
Fast Two-party Threshold ECDSA with Proactive Security

Brian Koziel1,2, S. Dov Gordon1,3, Craig Gentry1,4
1TripleBlind, Inc., Kansas City, MO

2Ideem, Inc., Kansas City, MO, kozielbrian@gmail.com
3George Mason University, Fairfax, VA, gordon@gmu.edu
4Cornami, Inc., Dallas, TX, craigbgentry@gmail.com

Abstract

We present a new construction of two-party, threshold ECDSA, building on a 2017 scheme
of Lindell and improving his scheme in several ways.

ECDSA signing is notoriously hard to distribute securely, due to non-linearities in the
signing function. Lindell’s scheme uses Paillier encryption to encrypt one party’s key share
and handle these non-linearities homomorphically, while elegantly avoiding any expensive zero
knowledge proofs over the Paillier group during the signing process. However, the scheme
pushes that complexity into key generation. Moreover, avoiding ZK proofs about Paillier
ciphertexts during signing comes with a steep price – namely, the scheme requires a “global
abort” when a malformed ciphertext is detected, after which an entirely new key must be
generated.

We overcome all of these issues with a proactive Refresh procedure. Since the Paillier
decryption key is part of the secret that must be proactively refreshed, our first improvement is
to radically accelerate key generation by replacing one of Lindell’s ZK proofs – which requires 80
Paillier ciphertexts for statistical security 2−40 – with a much faster “weak” proof that requires
only 2 Paillier ciphertexts, and which proves a weaker statement about a Paillier ciphertext that
we show is sufficient in the context of our scheme. Secondly, our more efficient key generation
procedure also makes frequent proactive Refreshes practical. Finally, we show that adding
noise to one party’s key share suffices to avoid the need to reset the public verification key when
certain bad behavior is detected. Instead, we prove that our Refresh procedure, performed after
each detection, suffices for addressing the attack, allowing the system to continue functioning
without disruption to applications that rely on the verification key.

Our scheme is also very efficient, competitive with the best constructions that do not provide
proactive security, and state-of-the-art among the few results that do. Our optimizations to
ECDSA key generation speed up runtime and improve bandwidth over Lindell’s key generation
by factors of 7 and 13, respectively. Our Key Generation protocol requires 20% less bandwidth
than existing constructions, completes in only 3 protocol messages, and executes much faster
than all but OT-based key generation. For ECDSA signing, our extra Refresh protocol does
add a 10X latency and 5X bandwidth overhead compared to Lindell. However, this still fits in
150 ms runtime and about 5.4 KB of messages when run in our AWS cluster benchmark.

Key Words: Threshold signatures, MPC, ECDSA ∗

∗Work primarily done as part of TripleBlind

1

1 Introduction

1.1 ECDSA

Cryptographic signatures enable us to digitally “sign” messages, authenticating that the key owner
created the message and that the message was not altered in any way. Our digital infrastruc-
ture is built on these signatures, enabling TLS-protected sessions over the internet, digital user
authentication, bank transaction authorization, digital contract agreements, and more recently,
blockchain transactions. The Elliptic Curve Digital Signature Algorithm (ECDSA) is among the
most commonly used signature schemes, as it provides strong security, fast performance, and ef-
ficient key/signature sizes. For instance, an ECDSA signature over the elliptic curve secp256r1
(P-256) requires only 64 bytes with sub-millisecond signing/verification operations. ECDSA is
widely deployed and also the underlying signature scheme used in Bitcoin and Ethereum.

1.2 Threshold Signatures

In classical cryptography, a signer holds and protects their single signing key. The threshold cryp-
tography paradigm, on the other hand, allows this signing key to be split between two or more (“n”)
parties as key shares, such that a threshold (“t”) number of parties are required to collaborate to
sign a message. This t-out-of-n threshold signature scheme enforces that a quorum of “t” key-share
holders must participate. In particular, this has applications to code signing, blockchain operation
authorization, and so on. Threshold ECDSA has gained popularity over the past decade for its use
in authorizing Bitcoin and Ethereum transactions amongst two or more entities. In one scenario, a
cryptocurrency owner may distribute their key to two or more devices as key shares, ensuring that
a malicious adversary would have to recover all key shares before depleting funds.

Threshold signatures can be viewed as a particular application of secure multiparty computation,
where the parties compute the signing algorithm without revealing their shares of the signing key.
However, applying a generic solution for secure computation to the ECDSA signing algorithm would
be slow. Instead, prior work has designed custom protocols for threshold ECDSA.

ECDSA Signatures

Input: Message M, secret key d, hash function H,
Input: Elliptic curve E with generator G and order q
Compute: m = H(M)
Sample: k ← [q]
Compute: R = k ×G
Set: r as the x-coordinate of R mod q
Compute: s = k−1(m+ rd) mod q

Signature: (r, s)

Figure 1: Single party, standardized ECDSA Signature Generation.

Figure 1 illustrates the ECDSA signing algorithm. ECDSA is not “threshold-friendly” as it
requires a non-linear modular multiplication with secret values k, x and a non-linear modular in-
version k−1 mod q, where k is a randomly chosen signing nonce, x is the master signing key, and
q is the order of the elliptic curve group. Generally, one common approach in the literature is to

2

apply homomorphic multiplication while also requiring expensive zero-knowledge proofs to achieve
malicious security.

1.3 Lindell’s Threshold ECDSA Breakthrough

In 2017, Lindell [33] made a breakthrough with the first truly efficient 2-out-of-2 (“two-party”)
threshold ECDSA signature. This work featured two-party ECDSA signing in 37 ms, even with
communication overhead. Lindell claims to be about two orders of magnitude faster than the
best prior work, by Gennaro et al. [23]. The main idea employed by Lindell is to use Paillier
homomorphic encryption, which supports homomorphic addition of ciphertexts and multiplication
by a known constant, but to avoid (as much as possible) expensive zero knowledge proofs in the
signing procedure.

We present a simplification here, to convey Lindell’s main idea. The two parties randomly
sample an additive sharing of the secret signing key: x1, x2 ← [q]. The public key is then determined
as X = X1 +X2 for X1 = (x1 ×G) and X2 = (x2 ×G). Additionally, party P1 samples a Paillier
key N , encrypts C ← EncN (x1), and sends this to P2. When it is time to sign message m = H(M),
the parties sample k1, k2 ← [q], compute (k1 × (k2 ×G)) = (rx, ry), and derive r = rx mod q, as in
standard ECDSA protocol. P2 then computes a “partial signature”, homomorphically:

EncN (k−12 (m+ rx2))⊕ (C ⊙ k−12 r)

= EncN (k−12 (m+ rx2) + k−12 rx1)

= EncN (k−12 (m+ rx)).

P1 then decrypts and completes the signature by multiplying by k−11 , and reducing modulo q.
Lindell’s scheme uses a ZK proof in key generation to establish that the same x1 is inside X1

and C. This makes key generation slow, but this is a one-time procedure. Signing, on the other
hand, uses ZK proofs over the elliptic curve group, but none at all for the (much more expensive)
Paillier group! P2 uses P1’s encryption of x1 homomorphically to compute an encrypted partial
signature, and sends it without proof! To counteract a malicious P2, P1 globally aborts if P2’s
partial signature does not result in a valid completed signature (requiring a fresh key generation).
With this trick, signing in Lindell’s threshold ECDSA scheme is very fast.

1.4 Shortcomings of Lindell’s Threshold ECDSA

Lindell’s threshold ECDSA has some shortcomings – namely: 1) the expensive key generation
procedure, 2) the severe countermeasure to an invalid partial signature from P2 (aborting and
requiring a fresh key generation), and 3) the lack of proactive security. Let us look at each of these
shortcomings in more detail.

1.4.1 Expensive Key Generation

In Lindell’s scheme, key generation includes ZK proofs about the Paillier modulus, and that C
correctly encrypts P1’s key share. The proof about the Paillier modulus is surprisingly lightweight:
Lindell shows that he only needs to prove that gcd(N,ϕ(N)) = 1, whereas other schemes typically
require stronger properties, such as N being the product of strong primes. However, the proof
that C correctly encrypts P1’s key share is expensive. This proof requires 2τ Paillier encryptions

3

for statistical security 2−τ . As a consequence, key generation requires 880 milliseconds on modern
AWS clusters, which is nearly 65X longer than signing. This range proof also dominates the total
bandwidth of keygen, accounting for about 55 KB of the total estimated 62 KB (89%).

Why is Lindell’s consistency proof so expensive? Lindell’s proof has two parts: 1) A proof that
the values inside X1 and C are the same modulo q, and 2) A range proof that the value encrypted by
C is in {1, . . . , q}. One of Lindell’s innovations over prior work is the first part of this proof, which
is quite fast and elegant, though it requires one more round than we would like. Unfortunately, the
range proof, which comes from prior work, is much more expensive. A simple Schnorr-style proof,
with just a couple of Paillier ciphertexts, does not seem to be sufficient, because the elliptic curve
and Paillier groups have entirely different orders; indeed q and N are co-prime. Instead, the range
proof uses bit-wise techniques and amplification; this is where the 2τ Paillier ciphertexts come from.

1.4.2 Global Abort and Fresh Key Generation

Lindell makes signing very fast by observing that neither P1 nor P2 needs to generate any ZK proofs
over the Paillier group. Instead, P1 handles its ZK proofs over the Paillier group in key generation,
while in signing P2 sends its encrypted partial signature without a ZK proof, and P1 decrypts and
“verifies” it by confirming that it completes to a verifiable ECDSA signature. If verification fails,
P1 globally aborts. After the global abort, if the parties wish to continue signing messages, they
must first perform key generation again, replacing the public verification key, and (presumably)
updating the PKI to reflect the change. This is a severe countermeasure. However, it is needed
because otherwise there is a selective-failure attack, where P2 can potentially recover P1’s key share
by observing whether or not P1 outputs a valid signature. This attack is analogous to well-known
chosen ciphertext attacks, such as Bleichenbacher’s attack [4], where an adversary can recover the
secret key by observing decryption error messages.

1.4.3 Lack of Proactive Security

Threshold security strengthens a user’s key protection by splitting the key into two key shares
hosted on different devices, eliminating a single point of failure. Proactive security goes beyond
this, allowing the parties to re-randomize their shares (while leaving the public verification key
untouched), so that even if an adversary corrupts both parties, the system remains secure as long
as the adversary does not corrupt both at the same time. Looking at the simplification of Lindell’s
scheme above (where sharing is additive versus Lindell’s multiplicative), it may appear that making
it proactively secure is trivial: Is it not simply a matter of performing a secure coin flip to agree on
a uniform r ← [q], and then storing x1 + r mod q and x2 − r mod q? A malicious third-party that
recovers one key share would lose their progress after the key shares have changed.

Unfortunately, it is not so simple. P1’s secret includes the factorization of N . So, a proactive
refresh must also change the Paillier modulus. Here, the first shortcoming of Lindell’s scheme –
the expensive key generation procedure – rears its head again. Lindell’s expensive zero knowledge
proof for the correctness of the new ciphertext C would now have to be executed at every key
refresh. In some applications, this is prohibitively expensive. For example, imagine a user that
signs so infrequently that a refresh is needed before each signature; on a mobile device, spending
nearly a full second for every sign-and-refresh operation is simply too much for an end-user. It is
not immediately clear how to make Lindell’s scheme both proactively secure and practical.

4

Table 1: Comparison of malicious security two-party ECDSA key generation schemes over curve
secp256r1 and the 112-bit NIST security level. Latency was captured on AWS EC2 c5.2xlarge
servers.

Work Security
Latency Bandwidth

#Messages
Statistical

[ms] [KB] Security τ

Castagnos et al. 2020 [10] Hash Proof 359 5.8 4 2−40

Doerner et al. 2018 [17] OT 54.2 41 5 2−80

Lindell 2017 [33] Paillier-EC 880 62 6 2−40

This Work Paillier-EC-Refresh 136 4.6 3 2−80

1.5 Contributions

Building on Lindell’s threshold ECDSA, we design a new threshold ECDSA that solves all three
shortcomings simultaneously with a practical proactive refresh procedure. We provide more details
below.
A Lighter Consistency Proof. As mentioned above, the expensive part of Lindell’s construction
lies in the consistency proof in key generation that ∃x1, ρ such that x1 ∈ {1, . . . , q}, X1 = x1 · G
and C = EncN (x1; ρ). This range proof uses amplification, and basically consists of τ Schnorr-like
range proofs.

We replace this with a single Schnorr-like range proof, consisting of only two Paillier ciphertexts!
Our proof does not prove consistency as defined above. Instead, it proves something weaker –
namely, as described in Section 3, it proves that X1 encodes x1 and C encrypts x̂1, such that
there exists small δ where the value [δ(x̂1 − x1)]N is both “small” and divisible by q. Notice that,
when δ = 1, this closely corresponds with what is proven in Lindell’s strong proof, while our weak
proof allows other values of δ. So, we allow P1 to cheat to a certain extent. Indeed, if we did
not further modify the scheme, P1 could obtain x2 mod δ for various values of δ, and eventually
extract x2. However, we show that the weak proof of consistency is sufficient for security when P2

applies additional perturbations to its encrypted partial signature to protect against a malicious
P1. Naturally, our use of the weak consistency proof complicates our security analysis.

Performance-wise, our new approach allows us to improve the runtime of Lindell’s Key Gen-
eration by a factor of 7X, and his bandwidth by 13X. (Our comparison to other, more recent
constructions follows later, and is more mixed. We compare to Lindell here as our techniques are
otherwise very similar, so the comparison provides some measure of the impact of our contribution.)
No Global Abort. While pursuing proactive security, one might hope to address the second
insufficiency of Lindell’s construction: the global abort. As mentioned above, by using a bad partial
signature, P2 can learn something damaging about the signing key. However, since this misbehavior
is detectable, one might hope that P1 could simply call for a refresh operation in place of a global
abort. During refresh, new entropy is introduced into the key share, and with it, possibly, the
chance to begin again, without resetting the verification key and impacting the PKI. However, this
is not as easy as it sounds, as P2 may remain corrupt through the refresh procedure, and will see
the randomness used to re-randomize x1.

