ Cri×ck and Bi,k ∈ Cr′i×c′k be matrices. Additionally,
for each i ∈ [R], k ∈ [C], let γi,k ∈ C be a scalar of magnitude at most 1, i.e. |γi,k| ≤ 1.

Define the following block matrices:

A :=

A1,1 . . . A1,C
...

. . .
...

AR,1 . . . AR,C

 ∈ C(r1+...+rR)×(c1+...+cC)
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B :=

B1,1 . . . B1,C
...

. . .
...

BR,1 . . . BR,C

 ∈ C(r′1+...+r
′
R)×(c′1+...+c′C)

M :=

 γ1,1A1,1 ⊗B1,1 . . . γ1,CA1,C ⊗B1,C
...

. . .
...

γR,1AR,1 ⊗BR,1 . . . γR,CAR,C ⊗BR,C

 ∈ C(r1r′1+...+rRr
′
R)×(c1c′1+...+cCc′C).

Suppose both of the following conditions hold:

1. ∥A∥∞ ≤ 1.

2. Each block column of B has operator norm ≤ 1 i.e. for all k ∈ [C], we have∥∥∥∥∥∥∥
B1,k

...
BR,k


∥∥∥∥∥∥∥
∞

≤ 1.

Then, it holds that ∥M∥∞ ≤ 1.

High-level proof idea. The main idea is as follows: it suffices to show that for any unit vectors x, y of the
right dimensions that |x†My| ≤ 1. As a function of B, x†My is linear. We can hence express this as the
inner product of B with some other matrix. It turns out that this matrix has a simple form; reformulating the
problem in these terms will allow us to use the standard bounds stated in Lemma 3.18.

Notation. We begin by setting up some notation. If we have a sequence of matrices {AI : I ∈ I} indexed
by I with rows and columns indexed by r ∈ R and c ∈ C, we use (AI)r;c to denote the entry in row r and
column c of matrix AI .

Now let us define B̃ as follows, and let B′ be its entrywise conjugate:

B̃ :=

B̃1,1 . . . B̃1,C
...

. . .
...

B̃R,1 . . . B̃R,C



=

 γ1,1B1,1 . . . γ1,CB1,C
...

. . .
...

γR,1BR,1 . . . γR,CBR,C

 ∈ C(r′1+...+r
′
R)×(c′1+...+c′C).

As outlined earlier, it suffices to show for any unit vectors x ∈ Cr1r′1+...+rRr′R and y ∈ Cc1c′1+...+cCc′C that
|x†My| ≤ 1. We index the entries of x by an index i ∈ [R] and then values j ∈ [ri] and j′ ∈ [r′i]. We
similarly index the entries of y by (k, l, l′). We can also apply this same indexing to the rows and columns
of M. Thus for i ∈ [R] and k ∈ [C], we can define Mi,k ∈ Crir′i×ckc′k by Mi,k = γi,kAi,k ⊗Bi,k (i.e. this
is one block of M).
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For each i ∈ [R], let Xi ∈ Cri×r′i be defined by (Xi)j;j′ = x(i,j,j′). Similarly define Yk ∈ Cck×c′k for
each k ∈ [C]. We also defined the following matrices:

X :=


X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . XR

 ∈ C(r1+...+rR)×(r′1+...+r′R)

Y :=


Y1 0 . . . 0
0 Y2 . . . 0
...

...
. . .

...
0 0 . . . YC

 ∈ C(c1+...+cC)×(c′1+...+c′C).

It is straightforward to see that ∥X∥F = ∥Y∥F = 1, since the nonzero entries in X are exactly the same as
in x, and similarly for Y and y.

Finally, over Cc′1+...+c′C , for each k ∈ [C] define the projector Π′k to be onto the natural c′k coordinates
(more precisely, all coordinates z such that c′1 + . . . + c′k−1 < z ≤ c′1 + . . . + c′k. Note then that the
block-diagonal structure of Y implies that:

Y†Y =
∑
k∈[C]

Π′kY
†YΠ′k. (4)

Rewriting x†M y as a linear function of B′. We now show that x†M y can be written as a linear function
of B′. This is captured in the following lemma:

Lemma 3.20. We have
x†M y = Tr

[
X†AY(B′)†

]
.

Proof. We proceed as follows:

x†M y =
∑

i∈[R],k∈[C]

∑
j∈[ri],j′∈[r′i],l∈[ck],l′∈[c′k]

x(i,j,j′) (Mi,k)(j,j′);(l,l′) y(k,l,l′)

=
∑

i∈[R],k∈[C]

∑
j∈[ri],j′∈[r′i],l∈[ck],l′∈[c′k]

x(i,j,j′)

(
Ai,k ⊗ B̃i,k

)
(j,j′);(l,l′)

y(k,l,l′)

=
∑

i∈[R],k∈[C]

∑
j∈[ri],j′∈[r′i],l∈[ck],l′∈[c′k]

x(i,j,j′) (Ai,k)j;l

(
B̃i,k

)
j′;l′

y(k,l,l′)

=
∑

i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

(
B̃i,k

)
j′;l′
·

 ∑
j∈[ri],l∈[ck]

x(i,j,j′) (Ai,k)j;l y(k,l,l′)


=

∑
i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

(
B̃i,k

)
j′;l′
·

 ∑
j∈[ri],l∈[ck]

(Xi)j;j′ (Ai,k)j;l (Yk)l;l′


=

∑
i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

(
B̃i,k

)
j′;l′
·

 ∑
j∈[ri],l∈[ck]

(
X†i

)
j′;j

(Ai,k)j;l (Yk)l;l′
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=
∑

i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

(
B̃i,k

)
j′;l′
·
(
X†iAi,kYk

)
j′;l′

=
∑

i∈[R],k∈[C]

∑
j′∈[r′i],l′∈[c′k]

B̃(i,j′);(k,l′) · (X†AY)(i,j′);(k,l′)

= ⟨B′,X†AY⟩ = Tr
[
(B′)†X†AY

]
= Tr

[
X†AY(B′)†

]
.

Bounding the operator norm of B′Π′k. Our second ingredient will be the following straightforward ob-
servation:

Lemma 3.21. For any k ∈ [C], we have ∥B′Π′k∥∞ ≤ 1.

Proof. After removing zero columns, B′Π′k is just the following block matrix: γ1,kB1,k
...

γR,kBR,k

 .

This is the result of taking

B1,k
...

BR,k

, multiplying each row by a scalar of magnitude ≤ 1, then conjugating

all entries. The latter two operations do not increase operator norm, and we are assuming that the starting
matrix has operator norm ≤ 1. The conclusion follows.

Completing the proof. We are now ready to complete the proof of Theorem 3.19; this will follow from
the standard inequalities stated in Lemma 3.18, in addition to using the block-diagonal structure of Y (as in
Equation (4)).

Proof of Theorem 3.19. Starting from Lemma 3.20, we have:

|x†M y| =
∣∣∣Tr [X†AY(B′)†

]∣∣∣
≤ ∥X∥F ·

∥∥∥AY(B′)†
∥∥∥
F

(Lemma 3.18)

=
∥∥∥AY(B′)†

∥∥∥
F
.

Continuing from here, we have:∥∥∥AY(B′)†
∥∥∥2
F
= Tr

[
B′Y†A†AY(B′)†

]
= Tr

[
A†AY(B′)†B′Y†

]
≤ Tr

[
Y(B′)†B′Y†

]
(Lemma 3.18; ∥A∥∞ ≤ 1)

= Tr
[
Y†Y(B′)†B′

]
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=
∑
k∈[C]

Tr
[
Π′kY

†YΠ′k(B
′)†B′

]
(Equation (4))

=
∑
k∈[C]

Tr
[(

Π′kY
†YΠ′k

)(
Π′k(B

′)†B′Π′k

)]
≤
∑
k∈[C]

Tr
[
Π′kY

†YΠ′k

]
·
∥∥∥Π′k(B′)†B′Π′k∥∥∥∞ (Lemma 3.18)

≤
∑
k∈[C]

Tr
[
Π′kY

†YΠ′k

]
(Lemma 3.21)

=
∑
k∈[C]

Tr
[
Π′kY

†Y
]

= Tr
[
Y†Y

]
= ∥Y∥2F
= 1,

thus completing the proof of the theorem.

Discussion. Given the simplicity of the statement of Theorem 3.19, one might wonder why our proof is
so involved. Here, we present some justification that this theorem is actually quite strong, and discuss some
obstacles to more intuitive proof strategies. First, we note that our theorem captures some simple special
cases:

• When R = C = 1, this is immediate from Lemma 3.14.

• When γi,k = 1 for all i, k (or more generally γi,k is constant) and ∥B∥∞ ≤ 1, this can be shown by
noting that the matrix M would be a submatrix of A ⊗ B, and then appealing to Lemma 3.14. (We
rigorously argue this fact as part of the proof of Lemma 3.23.)

However, this argument completely breaks down if γi,k is allowed to vary between blocks.

• When ri = r′i = ck = c′k = 1 for all i, k, this boils down to bounding the operator norm of any
complex R × C matrix with the entry in row i and column k having magnitude equal to |Ai;kBi;k|
(noting that in this setting Ai;k, Bi;k are scalars). This is not straightforward but still easier to handle;
one can argue by Cauchy-Schwarz that the rows and columns of such a matrix must have ℓ1 norm
≤ 1, and it is well-known that such a matrix must have operator norm≤ 1 (see Lemmas 3.15 and 3.16
for details).

This argument also breaks down as soon as the block matrices Ai,k, Bi,k are not just scalars; the ℓ1
norms of the rows and columns of M will end up growing polynomially in
max(r1, . . . , rR, r

′
1, . . . , r

′
R, c1, . . . , cC , c

′
1, . . . , c

′
C) in the worst case. (Jumping ahead, in the setting

of oracular cloning games, this would yield a bound that degrades exponentially in the number of
ancilla qubits that each adversary is allowed to use, which is of course undesirable.)

One could imagine “interpolating” between these two techniques by considering the operator norm of
each block of M individually, and using this to obtain a bound on ∥M∥∞. Perhaps surprisingly, this is also
provably insufficient. Suppose R = C = n for some n, and ri = r′i = ck = c′k = n for all i, k. Then
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let us take A,B to be n2 × n2 permutation matrices with exactly one 1 in each block. Now we will have
∥Ai,k∥∞ = ∥Bi,k∥∞ = 1 ⇒ ∥Ai,k ⊗Bi,k∥∞ = 1 for all i, k. However, there exist n × n block matrices
(i.e. containing n2 blocks in total) with each block having operator norm 1, but where the overall matrix
has operator norm growing with n; one such example is the n× n all 1’s matrix (appropriately padded with
zero rows and columns to obtain the right dimensions). This counterexample implies that just considering
the operator norm of each block of M is too lossy.

Thus Theorem 3.19 is quite strong and there are natural barriers to proof strategies that might feel more
simple and intuitive. The proof we have presented is the simplest one that we are aware of.

3.4.2 Consequences

We now state some corollaries of Theorem 3.19 that we will later directly apply when bounding the operator
norms relevant to cloning games in Section 9.3.

Lemma 3.22. Let A1, . . . ,Ak be block matrices of d columns. More formally, for each i ∈ [k] set

Ai =
[
Ai,1 . . . Ai,d

]
,

for some block matrices Ai,1, . . . ,Ai,d that have the same number of rows but not necessarily the same
number of columns. (Note that we do not require Ai,1 and Aj,1 to have the same number of rows when
i ̸= j.) Assume the following preconditions:

1. For all i ∈ [k] and j ∈ [d], we have ∥Ai,j∥∞ ≤ 1; and

2. There exists some i ∈ [k] such that ∥Ai∥∞ ≤ 1.

Let
A =

[⊗k
i=1Ai,1

⊗k
i=1Ai,2 . . .

⊗k
i=1Ai,d

]
be defined as a “block column-wise tensor product” of A1,A2, . . . ,Ad. Then ∥A∥∞ ≤ 1.

Proof. Firstly, if k = 1 then we will have A = A1 so the conclusion will follow from the second precon-
dition. From now on, assume that k ≥ 2. Also, by symmetry, let us assume without loss of generality that
∥A1∥∞ ≤ 1.

Now define the matrix M as follows:

M =
[⊗k

i=2Ai,1
⊗k

i=2Ai,2 . . .
⊗k

i=2Ai,d

]
.

Notice that, for each j ∈ [d], the jth block column of M has operator norm equal to
∏k
i=1 ∥Ai,j∥∞ ≤ 1.

Since we also have ∥A1∥∞ ≤ 1, we can apply Theorem 3.19 to A1 and M (with R = 1, C = d, and
γi,j = 1 for all i, j) to immediately obtain that ∥A∥∞ ≤ 1, as desired.

Lemma 3.23. Let R,C be positive integers. Let r1, . . . , rR, c1, . . . , cC be positive integers. Fix some
integer d ≥ 2. For each t ∈ [d], i ∈ [R], k ∈ [C], let At,i,k ∈ Cri×ck be a matrix. Additionally, for each
i ∈ [R], k ∈ [C], let γi,k ∈ C be a scalar of magnitude at most 1 i.e. |γi,k| ≤ 1. Then define the following
block matrices:

At :=

At,1,1 . . . At,1,C
...

. . .
...

At,R,1 . . . At,R,C

 ∈ C(r1+...+rR)×(c1+...+cC), for each t ∈ [d]
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M :=

 γ1,1
⊗d

t=1At,1,1 . . . γ1,C
⊗d

t=1At,1,C
...

. . .
...

γR,1
⊗d

t=1At,R,1 . . . γR,C
⊗d

t=1At,R,C

 ∈ C(rd1+...+r
d
R)×(cd1+...+cdC).

Suppose that for all t ∈ [d], we have ∥At∥∞ ≤ 1. Then ∥M∥∞ ≤ 1. (Note that the d = 2 case is immediate
from Theorem 3.19.)

Proof. Define the matrix

B =


⊗d

t=2At,1,1 . . .
⊗d

t=2At,1,C
...

. . .
...⊗d

t=2At,R,1 . . .
⊗d

t=2At,R,C

 ∈ C(rd−1
1 +...+rd−1

R )×(cd−1
1 +...+cd−1

C ).

We claim that B is a submatrix of A2⊗ . . .⊗Ad. This is intuitive, but nevertheless we justify this rigorously
before completing the proof. To this end, let us index each row of each At by an index i ∈ [R] together
with an index α ∈ [i]. Similarly, we can index each column by an index k ∈ [C] together with β ∈
[k]. We can hence index rows of A2 ⊗ . . . ⊗Ad by (i2, . . . , it, α2, . . . , αd) and similarly the columns by
(k2, . . . , kd, β2, . . . , βd); so that:

(A2 ⊗ . . .⊗Ad)(i2,...,id,α2,...,αd);(k2,...,kd,β2,...,βd)
=

d∏
t=2

(At,it,kt)αt;βt
.

On the other hand, we can index the rows of B by one index i ∈ [R] and indices α2, . . . , αd ∈ [i], and
similarly the columns by k, β2, . . . , βd, so that:

B(i,α2,...,αd);(k,β2,...,βd) =
d∏
t=2

(At,i,k)αt;βt
.

It is now clear that B can be obtained by restricting A2⊗ . . .⊗Ad to rows where i2 = . . . = id and columns
where k2 = . . . = kd. This establishes our claim.

We now complete the proof as follows. By Lemma 3.13, our claim implies that

∥B∥∞ ≤
d∏
t=2

∥At∥∞ ≤ 1.

The conclusion now follows by applying Theorem 3.19 to A1 and B for the choices of R,C, and scalars
γi,k. This proves the claim.

4 Black Hole Cloning Games

Hayden and Preskill [HP07] put forward the idea that the dynamics of a black hole are well-described by a
random unitary time-evolution operator, e.g., via a unitary design. Does such a scrambling process limit the
extent to which two observers (say, one of which falls inside of the black hole and another remains a distant
observer) can simultaneously decode infalling entangled qubits near the boundary of the black hole? In this
section, we seek to give a quantitative answer to this question. We formally state and discuss our model for
this problem in terms of black hole cloning games in Section 4.1, and then turn to proving a bound on the
value of black hole cloning games in Section 4.2.
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4.1 Definition

Inspired by the monogamy game of Tomamichel, Fehr, Kaniewski and Wehner [TFKW13], we formalize
the notion of a black hole cloning game as follows:

Definition 4.1 (Black Hole Cloning Game). A black hole cloning game is specified by a tuple of the form
GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR) and consists of the following elements:

• A finite dimensional Hilbert spaceHI associated with the internal degrees of the freedom of the black
hole; in particular, whereHI contains the (n− k)-qubit initial state of the black hole;

• A pair of isomorphic finite dimensional Hilbert spacesHB andHB′ which are associated with k-qubit
EPR pairs that emerge near the boundary of the black hole;

• A finite dimensional Hilbert spaceHH associated with the final state of the black hole that comprises
all of the qubits within its event horizon;

• A finite dimensional Hilbert spaceHR associated with the emitted Hawking radiation;

• A finite set of indices Θ over the set of all possible scrambling unitaries;

• A finite ensemble of scrambling unitaries {U †θ}θ∈Θ indexed by Θ which is associated with the internal
time-evolution of the black hole within its event horizon;

• A completely positive and trace-preserving channel ΦIB′→HR associated with the physical process
that maps the internal registers IB′ of the black hole into a final internal register H and a register R
associated with the emitted Hawking radiation.

