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Abstract. The Multi-Scalar Multiplication (MSM) is the main barrier to accelerating
Zero-Knowledge applications. In recent years, hardware acceleration of this algorithm
on both FPGA and GPU has become a popular research topic and the subject of
a multi-million dollar prize competition (ZPrize). This work presents OPTIMSM:
Optimized Processing Through Iterative Multi-Scalar Multiplication. This novel
accelerator focuses on the acceleration of the MSM algorithm for any Elliptic Curve
(EC) by improving upon the Pippenger algorithm. A new iteration technique is
introduced to decouple the required buckets from the window size, resulting in fewer
EC computations for the same on-chip memory resources. Furthermore, we combine
known optimizations from the literature for the first time to achieve additional latency
improvements. Our enhanced MSM implementation significantly reduces computation
time, achieving a speedup of up to ×12.77 compared to recent FPGA implementations.
Specifically, for the BLS12-381 curve, we reduce the computation time for an MSM of
size 224 to 914 ms using a single compute unit on the U55C FPGA or to 231 ms using
four U55C devices. These results indicate a substantial improvement in efficiency,
paving the way for more scalable and efficient Zero-Knowledge proof systems.
Keywords: Multi-Scalar Multiplication · Elliptic Curve Cryptography · Hardware
Acceleration · Zero-Knowledge Proof

1 Introduction
In recent years, Zero-Knowledge Proofs (ZKP) have become a popular cryptographic
system in blockchain and other applications. A ZKP allows a prover to prove a statement
to a verifier without revealing anything about that statement except for its truth. For
example, proof systems exist to verify age without revealing the date of birth [KR17] or
the originality of a blurred image without revealing the original image [KHSS22]. However,
the latency of large ZKP systems is still multiple seconds, which halts many real-world
applications. A substantial fraction of a ZKP’s latency can be attributed to the Multi-Scalar
Multiplication (MSM).

With r and q respectively the subgroup order and the field modulus of the EC curve, the
MSM multiplies N scalars ki ∈ Zr with fixed Elliptic Curve (EC) points Pi : (x, y) ∈ Fq×Fq

and adds them together:

MSM =
N−1∑
i=0

kiPi.
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Pippenger [Pip76] has described an algorithm to compute an MSM that saves many EC
additions compared to other approaches for large N . Although Pippenger’s algorithm
is well established, parameters within it and optimizations on top of it are still an open
research topic.

To accelerate the MSM, we rely on hardware acceleration, where special hardware blocks
can speed up an algorithm or make it much more energy-efficient. This work uses the Alveo
U55C produced by AMD and implements the optimizations for the BLS12-381 Elliptic
Curve [BLS02]. However, the suggested concepts can be applied directly to any curve by
replacing the EC addition module in the design.

Our Contributions
This paper improves upon the Pippenger algorithm by reducing the number of EC additions
to compute an MSM. First, we reached a Pippenger window size of 19 bits to reduce the
total number of windows. This is the largest window size ever implemented in hardware.
We achieve this window size by splitting the MSM over multiple iterations to allow the reuse
of on-chip memory resources at the cost of memory bandwidth. Second, we combined the
efficiently computable endomorphism [GLV01] and the precomputation on the EC points
[BGMW92] for the first time to save memory bandwidth. Combined, these optimizations
reduce the required number of EC additions by at least 30% compared to recent FPGA
implementations [IS24, RDQY23, Xav22].

Moreover, we suggest a new scheduler to avoid pipeline stalls during the bucket accumulation
step that saves 10% of bucket accumulation cycles. In addition, we implemented the
segmentation technique [Xav22] for the bucket aggregation step in hardware, removing
98% of the required bucket aggregation cycles.

Organization of the paper
First, Section 2 explains the three steps of the Pippenger algorithm. Section 3 subsequently
introduces known optimizations over the Pippenger algorithm, such as the signed-digit
representation, the efficiently computable endomorphism, and bucket segmentation. Next,
Section 4 details how these optimizations are combined and introduces our novel itera-
tion technique that decouples the required on-chip memory resources from the window
size. Afterward, Section 5 holds a high-level overview of the data flow of the FPGA
implementation. Finally, Section 6 lists our area and latency results, comparing them to
state-of-the-art designs.

2 Pippenger Algorithm
Pippenger [Pip76] originally proposed an algorithm for efficiently computing a product of
powers. This algorithm can be adapted for the Multi-Scalar Multiplication case, significantly
improving naive algorithms [Sch, LL94]. In addition to the Pippenger algorithm, other
efficient algorithms also exist, such as the Bos-Coster method [dR94] and the Strauss
method [BS64]. However, according to Bernstein et al. [BDLO12], the Pippenger algorithm
has the best performance of all the methods for large MSM sizes.
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The main idea behind the Pippenger algorithm is to reduce the total number of EC
additions by accumulating points before multiplying them with the scalars. Naively, one
can calculate, e.g., 5P0 and 5P1 separately, to later compute 5P0 ⊞ 5P1 (⊞ denotes the
EC addition). In contrast, the Pippenger algorithm calculates P0 ⊞ P1 and multiplies the
result with five. Furthermore, the Pippenger algorithm interleaves the multiplications with
the different scalars and the summation of the results to reduce the total number of EC
additions. The algorithm consists of three steps: bucket accumulation, bucket aggregation,
and final window accumulation step.

2.1 Bucket Accumulation Step
The algorithm starts by representing the scalars ki in binary format, where each scalar
from Zr is represented by b := ⌈log2(r)⌉ bits, splitting them up into subscalars of c bits
long. This creates W := ⌈b/c⌉ subscalars ki,w per scalar ki. Afterward, the subscalars are
grouped according to their index w into so-called windows, as shown in Equation 1. Each
window will be handled independently in further steps of the algorithm.

