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Abstract. The GHOST protocol has been proposed as an improvement to the Nakamoto consensus
mechanism that underlies Bitcoin. In contrast to the Nakamoto fork-choice rule, the GHOST rule
justifies selection of a chain with weights computed over subtrees rather than individual paths. This
mechanism has been adopted by a variety of consensus protocols, and is a part of the currently deployed
protocol supporting Ethereum.
We establish an exact characterization of the security region of the GHOST protocol, identifying the
relationship between the rate of honest block production, the rate of adversarial block production, and
network delays that guarantee that the protocol reaches consensus. In contrast to the closely related
Nakamoto consensus protocol, we find that the region depends on the convention used by the protocol
for tiebreaking; we establish tight results for both adversarial tiebreaking, in which ties are broken
adversarially in order to frustrate consensus, and deterministic tiebreaking, in which ties between
pairs of blocks are broken consistently throughout an execution. We provide explicit attacks for both
conventions which stall consensus outside of the security region.
Our results conclude that the security region of GHOST can be strictly improved by incorporating a
tiebreaking mechanism; in either case, however, the final region of security is inferior to the region of
Nakamoto consensus.

1 Introduction

Consensus protocols—or more precisely, state machine replication protocols—play a pivotal role in main-
taining the integrity and consistency of data across decentralized systems. The Bitcoin whitepaper [19]
introduced Nakamoto consensus, a notable departure from classical approaches to this problem; it provided
a distinctive set of features, such as a mechanism to accommodate fluctuating participation which arises
naturally in permissionless settings [21], as well as resilience to temporary periods of adversarial majority
[1,3]. The protocol leverages the longest-chain rule (LCR) as its core principle for achieving consensus on the
state of the distributed ledger. In brief, parties maintain and extend a blocktree connected by cryptographic
hashes, while the current ledger state is understood to be contained in the longest chain of blocks in that
tree.

However, the Nakamoto consensus is known to suffer from limited throughput and slow settlement, and
addressing these naively by increasing the rate of block production directly threatens the consistency of the
protocol. To counter these issues, the GHOST (Greedy Heaviest Observed Subtree) protocol was proposed
by Sompolinsky and Zohar [23] as an alternative. The GHOST protocol replaces the LCR by a fork-choice
rule (sometimes also called chain-selection rule) that proceeds iteratively by starting in the root (“genesis”)
block and, in each step, descending to the child block carrying the heaviest subtree of all children, until
a leaf block is reached. By accounting for blocks that are not part of the main chain but are still part of
heavily weighted subtrees, GHOST originally aimed to enhance the security and throughput of the resulting
distributed ledger.

On the practical side, the GHOST fork-choice rule itself plays a significant role in current blockchain
consensus design. Most notably, Ethereum—the second largest blockchain by market capitalization after
Bitcoin—employs the GHOST rule as a part of its Gasper consensus protocol [4]. The rule is also central to
Goldfish [5], a provably secure alternative to Gasper. These developments have resulted from experimenta-
tion with the GHOST rule applied to votes rather than blocks and coupled with vote expiration: Goldfish



represents the most extreme point where votes expire after a single protocol round; the opposite extreme
corresponds to the original GHOST protocol where blocks (playing also the role of votes) never expire.
The LMD-GHOST variant [24] employed in Gasper can be seen as a middle-ground option where only the
most recent vote by each party is considered. Other proposals [6,10] have recently explored protocols that
interpolate between the two above extremes. This spectrum turns out to represent a trade-off between opti-
mistic fast settlement and resilience to temporary network outages or honest-majority violations, and hence
understanding the guarantees provided by the original GHOST protocol may be relevant in this context.

From the theoretical perspective, GHOST—together with Nakamoto consensus—exemplifies a distinctive,
proof-of-work based approach to permissionless ledger consensus, very different from adaptations of classical,
quorum-based state machine replication protocols, and as such represents an attractive object of study.

The established model for studying proof-of-work consensus protocols is one with continuous time, where
honest and adversarial hashing successes appear according to (independent) Poisson point processes with
rates ρh > 0 and ρa > 0, respectively, and the adversary may selectively delay honest block delivery by
up to ∆ time. For Nakamoto consensus, a long and fruitful line of work [11,20,17,25,22] has culminated
in papers [12,8] establishing the exact region of security of the Nakamoto consensus, that is, an exact
characterization of triples (ρh, ρa, ∆) such that an execution of the protocol in the regime parametrized by
this triple results in a distributed ledger providing eventual settlement. For Nakamoto consensus, this region
of security is exactly defined by the inequality

ρa <
1

∆+ 1/ρh
.

Despite focused attention [15,17], the corresponding landscape for the GHOST paradigm is not fully
understood. Existing works analyzing GHOST security [15,17,25] rely on so-called doubly-isolated uniquely
honest successes, or convergence opportunities; these techniques establish security (with adversarial tiebreak-
ing) so long as

ρa < ρhe
−2ρh∆

without any claim of tightness.

1.1 Our Contributions

In this work, we formally answer the following question:

What is the exact security region of GHOST, i.e., for which triples (ρh, ρa, ∆) does the protocol
provide eventual settlement of protocol blocks?

We show that the answer depends on the conventions used by the protocol for tiebreaking. In particular,
we show that under adversarial tiebreaking—in which the adversary may adaptively determine how honest
players break ties when they must choose between two subtrees of equal weight—the protocol is secure
precisely when

ρa < ρh · e−ρh∆

2− e−ρh∆
. (1)

The natural variant of the protocol adopting deterministic tiebreaking—in which all ties arising from com-
parison between any pair of sibling trees are settled consistently throughout the execution—is secure exactly
when

ρa < ρh · e−ρh∆ .

In both cases, the region of security is strictly larger than that established by previous work. These two
regions of security are compared with each other (and that of previous work) in Fig. 1a. We remark that
the graph of the figure focuses on the practically relevant region where ρh∆ ≈ 1, which is to say that the
average number of blocks generated over a time period of length ∆ is a constant roughly equal to 1.

These findings are somewhat surprising in the context of the longest-chain rule, in which the tiebreaking
convention does not change the fundamental region of security. We remark that deterministic tiebreaking
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Fig. 1: Comparing the security regions of (a) GHOST with various tiebreaking conventions and
(b) GHOST and LCR. The x and y axes show the expected number of blocks created by honest and
adversarial parties within time ∆, respectively.

is straightforward to implement; for example, the simple expedient of breaking a tie between a tree rooted
at v and one at a sibling w by lexicographically comparing the bitstring representations of v and w (or,
in practice, their collision-free hashes) suffices for our requirements. It is an interesting consequence of our
work that adopting such a simple and cheap convention improves the fundamental security characteristics
of the GHOST protocol. Notice that deterministic tiebreaking is suggested for the LMD-GHOST rule used
in Gasper [24,4] without further formal justification.

We emphasize that in both considered regimes—with and without a deterministic tiebreaking convention—
we provide matching attacks showing that the above regions of security are tight.

Finally, another surprising implication of our work is that the security region of GHOST is strictly inferior
to that of the original Nakamoto consensus, as depicted in Fig. 1b. To the best of our knowledge, there is no
indication of this relationship between the security of these two protocols in existing literature.

1.2 Our Techniques

We start by considering a so-called schedule: a minimal description of the outcomes of the proof-of-work
lottery—i.e., the times of honest and adversarial lottery victories—during the execution. For a fixed such
schedule w, we define an execution, which is a combinatorial bookkeeping tool abstracting the tree structure
formed by all the blocks created during an actual valid execution of the protocol with PoW lottery outcomes
described by w. Finally, we define an analytic quantity called advantage (denoted α) which can be evaluated
for any fixed blocktree E and a chain C in it, and its value quantifies the extent to which C is settled in E:
large values of α(C,E) indicate a high degree of confidence in the settlement of C.

We remark that while the bookkeeping infrastructure we use here is rooted in earlier works on the security
of Nakamoto consensus [12,13,14,3], the combinatorial objects and quantities differ significantly from their
Nakamoto counterparts due to the idiosyncrasies of the GHOST protocol, bringing in additional complexity
compared to the relatively simple longest-chain rule. As an illustrative example, note that while the longest-
chain paradigm assigns to each chain in the blocktree a single integer-valued “quality” (namely, its length)
and chains can be compared to one another based on this value, in GHOST no single “quality” value exists
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that would allow for such comparisons, as any two chains compare based on the subtree weight comparison
at their forking point.

With the above tools in place, the analysis consists of two main parts. First, we give a combinatorial
argument to lower-bound the advantage of a particular chain for a given execution. This is our main technical
contribution and we return to it in greater detail below. Second, we analyze the behavior that is induced by
the above combinatorial rules when we move to the stochastic process given by the appropriately distributed
schedule.

Our main technical contribution is a method for lower-bounding the advantage α of a given chain after
a fixed execution (or its prefix) has taken place. It is instructive to put this in contrast with the analysis of
the longest-chain rule. In [12], a quantity analogous to our advantage (there denoted β) is tracked along an
execution of a longest-chain protocol, observing that β behaves differently in each of three disjoint states:
cold, where—intuitively speaking—the honest chain is well ahead of any adversarial attempts to compete
with it; hot, where the situation is the opposite and the adversary is well ahead of the honest parties; and
finally critical, when there is a near-tie between the two sides. The analysis in [12] was possible thanks to
the fact that β exhibited relatively simple behavior in both the cold and hot states, and only displayed the
full complexity of its behavior in the critical state. The critical state was however quite rare in a typical
execution, and hence the tight security region of the Nakamoto consensus could be determined with a full
understanding of only the hot and cold states, and very crude bounds on the behavior in the critical state.

As it turns out, the analogous dynamics for GHOST appear to be significantly more complicated. Intu-
itively, continuing to view the analysis from this same “three-state perspective,” complexities similar to those
arising in the critical state of the LCR analysis appear in the hot state of the GHOST execution. In this case,
they cannot be glossed over—a precise understanding of the hot state remains necessary for establishing the
tight security region.

We address these technical complications with an argument that introduces a family of “metric” func-
tionals Γ k for k ≥ 2 that stratify the hot region. Intuitively, our analysis of the simpler case with adversarial
tiebreaking proceeds iteratively, where in each step it starts from a chain C exhibiting high advantage and
hence being settled (initially C is just the genesis block), and proceeds to show that as the protocol execution
evolves, some child block B of the tip of C also gradually settles, i.e., the advantage of the extended chain
C∥B increases in a controlled fashion—that is, if the execution’s parametrization is from within the security
region (1). Making this inductive step however turns out to be involved: a priori, the GHOST protocol allows
for behavior that we call a k-neutralizing attack, in which k honest blocks that arrive in a quick succession
can be “neutralized”—i.e., they do not contribute to settlement of some child of C as honest blocks should—if
the tip of C contains at least k competitive children (in terms of the weight of their subtrees). To tackle this
complication, we introduce a family of quantities Γ k for k ≥ 2, where the intuitive meaning of Γ k is that it
quantifies the competitiveness of the heaviest k children of C: a high value of Γ k indicates that no such k
distinct competitive children exist. We then proceed to lower-bound Γ k∗

for some large k∗ and show that
as the protocol execution progresses, for any k ≥ 2 we have that if Γ k+1 is already large, then Γ k gradually
increases. Finally, a large Γ 2 allows us to conclude that also the advantage α of C∥B is large and B can be
considered settled, moving to the next iteration. In this sense, analyzing various Γ k for k = k∗, . . . , 2 can be
seen as a further “stratification” of the hot state for GHOST.

Moving to the more involved case of deterministic tiebreaking, the security bound proven for the adver-
sarial tiebreaking case of course carries over but we aim to prove a more ambitious bound; and when applying
the above proof strategy a new hurdle arises. It turns out that the execution can lead to exceptional states,
where the basic structure of the combinatorial recurrences are violated. Roughly speaking, an exceptional
state arises when a low-preference child (with respect to the tiebreaking function) has amassed high weight;
such states can result in situations where honest block neutralization upsets the canonical behavior in the
adversarial-tiebreaking setting in which groups of honest blocks generated in close succession improve the Γ
functionals. The analysis shows that the penalty from these exceptional states turns out to be transient
and bounded. Interestingly, the phenomenon of exceptionality arises also in the tight attack we provide for
the deterministic tiebreaking case, suggesting that it is not an artifact of our security proof but rather an
intrinsic feature of GHOST with this tiebreaking convention.
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Finally, as a technical curiosity, we mention in passing that our analysis shows that in the cold region
(i.e., when the honest chain is already in the lead) settlement (i.e., advantage) is accrued faster in GHOST
than in LCR. This formalizes the intuition that even almost-concurrent honest blocks—typically resulting in
shallow forks—contribute to the weight of this winning chain when compared to its competitors, an insight
that partially motivated the original GHOST proposal.