Nonetheless, we show how to make this work. Instead of encrypting x1 ∈ [q] as in Lindell’s
scheme, P1 instead encrypts a perturbation of x1 – namely, x1 + tq where t is small but has
sufficient min-entropy. When P1 detects that P2 has sent a bad partial signature, P1 changes its
Paillier modulus and encrypts a new value x1 + t′q, for a fresh t′. The added noise has no impact

5

Table 2: Comparison of malicious security two-party ECDSA signing schemes over secp256r1 and
the 112-bit NIST security level. Latency was captured on AWS EC2 c5.2xlarge servers. A ✓
indicates that a key refresh is included.

Work
Latency Bandwidth

#Msgs Proactive?
[ms] [KB]

DKLS2018 [17] 3.0 170 2 ✗

Lin2017 [33] 14.0 0.9 4 ✗

CCLST [10, 11]
113 5.3 8 ✗
175 10.8 8 ✓

This Work
16.1 1.1 3 ✗
144 5.4 3 ✓

on the signature, since it is a multiple of q (the order of the ECDSA group). However, we show
that the noise suffices to ensure that an adversary obtains negligible information about x1 even if
its corruption of P2 continues across refreshes and it repeatedly sends bad partial signatures, as
long as new noise is added between each attempt detected by P1. This allows us to continue using
the same public verification key even if P2 sends bad messages.

We base simulation security on an assumption we call “Paillier-EC-Refresh”, which is closely
related to Lindell’s Paillier-EC assumption. Both of these assumptions are stronger than the ordi-
nary notions of security of ECDSA and Paillier. The stronger assumption is needed for simulation
security to allow the simulator, as P1, to detect bad partial signatures from P2 using a very limited
decryption oracle. Nonetheless, both assumptions seem plausible. Additionally, we provide evidence
for the Paillier-EC-Refresh assumption by showing it holds in a generic model for the elliptic curve
and Paillier groups. This evidence includes a highly non-trivial characterization of what is revealed
about x1 given access to a sequence of limited oracles, each of which leaks some information about
a perturbation of x1 by a different multiple of q.
Proactive Security. With our faster (weak) consistency proof, it becomes much faster to generate
a Paillier modulus, P1’s encrypted share under the new modulus, and a weak consistency proof for
it. In fact, it becomes practical to do all of this not just in a “one-time” Key Generation procedure,
but instead inside a more-frequent Key Refresh procedure, potentially even after every signature.

1.6 Other Related Work

Threshold cryptography was initially investigated in the early 1980s through the early 2000s [14,
15, 24, 40, 39, 5, 12, 35] as a method for n users to share a common key, but restricting any
use of this key to any subset of t parties. Then, with the rising popularity of Bitcoin in the mid
2010s, a resurgence of threshold research emerged, this time focusing on ECDSA. There is no
best-case solution for efficient threshold ECDSA: the latest and greatest research results feature
trade-offs between signature generation latency, setup time, bandwidth, and underlying security
models/assumptions.

The focus of this work is on the highly optimized, proactive-secure, two-party setting. In the
two-party setting, there is no honest majority, which is a specific pain point for some scheme
constructions. The very first proven secure protocol threshold signing was proposed by Gennaro
et al. in 1996 [24], which used DSA in an honest majority setting. Then in 2001, MacKenzie
and Reiter [35] modified the threshold DSA to operate without the honest majority and thus also

6

allow the two-party setting. Fifteen years later in 2016, Gennaro et al. [23] revisited the threshold
DSA/ECDSA signatures to secure Bitcoin wallets, with particular optimizations to the two-party
case and thresholds in an honest majority setting.

In 2017, Lindell [33] released his 37 ms two-party ECDSA signing scheme based on various
Paillier homomorphic encryption optimizations, shattering previous threshold signing performance
metrics by over two orders of magnitude. Shortly after Lindell’s work, Doerner et al. [17] published a
new oblivious transfer (OT) multiplication technique to achieve two-party ECDSA signatures in less
than 10 ms of computation time, but at the expense of almost 200 KB of bandwidth. Most recently
in 2019, Castagnos et al. [9] generalized Lindell’s scheme to use a hash proof system, effectively
tweaking the security model and reducing the two-party key generation and signing bandwidth, at
the expense of a 5X increase to sign latency. In follow-up work, Castagnos et al. [10] further reduce
the bandwidth requirements by relying on new hardness assumptions that allow them to reduce the
number of proof repetitions. Interestingly, reducing the proof repetitions is precisely the approach
that we take in our own work, though the techniques are otherwise quite different. Finally, in their
most recent work, the authors add proactive security (as well as some other properties) [11]. These
three lines of work, by Lindell et al., Castagnos et al., and Doerner et al., represent the pinnacle of
speed, efficiency, and security tradeoffs for two-party ECDSA. There are several other recent works
that investigate the general t-out-of-n case for threshold ECDSA [23, 22, 34, 17, 8, 13, 21, 3, 16],
but these are generally comparatively slower in the two-party setting.

Of the three optimized two-party ECDSA schemes in the literature, each original work did not
feature proactive security. Only Castagnos et al. [9] released a proactive version of their construction
in [11], augmenting their original scheme with proactive security, adaptive security, and identifiable
aborts. Otherwise, the only other recent proactive security scheme in the literature is Canetti et
al. [8], which features a general threshold ECDSA construction with proactive security, identifiable
aborts, and UC-security. Neither work provides performance numbers, and they do not appear to
by highly efficient, so we do not provide a performance comparison.

Typically, proactive security is an afterthought, despite its implications on the long-term security
of key shares, especially for blockchain applications. The concept of a proactive refresh to thwart
a dynamic adversary from corrupting each party one-by-one was first proposed by Ostrovsky and
Yung [36] in 1991. The primary idea is that each key share holder will refresh their secret key
shares without changing the public key in certain intervals called epochs. Now, an attacker cannot
break the scheme unless he corrupts all parties within the epoch. This original work sparked new
proactive security works that created, secured, and applied a refresh process to specific threshold
schemes, including general threshold construction [29, 28, 2, 6], RSA [18, 19, 38, 20, 1, 30], and
ECDSA [8, 32, 11].

1.7 Performance Highlights

In the following paragraphs, we compare the performance of our scheme with other recent optimized
two-party ECDSA signing schemes. We benchmarked these schemes on an AWS EC2 c5.2xlarge
server in loopback mode (i.e. simulating the computations of both parties with no network delay).
This AWS server was running Ubuntu 22.04.2 LTS on an Intel Xeon Platinum 8275CL CPU running
at 3.0 GHz. These are single-thread benchmarks. We implemented our proposed proactive ECDSA
scheme as a proof of concept in Rust 1.77 using the Rust wrapper for OpenSSL 3.0.2 for all
underlying arithmetic. All results are for elliptic curve secp256r1.

In Tables 1 and 2, we provide a comparison of key generation and sign protocols, respectively.

7

Doerner et al.’s∗ work was run from their public Git repositories, which may include various opti-
mizations since their original paper release. Lindell’s work was benchmarked using the same Rust
framework as our scheme’s results, but public source code can additionally be found on Git.† For
Castagnos et al. [10, 11] we used the BICYCL framework.‡ As Table 1 shows, our new Paillier-EC
key generation requires only 4.6 KB of bandwidth which is over 20% less than the other schemes.
Furthermore, our key generation only requires 1.5 round trips and 136 ms, which is almost 85% less
than Lindell’s Paillier-EC key generation.

For signature generation, our sign+refresh scheme requires about 144 ms and 5.4 KB total
bandwidth. In comparison to our sign performance, our scheme shows the additional overhead for
refresh (about 128 ms and 4.3 KB bandwidth). When compared to Lindell’s sign procedure, our
scheme’s sign modifications add about 2.1 ms (15%) and 0.2 KB (22%).

As Table 1 highlights, modern two-party ECDSA focuses on three different types of security
foundations: Paillier-EC, Hash Proof, and Oblivious Transfer. The security setting to achieve
malicious security creates a tradeoff between performance, bandwidth, number of messages, and
various security parameters. There is no clear winner, but each scheme suits a different use case.
For instance, the OT-based Doerner et al. [17] features extremely fast performance, but struggles
with the largest bandwidth for signing. Meanwhile, Castagnos et al. [10, 11] is a general threshold
scheme that features a strong balance of latency and bandwidth, but at the expense of many
signing messages. Lastly, our Paillier-EC-based scheme exemplifies good latency, low bandwidth,
and a small number of messages, but struggles at higher security levels.

1.8 Higher Security Levels

Of the three lines of work previously considered, Castagnos et al.’s scheme [9, 10, 11] scales best
with an increasing security level. Our ECDSA scheme was implemented over the elliptic curve
secp256r1 with a Paillier modulus of 2048 bits. According to NIST’s security level assignment,
a 256-bit curve corresponds to the 128-bit security level (roughly equivalent to AES with 128-bit
keys) while an RSA modulus of 2048 bits corresponds to the 112-bit security level.

Unfortunately, our scheme’s latency and bandwidth do not scale well with the NIST security
level as the size of the RSA/Paillier modulus does not scale well. The Paillier modulus N (com-
posed of the product of two large primes) requires a bitlength of 2048, 3072, 7680, and 15360 to
correspond to a NIST security level of 112, 128, 192, and 256 bits, respectively. These Paillier
moduli require a huge amount of time to find the primes as well as compute exponentiation modulo
N2. Furthermore, the Paillier ciphertexts also dominate the total bandwidth. As an example, at
the 192-bit security level, a 7680-bit Paillier modulus took a median of 10 seconds to find on our
c5.2xlarge platform. When combined with just our Paillier operations, we estimate that Keygen,
Sign, and Sign+Refresh executed in 11.3 seconds, 0.47 seconds, and 11.8 seconds, respectively. In
this scenario, the bandwidth tripled from our 112-bit security results to 15.8 KB, 2.76 KB, and 18.1
KB for Keygen, Sign, and Sign+Refresh, respectively.

∗https://gitlab.com/neucrypt/mpecdsa
†https://github.com/unboundsecurity/blockchain-crypto-mpc
‡https://gite.lirmm.fr/crypto/bicycl

8

https://github.com/unboundsecurity/blockchain-crypto-mpc
https://gite.lirmm.fr/crypto/bicycl

2 Preliminaries

2.1 Notation

Let G be a generator of the elliptic curve group G of order q. Let [N] be a set of N consecutive
integers – for example, the set {1, . . . , N}. Let [·]N denote reduction modulo N into [N]. Decryption
for a Paillier modulus N will also be into [N]. Let τ be the statistical security parameter while κ
is the computational security parameter.

2.2 Paillier Cryptosystem

The Paillier cryptosystem is a public-key encryption system that enables additive homomorphic
computations over its ciphertexts. Originally invented by Pascal Paillier in 1999 [37], the scheme is
protected by the decisional composite residuosity assumption, which states that given a composite
n and an integer z, it is hard to decide whether z is an n-residue modulo n2.

Here, we present its simplified implementation. Similar to RSA, two large prime numbers p and
q are randomly sampled. Let N = pq, g = N + 1, λ = ϕ(N), µ = ϕ(N)−1 mod N . The public
encryption key is (N, g) and the private decryption key is (λ, µ).

To encrypt a message m in the range 0 ≤ m < N , select a random r ∈ [N] with GCD(r,N) = 1
and compute the ciphertext Enc(m; r) = C = gmrN mod N2. This ciphertext can be decrypted

back to its plaintext message by computing m = (Cλ mod N2)−1
N µ mod N (note that the division by

N is simply computing the quotient).
The Paillier encryption system is incredibly useful for multiparty computations because of its ad-

ditive homomorphic nature. Notably, the product of two ciphertexts results in a new ciphertext rep-
resenting the sum of its plaintexts: C1⊕C2 = Enc(m1)Enc(m2) mod N2 = Enc(m1 +m2 mod N),
and a ciphertext raised to the power of a plaintext results in a new ciphertext representing the
product of its plaintexts: C1 ⊙ m2 = Enc(m1)m2 mod N2 = Enc(m1m2 mod N). Within this
work, the most expensive operations include the generation of two random primes for a new Paillier
modulus, exponentiation modulo N2, and exponentiation modulo N . For our implemented scheme,
N is a 2048-bit modulus.

2.3 Active, Proactive Security.

Proactive security ensures unforgeability even when the adversary is able to recover individual
shares of the signing key. To ensure this property, the parties holding the shares of the signing key
must periodically engage in a key refresh procedure. Security is typically defined using a game-
based security definition, where the adversary is allowed to request shares of the secret key after
each refresh procedure, and then attempts to create a forgery. (Additionally, as in the standard
definition of unforgeability, the adversary can also request signatures on messages of its choosing.)
However, we are interested in a stronger security definition: we wish to claim unforgeability, even
if the adversary acts maliciously during key generation, signing, or key refresh. As such, we de-
part from the game-based security definition, and define security through the real/ideal paradigm
that is commonly used in secure computation protocols. This ensures security under sequential
composition.

We provide a description of our security modeling in Appendix B, and only include a few key
details here.

9

Admissible adversaries: Note that security is clearly impossible if we do not place any constraints
on the command sequence. In the real-world execution, given the sequence

(
(ssid,Corrupt, P1),

(KeyGen,G, G, q), (ssid,De-corrupt), (ssid,Corrupt, P2)
)
, the adversary A will recover both shares

of the secret key x = x1 + x2. D can trivially check these values against the reported public
key X. On the other hand, in the ideal-world, the simulator S is not given access to the state
of P1 or P2, but rather has to provide simulations of those states. A correct simulation would
imply finding the discrete log of X. Of course, this is the very purpose of the Refresh protocol: we
impose the constraint that immediately prior to the command (ssid,Corrupt, Pb), we must have the
sub-sequence (ssid,De-corrupt), (ssid,Refresh). We note that even this would not suffice, unless we
assume that the adversary cannot observe the value of the coin flip used in refreshing the key shares.
We therefore assume that the protocol is executed over a private channel, and that the adversary
can only observe messages received by a party that is currently corrupt.

We note that our definition is very similar to the standard definition of secure computation
with an adaptive adversary. However, in addition to the constraint described above, we also only
allow corruptions to occur in-between protocol executions. (This is implicit in our description of
command sequences.) In contrast, a truly adaptive adversary can change the corrupted party in
the middle of a protocol. Clearly we would face the same issue just described if we allowed the
corruption to change in the middle of signing or refresh.

Additionally, as discussed earlier, if P1 receives a bad ciphertext during the execution of (ssid,
Sign,m), then we require that the parties perform (ssid,Refresh) before attempting to sign again.