N−1∑
i=0

kiPi =
N−1∑
i=0

W −1∑
w=0

2cwki,wPi =
W −1∑
w=0

2cw
N−1∑
i=0

ki,wPi (1)

A set of memory elements, so-called buckets, accompanies a window w. Each bucket is
associated with a specific value for the c-bit subscalar ki,w. However, the bucket with
index zero is discarded because a point times zero always results in the point at infinity, O,
the identity element for the EC addition. Correspondingly, 2c − 1 buckets Bw

s , 0 < s < 2c,
are associated with each window w.

Each point will be added to a bucket in each window separately. The value of the
corresponding subscalar ki,w determines which bucket the point is added to. A bucket
holds an EC point, initialized by the point at infinity O. Points are accumulated into the
buckets, i.e., adding to a bucket is equivalent to taking the value out of the bucket and
adding a new point to it. The resulting EC point is stored in the bucket. This algorithm
step performs

W ·N

EC additions, with N the number of points in the MSM. An algorithmic description of
this step can be found in Algorithm 1.

2.2 Bucket Aggregation Step
Essentially, the previous step accumulated the points that must be multiplied by the
same subscalar. Next, the bucket aggregation step interleaves two operations. First, the
multiplication with the bucket subscalar will be performed efficiently for each bucket. At
the same time, all multiplied buckets will be accumulated into a single sum Gw. This step
has to be performed for each window separately.

Given the collection of 2c − 1 buckets Bw
s , each storing a single EC point, the bucket

aggregation step calculates the following equation:

Gw =
2c−1∑
s=1

sBw
s .

This equation can be computed efficiently in

W · 2 · (2c − 1)
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EC additions for all windows combined, as shown in Algorithm 1. The number of EC
additions is typically much lower in the bucket aggregation step compared to the bucket
accumulation step, as N is usually much larger than 2c.

2.3 Final Window Accumulation
After adding the buckets together in each window, the final window accumulation can be
performed. In this step, the results of all windows are correctly added together to get the
final solution of the MSM. Algorithm 1 shows how this can be calculated efficiently. This
last step takes

(W − 1) · (c + 1)

EC additions, which are negligible compared to the previous two steps.

2.4 Total Complexity
The total number of Elliptic Curve additions of the complete Pippenger algorithm is given
in Equation 2.

W · (N + 2 · (2c − 1)) + (W − 1) · (c + 1) (2)

The window size c is an important trade-off parameter. In realistic implementations, the
window size is as large as possible to reduce the overall complexity. The drawback of
increasing c is the exponential growth of the number of buckets that must be stored on-chip
and the computational cost of the bucket aggregation step.

Algorithm 1 The Pippenger Algorithm
1: function BucketAccumulate(P , k)
2: B ← O ▷ B is the list of all Buckets
3: for i = 0 to N − 1 do
4: for w = 0 to W − 1 do
5: s← ⌊ki/2c·w⌋ mod 2c

6: Bw
s ← Bw

s ⊞ Pi ▷ Bw
s is bucket s of window w

7: return B

8: function BucketAggregate(B)
9: G← O ▷ G is the list of the aggregation results for each window

10: for w = 0 to W − 1 do
11: acc← O
12: for s = 2c − 1 to 1 do
13: acc← acc ⊞ Bw

s

14: Gw ← Gw ⊞ acc ▷ Gw is the aggregation result of window w

15: return G

16: function FinalWindowAccumulate(G)
17: MSM ← O
18: for w = W − 1 to 1 do
19: MSM ←MSM ⊞ Gw

20: for i = 1 to c do
21: MSM ←MSM ⊞ MSM
22: MSM ←MSM ⊞ G0

23: return MSM
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3 Optimizations over the Pippenger algorithm
After the introduction of the Pippenger algorithm, numerous optimizations have been found
in the literature that improve on top of the original algorithm. This section discusses the
most important optimizations, including their changes to the overall complexity formula
given in Equation 2.

3.1 Signed-Digit Representation
The signed-digit representation [Col26] is used in the MSM algorithm to reduce the number
of buckets per bucket set without changing the number of windows [Gut20]. It relies on
the property that it is inexpensive to negate EC points: to compute the negative of a point,
only the sign of the y-coordinate has to be inverted, adding almost no extra overhead. Due
to this minimal extra work, the signed-digit representation is commonly implemented on
FPGA [IS24, RDQY23].

The core idea is that when the subscalar for a window is larger than or equal to 2c−1, it
can be represented by 2c − ζ with ζ a c− 1-bit integer. The negative of the point will then
be added to the bucket with the number ζ and the term 2c is corrected for in the next
window by increasing that subscalar by one.

The signed-digit representation reduces the number of buckets in each window from 2c − 1
to 2c−1, resulting in lower memory usage. Furthermore, it reduces the complexity of the
bucket aggregation step, resulting in a total complexity of

W · (N + 2 · 2c−1) + (W − 1) · (c + 1). (3)

3.2 BGMW Method
As the EC points in the MSM are constant, precomputation on these points can help
reduce the number of EC additions in the bucket aggregation step. The BGMW method
was suggested for MSM in [BGMW92] but has not been implemented on FPGA before,
to the best of our knowledge. It suggests precomputing 2clPi for each point Pi, for l in a
set of carefully chosen values. This allows us to reduce the total number of bucket sets.
Instead of adding point Pi to bucket set Bw, according to the w-th section of the scalar,
the precomputed point 2clPi can now be added to bucket set Bw−l. No more points require
bucket set Bw, thus it is removed.