New attacks. As mentioned above, we articulate and analyze two attacks on the GHOST protocol in order to
establish that the security regimes given by the analyses discussed above are tight. Both of them deserve to
be called “balancing” attacks, in the sense that they eventually generate two GHOST subtrees whose weights
repeatedly coincide. As far as we are aware these attacks are formulated here for the first time, though it
seems likely that the attack in the setting with adversarial tie-breaking has been part of the folklore in this
area for years. We remark that Kiffer et al. [17] develop a related attack that roughly corresponds to a setting
in which ties are broken randomly.

2 Preliminaries and Model

We use N to denote the set of natural numbers with zero, i.e., N = {0, 1, 2, . . . }. We study proof of work
in the standard continuous-time model where honest and adversarial hashing successes appear according to
(independent) Poisson point processes with rates ρh > 0 and ρa > 0, respectively, and the adversary may
selectively delay honest block delivery by up to ∆ time. We review the model in detail below.

2.1 Modeling Blockchain Protocols with Network Delays

In proof-of-work (PoW) based blockchain protocols (including GHOST), parties maintain a distributed ledger
of transactions by producing and propagating blocks. A block is a data structure containing at a minimum a
list of transactions to be added into the ledger, a proof of work establishing the amount of work invested into
the block by its creator, and a hash link pointing to a parent block. Starting from an agreed-upon genesis
block, the protocol’s execution grows a tree of blocks in this fashion.

The basic dynamics of an execution is hence determined by block mining successes, in which a participating
party forms a proof of work in order to add a new block to the blocktree. These proofs of work are generated
by a “stateless” process that repeatedly attempts to discover a nonce η for which H(X||η) is small, where
X is a payload and H is a hash function; under natural cryptographic assumptions on H, the optimal
approach is to simply guess η at random for each attempt. As the time taken to carry out a single hash
query is very small with respect to the other features of interest, the distribution of successes is faithfully
modeled by a Poisson point process: this is a random variable determining a finite set of “arrival times” (i.e.,
times of proof-of-work successes in our context) in a time interval (0, L] ⊂ R. The distribution of this random
variable is determined by two properties: (i.) the number of arrivals in disjoint time intervals are independent,
and (ii.) the number of arrivals in any interval of length ℓ is given by the standard Poisson distribution
Pr[k arrivals] = e−ρℓ(ρℓ)k/k!—here ρ is a fixed parameter determining the “average rate of arrivals” and
indeed the expected number of arrivals in an interval of length ℓ is ρ ·ℓ. To motivate the relationship between
the Poisson point process and mining process: the Poisson point process is the well-defined limit of the
natural family of discrete processes (parameterized by a small real number δ) that subdivide (0, L] into
L/δ slots of length δ and identify those slots that are to contain arrivals by independently selecting them
with probability δρ. The correspondence with the mining process is now apparent and, in fact, the rate of
convergence of this process to the Poisson process is linear in δ. For a positive real number L, we let P[ρ;L]
denote this probability law. It is also convenient to consider the version defined on R+ = (0,∞) denoted
P[ρ,∞]; in this case the axioms above will generate an infinite set of arrivals A with probability 1, but it
will be locally finite in the sense that A ∩ (0, L] will be finite with probability 1.

We consider the GHOST protocol with lifetime L to be carried out by a set of parties of two types: honest
parties, which follow the protocol, and adversarial parties, which may deviate arbitrarily. Specializing to this
setting, honest and adversarial block creation events are determined respectively by two random variables:

5



H, distributed according to P[ρh;L], and A, independently distributed according to P[ρa;L]. The sets H and
A together comprise the master schedule of the computation, and we let P[ρh, ρa;L] denote the resulting
probability law on (H,A). We collect these notions together in the following definition.

Definition 1 (Schedules; composition). Define

Σ∗
0 = {(H,A;L) | L ∈ R+;H,A ⊂ (0, L];H ∩A = ∅;H,A finite}

to be the set of finite schedules. We likewise define

Σω
0 = {(H,A) | H,A ⊂ (0,∞);H ∩A = ∅;H,A locally finite}

to be the set of infinite schedules, where a locally finite set S is one for which S ∩ (0, ℓ] is finite for every
ℓ > 0. For a schedule w = (H,A;L) we define the shorthand notation Hw = H, Aw = A, and |w| = L with
the convention that |w| = ∞ if w ∈ Σω

0 . We also let #h(w) = |Hw| and #a(w) = |Aw| denote the size of sets
Hw and Aw, respectively.

For two finite schedules w and x, define the composition wx to be the schedule obtained by placing the
two schedules back to back: formally, wx = (Hw ∪ (|w|+Hx), Aw ∪ (|w|+Ax); |x|+ |w|), where the notation
x + S (for x ∈ R and S ⊂ R) denotes the set {x + s | s ∈ S}. Finally, we say that a schedule x is a prefix
of w if |x| ≤ |w| and both Hx = Hw ∩ (0, |x|] and Ax = Aw ∩ (0, |x|].

The GHOST protocol is based on the principle that blocks that do not end up in the main chain should
also inform the chain-selection process. In order to achieve this, players store a tree of all mined blocks they
have received. Moreover, any honest party uses her computational power to extend the blocktree following
the greedy heaviest observed subtree (GHOST) rule which dictates that she builds on the path formed by
starting at the genesis block and repeatedly adding to the end of the path the child with the largest number
of ancestors in the tree. The party then broadcasts the new blocktree to all other parties. (Of course, in
practice, the entire blocktree is not broadcast for the purposes of efficiency.) Every PoW success allows the
party to add a single block that extends an arbitrary chain. Of course, the adversary is not forced to follow
the GHOST rule, nor does he have to immediately propagate his blocks; he can instead distribute them
strategically.

More formally, for a schedule (H,A;L), a GHOST protocol execution consistent with this schedule deter-
mines two families of sets: Ct, the collection of all blocks created during time interval (0, t], and H(Ct), the
subset of all blocks in Ct observed by at least one honest party at that time. Set C0 = {G}, where G denotes
the genesis block. The genesis block is considered honest; thus H(C0) = C0. Then the protocol execution
proceeds as follows: Defining t1 < t2 < · · · < tm to be the elements of H ∪A in increasing temporal order,

– If tk ∈ A, the adversary may select a single block B from Ctk−1
and generate a block B′ that extends

the chain to B. Thus Ctk = Ctk−1
∪ {B′} and H(Ctk) = H(Ctk−1

).
– if tk ∈ H, the adversary may (i.) select any blocktree V for which H(Cti) ⊆ V for all ti satisfying

ti +∆ < tk and V ⊆ Ctk−1
, (ii.) select a single block B that extends a chain from V according to the

GHOST rule, and (iii.) permit the honest parties to add a new block B′ extending the chain to B. Then
Ctk = Ctk−1

∪ {B′} and H(Ctk) = H(Ctk−1
) ∪ {B′} ∪ V .

For convenience, one can extend the definiton to all values of t ∈ R+ (i.e., also those outside of H ∪ A) by
the convention

Ct ≜
⋃
ti≤t

Cti and H(Ct) ≜
⋃
ti≤t

H(Cti) .

Note that there is no loss of generality by the convention that adversarial blocks are only ever revealed to
honest players in the third step.

Given the above execution, our goal is to reason about block settlement as defined next.

Definition 2 (Settled block). A block B ∈ Ct is called settled at time t if for each time t′ ≥ t and for
each V satisfying H(Ct′−∆) ⊑ V ⊑ Ct′ , B lies on a chain selected from V by the GHOST rule.
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2.2 Proof-of-Work Blocktrees

We formally reflect the state and dynamics of the protocol described above using a combinatorial notion called
a PoW blocktree. This concept is a variation of the notion of “fork” initially explored in the proof-of-stake
context [16,7,2] and more recently applied to PoW analysis in [12,13,14,3].

Definition 3 (Blocktrees; environments). Let w = (H,A;L) ∈ Σ∗
0 be a schedule. A blocktree F = (V,E)

for w is a directed, rooted tree (in the graph-theoretic sense) with a labeling function

ℓ : V → {0} ∪H ∪A

satisfying the axioms below.

A1. Edges are directed “away from” the root so that there is a unique directed path from the root to any vertex.

A2. The labeling function ℓ() is an injective mapping of the vertices V to H ∪A∪{0}, the set of times in the
schedule (treating 0 as an additional block-creation time).

A3. The label of the root vertex is zero, and the sequence of labels ℓ() along any directed path is strictly
increasing.

We write F ⊢ w to indicate that F is a blocktree for w and refer to the value ℓ(v) as the label of v.
Observe that the definition above does not insist that every block-creation time is associated with a vertex.

When the labeling function is in fact a bijection between V and H ∪ A ∪ {0}, the blocktree is called an
environment and we use ℓ−1 to denote the inverse mapping. We remark that there is a unique blocktree
associated with the empty schedule (∅, ∅; 0).

In general, the vertices and edges of a blocktree are intended to stand for blocks and their connecting hash
links (in reverse direction), respectively. The root represents the genesis block and, for each vertex v, ℓ(v)
indicates the time at which the corresponding block was created. A vertex v ∈ V is said to be honest if
ℓ(v) ∈ H or v is the root of the tree; v is said to be adversarial if ℓ(v) ∈ A. Axiom (A2) reflects the
assumption that a proof-of-work success can generate no more than one new block. A path in a blocktree
originating at the root is called a chain. Axiom (A3) reflects that the blocks’ ordering in a chain must be
consistent with the order of their creation time. Note that chains do not necessarily terminate at a leaf, so
that there is a one-to-one correspondence between chains and vertices of the tree.

Definition 4 (Children; siblings). Let childF (v) denote the set of all child vertices of v in a blocktree F ,
and let sibF (v) denote the set of all siblings of v in F (excluding v itself). We apply this notation also to
chains, which is a shorthand for applying it to the terminal vertex of that chain.

Definition 5 (Subtrees). Let w be a schedule and F ⊢ w be a blocktree for w. A blocktree F ′ ⊢ w′ is a
subtree of F , written F ′ ⊑ F , if w′ is a prefix of w and F contains F ′ as a consistently-labeled subgraph, i.e.,
each chain of F ′ appears, with identical labels, in F . Defining wt to be the prefix of w obtained by restricting
to (0, t], for an environment E ⊢ w, we often use the notation Et ⊢ wt to refer to the environment Et ⊑ E
obtained as the restriction of E to vertices with labels in [0, t].

Definition 6 (Weight). Let F ⊢ w be blocktree with vertex set V . Define the function wtF : V → N+ so
that wtF (v) is the number of vertices in the subtree rooted at v (including v). We refer to the value wtF (v)
as the weight of v in F . Thus the weight of a leaf is 1 and, in general, the weight of a vertex is one more
than the sum of the weights of any children. As a matter of convenience, when v is not a vertex of F, we
define wtF (v) = 0. (This can naturally arise when considering pairs of nested blocktrees F ⊑ G.)

Definition 7 (Dominance; GHOST chains). Let v be a vertex in a blocktree F . We say that v is domi-
nant in F (or simply dominant when F can be safely inferred from context) if

wtF (v)− max
v′ ∈ sibF (v)

wtF (v
′) ≥ 0
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with the understanding that the maximum over siblings is defined to be zero when no siblings exist; we declare
the root to be always dominant. We extend this concept to chains in the natural way: the chain C is dominant
if this is true for each vertex in the chain. A dominant chain that is maximal, in the sense that it terminates
in a leaf of F , is called a GHOST chain.

As the GHOST protocol evolves, it induces a schedule reflecting the block creation times and a blocktree
reflecting the forged blocks. As this blocktree contains a block (vertex) associated with each block creation
time indicated by the schedule, it is an environment in the parlance above. Each honest block production
event is justified by a subtree of the current environment corresponding to the view of the honest player
that produced the block; specifically, the block is placed on the tip of a GHOST chain appearing in this
justifying tree. Formally, we will refer to such a justifying subtree as a “justification.” Observe that as a result
of the networking assumption, the justification corresponding to a particular honest block production event
must include all justifications of honest blocks that are more than ∆ older than the new block. In contrast,
blocks produced by malicious leaders may be subject to arbitrary delays. An environment that satisfies these
additional constraints that arise from the dynamics of the GHOST protocol is called an execution; the formal
definition is recorded below.

Definition 8 (Execution; justifications). Let L ≥ 0, let w = (H,A;L) be a schedule in Σ∗
0 , and let

∆ > 0. A ∆-execution for w (or simply an execution when ∆ is understood from context) is an environment
E ⊢ w with an additional sequence of subtrees (Jt ⊑ E)t∈H so that for each t ∈ H:

1. Jt is a subtree of the environment obtained by restricting E to the interval [0, t);
2. the unique vertex v for which ℓ(v) = t appears on the end of a GHOST chain in Jt; and
3. for any t′ ∈ H such that t′+∆ < t, Jt contains both the vertex ℓ−1(t′) (associated with t′) and the subtree

Jt′ (i.e., Jt′ ⊑ Jt).