2.4 Zero Knowledge

We use two existing zero knowledge proofs from the literature. The first is a simple zero knowledge
proof of knowledge of a discrete logarithm. Proofs of knowledge are stronger than standard zero
knowledge proofs in that, in addition to guaranteeing soundness, completeness, and zero knowledge,
they also provide the additional guarantee that there exists a polynomial-time extraction algorithm
that can recover the witness after interacting with the prover. (Of course, a malicious verifier
should not be able to do this, but the extractor might re-wind the prover, or use some trapdoor
in the parameter setup.) The extraction property also provides the benefit that the proof can be
modeled using an ideal functionality, as the simulator can extract the witness and submit it to the
functionality. As Lindell did, we therefore ignore the implementation details for this zero knowledge
proof, and provide a very simple Fzk functionality in its place (Figure 2). For more information
about secure computation with hybrid functionalities, see Appendix B.

The Zero-Knowledge Functionality FR
zk for Relation R

Upon receiving (prove, sid, x, w) from a party Pi(for i ∈ 1, 2): if (x,w) /∈ R or sid has been
previously used then ignore the message. Otherwise, send (proof, sid, x) to party P3−i.

Figure 2: The Zero-Knowledge Functionality Fzk for Relation R (copied verbatim from [33])

When P2 constructs proofs of knowledge for discrete log, we need to commit to the proof prior
to sending it. P2 only sends its proof after receiving and verifying the proof of P1; this ensures
independence of the two instances in their proof. Again, as Lindell did before us, we simplify this
into a single functionality that combines the commitment and the proof of knowledge (Figure 3).
This simplifies the presentation, removing the need to specify how commitments are implemented.

10

The Committed NIZK Functionality FR
com−zk for R

Functionality Fcom−zk works with parties P1 and P2 as follows:

• Upon receiving (com-prove, sid, x) from a party Pi(for i ∈ 1, 2): if (x,w) /∈ R or sid has been
previously used then ignore the message. Otherwise, store (sid, i, x) and send (proof-receipt,
sid) to P3−i.

• Upon receiving (decom-proof, sid) from party Pi: if (sid, i, x) has been stored then send
(decom-proof, sid, x) to party P3−i.

Figure 3: The Committed NIZK Functionality FR
com−zk for R (copied verbatim from [33])

2.5 Zero Knowledge Proof of GCD

Our protocols rely on zero knowledge proofs for several languages, which we present independently,
in order to simplify the presentation of the signature scheme itself.

During key generation and key refresh, the server samples a new Paillier modulus N . Although
this modulus is supposed to be the product of two large primes, as shown by Lindell [33], if the
server proves only that GCD((N), ϕ(N)) = 1, this suffices for ensuring the expected homomorphic
properties of the Paillier encryption scheme. (Other complications arise from this relaxation, but
we address those below.)

LGCD, is the set of positive integers N such that GCD(N,ϕ(N)) = 1. The zero knowledge proof
that we use is from Goldberg et al. [26]. We present it in Appendix C for completeness.

3 Zero Knowledge Proof of Consistency

The next zero knowledge proof that we present is a proof of “loose consistency” between a discrete
log instance, and a Paillier plaintext. Although the proof has been presented elsewhere, here we
change the standard soundness claim in order to avoid full soundness amplification. We therefore
present the result in its own Section. Concretely, a tuple (C,X1, q,N) ∈ Leq if there exist x̂1 ∈
[N], δ, x1 ∈ [q] such that the following hold:

• C = EncN (x̂1),

• X1 = x1 ×G,

• [δ(x̂1 − x1)]N ∈ [3q222(τ+κ)]. ([δ(x̂1 − x1)]N is “small”.)

• [[δ(x̂1 − x1)]N]q = 0. ([δ(x̂1 − x1)]N is a multiple of q.)

In honest executions of key generation and key refresh, x1 ∈ [q] and x̂1 is a small positive integer
satisfying x̂1 = x1 mod q, so that the above conditions are trivially satisfied with δ = 1. Suppose
we wished to prove this stronger claim of honest behavior and attempted to prove it as follows. The
prover samples a random value b ← [q222(τ+κ)], and sends EncN (b) and b×G to the verifier. The
verifier replies with a random challenge σ, and, finally, the prover reveals z1 = x̂1σ + b, together
with the encryption randomness that results from computing EncN (x̂1σ + b) homomorphically.
The verifier checks that the two prover messages are consistent with the instance and σ – that is,

(EncN (x̂1)⊙ σ)⊕ EncN (b)
?
= EncN (z1), and X1 × σ + (b×G)

?
= (z1 ×G). However, the prover can

cheat if there is a small factor δ such that [δ(x̂1 − x1)]N nontrivially satisfies the conditions above.

11

For example, if the adversary is lucky and σ is divisible by δ, then we have that [x̂1 · σ+ b]N might
actually be small and congruent to [x1 ·σ+ b]N modulo q, because [σ(x̂1−x1)]N may be small and
congruent to 0 modulo q. (The prover can also make its attack less detectable by not requiring σ
be divisible by δ, but instead congruent to a certain value modulo δ, where that value depends on
a tweak the prover has made to b.) As in the proof presented previously that N ∈ LGCD, we could
amplify soundness through repetition. However, we wish to avoid that.

Instead, our main technical contribution is to recognize that we can relax the claim, as described
above. Rather than requiring equivalence of x̂1 and x1 over the integers, we instead consider what
guarantees are provided when we forgo any amplification. We can show that there exist small
integers δ, k ≪ N such that δ(x̂1−x1) = kq+ℓN . The fact that these values are small will facilitate
our main technical argument (Claim 7 in Section 7) that any leakage stemming from x̂1 can be
statistically hidden by P2, simply by adding sufficient noise ρq to the plaintext, homomorphically.

Πeq

Inputs: Prover: ssid, N,C,X1, x̂1.
Verifier: ssid, N,C,X1.

Prover: Sample: ρ, δ ← Z∗
N ; b← [q2 · 22(τ+κ)].

Compute: γ1 = EncN (b; δ) ; γ2 = b×G.
Compute: σ = H(ssid, C,X1, γ1, γ2).
Compute: z1 = (x̂1σ + b) ; z2 = (ρσδ mod N)
Send: ψ = γ1||γ2||z1||z2.

Verifier: Parse Ψ as γ1, γ2, z1, z2.
Verify: z1 ∈ [q222(τ+κ) + (q2 − q)2τ+2κ − q + 1] ; γ2 ̸= 0.
Verify: GCD(C,N) = 1.
Compute: σ = H(ssid, C,X1, γ1, γ2).
Verify: γ1 ⊕ Cσ = EncN (z1; z2).
Verify: γ2 + (X1 × σ) = z1 ×G.

Figure 4: Zero knowledge proof of loose-consistency between a discrete log instance and a Paillier
plaintext. We assume H is a random oracle with output in [q] and apply the Fiat-Shamir transform.

Claim 1 (Soundness.). If GCD(N,ϕ(N)) = 1 and if it holds in Πeq that Prσ←Zq [Vrfy(C, σ, ψ) =
1] ≥ 1

δ′ for δ′ < q, then there exists δ ≤ δ′ such that:

a) [δy]N ∈ [3q222(τ+κ)].

b) [δy]N ≡ 0 mod q.

Proof. By assumption, at least q
δ′ of the q possible challenges lead to verification. It follows that

there exist two such challenges σ1, σ2 such that [|σ1 − σ2|]q ≤ δ′. Let δ = σ1 − σ2.
The fact that GCD(N,ϕ(N)) = 1 implies that every value in Z∗N2 is a valid Paillier ciphertext

with a well-defined encrypted value. Accordingly, from Πeq, let x1 be the value encoded by X1,

and x̂1 be the value encrypted by C. Further, let b be value encoded by γ2, and b̂ be the value
encrypted by γ1.

Let Z1, Z2 ∈ [N] be the corresponding integer proof terms corresponding to these challenges,

12

which must satisfy:

Z1 = [x̂1σ1 + b̂]N

= [x1σ1 + b]q

Z2 = [x̂1σ2 + b̂]N

= [x1σ2 + b]q.

When GCD(N,ϕ(N)) = 1, Paillier encryption supports the homomorphic properties “as ex-
pected” [31]. Subtracting, we have:

Z2 − Z1 = [x̂1δ]N

= [x1δ]q,

which implies

Z2 − Z1 = x̂1δ + ℓN

= x1δ + kq,

for integers k, ℓ, and therefore

δy = (x̂1 − x1)δ = kq − ℓN.

As a condition of verification, Z1, Z2 ∈ [2q222(τ+κ)]. Because |Z2−Z1| ∈ [2q222(τ+κ)] and x1, δ ≤ q,
we have that |kq| = |Z2 − Z1 − x1δ| < 3q222(τ+κ). Since [δy]N = kq, the claim follows.

Claim 2 (Zero Knowledge.). If GCD(N,ϕ(N)) = 1, there exists a probabilistic, polynomial time
algorithm S that on input (ssid, N,C,X1) outputs a transcript view that is indistinguishable from
the view of the verifier when interacting with the real prover.

Proof. Note that when GCD(N,ϕ(N)) = 1, homomorphic operations are “erased” by the encryption
randomness. S simulates ψ as follows:

• Sample σ ← Zq, z1 ← [q2 + q22τ+2κ(1 + 2τ)], and z2 ← Z∗N .

• Compute Cz1 = EncN (z1; z2).

• Set γ1 = C−σ ⊕ Cz1

• Set γ2 = (−σ ×X1) + (z1 ×G).

• Set ψ = γ1||γ2||z1||z2.

• Program H(ssid, C,X1, γ1, γ2) = σ.

Note that the encrypted/encoded values are identical in the true execution and simulation with
b = z1 − x̂1σ. Regarding the encryption randomness, in both the true execution and simulation,
C has some randomness ρ, and z2 is the randomness revealed in the proof. In the true execution,
γ1 has randomness δ which satisfies z2 = ρσδ mod N . In the simulation, γ1 has randomness z2/ρ

σ,
which is identical.

13

4 Key Generation

Key Generation is essentially a Diffie-Hellman key exchange resulting in (x1+x2)×G, accompanied
by a Paillier encryption of P1’s share of the secret key: EncN (x1). However, in order to prove security
of the scheme, we require several commitments, and zero knowledge proofs.
P2 begins the protocol by sampling a random x2 ← [q], computing X2 = x2 × G, and sending a
commitment to both X2 and its proof of knowledge of x2. This is modeled by a call to the FRDL

com−zk
functionality.
After receipt of the commitment, P1 samples x1 ← [q] and computes x1 × G. It samples a new
Paillier key N = PQ and creates a proof π that GCD(N,ϕ(N)) = 1 (See Section 2.5). P1 samples
a perturbation factor t← [2τ+2κ] to compute x̂1 = x1 + tq. Finally, it samples C = EncN (x̂1), and
creates a proof of consistency for C and X1: Ψ← Πeq.Prv(N,C,X1, x̂1). It sends (C,N, π,Ψ).
After verifying the proofs sent by P1, P2 decommits to X2, and the proof of knowledge of x2 (again
through the FRDL

com−zk functionality). At the end of the protocol, each party stores their key share,
xb, N and X and X1 for use in signing and refresh. P2 additionally stores C for use in signing, and
P1 stores P,Q for signing.

Key Generation

Input: None.

P2: Sample x2 ← [q], compute X2 = x2×G and submit (ssid1, proof-commit, X2, x2) to FRDL
com−zk.

P1: – Sample x1 ← [q], compute X1 = x1 ×G and submit (ssid2,Prove, X1, x1) to FRDL
zk .

– Sample Paillier public key N = PQ and
π ← ΠGCD.Prv(N,ϕ(N)).

– Sample t← [2τ+2κ], C ← EncN (x1 + tq), and
Ψ← Πeq.Prv(N,C,X1, x1).

– Send (C,N, π,Ψ).

P2: If ΠGCD.Ver(N,π) = 0 or Πeq.Ver(C,X1,Ψ) = 0, abort.
Otherwise, submit (ssid1, decom-proof) to FRDL

com−zk.

P1: Receive (ssid1, decom-proof, X2), or else abort.

Store: P1: (x1, X1, X2, X = X2 +X1, N, P,Q).
P2: (x2, X1, X2, X,C,N).

Figure 5: Message specification for two-party ECDSA key generation.

5 Signing

Recall that an ECDSA signature has the form (r, s), where r is derived by sampling a random nonce
k ← [q], and taking the x-coordinate of k × G. s is then computed as s = k−1(m + rx) mod q.
Revealing the nonce k to either party would leak information about x, so we instead use k =
k1k2 mod q, where party b samples kb.
P2 begins by sampling k2 ← [q], computing K2 = k2 × G, and committing to K2 and the proof
of knowledge of k2 (again through FRDL

com−zk). P1 responds by sampling k1, computing k1 ×G, and
proving knowledge of both k1 and x1. As P1 acts second, there is no need for a commitment to
these proofs, so it instead uses the simpler FRDL

zk functionality.

14

Signing Message Specification

Input: P1: (x1, X,X1, X2,M,N, P,Q, ssid).
P2: (x2, X,X1, X2, C,M,N, ssid).
If ssid has been used before, quit.

P2: Sample k2 ← [q], compute K2 = k2×G, and submit (ssid||1, proof-commit,K2, k2) and (ssid||2, proof-
commit, X2, x2) to FRDL

com−zk.

P1: Sample: k1 ← [q], compute K1 = k1×G, and submit (Prove, ssid||3,K1, k1) and (Prove, ssid||4, X1, x1)
to FRDL

zk .

P2: – Receive (Proof, ssid||3,K1) and (Proof, ssid||4, X1) from FRDL
zk , or else abort.

– Compute K = (k2 ×K1) = (rx, ry) ; r = rx mod q ; m = H(M).

– Sample ρ̃← [q] and ρ← [3q223τ+2κ].

– Compute k̃−1
2 = [k−1

2]q + ρ̃q, and C′ = (EncN (ρ · q + (k̃−1
2 (m+ rx2))))⊕ (C ⊙ rk̃−1

2).

– Submit (ssid||1, decom-proof) and (ssid||2, decom-proof) to FRDL
com−zk, and send C′ to P1.

P1: – Receive (ssid||1, decom-proof,K2) and (ssid||2, decom-proof, X2), or else abort.