Definition 4.2 (Quantum Strategy). A quantum strategy S = ({HUθ,U
†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k)
for a black hole cloning game GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR) consists of

• An ensemble of oracle-aided positive operator-valued measurements{
H
Uθ,U

†
θ

x

}
θ∈Θ,x∈{0,1}k

which are to be performed on Charlie’s systemHH.

• An ensemble of oracle-aided positive operator-valued measurements{
R
Uθ,U

†
θ

x

}
θ∈Θ,x∈{0,1}k

which are to be performed on Bob’s systemHR.

Next, we define the value of a black hole cloning game, which can be thought of as the maximal winning
probability over all admissible strategies.
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Game 1 (Black Hole Cloning Game).
A black hole cloning game GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR) for a quan-

tum strategy S = ({HUθ,U
†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k) is the following game between
a trusted referee called Alice and two colluding and adversarial parties Bob and Charlie.

1. (Setup phase) A tripartite quantum state ρ ∈ D(HI ⊗HB′ ⊗HB) is prepared, where

ρ =
(
|0n−k⟩⟨0n−k|I ⊗ |EPR

k⟩⟨EPRk|B′B

)
.

Here, k denotes the number of qubits in the registers B and B′. Next, Alice receives register B.

2. (Time-evolution phase) A random scrambling unitary Uθ is selected, where θ ∼ Θ is chosen
uniformly at random, and the internal registers of the black hole evolve according to the unital
quantum channel

(
Uθ · U †θ

)
IB′→IB′ which is applied to registers IB′ of the state ρ.

Afterwards, the channel ΦIB′→HR is applied to registers IB′ and produces registers HR.

3. (Guessing phase) Charlie and Bob receive the registers H and R, respectively. They also
receive oracles for both Uθ and U †θ , but may no longer communicate. They independently

perform the measurements {HUθ,U
†
θ

x }x∈X and {RUθ,U
†
θ

x }x∈X and output a k-bit string.

4. (Outcome phase) Alice measures B is measured in the computational basis, resulting in an
outcome x ∈ {0, 1}k. Charlie and Bob win if they both guessed x correctly.

Figure 5: A black hole cloning game.

Definition 4.3 (Value of a Black Hole Cloning Game). Consider a black hole cloning game of the form
GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR). Then, the winning probability of a quantum strategy

S = ({HUθ,U
†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k) for GBH is defined by the quantity

ωS(GBH) := E
θ∼Θ

{ ∑
x∈{0,1}k

Tr

[(
H
Uθ,U

†
θ

x ⊗R
Uθ,U

†
θ

x ⊗ |x⟩⟨x|B
)(

ΦIB′→HR ⊗ IB
)

((
Uθ · U †θ

)
IB′→IB′ ⊗ IB

)(
|0n−k⟩⟨0n−k|I ⊗ |EPR

k⟩⟨EPRk|B′B

)]}
.

Moreover, we define the value of the monogamy game GBH as the optimal winning probability

ω(GBH) := sup

S=
({

H
Uθ,U

†
θ

x },{R
Uθ,U

†
θ

x

}) ωS(GBH).

We refer the reader to Section 1.3 for a discussion of our modeling assumptions in formulating the black
hole information paradox as a cloning game.
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4.2 Bounds On the Value of a Black Hole Cloning Game

In this section, we bound the maximal value ω(GBH) = supS ωS(GBH) of a particular black hole cloning
game GBH for a unitary 3-design {Uθ}θ∈Θ and where we restrict the set of oracle-aided strategies

S =
(
{HUθ,U

†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k
)

such that Charlie and Bob only make a single oracle query (to either Uθ or U †θ ), for any given θ ∈ Θ.
Let us first give a brief overview of the idea behind our proof. We refer the reader to our technical

overview (Section 2) and the associated technical sections for details on each of these steps.

Overview of the proof. To obtain a bound, we consider a sequence of hybrid games:

• GBH: This is a black hole cloning game of the form

GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR)

where ν = {Uθ}θ∈Θ is an n-qubit unitary 3-design and ΦIB′→HR is an arbitrary CPTP map.

• GMOE: This is a (regular) monogamy of entanglement game (as in Section 6.1), where

GMOE = (HA,Θ, {0, 1}n, {Aθ
y}θ∈Θ,x∈{0,1}n)

where Alice performs a set of projective measurements {Aθ
y}θ∈Θ, y∈{0,1}n acting on the Hilbert space

HA = (C2)⊗n, for some rank-1 projectors Aθ
y = Ūθ |y⟩⟨y| Ū †θ .

• G17→2: This is a 1 7→ 2 oracular cloning game (as in Section 6.2), where

G17→2 = (1,HA,Θ, {0, 1}n, {Uθ}θ∈Θ).

• GF,1: This is a different 1 7→ 2 oracular cloning game (as in Section 6.2), where

GF,1 = (1,HA, {0, 1}λ, {0, 1}n, {UfθH
⊗n}θ∈{0,1}λ).

and F = {fθ : {0, 1}n → {0, 1}}θ∈Θ is a family of 6-wise uniform functions.

First, we show that the game GBH emerges as a special case of GMOE in which we post-select on the
event that Alice measures {Aθ

y}θ∈Θ, y∈{0,1}n and obtains the outcome y = x||0n−k, for some x ∈ {0, 1}k.
Informally, because this event occurs with probability 2−n+k, we can deduce that that:

supŜ ωŜ(GMOE) ≥ 2−n+k · supS ωS(GBH),

where we maximize over the choice of strategies Ŝ selected by Bob and Charlie which consist of a tripartite
state ρ, where ρ is the normalized Choi state of the quantum channel Φ, and where Bob and Charlie perform
oracle aided measurements with single-query access to Uθ and U †θ ) on an enlarged Hilbert space. Therefore,
in order to obtain an asymptotically optimal bound of the form ω(GBH) = O(2−k), it suffices to show that
the related monogamy game GMOE has a maximal value of supŜ ωŜ(GMOE) = O(2−n).

Second, we relate the game GMOE to the 1 7→ 2 cloning game G17→2. Here, we use the general result in
Theorem A.1 which allows us to relate this particular class of monogamy games to cloning games. As a
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result, we find that supŜ ωŜ(GMOE) = supS′ ωS′(G17→2), where S′ ranges over the set of analogous oracular
cloning strategies, but which involve Φ as a cloning channel.

Third, we use the insight from our worst-case to average-case reduction in Theorem 6.12 in order to
argue that the G17→2 is at least as hard as the cloning game GF,1. In particular, we observe that the winning
probabilities satisfy supŜ′ ωŜ′(G17→2) ≤ supS′ ωS′(GF,1), where the set of strategies Ŝ′ remains the same.

Finally, we invoke Theorem 9.12 which gives an explicit bound on the game GF,1. Specifically, we prove
that supS′ ωS′(GF,1) ≤ O(2−n), if F is a family of 6-wise uniform functions.

Putting everything together, we then obtain the aforementioned asymptotically optimal bound of the
form ω(GBH) = O(2−k) on the black hole cloning game GBH. Let us now state our main theorem.

Theorem 4.4. Let n, k ∈ N be integers such that n ≥ k and let ν = {Uθ}θ∈Θ be a unitary 3-design on
n-qubits. Then, for any quantum channel ΦIB′→HR, the maximal single-query value of the black hole cloning
game GBH = (HI,HB,HB′ ,HH,HR,Θ, {Uθ}θ∈Θ,ΦIB′→HR) is at most

supS ωS(GBH) = O(2−k) ,

where the supremum ranges over all oracle-aided strategies

S =
(
{HUθ,U

†
θ

x }θ∈Θ,x∈{0,1}k , {R
Uθ,U

†
θ

x }θ∈Θ,x∈{0,1}k
)

that only make a single oracle query (to either Uθ or U †θ ), for any given θ ∈ Θ.

Proof. Let S be any single-query strategy. For convenience, we also assume there exists an auxiliary register
E (say, the exterior of the black hole) which is initialized to |0n−k⟩E and not touched by any of the processes
in the black hole cloning game. This is without loss of generality, since it can always be absorbed into Φ by
re-defining the quantum channel appropriately. Then, it follows that:

ωS(GBH) = E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ |x0n−k⟩⟨x0n−k|BE
)(

ΦIB′→HR ⊗ IBE
)

((
U · U †

)
IB′→IB′ ⊗ IBE

)(
|0n−k⟩⟨0n−k|I ⊗ |EPR

k⟩⟨EPRk|B′B ⊗ |0
n−k⟩⟨0n−k|E

)]}

= 2n−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ |x0n−k⟩⟨x0n−k|BE
)(

ΦIB′→HR ⊗ IBE
)

((
U · U †

)
IB′→IB′ ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}
.

The above step holds because in the second line the projector |0n−k⟩⟨0n−k|E will act on one half of the EPR
pair |EPRn−k⟩⟨EPRn−k|IE, thus collapsing it to |0n−k⟩⟨0n−k|I ⊗ |0n−k⟩⟨0n−k|E and pulling out a factor of
2k−n.

We continue by using the ricochet property of EPR pairs (formally, Corollary 3.2) to pull U,U † “out”
of the cloning channel to obtain something that will look more like a monogamy game. First, consider the
channel ΨIB′→HR defined as Φ ◦ (U · U †) (here, ◦ denotes composition). Applying Corollary 3.2 to the
channel Ψ yields the following:

2n−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ |x0n−k⟩⟨x0n−k|BE
)(

ΦIB′→HR ⊗ IBE
)
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((
U · U †

)
IB′→IB′ ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}

=2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ |x0n−k⟩⟨x0n−k|BE
)
J(Ψ)

]}

=2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x

)
Ψ(|x0n−k⟩⟨x0n−k|)

]}

=2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x

)
Φ(U |x0n−k⟩⟨x0n−k|U †)

]}
.

Next, we apply Corollary 3.2 once more, this time to the channel Φ:

2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x

)
Φ(U |x0n−k⟩⟨x0n−k|U †)

]}

=2−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ Ū |x0n−k⟩⟨x0n−k|BE Ū
†
)
J(Φ)

]}

=2n−k E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ Ū |x0n−k⟩⟨x0n−k|BE Ū
†
)

(
ΦIB′→HR ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}
.

For the remainder of the proof, we will bound the final quantity in the expression above; specifically, by
relating it to the value of a related monogamy of entanglement game. To this end, we now observe that

E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
HU,U†
x ⊗RU,U†

x ⊗ Ū |x0n−k⟩⟨x0n−k|BE Ū
†
)

(
ΦIB′→HR ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}

= E
U∼ν

{ ∑
x∈{0,1}k

Tr

[(
H̃U,U†

x||0n−k ⊗ R̃U,U†

x||0n−k ⊗ Ū |x0n−k⟩⟨x0n−k|BE Ū
†
)

(
ΦIB′→HR ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}

≤ sup

S̃=
({

ĤU,U†
y },{R̂U,U†

y

}) E
U∼ν

{ ∑
y∈{0,1}n

Tr

[(
ĤU,U†
y ⊗ R̂U,U†

y ⊗ Ū |y⟩⟨y|BE Ū
†
)

(
ΦIB′→HR ⊗ IBE

)(
|EPRn⟩⟨EPRn|IB′BE

)]}
. (5)
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We have now transitioned successfully to GMOE. Because the bound in Equation (5) applies to any single-
query strategy S, we can therefore complete the proof by bounding the black hole cloning game as follows:

ω(GBH) = sup

S=
(
{HU,U†

x },{RU,U†
x }

) ωS(GBH)

≤ 2n−k sup

Ŝ=
(
HH,HR, ρAHR ,{ĤU,U†

y },{R̂U,U†
y }

) ωŜ(GMOE) (by Equation (5))

= 2n−k sup

S′=
(
HH⊗HR,ΦIB′→HR,{Ĥ

U,U†
y },{R̂U,U†

y }
) ωS′(G1 7→2) (Theorem A.1)

≤ 2n−k sup

S′=
(
HH⊗HR,ΦIB′→HR,{Ĥ

U,U†
y },{R̂U,U†

y }
) ωS′(GF,1) (Theorem 6.12)

≤ 2n−k ·O(2−n) = O(2−k). (Theorem 9.12)

5 Succinct Unclonable Encryption

In this section, we formally define succinct unclonable encryption, loosely following the terminology intro-
duced by Broadbent and Lord [BL20]. We will use θ ∈ {0, 1}λ (rather than k, which we are already using
in Section 4 to denote the number of EPR pairs in a black hole monogamy game) to denote the secret key.

5.1 Definitions

Definition 5.1 (Succinct Unclonable Encryption). Let λ ∈ N be the security parameter and let n := n(λ)
be some polynomial in λ. A succinct unclonable encryption scheme (sUE) is a tuple (KeyGen,Enc,Dec)
consisting of the following QPT algorithms:

• KeyGen(1λ, 1n) : takes as input 1λ, 1n and outputs θ ∈ {0, 1}λ.

• Enc(θ ∈ {0, 1}λ, x ∈ {0, 1}n) : on input (θ, x), it outputs a pure ciphertext state |ψθx⟩. We require
Enc(θ, x) to deterministically output Uθ |x⟩, for some unitary Uθ,n ∈ U(2n). Thus the ciphertext
state must also comprise n qubits.

• Dec(1n, θ ∈ {0, 1}λ, ρ): on input θ and a quantum state ρ, it outputs x′ ∈ {0, 1}n.

We require the following correctness property: for any λ, n, it holds that

Pr
[
Dec

(
1n, θ, |ψθx⟩⟨ψθx|

)
= x : θ←KeyGen(1λ,1n)

|ψθ
x⟩←Enc(θ,x)

]
= 1.

Succinctness is implicit in our requirement that the key length only depends on λ rather than n.

Definition 5.2 (t 7→ t + 1 sUE security). Let (KeyGen,Enc,Dec) be a sUE scheme, and t ∈ N a posi-
tive integer. Consider the following experiment between a challenger and an adversary (Φ,P1, . . . ,Pt+1)
consisting of a cloner Φ and t+ 1 players P1, . . .Pt+1 who are not allowed to communicate:

1. The challenger runs θ ← KeyGen(1λ, 1n). Next, the challenger samples x ← {0, 1}n and runs
Enc(θ, x) to obtain the ciphertext |ψθx⟩, and sends t copies |ψθx⟩

⊗t of the state to the cloner Φ.
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2. The cloner Φ applies any quantum channel to |ψθx⟩
⊗t in registers A1 . . .At and then splits the resulting

state into t+ 1 registers B1, . . . ,Bt+1. Finally, Φ sends Bi to player Pi.

3. The players P1, . . . ,Pt+1 receive θ and output their guesses for x, and win if they all guess correctly.

We say that (KeyGen,Enc,Dec) satisfies statistical (respectively, computational) t 7→ t + 1 and ϵ(t, λ, n)-
sUE security if, for any computationally unbounded (respectively, computationally bounded) adversary
(Φ,P1, . . . ,Pt+1), where each Pi is an ensemble of positive-operator valued measurements {Pθ

i,x}x,θ,

E
(x,θ)∼KeyGen(1n)

Tr
[(

Pθ
1,x ⊗ . . .⊗Pθ

t+1,x

)
ΦA1...At→B1...Bt+1

(
|ψθx⟩⟨ψθx|

⊗t
A1...At

)]
≤ O (ϵ(t, λ, n)) .

The 1 7→ 2 sUE security experiment is visualized in Figure 6. In the following definition, we also define
an oracular version of this security experiment.

Ch Φ
|ψθ

x⟩

P1θ

x1

θ

x2

P2

Figure 6: The 1 7→ 2 sUE experiment. A cloner Φ splits a state |ψθx⟩ prepared by the challenger Ch into two
parts, one is sent to P1 and one is sent to P2. Given θ, P1 and P2 then output their guesses x1 and x2 for x.

Definition 5.3 (t 7→ t + 1 oracular sUE security). We say that (KeyGen,Enc,Dec) satisfies statistical
(respectively, computational) t 7→ t+1 ϵ-sUE oracular security under the same conditions as Definition 5.2,
with the following modification: in the final phase, the playersP1, . . .Pt+1 do not receive θ directly. Instead,
they receive query access to the unitary Uθ,n computing Enc(θ, ·) as well as its inverse U †θ,n.