We say that E ⊢ w is an execution with justifications (Jt) and refer to Jt as the justification for the (honest)
vertex v = ℓ−1(t).

Finally, let E denote the union of the root vertex and all honest vertices v for which ℓ(v) +∆ < L along
with their justifying subtree Jℓ(v).

Intuitively, E contains all vertices of E that are guaranteed to be known to all honest parties.
To simplify analysis of the protocol, following [14] we divide schedules into periods—called phases—that

terminate with an interval of honest silence of length ∆.

Definition 9 (Terminal schedules; phases). A schedule x ∈ Σ∗
0 is called terminal if it terminates with

a ∆ period with no element of H: specifically, Hx ∩ (|x| −∆, |x|] = ∅. Observe that (∅, ∅; 0) is terminal.
A ∆-phase (or simply phase when ∆ can be inferred from context) ϕ is a terminal schedule that is

terminated by the first window (t, t+∆] it contains with no element of H. Formally, ϕ is a phase if |ϕ| ≥ ∆
and ((t−∆, t] ⊂ ((0, |ϕ|] \Hϕ)) ⇒ |ϕ| = t. We say that a phase is “trivial” if Hϕ = ∅ (and hence |ϕ| = ∆).

Note that any w ∈ Σω
0 admits a canonical decomposition into phases w = ϕ1ϕ2 . . . by defining ϕ1 to be

the restriction to [0, t1), where t1 = inf{t ≥ ∆ | (t−∆, t]∩H = ∅}, and iterating this process on (t1,∞). The
same decomposition applies to finite-length schedules w ∈ ΣL

0 , with the small complication that we must
account for a suffix that may contain no H-devoid ∆-region. In particular, there is a unique decomposition
w = ϕ1ϕ2 . . . ϕkϕ+ where each ϕi is a phase and ϕ+ ∈ Σ∗

0 ) contains no honestly-quiet period of length ∆.
To motivate the decomposition of an execution into phases, observe that as honest parties generate blocks

in a particular phase, they are guaranteed to be aware of all honest blocks produced in the preceding phase
(along with their justifications).

Proposition 1. Let x and y be two schedules in Σ∗
0 such that x is terminal. Let E ⊢ x and F ⊢ xy be

executions such that E ⊑ F; let (Jt) be the sequence of justifications for F. Then, writing xy = (H,A;L), for
each honest time t corresponding to y, i.e., for any t ∈ H satisfying t > |x|, the justification Jt includes all
honest vertices from E and their justifications, i.e., E ⊑ Jt.
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2.3 Advantage and Margin

In this section we introduce our main analytical quantities.

Definition 10. Let P and Q be two chains in a blocktree E. Define P/Q to be the first vertex on P that is
not on Q. When P ⊂ Q, we define P/Q to be the “empty vertex,” denoted ⋄, and define wt(⋄) = 0 (for any
blocktree).

Definition 11 (Advantage). For a terminal schedule x ∈ Σ∗
0 , an execution E ⊢ x, and a chain C ∈ E,

define
α(C;E) ≜ min

P chain in E
C ̸⊂P

(
wtE(C/P )− wtE(P/C)

)
.

We define an extended version of the notation: for a phase ϕ,

α(C;E)[ϕ] ≜ min
F⊢xϕ
E⊑F

α(C;F) ,

where this minimum is extended over all consistent executions of xϕ. We call execution F a witness execution
for α(C;E)[ϕ] if the above conditions are satisfied; i.e., F ⊢ xϕ, E ⊑ F, and α(C;F) = α(C;E)[ϕ].

The following statement illustrates the usefulness of the advantage notion by connecting advantage to
settlement as defined in Def. 2.

Proposition 2. Let w = ϕ1ϕ2 . . . ϕT be a schedule consisting of T phases, let E ⊢ w be an execution. For
any t ∈ [T ] let w(t) = ϕ1 . . . ϕt and let E(t) denote the execution E trimmed to only contain vertices v with
ℓ(v) ≤ |w(t)|. Let C be a chain in E with a terminal vertex vC . If for some index t0 ≤ T such that vC ∈ E(t0)

we have ∀t > t0 : α(C;E(t−1)) > #a(ϕt) +#h(ϕt) Then vC , and hence all blocks in C, are settled after phase
ϕt0 , i.e., after time |w(t0)|.

Proof (sketch). Let T be the time described in the statement of the proposition and consider some time s
such that |wT | ≤ s ≤ |w|; we wish to show that any honest party has vC on its currently held GHOST chain
at time s. For simplicity, consider first the case that s = |wt| for some t ≥ T , i.e., s is the last slot of a
phase ϕt. Then by assumption, we have α(C;Et) > 0, and by the definition of α we see that for any chain P
in Et that forks away from C prior to vC , we have wtEt

(C/P ) > wtEt
(P/C) and hence the chain C will be

preferred over P by any honest party that has seen all blocks in Et and applies the GHOST rule.
Similarly, if s is inside some phase ϕt for t > T , since we know by assumption that α(C;Et) > #a(ϕt) +

#h(ϕt), at the beginning of phase ϕt we have wtEt
(C/P ) > wtEt(P/C) + #a(ϕt) + #h(ϕt) for any chain P

forking from C. However, during the phase ϕt, wtEt
(P/C) may increase by at most #a(ϕt) + #h(ϕt) as it

increases by at most 1 with every created block, allowing us to conclude that also at slot s, the chain C will
be preferred over P by any honest party applying the GHOST rule. ⊓⊔

Definition 12 (Weight of heaviest child). Given a chain C in an execution E, we denote by wthcE(C)
the weight of the heaviest child of (the tip of) C in E, i.e.,

wthcE(C) ≜ max
D chain in E

C⊂D

wtE(D/C) .

Note that if C has no children in E, we get wthcE(C) = 0. We say that chain D achieves wthcE(C) if D ∈ E,
C ⊂ D and D maximizes wtE(D/C).

Definition 13 (Margin). For a constant k ≥ 1, a terminal schedule x, an execution E ⊢ x, and a chain
C ∈ E, define

Γ k(C;E) ≜ min
P1,...,Pk

chains in E
Pi∩Pj=C

k∑
i=1

(
wthcE(C)− wtE(Pi/C)

)
. (2)
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We define an extended version of the notation: for a phase ϕ

Γ k(C;E)[ϕ] ≜ min
F⊢xϕ
E⊑F

Γ k(C;F) ,

where this minimum is extended over all consistent executions of xϕ. We call execution F a witness execution
for Γ k(C;E)[ϕ] if the above conditions are satisfied; i.e., F ⊢ xϕ, E ⊑ F, and Γ k(C;F) = Γ k(C;E)[ϕ]. We
call a family of chains Pi in E witness chains when they construct a witness execution for Γ k(C;E)[ϕ].

Intuitively, Γ k(C,E) quantifies the “competitiveness” of the k heaviest children of C (including the blocks
in their subtrees that are not publicly known) against the publicly known weight of the heaviest child of C
(notice that wthc is taken in E while wt(Pi/C) is measured in E).

Our motivation for introducing Γ k is a behavior that we informally call the k-neutralizing attack : if k
competitive children of C exist, and k honest blocks arrive in a quick succession (say all within a ∆ time
period), these blocks could each appear on a different child of C, their effect thus “neutralized”: these blocks
do not contribute to settlement of some child of C as expected from honest blocks. Intuitively, such k-bursts
of honest blocks are rare, and it should be difficult for the adversary to maintain such a k-balanced situation
without them; this phenomenon is formally captured by the analysis of Γ k for various k.

It is perhaps worth contrasting the effect of this attack with the analogous circumstances in the longest-
chain rule setting. Observe that with the longest chain rule, the length advantage of a long, privately held
(adversarial) chain is reduced by at least one even by the placement of several honest children spread among
distinct equal-length longest public chains. In the ghost setting—where the new honest vertices may in fact
be placed on a subtree that supports a private chain—this guaranteed improvement disappears.

Looking ahead, we show that if Γ k(C,E) is large, then there are no k distinct competitive children of
C in E, and hence subsequent honest vertices must appear in at most k − 1 subtrees rooted in children of
C, unless the adversary first “pays” Γ k(C,E) of his new successes to change that (see Claim 2 for a precise
statement). At the same time, large Γ 2(C,E) will allow us to extend the control over α(C,E) to an extension
of C with its heaviest child (Lemma 5).

3 Security of GHOST with Adversarial Tiebreaking

We start by showing that large α(C;E) guarantees that subsequent honest successes appear in the subtree
rooted at (the tip of) C. Intuitively, this is unsurprising as α(C;E) exactly captures the “advantage” C has
over any chain forking from it before its tip.

Claim 1 (Honest justifications and advantaged chains) Let x be a terminal element and ϕ be a phase
of Σ∗

0 ; let E ⊢ x and F ⊢ xϕ be executions for which E ⊑ F and let C be a chain in E. If α(C;E) > #a(ϕ)
then every honest vertex in F \ E appears in the subtree rooted at C.

Proof. Let x, ϕ, E ⊢ x, F ⊢ xϕ, and C be as described in the statement of the claim; let (Jt) be the sequence
of justifications for the execution F. We wish to show that the GHOST rule ensures that every honest vertex
indexed by ϕ appears in the subtree rooted at C. For this purpose, let H+

ϕ = Hϕ+ |x| denote the set of times
of honest block creation events over ϕ (appearing in the schedule xϕ) and consider the first honest vertex v1
generated over ϕ, indexed by t1 ∈ H+

ϕ ; this vertex is placed on a GHOST chain D in Jt1 which we wish to
show includes the chain C as a prefix. If, on the contrary, C ̸⊂ D then by definition

wtE(C/D)− wtE(D/C) ≥ α(C;E) > #a(ϕ) . (3)

As x is terminal, based on Proposition 1 we have E ⊑ Jt1 , thus

wtE(C/D) ≤ wtJt1 (C/D) . (4)

10



Considering that there are at most #a(ϕ) adversarial vertices in Jt1 that do not appear in E (and that v1
was the first honest vertex), it follows that

wtJt1 (D/C) ≤ wtE(D/C) + #a(ϕ) . (5)

Combining (3), (4) and (5), we conclude that

wtJt1 (C/D)− wtJt1 (D/C) ≥ wtE(C/D)− (wtE(D/C) + #a(ϕ)) > 0 .

This contradicts the assumption that D is a GHOST chain in Jt1 ; we conclude that C ⊂ D, and hence that
the honest vertex v1 associated with t1 is indeed placed in the subtree rooted at C.

This same argument, with a minor adaptation, applies inductively to the remaining honest vertices
indexed by Hϕ to conclude that they all lie in the subtree rooted at C. In particular, assuming that the
first k honest vertices appear in the subtree rooted at C, Equations (3) and (4) apply without further
considerations to the GHOST chain D pertaining to the subsequent honest vertex, while (5) applies because
all previous honest vertices lie in the subtree rooted at C. ⊓⊔

Therefore, if α(C,E) is large, then the “settlement of C” strengthens with every new honest vertex (and
potentially weakens with every adversarial one), as the next lemma shows.

Lemma 1 (Advantage). Let x be a terminal element and ϕ be a phase of Σ∗
0 ; let E ⊢ x be an execution

and C a chain in E. If α(C;E) > #a(ϕ) then

α(C;E)[ϕ] ≥ α(C;E) + #h(ϕ)−#a(ϕ) .

Proof. Let E ⊢ x and ϕ ∈ Σ∗
0 be as described in the statement of the lemma. Let F be a witness to α(C;E)[ϕ]

with justifications (Jt), which is to say that F ⊢ xphi, E ⊑ F, and α(C;F) = α(C;E)[ϕ]. Considering Claim 1,
every honest vertex of F\E appears on the subtree rooted at C. As ϕ is terminal, every honest vertex indexed
by ϕ (and its justification) appears in F, so we conclude that

wtF(C) ≥ wtE(C) + #h(ϕ) .

To complete the argument, consider a chain P in F for which C ̸⊂ P . Since C/P ̸= ⋄, the previous
argument yields

wtF(C/P ) ≥ wtE(C/P ) + #h(ϕ) . (6)

Considering that all honest vertices indexed by ϕ appear on the subtree rooted at C, when P/C ̸= ⋄ it
follows that

wtF(P/C) ≤ wtE(P/C) + #a(ϕ) . (7)

Observe that the inequality (7) also holds when P/C = ⋄, as the left-hand side is defined to be zero in this
case. Combining (6) and (7), we conclude that for any chain P for which C ̸⊂ P ,

wtF(C/P )− wtF(P/C) ≥ wtE(C/P ) + #h(ϕ)− (wtE(P/C) + #a(ϕ))

≥ α(C;E) + #h(ϕ)−#a(ϕ) ,

the conclusion of the lemma. ⊓⊔

As discussed earlier, a large Γ k(C,E) guarantees that at most k − 1 children of C are receiving further
new honest vertices.