– Compute K = (k1 ×K2) = (rx, ry) ; r = rx mod q ; m = H(M).

– Sample ℓ← [q22(τ+κ)].

– Compute s0 = Dec(C′) ; s1 = [s0]q; s2 = s0 − s1 + ℓq; s3 = [k−1
1 s1]q.

– Verify that s2 <
N

2τ+2κ , s2 is divisible by q, and that min(s3, q − s3) is a valid signature on M .
If not, abort until the next Refresh.

Output: (r, s).

Figure 6: Two party protocol for threshold signing of a message M .

P2 then computes a “partial signature”, homomorphically. If P2 knew that C = EncN (x1) (as it
should), it would simply compute

EncN (k−12 (m+ rx2))⊕ (C ⊙ k−12 r) = EncN (k−12 (m+ rx2) + k−12 rx1)

= EncN (k−12 (m+ rx)).

The resulting “partial signature” would be sent to P1, who decrypts and multiplies by k−11 to
complete the signing process.
Recall, however, that Πeq does not ensure that C is (entirely) consistent with X1. Because P2

cannot trust that C = EncN (x1), we require some additional noise in the plaintext. P2 samples
random multiples of q, and uses one to “smudge” the value of k−12 , and the other to smudge the
whole plaintext. Specifically, P2 sends a ciphertext encrypting ρq+ k̃−12 (m+ rx2) + k̃−12 rx1), where
ρ← [q3 ·2τ], and k̃−12 = k−12 +ρ̃q for random ρ̃← [q]. We will prove in Section 7 that, conditioned on
a verifying proof from Πeq, which would have been provided either during key generation, or doing
the previous refresh operation, these two random multiples of q suffice for ensuring that nothing
about k2 or x2 leaks to P1, even if C encrypts x̂1 ̸= x1.
After P1 decrypts to recover s2 = DecN (C ′), it completes the signing operation by multiplying
s = k−11 s2, and setting the signature to be the minimum of (s, q − s). Finally, and importantly, P1

verifies the signature against the public key X. If the signature fails to verify, then P1 must refuse
to perform additional signatures prior to a refresh operation. This is because a bad ciphertext

15

generated by P2 could leak a few bits of information about ρq + x1 mod q. Under the Paillier-EC-
Refresh assumption, we prove in Section 7 that a refresh, with a new ρq, suffices to ensure security
going forward, even without changing x1 or the public key.

6 Key Refresh

The Refresh operation re-randomizes the secret key of the two parties, as well as the Paillier modulus
and ciphertext used to encrypt x1. The parties flip a random coin r ← [q] in order to re-randomize
their shares. We treat this as an ideal function call for simplicity, though it can be trivially realized
with a standard commit-and-reveal protocol. Once they’ve agreed on random r, P1 updates x1 by
subtracting r, while P2 updates x2 by adding r; x̂1 = x1 − r, and x̂2 = x2 + r. This results in a
new, uniform secret sharing x, without any changes to the public key. They each update X1 as
well, by subtracting r ×G: X̂1 = X1 − (r ×G).
Just as in Key Generation, P1 then samples a new N = PQ, π ← ΠGCD.Prv(N,ϕ(N)), C ←
EncN (x̂1), and Ψ← Πeq.Prv(N,C, X̂1, x̂1). P2 verifies the proofs, and the protocol terminates.
Finally, P1 samples new noise for protecting the Paillier plaintext, sampling t ← [2τ+2κ], and
creating a new ciphertext C ← EncN (x̂1 + tq).

Key Refresh Message Specification

Input: P1: (x1, X1, X)
P2: (x2, X1, X)

P2: Send ssid to Fcoin and receive r in response.
Compute x̂2 = x2 + r mod q and X̂1 = X1 − (r ×G).

P1: • Send ssid to Fcoin and receive r in response.

• Compute x̂1 = x1 − r mod q and X̂1 = X1 − (r ×G).

• Sample Paillier public key N = PQ and
π ← ΠGCD.Prv(N,ϕ(N)).

• Sample t← [2τ+2κ], C ← EncN (x̂1 + tq), and

Ψ← Πeq.Prv(C, X̂1).

• Send (C,N, π,Ψ).

P2: If either ΠGCD or Πeq fail to verify, abort.

Store:
P1 stores (x̂1, X̂1, X,C,N, P,Q).

P2 stores (x̂2, X̂1, X,C,N).

Figure 7: Message specification for 2-party ECDSA Key Refresh.

7 Simulation-based Proof of Security

In this section, we will prove that our threshold signature scheme securely realizes the FTS func-
tionality described in Figure 8, assuming the Paillier-EC-Refresh assumption holds. As described

16

in Section 2.3, we consider stand-alone security against a proactive, admissible adversary. We begin
by describing the new assumption.

FTS

KeyGen: Upon receiving input (ssid,KeyGen) from both parties,

• Sample x1, x2 ← G.

• Set x = x1 + x2 ; X = gx.

• Store: (ssid, x).

• Output: X to both parties.

Sign: Upon receiving input (ssid,M) from both parties,

• Retrieve (ssid, x) from storage.

• Output (r, s)←ECDSA.Sign(x,M) to both parties.

Figure 8: Reactive functionality for threshold signatures

7.1 The Paillier-EC-Refresh Assumption

First, let us review Lindell’s Paillier-EC assumption [33].

Paillier-EC Assumption.

Consider the following experiment with an adversary A, denoted ExptA(1κ):

1. Generate a Paillier key pair (N, (P,Q)).

2. Choose random w0, w1 ← [q] and compute Q = w0 ×G.
3. Choose a random bit b← {0, 1} and compute C = EncN (wb).

4. Let b′ = AOC(·,·,·)(N,C,Q), where OC(C ′, α, β) = 1 for ciphertext C ′ and α, β if and only if
Decϕ(N)(C

′) = α+ β · wb mod q; otherwise, OC returns 0 and permanently aborts.

5. The output of the experiment is 1 if and only if b′ = b.

The Paillier-EC assumption is that, for every PPT algorithm A, there is a negligible function µ
such that Pr[ExptA(1κ) = 1] ≤ 1

2 + µ(κ).
Note that the oracle OC stops working after the first time it returns 0. When that happens, the
simulator must also abort. Therefore, the scheme itself aborts upon an incorrect partial signature
from P2.
Compare Paillier-EC to Paillier-EC-Refresh, given below.

Paillier-EC-Refresh Assumption.

Let k be an integer representing the number of oracles. (We will later set this to 2κ as a bound on
the number of queries an adversary can make.) Let I1, I2 be the intervals of consecutive integers,
such that |I1| is divisible by q, |I1| ≥ k ·q ·2τ+κ for statistical and computational security parameters
τ and κ, and (for all Ni used in the system) I1 and I2 are inside [Ni] and 2|I1||I2| < Niq.
Consider the following experiment with an adversary A, denoted ExptA(1κ):

1. Choose random w0, w1 ← Zq and compute Q = w0 ·G.

17

2. Give Adversary A the value Q.

3. Choose a random bit b← {0, 1}.
4. For i ∈ [k]:

(a) Generate Paillier key pair (Ni, (Pi, Qi)).

(b) Sample w̃i uniformly from I1 subject to w̃i = wb mod q.

(c) Compute Ci = EncNi(w̃i).

5. Give Adversary A the public keys {Ni} and ciphertexts {Ci}.
6. Give Adversary A access to oracles OCi

for i ∈ [k], where OCi
(C ′, α, β) = 1 iff [(Decϕ(N)(C

′)−
(α+ qℓ+ β · w̃i))]N is in I2 and divisible by q, for perturbation factor ℓ chosen by the oracle
uniformly randomly from [k · q · 22τ+κ]. Otherwise, OCi returns 0 and permanently aborts.

7. The output of the experiment is 1 if and only if A outputs b′ = b.

The Paillier-EC-Refresh assumption is that, for every PPT algorithm A, there is a negligible func-
tion µ such that Pr[ExptA(1κ) = 1] ≤ 1

2 + µ(κ).
We have characterized Paillier-EC-Refresh as specifying the number of oracles k up front, but k
can be arbitrary and indefinite, and oracles can be spun up dynamically.

7.2 Security Proof

Theorem 1. Under the Paillier-EC-Refresh assumption, for any admissible, mobile PPT adversary
A with auxiliary input z, attacking the (Fzk,Fcom−zk,Fcoin)-hybrid model protocol π, there exists an

ideal world adversary S such that Hybπ,A(1κ, z)
c
= IdealFTS,S(1κ, z).

Proof. We proceed to describe the simulator S that produces a simulated transcript for keygen,
and, subsequently, for some polynomial number of executions of sign and refresh. Throughout, the
adversary may change which of the two parties it chooses to corrupt, as long as the corruption
pattern is admissible (Section 2.3); the simulator will shift to produce the view of the appropriate
party, as described below. Upon a new corruption of party Pb, S also generates a simulated state
for that party, stateb, and provides it to the adversary.

KeyGen (Malicious P1.)

• On input (KeyGen,G, g, q), S queries FTS and invokes A with the same input. S receives X
from FTS.

• S sends Proof-receipt, to A as the first message from P2.

• S receives from A:

– (prove, X1, x1) as A invokes FRDL

zk . If X1 ̸= (x1 ×G), S terminates the execution.

– (C,N, π,Ψ). If ΠGCD.Ver(N, π) = 0 or Πeq.Ver(C,X1,Ψ) = 0, S terminates the execu-
tion.

• S computes X̃2 = X + (−x1 ×G), and sends (ssid,Decom-proof, X̃2) to P1.

18

• S sets x̃1 = x1, and Ñ = N . It stores (X, x̃1, X̃2, Ñ , C) for future signature and refresh
simulations and instructs FTS to provide output to honest P2.

KeyGen (Malicious P2.)

• On input (KeyGen,G, g, q), S queries FTS and invokes A with the same input. S receives X
from FTS.

• S receives (proof-commit, X2, x2) as A invokes FRDL

com−zk.
If X2 ̸= (x2 ×G), S terminates the execution.

• To simulate P1’s message,

– S computes X̃1 = X + (−x2 ×G).

– S honestly samples Ñ = P̃ Q̃, and generates a simulated proof π̃ ← SGCD(Ñ).

– S samples x̃1 ← [q], t← [2τ+2κ], and computes C̃ ← EncÑ (x̃1 + tq).

– S samples Ψ̃← Seq(Ñ , C̃, X̃1) (Section 3).

S sends (C̃, Ñ , π̃, Ψ̃) to P2 to simulate P1’s message, and sends (ssid2,Proof, X̃1) to P2 to
simulate the output of FRDL

zk .

• If S does not receive decom-proof, it aborts.

• S sets x̃1 = x1, and X̃2 = X2. It stores (X, x̃1, X̃2, P̃ , Q̃) for future signature and refresh
simulations and instructs FTS to provide output to honest P1.

Sign. (Malicious P1.)

• If this is a new corruption, S samples random x̃1, P̃ , Q̃, computes X̃1 = x̃1 × G, X̃2 =
X + (−x̃1×G) and Ñ = P̃ Q̃. (Recall, X was stored previously by S.) S uses these values to

simulate the state of the malicious P1, sending state1 = (X, x̃1, X̃2, Ñ , P̃ , Q̃) to A.

• On input (ssid,Sign,m), S sends m to FTS, and invokes A with the same input. S receives
signature (r, s) from FTS.

• S sends (ssid,Proof-receipt) to A as the output from Fcom−zk.

• S receives (ssid, prove,K1, k1) and (ssid, prove, X1, x1) as input to FRDL

zk . If K1 ̸= (k1 × G),
x̃1 ̸= x1, or X1 ̸= (x1 ×G), S aborts the execution.

• Let y = x̂1 − x1 mod N denote the difference in the Paillier plaintext corresponding to C,
sent by A either during key generation or during the last key refresh, and the discrete log of
X1. (Note, x̂1 is unknown to S.)

– S samples k̂2 ← [q] and ρ← [3q223τ+2κ], and homomorphically computes

C̃ ′ =
(
(k1s mod q) + k̂2ry + ρq

)
mod N .

– S computes K = k ×G from (r, s) exactly as is done during signature verification:

K = (r×X)+(m×G)
s . It then sets K̃2 = K

k1
.

S sends
(
(ssid,Decom-proof, X̃2), (ssid,Decom-proof, K̃2), C̃ ′

)
to A.

19

• S continues to store (X, x̃1, X̃2, Ñ , C) for future signature and refresh simulations and in-
structs FTS to provide (r, s) to honest P2.

Sign. (Malicious P2)

• If this is a new corruption, S samples random x̃1, x̃2 ← [q], and P̃ , Q̃. It computes Ñ = P̃ Q̃,

and samples C̃ ← EncÑ (x̃1). S computes X̃2 = x̃2 ×G, and X̃1 = X − (x̃2 ×G). (Recall, X
was stored previously by S.) S uses these values to simulate the state of the malicious P2,

sending state2 = (X, x̃2, X̃1, Ñ , C̃) to A.

• On input (ssid,Sign,m), S sends m to FTS, and invokes A with the same input. S receives
signature (r, s) from FTS.

• S receives (ssid||1, proof-commit, X2, x2) and (ssid||2, proof-commit,K2, k2) asA invokes FRDL

com−zk.
If K2 ̸= (k2 ×G), x̃2 ̸= x2, or X2 ̸= (x2 ×G), S aborts the simulation.

• S computes K = k ×G from (r, s) exactly as is done during signature verification:

K = (r×X)+(m×G)
s . It then sets K̃1 = K

k2
. It sends (ssid||3,Proof, K̃1), and (ssid||4,Proof, X̃1)

to simulate the outputs of FRDL

zk .

• S receives (ssid||1, decom-proof), (ssid||2, decom-proof) and C ′ from A. It uses P̃ , Q̃ to compute
s2 = Dec(C ′) ; s = k−11 s2 mod q ; s = min(s, q − s).
S verifies that s is a valid signature on m. If not, it refuses additional sign commands until a
refresh is executed.

• S continues to store (X, x̃2, X̃1, P̃ , Q̃) for future signature and refresh simulations and instructs
FTS to provide (r, s) to honest P1.

Refresh. (Malicious P1)

• If this is a new corruption, S samples random x̃1, P̃ , Q̃, computes X̃1 = (x̃1 × G), X̃2 =

X − (x̃1 ×G) and Ñ = P̃ Q̃. (Recall, X was stored previously by S.) S uses these values to

simulate the state of the malicious P1, sending state1 = (X, x̃1, X̃2, Ñ , P̃ , Q̃) to A. It stores

x̃1, P̃ , Q̃.