We say that (KeyGen,Enc,Dec) satisfies the weaker notion of (ϵ, q)-sUE oracular security if each of the
players may only make a total of ≤ q queries to Uθ,n and U †θ,n.

Remark 3. We make some remarks about these definitions:

• Our reason for focusing on UE schemes with deterministic unitary encryption is in order to be able to
naturally instantiate the oracular security setting.

• Even if we only allow each player only one query, the oracular sUE security setting is still quite
expressive. In particular, it would be sufficient for recovering x from |ψθx⟩, and thus there is still
a trivial strategy that succeeds with probability 2−n: the cloner forwards their copies to the first t
players, and nothing to player t + 1. The first t players can decrypt and output x, and player t + 1
will simply guess randomly.
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Remark 4. At first glance, in the t = 1 case this notion may already appear to have been achieved by the
construction by Broadbent and Lord [BL20], which achieves a security bound of ϵ(λ, n) = 9

2n +
(
cos2 π8

)λ.
At a high level, they compose a λ-bit BB84 cloning game as in [TFKW13] with a PRF-based one-time pad.
However, their construction has two aspects which we would like to improve on:

• Their construction assumes the existence of post-quantum pseudorandom functions. We would like to
instantiate a sUE scheme assuming the milder notions of pseudorandom quantum states or unitaries.

• Their encryption is randomized. The natural deterministic analogue of this would be the BB84-based
encryption scheme without the PRF, which has security

(
cos2 π8

)n but is no longer succinct as this
would use keys of length n.

We note that a common shortcoming of both the work by [BL20] and our work is the reliance on oracles
for proving security.

Remark 5. We emphasize that our work is the first to consider t 7→ t+1 cloning games for t > 1: not only
is prior work limited to 1 7→ 2 cloning games, all existing unclonable cryptography (based on BB84 states
or coset states) becomes completely insecure if t is allowed to grow polynomially [AMP24].

While we are only able to prove security for t = o(log n/ log log n) (see Theorem 5.5), we reiterate
that our construction could very well be secure for t that is an arbitrary polynomial in n (unlike previous
constructions based on BB84 states [BL20] and coset states [CLLZ21]).

5.2 Constructions

Construction 1. Let U = {Un}n∈N be some ensemble of unitaries (we will specify what U should be later).
Recall that Un = {Uθ,n}θ∈{0,1}λ . Our construction proceeds as follows:

• KeyGen(1λ, 1n): sample and output uniformly random θ ∈ {0, 1}λ.

• Enc(θ, x): output Uθ,n |x⟩.

• Dec(1n, θ, ρ). First apply the unitary channel U †θ,n ·Uθ,n to obtain the state U †θ,nρUθ,n. Now measure
in the standard basis and output the result.

Correctness is clear, so we now prove security in two different settings. First, we show 1 7→ 2 security
assuming the existence of pseudorandom unitaries, thus placing unclonable encryption in MicroCrypt:

Theorem 5.4. If U is a pseudorandom unitary (as defined in Definition 3.11), then the sUE scheme specified
in Construction 1 satisfies computational 1 7→ 2 ϵ-sUE oracular security, where ϵ = negl(λ) +

(
cos2 π8

)n.

Proof. We consider a series of hybrid games:

• Hyb0: This is the 1 7→ 2 oracular sUE security game, as defined in Definition 5.3.

• Hyb1: In step 1 of the sUE security game, the challenger also only has oracle access to Uθ,n, U
†
θ,n. To

generate the ciphertext state |ψθx⟩, they query the oracle for Uθ,n on input |x⟩.

• Hyb2: Now, the unitary U is sampled as follows: sample a string b ← {0, 1}n uniformly at random,
and output Hb (which applies a Hadamard at every position where the corresponding entry of b is 1).
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For i = 0, 1, 2, let ω(Hybi) denote the probability of the players winning the security game in Hybi. Then
we observe the following:

• ω(Hyb0) = ω(Hyb1), as these two are functionally equivalent.

• |ω(Hyb1)− ω(Hyb2)| ≤ negl(λ) by the worst-case to average-case reduction in Section 6.3.

• ω(Hyb2) ≤ cos2
(
π
8

)n: this is exactly the BB84 security game. This security bound essentially
follows from analysis by [TFKW13], and was formally shown in [BL20, Corollary 2].

The conclusion follows.

Secondly, we show assuming the existence of post-quantum one-way functions that Construction 1 can be
instantiated to satisfy multi-copy security against query-bounded adversaries:

Theorem 5.5. For any λ, n, let n′ = n− ω(log λ) and consider t such that

t ≤ O
(

log n′

log logn′

)
⇔ exp(exp(O(t log t))) ≤ 2n

′
= 2n · negl(λ).

Let
{
fθ,n : θ ∈ {0, 1}λ

}
be a post-quantum pseudorandom function family from {0, 1}n → {0, 1}. Then we

define U by
Uθ,n = Ufθ,nH

⊗n.

Then the sUE scheme specified in Construction 1 satisfies computational t 7→ t + 1 (ϵ, 1)-sUE oracular
security, where

ϵ = exp(exp(O(t log t))) · 2−n + negl(λ) = negl(λ).

Proof. We first pass from a pseudorandom function fθ,n to a truly random function f at the expense of an
additive negl(λ) security loss. A random function is (4t + 2)-wise uniform, so we can then finish using
Lemma 6.11 and Theorem 9.18.

6 Monogamy of Entanglement and Oracular Cloning Games

In this section, we formally define monogamy of entanglement games, as well as the closely related notion
of (oracular) cloning games. In Section 6.3, we show a worst-case to average-case reduction for oracular
cloning games.

Later, we will revisit existing techniques to analyze monogamy games in Section 7 and present new
techniques to obtain improved bounds on cloning games in particular in Sections 8 and 9.

6.1 Monogamy of Entanglement Games

A monogamy of entanglement game [TFKW13] is an interactive game which is played by three players: a
trusted referee called Alice, and two colluding and adversarial parties Bob and Charlie.

Definition 6.1 (Monogamy of Entanglement Game). A monogamy of entanglement (MOE) game is specified
by a tuple G = (HA,Θ,X , {Aθ

x}θ∈Θ,x∈X ) which consists of the following elements:

• A finite dimensional Hilbert spaceHA corresponding to a register A that Alice holds;
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Game 2 (Monogamy of Entanglement Game).
A monogamy of entanglement game G = (HA,Θ,X , {Aθ

x}θ∈Θ,x∈X ) for a quantum strategy
S = (HB,HC, ρABC, {Bθ

x}θ∈Θ,x∈X , {Cθ
x}θ∈Θ,x∈X ) is the following game between a trusted ref-

eree (called Alice) and two collaborating players (called Bob and Charlie):

1. (Setup phase) Bob and Charlie prepare a tripartite quantum state ρ ∈ D(HA ⊗ HB ⊗ HC).
They send register A to Alice, and hold onto registers B and C, respectively. Afterwards, they
are no longer allowed to communicate for the remainder of the game.

2. (Question phase) Alice first samples a uniformly random question θ ∼ Θ, and then applies
the corresponding measurement {Aθ

x}x∈X to her register A. Afterwards, Alice announces the
question θ to both Bob and Charlie.

3. (Answer phase) Bob and Charlie independently output a guess for Alice’s outcome by applying
the measurements {Bθ

x}x∈X and {Cθ
x}x∈X to their registers B and C, respectively.

4. (Outcome phase) Bob and Charlie win if they both guess Alice’s outcome correctly.

Figure 7: A monogamy of entanglement game.

• A finite set Θ corresponding to the set of possible questions;

• A finite set X corresponding to the set of all possible answers;

• A set of positive operator-valued measurements
{
Aθ
x

}
θ∈Θ,x∈X to be performed on Alice’s system.

Definition 6.2 (Quantum Strategy). A quantum strategy S = (HB,HC, ρABC, {Bθ
x}θ∈Θ,x∈X , {Cθ

x}θ∈Θ,x∈X )
for a monogamy of entanglement game G = (HA,Θ,X , {Aθ

x}θ∈Θ,x∈X ) consists of

• A finite dimensional Hilbert spaceHB corresponding to a register B that Bob holds;

• A finite dimensional Hilbert spaceHC corresponding to a register C that Charlie holds;

• A tripartite quantum state ρ ∈ D(HA ⊗HB ⊗HC);

• A set of positive operator-valued measurements
{
Bθ
x

}
θ∈Θ,x∈X to be performed on Bob’s system.

• A set of positive operator-valued measurements
{
Cθ
x

}
θ∈Θ,x∈X to be performed on Charlie’s system.

Definition 6.3 (Value of a Monogamy Game). Let G = (HA,Θ,X , {Aθ
x}θ∈Θ,x∈Σ) be monogamy game.

Then, the winning probability of a quantum strategy S = (HB,HC, ρABC, {Bθ
x}θ∈Θ,x∈X , {Cθ

x}θ∈Θ,x∈X ) for
the particular monogamy game G is defined by the quantity

ωS(G) := E
θ∼Θ

∑
x∈X

Tr
[
(Aθ

x ⊗Bθ
x ⊗Cθ

x)ρABC

]
.

Moreover, we define the value of the monogamy game G as the optimal winning probability

ω(G) := sup
S=(HB,HC,ρABC,{Bθ

x},{Cθ
x})

ωS(G).
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Remark 6. As noted in [TFKW13], a standard purification argument and Neumark’s dilation theorem
show that we can assume without loss of generality that all POVMs are projective. We will assume this
going forward.

Definition 6.4 (Parallel-Repeated Monogamy Game). Let r ∈ N be a parameter. For any monogamy game
G = (HA,Θ,X ,

{
Aθ
x

}
θ∈Θ,x∈X ), we define the r-fold parallel-repeated monogamy game G×r as follows:

• The Hilbert space for Alice’s register will beH⊗rA .

• The set of questions will now be Θr.

• The set of answers will be X r.

• For any (x1, . . . , xr) ∈ X r and (θ1, . . . , θr) ∈ Θr, we define Alice’s measurement to be

A
(θ1,...,θr)
(x1,...,xr)

=

r⊗
i=1

Aθi
xi .

Informally, Alice will carry out r parallel measurements and Bob and Charlie succeed if they successfully
guess the outcomes of all r measurements.

Example (BB84 Monogamy Game). As a simple example, the following monogamy game is known as the
“BB84 monogamy game”:

• The Hilbert spaceHA is C2.

• The sets of questions Θ and answers X are both {0, 1}.

• For any x, θ ∈ {0, 1}, we have
Aθ
x = Hθ |x⟩⟨x|Hθ.

Remark 7. We note that any MOE game admits a trivial strategy with success probabiliy 1/|X |. Bob and
Charlie could set up the state ρABC so that Bob and Alice are maximally entangled. This would enable Bob
to always guess x correctly, and now Charlie can guess randomly. (He cannot do better as in this case he
must be completely decoupled from Alice and Bob.)

6.2 Oracular Cloning Games

The monogamy of entanglement games which we encounter in physics and cryptography often deal with
some restrictions on the types of strategies that can be employed.

Motivated by this, in this section, we introduce the notion of a t 7→ t+1 cloning game. In the case when
t = 1, this notion turns out to be a special case of a monogamy of entanglement game in Section 6.1, with
the following additional restrictions:

• The tripartite state ρ ∈ D(HA ⊗ HB ⊗ HC) which is shared between Alice, Bob and Charlie is the
result of applying a cloning channel ΦA′→BC to one half of an EPR pair, i.e.,

ρABC = (IA ⊗ ΦA′→BC)(|EPR⟩⟨EPR|AA′).

In other words, ρABC is the normalized Choi state of some channel ΦA′→BC.

46



• Alice’s measurement
{
Aθ
x

}
θ∈Θ,x∈X on register A is a projective measurement of the form

Aθ
x = Ūθ |x⟩⟨x| Ū †θ ,

for some family of unitary operators {Uθ}θ∈Θ acting onHA.

• (If we are in the oracular setting) Bob and Charlie’s measurements can only depend on oracle queries
to Uθ and U †θ , rather than directly on θ.

We give a proof of this equivalence in Lemma A.1. We remark, however, that for t ≥ 2, the notion of
a t 7→ t + 1 cloning game includes t + 1 colluding parties and thus starts to become incomparable to a
monogamy of entanglement game in Section 6.1.

Let us now give a formal definition of a t 7→ t+ 1 cloning game.

Definition 6.5 ((Oracular) Cloning Game). Let t ∈ N be an integer. A t 7→ t + 1 (oracular) cloning game
((O)CG) is a tuple Gt7→t+1 = (t,HAt ,Θ,X , {Uθ}θ∈Θ) which consists of the following elements:

• A finite dimensional Hilbert spaceHAt consisting of registers At := A1 · · ·At given to the cloner;

• A finite set Θ corresponding to the set of possible questions;

• A finite set X corresponding to the set of all possible answers;

• A finite ensemble of unitary operators {Uθ}θ∈Θ acting on the A systems.

Definition 6.6 (Quantum Strategy for Cloning Games). Let t ∈ N and let Gt7→t+1 = (t,HAt ,Θ,X , {Uθ}θ∈Θ)
be a cloning game. A quantum strategy S = (HBt+1 ,ΦAt→Bt+1 , {Pθ

1,x}θ∈Θ,x∈X , . . . , {Pθ
t+1,x}θ∈Θ,x∈X ) for

the game Gt7→t+1 is characterized by the following elements:

• A finite dimensional Hilbert space HBt+1 consisting of registers Bt+1 := B1 · · ·Bt+1 which are held
by the k + 1 many players in the game;

• A completely positive and trace-preserving channel ΦAt→Bt+1 performed by the cloner;

• A sequence of measurements {Pθ
1,x}θ∈Θ,x∈X , . . . , {Pθ

t+1,x}θ∈Θ,x∈X which are to be performed by
the t+ 1 players on the registers B1, · · · ,Bt+1, respectively.

Definition 6.7 (Quantum Strategy for Oracular Cloning Games). A quantum strategy for an oracular
cloning game is the same as a quantum strategy for a cloning game, with the following crucial restriction:
the measurements by the t+ 1 players will now be oracle-aided. We denote these as{

P
Uθ,U

†
θ

1,x

}
θ∈Θ,x∈X

, . . . ,

{
P
Uθ,U

†
θ

t+1,x

}
θ∈Θ,x∈X

.

Informally, an oracular cloning game is one where the players are only given oracle access to Uθ, U
†
θ ,

whereas in Definition 6.6 the players are given the question θ in the clear.

Definition 6.8 (Restricted Quantum Strategy for Oracular Cloning Games). Assume X = {0, 1}n. Then a
restricted quantum strategy for an oracular cloning game further restricts the players in the following way.
For each i ∈ [t+ 1], player Pi must output their guess x ∈ {0, 1}n after applying some quantum algorithm
that makes at most one query to either Uθ or U †θ .

We let Srest denote the collection of restricted quantum strategies S for the oracular cloning game G.
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We first observe that we can impose some structure on the t + 1 players’ strategies without loss of
generality; this will make our analysis easier:

Lemma 6.9. Without loss of generality, a restricted quantum strategy for G may be taken to the have the
following much more restricted structure: Each player Pi will hold a register Bi that splits into the following
registers:

• A query register Ci of n qubits;

• An ancilla register Di of a qubits (we allow a to be arbitrary, but assume WLOG that it is the same
for all the players); and

• A classical control bit bi from the cloning channel Φ, which we store in a single-qubit register Ei for
formality’s sake.

The player Pi will then proceed as follows:

1. They first make exactly one query to either Uθ or U †θ , which will be applied to the Ci register. Which
of these unitaries they query will be controlled by bi.

2. They can then apply a unitary Qi of their choice to their entire system Bi. (We assume without loss of
generality that the same unitary Qi is applied regardless of the value of the control bit bi; the cloner
could simply include a copy of the control bit in register Di as well, which Qi acts on.)

3. They now measure the n qubits in the Ci register to obtain a string x ∈ {0, 1}n.

4. They output x.

Formally: for every i ∈ [t+ 1] and x ∈ {0, 1}n, player Pi’s projector has the form:

P
Uθ,U

†
θ

i,x =
[
(U †θ ⊗ IDi

)Q†i (|x⟩⟨x| ⊗ IDi)Qi(Uθ ⊗ IDi
)
]
⊗ |0⟩⟨0|Ei

+
[
(Uθ ⊗ IDi

)Q†i (|x⟩⟨x| ⊗ IDi)Qi(U
†
θ ⊗ IDi

)
]
⊗ |1⟩⟨1|Ei

.