We drove this idea to its maximal potential by calculating multiples of the points for each
window. This requires more off-chip storage and increased memory bandwidth compared
to the original method. However, in this case, all parts of the scalar can be used to add
multiples of the original point to the first bucket set. Equation 4 shows the rewritten MSM
formula, with Pi,w the precomputed multiple of the point Pi for window w.

N−1∑
i=0

kiPi =
W −1∑
w=0

N−1∑
i=0

ki,w(2cwPi) =
W −1∑
w=0

N−1∑
i=0

ki,wPi,w (4)

As only one bucket set is kept, the bucket aggregation only has to be applied once.
Furthermore, no more final window accumulation has to be performed. This reduces the
total complexity of the original Pippenger algorithm to

W ·N + 2 · (2c − 1). (5)
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3.3 Efficiently Computable Endomorphism
Gallant, Lambert, and Vanstone [GLV01] describe accelerating an EC point multiplication
using efficiently computable endomorphisms. This optimization has been implemented
before on FPGA [HM09]. An endomorphism of an Elliptic Curve E, defined over Fq, is
a map ϕ that maps E to itself. An example is the point multiplication with any scalar
k ∈ Zr, for which the map ϕ : E → E is defined by P → kP .

They describe in example 4 of [GLV01] that there exist efficiently computable endomor-
phisms for Elliptic Curves of the form

E : y2 = x3 + b defined over Fq (6)

when q ≡ 1 (mod 3). This is the case for all BLS and BN curves [BLS02, PJNB10] and is
defined as follows:

Given E that satisfies Equation 6, define α ∈ Fq as an element of order 3 and λ as an
integer satisfying the equation λ2 + λ ≡ −1 (mod r), the endomorphism is defined as

P → λP : (x, y)→ (αx, y). (7)

It is thus possible to compute a specific multiple of a point with only one modular
multiplication.

This property can be used to accelerate the Pippenger algorithm. Given a point mul-
tiplication kiPi, where ki is b bits long, it is possible to rewrite the scalar ki to the
form ki = k1,i + k2,iλ where k1,i and k2,i are each approximately b/2 bits long. By
splitting the scalar, there are now two point multiplications of half the original size:
k1,iPi ⊞ k2,iλPi, where λPi can be efficiently computed due to the endomorphism property
given in Equation 7. Rewriting each scalar of the MSM algorithm results in Equation 8.

N−1∑
i=0

kiPi =
N−1∑
i=0

(k1,i + k2,iλ)Pi =
N−1∑
i=0

⌈b/2c⌉−1∑
w=0

2cw(k1,i,w + k2,i,wλ)Pi (8)

As a result, the bucket accumulation step has twice as many points but the number of
bucket sets is also reduced by half. This reduces the complexity of the bucket aggregation
step and the number of buckets that must be stored, similar to the improvement achieved
with the BGMW method. However, no precomputed points must be stored or used, as
the endomorphism is cheap to compute. The overall complexity of the original Pippenger
algorithm is reduced to Equation 9.⌈

b/2
c

⌉
· (2N + 2 · (2c − 1)) +

(⌈
b/2
c

⌉
− 1

)
· (c + 1) (9)

3.4 Bucket Segmentation
The last two optimizations that will be discussed do not reduce the theoretical complexity of
the Pippenger algorithm but rather try to minimize the pipeline stalls when implementing
the algorithm in hardware.

Xavier [Xav22] proposed a variant to the bucket aggregation step to reduce pipeline stalls
on the FPGA, called bucket segmentation. As shown in line 14 of Algorithm 1, the Gw

value can only be updated when the acc value is ready. Since the hardware implementation
of the EC adder is pipelined, this will take multiple clock cycles. During this time, there
are no other computations that can start, resulting in many stalls and overall longer
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latency. The bucket segmentation algorithm tries to minimize these stalls by breaking up
the aggregation step into M smaller segments, that each can run in parallel:

tot =
2c−1∑
s=1

sBs =
M−1∑
m=0

2c/M−1∑
i=0

(i + 2c m

M
)Bi+2cm/M

=
M−1∑
m=0

2c/M−1∑
i=0

iBi+2cm/M︸ ︷︷ ︸
Segmented Aggregation

⊞
M−1∑
m=0

2c m

M

2c/M−1∑
i=0

Bi+2cm/M︸ ︷︷ ︸
Overhead

.

The segmented aggregation steps require 2M fewer point additions than the classic
aggregation step. However, the overhead results in 3M additional point additions and
c− log2(M) point doublings. Although the segmented variant introduces a few more EC
additions, the number of saved pipeline stalls is much greater, reducing the overall latency.

3.5 Scheduling

Where bucket segmentation addresses known pipeline stalls during the bucket aggregation
step, the bucket accumulation experiences stalls that are not known beforehand. During
the bucket accumulation step, pipeline stalls occur when multiple points have to be added
to the same bucket in quick succession, which is known as a collision. A point that needs
to be added to a recently used bucket has to wait until the previous point is added. These
collisions cannot be predicted as the scalars determining which bucket a point should be
added to, are uniformly random distributed and only known at runtime. If the hardware
fails to detect a collision, a new fetch of the old value will be made, and the newest point
will be added to it and stored in the bucket. However, the pipeline was already computing
with the old value to add a different point, and that corresponding store into the bucket
will be overwritten.

Therefore, the hardware must check whether it is not fetching a bucket already used in the
pipeline while executing. The simplest way of dealing with this situation is to wait until
the first addition to the bucket is completed before the next one is started. This stalls the
hardware pipeline, and no useful operation is started. By using a Markov chain [Gag17],
it is possible to statistically calculate the fraction of time the pipeline will be stalled on
average. This shows that 11.1% of cycles will be lost for a pipeline depth of 128 cycles for
the EC adder and 216 independent buckets. As these stalls deteriorate the performance
significantly, alternatives are necessary.