• On input (ssid,Refresh), S invokes A with the same input.

• S samples r ← [q] and sends it to A in simulation of the output of Fcoin.

It updates x̃1 = x̃1 − r, and X̃1 = (x̃1 ×G).

• S receives (C,N, π,Ψ) from A. If ΠGCD.Ver(N, π) = 0 or Πeq.Ver(C,X1,Ψ) = 0, S terminates
the execution.

• S stores (X, x̃1, X̃2, Ñ , C) for future signature and refresh simulations.

Refresh. (Malicious P2)

• If this is a new corruption, S samples random x̃1, x̃2, Ñ , and computes X̃1 = X − (x̃2 × G).

(Recall, X was stored previously by S.) It then samples C̃ ← EncÑ (x̃1), and uses these values

to simulate the state of the malicious P2, sending state2 = (X, x̃2, X̃2, Ñ , C̃) to A.

20

• S samples r ← [q] and sends it to A in simulation of the output of Fcoin.

It updates x̃2 = x̃2 + r, and X̃2 = (x̃2 ×G).

• To simulate P1’s message,

– S honestly samples Ñ = P̃ Q̃, and π̃ ← SGCD(Ñ).

– S samples x̃1 ← [q], t← [2τ+2κ], and C̃ ← EncÑ (x̃1 + tq).

– S samples Ψ̃← Seq(Ñ , C̃, X̃1) (Section 3).

S sends (C̃, Ñ , π̃, Ψ̃) to P2.

• S stores (X, x̃2, X̃1) for future signature and refresh simulations.

To prove Theorem 1, we have to prove that the two join distributions, Hybπ,A(1κ, z) = (viewHyb,
outHyb) and IdealFTS,S(1κ, z) = (viewIdeal, outIdeal) are indistinguishable. We first look at the adver-
sarial views before considering the joint distribution.

Claim 3. If A is an admissible adversary, then viewHyb
c
= viewIdeal.

Proof. To simplify the presented argument that the simulated view is indistinguishable from a
hybrid-world view, we rewrite here, more concisely, the messages generated by S in the simulated
view of the adversary. We use KGb, Sigb and Rfshb to denote the view of party b in the corresponding
protocol.

KG1 =
(
Proof-receipt, (ssid1,Decom-proof, X̃2)

)
KG2 =

(
(C̃, Ñ , π̃, Ψ̃), (ssid2,Proof, X̃1)

)
Sig1 =

(
state1,Proof-receipt, (ssid,Decom-proof, X̃2), (ssid,Decom-proof, K̃2), C̃ ′

)
Sig2 = (state2, (ssid||3,Proof, K̃1), (ssid||4,Proof, X̃1)
Rfsh1 = (state1, r)

Rfsh2 =
(
state2, r, (C̃, Ñ , π̃, Ψ̃)

)
Recall, state1 = (X, x̃1, X̃2, Ñ , P̃ , Q̃), state2 = (X, x̃2, X̃1, Ñ , C̃), and each is only included when
there is a new corruption. We make a few simple observations before proceeding. First, in the
(FRDL

com−zk,Fzk)-hybrid model, the simulation of Proof-receipt as output from FRDL

com−zk in KG1 and

Sig1 is perfect. Although S does not know x̃2, the simulation of (ssid1,Decom-proof, X̃2) as output

from FRDL

com−zk in KG1 is also perfect. This is because, after extracting x1 from A, the value X̃2 =

X−(x1×G) is consistent with the (unknown) x2. The same argument holds for (ssid2, proof, X̃1) in

KG2, X̃2 in state1, X̃1 in state2, and (ssid||3,Proof, K̃1), (ssid||4,Proof, X̃1) in Sig2. Finally, because
we have an admissible adversary, at the time of any new corruption of P1, the only thing known
about state1 is X. Therefore, the marginal distribution of the simulated state1 is identical to that
of the real world state.
Putting these observations together, we now re-write the simulated variables, marking those with
the correct distributions in green, and the ones that we need to address in red. We will explain the
variables marked in red as we address them.

KG1 =
(
Proof-receipt, (ssid1,Decom-proof, X̃2)

)
KG2 =

(
(C̃, Ñ , π̃, Ψ̃), (ssid2,Proof, X̃1)

)
Sig1 =

(
state1,Proof-receipt, (ssid,Decom-proof, X̃2), (ssid,Decom-proof, K̃2), C̃ ′

)
21

Sig2 = (state2, (ssid||3,Proof, K̃1), (ssid||4,Proof, X̃1)
Rfsh1 = (state1, r)

Rfsh2 =
(
state2, r, (C̃, Ñ , π̃, Ψ̃)

)
Hybrid H1: In this hybrid step, if P2 is malicious during key generation, we replace C̃ in key
generation, which encrypts a random x̃1 ∈ [q], for C that encrypts the discrete log of X1. (If P2 is
not malicious during key generation, we do nothing, and Hybrid H1 is identical to the distribution
of views generated by S.)

Claim 4. If the distribution of views generated in Hybrid H1 is distinguishable from that generated
by S in IdealFTS,S , then there exists an adversary R that breaks the Paillier-EC-Refresh assumption.

Proof. R receives (first) challenge N∗1 , C
∗
1 , X

∗, and plays the part of S, interacting with A. After R
receives (proof-commit, X2, x2) from A in the first message of key generation, it sets X = X∗+(x2×
G). It uses C∗1 and N∗1 to construct P1’s message in key generation, creating simulated proofs π̃ and

Ψ̃: (C∗1 , N
∗
1 , π̃, Ψ̃). In the ith refresh command prior to the first de-corrupt command, R queries

its challenger and receives N∗i , C
∗
i . It updates X∗ = X∗ + (r ×G), where r ← [q] is the simulated

output of Fcoin created by R. It simulates P1’s message using (N∗i , C
∗
i , π̃, Ψ̃). In any sign commands

prior to the next de-corrupt command, R verifies the correctness of C ′ sent by P2 by using the
current instance of the Paillier-EC-Refresh oracle: it extracts k2 and x2 from P2’s calls to FRDL

com−zk,

sets α = k−12 m mod q and β = k−12 rx2 mod q, and submits query (C ′, α, β) to its oracle OCi∗ . For
the remainder of the simulation, R behaves exactly as S; in particular, during subsequent refresh
operations where P2 is malicious, and during new corruptions of P2 during signing and refresh, it
samples a new, random x̃1 and sets C̃ = EncÑ (x̃1). Just as S does, it uses its knowledge of the

simulated Ñ = P̃ Q̃ to decrypt C ′ and verify validity of the plaintext during any signing executions.
If the challenge bit b in the Paillier-EC-Refresh game is 1, then R produces the same distribution
as S. Otherwise, it produces that of Hybrid H1.

Hybrid H
(i)
2 : In this sequence of hybrid steps, we replace C̃, which encrypts a random x̃1 ∈ [q], for

C that encrypts the discrete log of X1. This is needed in every execution of refresh for which P2 is
malicious, and upon every new corruption of P2 during refresh or signing, when state2 is simulated.

We proceed through these events in order of their occurrence, defining H
(i)
2 as the distribution in

which the first i − 1 instances of these events use C = EncÑ (xi), and the remaining events use

C̃ = EncÑ (x̃i).

Claim 5. If the distribution of views generated in Hybrid H
(i)
2 is distinguishable from that generated

in H
(i−1)
2 , then there exists an adversary R that breaks the Paillier-EC-Refresh assumption.

Proof. R queries the challenger to receive challenge N∗1 , C
∗
1 , X

∗, and plays the part of S, interacting
with A. R simulates key generation by running the honest protocol. It stores X,x1 for use in what
follows.
Until the ith event, when P2 is malicious during refresh, and each time there is a new corruption
of P2, R uses its knowledge of x1 (which might be updated during refresh procedures) to run
the protocol honestly. In particular, it constructs C = EncN (x1) honestly. Note that it still uses

simulated proofs π̃ and Ψ̃.

22

In the ith event, R uses its challenge to construct (C∗1 , N
∗
1 , π̃, Ψ̃), using simulated proofs π̃ ←

SGCD(N∗) and Ψ̃ ← Seq(N∗1 , C
∗
1 , X

∗); this is done whether the ith event is an execution of refresh
with malicious P2, or a new corruption of P2 during refresh or sign. In the latter case, R uses X∗

when simulating X1 in state2.
In the ith refresh command prior to the next de-corrupt command, R queries its challenger and
receives N∗i , C

∗
i . It updates X∗ = X∗ + (r × G), where r ← [q] is the simulated output of Fcoin

created by R. It simulates P1’s message using (N∗i , C
∗
i , π̃, Ψ̃). In any sign commands prior to

the next de-corrupt command, R verifies the correctness of C ′ sent by P2 by using the current
instance of the Paillier-EC-Refresh oracle: it extracts k2 and x2 from P2’s calls to FRDL

com−zk, sets

α = k−12 m mod q and β = k−12 rx2 mod q, and submits query (C ′, α, β) to its oracle OCi∗ .
In the remaining events, R proceeds as S does (and as R did in Hybrid H1). If the challenge bit b

in the Paillier-EC-Refresh game is 1, then R produces the same distribution as in Hybrid H
(i−1)
2 .

Otherwise, it produces that of Hybrid H
(i)
2 .

Hybrids H
(i)
3 and H

(i)
4 : In these steps we replace the simulated proofs, π̃ and Ψ̃, first in key

generation, and then in the same sequence of events defining H
(i)
2 : when P2 is malicious during key

refresh, and upon a new corruption of P2 during refresh or sign. More specifically, in H
(i)
3 , we use

an honestly generated π ← ΠGCD.Prv() in key generation, and in the first i events in the above
sequence of events; we use π̃ in the i + 1st event, and in every one after. For simplicity, we only

prove that H
(i)
3 is indistinguishable from H

(i−1)
3 . The proof for H

(i)
4 is nearly identical.

Claim 6. If the distribution of views generated in Hybrid H
(i)
3 is distinguishable from that generated

in H
(i−1)
3 , then there exists an adversary R that breaks zero knowledge of ΠGCD.

Proof. R plays the role of P1 honestly through key generation and the first i events. In the ith
event, it receives a challenge instance N∗, and a challenge proof, π∗. Additionally, we assume that
R is given auxiliary information containing the witness ϕ(N).§ It embeds π in the ith event, using

(C,N∗, π∗, Ψ̃). For each signing operation prior to event i+ 1, R uses auxiliary information ϕ(N)
to decrypt C ′ and verify correctness of the plaintext, just as P1 and S would do. If it fails to verify,
R refuses to perform additional signatures until another refresh occurs. (When making the same

claim for substituting Ψ̃ for Ψ in H
(i)
4 , note that ϕ(N) is not needed, but otherwise the reduction

is identical.)

After this set of changes, we note that state2 = (X, x̃2, X̃1, C̃, Ñ) have the correct marginal dis-
tribution. As with state1, this holds because A is admissible, and, therefore, no prior information
about these uniform values is known.

Hybrid H5: Here we replace C̃ ′ with C ′ when P1 is malicious during signing. Recall that when
S creates the message containing C̃ ′ on behalf of P2, S does not know x2 or k2. Nevertheless, we
claim that this change in the distribution has small statistical distance.

Claim 7. Hybrid H5 is statistically indistinguishable from the last of Hybrids H
(i)
4 .

Proof. The claim is a bit challenging to prove for the following reasons:

§Note that zero knowledge is expected to hold even when arbitrary auxiliary information is provided to the
distinguisher, including full knowledge of the witness itself.

23

1. Recall, P1 is NOT forced to prove that N is the product of two large primes. It is forced
to prove that GCD(N,ϕ(N)) = 1, and as part of that proof it proves that GCD(N,α) = 1,
where α is the product of small primes up to some bound. But, otherwise, we allow P1 to
take N to be a product of (possibly several) smallish primes above that bound.

2. If P1 chooses N maliciously, or even if it doesn’t, it can encrypt a value of x̂1 ∈ [N] that
does NOT satisfy x̂1 = x1 mod q, and its ZK proof about the Paillier encryption of x̂1 may
nonetheless verify with non-negligible probability. We allow this. But we also show that, if
the probability is non-negligible, then x̂1 must have some well-defined relationship with x1.
Using that relationship, S is able to mimic P2’s distribution (without knowing x2).

In the simulation, S obtains a signature s = k−1(m+rx) mod q from the challenger. Via extraction,
S obtains x1 and k1 as integers in [q]. Finally, S obtains an encryption of x̂1 ∈ [N] from P1.
Recall y = x̂1 − x1. Using Paillier’s homomorphism, S obtains a Paillier encryption of y. S
generates k̂2 and ρ from appropriate ranges and then produces a Paillier ciphertext that encrypts
ŝ =

(
(k1s mod q) + k̂2ry + ρq

)
mod N . Because GCD(N,ϕ(N)) = 1, the ciphertext does not leak

any information about the homomorphic evaluation beyond the plaintext, so it suffices to analyze
the content of the plaintexts.
Rewriting k = k1k2 mod q and x = x1 + x2 mod q, where k1 and x1 were both extracted from A’s
messages, we have:

ŝ =
(
(k−12 (m+ rx1 + rx2) mod q) + k̂2ry + ρq

)
mod N.

In the true execution, k−12 ← [q], ρ̃← [q], and k̃−12 = k−12 + ρ̃q. We have:

s =
(
(k̃−12 (m+ rx̂1 + rx2) + ρq

)
mod N

= (k̃−12 (m+ r(x1 + y) + rx2) + ρq
)

mod N

= (k̃−12 (m+ rx1 + rx2) + k̃−12 ry + ρq) mod N
s
≈

(
(k̃−12 (m+ rx1 + rx2) mod q) + k̃−12 ry + ρq

)
mod N

=
(
(k−12 (m+ rx1 + rx2) mod q) + k̃−12 ry + ρq

)
mod N

The second-to-last equivalence follows from the statistical equivalence of k̃−12 (m+ rx1 + rx2) + ρq
and (k̃−12 (m+ rx1 + rx2) mod q) + ρq over Z, as shown in Claim 8; as they are equivalent modulo
q and as ρq translates by a random multiple of q that is much larger in expected magnitude than
k̃−12 (m+ rx1 + rx2). The last equality holds because k̃−12 ≡ k−12 mod q.

