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Abstract

A recent work of Kalai et al. (STOC 2023) shows how to compile any multi-player nonlocal
game into a protocol with a single computationally-bounded prover. Subsequent works have
built on this to develop new cryptographic protocols, where a completely classical client can
verify the validity of quantum computation done by a quantum server. Their compiler relies on
the existence of quantum fully-homomorphic encryption.

In this work, we propose a new compiler for transforming nonlocal games into single-prover
protocols. Our compiler is based on the framework of measurement-based quantum computa-
tion. It can be instantiated assuming the existence of any trapdoor function that satisfies the
claw-freeness property. Leveraging results by Natarajan and Zhang (FOCS 2023) on compiled
nonlocal games, our work implies the existence of new protocols to classically verify quantum
computation from potentially weaker computational assumptions than previously known.
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1 Introduction

A nonlocal game consists of two (or more) non-communicating players interacting with a referee.
The game starts with the referee sampling a question for each player, to which they reply with
an answer. The referee then decides if the players win or lose based on some publicly computable
predicate on the question/answer tuples. Crucially, players are not allowed to communicate during
the execution of the protocol, and so they are unaware of the questions/answers of the other
players. However, the rules of the game are fixed ahead of time and the players are free to decide
on a strategy that maximizes their success probability. Typically, one considers the settings where
players are either fully classical, or they are allowed to perform local quantum computations on a
(possibly entangled) shared quantum state.

Nonlocal games were introduced in the study of the foundations of quantum mechanics, where
a celebrated theorem of Bell [Bel64] showed the existence of a nonlocal game G in which the
maximum success probability of classical players (known as the classical value ωc(G) of the game) is
strictly smaller than the maximum success probability of quantum players (known as the quantum
value ωq(G) of the game). This shows that there exists an experiment that detects a difference
between classical and quantum correlations. Ever since, nonlocal games have become an object of
study in other disciplines, such as mathematics [Slo17] and computer science [CHTW04, RUV13,
CGJV19, Gri19, JNV+21].

Although the presence of multiple non-communicating players seems necessary to prove any-
thing meaningful in the information-theoretic settings, a recent work by Kalai, Lombardi, Vaikun-
tanathan, and Yang [KLVY23] (henceforth, KLVY) has introduced a general method for converting
any k-player nonlocal game into a single-player game, if the prover is assumed to be computation-
ally bounded. In order to achieve this, they rely on cryptographic assumptions: The basic idea is
to ask a single player to simulate the computation of all players in the original nonlocal game and,
to ensure that no communication is happening, the question of each player is encrypted under a
different key. Clearly, in order for correctness to hold, the player must be able to compute on the
encrypted question, which is the reason why the KLVY compiler relies on the existence of quantum
fully-homomorphic encryption (QFHE) [Mah18a, Bra18].

Such compiled nonlocal games have then been shown to be a useful primitive for applications:
Natarajan and Zhang [NZ23] showed how to use the compiled version of the CHSH game [CHSH69]
as an alternative path for constructing classical verification of quantum computation, and a more re-
cent work showed a protocol with a succinct verifier [MNZ24], improving on prior work [BKL+22]
that relied on stronger cryptographic assumptions. Subsequent work focused on bounding the
quantum value of more general classes of nonlocal games [CMM+24, BVB+24, MPW24]. A re-
cent work [KMP+24] established a bound on the quantum value of all compiled nonlocal games.
Compiled nonlocal games promise a modular framework for constructing quantum cryptographic
protocols: One can concentrate on the information-theoretic multi-player setting, which is typically
easier and already has a large body of literature, and then simply compile the resulting protocol
into a single-player one. Cryptography should take care of the rest.

However, at present we know of only a single recipe to transform nonlocal games into compiled
ones, i.e., the aforementioned KLVY protocol, which relies on a rather strong cryptographic prim-
itive, namely the existence of quantum homomorphic encryption (QFHE). From a cryptographic
perspective, QFHE is a rather strong primitive, both in terms of functional guarantees and in terms
of the underlying computational assumptions. There is evidence that the functionality offered by
QFHE is not necessary for the applications of compiled nonlocal games and it is therefore natural
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to wonder whether this structure is necessary at all for compiled nonlocal games (a more detailed
discussion on this is in Section 1.3). Taking a step back, we find this situation unsatisfactory,
since it underpins a lack of understanding on this cryptographic process and furthermore it places
compiled nonlocal games on potentially thin cryptographic foundations.

The goal of our work is to improve our understanding of this cryptographic process and place
compiled nonlocal games on more solid cryptographic foundations. Motivated by this, we investigate
alternative compilation methods, based on potentially weaker cryptographic assumptions.

1.1 Our Results

In this work, we propose a new approach for compiling multi-player nonlocal games into single-
player compiled nonlocal games. Our compiler only assumes the existence of a family of trapdoor
claw-free functions (TCFs), which consists of a sequence of function pairs (f0, f1) that are easy to
compute, and can be inverted given the trapdoor, while without the trapdoor it is computationally
hard to find a claw, i.e., two inputs x0 and x1 such that f0(x0) = f1(x1). Our contributions can be
summarized with the following statement.

Theorem (Informal). Let G be a nonlocal game. If there exists a family of TCFs, then there exists
a (quantumly) sound single-player compiled game Gcomp.

We refer to a compiled game as being quantumly sound if we can bound the quantum value
of Gcomp based only on the properties of G. To achieve this, we show that our compilation strategy
achieves a similar “blindness” property as the KLVY compiler (see Lemma 5.4 for an exact defi-
nition). As a consequence of this, known approaches to analyze the KLVY compiler also apply to
our protocol.

For instance, as a corollary of [KMP+24], we obtain a bound on the quantum value of our
compiler for all nonlocal games. Furthermore, invoking the analysis from [NZ23], we obtain a
new protocol for classical verification of any BQP computation from any TCF. Crucially, we only
require the TCF to satisfy the claw-freeness property, whereas prior protocols not based on compiled
nonlocal games [Mah18b, GV19] required stronger assumptions, such as the adaptive hardcore bit
property (we defer a detailed comparison with existing protocols to Section 1.3). For instance,
we obtain the first classical verification for BQP from the extended linear hidden shift problem, a
conjectured hard problem in isogeny-based cryptography [AMR22]. We summarize the result of
combining our approach with the [NZ23] analysis in the following corollary.

Corollary (Informal). If there exists a family of TCFs, then there exists a protocol for BQP
verification with a classical verifier.

At a technical level, our approach is inspired by the work of Gheorghiu and Vidick [GV19],
and combines measurement-based quantum computation (MBQC) with a remote state prepara-
tion (RSP) protocol. To achieve our goal, we modify the blind quantum computation protocol
from [BFK09], allowing the client to operate on an arbitrary server’s state, and furthermore to
continue the computation “in the plain” after the protocol is concluded. We refer to such a variant
as a half-blind quantum computation. This protocol achieves information-theoretic security, but it
relies on the ability of the client to prepare single-qubit states. In order to make the protocol fully
classical, we design a new blind RSP protocol that allows the client to delegate the preparation of

2



such single-qubit state to the server. The main challenge here is proving the blindness of our pro-
tocol assuming only the claw-freeness of the TCF, which is a search problem. For further details,
we refer the reader to Section 1.2.

Overall, our approach provides a modular and fully self-contained method for compiling nonlocal
games, based on weak cryptographic primitives, yielding new protocols from weaker computational
assumptions than prior work.

1.2 Technical Outline

To set some context for our ideas, we first recall the basics of the KLVY compiler [KLVY23], for
simplicity focusing on the case of two-player nonlocal games. The protocol consists of an interaction
between a (computationally bounded) prover P and classical verifier V , and proceeds as follows:

• The verifier samples two questions (x, y) from the underlying (two-player) nonlocal game,
and then sends a QFHE encryption of Alice’s question Enc(x) to the prover.

• The prover responds to the verifier with an encrypted answer α = Enc(a) (in the honest case,
it would homomorphically evaluate Alice’s POVM).

• The verifier decrypts α to recover a, then sends y to the prover in the plain.

• The prover outputs a response b (in the honest case, this is Bob’s response).

• The verifier holds a transcript (x, y, a, b) and can determine whether the prover won or not,
by simply evaluating the predicate of the nonlocal game.

The intuition is that, since the first question given to the prover is encrypted, it cannot influence
the subsequent question-response phase, in any detectable manner. In other words, the encryption
forces the single prover to behave “non-locally”. Our main observation is that the full-power of
QFHE is not necessary to achieve this property, and it can be substituted by much weaker crypto-
graphic machinery, if one is willing to (i) increase the number of rounds of interaction, and (ii) let
the verifier’s (classical) computation grow with the size of the (quantum) computation performed
by the prover. Under these two relaxations, we describe our solution next.

Half-Blind Quantum Computation. Let us first consider an easier version of the problem,
where we allow the verifier to send qubits to the prover (we will soon see how to remove this assump-
tion). Then a natural idea would be to substitute the QFHE with the information-theoretically
secure universal blind quantum computing (UBQC) protocol of [BFK09]. Although a naive appli-
cation of this technique would not work in our setting, let us first recall the basics of the UBQC
protocol to gain some context.

The UBQC protocol allows a verifier to harness the power of a quantum prover by applying an
n × n unitary U to the state |+⟩⊗n, while ensuring that the prover obtains no information about
U . As a first step, the verifier prepares and sends multiple states in

|+θ⟩ := 1√
2

(|0⟩+ eiθ |1⟩)

for uniformly random θ ∈ {k · π/4 | k = 0, . . . , 7} to the prover, which are then entangled in a
specific manner using CZ operators, resulting in a highly entangled resource state. Then individual
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qubits are then measured successively (and adaptively) in a basis chosen by the verifier. At the end
of the protocol, the prover holds the state U |+⟩⊗n, up to some local Pauli operators. Glossing over
some details, the role of the verifier is to help the prover preparing the resource state, which he
does by sending to the prover states of the form |+θ⟩. The secret angles θ are kept private by the
verifier. For the remainder of the computation, the verifier assists the prover by sending blinded
versions of such angles, which is a fully classical information.

The UBQC protocol gives us almost what we want, except for two problems: (i) The initial
state of the computation should not be |+⟩⊗n but rather an arbitrary prover-chosen state |ψ⟩, and
furthermore (ii) the computation should only affect a subset of the registers of |ψ⟩ (corresponding
to Alice’s subsystem), whereas the complement should remain untouched, since Bob’s computation
must happen in the plain. In other words, we want to implement the computation corresponding
to (U ⊗ I) |ψ⟩AB, and the Pauli correction errors should appear only in the A registers.

To solve these problems, we consider a modified version of the UBQC protocol, that we refer
to as half-blind quantum computation (HBQC) achieving precisely this. In a nutshell, we extend
the regular resource state with a series of “dummy” states, that can be thought of implementing
the identity. The prover is instructed to entangle their state |ψ⟩ with this state and then proceed
to measure them in a fixed basis. Effectively, this allows the prover to teleport the state |ψ⟩ onto
the original resource state, enabling to continue the computation as in the regular UBQC protocol.
To solve the second problem, we simply observe that nothing stops the prover from keeping some
entangled state on a separate register and our analysis shows that the Pauli errors do not propagate
to this subsystem, thus enabling Bob to finish the computation.