Claim 2 Let x be a terminal element and ϕ be a phase of Σ∗
0 , let E ⊢ x and F ⊢ xϕ be executions for which

E ⊑ F, and let C be a chain of E. Assume that α(C;E) > #a(ϕ) and that for some k > 1, Γ k(C;E) > #a(ϕ).
Then there is a collection S of no more than k − 1 children of C in F so that the subtrees in F rooted at the
vertices in S contain all honest vertices in F \ E.
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wk−1

F\E

. . .
E

Fig. 2: Green spheres represent honest vertices in F \ E. The blue and red cones represent E and F blocktree
executions, including adversarial vertices that can occupy any position within the blocktrees. Claim 2 estab-
lishes that set S containing fewer than k vertices, roots the set of all honest vertices in F \ E.

Proof. Let x, ϕ, E ⊢ x, F ⊢ xϕ, and C satisfy the conditions of the claim; let (Jt) be the justifications for the
execution F. In light of Claim 1, every honest vertex in F \ E appears in the subtree rooted at C. For each
such honest vertex v in F\E, define µ(v) to be the child of C on the chain terminating at v. We wish to prove
that S = {µ(v) | v ∈ F \ E honest} has no more than k − 1 elements. See Fig. 2 for an example blocktree.

Suppose, to the contrary, that there are k distinct vertices w1, . . . , wk in S. Define vi to be the first honest
vertex in F \ E (in the order given by ϕ) that is placed in the subtree of wi, i.e., it satisfies µ(vi) = wi. Let
Ji be the justification for vi. Recall that vi is placed on the tip of a GHOST chain Di in Ji and observe that
wi is either a vertex on the chain Di or is in fact equal to vi. Define ai to be the total number of adversarial
vertices in F \ E that appear in the subtree at wi. Then define Pi to be the restriction of Di to the blocktree
E; we adopt the notation Pi = Di ↓E for this restriction. Considering that the wi are distinct children of C
(and that µ(vi) ̸= µ(vj) for i ̸= j) we have Pi ∩ Pj = C for any i ̸= j. (Note the possibility that some of the
Pi might be equal to C.) We now observe that for any chain DE in E that contains C and each i ∈ [k],

wtE(DE/C)
(1)

≤ wtJi(DE/C)
(2)

≤ wtJi(Di/C)

(3)

≤ wtE(Di/C) + ai
(4)
= wtE(Pi/C) + ai ,

where we treat wtE(Di/C) = wtE(Pi/C) = 0 if the vertex Di/C does not appear in E. To elaborate: Equality
(1) follows as E ⊑ Ji by Proposition 1; inequality (2) follows because Di is a GHOST chain in Ji; inequality
(3) follows because no more than ai vertices can be added to the subtree at Di/C in F \ E prior to the
appearance of the first honest vertex vi. (Note that in the case when the vertex Di/C does not exist in
E the subtree rooted at Di/C in Ji has no more than ai vertices; thus the inequality is achieved because
wtE(Di/C) = 0.) Equality (4) follows because weights are computed in E: if Di/C ∈ E then Di/C = Pi/C
and equality is immediate; if Di/C ̸∈ E then wtE(Di/C) = 0 = wtE(⋄) = wtE(Pi/C), as desired. Thus, for
each i, Pi satisfies the inequality

max
DE chain in E

C⊂DE

wtE(DE/C)− wtE(Pi/C) ≤ ai .
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To conclude, this collection of k chains P1, . . . , Pk provide an upper bound on Γ k(C;E):

Γ k(C;E) ≤
∑
i

max
DE

(
wtE(DE/C)− wtE(Pi/C)

)
≤
∑
i

ai ≤ #a(ϕ) .

This contradicts the assumption that Γ k(C;E) > #a(ϕ). We conclude that the set S has no more than k− 1
elements. ⊓⊔

In our subsequent analysis we will make use of the following claim, which—roughly speaking—lower-
bounds the weight growth of the heaviest child of C during a phase ϕ by the number of honest vertices that
appeared in the subtree of any child of C during that phase.

Claim 3 (Phase weight growth) Let x be a terminal element and ϕ be a phase of Σ∗
0 , let E ⊢ x and

F ⊢ xϕ be executions for which E ⊑ F, let C be a chain of E and let v ∈ childF(C). Let h ≥ 0 denote the
number of honest vertices from F \ E that appear in the subtree of v in F . Then

wthcF(C) ≥ wthcE(C) + h .

Proof. Let x, ϕ, E ⊢ x, F ⊢ xϕ, C and v satisfy the conditions of the claim; let (Jt) be the justifications for
the execution F . Let D be a chain in E such that C ⊂ D and D achieves wthcE(C), i.e., one that maximizes
wtE(D/C).

If h = 0 then the claim is trivial, otherwise consider the first honest vertex v1 generated in ϕ such that
it is placed in the subtree of v; let t1 be the label of v1 (i.e., t1 = ℓ(v1)). By definition, v1 is placed on a
GHOST chain in Jt1 . In particular, this implies that

wtJt1 (v) ≥ wtJt1 (D/C) ≥ wtE(D/C) = wthcE(C) , (8)

where the second inequality follows as E ⊑ Jt1 by Proposition 1.
As v1 is the first honest vertex placed in the subtree of v, no honest vertices generated in ϕ appear in the

subtree of v in Jt1 . Moreover, there are h honest vertices in F appearing in the subtree of v and corresponding
to ϕ, and as ϕ is terminal, all these vertices in fact appear in F. Therefore, we have

wthcF(C) ≥ wtF(v) ≥ wtJt1 (v) + h . (9)

Inequalities (8) and (9) together imply the claim. ⊓⊔

We are now ready to describe the behavior of Γ k(C,E) in the cold, warm, and the hot cases. The exact
meaning of these states is not tightly connected to the use of these terms in prior work: Here, intuitively, the
cold case corresponds to the most favorable circumstances where there is no collection of k distinct children
of a distinguished vertex that are weight-competitive with the heaviest child. The warm case considers
circumstances where Γ k+1 is cold but with no constraints on Γ k; this changes the combinatorial behavior of
Γ k in an analytically advantageous way. The hot case arises when Γ k (and Γ k+1) are unconstrained.

Lemma 2 (Cold). Let x be a terminal element and ϕ be a phase of Σ∗
0 ; let E ⊢ x be an execution and C

a chain in E. If α(C;E) > #a(ϕ) and Γ k(C;E) > #a(ϕ) then

Γ k(C;E)[ϕ] ≥ Γ k(C;E) +

⌈
#h(ϕ)

k − 1

⌉
−#a(ϕ) .

Proof. Let E ⊢ x and ϕ ∈ Σ∗
0 be as described in the statement of the lemma. Let F be a witness to

Γ k(C;E)[ϕ], i.e., F ⊢ xϕ, E ⊑ F, and Γ k(C;F) = Γ k(C;E)[ϕ]. As α(C;E) > #a(ϕ) and Γ k(C;E) > #a(ϕ),
based on Claim 2 there is a collection S of no more than k − 1 children of C in F so that the F-subtrees
rooted at the vertices in S contain all #h(ϕ) honest vertices in F \ E. Therefore, by the pigeonhole principle,
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there exists a vertex v ∈ childF(C) such that the subtree of v in F contains at least ⌈#h(ϕ)/(k − 1)⌉ honest
vertices generated in ϕ. In turn, Claim 3 implies that

wthcF(C) ≥ wthcE(C) +

⌈
#h(ϕ)

k − 1

⌉
. (10)

On the other hand, we have

max
P1,...,Pk

chains in F
Pi∩Pj=C

∑
i

wtF(Pi/C) ≤ max
P1,...,Pk

chains in E
Pi∩Pj=C

∑
i

wtE(Pi/C) + #h(ϕ) + #a(ϕ) (11)

as #h(ϕ) + #a(ϕ) is the total number of vertices in F \ E. Combining (10) and (11) we have

Γ k(C;F) = k · wthcF(C)− max
P1,...,Pk

chains in F
Pi∩Pj=C

∑
i

wtF(Pi/C)

≥ Γ k(C;E) + k ·
⌈
#h(ϕ)

k − 1

⌉
−#h(ϕ)−#a(ϕ) .

This concludes the proof, as

k ·
⌈
#h(ϕ)

k − 1

⌉
≥ (k − 1) ·

(
#h(ϕ)

k − 1

)
+ 1 ·

⌈
#h(ϕ)

k − 1

⌉
= #h(ϕ) +

⌈
#h(ϕ)

k − 1

⌉
.

⊓⊔

Lemma 3 (Warm). Let x be a terminal element and ϕ be a phase of Σ∗
0 ; let E ⊢ x be an execution and C

a chain in E. Then if α(C;E) > #a(ϕ) and, for some k > 1 either

– Γ k+1(C;E) > #a(ϕ) or
– #h(ϕ) ≤ k

then
Γ k(C;E)[ϕ] ≥ Γ k(C;E)−#a(ϕ) + [(−#h(ϕ)) mod k] .

Prior to presenting the proof of Lemma 3, we note a simple number-theoretic fact.

Claim 4 For a positive integer ℓ and an integer n,

ℓ ·
⌈n
ℓ

⌉
= n+ [(−n) mod ℓ] . (12)

Proof. Note that

ℓ
⌈n
ℓ

⌉
= ℓ ·

⌈
n− (n mod ℓ) + (n mod ℓ)

ℓ

⌉
= ℓ ·

(
n− (n mod ℓ)

ℓ
+

⌈
n mod ℓ

ℓ

⌉)
= n− (n mod ℓ) + ℓ ·

⌈
n mod ℓ

ℓ

⌉
=

{
n if n mod ℓ = 0,
n+ ℓ− (n mod ℓ) otherwise,

= n+ [(−n) mod ℓ] .

Note, for the second equality, that n − (n mod ℓ) is a multiple of ℓ and hence that [n − (n mod ℓ)]/ℓ is an
integer. ⊓⊔
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Proof (of Lemma 3). Let E ⊢ x and ϕ ∈ Σ∗
0 be as described in the statement of the lemma. Let F be a

witness to Γ k(c;E)[ϕ]; i.e., F ⊢ xϕ, E ⊑ F, and Γ k(c;F) = Γ k(c;E)[ϕ]. Let P1, . . . , Pk be a collection of k
chains in F that witness Γ k(C;F) and let Qi = Pi ↓E be the restrictions of these chains to E. Let ai be the
total number of adversarial vertices of F \ E appearing in the subtree rooted at Pi/C; likewise define hi to
be the number of honest vertices of F \ E appearing in the subtree rooted at Pi/C. Then

wtF(Pi/C) = wtE(Pi/C) + ai + hi (13)

and
∑

i ai ≤ #a(ϕ) and
∑

i hi ≤ #h(ϕ).
If Γ k+1(C;E) > #a(ϕ), the executions E ⊢ x and F ⊢ xϕ satisfy the requirements of Claim 2 and we

conclude that there is a collection of no more than k children s1, . . . , sk of C in F with the property that
every honest vertex in F \ E appears on the subtree rooted at one of the si. The same conclusion follows
trivially if #h(ϕ) ≤ k. It follows that at least ⌈#h(ϕ)/k⌉ honest vertices appear in the subtree rooted at some
specific si. Now applying Claim 3, we conclude that

wthcF(C) ≥ wthcE(C) +

⌈
#h(ϕ)

k

⌉
. (14)

With this noted, we are in a position to show that the k chains Qi yield the desired bound on Γ k(C;E):

Γ k(C;E) ≤ k · wthcE(C)−
∑
i

wtE(Qi/C)

≤ k

(
wthcF(C)−

⌈
#h(ϕ)

k

⌉)
−
∑
i

(wtF(Pi/C)− ai − hi)

=

(
k · wthcF(C)−

∑
i

wtF(Pi/C)

)
− k

⌈
#h(ϕ)

k

⌉
+
∑
i

(ai + hi)

≤ Γ k(C;F)− k

⌈
#h(ϕ)

k

⌉
+#a(ϕ) + #h(ϕ) . (15)

Based on Claim 4, we observe that

k

⌈
#h(ϕ)

k

⌉
−#h(ϕ) = (−#h(ϕ)) mod k . (16)

Substituting this into (15) and rearranging terms yields the conclusion of the lemma. ⊓⊔

Lemma 4 (Hot). Let x be a terminal element and ϕ be a phase of Σ∗
0 ; let E ⊢ x be an execution and C a

chain in E. If α(C;E) > #a(ϕ) then

Γ k(C;E)[ϕ] ≥ Γ k(C;E)−#a(ϕ) .