Aasaraai et al. [ABC+22] describe a delayed scheduler to schedule the points and avoid
stalling the pipeline as much as possible. The scheduler provides an additional queue
where points that collide can be stored. At the end of the bucket accumulation step, when
all points are handled and put through the pipeline or collided and stored in the queue,
this separate queue is handled. However, new iterations through this queue should be
made when new collisions occur. Moreover, the amount of memory that must be provided
for this queue poses a problem. In the worst case, almost all points will end up in this
queue, which is not feasible to store. Therefore, the main process may have to halt in the
middle of execution when this queue has filled up, requiring careful and complex state
control. Although this scheduler reduces the fraction of pipeline stalls below 1%, the
implementation is complex. Therefore, an alternative, simpler scheduler will be proposed
in Subsection 4.2 that achieves comparable results.
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4 Reducing Computational Complexity
When implementing the Pippenger algorithm, the window size c is an important trade-off
parameter, influencing both the on-chip memory usage and the speed of the implementation.
In terms of memory, c determines the number of buckets, 2c − 1, that must be stored
on the FPGA. In terms of speed, c balances the cost in EC additions between bucket
accumulation (inversely proportional in c) and bucket aggregation (exponential in c):⌈

b

c

⌉
·N︸ ︷︷ ︸

bucket accumulation

+
⌈

b

c

⌉
· 2 · (2c − 1)︸ ︷︷ ︸

bucket aggregation

+
(⌈

b

c

⌉
− 1

)
· (c + 1)︸ ︷︷ ︸

final window accumulation

.

Figure 1 illustrates the required number of EC additions, including pipeline stalls, for
different variants of the Pippenger algorithm with N = 224 as a function of the window
size. The data points indicated with triangles denote the original Pippenger algorithm
without any optimizations, with complexity given by Equation 2. The exponential growth
in EC additions for higher window sizes is due to the bucket aggregation step taking
exponentially longer. However, this step is only dominant over the bucket accumulation
for large values of c. The number of EC additions decreases whenever c reaches a threshold
value that decreases the number of windows by one. Choosing the correct window size can
speed up the Pippenger algorithm by more than a factor of two.
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Figure 1: Number of cycles for different window sizes for the Pippenger algorithm of size
224. The red dot indicates the window size implemented in this work.

4.1 Combining The Optimizations
In this work, the precomputation on the points and the efficiently computable endomor-
phism are for the first time combined to accelerate an MSM. Using the precomputation
optimization, multiples of the points are calculated so that it is possible to reduce the total
number of bucket sets to one. Each multiple of the point still has to be added to a bucket
corresponding to the subscalar, but the bucket aggregation step only has to be applied
to one bucket set. Note that the endomorphism property reduces the number of bucket



Pottier and de Ruijter et al. 9

sets by half by splitting the scalar into two smaller scalars. If precomputation reduces the
number of bucket sets to one, the endomorphism property can no longer halve the number
of bucket sets, hence the original benefit is lost.

However, we found that the endomorphism property can still be exploited to reduce the
precomputation required for each point. Therefore, the necessary storage and bandwidth
of the memory interface are also reduced. Example 1 illustrates how both optimizations
can be combined.

Example 1. Assume the scalar corresponding to the point P is split into four windows of
size c. The points 2cP, 22cP, 23cP are precomputed to reduce everything to one bucket set
without exploiting the efficiently computable endomorphism. However, when first applying
the endomorphism property, the scalar is split into two smaller scalars. Afterward, both
can be split into two windows of size c. When precomputing the values to reduce the
number of bucket sets to one, only 2cP and 2cP ′ are necessary, with P ′ the efficiently
computable endomorphism of point P . This can be taken one step further. Note that
2cP ′ = 2cλP = λ2cP . Therefore, it is possible only to compute 2cP and calculate 2cP ′ on
the fly as it is the efficiently computable endomorphism of 2cP .

Implementing the endomorphism property can still be advantageous, as it reduces the total
amount of required precomputation by half at the cost of a single modular multiplication
to compute the endomorphism of a point on the fly. This further implies that the required
memory bandwidth is reduced by half.

After combining these two optimizations, the signed-digit representation can still reduce the
window size by one bit, by allowing negative subscalars. The minus sign of the subscalar
is absorbed by the point, as the negative of a point is easy to compute.

By combining all three optimizations, the number of EC additions, including pipeline
stalls, in function of the window size c is shown with squares in Figure 1. Note that the
optimizations reduce the number of EC additions in the bucket aggregation step, which is
only dominant for large values of c. Therefore, these optimizations allow larger values of
c to be reached before the aggregation step becomes dominant. Moreover, the required
on-chip storage was reduced by a factor equal to the number of windows, as only a single
bucket set is required. Again, this allows for larger windows, corresponding to higher
values of c, showing fewer required EC additions.

4.2 Minimizing Pipeline Stalls
In Subsection 3.5, we showed that the pipeline stalls on average 11.1% of the time during
the bucket accumulation step. Aasaraai et al. [ABC+22] suggested to provide an additional
queue to store colliding points. Note that this queue would fill up very quickly when many
collisions occur, necessitating large queues or special control logic to empty the queues
when they are full. Furthermore, a cycle is lost for every colliding point to move it into
the extra queue. This scheduler limits the average fraction of cycles lost to pipeline stalls
during the bucket accumulation step to less than 1%. The exact number of remaining
pipeline stalls will depend on the size of the additional queue.