Proof. Any preprocessing that player Pi might carry out before their query can be absorbed into the cloning
channel Φ, including the decision about which of Uθ, U

†
θ to query, which we represent in the control bit bi.

(If the player does not want to query either, we can just treat Ci as dummy qubits and make a query there.)
The conclusion now follows from the Stinespring and Neumark dilation theorems [NC16].

Remark 8. Some comments are in order about Definition 6.8:

• The cloner Φ remains entirely unrestricted; they can apply an arbitrary quantum channel to (Uθ |x⟩)⊗t.

• While quite restrictive, this model is still sufficiently expressive to admit a trivial strategy (akin to that
in Remark 7) that succeeds with probability 2−n = 1/X (even when a = 0). The cloner Φ will simply
forward their copies of Uθ |x⟩ to players P1, . . . ,Pt. For i ≤ t, player Pi will make a query to U †θ to
obtain the state |x⟩, which they can then measure and output. Player Pt+1 will guess randomly.
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Definition 6.10 (Value of a (Oracular) Cloning Game). Let t ∈ N. The winning probability of a quantum

strategy S = (HBt+1 ,ΦAt→Bt+1 , {PUθ,U
†
θ

1,x }θ∈Θ,x∈X , . . . , {P
Uθ,U

†
θ

t+1,x }θ∈Θ,x∈X ) for a particular t 7→ t + 1
oracular cloning game Gt7→t+1 = (t,HAt ,Θ,X , {Uθ}θ∈Θ) is defined by the quantity

ωS(Gt7→t+1) := E
θ∼Θ

E
x∼X

Tr

[(
P
Uθ,U

†
θ

1,x ⊗ . . .⊗P
Uθ,U

†
θ

t+1,x

)
ΦAt→Bt+1

(
(Uθ |x⟩⟨x|U †θ )

⊗t
At

)]
.

Moreover, we define the value of the oracular cloning game G as the optimal winning probability

ω(Gt7→t+1) := sup
S=(HBt+1 ,ΦAt→Bt+1 ,{P1,x}, ...,{Pt+1,x})

ωS(Gt7→t+1).

We analogously define the value of a cloning game G, using the measurements
{
Pθ
i,x

}
instead.

We also make the straightforward observation that cloning games are closely related to sUE schemes:

Lemma 6.11. Consider a cloning game with t players, X = {0, 1}n, and Θ = {0, 1}λ. Then all of the
following hold:

• If the corresponding cloning game has value ≤ ϵ with computationally unbounded (respectively,
computationally bounded) (Φ,P1, . . . ,Pt+1), then there exists a sUE scheme satisfying statistical
(respectively, computational) t 7→ t+ 1 ϵ-sUE security.

• If the corresponding oracular cloning game has value ≤ ϵ with computationally unbounded (respec-
tively, computationally bounded) (Φ,P1, . . . ,Pt+1), then there exists a sUE scheme satisfying (statis-
tical, respectively computational) t 7→ t+ 1 (ϵ,∞)-sUE oracular security.

• If in the corresponding oracular cloning game, any computationally unbounded (respectively, com-
putationally bounded) restricted strategy (Φ,P1, . . . ,Pt+1) has value ≤ ϵ, then there exists a sUE
scheme satisfying (statistical, respectively computational) t 7→ t+ 1 (ϵ, 1)-sUE oracular security.

Proof. In all cases, the construction proceeds as follows: we will take Enc(θ, x) = Uθ |x⟩, and Dec will
apply U †θ and measure in the standard basis. The conclusions are now straightforward to verify.

6.3 Worst-Case to Average-Case Reduction

In this section, we show that t 7→ t+1 oracular cloning games admit a worst-case to average-case reduction:
even the hardest games which are specified by some worst-case unitary Uw can be won by a strategy for the
average-case version of the game that involves a Haar-like unitary Ua from an appropriate unitary design, or
alternatively from a pseudorandom unitary ensemble.

Theorem 6.12 (Worst-Case to Average-Case Reduction). Let n, t ∈ N and let ν = {Ua}a∈Θ be an ensemble
of n-qubit unitaries to be specified later. Suppose there exists a quantum strategy

Savg = (HBt+1 ,ΦAt→Bt+1 , {PUa,U
†
a

1,x }a∈Θ, x∈{0,1}n , . . . , {P
Ua,U

†
a

t+1,x }a∈Θ, x∈{0,1}n)

for the average-case t 7→ t+ 1 oracular cloning game Gavg
t7→t+1 = (t,HAt ,Θ, {0, 1}n, {Ua}a∈Θ), where the

t+ 1 players make no more than a total of q many oracle queries to either Ua or U †a combined, and

ωSavg(G
avg
t7→t+1) = ϵ.
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Game 3 (Oracular Cloning Game).
A t 7→ t + 1 oracular cloning game Gt7→t+1 = (k,HAt ,Θ,X , {Uθ}θ∈Θ) for a quantum strategy of

the form S = (HBt+1 ,ΦAt→Bt+1 , {PUθ,U
†
θ

1,x }θ∈Θ,x∈X , . . . , {P
Uθ,U

†
θ

t+1,x }θ∈Θ,x∈X ) is the following game
between a trusted challenger, a cloner and t+ 1 many players:

1. (Setup phase) The challenger samples a random x ∼ X and a random θ ∼ Θ, and sends the
state (Uθ |x⟩)⊗t consisting of registers At := A1 · · ·At to the cloner.

The cloner applies the channel ΦAt→Bt+1 to (Uθ |x⟩)⊗t and sends the resulting registers
Bt+1 = B1 · · ·Bt+1 to the t + 1 many players, respectively. Afterwards, the players may
no longer communicate with each other for the remainder of the game.

2. (Question phase) Each of the players receives oracles for both Uθ and U †θ .

3. (Answer phase) The players independently output a guess for the element x by applying the

measurements {PUθ,U
†
θ

1,x }x∈X , . . . , {P
Uθ,U

†
θ

t+1,x }x∈X to their registers, respectively.

4. (Outcome phase) The players win if they all guess x correctly.

Figure 8: A t 7→ t + 1 oracular cloning game. A regular cloning game is defined analogously, except the
measurements are now Pθ

i,x and free to depend on θ in any way. Informally, in a standard cloning game θ
is revealed to the t + 1 players in the clear, while in the oracular cloning game the players are only given
oracle access to Uθ and U †θ .

Then, there exists a quantum strategy (in which the t+ 1 many players make the same number of queries)

Swst = (HB̃t+1 , Φ̃At→B̃t+1 , {P̃Vw,V
†
w

1,x }x∈{0,1}n , . . . , {P̃
Vw,V

†
w

t+1,x }x∈{0,1}n)

for any t 7→ t+ 1 oracular cloning game Gwst
t7→t+1 = (t,HAt ,Θ′, {0, 1}n, {Vw}w∈Θ′) in the worst-case (i.e.,

for any adversarially chosen ensemble of n-qubit unitaries {Vw}w∈Θ′), such that:

• If ν is an exact unitary r-design, for r = t+ q and q ∈ N: we will have

ωSwst(G
wst
t7→t+1) = ϵ.

• If ν is a pseudorandom unitary family with security parameter λ, and the adversaries (Φ,P1, . . . ,Pt+1)
are computationally bounded: we will have

ωSwst(G
wst
t7→t+1) ≥ ϵ− negl(λ).

Proof. Let Gwst
t7→t+1 = (t,HAt ,Θ′, {0, 1}n, {Vw}w∈Θ′) be a worst-case t 7→ t+ 1 oracular cloning game for

ensemble of unitaries {Vw}. Consider the quantum strategy Swst for the game Gwst
t7→t+1 which internally uses

Savg and proceeds as follows:

• (Cloning Channel:) on input (Vw |x⟩)⊗t in register At, the channel Φ̃At→B̃t+1 proceeds as follows:

1. Sample a uniformly random unitary Ua ∼ ν from the unitary ensemble ν.
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2. Apply Ua to each copy of Vw |x⟩, resulting in a state (UaVw |x⟩)⊗t in register At.

3. Run ΦAt→Bt+1 on (UaVw |x⟩)⊗t, and let Bt+1 = B1 · · ·Bt+1 denote the resulting registers.

4. Output B̃t+1 := B̃1 · · · B̃t+1, where B̃i consists of Bi together with B′i = |a⟩⟨a|, for i ∈ [t+ 1].

• (i-th Player:) On input B̃i, the measurement {P̃Vw,V
†
w

i,x }x∈{0,1}n proceeds as follows:

1. Parse B̃i as BiB
′
i. Measure B′i to obtain the string a.

2. Run the oracle-aided measurement {PU,U†

i,x }x∈{0,1}n with respect to U := UaVw in such a way
that, whenever one of the q-many oracle queries to U or U † is submitted:

– If the query is to U : the query is first submitted to the available oracle Vw, then the unitary
Ua is applied to the resulting outcome.

– If the query is to U †: the unitary U †a is applied, and the resulting outcome submitted to the
available oracle V †w.

Let us now analyze the success probability ωSwst(G
wst
t7→t+1) of the strategy Swst. We first address the case

where ν is an exact unitary r-design. Recall from Theorem 3.10 that any exact (non-adaptive) unitary
r-design is also an exact adaptive r-design. Therefore, using that ν is an adaptive unitary r-design, for
r = t+ q, as well as the right-invariance of the Haar measure over the unitary group U(2n), we get:

E
x∼{0,1}n
w∼Θ′

Tr
[(

P̃Vw,V
†
w

1,x ⊗ . . .⊗ P̃Vw,V
†
w

t+1,x

)
Φ̃At→B̃t+1

(
(Vw |x⟩⟨x|V †w)⊗tAt

)]
= E

Ua∼ν
E

x∼{0,1}n
w∼Θ′

Tr
[(

P
UaVw,(UaVw)†

1,x ⊗ . . .⊗P
UaVw,(UaVw)†

t+1,x

)
ΦAt→Bt+1

(
(UaVw |x⟩⟨x| (UaVw)†)⊗tAt

)]
= E

W∼U(2n)
E

x∼{0,1}n
w∼Θ′

Tr
[(

P
WUw,(WUw)†

1,x ⊗ . . .⊗P
WUw,(WUw)†

t+1,x

)
ΦAt→Bt+1

(
(WVw |x⟩⟨x| (WVw)

†)⊗tAt

)]
= E

U∼U(2n)
E

x∼{0,1}n
Tr
[(

PU,U†

1,x ⊗ . . .⊗PU,U†

t+1,x

)
ΦAt→Bt+1

(
(U |x⟩⟨x|U †)⊗tAt

)]
= E

Ua∼ν
E

x∼{0,1}n
Tr
[(

PUa,U
†
a

1,x ⊗ . . .⊗PUa,U
†
a

t+1,x

)
ΦAt→Bt+1

(
(Ua |x⟩⟨x|U †a)⊗tAt

)]
.

Therefore, we get that ωSwst(G
wst
t7→t+1) = ωSavg(G

avg
t7→t+1) = ϵ, which proves the claim. In the case that ν is a

PRU family and the adversary is computationally bounded, we can apply essentially the same calculation,
but we will incur a potential additive loss of negl(λ) when passing from Ua to the Haar measure. (Note
that we can appeal to PRU security because the strategy Swst can be simulated using only oracle access to
Ua, U

†
a .)

7 Analyzing Monogamy Games Using Existing Techniques

In this section, we revisit the existing techniques laid out by [TFKW13] for upper bounding the value of
monogamy games (and hence cloning games in particular). In Section 7.2, we use their framework to
construct monogamy games with X = {0, 1}n with an improved upper bound of essentially O(2−n/2).
Finally, in Section 7.3, we show formally that these techniques cannot be used to establish significantly
better bounds for a monogamy game.
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7.1 Worst-Case Overlap Analysis

The main pre-existing tool for bounding the value of a monogamy game is a spectral bound due to [TFKW13].
We summarize their technique and main result here. For a particular strategy S, they define the projector

ΠθABC :=
∑
x∈X

Aθ
x ⊗Bθ

x ⊗Cθ
x.

Then note that we have:

ωS(G) = E
θ∼Θ

[
Tr
[
ΠθABCρABC

]]
≤
∥∥∥∥ E
θ∼Θ

[
ΠθABC

]∥∥∥∥
∞
,

since ρABC has trace 1 (by Lemma 3.18). To bound this, they show the following result:

Theorem 7.1 (Essentially [TFKW13], Theorem 4). We have∥∥∥∥ E
θ∼Θ

[
ΠθABC

]∥∥∥∥
∞
≤ 1

|Θ|
+
|Θ| − 1

|Θ|
· max
θ,θ′∈Θ
θ ̸=θ′

max
x,x′∈X

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞
.

Using this theorem, they are able to show that the BB84 monogamy game has value 1
2 +

1
2
√
2
. Moreover,

they show that the n-fold parallel repetition of the BB84 monogamy game has value
(
1
2 + 1

2
√
2

)n
. The

remainder of this section is organized as follows:

1. In Section 7.2, we will provide a different monogamy game with X = {0, 1}n that has value ≤
2−n/2+o(n), assuming the existence of sub-exponentially classically secure PRFs.

2. In Section 7.3, we will show that this is essentially the best bound that we could hope to show using
Theorem 7.1.

In order to bypass this limitation and obtain monogamy bounds of O(2−n), we will later restrict
attention to oracular cloning games (defined in Section 6.2) and analyze these with a completely
different technique based on subtypes in Section 9.

7.2 Monogamy Games with Salted Phase States

In this section, we restrict attention to monogamy games such that Aθ
x = Vθ |x⟩⟨x|V†θ for some |X | × |X |

unitary Vθ. In this case, we have the following observation:

Lemma 7.2. For any x, x′ ∈ X and θ, θ′ ∈ Θ, we have∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞

=
∥∥∥Aθ

xA
θ′
x′

∥∥∥
∞

=
∣∣∣⟨x|V†θVθ′ |x′⟩∣∣∣ .

Proof. Note firstly that the ℓ∞ norm of any rank 1 Hermitian PSD matrix is equal to its trace (see Lemma 3.12).
Bearing this in mind, we have:∥∥∥Aθ

xA
θ′
x′

∥∥∥2
∞

=
∥∥∥Aθ

xA
θ′
x′A

θ′†
x′ A

θ†
x

∥∥∥
∞
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=
∥∥∥Vθ |x⟩⟨x|V†θ · Vθ′ |x′⟩⟨x′|V†θ′ · Vθ′ |x′⟩⟨x′|V†θ′ · Vθ |x⟩⟨x|V†θ∥∥∥∞

= Tr
[
Vθ |x⟩⟨x|V†θ · Vθ′ |x

′⟩⟨x′|V†θ′ · Vθ′ |x
′⟩⟨x′|V†θ′ · Vθ |x⟩⟨x|V

†
θ

]
=
∣∣∣⟨x|V†θVθ′ |x′⟩∣∣∣2 · Tr [Vθ |x⟩ ⟨x′|V†θ′ · Vθ′ |x′⟩ ⟨x|V†θ]

=
∣∣∣⟨x|V†θVθ′ |x′⟩∣∣∣2 ,

which implies the conclusion.

We now describe our PRF-based construction. We stress that we only require the PRF to be secure
against classical adversaries, and we do not assume that Bob and Charlie are computationally bounded. The
reasons for this will become clear later, and are summarized in Remark 11.

Construction 2. Let F =
{
Fk : {0, 1}m+n → {0, 1}

}
k∈{0,1}λ be a PRF family. (Here, m := m(λ) and

n := n(λ) should be thought of as small polynomials in the security parameter λ e.g. λ0.1.) For any
k ∈ {0, 1}λ and θ ∈ {0, 1}m, define the “salted” function fk,s : {0, 1}n → {0, 1} by fk,θ(x) = Fk(θ||x).

Then for any k ∈ {0, 1}λ, we define the monogamy game GF,k as follows:

• The Hilbert spaceHA is C2n .

• The set of questions Θ is {0, 1}m.

• The set of answers X is {0, 1}n.

• For any θ ∈ {0, 1}m and x ∈ {0, 1}n, we define the following:

Vθ = Ufk,θH
⊗n, and

Aθ
x = Vθ |x⟩⟨x|V†θ,

where Ufk,θ is the phase unitary defined in Section 8.3.

Remark 9. Our use of PRF security is already quite unconventional; the PRF key k should be thought of
here as a public parameter that is known to all parties (including Bob and Charlie) before the monogamy
game commences.

Remark 10. At first glance, this “salting” construction appears unnatural; it would be much more natural
to consider a PRF family {Fk : {0, 1}n → {0, 1}}k∈{0,1}λ , set Θ = {0, 1}λ, and set Vθ = UFθ

H⊗n (where
θ ∈ {0, 1}λ is the PRF key).