Proof. The proof is a small adaptation of the proof of Lemma 3, so we focus on the details that must be
adapted to this case. As in that proof, we consider a witness F ⊢ xϕ with a family of witness chains Pi and let
Qi be the restrictions of these to E. With the same definitions for ai and hi, equation (13) holds as written.
In this setting, we have no guarantees on Γ k+1(C;E) and instead apply Claim 3 to the vertices Pi/C which
results in the conclusion

wthcF(C) ≥ wthcE(C) + max
i

hi . (17)
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The conclusion now follows by examining the resulting bound that the k chains Qi yield on Γ k(C;E):

Γ k(C;E)

≤ k · wthcE(C)−
∑
i

wtE(Qi/C)

≤ k
(
wthcF(C)−max

i
hi

)
−
∑
i

(wtF(Pi/C)− ai − hi)

=

(
k · wthcF(C)−

∑
i

wtF(Pi/C)

)
+
∑
i

(ai + hi −max
i

hi)

≤ Γ k(C;F) + #a(ϕ) .

⊓⊔

Finally, we show how a large value of Γ 2(C,E) allows us to extend the settlement of C by one more
vertex.

Lemma 5. Let x ∈ Σ∗
0 be a terminal schedule, let E ⊢ x be an execution and C a chain in E. If Γ 2(C;E) > 0

then there exists a vertex v ∈ childE(C) such that

α(C.v;E) ≥ min
{
α(C;E), Γ 2(C;E)

}
.

where C.v denotes the chain C extended by v.

Proof. The assumption Γ 2(C;E) > 0 implies childE(C) ̸= ∅, let v be the heaviest child of C in E, i.e., such
that wtE(v) = wthcE(C). We can rewrite the definition of α(C.v;E) as

α(C.v;E) = min

 min
P chain in E

C ̸⊂P

wtE(C.v/P )− wtE(P/C.v), min
P chain in E
C⊂P ̸⊂C.v

wtE(C.v/P )− wtE(P/C.v)


= min

α(C;E), min
P chain in E
C⊂P ̸⊂C.v

wtE(v)− wtE(P/C.v)


and observe that

min
P chain in E
C⊂P ̸⊂C.v

wtE(v)− wtE(P/C.v) ≥ min
P chain in E
C⊂P ̸⊂C.v

2wtE(v)− wtE(P/C.v)− wtE(v) ≥ Γ 2(C;E)

as desired. ⊓⊔

3.1 Stochastic Analysis of Adversarial Tiebreaking

We begin by collecting a number of probabilistic properties of phases and some tail bounds that will be
useful in the main proof.

Phase distributions statistics. For a given triple ρa, ρh, and ∆, we record some elementary probabilistic
properties of phases and their relationship to elements of Σω

0 . If (H,A) is drawn according to the Poisson
point process P[ρh, ρa;∞], the set H naturally determines an “initial” phase in Σ∗

0 : specifically, defining the
interval (0, t] by t = inf{x | x ≥ ∆, (0, t] ∩H = ∅} determines a phase Φ by restricting (H,A) to t. We let
B[ρh, ρa, ∆] denote the probability law arising from this initial phase Φ ∈ Σ∗

0 . Indeed, the full decomposition of
(H,A) into ∆-phases (discussed after Definition 9) yields a sequence of phases by translating each subsequent
phase so that it commences at 0. This process can be reversed to provide an alternate description of the
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probability law P[ρh, ρa;∞]: fixing ∆ > 0, an infinite sequence of independently drawn phases Φ1, Φ2, . . .,
each distributed according to B(ρh, ρa, ∆), determines an element (H,A) = Φ1Φ2 · · · ∈ Σω

0 with the law
P[ρh, ρa;∞].

To avoid confusion, we routinely use Φ to refer to a random variable drawn from a phase distribution,
while ϕ refers to a particular realization of that variable.

Definition 14 (Poisson, Exponential, and Geometric distributions). We adopt the following nota-
tions for these common distributions.

1. The Poisson distribution with parameter λ > 0. For k ∈ {0, 1, . . .}, Pλ(k) = exp(−λ)λk/k!. If P is
distributed according to Pλ, then Exp[P ] = λ.

2. The Exponential distribution with parameter λ > 0. This distribution on the non-negative reals has
density dEλ ≜ λe−λx dx. If E is distributed according to Eλ, then Exp[E] = 1/λ.

3. The Geometric distribution with parameter λ ∈ [0, 1]. For k ∈ {0, 1, . . .}, Gλ(k) = (1 − λ)kλ. If G is
distributed according to Gλ, Exp[G] = (1− λ)/λ.

Claim 5 Let Φ be a phase distributed according to B[ρh, ρa, ∆]. Then

1. ExpH [|Φ|] = 1− exp(−ρh∆)

ρh exp(−ρh∆)
;

2. Exp(H,A)[#a(Φ)] = ρa · ExpH [|Φ|];
3. PrH [#h(Φ) = 0] = 1− exp(−ρh∆); and

4. ExpH [⊕#h(Φ)] =
1− exp(−ρh∆)

2− exp(−ρh∆)
.

Proof. For a pair (H,A) selected according to P[ρh, ρa;∞], a constant ∆, and t ∈ R+, consider the interval
(t, ℓt] defined by the phase condition that ℓt = inf{ℓ | ℓ > t + ∆ and (ℓ − ∆, ℓ] ∩ H = ∅}; then define
the phase extension at t to be the quantity ℓt arising from this infimum. Thus the initial phase at 0 (and
hence the phase Φ) given by (H,A) is determined by the interval (0, ℓ0] and the full phase decomposition
is given by the intervals (0, ℓ0], (ℓ0, ℓℓ0 ], . . .. As the Poisson process is translation invariant, for any s > 0,
Exp[ℓs] = Exp[ℓ0] = Exp[|Φ|] for any s, so these expectations are determined by the quantity ℓ = Exp[ℓ0].
For the Poisson point process P[ρh;∞] with density parameter ρh, recall that the distribution of the first
arrival time h0 is exponential with parameter ρh (with probability density dEρh

≜ ρhe
−ρhx dx). Observe that

if h0 ≥ ∆ then ℓ0 = ∆; otherwise h0 < ∆ and the interval defining the phase at 0 is union of (0, h0] and
(h0, ℓh0

]; in light of the independence of the Poisson point process in non-overlapping intervals, conditioned
on a particular value for h0 < ∆ the expected value of ℓ0 is h0 + Exp[ℓh0

] = h0 + ℓ. We conclude that

ℓ =

∫ ∆

0

(h0 + ℓ) dEρh
+

∫ ∞

∆

∆dEρh

= Pr[h0 < ∆](Exp[h0 | h0 < ∆] + ℓ) +∆ · Pr[h0 ≥ ∆]

and, considering that Pr[h0 ≥ ∆] = 1− Pr[h0 < ∆], that

ℓ · Pr[h0 ≥ ∆] = Pr[h0 < ∆] · Exp[h0 | h0 < ∆] +∆ · Pr[h0 ≥ ∆] . (18)

It remains to compute Exp[h0 | h0 < ∆]; recall that the exponential distribution is memoryless, in the sense
that the distribution of h0 conditioned on h0 ≥ T is exactly the same exponential distribution shifted to
start at T . Thus

1

ρh
= Exp[h0] = Exp[h0 | h0 < ∆] · Pr[h0 < ∆] + Exp[h0 | h0 ≥ ∆] · Pr[h0 ≥ ∆]

= Exp[h0 | h0 < ∆] · Pr[h0 < ∆] +
(
∆+

1

ρh

)
· Pr[h0 ≥ ∆]
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and we conclude that

Exp[h0 | h0 < ∆] · Pr[h0 < ∆] =
1

ρh
− (∆+

1

ρh
) Pr[h0 ≥ ∆] . (19)

Finally, observe that Pr[h0 ≥ ∆] = exp(−ρh∆), as this is the probability that the Poisson point process has
no arrivals in (0, ∆] equal to Pρh∆(0) = exp(−ρh∆). Combining equations (18) and (19) and rearranging
terms, we conclude that

Exp[ℓs] = ℓ =
1

ρh

Pr[h0 < ∆]

Pr[h0 ≥ ∆]
=

1− exp(−ρh∆)

ρh exp(−ρh∆)
,

as desired. This establishes equality 1 of the Claim. As the Poisson process for H and A are independent, and
the expected number of adversarial successes in an interval I is ρa|I|, we immediately conclude equality 2 of
the Claim.

As for equality 3 of Claim, observe that the probability that a phase is “trivial” (which is to say that it
has no honest successes) is precisely the probability that H ∩ [0, ∆) = ∅; for the Poission point process with
parameter ρh, this is given by Pρh∆(0) = exp(−ρh∆).

Finally, we use a similar approach to establish the expected parity of the number of honest arrivals in a
phase. We start by determining the distribution of #hΦ0 = #h(0, ℓ0]. Again expanding in terms of the first
honest success h0 we find that: (i.) If h0 ≥ ∆, the phase has no honest successes and #hΦ0 = 0; otherwise
h0 < ∆, #hΦ0 = 1 + #h(h0, ℓh0 ], and the distribution of #h(h0, ℓh0)—for any fixed h0—is identical to that
of #a(0, ℓ0). We conclude that the distribution of the random variable #hΦ0 = #h(0, ℓ0] is geometric:

Pr[#h(0, ℓ0] = k] = (Pr[h0 < ∆])k Pr[h0 ≥ ∆] = (1− exp(−ρh∆))k exp(−ρh∆) .

Then we see that
Pr[#hΦ0 odd] = Pr[#hΦ0 even] · (1− exp(−ρh∆))

by considering the two infinite sums that determine these probabilities. Combining this with the relation
Pr[#hΦ0 odd] + Pr[#hΦ0 even] = 1 we find that

Pr[#hΦ0 odd] =
1− exp(−ρh∆)

2− exp(−ρh∆)
.

⊓⊔

In preparation for the main theorem, we record some additional probabilistic tools.

Definition 15 (Stochastic dominance). Let P and Q be two real-valued random variables. We say that
P stochastically dominates Q if, for all λ ∈ R, Pr[Q ≥ λ] ≤ Pr[P ≥ λ].

Definition 16 (Moment generating function). Let X be a real-valued random variable. The moment
generating function is defined to be MX(z) = Exp[ezX ] provided that this expectation exists in a neighborhood
of zero.

Definition 17 (Subexponential distributions). Let X be a non-negative real-valued random variable.
We say that X is subexponential if there exists λ > 0 so that for all 0 ≤ z < λ, MX exists and

MX(z) ≤ λ

λ− z
.

To explain the name, the moment generating function of the exponential distribution Eλ is λ/(λ−z) (defined
on the interval (−λ, λ)).

Proposition 3. Let X be a non-negative random variable for which MX(λ) = c for some λ > 0; then
Pr[X ≥ t] ≤ c · exp(−λt). In particular, if X is subexponential, then Pr[X ≥ t] = exp(−Ω(t)).
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Proof. Let X be a non-negative random variable satisfying MX(λ) = Exp[eλX ] = c. Then

Pr[X ≥ t] = Pr[eλX ≥ eλt] ≤ Exp[eλX ]

eλt
=

c

eλt
= c · exp(−λt) .

When X is subexponential, satisfying MX(z) ≤ λ
λ−z for all 0 ≤ z < λ, we have Pr[X ≥ t] ≤ 2 exp(−λ

2 t),
with z = λ

2 .

Claim 6 Let Φ be a phase drawn according to B[ρh, ρa, ∆]. Then

– #hΦ is geometrically distributed, with parameter exp(−ρh∆);
– #aΦ is subexponential.

Proof. As in the proof of Claim 5, consider (H,A) drawn according to P[ρh, ρa;∞] and, for any t ∈ R+,
consider the interval (t, ℓt] defined by the phase condition that ℓt = inf{ℓ | ℓ > t+∆ and (ℓ−∆, ℓ]∩H = ∅}.
The quantity ℓt is a random variable called the phase extension at t. Then the initial ∆-phase Φ corresponds
to the interval (0, ℓ0]. Again expanding around the position h0 of the first element of H we see that

#hΦ = #h(0, ℓ0] =

{
0 if h0 > ∆,

1 + #h(h0, ℓh0
] if h0 ≤ ∆.