We suggest approaching the scheduling task in a different, simpler way, providing multiple
First In First Out (FIFO) queues where points imported into the FPGA can be stored and
wait to be used. In every cycle, a single point will be fetched from one of the queues if it
is not blocked by collisions. Points that are not taken stay in the queues, waiting to be
chosen when possible. Notice that no stalls will be introduced as long as at least one point
is available. Using a Markov chain to analyze the average number of stalls when using two
queues, a pipeline depth of 128 cycles, and 216 independent buckets, we find that 0.7% of
cycles will be lost. Similar improvements will be seen when adding more than one extra
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queue. Hence, this solution can be scaled to trade pipeline stalls for design complexity
and area.

In addition to the alternative scheduler, the bucket segmentation technique was imple-
mented. This technique reduces the number of pipeline stalls during the bucket aggregation
step. As the implemented EC adder has a pipeline depth of 128 cycles and two operations
are available for each segment, M = 64 segments were used.

Taking the bucket segmentation optimization and the improved scheduler into account, the
data points indicated with circles in Figure 1 show the number of EC additions required,
including pipeline stalls, for an EC adder with a pipeline depth of 128 cycles.

4.3 Implemented Window Size
We chose to implement the Pippenger algorithm with a window size of c = 19 bits. This
is a large window size compared to previous works with window sizes of 12 [Xav22] or
13 [RDQY23] bits. This larger window size reduces the required EC additions and the
total latency, as highlighted in Figure 1. However, it requires a factor of 26 more on-chip
memory than a window size of 13 bits without the previously discussed optimizations.

By exploiting precomputations and the efficiently computable endomorphism, all points
are added to one bucket set according to the subscalar. Therefore, a larger window size
than previous works can be achieved as only one set of buckets must be stored instead of
one for each window.

We decided to implement 216 buckets on one U55C FPGA from AMD [Xila]. This is a
conservative number of buckets that maximizes the usage of available memory resources
while avoiding congestion. With 216 buckets, it is possible to implement windows of 16
bits, or 17 bits if the signed-digit representation is used. However, windows of 19 bits were
previously suggested. A new iteration technique is suggested to fill the gap between the
number of implemented buckets and the chosen window size.

4.4 Iterative Multi-Scalar Multiplication
To cover the difference between the 216 available buckets and the window size of 19 bits,
we propose a new technique that decouples the chosen window size from the number of
implemented buckets. This novel technique executes the MSM algorithm in I independent
iterations, reusing the buckets I times. During each iteration, only a subset of the point-
subscalar pairs are processed based on the subscalar value. In a straightforward way, this
subset is determined by the most significant bits of the subscalar.

Using this technique, it is possible to execute the Pippenger algorithm with a window
size c with 2c/I physical memory elements, instead of the traditional 2c. Additionally,
combining this approach with the signed-digit representation further reduces the number of
buckets to 2c−1/I. This allows us to implement a larger window size for the same number
of on-chip resources, reducing the required number of EC additions

Furthermore, splitting the MSM into iterations introduces a more efficient way to parallelize
the execution over multiple compute units. Naively, the MSM of size N could be parallelized
by dividing the problem into I smaller MSM computations of size N/I. However, I bucket
aggregation steps of 2c buckets must be performed using this naive technique. In contrast,
our proposed iteration technique only requires I bucket aggregation steps of 2c/I buckets.

However, the proposed iteration technique has the following limitation: When I iterations
reuse the buckets, only one out of every I point-subscalar pairs will be scheduled on average
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in every iteration. To ensure that the EC adders can be used without interruption, the
memory bandwidth has to be high enough to provide points and scalars at a sufficient rate.

In this work, we implement I = 4. As a consequence, we only require 219−1/4 = 216

physical buckets. The implemented distribution of the subscalars over the iterations is as
follows:

Iteration 0: subscalar ∈ [1, 216]
Iteration 1: subscalar ∈ (216, 217]
Iteration 2: subscalar ∈ (217, 217 + 216]
Iteration 3: subscalar ∈ (217 + 216, 218].

Using multiple iterations has a further effect on the bucket aggregation step. Depending
on the current iteration, a different offset has to be added to the aggregation result. For
example, in the second iteration, the points in bucket Bi+216 are multiplied with the
constant i, afterward an additional term of 216 times the sum of all buckets has to be
added to find the correct result. Equation 10 indicates which multiple has to be added to
the result of the aggregation step for each iteration. Note that this second term, the sum
of all buckets, is already calculated during the aggregation step. The overhead amounts
to I + c − log2(I) EC additions and is negligible compared to the benefits we gain by
implementing a larger window size.

tot =
218−1∑

i=0
iBi =

216−1∑
i=0

iBi Iteration 0

⊞
216−1∑

i=0
iBi+216 ⊞ 216

216−1∑
i=0

Bi+216 Iteration 1

⊞
216−1∑

i=0
iBi+2·216 ⊞ 2 · 216

216−1∑
i=0

Bi+2·216 Iteration 2

⊞
216−1∑

i=0
iBi+3·216 ⊞ 3 · 216

216−1∑
i=0

Bi+3·216 Iteration 3 (10)

4.5 Optimizing Iteration Distribution
To achieve the most optimal speedup when parallelizing the iterations over multiple
compute units, each iteration must handle the same number of point-subscalar pairs.
Unfortunately, this is not the case due to the endomorphism property that is used. To
calculate the 19-bit subscalars, the original 255-bit scalar is first split into a 130-bit and
128-bit scalar to use the efficiently computable endomorphism. Further, these scalars are
each split into seven 19-bit subscalars.

Note that 130 (128) is not a multiple of 19. This will cause the highest subscalar to always
start with three (five) consecutive zeros. Therefore, the most significant subscalar will
always be in the range [1, 216] and the corresponding point-subscalar pair will always be
scheduled in the first iteration. As a result, the first iteration will on average handle more
points and have a significantly higher computation time than the other iterations. To
create a balanced distribution, we suggest two solutions.
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4.5.1 First Solution: Window Shifting

The first solution can be best understood with a simple example. Given a 13-bit scalar
that will be split into windows of 4 bits. Unfortunately, 13 is not a multiple of 4, which
will cause the highest subscalar to consist of three zeros followed by the highest bit of the
scalar. This results in the skewed distribution of the subscalars over the iterations, as seen
in Figure 2.