The problem with this is that we will be analyzing this construction using Theorem 7.1, which considers
the worst-case overlap across different θ, θ′ ∈ {0, 1}λ, while PRF security would only give us a “with high
probability” guarantee with respect to θ, which is insufficient for us.

To remedy this, we salt the PRF so that the “with high probability” guarantee is absorbed into the setup
phase of the construction. In other words, this can be thought of as a “randomized monogamy game” (where
the new randomization occurs during the setup phase). We can now obtain the desired worst-case overlap
bounds using simple concentration bounds, as we will see next.

Our starting point to analyze Construction 2 is the following lemma:

53



Lemma 7.3 (Essentially [O’D21], Exercise 5.8). Let F : {0, 1}m+n → {−1, 1} be a random function. For
any s ∈ {0, 1}m, define fs : {0, 1}n → {−1, 1} by fs(u) = F (s, u). Then with probability 1 − O(2−n)
over the randomness of F , we have

max
r ̸=s

max
w∈{0,1}n

∣∣∣Eu [(−1)⟨w,u⟩fr(u)fs(u)]∣∣∣ ≤ 2 · 2−n/2
√
m+ n.

Proof. We will first argue for any fixed r, s, w then take a union bound at the end. If we let G(u) =
fr(u)fs(u) = F (r, u)F (s, u), it is clear that G is itself a random function from {0, 1}n → {−1, 1} (noting
that we get independence because r ̸= s). Hence we just want to bound∣∣∣Eu [(−1)⟨w,u⟩G(u)]∣∣∣ .
For each u, (−1)⟨w,u⟩G(u) is an independent and uniformly random sample from {−1, 1}, so this quantity
can be bounded with a straightforward Chernoff bound. Indeed, Hoeffding’s inequality tells us that:

Pr
[∣∣∣Eu [(−1)⟨w,u⟩G(u)]∣∣∣ > 2 · 2−n/2

√
m+ n

]
≤ 2 exp

(
−4 · 2n · (m+ n)

2n+1

)
= 2 exp(−2(m+ n)).

Taking a union bound over 2m choices of r, 2m choices of s, and 2n choices of w implies that:

Pr

[
max
r ̸=s

max
w∈{0,1}n

∣∣∣Eu [(−1)⟨w,u⟩G(u)]∣∣∣ > 2 · 2−n/2
√
m+ n

]
≤ 22m+n · 2 exp(−2(m+ n))

= O(2−n).

Corollary 7.4. Assume that the PRF family F is (2m+n, ϵ(λ))-classically secure i.e. a classical distinguisher
that runs in time poly(2m+n) can only distinguish a function sampled from F from a truly random function
with advantage ≤ ϵ(λ). Then with probability 1−O(2−n)− ϵ(λ) over the randomness of k ← {0, 1}λ, we
have

max
r ̸=s

max
w∈{0,1}n

∣∣∣Eu [(−1)⟨w,u⟩+fk,r(u)+fk,s(u)]∣∣∣ ≤ 2 · 2−n/2
√
m+ n.

Proof. Consider the following PRF distinguisher given oracle access to some function F : it simply iterates
over all r, s, w, u and computes

max
r ̸=s

max
w∈{0,1}n

∣∣∣Eu [(−1)⟨w,u⟩+F (r,u)+F (s,u)
]∣∣∣ ,

and outputs 1 if the result is > 2 · 2−n/2
√
m+ n. This distinguisher runs in time poly(2m+n). By

Lemma 7.3, it outputs 1 given a random function with probability at most O(2−n) (noting that the out-
puts of F are in {0, 1}, so the outputs of (−1)F (·) are in {−1, 1} as in Lemma 7.3). Hence by PRF security,
it outputs 1 given a function sampled from F with probability at most O(2−n) + ϵ(λ). The conclusion
follows.

Note that a PRF with this security guarantee can be instantiated assuming sub-exponentially secure PRFs
since λ is a large polynomial in m + n. With this corollary, we can prove an upper bound on the value of
our monogamy game:
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Theorem 7.5. Assume (as in Corollary 7.4) that the PRF family F is (2m+n, ϵ(λ))-classically secure i.e. a
classical distinguisher that runs in time poly(2m+n) can only distinguish a function sampled from F from a
truly random function with advantage≤ ϵ(λ). Then with probability 1−O(2−n)−ϵ(λ) over the randomness
of k ← {0, 1}λ, we have:

ω(GF,k) ≤ O(2−m + 2−n/2
√
m+ n).

Proof. By Theorem 7.1 and the analysis preceding it, we have:

ω(GF,k) ≤ 2−m + (1− 2−m) · max
θ,θ′∈{0,1}m

θ ̸=θ′

max
x,x′∈{0,1}n

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞
.

Hence it suffices to show that

max
θ,θ′∈{0,1}m

θ ̸=θ′

max
x,x′∈{0,1}n

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞
≤ O(2−n/2

√
m+ n).

Indeed, we have: ∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞

=
∣∣∣⟨x|V†θVθ′ |x′⟩∣∣∣ (Lemma 7.2)

=
∣∣∣⟨x|H⊗nUfk,θUfk,θ′H⊗n|x′⟩∣∣∣

=
1

2n

∣∣∣∣∣∣
∑

y,y′∈{0,1}n
(−1)⟨x,y⟩+⟨x′,y′⟩ ⟨y|Ufk,θUfk,θ′ |y

′⟩

∣∣∣∣∣∣
=

1

2n

∣∣∣∣∣∣
∑

y,y′∈{0,1}n
(−1)⟨x,y⟩+⟨x′,y′⟩+fk,θ(y)+fk,θ′ (y′) ⟨y|y′⟩

∣∣∣∣∣∣
=

∣∣∣∣ E
y←{0,1}n

[
(−1)⟨x+x′,y⟩+fk,θ(y)+fk,θ′ (y)

]∣∣∣∣
⇒ max

θ,θ′∈{0,1}m
θ ̸=θ′

max
x,x′∈{0,1}n

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞

= max
θ,θ′∈{0,1}m

θ ̸=θ′

max
x,x′∈{0,1}n

∣∣∣∣ E
y←{0,1}n

[
(−1)⟨x+x′,y⟩+fk,θ(y)+fk,θ′ (y)

]∣∣∣∣
≤ O(2−n/2

√
m+ n),

with probability at least 1−O(2−n)− ϵ(λ) over the randomness of k by Corollary 7.4 (noting that we can
consolidate the max over x and x′ into a single max over w := x+ x′).

Remark 11. Our use of PRF security is only to prove the concentration bound in Corollary 7.4, and hence
we only need security against classical adversaries. Once we have this bound, we are applying Theorem
7.5 which holds against computationally unbounded Bob and Charlie. Therefore, although our construction
is based on a cryptographic assumption, it is secure even against computationally unbounded adversaries
Bob and Charlie.
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7.3 Limitations of [TFKW13]

Here, we show that the framework laid out by [TFKW13] of using Theorem 7.1 to bound monogamy games
cannot prove a better bound than 1/

√
|X | (see the statement of Theorem 7.1).

Lemma 7.6. If |Θ| ≥ 2, then we have

max
θ,θ′∈Θ
θ ̸=θ′

max
x,x′∈X

∥∥∥∥√Aθ
x

√
Aθ′
x′

∥∥∥∥
∞

= max
θ,θ′∈Θ
θ ̸=θ′

max
x,x′∈X

∥∥∥Aθ
xA

θ′
x′

∥∥∥
∞
≥ 1√

|X |
.

Proof. The first equality follows since the measurements are projective, so
√
Aθx = Aθx. Now for any

distinct θ, θ′ ∈ Θ, we will show that

max
x,x′∈X

∥∥∥Aθ
xA

θ′
x′

∥∥∥
∞
≥ 1√

|X |
.

Indeed, fix any x′ ∈ X such that Aθ′
x′ is nonzero (such x′ exists since

∑
x′ A

θ′
x′ = I) and consider an arbitrary

state |ψ⟩ in the image of Aθ′
x′ . Then we have:

|ψ⟩ =
∑
x∈X

Aθ
x |ψ⟩

=
∑
x∈X

Aθ
xA

θ′
x′ |ψ⟩

⇒ 1 =

∥∥∥∥∥∑
x∈X

Aθ
xA

θ′
x′ |ψ⟩

∥∥∥∥∥
2

2

.

For each x ∈ X , let |ψx⟩ = Aθ
xA

θ′
x′ |ψ⟩, where |ψx⟩ may not be normalized. Note for any x ̸= y that

⟨ψx|ψy⟩ = ⟨ψ|Aθ′
x′A

θ
xA

θ
yA

θ′
x′ |ψ⟩ = 0, since Aθ

xA
θ
y = 0. Hence the |ψx⟩’s are mutually orthogonal,

implying that:

1 =

∥∥∥∥∥∑
x∈X
|ψx⟩

∥∥∥∥∥
2

2

=
∑
x∈X
∥|ψx⟩∥22 .

Hence there exists x ∈ X such that ∥|ψx⟩∥22 ≥ 1/|X | ⇒ ∥|ψx⟩∥2 ≥ 1/
√
|X |. For this x, we have:

1√
|X |
≤ ∥|ψx⟩∥2

=
∥∥∥Aθ

xA
θ′
x′ |ψ⟩

∥∥∥
2

≤
∥∥∥Aθ

xA
θ′
x′

∥∥∥
∞
,

as desired.
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8 Types and Subtypes

In order to improve on the limitations of the [TFKW13] framework for bounding the value of monogamy
games, we essentially restrict attention to oracular cloning games, and restrict each player to only make
one query. This allows us to analyze this game using the language of binary phase twirls (defined and
analyzed in Section 8.3). To effectively capture the effect of binary phase twirls on an operator, we revisit
the formalism of types introduced by [AGQY22] in Section 8.1 and extend this to subtypes in Section 8.2.
Later, in Section 9, we will leverage these tools to analyze our construction using binary phase states and
prove monogamy bounds of Ot(2−n).

8.1 Binary Types

Let N,M ∈ N and r ∈ N. For a vector x = (x1, . . . , xr) ∈ [N ]r and an ancilla input y ∈ [M ], we denote
by Type(x, y) ∈ [0 : r]N the so-called type vector in which the i-th entry corresponds to the number of
occurrences of i ∈ [N ] in x. Note that the ancillary information y is just representing some auxiliary input
that we do not consider when evaluating Type. We denote by BinType(x, y) ∈ {0, 1}N the binary type
vector in which the i-th entry corresponds to the parity of the number of occurrences of i ∈ [N ] in x. In
other words, we let

BinType(x, y) = Type(x, y) (mod 2).

We note that our definition of Type and BinType is a natural extension of the standard definition in the
literature (which does not consider auxiliary input); in particular, when M = 0 and y is the empty string,
our definitions and the standard definitions coincide.

BinType decomposition. When working with the vector spaceH = (CN )⊗r ⊗CM , we use the following
BinType decomposition into orthogonal subspaces Vλ indexed by binary types λ ∈ {0, 1}N such that

(CN )⊗r ⊗ CM ∼=
⊕
λ

Vλ ,

where each subspace Vλ ⊆ H corresponds to vectors with a particular binary type λ, i.e.,

Vλ = spanC{|v1, . . . , vr, w⟩ : BinType((v1, . . . , vr), w) = λ}.

8.2 Subtypes

8.2.1 Definitions and Combinatorial Properties

While BinType is very simple to define, it comes with an “entangled”9 combinatorial structure that is dif-
ficult to work with. As a simple example, consider the case where r = 3,M = 0, and the binary type λ
is (1, 0, 0, . . . , 0). There are a few different ways for a vector in [N ]3 to attain this BinType: the vector
could be of the form (0, x, x) for any x ∈ [N ] or any permutation of this, and moreover these collections of
vectors will overlap on (0, 0, 0).

Instead of working with the BinType directly, it is more natural and convenient to address each of
these different collections of vectors separately. Within each of these collections, there is now a very clean
combinatorial structure that we will be able to exploit.

To formalize the above intuition, we will work with the notion of subtypes. As in Section 8.1, letN,M, r
be positive integer parameters:

9This comment is qualitative, and does not relate in any way to quantum entanglement.
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Definition 8.1. A subtype of a given type λ = (c1, . . . , cN ) ∈ {0, 1}N is a string µ of length r. Each entry
of µ is either an integer i ∈ [N ] such that λi = 1, or a variable symbol xi for some index i. We have the
following constraints:

• For each i ∈ [N ] such that λi = 1, i should appear an odd number of times in µ.

• For any i such that xi appears at least once in µ, the first i distinct variable symbols that appear in µ
are x1, x2, . . . , xi in that order.

• Each variable symbol xi appears an even number of times in µ.

Definition 8.2. For a vector (x, y) ∈ [N ]r × [M ], define its query restriction to be x ∈ [N ]r. (Informally,
the query restriction discards any auxiliary information.)

Definition 8.3. We say a vector (x, y) ∈ [N ]r × [M ] matches a subtype µ if there exist assignments of
values in [N ] to the variable symbols in µ to yield the query restriction x of (x, y).

For a subtype µ, we define Sµ ⊆ [N ]r × [M ] to be the set of vectors (x, y) that match µ, and let Πµ

denote the projection onto standard basis vectors in Sµ.

Definition 8.4. For any subtype µ with variable symbols x1, . . . , xk and some specific values y1, . . . , yk ∈
[N ] and z ∈ [M ], define Reconstruct(µ, (y1, . . . , yk), z) to be the vector in [N ]r × [M ] obtained by taking
µ and replacing the variable symbol xi with yi for each i, then finally appending z.

At this point, we make some straightforward observations. Firstly, membership of a vector (x, y) in a
subtype µ or a type λ depends only on its query restriction. Also, any vector (x, y) that matches a subtype
µ of a type λ must have type λ. This is due to the parity constraints in Definition 8.1. Conversely, for
any vector (x, y) of type λ, there is at least one subtype µ of λ that (x, y) matches: we can take x, leave
entries i such that λi = 1 as they are, and replace all other distinct values by variable symbols x1, x2, . . ..
This suggests that an inclusion-exclusion counting argument will allow us to relate the collection of vectors
in a given BinType to the collection of vectors in a given subtype. To do this, we need the following
straightforward observation:

Lemma 8.5. For any two subtypes µ1,µ2 of the same type λ, either there exists a subtype µ3 of λ such that
Sµ1 ∩ Sµ2 = Sµ3 , or Sµ1 ∩ Sµ2 = ∅.

Proof. Firstly, if there is an entry where µ1 and µ2 have differing values i ∈ [N ], then the intersection is
clearly empty. From now on, we assume this is not the case.

Let x be a candidate vector in Sµ1 ∩ Sµ2 , and let x′ be its query restriction. We label the variable
symbols in µ1 as x1, x2, . . . , xk and in µ2 as y1, y2, . . . , yl. Then equating for each entry of x′ yields some
restriction on the xi’s and yi’s. We have already addressed entries where both entries are constants in [N ] in
the above paragraph. To reason about the remaining constraints, consider a tripartite graph G with repeated
edges allowed, where the vertex set is [N ] ∪ {x1, . . . , xk} ∪ {y1, . . . , yl}. For each entry, we draw an edge
between the two values that it requires to be equal.

Now we can consider the connected components of G. If there are distinct i, j ∈ [N ] such that i, j
belong to the same connected component, then this implies that Sµ1 ∩ Sµ2 = ∅. So now assume this is not
the case. Then each connected component of G can be labeled either by a value i ∈ [N ] if it has a vertex
i in the first part, or a variable symbol zj for some j if it has no such vertex. Then we define the subtype
µ3 as follows: in entries where both µ1 and µ2 are the same constant value in [N ], µ3 will just match this
value. Each other entry corresponds to some edge in G; let the corresponding entry in µ3 be the label of
that edge’s connected component in G. We first check parity constraints:
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• For each i ∈ [N ] such that λi = 1, we need to check that the constant i appears an odd number of
times in µ3. The number of times i appears will be the number of entries A where µ1 and µ2 are both
i, plus the number of edges in the connected component containing i. The latter term splits further
into the B edges where one endpoint is an xi vertex, and the C edges where one endpoint is i and one
endpoint is a yi vertex. Our goal is to show that A+B + C is odd.

To see this, note thatA+C is the total number of times that i appears in µ1, hence it is odd. Secondly,
B is even since each xi vertex must have even degree (its degree is the number of times it appears in
µ1). The claim follows.

• For each variable symbol zj , we need to check that it appears an even number of times. This is equal
to the number of edges in the corresponding connected component, noting that it only comprises xi
and yi vertices. This must be even because each xi vertex has even degree.

Finally, the constraint about the labeling of the variable symbols can be ensured by just relabeling the
variable symbols in µ3. Therefore µ3 is a valid subtype of λ, and it is clear that we have Sµ3 = Sµ1 ∩ Sµ2 .
The conclusion follows.