So, it remains to show the following distributions are statistically close:

((k−12 (m+ rx1 + rx2) mod q) + k̂2ry + ρq) mod N
s
≈((k−12 (m+ rx1 + rx2) mod q) + k̃−12 ry + ρq) mod N,

(1)

where the randomness is over k̂2, k̃
−1
2 and ρ. Note that on the right hand side, k̃−12 = k−12 + ρ̃q,

so there is a correlation between the first and second terms, while on the left hand side, k̂2 was
sampled independently from k−12 by the simulator.
Yet, as we will show, the fact that k̃−12 was generated as k−12 + ρ̃q for random ρ̃ will “disrupt” this
correlation sufficiently that it allows the argument of a well-distributed simulation.

24

By the soundness guarantee (Claim 1), assuming P1’s ZK proof about its encryption of x̂1 verifies
with non-negligible probably, there exists a small integer δ, relatively prime to q, such that δy =
c + ℓN for some c ∈ [3q222(τ+κ)], with c ≡ 0 mod q. Since we want to use this fact about δy, it
is convenient to multiply the distributions we are comparing by δ – in particular, we will prove
Equation 1 by proving the following equivalent statement:

(δ(k−12 (m+ rx1 + rx2) mod q) + δk̂2ry + δρq) mod δN
s
≈(δ(k−12 (m+ rx1 + rx2) mod q) + δk̃−12 ry + δρq) mod δN.

(2)

The two statistical claims are equivalent, because multiplying or dividing by δ to go from one
statement to another is a bijection here. For convenience, let m′ = m+ rx1 + rx2. We have:

(δ(k−12 m′ mod q) + δk̃−12 ry + δρq) mod δN

= ((δk−12 m′ mod δq) + k̃−12 rc+ k̃−12 rℓN + δρq) mod δN
s
≈ ((δk−12 m′ + k̃−12 rc mod δq) + k̃−12 rℓN + δρq) mod δN
s
≈ ((δk−12 m′ + (k̃−12 mod δ)rc mod δq) + k̃−12 rℓN + δρq) mod δN

= ((δk−12 m′ + (k̃−12 mod δ)rc mod δq)+

(k̃−12 rℓ mod δ)N + δρq) mod δN

In the third line, after observing that ρ · δq ≫ k̃−12 rc (recall, ρ ∈ [3q223τ+2κ] while k̃−12 rc ∈
[3q422(τ+κ)]), and (trivially) k̃−12 rc ≡ [k̃−12 rc]δq mod δq, it then follows from Claim 8 that k̃−12 rc+

ρδq
s
≈ k̃−12 rc mod δq+ρδq. The claim of statistical closeness in the fourth line follows from the fact

that c is divisible by q (see Claim 1). The one-to-one correspondence in the fifth line follows from
the Chinese remainder theorem.
We also have:

(δ(k−12 m′ mod q) + δk̂2ry + δρq) mod δN

= ((δk−12 m′ mod δq) + k̂2rc+ k̂2rℓN + δρq) mod δN
s
≈ ((δk−12 m′ + k̂2rc mod δq) + k̂2rℓN + δρq) mod δN
s
≈ ((δk−12 m′ + (k̂2 mod δ)rc mod δq) + k̂2rℓN + δρq) mod δN

= ((δk−12 m′ + (k̂2 mod δ)rc mod δq)+

(k̂2rℓ mod δ)N + δρq) mod δN

The final distributions in each derivation are statistically close to one another, because both k̂2 mod
δ and k̃−12 mod δ are (very nearly) uniform and independent of k−12 (the value of k̃−12 modulo q). In
particular, k̃−12 = k−12 + ρ̃q, where q is relatively prime to δ, and ρ̃ is statistically close to uniform
modulo δ.

This conclude the proof of Claim 3 that viewHyb
c
= viewIdeal.

To complete the proof of Theorem 1, we turn to the output of the executions. We demonstrate that
for any view in the support of either viewHyb or viewIdeal, view causes termination of the simulation
if and only if view causes the honest party to abort without a signature. We make the argument
through case analysis:

25

Case 1: P1 fails to submit a good instance and witness to FRDL

zk , or P2 fails to submit a good

instance and witness to FRDL

com−zk. This could occur during key generation or signing. In the
hybrid execution, the honest party will fail to receive proof-commit or Proof (respectively) and
will terminate the protocol. In the ideal simulation, S will detect the bad submission to the
functionality and will terminate the simulation.

Case 2: P1 provides a proof π ← ΠGCD.Prv(), or a proof Ψ ← Πeq.Prv() that fails to verify. This
could occur during key generation or refresh. Both P2 and S terminate the protocol.

Case 3: P2 fails to decommit to their proof. This could happen in key generation or signing. Both
the honest player and S abort when this occurs.

Case 4: P2 sends a badly formed C ′ during signing. Here we rely on the correctness of the Paillier-
EC-Refresh oracle (Section 7.1). An honest P1 computes s2 = Dec(C ′), and aborts if and only if
k−11 s2 mod q is an invalid signature. S makes this determination through the oracle query. Since
the response of O is 1 if and only if Dec(C ′) = k−12 (r(x1 + x2) + m) mod q, correctness of the
simulation follows.

Claim 8. Let k1 and k2 be two integers satisfying k1 ≡ k2 mod q and |k1 − k2| ≤ 2ℓ · q. Let ρ be
sampled uniformly from [2ℓ+τ] for statistical security parameter τ . Then, the distributions k1 +ρ ·q
and k2 + ρ · q are statistically indistinguishable.

Proof. Without loss of generality, we assume k2 > k1. Let Di denote the distribution over the
integers that results from sampling ρ ← [2ℓ+τ] and outputting ki + ρ · q. Let Good denote the set
of integers that are in the support of both D1 and D2, and Bad the set of integers that are in the
support of only D2. The statistical distance between D1 and D2 is

1

2

∑
x∈Z

∣∣Pr[w = x | w ← D1]− Pr[w = x | w ← D2]
∣∣

=
1

2

∑
x∈Good

∣∣Pr[w = x | w ← D1]− Pr[w = x | w ← D2]
∣∣

+
1

2

∑
x∈Bad

∣∣Pr[w = x | w ← D1]− Pr[w = x | w ← D2]
∣∣

=
1

2

∑
x∈Bad

∣∣Pr[w = x | w ← D1]− Pr[w = x | w ← D2]
∣∣

≤2−τ

The first equality holds because Z\(Good∪Bad) has no support, by definition. The second equality
holds because, for each w ∈ Good, Pr[w ← D1] = Pr[w ← D2]. This is true because the sample
randomness mapping k1 to w ∈ Good is injective, so each element in Good has equal probability
weight under both distributions. Finally, the last inequality holds because Pr[w ∈ Bad | w ← D2] ≤
2−τ , and Pr[w ∈ Bad | w ← D1] = 0.

26

References

[1] Jesús F. Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified threshold RSA with
adaptive and proactive security. In Serge Vaudenay, editor, Advances in Cryptology - EURO-
CRYPT 2006, pages 593–611, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[2] Boaz Barak, Amir Herzberg, Dalit Naor, and Eldad Shai. The proactive security toolkit and
applications. In Proc. of 6th ACM Conference on Computer and Communications Security
(CCS). ACM, 1999.

[3] Michele Battagliola, Riccardo Longo, Alessio Meneghetti, and Massimiliano Sala. Threshold
ECDSA with an offline recovery party, 2021.

[4] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryp-
tion standard PKCS# 1. In Advances in Cryptology—CRYPTO’98: 18th Annual International
Cryptology Conference Santa Barbara, California, USA August 23–27, 1998 Proceedings 18,
pages 1–12. Springer, 1998.

[5] C. Boyd. Digital multisignature. In Cryptography and Coding, pages 241–246, 1986.

[6] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous verifi-
able secret sharing and proactive cryptosystems. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, CCS ’02, page 88–97, New York, NY, USA, 2002.
Association for Computing Machinery.

[7] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptol.,
13(1):143–202, 2000.

[8] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, CCS ’20, page
1769–1787, New York, NY, USA, 2020. Association for Computing Machinery.

[9] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Two-party ECDSA from hash proof systems and efficient instantiations. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages
191–221, Cham, 2019. Springer International Publishing.

[10] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold EC-DSA. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, Public-Key Cryptography – PKC 2020, pages 266–296,
Cham, 2020. Springer International Publishing.

[11] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold EC-DSA revisited: Online/offline extensions, identifiable aborts
proactive and adaptive security. Theor. Comput. Sci., 939(C):78–104, jan 2023.

[12] R.A. Croft and Harris S.P. Public-key cryptography and reusable shared secret. In Cryptog-
raphy and Coding, pages 189–201, 1989.

27

[13] Ivan Damg̊ard, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter, and
Michael Bæksvang Østergaard. Fast threshold ECDSA with honest majority. In Clemente
Galdi and Vladimir Kolesnikov, editors, Security and Cryptography for Networks, pages 382–
400, Cham, 2020. Springer International Publishing.

[14] Yvo Desmedt. Society and group oriented cryptography: a new concept. In Carl Pomerance,
editor, Advances in Cryptology — CRYPTO ’87, pages 120–127, Berlin, Heidelberg, 1988.
Springer Berlin Heidelberg.

[15] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, Advances
in Cryptology — CRYPTO’ 89 Proceedings, pages 307–315, New York, NY, 1990. Springer New
York.

[16] Jack Doerner, Yash Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA in three rounds.
eprint/2023/765, 2023.

[17] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party threshold
ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 980–997, 2018.

[18] Y. Frankel, P. Gemmell, P.D. MacKenzie, and Moti Yung. Optimal-resilience proactive public-
key cryptosystems. In Proceedings 38th Annual Symposium on Foundations of Computer Sci-
ence, pages 384–393, 1997.

[19] Yair Frankel, Peter Gemmell, Philip D. MacKenzie, and Moti Yung. Proactive RSA. In
Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages 440–454, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg.

[20] Yair Frankel, Philip Mackenzie, and Moti Yung. Adaptively-secure optimal-resilience proactive
RSA. pages 180–194, 12 1999.

[21] Adam Gagol, Jedrzej Kula, Damian Straszak, and Michal Swietek. Threshold ECDSA for
decentralized asset custody. IACR Cryptol. ePrint Arch., page 498, 2020.

[22] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, page 1179–1194, New York, NY, USA, 2018. Association for Computing
Machinery.

[23] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In Mark Manulis, Ahmad-Reza
Sadeghi, and Steve Schneider, editors, Applied Cryptography and Network Security, pages 156–
174, Cham, 2016. Springer International Publishing.

[24] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS
signatures. In Ueli Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, pages 354–
371, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[25] Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-interactive statisti-
cal zero-knowledge proof system for quasi-safe prime products. In 5th ACM Conference on
Computer and Communication Security (CCS’98), pages 67–72, San Francisco, California,
November 1998. ACM, ACM Press.

28

[26] Sharon Goldberg, Leonid Reyzin, Omar Sagga, and Foteini Baldimtsi. Efficient noninteractive
certification of RSA moduli and beyond. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019,
Proceedings, Part III, volume 11923 of Lecture Notes in Computer Science, pages 700–727.
Springer, 2019.

[27] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge
University Press, 2004.

[28] Amir Herzberg, Markus Jakobsson, Stanisl law Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive public key and signature systems. In Proceedings of the 4th ACM Conference on Computer
and Communications Security, CCS ’97, page 100–110, New York, NY, USA, 1997. Association
for Computing Machinery.

[29] Amir Herzberg, Stanis law Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing
or: How to cope with perpetual leakage. In Don Coppersmith, editor, Advances in Cryptology
— CRYPT0’ 95, pages 339–352, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[30] Stanis law Jarecki and Josh Olsen. Proactive RSA with non-interactive signing. In Gene
Tsudik, editor, Financial Cryptography and Data Security, pages 215–230, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[31] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography: principles and
protocols. Chapman and hall/CRC, 2007.

[32] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. Refresh when
you wake up: Proactive threshold wallets with offline devices. In 42nd IEEE Symposium on
Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 608–625.
IEEE, 2021.

[33] Yehuda Lindell. Fast secure two-party ECDSA signing. In Advances in Cryptology–CRYPTO
2017: 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20–24, 2017, Proceedings, Part II 37, pages 613–644. Springer, 2017.

[34] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed
key generation and applications to cryptocurrency custody. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’18, page 1837–1854,
New York, NY, USA, 2018. Association for Computing Machinery.

[35] Philip Mackenzie and Michael Reiter. Two-party generation of dsa signatures. International
Journal of Information Security, 2, 09 2004.

[36] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract).
In Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’91, page 51–59, New York, NY, USA, 1991. Association for Computing Machinery.