Making the Verifier Classical. We now discuss how to make the verifier completely classical.
As we can see from the above protocol, the only quantum capability that we assume from the
verifier is the ability to prepare random |+θ⟩ state and send them to the prover. Thus, a natural
idea to make the verifier fully classical, is to resort to remote state preparation (RSP) protocols,
such as [GV19]. While it is certainly possible to use existing RSP protocols in our context, their
security (even the weaker blindness guarantee) rely on the adaptive hardcore bit property of TCFs,
a strong assumption that we wish to avoid. So the remaining challenge is to build an RSP protocol,
only assuming the claw-freeness property of a TCF.

Our first observation is that we can slightly relax the functionality of the RSP and further-
more that a rather weak blindness property will suffice. Specifically, we will instead delegate the
preparation of states of the form

Zb |+θ⟩ = Zb 1√
2

(|0⟩+ eiθ |1⟩)

for a random bit b ∈ {0, 1} and θ ∈ {k · π/4 | k = 0, . . . , 7}, both known by the verifier. For
blindness, we require that, given the transcript of the RSP protocol, the angle θ is computationally
indistinguishable from a uniformly sampled θ∗ ←$ {k · π/4 | k = 0, . . . , 7}. Importantly, the bit b
is never revealed to the distinguisher, and it is instead kept private by the verifier. Omitting some
details, we mention here that the extra phase flip Zb will be absorbed in the Pauli errors of the
HBQC protocol, which ensures that it is kept hidden from the prover.

Our proof is inspired by the proof technique from [BGKM+23], introduced in the context of
test of qubits, although our protocol is, to the best of our knowledge, new. We present an informal
description of the protocol next. As the first step, we ask the prover, starting from an arbitrary
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one-qubit state α |0⟩+ β |1⟩, to prepare a claw state of the form

α |0, x0⟩+ β |1, x1⟩ where f0(x0) = f1(x1) = y,

which can be efficiently computed. The verifier then sends two random bit strings r0 and r1, and
the prover applies the isometry

α |0, x0⟩+ β |1, x1⟩ 7→ α |0, x0,−(x0 · r0)⟩+ β |1, x1, x1 · r1⟩ = α |0, x0,−z0⟩+ β |1, x1, z1⟩ ,

where the third register has dimension n (chosen below) and xi · ri ∈ {0, 1} is computed modulo
two. The prover then applies the quantum Fourier transform QFTn on the third register to obtain

1√
n

∑
d′∈Zn

(ω−d′·z0
n α |0, x0⟩+ ωd′·z1

n β |1, x1⟩)
∣∣d′〉 .

The prover measures the last register to obtain an outcome d′ ∈ Zn. To ensure a proper distribution
of the angle, we actually want it to be the case that d′ = 1 (otherwise, it is not hard to see that the
angle may belong to a subgroup, and thus will not be uniformly distributed). Our idea to achieve
this is simply to use post-selection, i.e., aborting the execution if this event does not occur. For
small enough n, this will happen with constant probability. Thus, we can henceforth assume that
our state is of the form

α |0, x0⟩+ ωz0+z1
n β |1, x1⟩ .

up to a global phase. Afterwards, the prover measures the second register in the Hadamard basis,
yielding the outcome d, and is left with

α |0⟩+ β(−1)bωθ
n |1⟩ ,

where (b, θ) = (d · (x0 ⊕ x1), x0 · r0 + x1 · r1) can be efficiently calculated by the verifier using the
trapdoor information to recover x0 and x1.

We are almost done, except that now the sum of z0 + z1 is done modulo n, whereas in order
to appeal to the standard Goldreich-Levin theorem, we would like it to happen modulo 2.1 The
key idea is to the repeat the protocol three times (with independently sampled TCFs), with n = 2,
n = 4, and n = 8, starting with |+⟩ as the initial input state and using the output quantum state
as the new input state for the next round. This results in a state of the form:

1√
2

(|0⟩+ (−1)b1⊕b2⊕b3ωθ1
2 ω

θ2
4 ω

θ3
8 |1⟩) = 1√

2
(|0⟩+ (−1)b1⊕b2⊕b3ω4θ1+2θ2+θ3

8 |1⟩)

= 1√
2

(|0⟩+ (−1)bωθ
8 |1⟩).

The blindness of our protocol follows from rewriting θ as 4θ′1 + 2θ′2 + θ′3, where the θ′i ∈ {0, 1}
contains the term x0 · r0 ⊕ x1 · r1, padded with independently sampled variables. Starting from θ′1,
we sequentially appeal to the quantum Goldreich-Levin theorem [AC01, CLLZ21] to substitute θ′i
with a uniformly random bit, which must be indistinguishable, otherwise there would exist an
extractor outputting (x0, x1), i.e., breaking the claw-freeness of the TCF.

1Note that simply fixing n = 2 does not work either, since in that case we do not range over all the desired angles;
we only obtain 0 or π.
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Soundness. We briefly discuss why our compilation strategy is sound. We prove a general sound-
ness result for all nonlocal games (in the limit of the security parameter), by showing that our
protocol satisfies the necessary condition to appeal to the recent result of [KMP+24]. Loosely
speaking, all needs to be shown is that the internal state of the prover at the end of the interaction
with the verifier is computationally independent from Alice’s question. This follows immediately
by the blindness of the classical HBQC protocol. A similar argument connects our compiler with
the result of [NZ23], thus yielding a classical verification of quantum computation protocol from
any TCF. We omit most details here, and we refer the reader to the technical sections.

1.3 Related Work

The work that is technically the closest to ours is the aforementioned KLVY compiler [KLVY23],
which relies on the existence of QFHE. While this is technically incomparable with the existence
of TCFs, we can discuss concrete instances to compare the underlying computational assumptions.
To the best of our knowledge, there are two approaches to build QFHE (with a classical client):
One assuming the hardness of the learning with errors (LWE) problem [Mah18a, Bra18] and one
assuming the existence of indistinguishability obfuscation plus any dual-mode2 TCF [GV24]. This
means that, prior to our work, compiled nonlocal games were known to exist under either of these
two sets of assumptions.

On the other hand, TCFs can be constructed assuming either LWE [BKVV20], cryptographic
group actions [AMR22], the Quadratic Residuosity problem, or the Decisional Diffie-Hellman prob-
lem [KCVY22]. In particular, this means that we obtain compiled nonlocal games under any of the
above computational assumptions, which is a much broader set than what was previously known.

We also compare our classical verification protocol, that we obtain by combining our protocol
with [NZ23], with existing approaches not explicitly based on nonlocal games. To the best of our
knowledge, all existing protocols [Mah18b, GV19] are based on TCFs with the adaptive hardcore
bit property. The latter is a stronger (decisional) assumption compared to the plain claw-freeness,
that requires the indistinguishability between a random bit and some adversarially chosen predicate
computed on a claw. To exemplify this difference, it suffices to recall that proving the adaptive
hardcore bit property of TCFs based on cryptographic group actions [AMR22] requires a new
non-standard variant of the XOR-Lemma, whose proof is currently an open problem. On the other
hand, the claw-freeness of the same construction can be proven using the extended LHS assumption
(in fact, the search version of it).

We also mention, as an exception to the claim made above, a recent work of Brakerski et
al. [BGKM+23], that shows how to classically test qubits from any TCFs. Although it is conceivable
that their protocol can be extended to verify any quantum computation, as shown in [Vid20], the
known approach to prove soundness requires the TCF to at least satisfy the dual-mode property
(see [Vid20] for details).

To summarize, we are not aware, prior to our work, of any classical verification protocol for
BQP that only relies on the claw-freeness of the TCF, without assuming any extra property.

Finally, we mention a recent work by Arora et al. [ABCC24] that proposes a compiler for
contextuality games, a generalization of nonlocal games. Although we do not explore the extension
in the present work, we expect that our approach can be generalized to contextuality games as well,

2A TCF is dual mode if there exists a computationally indistinguishable family of function pairs where claws do
not exist, i.e., the two functions have disjoint domains.
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combining our protocol with the techniques from [ABCC24].

2 Preliminaries

We denote the security parameter by λ ∈ N. A function negl is called negligible if it vanishes faster
than the absolute value of any inverse polynomial. Unless explicitly pointed out, the inner product
of two bit strings a, b ∈ {0, 1}n of length n is defined as

a · b :=
n⊕

i=1
ai · bi ∈ {0, 1},

where ai and bi refer to the i-th bit of the strings, respectively. Given two bit strings r0 and r1,
we denote their concatenation by r0 ∥ r1. We denote by ωn = e2πi/n the n-th root of unity. For
a, b ∈ Z, the notation Ja, bK is used to indicate the set {a, a+ 1, a+ 2, . . . , b}. Moreover, we define
[n] := J1, nK = {1, . . . , n} for an integer n. We use the notation x ← µ to denote that x is drawn
from a probability distribution µ. We define the set

Θ := {k · π/4 | k = 0, . . . , 7},

since we will be working extensively with it.

2.1 Quantum Information

In quantum mechanics, physical systems are often identified with Hilbert spaces H, and the states
of the system are identified with positive semidefinite operators (PSD) ρ with unit trace, called
density operators. A state is called pure if the density operator has rank one, and otherwise it
is called mixed. Any unit vector |v⟩ ∈ H determines a pure state by the formula ρ = |v⟩⟨v|, and
conversely any pure state can be written in this way, hence the two concepts are often identified.

A measurement with a finite outcome set O is described by a collection of bounded operators
{Aa}a∈O acting on H such that ∑a∈O A

†
aAa = I. If the system is in state ρ, then the probability of

obtaining outcome a is given by p(a) = tr(A†aAaρ), after which the state of the system is described
by AaρA

†
a/p(a). The probabilities of measurement outcomes only depend on the operators Ma :=

A†aAa. A collection of operators {Ma}a∈O such as these which satisfy ∑a∈OMa = I is called a
POVM, which is short for positive operator-valued measure, with outcomes in O. Observables are
self-adjoint elements B = B† ∈ B(H), and their quantum expectation value with respect to the
state ρ is given by tr(ρB). This can be related to the preceding if one takes O to be the set
of eigenvalues of B (assuming it is finite) and Aa as the corresponding spectral projections. We
will often discuss apparatuses with multiple measurement settings, labeled by some index set I,
but the same set of outcomes O for each setting. This will be denoted by {{Mxa}a∈O : x ∈ I},
where {Mxa}a∈O is a POVM (or measurement) with outcomes in O for each x ∈ I. We often
abbreviate and write this as {Mxa}a∈O,x∈I when clear from context. A subnormalized state is a
PSD operator with trace less than or equal to 1 (in the case of pure states, it corresponds to a pure
state with norm less than or equal to 1). Operationally, this corresponds to post-selecting on some
measurement outcome, without renormalizing the state.

Throughout this work, we denote the usual Pauli operators by

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
.
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Moreover, we denote the controlled X, the controlled Z, the Hadamard and T gate by

CX,CZ, H = 1√
2

(
1 1
1 −1

)
and T =

(
1 0
0 eiπ/4

)
.