Observe that a “trivial” phase—that is, one for which #hΦ = 0—is observed with probability exactly
exp(−ρh∆), as this is the probability that (0, ∆]∩H = ∅, so that |Φ| = ∆ and ℓ0 = ∆. Otherwise h0 ≤ ∆ and
the result is one more than the number of elements of H in (h0, ℓh0

]. If H = {h0, h1, . . .} with h0 < h1 < · · · ,
we conclude that #hΦ = 0 exactly when h0 > ∆ and that in general, #hΦ = k > 0 if hk is the first element
of H for which hk < hk−1 + ∆. Observe that by the memoryless property of the Poisson process, under
any conditioning on the values h0, . . . , hk−1, the probability that hk > hk−1 +∆ is exactly exp(−ρh∆). We
conclude that Pr[#hΦ = k] = (1− λ)kλ, where λ = exp(−ρh∆).

For a value (H,A), note that |Φ| ≤ ∆·(#hΦ+1) and hence that #aΦ =
∣∣A∩(0, |Φ|]

∣∣ ≤ ∣∣A∩(0, ∆·(#hΦ+1)]
∣∣.

Recalling that H and A are independent, conditioned on a particular value for H (and hence a particular
value |Φ| and #hΦ), the random variable #aΦ has the Poisson distribution with parameter ρa|Φ|. This is
stochastically dominated by the Poisson distribution with parameter ρa(1 +#hΦ), which has the advantage
that #hΦ has a simple (geometric) distribution.

The statement then follows from the following general fact. Let a, λ > 0, let G have the geometric
distribution Gλ and let P be drawn from the distribution PG(1+a). Then P is subexponential. Recall that
the moment generation function of the Poisson distribution Pµ with parameter µ is z 7→ exp(µ · (ez − 1)). It
follows that

mP (z) = Exp[ezP ] = ExpG ExpP [e
zP | G] = ExpG

[
e(aG+a)·(ez−1))

]
= ea·(e

z−1) · ExpG
[
eaG·(ez−1)

]
= ea·(e

z−1) ·
∞∑
g=0

(1− λ)λgeag·(e
z−1)

= ea·(e
z−1) · (1− λ)

∞∑
g=0

[
λea·(e

z−1)
]g

= ea·(e
z−1) · 1− λ

1− λea·(ez−1)
=

1− λ

e−a·(ez−1) − λ
.

Observe that this function is defined, and in fact continuously differentiable, for all 0 ≤ z < ζ0 = ln(1 +
ln(1/λ)/a). (Recall that 0 < λ < 1 and a > 0.) It follows that for any 0 < ζ < ζ0, (d/dz)MP (z) is bounded
on [0, ζ]. Recall that the moment generating function for an exponential random variable E with law Eγ is
ME(z) = γ/(γ− z) and that (d/dz)ME(z) ≥ 1/γ over the interval [0, γ). It follows that for sufficiently small
γ < ζ0, (d/dz)ME(z) ≥ (d/dz)MP (z) for the entire range 0 ≤ z < γ. As ME(0) = MP (0), we conclude that
ME(z) ≥ MP (z) on this interval, as desired. ⊓⊔
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Proposition 4 (Bernstein’s inequality [18, (§2.8; §2.13)]). Let X1, . . . , Xn be independent, identically-
distributed real-valued random variables for which X+

i = max(0, Xi) is subexponential, satisfying MX+
i
(z) ≤

λ/(λ− z) for some λ > 0 and all 0 ≤ z ≤ λ (cf. Def. 17). Then, defining S =
∑

i(Xi − Exp[Xi]),

c = 2/λ and v = n ·max(16/λ2,Exp[X2
i ]) ,

for all t > 0,
Pr[S ≥

√
2vt+ ct] ≤ e−t .

Remark 1. The version of the inequality that we record in Proposition 4 differs from that in [18, §2.8], as it
is convenient for us to have a formulation written in terms of subexponential random variables. The version
of [18, §2.8] asserts the same inequality under the conditions that

n∑
i=1

Exp[X2
i ] ≤ v and

n∑
i=1

Exp[Xq
i ] ≤

q!

2
vcq−2 for all integers q ≥ 3,

for positive numbers v and c. However, as discussed in [18, §2.13], for a nonnegative subexponential random
variable X+

i the q-th moment of X+
i does not exceed 2q+1 q!

aq , for every positive integer q. These two together
define the bounds on c and v that yield the results mentioned in Proposition 4.

Theorem 1 (Security of GHOST with Adversarial Tiebreaking). Let ρh, ρa, and ∆ satisfy

ρa > ρh · exp(−ρh∆)

2− exp(−ρh∆)
. (20)

Then GHOST with adversarial tiebreaking provides eventual settlement for P[ρh, ρa;∞], in the sense that if
w ∈ Σ∞

0 is drawn according to P[ρh, ρa;∞], Φ1Φ2 . . . is the decomposition of w into phases, and (E1 ⊢ Φ1) ⊑
(E2 ⊢ Φ1Φ2) ⊑ · · · is a sequence of executions, then with probability 1 there is a sequence (C0, C1, · · · ) so
that

1. C0 is the common root of the executions Et, t > 0,
2. for each t, there is a T so that C0, C1, . . . , Ct is a chain in ET , and
3. for each t, there is a (settlement) time S > T so that for all S′ ≥ S, α(Ct;ES′) > #a(ΦS′+1)+#h(ΦS′+1).

Proof. It follows directly from Equation 20 that for Φ drawn according to B[ρh, ρa, ∆] we have

Exp[#a(Φ)] < Exp[⊕(#h(Φ))] . (21)

In the context of the executions E1, . . . indexed by s, we say that a quantity q(s) “ascends” if q(s) is defined
for sufficiently large s, is determined by Es ⊢ Φ1 · · ·Φs, and q(s) = Ω(s) (which is to say that there is a
constant η > 0 so that q(s) > η · s for sufficiently large s).

First of all, we remark that it suffices to show that for each Ct in the desired sequence, α(Ct,Es) as-
cends. Observe that if α(Ct,Es) = Ω(s), the probability that #a(Φs+1) + #h(Φs+1) exceeds α(Ct,Es) is
exp(−θ(s)) (because #h(Φ) is geometric and #a(Φ) is subexponential and hence has exponential tail bounds
by Proposition 3). By the Borel-Cantell lemma, this can only occur for a finite number of s. (Recall that the
Borel-Cantelli lemma asserts that if A1, A2, . . . is a sequence of events for which

∑
i Pr[Ai] < ∞, then with

probability 1 only a finite number of the Ai occur [9, §8.3.4].)
Assume now that α(Ci,Es) ascends for each of the vertices in some chain C0, . . . , Ct (appearing in some

Ej); we wish to show that there is a child Ct+1 of Ct (perhaps appearing in some later Ej) for which α(Ct+1,Es)
also ascends. Focusing on Ct, we will show that there is an initial value k∗ so that Γ k∗

(Ct,Es) ascends and
that, for each smaller k, if Γ k(Ct,Es) ascends then Γ k−1(Ct,Es) ascends. It follows that Γ 2(Ct;Es) ascends
and, in light of Lemma 5, this suffices to show that there is a child Ct+1 for which α(Ct+1;Es) ascends
(because the minimum of two values that ascend also ascends).

Combining Lemmas 3 and 4, the change in Γ k(C,E) arising from a new phase Φ is at least max(k −
#h(Φ), 0) − #a(Φ); here we use the second case of the assumptions in Lemma 3 with no requirement on
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Γ k+1. When Φ is drawn from B, it follows that the expected change is at least k−Exp[#h(Φ)]−Exp[#a(Φ)];
thus there is a value k∗ for which this expected change is positive. Consider then the sequence of random
variables Γ k∗

(Ck,Es) (indexed by s) commencing at the first value s0 for which α(Ck,Es) exceeds #a(Φs+1)
for all s ≥ s0. These random variables have increments (Γ k∗

(Ct,Es+1) − Γ k∗
(Ct,Es)) given by (at least)

k∗ −#h(Φs+1)−#a(Φs+1), which has positive expectation. Defining

qk∗(s) =

s∑
i=1

(k∗ −#h(Φi)−#a(Φi))

we have Exp[qk∗(s)] = Ω(s). As #a(Φs) is subexponential (and #h(Φs) is geometric), the Bernstein tail
bound (Proposition 4) applies to each qk∗(s) (showing exponential tail bounds in s) and, again by the
Borel-Cantelli lemma, qk∗(s) = Ω(s) with probability 1. It follows that Γ k∗

(Ct,Es) ascends regardless of the
starting point s0.

This same argument, with a small alteration, serves to show that Γ k∗−1(Ct,Es) ascends: in this case the
starting point s0 of interest is the point at which both α(Ck,Es) and Γ k∗

(Ck,Es) exceed #a(Φs) for all larger
s, which is guaranteed to exist as they both ascend. Observe that the change in Γ k∗−1(Ct,Es) guaranteed
by Lemma 3 under the alternative assumption that Γ k∗

() is under control is [(−#h(Φs+1)) mod (k∗ − 1)]−
#a(Φs+1). It is easy to confirm that for a geometrically distributed random variable X (starting at 0)
and an integer ℓ ≥ 2, we have Exp[(−X) mod ℓ] ≥ Exp[(−X) mod 2] = Exp[⊕X]. Thus (21) implies that
[(−#h(Φs+1)) mod (k∗−1)]−#a(Φs+1) has positive expectation. As above, the sum of these increments upto
s is Ω(s) in expectation and again is Ω(s) with probability 1; it follows that these sums also ascend even if
starting at a arbitrary starting point s0. Applying this inductively, we conclude that Γ 2(Ct;Es) ascends, as
desired. ⊓⊔

4 Security of GHOST with Deterministic Tiebreaking

We define deterministic tiebreaking executions by requiring executions as defined in Def. 8 to satisfy the
following additional constraint reflecting the deterministic tiebreaking rule in GHOST.

Definition 18 (Deterministic tiebreaking execution). Let w = (H,A;L) be a schedule in Σ∗
0 and let

E ⊢ w be an execution for w with justifications (Jt). Then E is called a ∆-deterministic tiebreaking execution
over w (or simply deterministic tiebreaking execution when w and ∆ are understood from context), and we
write E ⊢det w, if there exists an injective “preference function” p : V → R such that:

4. for any t ∈ H, the corresponding honest vertex vt satisfying ℓ(vt) = t, its justification Jt, the GHOST
chain G in Jt terminating in the parent of vt, and for any vertex u ∈ G the following property is satisfied:

∀u′ ∈ sibJt(u) : [(wtJt(u) = wtJt(u
′)) ⇒ (p(u) > p(u′))] . (22)

For notational convenience, we sometimes apply p(·) also to ⋄ with the understanding that p(⋄) = ∞.

Definition 19 (Strictly dominant vertices; C-dominant chains). In the context of preference function
p(·) for an execution E ⊢ w, we say that a vertex u is strictly dominant if it is dominant (in the sense of
Def. 7) and additionally satisfies the condition in the equation (22). D is said to be a strictly C-dominant
chain in E if wtE(D/C) ≥ wtE(Q/C) for any chain Q and if wtE(D/C) = wtE(Q/C) then p(D/C) > p(Q/C).

In several cases considered below we shall have two schedules w, x and two deterministic tiebreaking execu-
tions E ⊢det w and F ⊢det wx; in this setting, the preference function p that realizes F ⊢det wx also realizes
E ⊢det w and we shall simply assume without loss of generality that the preference functions coincide.

In the case with deterministic tiebreaking, we find that circumstances in which low-preference vertices are
strictly dominant play a special role in the analysis, as they can change the possibility that honest successes
in a phase are entirely neutralized; with foresight, we define the following notion of “exceptional margin”
which will be used to formally reason about this. (We remark that this is directly related to the behavior of
the two distinct “resting states” in the deterministic GHOST attack in the next section.)
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Definition 20 (k-exceptional margin; exceptional chains). Let E ⊢det x be an execution and C be a
chain in E; let k > 1. The k-exceptional margin of C in E is the quantity

Γ̂ k(C;E) ≜ min
P1, . . . , Pk chains in E

Pi∩Pj=C
p(Pi/C)≥p(D/C)

k∑
i=1

(
wtE(D/C)− wtE(Pi/C)

)
, (23)

where D is a strictly C-dominant chain in E. Note that Γ̂ k(C;E) ≥ Γ k(C;E); the event that these coincide
plays a special role in the analysis, so we define the following notation to reflect this.

ekE(C) =

{
1 if Γ̂ k(C;E) = Γ k(C;E),
0 otherwise.

If ekE(C) = 1 then we say that C is k-exceptional (or simply exceptional) in E.

The following is an analogue of Lemma 3 for deterministic tiebreaking.