The technique we propose is visualized in Figure 3. This technique overlaps parts of the
windows to make the most significant bit for the three highest windows zero while not
changing the original scalar. The signed-digit representation algorithm will remove this
zero, leaving the remaining bits of the subscalar to determine the distribution over the
iterations.

Remark that different points must be precomputed to shift everything down to one bucket
set compared to the original scenario. In the original scenario in Figure 2, points 24P, 28P ,
and 212P were required, while the new technique in Figure 3 requires points 24P, 27P and
210P .

This technique can be performed on the 130- and 128-bit scalars with 19-bit windows.
Unfortunately, in this case, the most significant bits of the scalar are skewed due to
the algorithm used to generate the 130- and 128-bit scalars. Therefore, the skew in the
distribution is not completely removed, even after applying the Window Shifting solution.

Figure 2: Naive technique Figure 3: Window Shifting technique

4.5.2 Second Solution: Distribution With Offset

The second solution we propose will eliminate the skewed distribution completely by using
additional precomputation. This technique exploits the fact that the three most significant
bits are always zero, hence we can hardcode them to different values. This forces the
most significant point-subscalar pairs to be scheduled in specific iterations and ensures an
equal distribution. By tampering with this subscalar, a fixed offset on the MSM will be
introduced. However, as both the adjustments and the points are known before starting
the MSM, it is possible to precompute the offset on the complete result. The offset is a
single EC point that must be subtracted from the result of the MSM to find the correct
result.

Equation 11 calculates the introduced offset after hardcoding the three most significant
bits of the most significant subscalar according to Table 1. The most significant bit
will be used in the signed-digit representation to determine whether the two-complement
of the subscalar has to be taken. The two other bits determine in which iteration the
point-subscalar pair is scheduled.

Offset = (λ + 3) · 2130 ·
N/2−1∑

i=0
P2·i+1 ⊞ 2 · 2130 ·

N/2−1∑
i=0

P2·i (11)
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Table 1: Distribution with offset technique by hardcoding the most significant bits of the
most significant subscalar

P2·i P2·i+1

Endo 000 001

Not Endo 010 011

4.5.3 Comparison

Table 2 shows the distribution of random scalars over the four iterations. It is clear that
without applying one of the discussed solutions, the first iteration creates a bottleneck if
the iterations were to be parallelized over multiple compute units. The Window Shifting
technique improves the distribution but fails to eliminate the skew completely. On the
contrary, Distribution With Offset achieves an ideal distribution and is desired when the
four iterations are parallelized over four compute units. The drawback of this technique is
the static offset that has to be precomputed and corrected for in software. We chose to
implement the latter technique as it results in the ideal distribution.

Table 2: Comparison of different point-subscalar pair distribution techniques. The table
indicates the fraction of point-subscalar pairs scheduled in an iteration. This fraction
is equivalent to the fraction of time of the total computation an iteration takes. When
parallelizing the iterations over multiple compute units, the bottleneck will be the one
with the highest fraction.

Naive Window Shifting Distribution With
Offset

Iteration 0 35.8 % 30.1 % 25 %

Iteration 1 21.4 % 26.7 % 25 %

Iteration 2 21.4 % 21.8 % 25 %

Iteration 3 21.4 % 21.4 % 25 %
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5 Hardware Architecture
In this section, the complete data flow of our MSM implementation will be explained based
on the high-level diagram in Figure 4.

Figure 4: Complete overview of the MSM module

Initially, each point, its six precomputed multiples, and the corresponding scalar start in
the DRAM memory, where the software stored them. Using a custom memory interface
based on the AXI protocol [Xilb], the points and scalars are read out as AXI streams of
4096 bits in bursts of 128 packets. The Packet Converter module then collects these AXI
streams. This module assigns the correct bits to the Point FIFO and Scalar Preparation
modules. The Point FIFO module consists of seven FIFO blocks, storing the point
and the six precomputed multiples until the Scalar Preparation module is ready. The
Scalar Preparation module converts the 255-bit scalars into fourteen subscalars, according
to Figure 5.

Figure 5: High-level overview of the Scalar Preparation module

Gallant et al. [GLV01] proposed using the extended Euclidean algorithm to calculate the
decomposition of k. However, Chao [Cha] suggests using parts of the Barrett modular
multiplication algorithm [Xav22] to find k1 and k2 more easily. Therefore, we thoroughly
optimized the Barrett modular reduction for the Endomorphism submodule. Eventually,
this submodule is implemented with only 1850 LUTs and 37 DSP blocks.

After creating the subscalars, they are recombined with their respective points from the
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Point FIFO module and sent to the Point Selection module. This module assigns the
seven point-subscalar pairs to their corresponding FIFO queues or discards them if they
are not handled in this iteration. Next, the Queue Selection module schedules which
queues should be read and passes at most one point-subscalar pair to each FIFO queue in
the next module. This scheduler prioritizes point-subscalar pairs from almost full queues.

Afterward, the Collision Detector module selects a point-subscalar pair from one of the
two FIFOs, depending on potential collisions in the pipeline. The selected pair is sent to
the Point Preparation module. This module prepares the point for the Elliptic Curve
adder by computing the endomorphism and negative, as displayed in Figure 6.