Quantum Computing. A quantum circuit is a unitary operator that operates on the Hilbert
space H = (C2)⊗k for some number k ∈ N of qubits and is given by the composition of unitary
gates, each acting on only one or two qubits (taken from some fixed universal gate set). The size
of a quantum circuit is the number of gates used in that circuit. The qubits are typically split
into input qubits and auxiliary qubits, which are assumed to be initialized in the |0⟩ state unless
stated otherwise. If a classical outcome is desired, a subset of the qubits is measured after the
unitary circuit has been applied. A quantum polynomial-time (QPT) algorithm consists of a family
of quantum circuits {Cn}n∈N and a deterministic polynomial-time Turing machine that on input
1n outputs a description of Cn.

A family of POVMs {{Πn,i}i∈In}n∈N is QPT-implementable if there exists a QPT algorithm
with quantum circuits {Cn}n∈N such that Cn realizes the POVM {Πn,i}i∈In , i.e., measuring some
output qubits and post-processing gives rise to the same probabilities as the POVM.

A probabilistic polynomial-time (PPT) algorithm is a probabilistic Turing machine with a poly-
nomial time bound, meaning that there exists a polynomial p such that for every input x ∈ {0, 1}∗
the machine halts after at most p(|x|) steps. Any PPT algorithm can be converted into a QPT
algorithm (with Cλ a quantum circuit with λ input qubits that when given as input |x⟩ and if a
suitable number of qubits is measured, implements the same behavior as the PPT algorithm on
any bitstring x of length |x| = λ).

We say that two variables X0 and X1 are computationally indistinguishable if for any QPT-
implementable algorithm, the probability that the algorithm returns 1 on inputX0 is negligibly close
to the probability that the algorithm returns 1 on input X1. We often abbreviate computational
indistinguishability by X0 ≈c X1.

Quantum Goldreich-Levin. We recall the quantum Goldreich-Levin theorem [AC01], specifi-
cally the version with auxiliary input that was proven in [CLLZ21].

Theorem 2.1 (Quantum Goldreich-Levin [CLLZ21]). If there exists a quantum algorithm that,
given a random r and an auxiliary quantum input ρx for random x, computes r ·x with probability at
least 1/2+ε; then there exists a quantum algorithm that takes ρx and extracts x with probability 4ε2.

2.2 Trapdoor Claw-Free Functions

We recall the definition of a trapdoor claw-free function (TCF). The definition that we use in this
work is taken mostly from [BGKM+23].

Definition 2.2 (Trapdoor Claw-Free Function). Let λ be the security parameter. A trapdoor claw-
free function (TCF) consists of a family of injective function pairs (f0,λ, f1,λ) and finite sets Xλ

and Yλ with
{fb,λ : Xλ → Yλ}(b,λ)∈{0,1}×N ,

where we omit the subscript λ when it is clear from the context. Additionally, a TCF pair is
augmented with two algorithms.
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• Gen(1λ): On input the security parameter in unary 1λ, the polynomial-time generation algo-
rithm outputs a function pair (f0, f1) and a trapdoor td.

• Invert(td, y): On input an image y ∈ Y and the trapdoor td, the polynomial-time deterministic
inversion algorithm returns two preimages (x0, x1).

We require a TCF to satisfy the following properties:

• (Correctness) For all λ ∈ N, all x ∈ X , and all b ∈ {0, 1}, it holds that:

f0(x0) = f1(x1) = y where (x0, x1)← Invert(td, fb(x)) and ((f0, f1), td)← Gen(1λ).

• (Efficient Superposition) There exists a QPT algorithm that, on input the description of the
functions (f0, f1), prepares the state

1√
|X |

∑
x∈X
|x⟩ .

• (Claw-Freeness) For all QPT algorithms A∗ there exists a negligible function negl such that
for all λ ∈ N it holds that:

Pr [(x∗0, x∗1)← A∗(f0, f1) : f0(x∗0) = f1(x∗1)] ≤ negl(λ).

where ((f0, f1), td)← Gen(1λ).

In addition to the above properties, it will also be convenient for us to assume that one can
efficiently check membership in Y given the trapdoor. This is without loss of generality since one
can always do so by running the inversion algorithm and checking if it is successful. We will also
assume that there exists an embedding of the set X into the bitstrings {0, 1}p(λ) for some fixed
polynomial p. Such an embedding always exists.

TCFs can be constructed from a variety of computational assumptions, such as the Quadratic
Residuosity or the Decisional Diffie-Hellman problem [KCVY22]. In [BCM+18], a variant called
noisy TCF was constructed based on the Learning with Errors (LWE) problem. This was extended
to the Ring-LWE assumption in [BKVV20]. It is easy to verify that all the results in this work also
apply to the case of noisy TCFs; however, for notational convenience, we describe our protocols
using regular TCFs. Finally, TCFs were recently constructed based on general cryptographic group
actions, such as isogenies on elliptic curves, in [AMR22].

2.3 Measurement-Based Quantum Computation

In the following, we recall the basics of the measurement-based quantum computation (MBQC)
model [RB01]. Loosely speaking, in MBQC, one prepares a highly entangled resource state (inde-
pendent of the computation to be carried out) and then successively (and adaptively) measuring
individual qubits in an appropriate basis so that the remaining qubits are in the desired quantum
state at the end. The MBQC protocol can be divided into the following procedures:

1. (State Preparation) In the first step, we are given qubits in the quantum state |+⟩, which we
entangle in a specific way using the CZ operator to build the resource state.
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2. (Computation) In the next step, we perform one-qubit measurements on almost all qubits
in a fixed order and in a specific basis, which depends on the previous measurement out-
comes. These measurements can be viewed as implementing a unitary operation such that
the remaining qubits are in the desired quantum state.

Thus, the resource state and the one-qubit measurements are all that are needed to perform arbi-
trary quantum computations.

Universal Blind Quantum Computation. The universal blind quantum computation (UBQC)
protocol [BFK09] considers the setting where a client delegates a quantum computation to a server
that possesses the required quantum computational resources. The only requirement for the client
is that he is able to prepare specific single-qubit states, which he will then send to the server. The
protocol relies on a universal resource state, referred to as the brickwork state, which we recall in
the following.

Definition 2.3 ([BFK09, Definition 1]). A brickwork state Gn×m, where m ≡ 5 mod 8, is an
entangled state of n×m qubits constructed as follows (see Fig. 1 for an example):

1. Prepare all qubits in state |+⟩ and assign to each qubit an index (i, j), i being a row (i ∈ [n])
and j being a column (j ∈ [m]).

2. For each row, apply the operator CZ on qubits (i, j) and (i, j + 1) where j ∈ [m− 1].

3. For each column j ≡ 3 mod 8 and each odd row i, apply the operator CZ on qubits (i, j) and
(i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2).

4. For each column j ≡ 7 mod 8 and each even row i, apply the operator CZ on qubits (i, j)
and (i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2).

Figure 1: The brickwork state G3×13. The circles represent qubits in the |+⟩ state, and the edges
represent the CZ operator applied to both connected qubits (note that the CZ operator is symmetric,
meaning it does not matter which qubit is the control and which is the target).

As a notational convention, n always represents the number of rows, and m always represents
the number of columns/layers. We define

|+θ⟩ := 1√
2

(
|0⟩+ eiθ |1⟩

)
and

|−θ⟩ := 1√
2

(
|0⟩ − eiθ |1⟩

)
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for an arbitrary θ ∈ R. We say that we measure a qubit in the θ-basis if we measure in the basis
{|+−θ⟩ , |−−θ⟩}. This is the same as saying that we are measuring the binary observable

|+−θ⟩⟨+−θ| − |−−θ⟩⟨−−θ| =
(

0 eiθ

e−iθ 0

)
.

Now, the following theorem states that we can essentially perform arbitrary quantum compu-
tations using a brickwork state and one-qubit measurements. Moreover, the proof explains how to
concretely implement this MBQC procedure.

Theorem 2.4 (Universality [BFK09, Theorem 1]). The brickwork state Gn×m is universal for
quantum computation. Furthermore, we only require single-qubit measurements under angles in Θ,
and measurements can be done layer-by-layer.

Let us briefly describe the internal workings of the proof to establish the necessary notation. The
proof of the theorem relies on the well-known fact that {CX, H, T} is a universal gate set, meaning
that all unitaries U ′ can be efficiently approximated by a unitary U , which can be expressed as a
finite sequence of gates from the aforementioned set.

The proof of Theorem 2.4 shows that for any arbitrary unitary U ′, there exists a measurement
pattern {ϕx,y}x∈[n],y∈[m−1] that implements a unitary U which approximates U ′. A measurement
pattern for Gn×m consists of a series of angles ϕx,y ∈ Θ, one for each position (x, y) ∈ [n]× [m− 1].
The measurement of the brickwork state begins with the leftmost column and proceeds from top
to bottom, i.e., starting by measuring the qubit at position (1, 1), then (2, 1), up to (n, 1), before
moving on to the next column, and so on. During the MBQC procedure, the actual measurement
angle ϕ′x,y at position (x, y) depends on ϕx,y and the outcomes of previous measurements.

The rule to update the angles is described in [DK06]. First, define f : [n]× [m− 1]→ [n]× [m]
by f(x, y) = (x, y + 1). In terms of the brickwork state, this function maps a qubit to the qubit
directly to its right. Next, define the X-dependencies of the qubit at position (x, y) by the set

Dx,y := f−1(x, y) =
{
∅ if y = 1
{(x, y − 1)} if y > 1

∀x ∈ [n], y ∈ [m]

and the Z-dependencies by

D′x,y := {(a, b) | b < y, (x, y) ∈ N(f(a, b))} ∀x ∈ [n], y ∈ [m],

where N(x, y) denotes the set of neighbours of (x, y) in the brickwork state — all vertices that are
connected to (x, y). We will measure the brickwork state in the order described earlier (from left to
right and top to bottom). Denote the measurement outcome at position (x, y) by sx,y. We define

sX
x,y :=

⊕
i∈Dx,y

si =
{

0 if y = 1
sx,y−1 if y > 1

∀x ∈ [n], y ∈ [m]

and
sZ

x,y :=
⊕

i∈D′
x,y

si ∀x ∈ [n], y ∈ [m].

Finally, we define the modified measurement angles by

ϕ′x,y = (−1)sX
x,y · ϕx,y + sZ

x,y · π.
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Thus, ϕ′x,y depends on the outcomes of at most two previous layers. Using these as the actual
measurement angles in the MBQC procedure leads to the quantum state(

XsX
1,mZsZ

1,m ⊗ . . .⊗XsX
n,mZsZ

n,m

)
U |+⟩⊗n

at the end.

3 Blind Remote State Preparation

3.1 Definition

In the following, we provide a definition of a remote state preparation (RSP) protocol for the special
case of states of the form

|+θ⟩ := 1√
2

(|0⟩+ eiθ |1⟩),

where θ ∈ Θ.

Definition 3.1 (Remote State Preparation). A remote state preparation (RSP) protocol consists
of a pair of interactive algorithms (V, P ), with the security parameter in unary 1λ as input: A
classical probabilistic polynomial-time algorithm V , called the verifier, and a quantum polynomial-
time algorithm P , called the prover. We require the protocol to satisfy the following properties:

• (Correctness) The protocol successfully terminates with a probability of at least 1/poly(λ),
which is inverse-polynomial in the security parameter. Furthermore, upon successful comple-
tion, the honest prover P holds the state

Zb |+θ⟩

for some bit b ∈ {0, 1} and angle θ ∈ Θ. On the other hand, the verifier holds the pair (b, θ).