Lemma 6 (Deterministic Warm). Let x be a terminal schedule and ϕ be a phase of Σ∗
0 . Let E ⊢det x and

F ⊢det xϕ be deterministic tiebreaking executions for which E ⊑ F, and let C be a chain in E. Let k ≥ 2. If
α(C;E) > #a(ϕ) and Γ k+1(C;E) > #a(ϕ) then

Γ k(C;F) ≥ Γ k(C;E)−#a(ϕ) + 1[#h(ϕ)>0] +
[
eF − eE

]
,

where eE = ekE(C) and eF = ekF(C), and 1[#h(ϕ)>0] =

{
1 if #h(ϕ) > 0,
0 otherwise.

Towards proving Lemma 6, we begin with a strenghtening of Claim 3 for deterministic tiebreaking.

Claim 7 (Phase weight growth under det. tiebreaking) Let x be a terminal element and ϕ be a phase
of Σ∗, let E ⊢det x and F ⊢det xϕ be deterministic tiebreaking executions for which E ⊑ F, and let C be a
chain in E. Moreover, let d ∈ childE(C) and v ∈ childF(C) be two vertices such that wtE(d) = wthcE(C) and
p(d) > p(v). Assume that the number of honest vertices h from F \ E that appear in the subtree of v in F is
positive. Then

wthcF(C) ≥ wthcE(C) + h+ 1 .

Proof. The proof is analogous to the proof of Claim 3 with a small adaptation to leverage the implications
of deterministic tiebreaking, where the non-preferred vertex v must carry a strictly heavier subtree than its
preferred sibling d in order to be included in a GHOST chain. The full proof follows for completeness.

Let x, ϕ, E ⊢det x, F ⊢det xϕ, C and v satisfy the conditions of the claim; let (Jt) be the justifications for
the execution F .

Consider the first honest vertex v1 generated in ϕ such that it is placed in the subtree of v; let t1 = ℓ(v1)
be the label of v1. By definition, v1 is placed on a GHOST chain in Jt1 . In particular, this implies that

wtJt1 (v) > wtJt1 (d) ≥ wtE(d) = wthcE(C) . (24)

The first, strict, inequality captures the main difference to Claim 3: since we have p(d) > p(v), the strict
inequality is implied by the fact that the chain terminating in the parent of v1 is a GHOST chain in Jt1 . The
second inequality follows as before: We have E ⊑ Jt1 as x is terminal.

As v1 is the first honest vertex placed in the subtree of v, no honest vertices generated in ϕ appear in the
subtree of v in Jt1 . Moreover, there are h honest vertices in F appearing in the subtree of v and corresponding
to ϕ, and as ϕ is terminal, all these vertices in fact appear in F. Therefore, we have

wthcF(C) ≥ wtF(v) ≥ wtJt1 (v) + h . (25)

Inequalities (24) and (25) together imply the claim. ⊓⊔
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Additionally, looking ahead, in the proof of Lemma 6, whenever we will consider the case eF = 1 (in
which a stronger bound needs to be proven), we will be able to benefit from the following claim applied to F.

Claim 8 Let x be a terminal element of Σ∗, let E ⊢det x be a deterministic tiebreaking execution, and let C
be a chain in E. Assume that for some k ≥ 2 the chain C is k-exceptional in E and that Γ k+1(C;E) > 0.
Then any strictly dominant child D of C is strictly weight dominant in the sense that wtE(D) > wtE(P ) for
any sibling P of D.

Proof. As C is k-exceptional in E, Γ k(C;E) = Γ̂ k(C;E) and there exist k chains P1, . . . , Pk in E that witness
Γ̂ k (and hence Γ k). The claim is vacuously true if C has no children; otherwise it has a strictly dominant
child D.

We first establish that D must appear in the set {Pi/C}. Towards that, we start by arguing that if, to
the contrary, D does not appear in {Pi/C}, then

∀i ∈ [k] : wtE(Pi/C) ≥ wtE(D) . (26)

Otherwise, there is a Pi for which wtE(Pi/C) < wtE(D) = wthcE(C) and replacing the chain Pi with (the
chain terminating at) D would reduce the value of

∑
i wthcE(C) − wtE(Pi), which violates the assumption

that the {Pi} witness Γ k(C;E), proving (26) in this case. Equation (26) then directly implies Γ k(C;E) ≤ 0.
Considering that wtE(D) ≥ wtE(D) = wthcE(C), adding (the chain to) D to the set {Pi} results in a collection
of k+ 1 chains satisfying the conditions in the definition of Γ k+1 for which Γ k+1(C;E) ≤ 0; this contradicts
the assumption of the lemma; concluding the proof that D appears in {Pi/C}.

Knowing that D appears in {Pi/C}, and these chains satisfy the definitional criteria of Γ̂ k, all chains
distinct from (the chain to) D must have higher preference; as D is strictly dominant, it follows that wtE(D) >
wtE(Pi/C) for any Pi/C ̸= D, as desired. ⊓⊔

With the above claims in place, we now proceed to prove Lemma 6.

Proof (of Lemma 6). Let P1, . . . , Pk be a collection of k chains in F that realize Γ k(C;F) and let Qi = Pi ↓E
be the restrictions of these chains to E. Let ai be the total number of adversarial vertices of F \ E appearing
in the subtree rooted at Pi/C; likewise define hi to be the number of honest vertices of F \ E appearing in
the subtree rooted at Pi/C. Then

wtF(Pi/C) = wtE(Pi/C) + ai + hi (27)

and
∑

i ai ≤ #a(ϕ) and
∑

i hi ≤ #h(ϕ). Furthermore, let P ′
1, . . . , P

′
k be a collection of k chains in E that

realize Γ k(C;E). Finally, let DE and DF be some strictly C-dominant chains in E and F, respectively.
Noticing that by definition

Γ k(C;F)− Γ k(C;E) =

(
k · wthcF(C)−

∑
i

wtF (Pi/C)

)
−

(
k · wthcE(C)−

∑
i

wtE(P
′
i/C)

)

≥

(
k · wthcF(C)−

∑
i

wtF (Pi/C)

)
−

(
k · wthcE(C)−

∑
i

wtE(Qi/C)

)

= k ·
(
wthcF(C)− wthcE(C)

)
−

(∑
i

wtF (Pi/C)−
∑
i

wtE(Qi/C)

)
= k ·

(
wthcF(C)− wthcE(C)

)
−
∑
i

ai −
∑
i

hi , (28)

in conjunction with the above upper bound
∑

i ai ≤ #a(ϕ), the claim of the lemma reduces to proving

k ·
(
wthcF(C)− wthcE(C)

)
≥
∑
i

hi + 1[#h(ϕ)>0] +
[
eF − eE

]
, (29)
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which will be our goal in some of the cases below.
We first address the special case #h(ϕ) = 0. Notice that if (eE, eF) ̸= (0, 1), then for #h(ϕ) = 0 the

statement of the lemma follows directly from Lemma 4, it hence remains to consider the case (eE, eF) = (0, 1),
i.e., Γ̂ k(C,E) > Γ k(C,E) and Γ̂ k(C,F) = Γ k(C,F); we can hence without loss of generality assume that {Pi}
also witness Γ̂ k(C,F). Notice that if DF /C ̸= DE/C then

wthcF(C) = wtF(DF /C) > wtE(DE/C) = wthcE(C)

which suffices to establish (29) in this case; we can hence assume DF /C = DE/C. Moreover, eF = 1 implies
that

∀i ∈ [k] : p(Qi/C)
(a)

≥ p(Pi/C) ≥ p(DF /C) = p(DE/C) (30)

where we have equality in (a) unless Qi/C = ⋄ ≠ Pi/C. Therefore, since Γ̂ k(C,E) > Γ k(C,E), we must have∑
i

wtE(Qi/C) ≤
∑
i

wtE(P
′
i/C)− 1 , (31)

which suffices to establish the lemma for this case: repeating the computation (28) while taking (31) into
account gives us

Γ k(C;F)− Γ k(C;E) ≥ 1−
∑
i

ai ≥ 1−#a(ϕ)

as desired for this case. Given this, from now on we can assume #h(ϕ) > 0.
We proceed by case analysis on the pair (eE, eF):

(eE, eF) = (1, 0): In this case the statement follows directly from Lemma 4.
(eE, eF) = (0, 0): Notice that wthcF(C) − wthcE(C) ≥ 1 as #h(ϕ) > 0. Moreover, based on Claim 3 we also

have wthcF(C) − wthcE(C) ≥ maxi∈[k] hi. Therefore, if for any i, j ∈ [k] we have hi = 0 or hi ̸= hj ,
then (29) is clearly satisfied. We can hence assume ∀i, j ∈ [k] : hi = hj > 0; let h∗ denote this joint value
taken by all hi.
Now we consider two subcases depending on whether {Qi} witness Γ k(C;E):
1. Assume Γ k(C;E) = k · wthcE(C) −

∑
i wtE(Qi/C). Then eE = 0 implies that there exists an index

j ∈ [k] such that p(Qj) < p(DE). As argued above, we have hj > 0. We can hence apply Claim 7 to
obtain

k ·
(
wthcF(C)− wthcE(C)

)
≥ k · (h∗ + 1) > k · h∗ =

∑
i

hi ,

as is desired to prove (29) in this case.
2. Assume otherwise, i.e., Γ k(C;E) ≤ k ·wthcE(C)−

∑
i wtE(Qi/C)−1. Repeating the computation (28)

with this in mind gives us

Γ k(C;F)− Γ k(C;E) ≥ k ·
(
wthcF(C)− wthcE(C)

)
−
∑
i

ai −
∑
i

hi + 1 ≥ 1−#a(ϕ)

as desired in this case, where the last inequality is implied by Claim 3.
(eE, eF) = (1, 1): We can focus on the case ∀i ∈ [k] : hi = h∗ > 0 by the same argument as in the case

(eE, eF) = (0, 0), hence our goal of proving (29) reduces to showing that wthcF(C)−wthcE(C) > h∗. Let
i ∈ [k] be any index such that DF does not lie on Pi. Since Γ k+1(C;E) > #a(ϕ) by assumption, Lemma 4
gives us Γ k+1(C;F) > 0 and we can apply Claim 8 to F to conclude that wtF(Pi/C) < wtF(DF ) and
hence

wthcE(C) + h∗ = wthcE(C) + hi ≤ wtF(Pi/C) < wtF(DF ) = wthcF(C)

as desired.
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(eE, eF) = (0, 1): In this case our goal (29) translates to

k ·
(
wthcF(C)− wthcE(C)

)
≥
∑
i

hi + 2 . (32)

Given that eF = 1, we can without loss of generality assume that {Pi} also witness Γ̂ k(C,E). Notice that
if ∀i ∈ [k] : hi = 0 then (32) is satisfied, as k ≥ 2 and wthcF(C) − wthcE(C) ≥ 1 as #h(ϕ) ≥ 1; we can
hence assume

∑
i hi > 0. Moreover, Claim 3 again gives us wthcF(C)− wthcE(C) ≥ hmax ≜ maxi hi, and

if wthcF(C)− wthcE(C) > hmax then (32) is again satisfied, and so we can assume

wthcF(C)− wthcE(C) = hmax . (33)

Using Γ k+1(C;E) > #a(ϕ) and Lemma 4 to again observe that Γ k+1(C;F) > 0, we can apply Claim 8
to F to conclude that

wtF(DF /C) > wtF(Pi/C) (34)

for all i such DF /C ̸= Pi/C, in particular DF /C ̸= ⋄. However, any honest vertices in F \ E appear on
a tree rooted in some Pi/C only once the weight of that subtree is at least wthcE(C), which together
with (33) and (34) gives us hi < hmax for all i ∈ [k] such that DF /C ̸= Pi/C. Notice that this implies
that if k ≥ 3 then (32) is satisfied, hence it remains to consider the case where k = 2 and without loss
of generality we have that DF /C = P1/C and h1 = hmax = h2 + 1.
We again consider two subcases depending on whether {Qi} witness Γ 2(C;E):
1. Assume Γ 2(C;E) = 2 · wthcE(C) −

∑
i wtE(Qi/C). Then eE = 0 implies that there exists an index

j ∈ {1, 2} such that p(Qj/C) < p(DE/C). Since {Pi} witness Γ̂ 2(C,E) and DF /C = P1/C, we in
particular have p(P2/C) ≥ p(P1/C) and we can therefore conclude p(Q1/C) < p(DE/C). Applying
Claim 7 to P1 gives us wthcF(C)− wthcE(C) ≥ hmax + 1, which implies (32).