[37] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99, pages 223–238, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

29

[38] Tal Rabin. A simplified approach to threshold and proactive RSA. In Hugo Krawczyk, editor,
Advances in Cryptology — CRYPTO ’98, pages 89–104, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[39] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances in Cryptology
— EUROCRYPT 2000, pages 207–220, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[40] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen cipher-
text attack. In Kaisa Nyberg, editor, Advances in Cryptology — EUROCRYPT’98, pages 1–16,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

A The Paillier-EC-Refresh Assumption and Robustness to
CCA-like Attacks

Lindell’s threshold ECDSA scheme [33] uses a severe countermeasure to defend against an attack
by a malicious P2. Namely, if P2 sends a partial signature (encrypted under P1’s Paillier key)
that leads to an invalid signature, the system aborts, a new signing key must be generated from
scratch, and the PKI must be updated with the new signing key. This motivates the question:
Can we prevent P2’s attack with a less severe countermeasure – say, just a Refresh instead of a
full KeyGen, or maybe even a procedure P1 can perform on its own – while making virtually no
compromises on performance? Here, we show that we can.
First, let us understand the attack better. The basic problem is that, in Lindell’s threshold ECDSA
protocol, P1 decrypts a ciphertext sent by P2 and reacts to the result. This is similar to the classical
setting of chosen-ciphertext attacks, where there are well-known attacks that recover the secret key
just from decryption error messages. One way to defeat such attacks is to use an encryption scheme
with chosen ciphertext security, but Lindell’s scheme uses Paillier precisely for its homomorphic
properties. Another way to defeat such attacks is to require P2 to use a zero-knowledge proof that its
ciphertext is correctly constructed, but Lindell’s scheme gets its performance precisely by avoiding
expensive zero knowledge proofs. Instead, Lindell proves that his scheme is secure under the Paillier-
EC assumption, a plausible assumption that permits very limited access to the decryption oracle.
Namely, the oracle will validate that a Paillier ciphertext encrypts some plaintext that satisfies a
congruence modulo q, but if validation fails the oracle will abort permanently. Unfortunately, this
means the scheme must start over as well.
Surprisingly, we show that, in our scheme, a lighter countermeasure is sufficient. Namely, instead of
encrypting its share x1 ∈ [q] under its Paillier key N1, P1 encrypts some value X1 = x1+q ·f1 where
f1 has sufficient min-entropy. In other words, it never sends a direct encryption of x1 to P2, but
instead always first perturbs x1 by a random multiple of q. Then, if P1 detects a malicious partial
signature from P2, P1 changes its Paillier modulus to some N2 and encrypts a fresh X2 = x1 + q ·f2
under N2. Each time it detects an invalid partial signature, P1 updates both its Paillier modulus and
the perturbation of x1 that it encrypts. P2 can be continuously corrupted, and this countermeasure
will still work to protect x1. During these updates, the value of x1 can remain the same, but for
convenience our scheme folds this update into the proactive Refresh procedure.
Our assumption, Paillier-EC-Refresh, makes the expected changes to Lindell’s Paillier-EC. Namely,
we give the adversary access to several oracles in parallel, each one associated with a different value
Xi = x1 mod q and a different Paillier modulus Ni. Each oracle permits one invalid query before
aborting, and then a new oracle is spun up. Intuitively, the adversary cannot recover information

30

about x1 because each oracle allows only a few bits about Xi to be revealed before aborting, and
these bits are statistically independent of x1. Formally, we prove that the assumption is true in a
generic model for elliptic curves and Paillier encryption that allows linear functions to be computed
“in the exponent”.
We describe Lindell’s Paillier-EC assumption and our own Paillier-EC-Refresh Assumption in Sec-
tion 7.

A.1 Generic Model Evidence for the Assumption

We provide evidence supporting the Paillier-EC-Refresh assumption in a generic model where one
can apply linear functions in G and in the plaintext space of each Paillier modulus.

Definition 1 (Generic Model for Paillier and Elliptic Curves). The model provides “handles” for
elements, rather than elements themselves. For example, for G, first a random handle for the
element 1 ·P is published. Then, given t previously published handles for a1 ·P, . . . , at ·P , together
with t scalars u1, . . . , ut ∈ [q] expressing a linear combination, the model publishes a handle for
(a1u1 + · · · + atut) · P . The model stores handles together with their associated scalars. Two
queries that end up corresponding to the same element in G are handled with the same response.
Paillier ciphertexts are handled generically in a similar way, with complications due to encryption
randomness. For Paillier modulus Ni, first a random handle for an encryption of 1 is published.
The model stores the handle, the value encrypted, and the encryption randomness. Then, given
t previously published handles, a t-linear combination modulo Ni, and some randomness for re-
randomization, the model publishes a handle for the resulting ciphertext and stores its associated
information. If the resulting ciphertext has the same encrypted value and randomness as one
previously handled, the same handle is provided. The handles are distinct across different groups,
and for different elements of the same group.

We prove that the Paillier-EC-Refresh Assumption is true when the adversary interacts with the
above generic model and the oracles provided in the assumption.

Theorem 2. In the generic model for Paillier and elliptic curves, the Paillier-EC-Refresh as-
sumption holds. More precisely, suppose the adversary makes at most nG elliptic curve generic
model queries, nPal generic model queries for any particular Paillier modulus, and at most nO
queries to any particular oracle in the Paillier-EC-Refresh Assumption. If |I1| ≥ k · q · nO · 2τ and
(n2G +kn2Pal +knO) < q ·2−τ−2, then the adversary’s advantage in the Paillier-EC-Refresh Problem
in the generic model is at most 2−τ .

Proof. The challenger in the Paillier-EC-Refresh Assumption generates w0, w1, b. It gives the ad-
versary handles for 1 ·P and w0 ·P in G. It samples w̃i (for Ni) uniformly and independently from
the interval I1 subject to w̃i = wb mod q, provides handles for encryptions of these values, and
stores the associated information (including encryption randomness). The adversary can access the
generic model, using the provided handles as starting points. The adversary can also access the
oracle Ow̃i associated with the value w̃i encrypted under Ni: the adversary sends (h, α, β), where
h is some handle it has obtained, and Ow̃i

responds with 1 iff h corresponds to an encryption of
some value Y such that [Y − (α+ qℓ+β · w̃i))]N is in I2 and divisible by q, for perturbation factor ℓ
chosen by the oracle uniformly randomly from [k · q · 22τ+κ]. The challenger decommissions oracles
as appropriate.

31

Let views denote the set of views that the adversary has from its generic model accesses and oracle
queries. We partition views into two subsets, viewsBad and viewsGood. In viewsBad, the adversary
makes a “bad query”. A bad query is one of the following:

• Bad oracle query: By Theorem 3 and Corollary 1, the solution set of each oracle query is an
arithmetic progression within I1. We call an oracle query bad if all terms in its arithmetic
progression have the same value modulo q, and that value is w0 or w1.

• Bad G query: The adversary obtains handles for elements in G of the form αi +βi ·w0. If two
handles non-trivially collide, they reveal a relation for w0 – namely, (αi−αj)+(βi−βj) ·w0 =
0 mod q. We say that a G query is bad if, by subtracting it from another G query, the resulting
linear equation is satisfied by w0 or w1.

• Bad Paillier query: For each Paillier modulus separately, the adversary obtains handles for
ciphertexts in that Paillier group that are derived from given encryptions of 1 and w̃i. If two
handles non-trivially collide, then it may reveal a relation for w̃i and hence wb. We say that
a Paillier query is bad if, by subtracting it from another Paillier query, the resulting linear
equation is satisfied by some X in I1 that equals w0 or w1 modulo q.

Now, the adversary’s advantage in distinguishing b is at most:

1

2

∑
V ∈views

∣∣Pr[b = 0|view is V]− Pr[b = 1|view is V]
∣∣ · Pr[view is V]

=
1

2

∑
V ∈viewsGood

∣∣Pr[b = 0|view is V]− Pr[b = 1|view is V]
∣∣ · Pr[view is V]

+
1

2

∑
V ∈viewsBad

∣∣Pr[b = 0|view is V]− Pr[b = 1|view is V]
∣∣ · Pr[view is V]

First, consider the case of a good view. In this case, the adversary makes no queries or generic
model accesses that relate directly to w0 or w1. By Theorem 7, and a standard hybrid argument
across the k oracles in which we sequentially replace w0 with w1 in the construction of the oracles
(and with Corollary 1, which describes how to translate Paillier-EC-Refresh oracle queries to the
oracles of Theorem 7), the expression above with viewsGood is at most k·q·nO

2|I1| .

The part of the expression above with viewsBad is upper bounded by 1
2

∑
V ∈viewsBad Pr[view is V]. It

remains to bound the probability of a bad view. Any bad view V has some first bad query. The
roadmap for the rest of the proof is: 1) Show that, just before the first bad query, the adversary
has negligible information about w0 and w1 – both w0 and w1 appear to have an almost uniform
distribution over [q], and 2) Conclude that, given its negligible information about w0 and w1, the
chance of its next query being bad – of it essentially guessing w0 or w1 – is negligible.
First, consider the adversary’s view just before the first bad query. The adversary has made at
most nG accesses to the generic model for G, at most nPal accesses to each of the k Paillier generic
models, and at most nO queries to each of the k oracles. However, none of the

(
nG
2

)
pairs of handles

for G correspond to a bad query, so these queries merely reveal at most
(
nG
2

)
values modulo q that

are not in {w0, w1}. Similarly, the Paillier handles reveal at most k ·
(
nPal

2

)
more values modulo q

that are not in {w0, w1} (being generous to the adversary here). Finally, the adversary has made
at most k oracle queries that we call q-progression queries – queries whose solution set consists of
elements that all equal the same value modulo q. There are at most k such queries, at most 1 per
oracle, because the all of the responses to them were 0, for otherwise there would be a bad query

32

among them. These at most k q-progression queries reveal k additional values modulo q that are
not in {w0, w1}. Altogether, the generic model queries and the q-progression oracle queries “knock
out” at most n2G + k · n2Pal + k values modulo q.
Of the subset of q−n2G−k ·n2Pal−k values remaining, Theorem 7 (with a hybrid argument over the
k oracles) states that all of these remaining values look statistically equally likely to be in {w0, w1},
up to an advantage of k · q · nO/2|I1|. This implies that the maximum likelihood pmax of any of
these mod-q values being in {w0, w1} is:

pmax = max
u∈[q]

Pr[u ∈ {w0, w1}]

≤ 2

q − n2G − k · n2Pal − k
· 1 + k · q · nO/|I1|

1− k · q · nO/|I1|

The term multiplied on the right comes from the fact that, if the maximum advantage for guessing
between two choices is ϵ, then probabilities are 1/2 + ϵ and 1/2− ϵ, and the former is bigger by a
factor of (1 + 2ϵ)/(1− 2ϵ).
Having characterized the adversary’s view before its first bad query, we consider the bad query
itself, considering the 3 types of queries (oracle query, G query and Paillier query). A bad oracle
query is one in which the solution set is either entirely w0 or w1 modulo q. By the union bound
over the adversary’s k · nO oracle queries, the probability of this event is at most pmax · k · nO.
A bad G query is one in which the relation corresponding to a pair of colliding handles is satisfied
by w0 or w1. By the union bound, the probability of a bad G query is at most pmax

(
nG
2

)
< pmax ·n2G.

The case of a bad Paillier query is similar.
Putting this together, we have:

1

2

∑
V ∈viewsBad

Pr[view is V]

≤ (n2G + kn2
Pal + knO) · 1

q − n2G − k · n2Pal − k
· 1 + k · q · nO/|I1|

1− k · q · nO/|I1|
.

Adding this together with the adversary’s advantage coming from viewsGood, we have:

AdvantageAdversary ≤
k · q · nO

2|I1|

+(n2G + kn2
Pal + knO) · 1

q − n2G − k · n2Pal − k
· 1 + k · q · nO/|I1|

1− k · q · nO/|I1|
.

The first expression on the right hand side of the inequality is at most 2−τ−1, because we assumed
|I1| ≥ k ·q ·nO ·2τ . The second expression is also at most 2−τ−1, because we assumed (n2G +kn2Pal +

knO) < q · 2−τ−2, and the ratio q
q−n2

G−k·n2
Pal−k

· 1+k·q·nO/|I1|
1−k·q·nO/|I1| is less than 2 for our parameters. The

theorem follows.

A.2 Solution Sets Are Arithmetic Progressions

Below, Theorem 3 states that, when I1 and I2 are sets of consecutive integers inside [N] satisfying
certain conditions, the set {X ∈ I1 : [a + bX]N ∈ I2} is a (finite) arithmetic progression inside

33

I1. Afterwards, we explain how this result applies to our generic model proof that the Paillier-EC-
Refresh Assumption holds.
This arithmetic progression result may seem rather esoteric, but it helps us prove strong statistical
uniformity results in Section A.3.

Theorem 3. Let [N] be a set of N consecutive integers – for example, {0, . . . , N − 1}. Let [·]N
denote reduction modulo N into [N]. Let I1, I2 ⊂ [N] be two nonempty sets of consecutive integers
satisfying 2|I1||I2| < N . For integers a, b, let Sa,b,I1,I2 = {X ∈ I1 : [a + bX]N ∈ I2}. Then, the
elements of Sa,b,I1,I2 form a (finite) arithmetic progression.

We give two proofs of Theorem 3, one elementary, a second based on two-dimensional lattices.

Proof. (Elementary) Sa,b,I1,I2 is trivially an arithmetic progression if it has fewer than 3 elements,
so assume the contrary. Let distinct s1, s2 ∈ Sa,b,I1,I2 be such that δ = |s2 − s1| is minimized. Let
A be the longest arithmetic progression inside Sa,b,I1,I2 containing s1 and s2. The progression A
has step size δ. Our claim is that Sa,b,I1,I2 = A. Let A′ ⊂ I1 be the continuation of the arithmetic
progression A across all of I1.
Some facts:

1. For any arithmetic progression B, {a + bX mod N : X ∈ B} is an arithmetic progression
modulo N , though the set of integers {[a + bX]N : X ∈ B} may not be due to wrapping
modulo N .

2. For consecutive elements in A like s1 and s2 that differ by δ, their corresponding values
[a+ bX]N differ by the same ∆ = bδ mod N , where |∆| < |I2|. So, for small step size δ in A,
the corresponding value of [a+ bX]N makes a “small” step size ∆.

3. We have bδ = ∆ + ℓN for some ℓ co-prime to δ, for otherwise if there were a common divisor
d we would have b(δ/d) = (∆/d) + (ℓ/d)N with ∆/d an integer, which would imply that we
could have taken smaller steps δ/d in I1 and induce smaller steps ∆/d in I2.

4. For arithmetic progression A, the set of integers {[a + bX]N : X ∈ A} is an arithmetic
progression within I2. This is because {[a + bX]N : X ∈ A} is an arithmetic progression
modulo N that stays within I2 ⊂ [N], with no wrapping because the step size |∆| < |I2| is
too small to step over [N] \ I2, as 2|I2| < N .

5. For elements in A′ outside of A, the corresponding value of [a+bX]N is outside of I2 but “close”
to I2, since continuing in the arithmetic progression A′ beyond A induces a + bX mod N to
take small steps of size |∆| away from I2 without going far enough to wrap. Specifically,
since |A′| ≤ |I1|/δ + 1, and since A′ has at least two elements in Sa,b,I1,I2 , there are at
most |I1|/δ − 1 elements of A′ outside of A. So, for X ∈ A′, a + bX modulo N can be
at most |∆| · (|I1|/δ − 1) < |I1||I2|/δ away from I2, which is not far enough to wrap, since
(|I1|+ 1)|I2| < N . Therefore, Sa,b,I1,I2 contains no elements in A′ \A.