• (Blindness) Consider the following experiment Exp(1λ, V, P ∗) played between an honest veri-
fier V and a possibly malicious prover P ∗.

– The players engage in the interactive RSP protocol. If the protocol does not terminate
successfully, the experiment aborts.

– Let (b, θ) be the output of V .
– The verifier flips a coin c ←$ {0, 1}. If c = 0, V sets θ′ := θ, otherwise V samples a

uniform θ′ ←$ Θ.
– V sends θ′ to P ∗, who returns a bit c′.
– The experiment outputs 1 if c′ = c and 0 otherwise.

We say that an RSP protocol is blind if for all QPT adversaries P ∗ there exists a negligible function
negl such that for all λ ∈ N it holds that:

Pr
[
Exp(1λ, V, P ∗) = 1 | no abort

]
≤ 1

2 + negl(λ).
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3.2 Our Protocol

We present here our main RSP protocol, assuming the existence of any TCF (Gen, Invert), as
described in Section 2.2. Remember that there always exists an embedding of the set X into the
bitstrings {0, 1}p(λ) for some fixed polynomial p. We start with describing a subroutine that the
prover P and the verifier V will run in our main protocol.

Subroutine. The input and output of the protocol are:

• (Input) The protocol is parameterized by the security parameter in unary 1λ, an integer n
and the prover P holds a state |ψ⟩ = α |0⟩+ β |1⟩.

• (Output) At the end of the interaction, the verifier holds a pair (b, θ) ∈ {0, 1} × {0, 1, 2} and
the prover holds the state α |0⟩+ β(−1)bωθ

n |1⟩.

The interaction between P and V proceeds as follows:

• (Verifier 1st Message) Sample ((f0, f1), td)← Gen(1λ) and send (f0, f1) to P .

• (Prover 1st Message) Prepare the state

|ψ⟩ ⊗ 1√
|X |

∑
x∈X
|x⟩ = 1√

|X |
∑
x∈X

α |0, x⟩+ β |1, x⟩ .

Then, apply the isometric mapping that evaluates fb coherently on input the second register,
with the function controlled on the first register, to obtain the state

1√
|X |

∑
x∈X

α |0, x, f0(x)⟩+ β |1, x, f1(x)⟩ .

Measure the last register to obtain some y ∈ Y, with the residual state being

α |0, x0⟩+ β |1, x1⟩

where f0(x0) = f1(x1) = y. Send y to V .

• (Verifier 2nd Message) Check if y ∈ Y and abort if not. Sample two strings r0, r1 ←$ {0, 1}p(λ)

uniformly at random. Send (r0, r1) to P .

• (Prover 2nd Message) Consider the isometric mapping

M : (b, xb) 7→ (b, xb, (−1)1−b(xb · rb))

where the inner product zb := xb · rb ∈ {0, 1} is computed over Z2 and then parsed as an
element of Zn. Apply M to the current state to compute

α |0, x0,−(x0 · r0)⟩+ β |1, x1, x1 · r1⟩ = α |0, x0,−z0⟩+ β |1, x1, z1⟩ .

Apply QFTn to the last register to obtain

1√
n

∑
d′∈Zn

(ω−d′·z0
n α |0, x0⟩+ ωd′·z1

n β |1, x1⟩)
∣∣d′〉 ,
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where −d′ · z0, d
′ · z1 ∈ Zn. Measure the last register in the computational basis and abort if

the output d′ ̸= 1. The state becomes
ω−z0

n α |0, x0⟩+ ωz1
n β |1, x1⟩ ≡ α |0, x0⟩+ ωz0+z1

n β |1, x1⟩ .

Conditioning on not aborting, measure the second register in the Hadamard basis to obtain
some d ∈ {0, 1}p(λ), and return the state

α |0⟩+ β(−1)d·(x0⊕x1)ωz0+z1
n |1⟩ .

Send d to V .

• (Verifier Output) Recompute (x0, x1) ← Invert(td, y) and set b := d · (x0 ⊕ x1) and θ :=
z0 + z1 = x0 · r0 + x1 · r1 ∈ {0, 1, 2}, where the sum is computed over Z.

Main Protocol. Our main protocol uses the above defined subroutine and proceeds in three
steps.

• Run the above protocol with n = 2 and set |+⟩ to be P ’s input state. Let (b1, θ1) be the
output of V , and let |ψ1⟩ be the output of P .

• Run the above protocol with n = 4 and set |ψ1⟩ to be P ’s input state. Let (b2, θ2) be the
output of V , and let |ψ2⟩ be the output of P .

• Run the above protocol with n = 8 and set |ψ2⟩ to be P ’s input state. Let (b3, θ3) be the
output of V , and let |ψ3⟩ be the output of P .

The prover P returns the final state |ψ3⟩, whereas the verifier V sets
b := b1 ⊕ b2 ⊕ b3 and θ := 4θ1 + 2θ2 + θ3 mod 8

and must multiply θ by π/4 to obtain the angle.
We are now in the position of analyzing the protocol and we start with correctness.

Theorem 3.2. The RSP protocol as described above is correct.
Proof. First, observe that the probability that all three subprotocols do not abort is 1/64, and
consequently so is the success probability of our RSP. Starting with the initial state |+⟩, we can
track the evolution of the state. The first iteration implements the mapping

1√
2

(|0⟩+ |1⟩) 7→ 1√
2

(|0⟩+ (−1)b1ωθ1
2 |1⟩),

whereas the second results into the state
1√
2

(|0⟩+ (−1)b1ωθ1
2 |1⟩) 7→

1√
2

(|0⟩+ (−1)b1⊕b2ωθ1
2 ω

θ2
4 |1⟩),

and finally, from the last iteration, we obtain
1√
2

(|0⟩+ (−1)b1⊕b2ωθ1
2 ω

θ2
4 |1⟩) 7→

1√
2

(|0⟩+ (−1)b1⊕b2⊕b3ωθ1
2 ω

θ2
4 ω

θ3
8 |1⟩)

= 1√
2

(|0⟩+ (−1)b1⊕b2⊕b3ω4θ1+2θ2+θ3
8 |1⟩)

= 1√
2

(|0⟩+ (−1)bωθ
8 |1⟩),

as desired.
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Finally, we prove that the protocol satisfies blindness.

Theorem 3.3. If (Gen, Invert) is a claw-free TCF, then the protocol as described above satisfies
blindness.

Proof. We use the following simple fact: For a1, a2, a3 ∈ {0, 1}, we have

a1 + a2 + a3 = 2 ·MSB(a1 + a2 + a3) + (a1 ⊕ a2 ⊕ a3),

where MSB returns the most significant bit of the number represented in binary using two bits,
which is well-defined since the sum is in {0, 1, 2, 3}. The proof follows directly by considering the
integer a1 + a2 + a3 in its binary representation using two bits.
Using this, the following equations are true over Z:

4 · θ1 + 2 · θ2 + θ3 = 4 · (z1,0 + z1,1) + 2 · (z2,0 + z2,1) + (z3,0 + z3,1)
= 4 · (z1,0 + z1,1) + 2 · (z2,0 + z2,1 + z̃3) + (z3,0 ⊕ z3,1)
= 4 · (z1,0 + z1,1 + z̃2) + 2 · (z2,0 ⊕ z2,1 ⊕ z̃3) + (z3,0 ⊕ z3,1),

where
z̃3 := MSB(z3,0 + z3,1) and z̃2 := MSB(z2,0 + z2,1 + z̃3).

Now, we have

θ = 4 · θ1 + 2 · θ2 + θ3 mod 8
= 4 · (z1,0 + z1,1 + z̃2) + 2 · (z2,0 ⊕ z2,1 ⊕ z̃3) + (z3,0 ⊕ z3,1) mod 8
= 4 · (z1,0 ⊕ z1,1 ⊕ z̃2) + 2 · (z2,0 ⊕ z2,1 ⊕ z̃3) + (z3,0 ⊕ z3,1) mod 8
= 4 · (z1,0 ⊕ z1,1 ⊕ z̃2) + 2 · (z2,0 ⊕ z2,1 ⊕ z̃3) + (z3,0 ⊕ z3,1)
= 4 · θ′1 + 2 · θ′2 + θ′3.

We now gradually change the way we compute θ in the blindness experiments through a hybrid
argument. First, we claim that the following distributions are computationally indistinguishable:

θ = 4θ′1 + 2θ′2 + θ′3 ≈c 4θ∗1 + 2θ′2 + θ′3

where θ∗1 ←$ {0, 1}. Recall that

θ′1 = z1,0 ⊕ z1,1 ⊕ z̃2 = x1,0 · r1,0 ⊕ x1,1 · r1,1 ⊕ z̃2.

Since z̃2 is independent from

x1,0 · r1,0 ⊕ x1,1 · r1,1 = (x1,0 ∥ x1,1) · (r1,0 ∥ r1,1),

it suffices to show that the latter is computationally indistinguishable from uniform. This follows by
the Theorem 2.1 (Quantum Goldreich-Levin), as otherwise there would exist an efficient extractor
for (x1,0 ∥ x1,1), contradicting the claw-freeness of the TCF. Repeating the same argument, we can
conclude that

θ ≈c 4θ∗1 + 2θ′2 + θ′3 ≈c 4θ∗1 + 2θ∗2 + θ′3 ≈c 4θ∗1 + 2θ∗2 + θ∗3,

where θ∗1, θ∗2, θ∗3 ←$ {0, 1}. This completes our proof.
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Boosting Correctness. Our protocol as described above succeeds with constant probability. As
standard in this context, we can increase the success probability to be exponentially close to 1
by repeating the protocol sequentially a number of times polynomial in the security parameter λ.
Security follows by a union bound. Therefore, we will henceforth assume that our RSP protocol
succeeds with probability 1− negl(λ).

Remark 3.4. Note that we can use the same strategy to remotely construct states in |+θ⟩ for
θ ←$

{
k · π/2m−1 | k ∈ Z2m

}
for any m ∈ O(1). Simply follow the same steps in the main protocol,

beginning with n = 2 and ending with n = 2m. The blindness proof is very similar; one simply
needs to extend the fact at the beginning of the blindness proof to an arbitrary number of bits ai

and use their binary representation to replace the sums with their XORs, so that the quantum
Goldreich-Levin theorem can be applied again.

4 Half-Blind Quantum Computation

In the standard UBQC protocol (Section 2.3), the client requests the server to apply an n × n
unitary U to the fixed quantum state |+⟩⊗n. In this section, we generalize this to the setting where
the unitary is applied to an arbitrary quantum state of the server (that is possibly entangled with
some internal register of the server). More formally, we want to blindly implement the computation
(U ⊗ I) |ψ⟩, where |ψ⟩ is an arbitrary state held by the server. Henceforth, we refer to this task as
half-blind quantum computation (HBQC).