2. Assume otherwise, i.e., Γ 2(C;E) ≤ 2 · wthcE(C)−
∑

i wtE(Qi/C)− 1; we can now conclude that

Γ 2(C;E) ≤ 2 · wthcE(C)−
∑
i

wtE(Qi/C)− 1

= 2
(
wthcF(C)− hmax

)
−
∑
i

(wtF(Pi/C)− ai − hi)− 1

= (2 · wthcF(C)−
∑
i

wtF(Pi/C))− (2hmax −
∑
i

hi) +
∑
i

ai − 1

≤ Γ 2(C;F) + #a(ϕ)− 2

as desired, where the last step uses 2hmax − h1 − h2 = 1 established earlier.
⊓⊔

4.1 Stochastic Analysis of Deterministic Tiebreaking

Theorem 2 (Security of GHOST with Deterministic Tiebreaking). Let ρh, ρa, and ∆ satisfy

ρa > ρh · exp(−ρh∆) . (35)

Then the GHOST protocol with deterministic tiebreaking provides eventual settlement for P[ρh, ρa;∞] with
delay ∆, in the sense that if w ∈ Σω

0 is drawn according to P[ρh, ρa;∞], Φ1Φ2 . . . is the decomposition of w
into phases, and (E1 ⊢det Φ1) ⊑ (E2 ⊢det Φ1Φ2) ⊑ · · · is a sequence of deterministic tiebreaking executions,
then with probability 1 there is a sequence (C0, C1, · · · ) of vertices so that

1. C0 is the common root of the executions Et, t > 0,
2. for each t, there is a T so that C0, C1, . . . , Ct is a chain in ET , and
3. for each t, there is a (settlement) time S > T so that for all S′ ≥ S, α(Ct;ES′) > #a(ϕS′+1)+#h(ϕS′+1).
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Proof. The proof shares many elements with that of Theorem 1. The two significant departures from the
adversarial setting are that (i.) the “warm” case increments (Lemma 6) are more favorable (cf. Lemma 3), in
the sense that the parity ⊕(#h(ϕ)) is replaced with 1#h(ϕ)>0; (ii.) the warm case increment introduces the
“exception” term (eF − eE).

Focusing first on (ii.), despite the apparent additional complexity that exceptional blocktrees present in
the analysis of Lemma 6, they have no large-scale effect on the security region. In particular, observe that
when Lemma 6 is applied to a sequence of executions (Es0 ⊢ Φ1 . . . Φs0) < · · · ⊑ (Es0+t ⊢ Φ1 . . . Φs0+t) and
one considers the aggregate lower bound established by that Lemma for the change in Γ k over this sequence
of t + 1 executions, the contributions arising from the exceptional terms eF − eE telescope: the final value
thus depends only on the terms arising from the relevant Φi with two additive boundary terms in {−1, 0, 1}.
In particular, establishing that the relevant sums

∑s0+t
i=s0

1#h(ϕi)>0 −#a(ϕi) ascend (in the sense of the proof
of Theorem 1), is still sufficient to prove that the associated Γ k ascends.

As for (i.), this is directly reflected in the inequality (35); in particular, inequality (35) implies that
Exp[#a(ϕ)] < Pr[#h(ϕ)]; this is the necessary condition for the warm case to have positive expected incre-
ments. The remaining details follow the proof of Theorem 1. ⊓⊔

5 Tight Attacks on GHOST

In this section, we present and analyze two balancing attacks on the GHOST protocol, corresponding to
the adversarial and deterministic tiebreaking settings, in which the attacker establishes and perpetuates two
chains of equal weight. In both cases, the attacks prevent consensus when the parameters are outside the
region of security.

In both cases, our analysis of the attack employs the Bennet-Bernstein Inequality, which we hence note
here for reference.

Proposition 5 (Bennett–Bernstein Inequality [18, §2.7]). Let X1, . . . , Xn be independent random
variables with finite variance such that Xi ≥ −b for some b > 0 for all i ≤ n. Let v =

∑n
i=1 Exp

[
X2

i

]
and

S =

n∑
i=1

(Xi − Exp[Xi])

Then for any t > 0,

Pr[S ≤ −t] ≤ exp

(
− t2

2(v + bt/3)

)
.

5.1 An Attack on Adversarial Tiebreaking

The attack in the setting with adversarial tiebreaking proceeds in two steps: preparation and balancing.
The preparation step. In the preparation step, the attacker ceases all production of blocks and waits
for a doubly isolated honest block C followed by a phase with a positive even number of honest success.
During the even phase, the attacker delays exposure of each honest block until the following block is played
so as to create two chains of equal weight. See Fig. 3. Operationally, the adversary attempts to complete the
preparation step after each doubly-isolated honest block; in the event of a following phase with odd length,
the entire process is restarted.
The balancing step. The preparation step results in two distinct children, g1 and g2, of C with equal
weight (determined by the length of the preparatory phase). To continue the attack, the adversary attempts
to ensure a weight balance between the gi at the end of every phase. Assuming that the gi have identical
weight at the beginning of a phase, the adversary delays exposure of honest blocks as in the preparation
phase so that they are played in the trees rooted at g1 and g2 in an alternating fashion beginning with g1. All
adversarial blocks are forged as children of g2 and are initially unexposed. If the phase concludes with a even
number of honest nodes, g1 and g2 conclude with equal (exposed) weight. Otherwise, wt(g1) = wt(g2) + 1.
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Preparation Balancing: Odd Phase
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Fig. 3: Attack on adversarial tiebreaking GHOST: All adversarial blocks are forged as children of g2 and are
initially unexposed. If the phase concludes with an even number of honest nodes, g1 and g2 conclude with
equal (exposed) weight. Otherwise, wt(g1) = wt(g2) + 1; if the adversary has an unexposed block on g2, this
block is exposed, balancing the trees.
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Fig. 4: Attack on adversarial tiebreaking GHOST (4a) and deterministic tiebreaking GHOST (4b).

If the adversary has an unexposed block on g2, this block is exposed, balancing the trees. Otherwise, the
attack is deemed a failure and the entire process (including preparation) is repeated.

The balancing step is indicated in the state diagram of Fig. 4a. The two pictured triangles indicate
subtrees of identical weight known to all parties; additional blocks, which may imbalance the subtrees, are
indicated with squares: the hollow square (□) indicates an honest block that has not (yet) been disseminated
to other honest parties; the solid square (■) indicates a block that has been exposed to all honest players. In
circumstances where an unexposed honest block (□) expires—which is to say that enough time has elapsed
that the adversary is forced to expose the block to the honest parties—the transition is indicated with ⊥.
Any exposure of an adversarial block (A) is immediately delivered to all parties. Edges labeled with H
indicate appearance of honest blocks; any accompanying D indicates a block that is divulged to the honest
parties. Red states are “transient,” in the sense that the adversary immediately exposes an adversarial block
in order to transition to another state. The diagrams (for both attacks) assume that the adversary has
available unexposed blocks to realize these transitions. Note that when a newly exposed block would result
in an exposed block on both subtrees, they are immediately dropped in the state diagram, being folded into
equal-weight subtrees of increased weight. Observe that during a successful attack each phase ends in the
doubly-circled state.

Consider the sequence of phases Φ1, Φ2, . . . appearing in the balancing step. Define A0 = 0 and for t > 0
define At to be the number of unexposed adversarial vertices on g2 at the end of phase Φt. So long as At > 0
we have

At = At−1 +
[
#a(Φt)−⊕(#hΦt)

]
.
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Observe that if At > 0 for all t > 0 then the attack is successful, in the sense that the weights of the two
vertices g1 and g2 are equal at the end of every phase and, in particular, C is the last block settled by the
protocol.

If ExpΦ[#a(Φ)] > ExpΦ[⊕(#hΦ)], it follows from classical “gambler’s ruin” results that the probability
that At > 0 for all positive t is nonzero and hence the attack will eventually succeed with probability tending
to 1 in the length of the execution. (In particular, for any fixed value m, with small, but constant probability
At climbs to the value m without ever visiting 0. Now it suffices to apply a conventional tail bound and a
union bound to show that the probability that the walk ever returns to zero is bounded below 1—indeed
this limits to zero as a function of m. Some care is required here because these random variables are not
bounded. However, the random variable X = #a(Φ)−⊕(#hΦ) is bounded above −1 and has finite variance
considering that #a(Φ) is subexponential; thus the Bennett–Bernstein tail bound (Proposition 5) applies.

From Claim 5,

ExpΦ[#a(Φ)] =
ρa(1− exp(−ρh∆))

ρh exp(−ρh∆)
and ExpΦ[⊕(#hΦ)] =

1− exp(ρh∆)

2− exp(ρh∆)

so it follows that the attack succeeds with probability tending to one so long as

ρa >
ρh exp(−ρh∆)

2− exp(−ρh∆)
,

as desired.

5.2 An Attack on Deterministic Tiebreaking

The attack in the deterministic tiebreaking setting likewise proceeds with a preparation step and a balancing
step. The preparation step proceeds as in the case for adversarial tiebreaking—establishing two nonempty
trees of equal weight rooted at children of a doubly-isolated vertex C—with one additional demand: during
the preparatory phase used to establish the trees, the adversary is afforded two block-creation events at the
end of the phase that are used to create an unexposed adversarial block as a child of the root of each tree.
As the remainder of the attack will attempt to maintain balance between these two trees, the preference of
the two root blocks plays a special role: we let L denote the “leading” child of higher preference and S denote
the “subordinate” child of lower preference. Recall that the deterministic tiebreaking rule will only mine on
the tree at S if it has strictly higher weight than the tree at L.

The attack is again organized in phases and, as in the attack above, every honest block produced in a
phase is delayed until the next honest block is produced, at which point it is divulged to all honest parties.
The adversary maintains a collection of unexposed blocks built either on L or S and exposes these blocks as
necessary to carry out the attack. New adversarial blocks are always created on the vertex (L or S) for which
the adversary has a smaller supply of unexposed blocks at the beginning of the phase—for concreteness, we
break ties in favor of S. A successful attack occurs when the adversary’s collections of unexposed blocks on
L and S are never fully depleted at the end of a phase.

The full details of the attack are indicated in Fig. 4b. In keeping with the notation discussed above, the
“leading” chain labeled L has higher preference than the “subordinate” chain labeled with S. The attack
involves two distinct “resting states” that may appear at the end of a phase, one with two equal-weight
trees and one in which S has one additional block–these are indicated with double circles in the diagram of
Fig. 4b. Curiously, this asymmetric phenomenon appears essential to achieve an optimal attack, and reflects
the need to track exceptional blocktrees (i.e., eE(C)) in the security analysis. In either case, an initial honest
block played according to the deterministic tiebreaking rule is followed by the release of an adversarial block
in order to enter one of the two states indicated in Fig. 4b at the top of the diagram. These states permit
alternating placement of an arbitrarily long sequence of subsequent honest blocks (appearing in the same
phase and hence within ∆ of each other) while maintaining a weight gap between the trees of no more than
one. When the last honest block in the phase expires, this results in one of the two resting states. Observe
that each (non-empty) phase calls for exposure of exactly one adversarial block.
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As for the dynamics of the attack, consider a sequence of phases arising during the balancing phase:
Φ1, Φ2, . . .. Let At and Bt represent the total number of unexposed adversarial vertices on g1 and g2 at the
end of Φt; the preparation step ensures that A0 = B0 = 1. As long as neither Ai nor Bi hits zero, the attacker
can continue the attack; otherwise, the attacker abandons this balancing step and restarts the entire attack.
Observe that (At, Bt) is determined from (At−1, Bt−1) in two steps: (i.) the integer #aΦt is added to the
smaller coordinate; (ii.) if #hΦt > 0, one of the two coordinates is decremented. Defining Tt = At +Bt to be
the total value of the adversary’s “unexposed reserves,” observe that T0 = 2 and that, in general,

Tt = Tt−1 +
[
#aΦt −Ht

]
, where Ht =

{
1 if #hΦt > 0

0 otherwise.

Now consider Mt = min(At, Bt) we see that M0 = 1 and, assuming that Mt−1 +#aΦt < Tt−1/2 (which is to
say that M is sufficiently smaller than half the total),

Mt ≥ Mt−1 +
[
#aΦt −Ht

]
.

(Of course, in any case, Mt ≥ Mt−1 − Ht.) Note that if ∀t > 0,Mt > 0, the balancing step is successful,
producing an eternally balanced pair of trees; in this case C is the last settled vertex in the execution.

As for the analysis of Mt, observe that if ExpΦ[#aΦ]−PrΦ[#hΦ > 0] > 0, then Tt sweeps out a positively
biased random walk; moreover, unless Mt is large as a function of Tt, it has the same behavior. It follows
from classical results on the “gambler’s ruin” problem that the probability that ∃t,Mt = 0 is bounded away
from 1. (As in the case above, for any fixed m, with constant probability the minimum climbs to m without
visiting zero. Observe that between the last time that the minimum is Tt/2 and a future time that it could
take the value zero, it sweeps out the simple walk above. This is then subject to the Bennett–Bernstein tail
bounds, as above.)

Thus, any individual balancing step is successful with constant probability and, if so, maintains a pair of
balanced trees for the remainder of the computation. As the length of the execution increases, the probability
of a successful attack then limits to 1, as desired.
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