Figure 6: Overview Point Preparation Module

All previous modules schedule and prepare the point-subscalar pairs for the bucket ac-
cumulation step. In this step, the point from the Point Preparation module is used as
the first input of the EC adder. Meanwhile, the subscalar linked to the point will be
used as a memory address in the Buckets module to read the correct bucket. The bucket
value is used as the second input for the EC adder. This work implements a projective
Weierstrass EC adder consisting of 128 pipeline cycles. The result is stored at the same
memory address when the EC addition is performed.

In contrast, during the bucket aggregation step, the inputs of the EC adder are statically
scheduled. The bucket segmentation technique is implemented using a finite-state machine.

After the bucket aggregation step, a single point in projective coordinates is written back to
memory using the AXI stream interface. Afterward, the memory interface is informed that
the iteration is completed, and the next iteration can start with the bucket accumulation
step. The data flow for each iteration is almost identical. However, the Point Selection
module will discard different point-subscalar pairs, and the bucket aggregation step will
differ slightly according to Equation 10.

6 Results
6.1 Memory Requirements
This section compares the memory implications of the suggested approach with recent
works. It covers on-chip memory for the buckets, off-chip memory for the points, its
potential precomputed values and the corresponding scalar, as well as memory bandwidth
requirements for transferring the data onto the FPGA. Table 3 summarizes the theoretical
formulas for each work.
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[Xav22] uses neither the signed-digit representation nor the BGMW method to reduce the
on-chip memory requirements. Therefore, they implemented W sets of 2c buckets. They
implemented a projective Weierstrass EC adder [RCB15] where each EC point consists of
three coordinates, with M the bit-size of one coordinate. They only store two of these
coordinates off-chip, as one of the three is redundant. All off-chip stored values must
be transferred onto the FPGA, and every point-scalar combination will give rise to W
computations.

[IS24] uses the signed-digit representation to reduce the number of buckets by half. Fur-
thermore, they implemented an EC adder that uses the affine Weierstrass representation of
Elliptic Curves [GSD11]. Therefore, they only need to store two coordinates for each EC
point on-chip and off-chip. As they implemented three EC adders onto the U250 FPGA,
their bandwidth requirements are three times higher to fill the pipeline.

[RDQY23] also uses the signed-digit representation. For cheaper EC addition on the
BLS12-377 curve, they use the Extended Twisted Edward representation of Elliptic Curves
[HWCD08]. This requires four coordinates for each EC point to be stored on-chip, and
three coordinates off-chip.

[LFG23] uses the BGMW method to reduce the number of bucket sets to one. On top of that,
they use even more off-chip precomputation and the signed-digit representation to be able
to reduce the required storage elements to 2c−2.25. To be able to achieve this, they require
3W precomputed values for every EC point, as they compute sPi, s2cPi, . . . , s2(W −1)cPi

for s ∈ {1, 2, 3}. All these precomputed values must also be loaded onto the FPGA.

In this work, the BGMW method is used to reduce on-chip memory and combined with
the efficiently computable endomorphism to halve the necessary off-chip memory and
bandwidth. The signed-digit representation also saves a factor of two in on-chip memory.
Finally, the iterations reduce the on-chip memory by a factor 2log2(I), but increase the
bandwidth requirements by a factor I.

Table 3: Theoretical comparison of required on-chip memory, off-chip memory and memory
bandwidth between different works. M, b, c, and W denote respectively the size of one EC
point coordinate, the size of one scalar, the window size, and the number of windows.

On-chip
memory

Off-chip
memory

Memory
bandwidth

PipeMSM [Xav22] 3M ·W · (2c − 1) (2M+ b) ·N 2M+b
W · f

Yrrid Software
Ingonyama [IS24] 2M ·W · 2c−1 (2M+ b) ·N 3 · 2M+b

W · f

HardCaml [RDQY23] 4M ·W · 2c−1 (3M+ b) ·N 3M+b
W · f

Luo et al. [LFG23] 2M · 2c−2.25 (3W · 2M+ b) ·N 2M·3W +b
W · f

This Work 3M · 2c−1−log2(I) ( W
2 · 2M+ b) ·N I · 2M·W/2+b

W · f

6.2 FPGA Utilization
Table 4 reports the utilization of FPGA resources and compares them with recent works. It
also reports the memory requirements for an MSM of size N = 224. It’s worth noting that
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some works implemented the MSM for the BLS12-377 curve. This curve has slightly smaller
coordinates and, more importantly, can use the Extended Twisted Edward coordinate
representation [HWCD08]. In this representation, an EC addition only requires eight
modular multipliers (or seven if a mixed EC addition is implemented) compared to the
twelve modular multipliers in the projective Weierstrass coordinate representation.

Due to the limited number of DSP blocks on the FPGA and their heavy use in modular
multiplier units, we chose to use a memory-based modular reduction circuit [WC94] that
doesn’t rely on any DSP blocks but uses more LUTs instead. As a result, even though we
implemented more modular multipliers per compute unit, the DSP block usage per EC
adder is lower compared to [RDQY23] and [IS24].

As Luo et al. [LFG23] implemented their work on a CPU, they were not limited by on-chip
memory. To compare their work with others, we assume c = 19 and W = 14 for realistic
on-chip memory usage. It’s worth noting that even with this large window size, that
reduces the total number of windows, their off-chip memory requirements still exceed the
typical available quantities. For example, the maximum available off-chip memory on the
U55C FPGA is 16 GB. This shows that their additional precomputation optimization can
not be used in realistic FPGA implementations of large MSM sizes.

Table 4: Comparison of utilized resources between different works for an MSM size of
N = 224.