4.1 Half-Blind Quantum Computation

Our first observation is that, instead of using the |+⟩⊗n state as the first layer in the brickwork
state, we can use any n-qubit quantum state |ψ⟩, which would then result in U |ψ⟩ (up to some
local Pauli operators). This fact is well-known in the MBQC literature and was used for instance in
[MDF17], in the context of cluster states. Furthermore, if |ψ⟩ consists of more than n qubits and the
first n qubits are used in the MBQC procedure, then the overall computation is simply (U ⊗ I) |ψ⟩
(up to some local Pauli operators), as the MBQC procedure implements gates independently of the
input state.

The remaining challenge is to show how the client hides his measurement angles. To address
this, we extend the regular brickwork state Gn×m, where we use our measurement pattern, to a
larger brickwork state Gn×(m+8) by introducing eight layers of dummy |+⟩⊗n states between the
input layer and the remaining m− 1 layers (see Figs. 2 and 3 for examples). The first eight layers
are then measured in the 0-basis to implement the identity, and the remaining qubits are measured
according to the original measurement pattern. Note that, after these eight layers, the server
measures qubits that were prepared by the client with the injected randomness. In this procedure,
loosely speaking, we teleport the |ψ⟩ state to the point where the randomness has already been
injected, which has the same effect as directly injecting the randomness into |ψ⟩. While we could
achieve this with just two additional layers instead of eight (as two layers already implement an
identity gate), using eight layers preserves the topology of the brickwork state, making the write-up
more convenient.

Our HBQC Protocol. We formally describe our protocol in the following, and we refer the
reader to Sections 2 and 2.3 for background and notational conventions. The input and output of
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Figure 2: The brickwork state G4×5. Figure 3: The brickwork state G4×13.

the protocol are:

• (Input) The client V has an n-qubit unitary map U , represented as a sequence of measurement
angles {ϕx,y ∈ Θ}x∈[n],y∈[m−1] of a measurement-based quantum computation over a brickwork
state Gn×m.
The server P inputs the first n qubits of a quantum state |ψ⟩.

• (Output) At the end of the interaction, the client holds the measurement outcome of mea-
suring the first n qubits of (U ⊗ I) |ψ⟩ in the standard basis and the server holds the post-
measurement state of the remaining qubits.

For the interaction, we define m′ := m+ 8 and the new measurement pattern

φx,y := 0 ∀x ∈ [n], y ∈ [8]
φx,y := ϕx,y−8 ∀x ∈ [n], y ∈ J9,m′ − 1K

for the larger brickwork state Gn×m′ . The interaction between V and P proceeds as follows:

• (State Preparation)

1. For the column y = 1, and each row x ∈ [n], P uses his input qubits (the first n qubits
from his quantum state |ψ⟩).

2. For each column y ∈ J2, 8K, and each row x ∈ [n], P creates qubits in the |+⟩ state.
3. For each column y ∈ J9,m′ − 1K, and each row x ∈ [n], V prepares the state

∣∣∣+θx,y

〉
,

where θx,y ←$ Θ, and sends the qubit to P .
4. For the column y = m′, and each row x ∈ [n], P creates qubits in the |+⟩ state, which

are used as the final output layer.
5. P entangles the qubits by applying CZ operators between the pairs of qubits specified

by the pattern of the brickwork state Gn×m′ .

• (Computation)

For column y = 1, . . . , 8:
For row x = 1, . . . , n:

1. V computes the updated measurement angle φ′x,y, to take previous measurement out-
comes received from P into account.

2. V transmits δx,y := φ′x,y to P .
3. P measures in the δx,y-basis and transmits the result bx,y ∈ {0, 1} to V .
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4. V sets sx,y := bx,y.

For column y = 9, . . . ,m′ − 1:
For row x = 1, . . . , n:

1. V computes the updated measurement angle φ′x,y, to take previous measurement out-
comes received from P into account.

2. V computes δx,y := φ′x,y − θx,y + rx,yπ, where rx,y ←$ {0, 1}, and transmits it to P .
3. P measures in the δx,y-basis and transmits the result bx,y ∈ {0, 1} to V .
4. V calculates sx,y := bx,y ⊕ rx,y.

• (Measurement)

1. P measures the remaining n qubits in the standard basis and sends the outcome a′ ∈
{0, 1}n to V .

2. V computes the actual outcome a :=
(
sX

1,m′ ∥ . . . ∥ sX
n,m′

)
⊕ a′.

Correctness. We prove that the protocol implements the desired functionality.

Theorem 4.1. The HBQC protocol as described above is correct, i.e., if both parties honestly follow
the protocol, the output will be correct.

Proof. The measurement pattern {ϕx,y}x∈[n],y∈[m−1] implements, by definition, the unitary U . The
0-basis measurements in the first eight layers implement an identity gate (see Figure 5 in [BFK09]),
meaning that {φx,y}x∈[n],y∈[m′−1] still implements U .

We now argue that the added randomness in the measurement angles δ and the quantum states
|+θ⟩ cancels out during the computation, so that we still perform the same quantum computation
according to the standard MBQC procedure. We define the Z-rotation by an angle θ ∈ R as

RZ(θ) :=
(

1 0
0 eiθ

)
.

Note that the CZ operator commutes with both RZ(θ) ⊗ I and I ⊗ RZ(θ), as all are diagonal
matrices (in the standard basis). Thus, the state preparation phase is equivalent to first preparing
the brickwork state and then applying the Z-rotations to the specific qubits, rather than doing it the
other way around. Moreover, a φ′-basis measurement on a state |γ⟩ is the same as a (φ′ − θ)-basis
measurement on a state RZ(θ) |γ⟩.

In the protocol, we measure in the δ-basis, where δ := φ′ − θ + rπ. If r = 0, P ’s measurement
has the same effect as V ’s target φ′-basis measurement; if r = 1, all V needs to do is flip the
outcome to get again the target φ′-basis measurement, since RZ(rπ) = Zr and Z |+θ⟩ = |−θ⟩.
This shows that the protocol yields the same outcome as directly using the MBQC procedure with
the measurement pattern {φx,y}x∈[n],y∈[m′−1], without any added randomness. Therefore, after the
computation phase, the server holds the quantum state (U ′ ⊗ I) |ψ⟩, where

U ′ :=
(
X

sX
1,m′Z

sZ
1,m′ ⊗ . . .⊗XsX

n,m′Z
sZ

n,m′

)
U.
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Obtaining the outcome a′ by measuring the first n qubits of (U ′ ⊗ I) |ψ⟩ is equivalent to obtaining
outcome a by measuring the first n qubits of (U ⊗ I) |ψ⟩, since the XsX

i,m′ operators only flip the
bits at the corresponding positions, depending on the values of sX

i,m′ , while the ZsZ
i,m′ operators

have no effect (just introducing a global phase). In other words:(〈
a′
∣∣⊗ I) (U ′ ⊗ I) |ψ⟩ = ± (⟨a| ⊗ I) (U ⊗ I) |ψ⟩ .

This also immediately shows that the post-measurement state of (U ′ ⊗ I) |ψ⟩ with measurement
outcome a′, is the same as that of (U ⊗ I) |ψ⟩ with measurement outcome a, up to a global phase.

Blindness. Let us first define the security of the protocol. Intuitively, the following should hold:
A malicious server should be unable to distinguish between the possible computations chosen by
the client, based on the information it receives during the protocol. However, note that the server
does learn the dimensions of the brickwork state (n,m), which provide an upper bound on the size
of the client’s computation. This information is modeled as a leakage to the server.

To formalize this intuition, recall that any quantum adversary can be modeled as a sequence of
unitaries, acting on the message registers along with an internal register containing the adversary’s
workspace and sufficiently-many ancillas. Thus, when defining blindness we can without loss of
generality consider only the state that the adversary holds at the end of the execution. More
precisely, for a given input W = {ϕx,y}x∈[n],y∈[m−1] (encoded as a sequence of measurement angles),
we define σW,a to be the (subnormalized) state held by the prover in the end of the protocol,
corresponding to the output of the verifier being a, and conditioned on the input of the protocol
being W . We define information-theoretical blindness in the following.

Definition 4.2 (Information-Theoretical Blindness). The HBQC protocol is information-theoretically
blind while leaking at most L(·), the dimensions of the used brickwork state, for all provers and for
all possible inputs W0 and W1 with L(W0) = L(W1), we have that∑

a

σW0,a =
∑

a

σW1,a.

Note that this definition is different from that presented in [BFK09]. Our definition is implied
by theirs, and we choose this alternative formulation as it will be more convenient to generalize to
the computational settings and ultimately will allow us to connect with applications. Let us now
prove the following helping lemma.

Lemma 4.3. For all θ ∈ R, we have |+θ⟩⟨+θ|+ |+θ+π⟩⟨+θ+π| = I.

Proof. Follows by direct calculation:

|+θ⟩⟨+θ|+ |+θ+π⟩⟨+θ+π| =
1
2

(
1 e−iθ

eiθ 1

)
+ 1

2

(
1 e−iθ−iπ

eiθ+iπ 1

)

= 1
2

(
1 e−iθ

eiθ 1

)
+ 1

2

(
1 −e−iθ

−eiθ 1

)
= I.
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Theorem 4.4. The HBQC protocol is information-theoretically blind while leaking at most the
dimensions of the brickwork state, i.e., the pair (n,m).

Proof. The proof follows the same argument as in [BFK09], up to minor syntactical adjustments.
Let W = {ϕx,y}x∈[n],y∈[m−1] be an arbitrary input with L(W ) = (n,m). Note that throughout the
execution of the protocol the server receives (n,m), along with the following information

{φ′x,y}x∈[n],y∈[8],
{∣∣∣+θx,y

〉
, φ′x,y − θx,y + rx,yπ

}
x∈[n],y∈J9,m′−1K

.

The first tuple can be ignored for the analysis, as this information is something the server can
compute on its own, since

φ′x,y = (−1)sX
x,y · φx,y + sZ

x,y · π = sZ
x,y · π ∀x ∈ [n], y ∈ [8]

and the server knows sx,y = bx,y for all x ∈ [n], y ∈ [8], hence also sZ
x,y. We are left with{∣∣∣+θx,y

〉
, φ′x,y − θx,y + rx,yπ

}
x∈[n],y∈J9,m′−1K

= {
∣∣+τx,y+rx,yπ

〉
, φ′x,y − τx,y}x∈[n],y∈J9,m′−1K

by defining τx,y := θx,y − rx,yπ. Now, consider τx,y to be sampled uniformly at random from Θ
instead of θx,y. The distribution remains unchanged.

We now argue that, from the server’s perspective, each qubit is independently in the maximally
mixed state, and that each angle is independently and uniformly distributed in Θ. To do this, we
begin by considering the information from the last layer, i.e.,

{
∣∣+τx,y+rx,yπ

〉
, φ′x,y − τx,y}x∈[n],y=m′−1.

Note that rx,m′−1 only appears in the quantum state |+τx,m′−1+rx,m′−1π⟩, and for example, not in

φ′i,m′−1 = (−1)sX
i,m′−1 · φi,m′−1 + sZ

i,m′−1 · π

for i ∈ [n], since only the measurement outcomes sj,k = bj,k ⊕ rj,k from the previous layers appear
in the formula. Thus, rx,m′−1 for x ∈ [n] is independent of everything else and hidden from the
server, meaning the server receives the maximally mixed state I/2 by Lemma 4.3. Therefore,
only φ′x,m′−1 − τx,m′−1 depends on τx,m′−1, which is then also uniformly random and independent
of everything else. Consequently, the qubits in layer y = m′ − 1 are maximally mixed, and the
corresponding angles are independently uniformly distributed.