Lemma 8.6. Any type λ has at most (2r)r subtypes.

Proof. Consider a subtype µ of λ. Any entry in the string defining µ must be one of the following:

• A fixed integer i ∈ [N ] such that λi = 1. There are at most r such integers.

• A variable symbol xi, where i ≤ r.

µ has r entries, so the conclusion follows.

8.2.2 Relating Subtype Projectors to Type Projectors

It turns out that our main technical task to prove bounds on monogamy games in Section 9 is to bound
expressions of the form

Tr [ΠλΞΠλρ] ,

where ρ is some quantum mixed state in S((CN )⊗r ⊗ CM ), Ξ is some PSD operator, and λ is a BinType.
Here, we will use the combinatorial machinery we just introduced in Section 8.2.1 to reduce this to bounding
expressions of the form

Tr [ΠµΞΠµρ] ,

where µ is now a subtype. Our starting point is the following lemma:

Lemma 8.7. For any type λ, there exist constants γλ,µ ∈ Z for each subtype µ of λ such that

Πλ =
∑
µ

γλ,µΠµ.

Moreover, we have |γλ,µ| ≤ 2(2r)
r

for all λ,µ.
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Proof. By the inclusion-exclusion principle, we have the following decomposition into subtypes µ of λ:

Πλ =
∑

x matching λ

|x⟩⟨x|

=
∑

x matching at least one µ

|x⟩⟨x|

=
∑
µ

∑
x∈Sµ

|x⟩⟨x|

− ∑
µ1<µ2

 ∑
x∈Sµ1∩Sµ2

|x⟩⟨x|

+
∑

µ1<µ2<µ3

 ∑
x∈Sµ1∩Sµ2∩Sµ3

|x⟩⟨x|

− . . . .
By Lemma 8.5, each term in parentheses is either 0 or a projector onto some subtype of λ. Hence we can
collect like terms to write Πλ as a linear combination of the Πµ’s. The coefficient γλ,µ in front of Πµ is at
most the total number of times that Πµ appears in the above expression, which is trivially at most the number
of subcollections of the collection of subtypes of λ. By Lemma 8.6, there are at most (2r)r subtypes of λ,
which implies the desired bound.

Finally, we completely reduce our problem to working with subtypes instead of types via the following
lemma:

Lemma 8.8. For any PSD matrix A and type λ, we have

ΠλAΠλ ≤ (2r)r · 22(2r)r ·

 ∑
µ subtype of λ

ΠµAΠµ

 ,

with respect to the PSD ordering.

Proof. By linearity, it suffices to prove the result when A is a rank 1 projector |ϕ⟩⟨ϕ|. Then we have for any
state |Φ⟩ that:

⟨Φ|ΠλAΠλ|Φ⟩ = | ⟨Φ|Πλ|ϕ⟩ |2

=

∣∣∣∣∣∑
µ

γλ,µ ⟨Φ|Πµ|ϕ⟩

∣∣∣∣∣
2

(Lemma 8.7)

≤

(∑
µ

γ2λ,µ

)
·

(∑
µ

| ⟨Φ|Πµ|ϕ⟩ |2
)

(Cauchy-Schwarz)

≤ (2r)r · 22(2r)r ·
∑
µ

⟨Φ|ΠµAΠµ|Φ⟩ ,

which implies the desired bound. In the final step, we have used Lemma 8.7 to bound each γλ,µ along with
Lemma 8.6 to bound the number of subtypes being summed over.

8.3 Phase Twirling

For a binary function f : [N ]→ {0, 1}, we let Uf define the phase unitary

Uf =
∑
x∈[N ]

(−1)f(x) |x⟩⟨x| .

Using the BinType decomposition, we can show the following identity for the r-wise twirl with Uf :
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Lemma 8.9. Let O ∈ L(H) be a linear operator acting on the vector spaceH = (CN )⊗r ⊗ CM . Then,

E
f∼Fn

[(
U⊗rf ⊗ I

)
O
(
U⊗rf ⊗ I

)]
=

∑
λ∈{0,1}N

ΠλOΠλ ,

where Πλ projects onto Vλ = spanC{|x1, . . . , xr, v⟩ ∈ (CN )⊗r ⊗ CM : BinType((x1, . . . , xr), v) = λ}.

Proof. Expanding O in the standard basis and using the linearity of expectation, we get

E
f∼Fn

[(
U⊗rf ⊗ I

)
O
(
U⊗rf ⊗ I

)]
=

∑
x,y∈[N ]r

v,w∈[M ]

O(x,v);(y,w) E
f∼Fn

[
U⊗rf |x⟩⟨y|U

⊗r
f ⊗ |v⟩⟨w|

]

=
∑

x,y∈[N ]r

v,w∈[M ]

O(x,v);(y,w) E
f∼Fn

[
(−1)f(x1)+...+f(xr)+f(y1)+...+f(yr)

]
|x⟩⟨y| ⊗ |v⟩⟨w|

=
∑

x,y∈[N ]r

v,w∈[M ]
BinType(x,v)=BinType(y,w)

O(x,v);(y,w) |x, v⟩⟨y, w| =
∑

λ∈{0,1}N
ΠλOΠλ.

9 Construction from Binary Phase States

In this section, we prove upper bounds on the value of restricted oracular cloning games (defined in Defini-
tion 6.8). The remainder of this section is organized as follows:

1. In Section 9.1, we formally state our binary phase construction and prove some preliminary lemmas.

2. In Section 9.2, we expand out the relevant operators and states in terms of subtypes (defined in Sec-
tion 8.2).

3. In Section 9.3, we prove spectral bounds on the operator norms of the relevant operators, and show
that these quickly yield our desired bounds on the value of 1 7→ 2 oracular cloning games.

4. In Section 9.4, we provide some additional tools for handling t 7→ t + 1 cloning games when t > 1,
and then put everything together to prove our desired bounds in the restricted oracular cloning setting.

5. For completeness, in Section 9.5, we provide an example showing that generic techniques for bound-
ing monogamy games will not suffice in this setting, justifying our use of the specific structure of
oracular cloning games.

9.1 Setup and Notation

We begin by presenting our construction. Note the qualitative similarity of this construction with Construc-
tion 2; both rely centrally on binary phase states.
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Construction 3. Let F = {fθ : {0, 1}n → {0, 1}}θ∈Θ be a family of functions parametrized by elements
Θ = {0, 1}λ. Consider the following t 7→ t + 1 oracular cloning game (as defined in Definition 6.5) GF,t

with question set Θ and answer set X := {0, 1}n. For any θ, we will take the unitary Uθ to be UfθH
⊗n.

(Here, Ufθ is the phase oracle for fθ as defined in Section 3.1.) In other words, for any x ∈ {0, 1}n, we
have

Uθ |x⟩ = 2−n/2
∑

u∈{0,1}n
(−1)fθ(u)⊕⟨x,u⟩ |u⟩ .

Remark 12. We are being intentionally vague about the choice of function family F. One could imagine
instantiating it with a post-quantum PRF family, to obtain a construction that is plausibly secure against
arbitrary polynomial-time adversaries in the oracular cloning game.

Since we only prove oracular security in the case where t = O(1) and each player can make q = 1
query in total, we will instead instantiate F as an O(1)-wise uniform function family, which is statistically
indistinguishable from the family of all functions from {0, 1}n → {0, 1} in this query bounded game. We
will reiterate this formally when establishing our final theorems in Section 9.4.

We will consider restricted quantum strategies (defined in Definition 6.8). Recall that we use Srest to denote
the collection of all such strategies. We now make a crucial observation:

Remark 13. Since U †θ = H⊗nUfθ and each player Pi is given a control bit in register Ei dictating whether
they will query Uθ or U †θ , we can assume without loss of generality that each player simply makes one non-
adaptive query to Ufθ as their first step. (In the event that the player is querying Uθ = UfθH

⊗n, they would
technically need to query H⊗n first. We can get around this by absorbing this query to H⊗n into the cloning
channel Φ.)

Recall from Definition 6.8 that each player’s register Bi splits into a query register Ci, an ancilla register
Di, and a control qubit register Ei. Recalling the setup in Definition 6.8 together with Lemma 6.9 and
Remark 13, we can write

P
Uθ,U

†
θ

i,x = (Ufθ ⊗ IDiEi
)Q†i (|x⟩⟨x| ⊗ IDiEi

)Qi(Ufθ ⊗ IDiEi
),

for some unitaries Q1, . . . , Qt+1 such that Qi acts on all the three registers CiDiEi.
With this in mind, we now switch from a cloning-based formulation to an entanglement-based formula-

tion. At a high level, the point of this is to use the ricochet property of EPR pairs (formally, Lemma 3.1) to
express the value of the cloning game as a phase twirl with respect to F. The below lemma closely follows
the proof of Lemma A.1; indeed, when t = 1 the proofs are nearly identical.

Lemma 9.1. For S ∈ Srest as specified above, define the shared state

ρB1:t+1A′
1:t

:= (ΦA1...At→B1...Bt+1 ⊗ IA′
1:t
)
(
|EPRn⟩⟨EPRn|⊗t

)
.

Then we have:

ωS(G) =2n(t−1) · E
θ

∑
x∈{0,1}n

Tr

[(( ⊗
i∈[t+1]

(Ufθ ⊗ IDiEi
)Q†i (|x⟩⟨x| ⊗ IDiEi

)Qi(Ufθ ⊗ IDiEi
)
)

⊗
(
UfθH

⊗n |x⟩⟨x|H⊗nUfθ
)⊗t
A′
1:t

)
ρ

]
.
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Proof. Let J(Φ) ∈ L(HB1:t+1 ⊗ HA′
1:t
) denote the Choi-Jamiołkowski isomorphism of the cloning map

ΦA1:t→B1:t+1 . Recall that

J(Φ) = 2nt · (ΦA1...At→B1...Bt+1 ⊗ IA′
1:t
)
(
|EPRn⟩⟨EPRn|⊗t

)
= 2ntρ.

Now using Lemma 3.1, we have:

ωS(G) =E
θ

E
x∼{0,1}n

Tr
[(

P
Ufθ
1,x ⊗ . . .⊗P

Ufθ
t+1,x

)
ΦA1...At→B1...Bt+1

(
(UfθH

⊗n |x⟩⟨x|H⊗nUfθ)
⊗t
A1...At

)]
=E
θ

E
x∼{0,1}n

Tr
[(

P
Ufθ
1,x ⊗ . . .⊗P

Ufθ
t+1,x ⊗

(
UfθH

⊗n |x⟩⟨x|H⊗nUfθ
)⊗t
A′
1:t

)
J(Φ)B1:t+1A′

1:t

]
=E
θ

E
x∼{0,1}n

Tr

[(( ⊗
i∈[t+1]

(Ufθ ⊗ IDiEi
)Q†i (|x⟩⟨x| ⊗ IDiEi

)Qi(Ufθ ⊗ IDiEi
)
)

⊗
(
UfθH

⊗n |x⟩⟨x|H⊗nUfθ
)⊗t
A′
1:t

)
J(Φ)B1:t+1A′

1:t

]

=2nt · E
θ

E
x∼{0,1}n

Tr

[(( ⊗
i∈[t+1]

(Ufθ ⊗ IDiEi
)Q†i (|x⟩⟨x| ⊗ IDiEi

)Qi(Ufθ ⊗ IDiEi
)
)

⊗
(
UfθH

⊗n |x⟩⟨x|H⊗nUfθ
)⊗t
A′
1:t

)
ρ

]

=2n(t−1) · E
θ

∑
x∈{0,1}n

Tr

[(( ⊗
i∈[t+1]

(Ufθ ⊗ IDiEi
)Q†i (|x⟩⟨x| ⊗ IDiEi

)Qi(Ufθ ⊗ IDiEi
)
)

⊗
(
UfθH

⊗n |x⟩⟨x|H⊗nUfθ
)⊗t
A′
1:t

)
ρ

]
.

Now let ρ be the Choi state as defined in Lemma 9.1, and define the projector

Ξ =
∑

x∈{0,1}n

 ⊗
i∈[t+1]

Q†i

(
|x⟩⟨x|Ci

⊗ IDiEi

)
Qi

⊗ (H⊗n |x⟩⟨x|H⊗n)⊗t
A′
1:t

 . (6)

Let d = 2n, r = 2t+1, d′ = 2a+1, and r′ = t+1. Recall that (Cd)⊗r⊗(Cd′)⊗r′ ∼=
⊕

λ Vλ decomposes
into a collection of subspaces corresponding to binary type vectors λ ∈ {0, 1}d. Here, (Cd′)⊗r′ serves as
an auxiliary register; in terms of the notation in Section 8.1, we are taking N = d and M = d′r

′
(in other

words, we are packing all the players’ ancillary registers into one auxiliary input).
Moreover, we assume going forward that F is a (4t+2)-wise uniform family of functions from {0, 1}n →

{0, 1}. As noted in Remark 12, this is statistically indistinguishable from instantiating F as the family of all
functions from {0, 1}n → {0, 1}, since the expression in Lemma 9.1 has degree 4t+ 2 in Ufθ .

Then using Lemma 9.1 and then Lemma 8.9, we get:

ωS(G) = 2n(t−1)Tr

[
E
f

[(
U⊗rf ⊗ ID1:t+1

)
Ξ
(
U⊗rf ⊗ ID1:t+1

)]
ρ

]
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= 2n(t−1)
∑

λ∈{0,1}d
Tr [ΠλΞΠλρ] , (7)

where Πλ is the projector onto the subspace of (Cd)⊗r ⊗ (Cd′)⊗(t+1) given by

Vλ = spanC{|(v1, . . . , vr, a1, . . . , at+1)⟩ : BinType(v1, . . . , vr, a1, . . . , at+1) = λ}.

We now state some simple high-level bounds on ω(G) in terms of subtypes µ:

Lemma 9.2. We have

ω(G) ≤ exp(exp(O(t log t))) · 2n(t−1) · max
subtypes µ

∥ΠµΞΠµ∥∞ .

Proof. Continuing from Equation (7), we have:

ω(G) = 2n(t−1) ·
∑

λ∈{0,1}d
Tr [ΠλΞΠλ ·Πλρ]

≤ 2n(t−1) ·
∑

λ∈{0,1}d
(Tr [Πλρ] · ∥ΠλΞΠλ∥∞)

≤ 2n(t−1) ·

 ∑
λ∈{0,1}d

Tr [Πλρ]

 · max
λ∈{0,1}d

∥ΠλΞΠλ∥∞

= 2n(t−1) · max
λ∈{0,1}d

∥ΠλΞΠλ∥∞ .

We can now use Lemma 8.8 to pass further to subtypes µ at the expense of an exp(exp(O(t log t))) multi-
plicative loss:

ω(G) ≤ exp(exp(O(t log t))) · 2n(t−1) · max
λ∈{0,1}d

 ∑
µ subtype of λ

∥ΠµΞΠµ∥∞


≤ exp(exp(O(t log t))) · 2n(t−1) ·max

µ
∥ΠµΞΠµ∥∞ (Lemma 8.6).

Much like the techniques by [TFKW13], Lemma 9.2 has the attractive feature that it does not depend
on the Choi state ρ. This is sufficient when t = 1, but provably insufficient for any t ≥ 2 (as we will show
in Section 9.5). To handle t > 1, we must additionally consider the state ρ, and we capture this in the
following lemma:

Lemma 9.3. We have

ω(G) ≤ exp(exp(O(t log t))) · 2n(t−1) ·
∑
µ

Tr [Πµρ] · ∥ΠµΞΠµ∥∞ .

Proof. We will again start with Equation (7), but instead pass to subtypes immediately using Lemma 8.8:

ω(G) ≤ exp(exp(O(t log t))) · 2n(t−1) · Tr [ΠµΞΠµρ]

= exp(exp(O(t log t))) · 2n(t−1) · Tr [ΠµΞΠµ ·Πµρ]

≤ exp(exp(O(t log t))) · 2n(t−1) ·
∑
µ

Tr [Πµρ] · ∥ΠµΞΠµ∥∞ .
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9.2 Expanding out Ξ using Subtypes

We now set up some additional notation. For each i ∈ [t + 1] and j1, j2 ∈ [d] and l1, l2 ∈ [d′], we let
Q†i,(j1,l1);(j2,l2) denote the entry in the (j1, l1)-th row and (j2, l2)-th column of the unitary Q†i . To keep
track of the ancillary indices in registers D1:t+1, we will introduce the values z1, . . . , zt+1 ∈ [d′] and denote
z = (z1, . . . , zt+1) for brevity. We can now write the projector Ξ in Equation (6) as:

Ξ =
∑

x∈{0,1}n
z1,...,zt+1∈{0,1}a

|Ξx,z⟩⟨Ξx,z| , where

|Ξx,z⟩ = Q†1 (|x⟩ ⊗ |z1⟩)⊗ · · · ⊗Q
†
t+1 (|x⟩ ⊗ |zt+1⟩)⊗

(
H⊗n |x⟩

)⊗t
= 2−nt/2

∑
v1,...,vr∈[d]

w1,...,wt+1∈[d′]

(
(−1)⟨vt+2+···+vr,x⟩

t+1∏
i=1

Q†i,(vi,wi);(x,zi)

)
|v1, . . . , vr⟩ ⊗ |w1, . . . , wt+1⟩ .