LUT REG DSP
On-chip
Memory

(MB)

Off-chip
Memory

(GB)

Memory
bandwidth

(bits/cycle)

[Xav22]† - - - 12.15 1.97 46

[IS24]∗ 849312 946253 9011 7.44 1.99 153

[RDQY23]† 388000 731000 2999 14.73 1.97 69

[LFG23]∗ - - - 10.01 63.00 2304

This Work∗ 721144 885103 2147 8.93 10.92 1597
∗EC Curve: BLS12-381; M = 381; b = 255
†EC Curve: BLS12-377; M = 377; b = 255

6.3 Latency Comparison
Table 5 displays the formulas for the number of EC additions for an MSM of size N
for this and recent works. Moreover, for each work it provides the implemented window
size and number of windows. The effective number of EC additions for an MSM of size
N = 224 is calculated using these data. This figure of merit highlights the advantages of
our implemented optimizations. Compared to [Xav22, IS24, RDQY23], we reduced the
number of operations by at least 30%. Compared to [LFG23], we find nearly identical
results. However, their design requires significantly more off-chip memory, as mentioned in
Subsection 6.2, which makes it impossible to implement on FPGA.
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Our hardware implementation of the MSM algorithm consists of four iterations. As no
data have to be transferred between iterations, it is possible to parallelize these four
iterations over multiple compute units on the same device or over multiple devices. The
novel distribution with offset technique was used to achieve the most optimal speedup
when parallelizing the iterations over multiple compute units or multiple devices. In this
work, we implemented and tested the latency improvements using four U55C FPGAs.
As can be seen in Table 6, this results in an additional 3.96× (down to 2.47×) speedup
compared to the latency results of a single U55C.

Table 6 and Figure 7 compare the latency results of this work with recent designs found
in the literature. This comparison includes results from the recent ZPrize competition
[ZPr], which focuses on accelerating Zero-Knowledge algorithms, including MSM. Our
four compute unit setup achieves a minimal 7.46× (up to 12.77×) speedup compared to
the ZPrize 2022 winners [RDQY23]. Also, compared to the ZPrize 2023 winners [IS24],
open-sourced in April 2024, we achieved a 2.73× (up to 8.63×) speedup.

Table 6 and Figure 7 also include multiple sizes of the MSM computation to indicate how
the different designs scale. Bear in mind that the size of the MSM only affects the size
of the bucket accumulation step, while the bucket aggregation step is independent of the
number of EC points and scalars. Our design focused on reducing the complexity of the
bucket aggregation step. Consequently, the time required for bucket aggregation is small.
This enables us to compute over a wide range of MSM sizes without this step becoming
dominant.

Table 5: Comparison between recent works of theoretical and applied number of EC
additions for an MSM size of N = 224. c, W denote respectively the window size and the
number of windows.

Theoretical number of EC additions c W #ECadd (×106)

[Xav22] WN +W ·2 ·(2c−1)+(W −1)(c+1) 12 22 369.28

[IS24] WN + W · 2 · 2c−1 + (W − 1)(c + 1) 13 21 352.49

[RDQY23] WN + W · 2 · 2c−1 + (W − 1)(c + 1) 13 20 335.71

[LFG23] WN + 2 · 2c−2.25 19 14 235.10

This Work WN + 2 · 2c−1 + I + c− log2(I) 19 14 235.41

7 Conclusion
The Multi-Scalar Multiplication algorithm is known to take a significant portion of
computation time in Zero-Knowledge Proofs due to its complexity. An optimized version of
the Pippenger algorithm was implemented on the U55C FPGA and reduced the computation
time of a Multi-Scalar Multiplication of size 224 down to 231 ms using four compute units.

Improvements on top of the Pippenger algorithm were explored and combined. The
efficiently computable endomorphism, precomputed multiples of the points, the signed-
digit representation, and the novel iteration technique allowed us to push for larger window
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Table 6: Comparison of utilized resources between different works for an MSM size of
N = 224.

This Work [LFG23] [IS24]∗ [RDQY23]† [Xav22]

FPGA/CPU U55C M1 Pro U250 VU9P U55C

Frequency 260 MHz 3.2 GHz 250 MHz 278 MHz 125 MHz

#CU 1 4 1 3 1 1

MSM
Size

218 18 ms 7.3 ms 1.49 s 63 ms - 69 ms

219 32 ms 11 ms 2.83 s 76 ms - 137 ms

220 60 ms 18 ms 5.51 s 95 ms - 273 ms

221 117 ms 33 ms 10.7 s 136 ms - -

222 231 ms 61 ms - 202 ms 779 ms -

223 459 ms 118 ms - 344 ms 1 092 ms -

224 914 ms 231 ms - 631 ms 1 724 ms -
∗ZPrize Winner 2022
†ZPrize Winner 2023
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Figure 7: Latency of MSM computation for different MSM sizes
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sizes without running out of on-chip memory. As a result, a window size of 19 bits was
reached, resulting in fourteen subscalars per scalar, while only implementing 216 buckets.

Moreover, pipeline stalls were limited to 0.7% by simultaneously presenting two potential
operations to the EC adder, aiming to find one without collisions during the bucket
accumulation step. Additionally, bucket segmentation was implemented to eliminate 98%
of the pipeline stalls during the bucket aggregation step.

Furthermore, the novel distribution with offset technique allowed us to optimally distribute
the iterations over multiple compute units, ensuring no single iteration became the bottle-
neck. This resulted in a computation time of 231 ms for an MSM of size 224 using four
compute units. This is a ×3.96 speedup compared to our single compute unit case, further
validating the effectiveness of the proposed technique.

Although the results of this work are applied to the BLS12-381 EC Curve, all discussed
optimizations can be applied to other EC curves as long as the corresponding EC adder is
implemented. Moreover, all BLS and BN curves can benefit from the efficiently computable
endomorphism to reduce the memory bandwidth requirements by half. EC curves that do
not have this property can still use the novel iteration technique and the other implemented
optimizations to achieve the same latency results but require double the memory bandwidth.
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