We can now inductively move on to the previous layer, say layer yi, and apply the same reason-
ing, where the key observation is that rx,yi no longer depends on the angles defined in subsequent
layers. To summarize, we have shown that the view of the server consists of the classical messages:

{τ∗x,y : τ∗x,y ←$ Θ}x∈[n],y∈J9,m′−1K

and all qubits are in the maximally mixed state. We can conclude that the view of the server is
perfectly independent of W , which proves the desired implication.
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4.2 Classical Half-Blind Quantum Computation

Finally, we show how to make the verifier in the above protocol completely classical, at the cost
of introducing computational assumptions. We refer to this task as classical half-blind quantum
computation (CHBQC). The protocol is identical to the one presented in Section 4.1, except for
the following two modifications:

• We replace step 3 in the State Preparation phase with any blind RSP protocol satisfying the
properties in Section 3. For all (x, y), denote by (tx,y, θx,y) the output of the verifier.

• In step 2 of the Computation phase (for y ≥ 9), we instead define

δx,y := φ′x,y − (θx,y + tx,yπ) + rx,yπ.

We remark that, given that we introduced the security parameter in the protocol, all inputs will
also implicitly depend on λ as well, although we omit this dependency when clear from the context.
Next, we show that the protocol is still correct.

Theorem 4.5. The CHBQC protocol as described above is correct, i.e., if both parties honestly
follow the protocol, the output will be correct.

Proof. This follows directly from the correctness of both the HBQC protocol and the blind RSP
protocol. Note that the RSP protocol prepares states in

Ztx,y

∣∣∣+θx,y

〉
=
∣∣∣+θx,y+tx,yπ

〉
.

Now, let θ∗x,y := θx,y + tx,yπ be the regular angle used in the HBQC protocol, which only ap-
pears in the quantum state and the measurement angle δx,y. The δx,y is in the CHBQC protocol
also appropriately modified and so correctness follows directly from the correctness of the HBQC
protocol.

Before proving blindness against QPT attackers, we present a formal definition of computational
blindness. Analogously as for the information-theoretic version of the definition, for a given family
of inputs W = {Wλ}λ∈N, we denote by σλ

W,a be the (subnormalized) state of the prover in the end
of the protocol run with security parameter λ, corresponding to the output of the verifier being aλ,
and conditioned on the input of the protocol being Wλ.

Definition 4.6 (Computational Blindness). The CHBQC protocol is computationally blind while
leaking at most L(·), if for all families of inputs W0 = {Wλ,0}λ∈N and W1 = {Wλ,1}λ∈N such that
L(Wλ,0) = L(Wλ,1) and any family of QPT-implementable POVMs {Mλ, I −Mλ}λ∈N, there exists
a negligible function negl such that for all λ ∈ N it holds that:∣∣∣∣∣∑

aλ

tr(σλ
W0,aMλ)−

∑
aλ

tr(σλ
W1,aMλ)

∣∣∣∣∣ ≤ negl(λ).

Theorem 4.7. The CHBQC protocol is computationally blind while leaking at most the dimensions
of the brickwork state, i.e., the pair (n,m).
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Proof. The proof follows the same structure as that of Theorem 4.4. Let W = {ϕx,y}x∈[n],y∈[m−1]
be an arbitrary input with L(W ) = (n,m). The view of the distinguisher consists of the transcript
of the RSP protocol, along with the classical variables

{δx,y := φ′x,y}x∈[n],y∈[8] and
{
δx,y := φ′x,y − (θx,y + tx,yπ) + rx,yπ

}
x∈[n],y∈J9,m′−1K

where the first tuple does not depend on W and it only depends on public information that the
server has, and therefore it can be ignored. We proceed via a hybrid argument where, starting from
the last layer, we substitute each δx,y with a uniformly sampled δ∗x,y ←$ Θ. To see why each hybrid
is computationally indistinguishable from the previous one, it suffices to observe that

δx,y ≡ φ′x,y − (θx,y + tx,yπ) + rx,yπ

≡ φ′x,y − θx,y + r∗x,yπ

≈c φ
′
x,y − θ∗x,y + r∗x,yπ

≡ δ∗x,y

where r∗x,y ←$ {0, 1} and θ∗x,y ←$ Θ. The second equivalence follows since rx,y is sampled uniformly
and independently of tx,y and thus rx,y ⊕ tx,y ∈ {0, 1} is uniformly distributed as well. The
computational indistinguishability follows by the blindness of the RSP.

Finally, in the last hybrid we can see that the view of the adversary consists of some transcripts of
the RSP protocol and a set of randomly sampled {δ∗x,y}x,y, and in particular is perfectly independent
of W . Thus, no computationally bounded distinguisher can tell apart two executions for W0 and
W1 such that L(W0) = L(W1), concluding our proof.

5 A New Compiler for Nonlocal Games

5.1 Nonlocal Games

In the following, we briefly review the definition of nonlocal games and quantum strategies for these
games.
Definition 5.1 (Nonlocal Game). A (two-player) nonlocal game is a tuple

G = (IA, IB,OA,OB, µ, V ),

which describes a game involving two non-communicating players, Alice and Bob, who interact with
a referee. The sets IA, IB,OA, and OB are finite. The elements of IA (resp. IB) are referred to as
the questions for Alice (resp. questions for Bob), while the elements of OA (resp. OB) are called
the answers of Alice (resp. answers of Bob). Moreover,

µ : IA × IB → [0, 1]

is a probability distribution, and

V : OA ×OB × IA × IB → {0, 1}

is the verification function. In the game, the referee samples a question pair (x, y)← µ, sending x
to Alice and y to Bob. Alice and Bob then return answers a ∈ OA and b ∈ OB, respectively. The
referee evaluates V (a, b, x, y) to determine the outcome: The players win if the result is 1 and lose
if the result is 0.
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We may also use the notation V (a, b|x, y) instead of V (a, b, x, y) to emphasize that this represents
the value of answers a, b given questions x, y. All information about the game G is available to the
players before the game starts. This allows them to agree on a strategy in advance. However, once
the game begins, the players are not allowed to communicate. We will now define what a quantum
strategy is.

Definition 5.2. A quantum strategy for a nonlocal game G consists of the following:

• A bipartite state |ψ⟩ ∈ HA ⊗HB.

• For every x ∈ IA, a POVM {Axa}a∈OA
acting on HA with outcomes a ∈ OA.

• For every y ∈ IB, a POVM {Byb}b∈OB
acting on HB with outcomes b ∈ OB.

In such a quantum strategy, the probability of Alice and Bob answering a and b, when receiving x
and y is given by p(a, b|x, y) = ⟨ψ|Axa ⊗Byb |ψ⟩.

5.2 Our Compiler

We present our compiler for nonlocal games. For convenience, we only consider the special case of
two-player games, but our compiler can be adapted in a straightforward manner to k-player games,
akin to [KLVY23]. We describe our compiler as a general transformation that turns a two-player
nonlocal game G into a different (compiled) game Gcomp, which consists of only one verifier and a
single prover.

More concretely, let G = {Gλ}λ∈N = {Iλ,A, Iλ,B,Oλ,A,Oλ,B, µλ, Vλ}λ∈N be a family of two-
player nonlocal games, and let U = {Uλ}λ∈N = {Uλ,x}λ∈N,x∈Iλ,A

, where Uλ,x are the unitaries
corresponding to an optimal strategy of Alice for Gλ. We assume without loss of generality that,
for any given λ, the measurement patterns for all Uλ,x are of the same size, which can be achieved
by padding with identities to the size of the largest one.

On input of the security parameter (1λ) the prover and the verifier engage in the following
interactive protocol:

• The verifier samples a question pair (x, y)← µλ.

• The verifier and the prover engage in the CHBQC protocol (Section 4.2) with the verifier’s
input being Uλ,x and the prover’s state |ψ⟩ being arbitrary. Let a′ be the output of the prover
and let a be the output of the verifier derived from a′.

• The verifier sends y to the prover in plain.

• The prover replies with some b.

• The verifier accepts if a ∈ Oλ,A and b ∈ Oλ,B, and if Vλ(a, b|x, y) = 1.

The completeness of the protocol is immediate, i.e., if Gλ admits a strategy that succeeds with
probability ωλ, then simply running such a strategy sequentially wins (Gλ)comp with probability
negligibly close to ωλ.
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Definition 5.3. A QPT strategy for a family of compiled games G = {Gλ}λ is a QPT algorithm
{Wλ}λ. The quantum prover behaves as follows: When receiving the question y ∈ Iλ,B, the prover
applies Wλ to |y⟩ along with the post-measurement state of the CHBQC protocol. The prover
measures a suitable number of qubits and respond with the measurement outcome b.

The prover’s behavior can be described by POVMs {Bλ
yb}b∈Oλ,B

where

Bλ
yb = (⟨b| ⊗ I)W †λ(|y⟩ ⟨y| ⊗ I)Wλ(|b⟩ ⊗ I).

The reason why we define QPT strategies in terms of algorithms instead of POVMs is that the
QPT assumptions are easier to state in the former way.

Soundness Analysis. Let σλ
x,a be the (subnormalized) state of the prover after the execution of

the CHBQC protocol on security parameter λ, corresponding to the output of the verifier being
a ∈ Oλ,A, and conditioned on the input of the protocol being x ∈ Iλ,A. By the computational
blindness of the CHBQC protocol, we can immediately deduce the following.

Lemma 5.4. For all x, x′ ∈ Iλ,A and any family of QPT-implementable POVMs {Mλ, I−Mλ}λ∈N,
there exists a negligible function negl such that for all λ ∈ N it holds that:∣∣∣∣∣∣

∑
a∈Oλ,A

tr(σλ
x,aMλ)−

∑
a∈Oλ,A

tr(σλ
x′,aMλ)

∣∣∣∣∣∣ ≤ negl(λ). (1)

For the case of constant games (i.e., Gλ = G for some fixed nonlocal game G), soundness of the
compiler can be proven using the same analysis as in [KMP+24]. The only step that has to be
slightly generalized is that [NZ23, Lemma 8] has to be proven for more general states

σλ
x :=

∑
a∈Oλ,A

σλ
x,a,

instead of states of the form

ρλ
x := E

c1,...,cm=Enc(xλ)

∑
α1,...,αm

(Ac1
λ,α1

)⊗ · · · ⊗ (Acm
λ,αm

)(|ψλ⟩ ⟨ψλ|)⊗m(Ac1
λ,α1

)† ⊗ · · · ⊗ (Acm
λ,αm

)†,

where A denotes Alice’s POVM in the KLVY compiler (we refer to [KMP+24] for precise definitions
of the operators). We prove this generalization in the following.