We now begin unpacking the operator ΠµΞΠµ, using the formalism of subtypes introduced in Section 8.2.
Recall that we have:

Ξ =
∑

x∈{0,1}n
z1,...,zt+1∈{0,1}a

|Ξx,z⟩⟨Ξx,z|

⇒ ΠµΞΠµ =
∑

x∈{0,1}n
z1,...,zt+1∈{0,1}a

Πµ |Ξx,z⟩⟨Ξx,z|Πµ.

Therefore we can define a matrix A ∈ Cd1×d2 , where d1 = 2rn+(t+1)a is the dimension of |Ξx,z⟩ and
d2 = 2n+(t+1)a is the number of possible values of x, z. The columns of A are indexed by x, z and the
corresponding column is exactly Πµ |Ξx,z⟩. Then we have ΠµΞΠµ = AA† ⇒ ∥ΠµΞΠµ∥∞ = ∥A∥2∞.

Recall also that we have:

|Ξx,z⟩ = 2−nt/2
∑

v1,...,vr∈[d]
w1,...,wt+1∈[d′]

(
(−1)⟨vt+2+···+vr,x⟩

t+1∏
i=1

Q†i,(vi,wi);(x,zi)

)
|v1, . . . , vr⟩ ⊗ |w1, . . . , wt+1⟩ .

Therefore, once we project onto the subspace corresponding to the subtype µ, we get the state

Πµ |Ξx,z⟩ = 2−nt/2
∑

v1,...,vr∈[d]
w1,...,wt+1∈[d′]

(v,w)∈Sµ

(
(−1)⟨vt+2+···+vr,x⟩

t+1∏
i=1

Q†i,(vi,wi);(x,zi)

)
|v1, . . . , vr⟩ ⊗ |w1, . . . , wt+1⟩ .

(8)

Now note that any row of A that does not correspond to a standard basis vector in Sµ will be 0. We can
discard all such rows without affecting the operator norm of A. We can therefore re-index the rows of A
by the variable symbols x1, . . . , xl of µ and the ancilla indices w1, . . . , wt+1, so that A is effectively a
2nl+a(t+1) × 2n+a(t+1) matrix.

With this setup in mind, we introduce a couple more definitions that will help us complete our analysis:
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Definition 9.4. Let ℓ ∈ [0, t] be an integer parameter (typically we will work with ℓ = t). Let µ be a subtype
of (Cd)⊗(t+1+ℓ) ⊗ (Cd′)⊗r′ with variable symbols x1, . . . , xl. Then, define the matrix

B := Bµ(Q1, . . . ,Qt+1)

with dimensions 2nl+a(t+1) × 2n+a(t+1) as follows:
Its rows are indexed by y1, . . . , yl ∈ [d] and w1, . . . , wt+1 ∈ [d′]. Its columns are indexed by x ∈ [d]

and z1, . . . , zt+1 ∈ [d′]. For any such indices, take

(v1, . . . , vt+1+ℓ, w1, . . . , wt+1) = Reconstruct(µ, (y1, . . . , yl), (w1, . . . , wt+1)) ∈ [d]t+1+ℓ × [d′]t+1.

(The function Reconstruct is defined in Definition 8.4.) Then we define the entry

B(y1,...,yl,w1,...,wt+1);(x,z1,...,zt+1) = (−1)⟨vt+2+...+vt+1+ℓ,x⟩
t+1∏
i=1

Q†i,(vi,wi);(x,zi)
. (9)

We remark that when ℓ = t, this definition coincides with the matrix 2nt/2A. The reason we generalize
to ℓ < t is for technical reasons; there could be variable symbols that only appear in the “phase entries”
vt+2, . . . , vt+1+ℓ, in which case they appear an even number of times and do not have any effect on the value
of that entry in the matrix B. These variable symbols artificially blow up the operator norm of B and will
need to be dealt with separately. To capture this, we have the following notion:

Definition 9.5. For a subtype µ with respect to (Cd)⊗(t+1+ℓ)⊗ (Cd′)⊗r′ and variable symbol xi, we say xi
is a free variable symbol of µ if it only appears in entries t+2, t+3, . . . , t+1+ ℓ of µ. (Informally, a free
variable symbol is one that only appears in the phase.)

9.3 Bounding ∥Bµ(Q1, . . . ,Qt+1)∥∞
In this section, we provide estimates on the operator norm of Bµ(Q1, . . . ,Qt+1). We first begin with a
lemma that allows us to dispose of free variable symbols:

Lemma 9.6. Suppose µ is a subtype with respect to (Cd)⊗(2t+1) ⊗ (Cd′)⊗r′ , and suppose it has b free
variable symbols that appear in a total of p positions in indices k + 2, k + 3, . . . , 2k + 1.

Then define ℓ := t − p, and µ′ to be the subtype with respect to (Cd)⊗(t+1+ℓ) ⊗ (Cd′)⊗r′ obtained by
taking µ and removing all free variable symbols. Then we have

∥Bµ(Q1, . . . ,Qt+1)∥∞ = 2nb/2
∥∥Bµ′(Q1, . . . ,Qt+1)

∥∥
∞ .

Proof. For brevity, write B = Bµ(Q1, . . . ,Qt+1) and B′ = Bµ′(Q1, . . . ,Qt+1). Let the variable symbols
of µ be y1, . . . , yl, so that its free variable symbols are yl−b+1, . . . , yl. Note that µ′ will have l − b variable
symbols, none of which are free variable symbols. Now since each free variable symbol appears an even
number of times in the phase, we have for any indices that

B(y1,...,yl,w1,...,wt+1);(x,z1,...,zt+1) = B′(y1,...,yl−b,w1,...,wt+1);(x,z1,...,zt+1)
.

In other words, the matrix B is obtained by vertically stacking 2nb copies of B′ (up to a permutation of
rows). Put another way, B is equal to B′ tensored with a column vector consisting of 2nb 1’s. It follows by
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Lemma 3.14 that:

∥B∥∞ =
∥∥B′∥∥∞ ·

∥∥∥∥∥∥∥∥∥


1
1
...
1


∥∥∥∥∥∥∥∥∥
∞

= 2nb/2
∥∥B′∥∥∞ .

For most of the remainder of this section, we focus on subtypes µ that do not have any free variable
symbols. We first set up some more notation. At a high level, the idea is to cluster the terms being multiplied
in Equation (9) according to which of the variable symbols they depend on. This allows us to write B as
a block column-wise tensor product of several much simpler block matrices, and then we will appeal to
Lemma 3.22.

To this end, let µ have variable symbols x1, . . . , xl. For each for i ∈ [l], let Ii = {j ∈ [t+ 1 + ℓ] : µj = xi}
and J = {j ∈ [t+ 1 + ℓ] : µj is fixed}. Note that [t+ 1 + ℓ] is the disjoint union of I1, I2, . . . , Il, J . Also,
for convenience we will make the following abuse of notation: for any integer h, subset I ⊆ [h], and
vector b with h entries, we use bI to denote the sub-vector of length |I| obtained by taking only the in-
dices in I from b. With this in mind, for each i ∈ [l] define the following matrix Mi of dimensions
2n+a(|Ii|∩[t+1]) × 2n+a(|Ii|∩[t+1]):

Mi,(yi,wIi∩[t+1]);(x,zIi∩[t+1]) =
∏

j∈Ii∩[t+2,t+1+ℓ]

(−1)⟨yi,x⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)
.

Additionally, define the following matrix T of dimensions 2a(|J |∩[t+1]) × 2n+a(|J |∩[t+1]):

TwJ∩[t+1];(x,zJ∩[t+1]) =
∏

j∈J∩[t+2,t+1+ℓ]

(−1)⟨µj ,x⟩ ·
∏

j∈J∩[t+1]

Q†j,(µj ,wj);(x,zj)
.

It is clear by inspection that Bµ is the result of applying the block column-wise tensoring operation
described in Lemma 3.22 to M1, . . . ,Ml,T. Here, the block columns are indexed by x. We will proceed
by applying this lemma to these matrices. We thus need to check that the preconditions of the lemma apply,
which we do in the next few lemmas:

Lemma 9.7. For any x∗ ∈ [2n], consider the matrix Tx∗ obtained by restricting T to columns where
x = x∗. Then ∥Tx∗∥∞ ≤ 1. Moreover, if J ∩ [t+ 1] is nonempty, then we have ∥T∥∞ ≤ 1.

Proof. We have:

TwJ∩[t+1];(x,zJ∩[t+1]) =
∏

j∈J∩[t+2,t+1+ℓ]

(−1)⟨µj ,x⟩ ·
∏

j∈J∩[t+1]

Q†j,(µj ,wj);(x,zj)
.

Now consider the matrix T ′ with the same dimensions as T defined by:

T ′wJ∩[t+1];(x,zJ∩[t+1])
=

∏
j∈J∩[t+1]

Q†j,(µj ,wj);(x,zj)
.

Since µj is fixed for j ∈ J , T′ can be obtained from T by just flipping the signs of some columns. This
preserves the operator norm (this can be seen from Lemma 3.12 for example), so we have ∥T′∥∞ = ∥T∥∞.
It also follows analogously that ∥T′x∗∥∞ = ∥Tx∗∥∞, where we analogously define T′x∗ as the result of
restricting T′ to columns where x = x∗. At this point, we split into two cases:
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• If J ∩ [t + 1] is nonempty, we claim that T′ is a submatrix of Q :=
⊗

j∈J∩[t+1]Q
†
j . Indeed, we can

index the rows of Q by (a,b) and the columns by (c,d), and write

Q(a,b);(c,d) =
∏

j∈J∩[t+1]

Q†j,(aj ,bj);(cj ,dj).

Then T′ is the submatrix of Q obtained by restricting to rows (a,b) such that aj = µj for all
j ∈ J ∩ [t+ 1] and columns (c,d) such that cj1 = cj2 for any j1, j2 ∈ J ∩ [t+ 1].

Since the operator norm of a unitary matrix is 1 and there is at least one unitary matrix in this tensor
product, it follows from Lemmas 3.13 and 3.14 that ∥T′∥∞ ≤ 1⇒ ∥T∥∞ ≤ 1. Then, it also follows
that ∥Tx∗∥∞ ≤ 1 by Lemma 3.13.

• If J ∩ [t + 1] is empty then T ′ is really just a vector of 2n many 1’s. Hence T ′x∗ is just the scalar 1,
which trivially has operator norm ≤ 1.

Lemma 9.8. Assume µ does not have free variable symbols. For any x∗ ∈ [2n] and i ∈ [l], consider the
matrix Mi,x∗ obtained by restricting Mi to columns where x = x∗. Then ∥Mi,x∗∥∞ ≤ 1.

Proof. We have:

Mi,(yi,wIi∩[t+1]);(x
∗,zIi∩[t+1]) =

∏
j∈Ii∩[t+2,t+1+ℓ]

(−1)⟨yi,x∗⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x∗,zj)
.

We can now define another matrix M′i,x∗ with the same dimensions as Mi,x∗ defined by:

M′(i,x∗),(yi,wIi∩[t+1]);zIi∩[t+1]
=

∏
j∈Ii∩[t+1]

Q†j,(yi,wj);(x∗,zj)
.

Since we are fixing x∗, M′i,x∗ can be obtained from Mi,x∗ by just flipping the signs of some rows. It follows

that
∥∥∥M′i,x∗∥∥∥∞ = ∥Mi,x∗∥∞. Now to finish, we argue that M′i,x∗ is a submatrix of Q :=

⊗
j∈Ii∩[t+1]Q

†
j .

Note that Ii ∩ [t + 1] must be non-empty as otherwise xi would be a free variable symbol. Given this, this
claim would imply the conclusion by Lemmas 3.13 and 3.14.

To see this claim, note that we can index the rows of Q by (a,b) and the columns by (c,d), and write:

Q(a,b);(c,d) =
∏

j∈Ii∩[t+1]

Q†j,(aj ,bj);(cj ,dj).

Then M′i,x∗ is the submatrix of Q obtained by restricting to rows (a,b) where aj1 = aj2 for any j1, j2 ∈
Ii ∩ [t + 1] and columns (c,d) where cj = x∗ for all j ∈ Ii ∩ [t + 1]. This completes the proof of the
lemma.

Lemma 9.9. Assume µ does not have free variable symbols. Consider some i ∈ [l] such that the integer
|Ii ∩ [t+ 2, t+ 1 + ℓ]| is even. Then, it holds that ∥Mi∥∞ ≤ 1.
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Proof.

Mi,(yi,wIi∩[t+1]);(x,zIi∩[t+1]) =
∏

j∈Ii∩[t+2,t+1+ℓ]

(−1)⟨yi,x⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)

=
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)
,

since there are an even number of identical terms being multiplied together in the first product. In this case,
we just argue that Mi is a submatrix of Q :=

⊗
j∈Ii∩[t+1]Q

†
j . This is a non-empty tensor product since

otherwise xi would be a free variable symbol. Given this, this claim would imply the conclusion by Lemmas
3.13 and 3.14.

To see this claim, we once again index the rows of Q by (a,b) and the columns by (c,d), and write:

Q(a,b);(c,d) =
∏

j∈Ii∩[t+1]

Q†j,(aj ,bj);(cj ,dj).

Then, Mi is the submatrix of Q obtained by restricting to rows (a,b) such that aj1 = aj2 for any
j1, j2 ∈ Ii ∩ [t+ 1] and columns (c,d) such that cj1 = cj2 for any j1, j2 ∈ Ii ∩ [t+ 1]. This completes the
proof of the lemma.

Our final technical lemma handles the case where a variable symbol appears multiple times among
v1, . . . , vt+1:

Lemma 9.10. Consider some i ∈ [l] be such that |Ii ∩ [t+ 1]| ≥ 2 (we are assuming that such i exists; this
may not always be the case). Then

∥Mi∥∞ ≤ 1.

Proof. Firstly, if |Ii ∩ [t + 1]| is even, then by the parity constraints (the variable symbol xi should appear
an even number of times in µ), we must also have that |Ii ∩ [t + 2, t + 1 + ℓ]| is even. In this case, the
conclusion would follow from Lemma 9.9. Hence from now on we assume that |Ii ∩ [t + 1]| is odd. We
hence have:

Mi,(yi,wIi∩[t+1]);(x,zIi∩[t+1]) =
∏

j∈Ii∩[t+2,t+1+ℓ]

(−1)⟨yi,x⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)

= (−1)⟨yi,x⟩ ·
∏

j∈Ii∩[t+1]

Q†j,(yi,wj);(x,zj)
.

The conclusion now follows by applying Lemma 3.23 with the following inputs:

• We will take R = C = 2n, and d = |Ii ∩ [t + 1]| ≥ 2. (In fact, d ≥ 3 since |Ii ∩ [t + 1]| is odd, but
this will not matter for us.)

• The matrices will be
{
Q†j ∈ C2n+a×2n+a

}
j∈Ii∩[t+1]

. Accordingly, we will have

r1 = . . . = rR = c1 = . . . = cC = d′.

These matrices are unitary so they have operator norm exactly 1.
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• For each yi, x ∈ {0, 1}n, the scalar γyi,x will be (−1)⟨yi,x⟩, which clearly has magnitude 1.

Finally, we can put these lemmas together to prove the bounds that we want:

Lemma 9.11. Suppose µ is a subtype with respect to (Cd)⊗2t+1 ⊗ (Cd′)r′ with b free variable symbols.
Then we have ∥ΠµΞΠµ∥∞ ≤ 2−nt+nb.

Moreover, when t = 1, we must have b = 0 and hence ∥ΠµΞΠµ∥∞ ≤ 2−n.

Proof. We first address the final claim about the t = 1 case. Indeed, a subtype with respect to (Cd)⊗2t+1 ⊗
(Cd′)⊗t+1 = (Cd)⊗3 ⊗ (Cd′)⊗2 cannot have free variable symbols. Definition 9.5 states that a free variable
symbol of µ could only appear in entry 3 of µ. But a free variable symbol must appear an even number of
times (as specified by Definition 8.1), so in fact it cannot appear at all. Now let us turn to proving the desired
bound.