Lemma 5.5 ([NZ23, Lemma 8]). Let λ ∈ N be a security parameter. For any two efficiently
sampleable distributions {Dλ,1}, {Dλ,2} over plaintext Alice questions, for any efficiently preparable
state σλ

x (where σλ
x arises from this new compiler), and for any two-outcome measurement {Mλ, I−

Mλ} that can be implemented by a circuit with size poly(λ) acting on m = poly(λ) copies of σλ
x ,

there exists a negligible function negl(λ) such that, for all λ ∈ N it holds that∣∣∣∣∣ E
x←Dλ,1

tr((σλ
x)⊗mMλ)− E

x←Dλ,2
tr((σλ

x)⊗mMλ)
∣∣∣∣∣ ≤ negl(λ). (2)

This statement can be reduced to Lemma 5.4 by a simple hybrid argument.
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Proof. Let {Mλ, I −Mλ} be a two-outcome measurement that can be implemented by a circuit
with size poly(λ) acting on m copies of σλ

x such that Eq. (2) does not hold, i.e.

mλ :=
∣∣∣∣∣ E
x←Dλ,1

tr((σλ
x)⊗mMλ)− E

x←Dλ,2
tr((σλ

x)⊗mMλ)
∣∣∣∣∣ > negl(λ).

Then we can construct a two-outcome measurement {Nλ, I − Nλ} that can be implemented by a
circuit with size poly′(λ) acting on σλ

x such that Eq. (1) does not hold as follows. Given input σλ
x

with x ← Dλ,1 or x ← Dλ,2, choose an index i ∈ {1, . . . , poly(λ)} uniformly random, prepare the
state (σλ

x1)⊗i−1 ⊗ (σλ
x) ⊗ (σλ

x2)⊗poly(λ)−i where x1 ← Dλ,1 and x2 ← Dλ,2, and apply Mλ to this
prepared state. Then, we have∣∣∣∣∣ E

x←Dλ,1
tr(σλ

xNλ)− E
x←Dλ,2

tr(σλ
xNλ)

∣∣∣∣∣
= 1

poly(λ)

∣∣∣∣∣
poly(λ)∑

i=1
E

x1←Dλ,1
E

x2←Dλ,2
tr
(
(σλ

x1)⊗i ⊗ (σλ
x2)⊗poly(λ)−iMλ

)

− E
x1←Dλ,1

E
x2←Dλ,2

tr
(
(σλ

x1)⊗i−1 ⊗ (σλ
x2)⊗poly(λ)−i+1Mλ

)∣∣∣∣∣
= 1

poly(λ)

∣∣∣∣∣ E
x←Dλ,1

tr
(
(σλ

x)⊗poly(λ)Mλ

)
− E

x←Dλ,2
tr
(
(σλ

x)⊗poly(λ)Mλ

)∣∣∣∣∣
≥ 1

poly∗(λ) .

This contradicts Lemma 5.4 for x← Dλ,1, x
′ ← Dλ,2.

Once we have established this fact, the proofs of [NZ23, Lemma 15-17] (see also [CMM+24,
Lemma 2.21]) follows identically. This in turn is the only result in the proof of soundness [KMP+24],
where IND-CPA security of the QFHE scheme is used. By proving [NZ23, Lemma 8] for this
compiler, the following proposition, and consequently the soundness of this proposed compiler for
constant games, follows as an immediate corollary.

Proposition 5.6 ([KMP+24, Proposition 4.6]). Consider any nonlocal game G and a QPT strategy
for the compiled game Gcomp (which is the same for all λ). Let x, x′ ∈ IA, and let P = P ({Byb}) be
a polynomial in noncommuting variables {Byb}y∈IB ,b∈OB

. Then there exists a negligible function η
such that, for all λ ∈ N, ∣∣∣∣∣tr (σλ

x P ({Bλ
yb})

)
− tr

(
σλ

x′ P ({Bλ
yb})

)∣∣∣∣∣ ≤ η(λ),

and where {Bλ
yb}b∈OB

are POVMs for y ∈ IB, corresponding to the measurements that lead to the
prover’s second reply.

5.3 Classical Verification of Quantum Computation

In [NZ23], the KLVY compiler is used to design a fully classical protocol to verify any BQP
computation. They build a protocol for the verification of the (XX,ZZ)-local Hamiltonian problem
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(with only X and Z measurements), that is well-known to be QMA-complete. The protocol consists
of a nonlocal game, that in turn is a combination of the CHSH game and the commutation game,
compiled via the KLVY transformation into a single-prover protocol. Differently from the settings
discussed above, the nonlocal game is no longer constant, and it is instead a sequence of games
indexed by the security parameter, thus requiring a different analysis from what discussed above.
Fortunately, the only point in [NZ23] where the KLVY compiler is invoked is in the proof of
Lemma 5.5. Thus, our protocol and analysis can be directly plugged in as a replacement of the
KLVY compiler, and the remainder of the analysis follows in verbatim from [NZ23].

The [NZ23] Verification Protocol. We recall the verification protocol as described in [NZ23].
Let {Hλ}λ be a family of Hamiltonians with

Hλ :=
∑

W,i,j

pλ,W,i,jW (ei + ej)

where W ∈ {X,Z}, ei ∈ {0, 1}λ is the i-th unit, and ∑W,i,j pλ,W,i,j = 1 form a probability distri-
bution, with Hλ acting on λ qubits. Let Dλ

X be the distribution specified by Hλ, conditioned on
W = X, and Dλ

Z be the distribution conditioned on W = Z.
The following nonlocal game G = {Gλ} allows one to certify whether the smallest eigenvalue

of Hλ is smaller or equal than αλ or greater equal than βλ where βλ − αλ = 1/poly(λ). Let
κλ = Θ((βλ − αλ)2).

• The verifier samples the questions qA and qB as follows (padding all qA so that they have the
same length).

– (CHSH) With probability (1 − κλ)/2, sample a ←$ {0, 1}λ uniformly and b ←$ Dλ
X ,

conditioned on a · b = 1. Sample also x, y ←$ {0, 1}. Set qA := (CHSH, (a, b, x)) and
qB := y.

– (Commutation) With probability (1−κλ)/2, sample a←$ {0, 1}λ uniformly and b←$ Dλ
X ,

conditioned on a · b = 0. Sample also y ←$ {0, 1}. Set qA := (Commute, (a, b)) and
qB := y.

– (Teleport) With probability κλ, sample y ←$ {0, 1}. Set qA := Teleport and qB := y.

• Send qA to Alice and qB to Bob, and receive sA and sB, respectively.

• The verifier accepts if the following conditions are satisfied (depending on the subprotocol
that was selected in the previous round).

– (CHSH) Let sA ∈ {0, 1} and sB ∈ {0, 1}λ. Accept if:

sA + (1− y)(a · sB) + y(b · sB) = x · y.

– (Commutation) Let sA ∈ {0, 1}2 and sB ∈ {0, 1}λ. Accept if:

(1− y)(a · sB) + y(b · sB) = sA,y.
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– (Teleport) Let sA ∈ {0, 1}2λ and sB ∈ {0, 1}λ. Sample

w :=
{

0 w.p. ∑i,j pλ,X,i,j

1 w.p. ∑i,j pλ,Z,i,j

.

If w ̸= qB accept, else sample a term W (ei + ej) ←$ Dλ
W where W = X if w = 0 and

W = Z otherwise. Then:
∗ If W = X compute outcome (−1)sB,i+sB,j+sA,i+sA,j and accept if this is −1.
∗ If W = Z compute outcome (−1)sB,i+sB,j+sA,λ+i+sA,λ+j and accept if this is −1.

Analysis. We analyze the soundness of the protocol, when compiled through the procedure de-
scribed in Section 5.2.

If we fix a and b the CHSH and commutation subtest reduce to the CHSH and commutation
game, respectively. In the commutation game, Alice receives an empty question and answers with
some a ∈ {0, 1}2. Bob receives a question y ∈ {0, 1} and answers with b ∈ {0, 1}. The players
win the game if b = ay, i.e. the answer of Bob coincides with the yth bit in Alice’s answer. This
game has the property that in any perfect quantum strategy of the game, the observables of Bob
commute, hence the name.

In the CHSH game the verifier prepares question (x, y) ←$ {0, 1}2 and sends x to Alice and
y to Bob. Alice answers with a ∈ {0, 1} and Bob with b ∈ {0, 1}. The players win the game if
x · y = a⊕ b. The optimal winning probability of a quantum strategy is ωCHSH = 1

2 + 1
2
√

2 . In the
compiled game the winning probability of a QPT strategy can be bounded by ωCHSH + negl(λ) for
some negligible function negl (cf. [NZ23, Lemma 24]). Since the proof only uses Proposition 5.6
(which follows from Lemma 5.5) and Jensen’s inequality, the same result holds for our compiler.

If the winning probability of the employed strategy is ε-close to ωCHSH, then the Alice and Bob
operators approximately anti-commute. This is also the case for the corresponding compiled game.
To prove this we follow [NZ23] closely. Note however that whenever vector norm inequalities are
used in the proof, we cannot directly transfer this to our setting, but instead we can leverage the
Frobenius norm defined as ||O||F =

√
tr(O†O). To see this, consider the expression ∑α ||O |ψcα⟩ ||2,

where ψcα = Ac
α |ψ⟩. It holds∑

α

||O |ψcα⟩ ||2 =
∑

α

⟨ψcα|O†O |ψcα⟩

=
∑

α

tr
(
|ψcα⟩ ⟨ψcα|O†O

)

= tr


∑

α

|ψcα⟩ ⟨ψcα|︸ ︷︷ ︸
=:ρ

O†O


= ||O√ρ||2F .

Recall that in a QPT strategy for the compiled CHSH game, the prover has POVM’s {Bλ
yb}b∈{0,1}

for y ∈ {0, 1}. We define observables Bλ
y := Bλ

y0−Bλ
y1 for y ∈ {0, 1}. Furthermore, let {B0, B1} :=

B0B1 +B1B0 denote the anticommutator and let [B0, B1] := B0B1−B1B0 denote the commutator
of B0 and B1.
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Lemma 5.7 ([NZ23, Lemma 34]). For any strategy that succeeds in the compiled CHSH game with
probability ωCHSH − ε(λ), there exists a negligible function negl, such that for all λ it holds that

tr
(
σλ

0 |{Bλ
0 , B

λ
1 }|2

)
≤ O(ε(λ) + negl(λ))

Proof. We define the distribution µλ similarly to [NZ23]. First, let a = (−1)a′ where a′ is the
outcome of Alice’s computation for plaintext 0, i.e. in our compiler the output of the verifier
derived from the output of the prover after the CHBQC protocol with Alice plaintext question
0. Then, measure the observable (Bλ

0 + Bλ
1 )/
√

2 on the post-measurement state of the CHBQC
protocol to obtain an outcome b. From the SOS certificate for the CHSH game given in [NZ23], we
get

E
µλ

[((a− b)2] ≤ O(ε(λ) + negl(λ)).

After rewriting the expectation we see that

||((Bλ
0 +Bλ

1 )−
√

2I)
√
σλ

0,0||
2
F + ||((Bλ

0 +Bλ
1 ) +

√
2I)
√
σλ

0,1||
2
F ≤ O(ε(λ) + negl(λ)).

Using this and the fact that (Bλ
0 +Bλ

1 )2 = 2I + {Bλ
0 , B

λ
1 } we get that

tr
(
σλ

0 |{Bλ
0 , B

λ
1 }|2

)
= tr

(
σλ

0,0|{Bλ
0 , B

λ
1 }|2

)
+ tr

(
σλ

0,1|{Bλ
0 , B

λ
1 }|2

)
= tr

(
σλ

0,0((Bλ
0 +Bλ

1 )2 − 2I)2
)

+ tr
(
σλ

0,1((Bλ
0 +Bλ

1 )2 − 2I)2
)

= ||((Bλ
0 +Bλ

1 )2 − 2I)
√
σλ

0,0||
2
F + ||((Bλ

0 +Bλ
1 )2 − 2I)

√
σλ

0,1||
2
F

= ||((Bλ
0 +Bλ

1 ) +
√

2I)((Bλ
0 +Bλ

1 )−
√

2I)
√
σλ

0,0||
2
F

+ ||((Bλ
0 +Bλ

1 )−
√

2I)((Bλ
0 +Bλ

1 ) +
√

2I)
√
σλ

0,1||
2
F

≤ (2 +
√

2)2||((Bλ
0 +Bλ

1 )−
√

2I)
√
σλ

0,0||
2
F

+ (2 +
√

2)2||((Bλ
0 +Bλ

1 ) +
√

2I)
√
σλ

0,1||
2
F

≤ O(ε(λ) + negl(λ))

In the nonlocal game of the verification protocol, Bob receives questions y ∈ {0, 1} and answers
with s ∈ {0, 1}λ. Therefore, we have Bob POVM’s {Bλ

ys}s∈{0,1}λ for y ∈ {0, 1} in each QPT
strategy for the compiled game. We define observables

Ẑλ(a) :=
∑

s∈{0,1}λ

(−1)a·sBλ
0s, X̂λ(b) :=

∑
t∈{0,1}λ

(−1)b·tBλ
1t.

The following results about the subtests in the protocol follow verbatim.

Lemma 5.8 ([NZ23, Lemma 36]). Suppose the prover’s strategy succeeds in the CHSH subtest with
probability at least ωCHSH − ε(λ). Then, there exists a negligible function negl(λ), such that for all
λ,

E
(a,b)←${0,1}λ×Dλ

X ;
a·b=1

tr
(
σλ

(CHSH,(a,b,0))|{Ẑ
λ(a), X̂λ(b)}|2

)
≤ O(ε(λ) + negl(λ))
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Lemma 5.9 ([NZ23, Lemma 37]). Suppose the prover’s strategy succeeds in the commutation subtest
with probability at least 1− ε(λ). Then,

E
(a,b)←${0,1}λ×Dλ

X ;
a·b=0

tr
(
σλ

(Commute,(a,b))|[Ẑλ(a), X̂λ(b)]|2
)
≤ O(ε(λ))

Lemma 5.10 ([NZ23, Lemma 38]). Suppose the prover’s strategy succeeds in the CHSH subtest with
probability at least ωCHSH − ε(λ) and in the commutation subtest with probability at least 1− ε(λ).
Then, there exists a negligible function negl(λ), such that for all λ,

E
(a,b)←${0,1}λ×Dλ

X

tr
(
σλ

Teleport|(−1)aẐλ(a)X̂λ(b)− X̂λ(b)Ẑλ(a)|2
)
≤ O(ε(λ) + negl(λ))

Having the results regarding the subtests in place, we can define the isometry analogously.

Lemma 5.11 ([NZ23, Lemma 39]). For any u1, u2 ∈ {0, 1}, there exists a negligible function negl,
such that for all λ it holds that

E
(a,b)←${0,1}λ×Dλ

X

∑
a;

ai=u1
aj=u2

tr
(
σλ

Teleport,a|(−1)a·bẐλ(a)X̂λ(b)Ẑλ(a)− X̂λ(b)|
)
≤ O

(√
ε(λ) + negl(λ)

)

Let HQ and HA be two copies of (C2)⊗λ. The λ-qubit SWAP isometry V : HProver → HProver⊗
HQ ⊗HA is defined by:

V |ϕ⟩ =

 1
2λ

∑
u,v∈{0,1}λ

Ẑλ(u)X̂λ(v)⊗ I ⊗ Z(u)X(v)

 |ϕ⟩ ⊗ ∣∣∣ϕ+
〉⊗λ

.

Furthermore, let Hλ
X and Hλ

Z denote Hλ restricted to the XX and ZZ terms, respectively. We
use the notation Ê[Hλ

X ] and Ê[Hλ
Z ] for the expected value of the outcome computed by the verifier

in a teleport round, conditioned on w = qB and the verifier choosing an XX term or ZZ term,
respectively.

Lemma 5.12 ([NZ23, Lemma 43]). Define ρs := trProver,A[V σλ
Teleport,sV

†]. Then, assuming that
the prover passes with probability ωCHSH − ε(λ) in the CHSH subtest and with probability 1− ε(λ)
in the commutation subtest, there exists a negligible function negl, such that for all λ it holds that∣∣∣∣∣∣∣∣∣∣

∑
u1,u2

(−1)u1+u2
∑
s;

si=u1
sj=u2

E
b←$Dλ

X

tr(X(b)ρs)− Ê[Hλ
X ]

∣∣∣∣∣∣∣∣∣∣
≤ O

(√
ε(λ) + negl(λ)

)

Lemma 5.13 ([NZ23, Lemma 44]). Define ρs := trProver,A[V σλ
Teleport,sV

†]. Then∑
v1,v2

(−1)v1+v2
∑
a;

an+i=v1
an+j=v2

E
a←$Dλ

Z

tr(Z(a)ρs) = Ê[Hλ
Z ].

29



Lemma 5.14 ([NZ23, Lemma 45]). Assuming that the prover passes with probability ωCHSH− ε(λ)
in the CHSH subtest and with probability 1− ε(λ) in the commutation subtest, there exists a state
ρ and a negligible function negl such that for all λ

E
a←$Dλ

Z

tr(Z(a)ρ) = Ê[Hλ
Z ],∣∣∣∣∣ E

b←$Dλ
X

tr(X(b)ρ)− Ê[Hλ
X ]
∣∣∣∣∣ ≤ O

(√
ε(λ) + negl(λ)

)

Lemma 5.15. The winning probability in the Teleport subtest is

ωλ,Tel = 1− 1
4

∑
i,j

pλ,Z,i,j Ê[Hλ
Z ] +

∑
i,j

pλ,X,i,j Ê[Hλ
X ]

 .
Proof.

ωλ,Tel = Pr(w ̸= qB) + Pr(w = qB) · Pr(Verifier outputs −1)

By definition of Ê[Hλ
W ] for W ∈ {X,Z} we get

Pr(Verifier outputs −1) = Pr(w = 0)1− Ê[Hλ
Z ]

2 + Pr(w = 1)1− Ê[Hλ
X ]

2

=
∑
i,j

pλ,Z,i,j
1− Ê[Hλ

Z ]
2 +

∑
i,j

pλ,X,i,j
1− Ê[Hλ

X ]
2

Since Pr(w ̸= qB) = Pr(w = qB) = 1
2 we have

Pr(Verifier outputs −1) = 1
2 + 1

2

∑
i,j

pλ,Z,i,j
1− Ê[Hλ

Z ]
2 +

∑
i,j

pλ,X,i,j
1− Ê[Hλ

X ]
2


= 1− 1

4

∑
i,j

pλ,Z,i,j Ê[Hλ
Z ] +

∑
i,j

pλ,X,i,j Ê[Hλ
X ]



Overall, we obtain the following new implication.

Proposition 5.16. Let {Hλ}λ be a family of (XX −ZZ)-Hamiltonians and let ξλ,H be the lowest
eigenvalue. Assuming the existence of a family of claw-free trapdoor functions, then there exists a
classical verifier protocol such that for all QPT provers P ∗ it holds that:

Pr [V accepts | ξλ,H ≤ αλ]− Pr [V accepts | ξλ,H ≥ βλ] = poly(βλ − αλ).

When βλ − αλ ≥ 1/poly(λ), then we obtain a protocol with inverse-polynomial completeness-
soundness gap, which can be amplified by standard sequential repetition. The proof of this fact
follows along the same lines as [NZ23], and we reproduce it here only for completeness.
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Proof. It is shown in [NZ23] that, if the smallest eigenvalue is at most αλ, then there exists a prover
that passes the protocol with probability at least:

(1− κλ)(1 + ωCHSH)
2 + κλ

(
1− αλ

4

)
.

Thus, all is left to be shown is that the exists a non-trivial (at least inverse-polynomial) completeness-
soundness gap.

Assume towards contradiction that the lowest eigenvalue is at least βλ and there exists an
efficient prover that passes the protocol with probability at least:

(1− κλ)(1 + ωCHSH)
2 + κλ

(
1− βλ

4

)
+ νλ

for some νλ to be set later.
Let us denote by ωλ,CHSH, ωλ,Com, ωλ,Tel the probability that the prover passes the CHSH,

commutation, or teleportation subtest, respectively. Since we can upperbound the probability of
passing the commutation subtest by 1 and the probability of passing the CHSH subtest by ωCHSH
plus a negligible function (cf. [NZ23, Lemma 24]), we can bound the probability of passing the
teleportation subtest to:

ωλ,Tel ≥ 1− βλ

4 + νλ

κλ
− negl(λ). (3)

Moreover, we can bound:

(1− κλ)(ωλ,Com + ωλ,CHSH)
2 + κλ · ωλ,Tel ≥

(1− κλ)(1 + ωCHSH)
2 + κλ

(
1− βλ

4

)
bounding ωλ,Tel ≤ 1 and rearranging the terms we obtain:

ωλ,Com + ωλ,CHSH ≥ 1 + ωCHSH −
κλ

2(1− κλ) .

Thus, we can conclude that:

ωλ,Com ≥ 1− κλ

2(1− κλ) and ωλ,CHSH ≥ ωCHSH −
κλ

2(1− κλ) .

Let ε := κλ/2(1− κλ). Recall that

Hλ =
∑

W,i,j

pλ,i,jW (ei + ej) =
∑
i,j

pλ,Z,i,j E
a←$Dλ

Z

Z(a) +
∑
i,j

pλ,X,i,j E
b←$Dλ

X

X(b).

Therefore, we have for all states ρ, it holds

tr(Hλρ) =
∑
i,j

pλ,Z,i,j E
a←$Dλ

Z

tr(Z(a)ρ) +
∑
i,j

pλ,X,i,j E
b←$Dλ

X

tr(X(b)ρ).

Using Lemma 5.14, there exists a state ρλ, such that:∣∣∣∣∣∣tr(Hλρλ)−

∑
i,j

pλ,Z,i,j Ê[Hλ
Z ] +

∑
i,j

pλ,X,i,j Ê[Hλ
X ]

∣∣∣∣∣∣ ≤ O
(√

ε(λ) + negl(λ)
)
. (4)
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By Lemma 5.15 and Eqs. (3) and (4) we deduce that:

tr[Hλρλ] ≤ βλ −
4νλ

κλ
+ negl(λ) +O

(√
ε(λ) + negl(λ)

)
.

Thus, we can derive a contradiction if O(
√
ε(λ) + negl(λ)) < 4νλ/κλ − negl(λ). Setting νλ =

κλ(βλ − αλ)/8, we obtain that:

O
(√

κλ

1− κλ
+ negl(λ)

)
<
βλ − αλ

2 − negl(λ)

which implies that
O
(√

κλ

1− κλ

)
<
βλ − αλ

2
for κλ ∈ Θ((βλ − αλ)2), as desired.
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