Now let µ′ be defined as in the statement of Lemma 9.6 i.e. it is µ but with free variable symbols
removed. Then we would like to show:

∥ΠµΞΠµ∥∞ ≤ 2−nt+nb

⇔ ∥A∥2∞ ≤ 2−nt+nb

⇔ ∥Bµ(Q1, . . . ,Qk+1)∥2∞ ≤ 2nb

⇔
∥∥Bµ′(Q1, . . . ,Qk+1)

∥∥
∞ ≤ 1. (Lemma 9.6)

Let µ′ have l variable symbols. As hinted at earlier, we will bound this by applying Lemma 3.22 to the
matrices M1, . . . ,Ml and T defined with respect to µ′. The first precondition follows from Lemmas 9.7 and
9.8. To check the second precondition, we need only show that min(∥M1∥∞ , . . . , ∥Ml∥∞ , ∥T∥∞) ≤ 1.
For this, we have some light casework:

1. If at least one of µ1, . . . ,µt+1 is fixed, then J ∩ [t+ 1] is nonempty, so it follows that ∥T∥∞ ≤ 1 by
Lemma 9.7.

2. Otherwise, all of µ1, . . . ,µt+1 must be variable symbols. However, every variable symbol must
appear at least twice and we only have 2t+ 1 entries in total, so the total number of variable symbols
must be ≤ t. Therefore by the pigeonhole principle, some two of µ1, . . . ,µt+1 are the same variable
symbol i.e. there exists i ∈ [l] such that |Ii ∩ [t + 1]| ≥ 2. In this case, Lemma 9.10 tells us that
∥Mi∥∞ ≤ 1.

9.3.1 Completing the t = 1 Case

In this section, we address the case of restricted strategies for 1 7→ 2 oracular cloning games. This will of
course be implied by our subsequent analysis in Section 9.4, but we present this case separately to emphasize
that the t = 1 case can be finished off very easily in comparison to the t > 1 case.

Theorem 9.12. Let F be a 4t+2 = 6-wise uniform family of functions from {0, 1}n → {0, 1}. Then for all
n, we have

sup
S∈Srest

ωS(GF,1) ≤ O(2−n).
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Proof. By Lemma 9.2, it suffices to show that for any subtype µ we have ∥ΠµΞΠµ∥∞ ≤ O(2−n). This
follows from Lemma 9.11, thus proving the theorem.

Remark 14. Since the above proof relies on Lemma 9.2 rather than Lemma 9.3, it does not rely on the
particular structure of the Choi state ρ shared by the players. In other words, it really shows an upper
bound on the value of a certain “oracular monogamy game”.

In the forthcoming sections, to handle the case where t > 1, we will need to take the specific structure
of the Choi state ρ into account. (See Section 9.5 for a counterexample showing that this is necessary.)

9.4 The t > 1 Case

9.4.1 Combinatorial Lemmas about Free Variable Symbols

In the case where t > 1, free variable symbols could exist, and as indicated by Lemma 9.11, they can blow
up the operator norms we care about. To mitigate this, we establish some simple lemmas about free variable
symbols:

Definition 9.13. For any l ∈ [t], define the projector Γl over (Cd)⊗r ⊗ (Cd′)⊗(t+1) as the projector onto

Wl := spanC{|(v1, . . . , vr, a1, . . . , at+1)⟩ : exactly l distinct values among vt+2, . . . , vr}.

Lemma 9.14. We have∑
b≤t/2

∑
µ with b free variable symbols

2nbΠµ ≤ exp(O(t log t)) ·
∑
l≤t

2n(t−l)Γl,

with respect to the PSD ordering.

Proof. Note that the LHS and RHS are both diagonal in the standard basis. Hence it suffices to show for
any x = (v1, . . . , vr, a1, . . . , at+1) that:∑

b≤t/2

∑
µ with b free variable symbols

2nb ⟨x|Πµ|x⟩ ≤ exp(O(t log t)) ·
∑
l≤t

2n(t−l) ⟨x|Γl|x⟩ .

Let l∗ be the number of distinct values among vt+2, . . . , vr, then the RHS is exp(O(t log t)) · 2n(t−l∗).
On the other hand, the LHS is equal to:∑

b≤t/2

∑
µ with b free variable symbols

x∈Sµ

2nb.

Now consider any subtype µ with b free variable symbols such that x ∈ Sµ. Each of its b free variable
symbols must appear at least twice among vt+2, . . . , vr due to the parity constraint, which implies that we
must have l∗ ≤ t − b ⇔ b ≤ t − l∗. Hence every term in the above sum is at most 2n(t−l

∗). Moreover, by
Lemma 8.6, there are at most exp(O(t log t)) subtypes µ with x ∈ Sµ, so there are at most exp(O(t log t))
terms in the above sum. It follows that the LHS is at most exp(O(t log t)) · 2n(t−l∗), which is exactly the
RHS, as desired.

We make one more observation:

Lemma 9.15. The number of tuples (x1, . . . , xt) ∈ [2n]t with l distinct values is at most exp(t log t) · 2nl.
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Proof. There are at most 2nl ways to choose the l distinct values. Then there are lt ≤ tt = exp(t log t) ways
to assign a value to each individual xi. The conclusion follows.

Next, we present the only specific property of the shared state ρ that we need. In the following, we
partition the Hilbert space (Cd)⊗r ⊗ (Cd′)⊗t+1 as the tensor product of Hilbert spaces on the following
systems:

• R1: this consists of the values (vt+2, . . . , vr). ThusHR1
∼= (Cd)⊗t.

• R2: all other values i.e. (v1, . . . , vt+1, a1, . . . , at+1). ThusHR2
∼= (Cd)⊗t+1 ⊗ (Cd′)⊗t+1.

Lemma 9.16. We have
TrR2 [ρ] = 2−nt · IR1 .

Informally, if we take ρ and trace out the system R2, we are left with a maximally mixed state.

Proof. We have by definition that:

ρ = (IR1 ⊗ ΦR2)
(
|EPR⟩⟨EPR|⊗ntR1,R2

)
= 2−nt ·

∑
x,y∈[2n]t

(IR1 ⊗ Φ)
(
|x⟩⟨y|R1

⊗ |x⟩⟨y|R2

)
= 2−nt ·

∑
x,y∈[2n]t

|x⟩⟨y|R1
⊗ Φ(|x⟩⟨y|)R2

⇒ TrR2 [ρ] = 2−nt ·
∑

x,y∈[2n]t
|x⟩⟨y|R1

· Tr [Φ(|x⟩⟨y|)R2 ]

= 2−nt ·
∑

x∈[2n]t
|x⟩⟨x|R1

,

which implies the conclusion. In the last step, we are using the fact that Φ is trace-preserving.

Finally, we put these two together to show the following:

Lemma 9.17. For any integer l ∈ [1, t], we have

Tr [Γlρ] ≤ exp(t log t) · 2−nt+nl.

Proof. We can clearly write
Γl = Γ′l,R1

⊗ IR2 ,

where Γ′l is the projector onto standard basis vectors |vt+2, . . . , vr⟩ with exactly l distinct values. We hence
have:

Tr [Γlρ] = Tr
[(
Γ′l,R1

⊗ IR2

)
ρ
]

= Tr
[
Γ′l,R1

(TrR2ρ)
]

= 2−nt · Tr
[
Γ′l,R1

]
(Lemma 9.16)

≤ exp(t log t) · 2−nt+nl,

where in the last step we are using the fact that Γ′l,R1
is a projector together with Lemma 9.15.
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9.4.2 Putting Everything Together

In this section, we complete our treatment of the case of t 7→ t + 1 cloning games for t > 1. Our bounds
here are once again independent of the number of ancilla qubits a used by each player.

Theorem 9.18. Let F be a (4t+2)-wise uniform family of functions from {0, 1}n → {0, 1}. Then for all n,
we have

sup
S∈Srest

ωS(GF,t) ≤ exp(exp(O(t log t))) · 2−n.

Proof. For any strategy S ∈ Srest, we have:

ωS(G) ≤ exp(exp(O(t log t))) · 2n(t−1) ·
∑
µ

Tr [Πµρ] · ∥ΠµΞΠµ∥∞ (Lemma 9.3)

≤ exp(exp(O(t log t))) · 2n(t−1) ·
∑
b≤t/2

∑
µ with b free variable symbols

2−nt+nb · Tr [Πµρ] (Lemma 9.11)

≤ exp(exp(O(t log t))) · 2−n ·
∑
l≤t

2n(t−l) · Tr [Γlρ] (Lemma 9.14)

≤ exp(exp(O(t log t))) · 2−n ·
∑
l≤t

2n(t−l) · 2−nt+nl (Lemma 9.17)

≤ exp(exp(O(t log t))) · 2−n,

as desired.

9.5 Limitations of Bounding the Operator Norm Directly

Recall that our high-level strategy was to bound:

2n(t−1) ·
∑

λ∈{0,1}d
Tr [ΠλΞΠλρ] ≤ Ot(2n(t−1)) ·

∑
µ

Tr [Πµρ] · ∥ΠµΞΠµ∥∞ .

One could instead attempt to emulate the [TFKW13] technique and ignore the state ρ entirely, which would
instead yield the following bound:

2n(t−1) ·
∑

λ∈{0,1}d
Tr [ΠλΞΠλρ] ≤ 2n(t−1) ·

∥∥∥∥∥∥
∑

λ∈{0,1}d
ΠλΞΠλ

∥∥∥∥∥∥
∞

.

In fact, as noted in Remark 14, the analysis in Section 9.3.1 implies that this technique would suffice in
the case where t = 1 and we are interested in 1 7→ 2 security. However, in this section we will show by
counterexample that this technique is insufficient for t > 1 (even if the players are only allowed one query
and do not have any ancilla qubits). At a high level, this is due to the possibility of free variable symbols
in subtypes (see Definition 9.5). We got around this in Section 9.4 by arguing that in subtypes µ such that
∥ΠµΞΠµ∥∞, the state ρ does not place much weight on the image of Πµ. In other words, we are crucially
relying on the fact that the shared state ρ must have a specific structure, as dictated by Lemma 9.16. The
aim of this section is to prove that this more careful approach is necessary.
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Lemma 9.19. For simplicity, suppose t > 1 is even and a = 0 (i.e. the players do not have ancilla qubits).
We also assume the players are still restricted to making only one query to Uf . Then we have∥∥∥∥∥∥

∑
λ∈{0,1}d

ΠλΞΠλ

∥∥∥∥∥∥
∞

≥ 2−nt/2.

Proof. Since the projectors {Πλ} are mutually orthogonal, we have∥∥∥∥∥∥
∑

λ∈{0,1}d
ΠλΞΠλ

∥∥∥∥∥∥
∞

= max
λ∈{0,1}d

∥ΠλΞΠλ∥∞ .

For each i ∈ [t+ 1], set Qi = I. For each x ∈ {0, 1}n, we hence have:

|Ξx⟩ = |x⟩⊗(t+1) ⊗ (H⊗n |x⟩)⊗t.

Now consider the following pure state (we could equivalently consider the density operator σ := |Ψ⟩⟨Ψ|
and calculate Tr [ΠλΞΠλσ]):

|Ψ⟩ = 1

2nt/4

∑
v1,...,vt/2∈{0,1}n

|0n⟩⊗(t+1) ⊗ |v1⟩⊗2 ⊗ |v2⟩⊗2 ⊗ . . .⊗ |vt/2⟩⊗2 .

Note that |Ψ⟩ is entirely supported in the image of Πλ where λ = (1, 0, 0, . . . , 0). (Intuitively, we choose
|Ψ⟩ to be uniform over a subtype µ of λ that has the maximum number t/2 of free variable symbols.) Then
we have:

⟨Ψ|ΠλΞΠλ|Ψ⟩ = ⟨Ψ|Ξ|Ψ⟩

=
∑

x∈{0,1}n
⟨Ψ|Ξx⟩ ⟨Ξx|Ψ⟩

=
∑

x∈{0,1}n
|⟨Ψ|Ξx⟩|2

=
∣∣⟨Ψ|Ξ0n⟩

∣∣2
=

1

2nt/2

∑
v1,v2,...,vt/2∈{0,1}n

∣∣∣⟨v1|H⊗n|x⟩2 · . . . · ⟨vt/2|H⊗n|x⟩2∣∣∣
=

1

2nt/2

∑
v1,v2,...,vt/2∈{0,1}n

2−nt/2

= 2−nt/2,

which implies the conclusion.
We remark that when t is odd we can similarly show a bound of 2n(−1−t)/2 by taking

|Ψ⟩ = 1

2n(t−1)/4

∑
v1,...,v(t−1)/2∈{0,1}n

|0n⟩⊗(t+2) ⊗ |v1⟩⊗2 ⊗ . . .⊗ |v(t−1)/2⟩⊗2 .
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A Monogamy of Entanglement Games and 1 7→ 2 Cloning Games

In this section, we show that 1 7→ 2 cloning games are in fact equivalent to a particular variant of a
monogamy of entanglement game from Section 6.1, where

• The tripartite state ρ ∈ D(HA ⊗ HB ⊗ HC) which is shared between Alice, Bob and Charlie is the
result of applying a cloning channel ΦA′→BC to one half of an EPR pair, i.e.,

ρABC = (IA ⊗ ΦA′→BC)(|EPR⟩⟨EPR|AA′).

In other words, ρABC is the normalized Choi state of some channel ΦA′→BC.

• Alice’s measurement
{
Aθ
x

}
θ∈Θ,x∈X on register A is a projective measurement of the form

Aθ
x = Ūθ |x⟩⟨x| Ū †θ ,

for some family of unitary operators {Uθ}θ∈Θ acting onHA.

• (If we are in the oracular setting) Bob and Charlie’s measurements can only depend on oracle queries
to Uθ and U †θ , rather than directly on θ.

We now prove a formal equivalence between the two notions.

Lemma A.1. Let G1 7→2 = (1,HA,Θ,X , {Uθ}θ∈Θ) be a 1 7→ 2 cloning game, for some family of unitary
operators {Uθ}θ∈Θ acting on the Hilbert space HA. Then, the winning probability of a particular strategy
S = (HB ⊗HC,ΦA→BC, {Pθ

1,x}θ∈Θ,x∈X , {Pθ
2,x}θ∈Θ,x∈X ) (possibly in the oracular setting) with

ωS(G17→2) = E
θ∼Θ

E
x∼X

Tr
[(

Pθ
1,x ⊗Pθ

2,x

)
ΦA→BC(Uθ |x⟩⟨x|A U

†
θ )
]
.
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is exactly equal to the winning probability

ωS̃(G) = E
θ∼Θ

∑
x∈X

Tr
[(

Pθ
1,x ⊗Pθ

2,x ⊗ (Ūθ |x⟩⟨x|A Ū
†
θ )
)
ρBCA

]
.

of a quantum strategy S̃ = (HB,HC, ρBCA, {Pθ
1,x}θ∈Θ,x∈X , {Pθ

2,x}θ∈Θ,x∈X ) (possibly in the oracular set-

ting) of a monogamy entanglement game G = (HA,Θ,X , {Ūθ |x⟩⟨x| Ū †θ}θ∈Θ,x∈X ), where

ρBCA = (ΦA′→BC ⊗ IA) |EPR⟩⟨EPR|A′A .

Here, |EPR⟩AA′ denotes 1√
|X |

∑
x∈X |x⟩A ⊗ |x⟩A′ . (We swap the A and BC registers in the formulation of

the relevant monogamy game for the purposes of syntactic compliance with Corollary 3.2 in our proof.)

Proof. Recall that Corollary 3.2 implies that, for any projector P ∈ L(HBC),

Tr
[
PBCΦA′→BC(Uθ |x⟩⟨x|A U

†
θ )
]
= Tr

[(
P⊗ Ūθ |x⟩⟨x| Ū †θ

)
J(Φ)

]
,

where J(Φ) ∈ L(HB ⊗HC ⊗HA) is the Choi-Jamiołkowski isomorphism of Φ. Therefore:

ωS(G17→2) = E
θ∼Θ

E
x∼X

Tr
[(

Pθ
1,x ⊗Pθ

2,x

)
ΦA→BC(Uθ |x⟩⟨x|A U

†
θ )
]

= E
θ∼Θ

E
x∼X

Tr
[(

Pθ
1,x ⊗Pθ

2,x ⊗ (Ūθ |x⟩⟨x|A Ū
†
θ )
)
J(Φ)

]
= E

θ∼Θ

∑
x∼X

Tr
[(

Pθ
1,x ⊗Pθ

2,x ⊗ (Ūθ |x⟩⟨x|A Ū
†
θ )
)
ρBCA

]
= ωS̃(G) ,

where we define ρBCA = (ΦA′→BC ⊗ IA) |EPR⟩⟨EPR|A′A. The final step holds because of the identity
J(Φ) = |X | · ρBCA (see the definitions preceding Lemma 3.1). This proves the claim.
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