6. For elements X in I1 \ A′, we can express X as X0 + X1, where X0 ∈ A′ and X1 ∈ {−δ +
1, . . . ,−1, 1, δ− 1}. Then, a+ bX = (a+ bX0) + bX1 mod N . As mentioned, a+ bX0 mod N
is either in I2 or “close” to it. We claim that bX1 mod N is so “large” that it is impossible
for a+ bX mod N to be in I2. Recall that we have bδ = ∆ + ℓN for some ℓ co-prime to δ. So,
bX1 = (X1/δ) · (∆ + ℓN), as an integer, where |(X1/δ) ·∆| < |∆| is “small” and (X1 · ℓ/δ) ·N

34

equals ⌊X1 · ℓ/δ⌋ ·N + ((X1 · ℓ mod δ)/δ) ·N , where the former expression is a multiple of N
and the latter has the form (r/δ) ·N for r ∈ {1, . . . , δ− 1} (using here the fact that X1 and ℓ
are co-prime to δ). For small δ and r ∈ {1, . . . , δ−1}, (r/δ) ·N is very distant from a multiple
of N . Pulling this together, bX1 mod N has magnitude at least N/δ−|∆|. Therefore, a+ bX
is at least N/δ − |∆| − |∆| · (|I1|/δ − 1)− |I2| “away” from I2, where this quantity is at least
N/δ− |∆||I1|/δ− |I2| = (1/δ) · (N − |∆||I1| − |I2|δ) > (1/δ) · (N − 2|I1||I2|) > 0. Concluding,
Sa,b,I1,I2 contains no elements outside of A′.

Proof. (Lattice-Based) Let La = {X,Y ∈ Z2 : Y = a + bX mod N}. This set is a translation of
the two-dimensional lattice L = {X,Y ∈ Z2 : Y = bX mod N}. Let R be the two-dimensional
“rectangle” I1 × I2. Let S = La ∩R be their intersection. We claim that S is a (finite) progression
of equally spaced points on a 1-dimensional line. Since Sa,b,I1,I2 is the set of first coordinates of
points in S, the theorem follows from the claim.
The claim is trivially true if S has fewer than 3 points, so assume the contrary. Let (X1, Y1),
(X2, Y2), (X3, Y3) be three arbitrary distinct points in S. Let (δ1,∆1) denote (X1 −X3, Y1 − Y3),
and (δ2,∆2) denote (X2 −X3, Y2 − Y3). We have:

b · δ1 = ∆1 mod N

b · δ2 = ∆2 mod N.

Therefore, b · δ1 ·∆2 − b · δ2 ·∆1 = 0 mod N .
If gcd(b,N) = 1, then δ1 ·∆2− δ2 ·∆1 = 0 mod N . But we also have |δ1 ·∆2− δ2 ·∆1| < N because
2|I1||I2| < N . So, δ1 ·∆2 − δ2 ·∆1 = 0 over the integers. Hence, (X1, Y1), (X2, Y2), and (X3, Y3)
are collinear. Since these points were arbitrary, all solutions are collinear, lying on some line ℓ. We
conclude that S = La ∩R ∩ ℓ, where the right hand side is clearly a (finite) progression of equally
spaced points on a 1-dimensional line.
For the case d = gcd(b,N) is nontrivial, let b′ = b/d, N ′ = N/d, ∆′1 = ∆1/d, and ∆′2 = ∆2/d.
Then, we have δ1 ·∆′2−δ2 ·∆′1 = 0 mod N ′ and |δ1 ·∆′2−δ2 ·∆′1| < N ′, and hence δ1 ·∆′2−δ2 ·∆′1 = 0
over the integers, so that we obtain the collinearity result again, and proceed as before.

How is this result relevant to our generic model proof that the Paillier-EC-Refresh Assumption
holds?

Corollary 1. The solution sets of oracle queries in our generic model proof are arithmetic progres-
sions.

Proof. Recall that, in Paillier-EC-Refresh, the ciphertext Ci encrypts a value w̃i = wb mod q. The
adversary is given an oracle OCi

such that OCi
(C ′, α, β) = 1 iff [(Decski(C

′)−(α+qℓ+β ·w̃i))]N is in
I2 and divisible by q, for some perturbation factor ℓ chosen by the oracle. But, in the generic model,
C ′ is a handle for a ciphertext and Decski(C

′) is known as a linear expression α′+β′·w̃i. So, in fact the
oracle is testing whether [(α′−α−qℓ)+(β′−β)·w̃i))]N is I2 and divisible by q. Let I ′2 = {z : zq ∈ I2}.
Then, the oracle is testing whether [(q−1 mod N)(α′ −α− qℓ) + (q−1 mod N)(β′ − β) · w̃i))]N is in
I ′2. Now, Theorem 3 applies, using a = (q−1 mod N)(α′ − α − qℓ) and b = (q−1 mod N)(β′ − β)
and the output interval I ′2, where |I ′2| equals |I2|/q (rounded up or down).

Suppose the adversary makes several oracle queries that get several positive responses. By Theorem
3, the solution set then corresponds to an intersection of (finite) arithmetic progressions. The
following theorem states that this intersection is itself a finite arithmetic progression.

35

Theorem 4. The intersection of (finite) arithmetic progressions is a (finite) arithmetic progression.

Proof. Let {Ai} be a set of (finite) integer arithmetic progressions over intervals {Ii} – namely,
Ai = {ci + δi · k ∈ Ii : k ∈ Z}. Unless the intersection is empty, they all have a common element c.
Set δ to be the lowest common multiple of {δi}. Set I = ∩iIi, which is itself an interval. Then, the
intersection is A = ∩iAi = {c+ δ · k ∈ I : k ∈ Z}.

In Paillier-EC-Refresh, each oracle permits multiple positive responses and one negative response.
The solution set here is the difference of two arithmetic progressions.

Theorem 5. The intersection of (finite) arithmetic progressions with the complement of an arith-
metic progression is a difference of arithmetic progressions.

Proof. Denote the arithmetic progressions by A1, . . . , Am, where Am is the one we take the com-
plement of. We are interested in (∩m−1i=1 Ai) \Am.
Let Bi denote ∩ij=1Aj . By Theorem 4, Bi is an arithmetic progression. And the above set is
precisely Bm−1 −Bm.

Remark 1. For set difference, we use the A \B notation when it is not assumed that B ⊂ A. We
use the A−B exclusively when B is known to be a subset of A.

A.3 Statistical Results

An easy first result is that arithmetic progressions have good statistical uniformity properties mod-
ulo q, as long as their step size δ is co-prime to q.

Theorem 6. Let A be an arithmetic progression with step size δ that is co-prime to q. Then, for
each x ∈ [q], A has either ⌊|A|/q⌋ or ⌈|A|/q⌉ elements congruent to x modulo q.

Proof. (Trivial.)

As a corollary, when it also holds that q/|A| is negligible, A is statistically uniform modulo q.
Now, suppose a computationally unbounded algorithm A interacts with an oracle OX , X ∈ I1,
that on input any a, b, outputs 1 iff [aX + b]N ∈ I2, and otherwise outputs 0 and aborts. In the
setting here, we will give A both more and less power than the adversary in the Paillier-EC-Refresh
assumption, as follows:

• We let the adversary know u0, u1 such that X = ub mod q for b ∈ {0, 1}.

• We give A access to OX , except that we disallow a certain type of “bad oracle query”. Namely,
each oracle query corresponds to an arithmetic progression A, by Theorem 3. We say that a
query is a “q-progression query” for residue u if its associated progression A has entries all
congruent to u modulo q. We prohibit A from making a “bad oracle query”, defined as a
q-progression query on u0 or u1.

Theorem 7 says that A has negligible advantage in guessing b. Note that A could easily guess b if it
were allowed to make a bad oracle query. While the setting is different from the Paillier-EC-Refresh
assumption, Theorem 7 will be a component of our proof that the Paillier-EC-Refresh assumption
is true in a generic model.

36

Theorem 7. Let N, q be integers, q prime. Let [·]N denote reduction modulo N into [N]. Let
I1, I2 ⊂ [N] be two nonempty sets of consecutive integers satisfying 2|I1||I2| < N , with |I1| divisible
by q. Let nO be a parameter, representing a maximum permitted number of oracle queries. Consider
the following interaction with an oracle. The values u0, u1 are sampled uniformly from [q], b is
sampled from {0, 1}, and X is sampled uniformly randomly from I1 subject to X = ub mod q.
Having fixed X, the oracle OX , on input any a, b, outputs 1 iff [a + bX]N ∈ I2. Otherwise, OX

outputs 0 and aborts permanently. Any algorithm A given access to u0, u1 and OX – subject to the
restrictions that it can make at most nO queries to OX and that it cannot make bad oracle queries
(as defined above) – has advantage at most q·nO

2|I1| in guessing b. For example, if |I1| ≥ q · nO · 2τ−1
for statistical security parameter τ , A’s advantage is negligible.

Proof. Fix u0, u1 and fix the algorithm A and its randomness (but not b or X). A makes a fixed
first query Q1 and receives either 0 or 1 in response. If 0, the interaction is terminated. If 1, A
continues with its next fixed query Q2. And so on. A thereby follows a fixed chain of up to nO
oracle queries.
By Theorem 3, the set of values in I1 consistent with a 1 response to query Qi is an arithmetic
progression Ai, while a 0 response is consistent with I1 \Ai. Let Bi = ∩ij=1Aj . If A’s m-th query is
the first 0 response from the oracle, then by Theorems 4 and 5, X is in Bm−1−Bm. The Bi−1−Bi

terms form a telescoping sum with B0 = I1 and Bi = ∅ for all i > nO. Let P0, P1 denote the
arithmetic progressions {X ∈ I1 : X = u0 mod q} and {X ∈ I1 : X = u1 mod q}, respectively. A
knows a priori that X is in P0 ∪ P1.
Now, letting views denote the set of views A may get from oracle OX , we have that A’s advantage
in guessing b is at most:

1

2

∑
V ∈views

∣∣Pr[b = 0|view is V]− Pr[b = 1|view is V]
∣∣ · Pr[view is V] (3)

=
1

2

∑
V ∈views

∣∣Pr[b = 0 ∧ view is V]− Pr[b = 1 ∧ view is V]
∣∣ (4)

=
1

2

∑
V ∈views

∣∣Pr[view is V|b = 0]Pr[b = 0]− Pr[view is V|b = 1]Pr[b = 1]
∣∣ (5)

=
1

4

∑
V ∈views

∣∣Pr[view is V|b = 0]− Pr[view is V|b = 1]
∣∣ (6)

=
1

4

∑
m∈[nO]

∣∣∣∣ |P0 ∩ (Bm−1 −Bm)|
|P0|

−
|P1 ∩ (Bm−1 −Bm)|

|P1|

∣∣∣∣ (7)

=
q

4|I1|
∑

m∈[nO]

∣∣|P0 ∩ (Bm−1 −Bm)| − |P1 ∩ (Bm−1 −Bm)|
∣∣ (8)

≤
q

4|I1|
∑

m∈[nO]

2 (9)

=
q · nO
2|I1|

. (10)

The above inequality holds for all A and all its choices of randomness. Equation 7 relabels A’s
view depending on which query to OX gets a 0 response. The probability that the m-th response
is the first 0 depends on the set Bm−1 −Bm of candidate X values and how that set intersects P0

or P1. Equation 8 comes from our requirement that |I1| is divisible by q so that it hits all residues
perfectly evenly; if I1 did not have this property, we would need to make a very small adjustment.
We now prove Equation 9.

37

Let δm−1, δm be the step sizes of the arithmetic progressions Bm−1, Bm. We claim that δm−1 is
not divisible by q. Assume the contrary. Then, since Bm−1 is the intersection of A1, . . . , Am−1
and since the step size of the intersection of arithmetic progressions is the LCM of the individual
progressions, one of A1, . . . , Am−1 must have step size divisible by q. But this is impossible, since
this would imply that one of A’s first m− 1 queries was a successful q-progression query, and thus
a q-progression query for residue ub, which is prohibited. Contradiction.
If δm−1 and δm are both co-prime to q, then by Theorem 6, each residue x modulo q is represented
in Bm−1 − Bm at least ⌊|Bm−1|/q⌋ − ⌈|Bm|/q⌉ times and at most ⌈|Bm−1|/q⌉ − ⌊|Bm|/q⌋ times.
These quantities differ by at most 2, proving Equation 9 for this case.
If δm−1 is co-prime to q and δm is not, then Bm’s terms all have the same value (some c) modulo q.
Note that c cannot be u0 or u1, since this is a q-progression query. Subtracting Bm from Bm−1 just
depresses c’s representation, and otherwise leaves Bm−1’s representation of the residues modulo q
unaffected. In Bm−1, each residue x modulo q is represented at least ⌊|Bm−1|/q⌋ times and at most
⌈|Bm−1|/q⌉ times. These quantities differ by at most 1, proving Equation 9 for this case.

A.4 Would a Weaker Refresh Be Sufficient?

To overcome a malicious P2 who sends an invalid encrypted partial signature, P1 refreshes both its
Paillier modulus and the value X = x1 mod q that it encrypts under its modulus to represent its
key share x1. Would a weaker refresh be sufficient to overcome P2’s attack? Would it be sufficient
for P1 to refresh X while re-using the same Paillier modulus, or to refresh its Paillier modulus but
re-use the same X? Unfortunately not. Either weakening of Refresh has serious security issues.
Suppose that P1 refreshes just X, while keeping the Paillier modulus N the same. Let X1, X2, . . .
be the refreshed values, encrypted as c1, c2, . . . under N . Upon each Refresh, the adversary is given
access to a fresh oracle Oci . All of these oracles interoperate in the sense that they use the same N :
a ciphertext derived from ci could be used to construct an input ciphertext for oracle Ocj for i ̸= j.
Consequently, the adversary is effectively given a higher oracle budget for c1. It can query k oracles
with ciphertexts derived from c1, and it is allowed k ‘0’ responses before the oracles abort. If k is
sufficiently large, the adversary will eventually obtain enough information about X1 to recover it
completely.
Suppose that P1 refreshes just the Paillier modulus, not the value X1 = x1 mod q that is encrypted.
The problem is similar to above. Again, the adversary is given access to several oracles – albeit
tagged to different Paillier moduli – each of which can be used to gain information about X1, and
thereby x1.
Changing both the modulus and encrypted value ensures that no information about X1 can be
used effectively after the first Refresh, barring some “spooky interaction” among different Paillier
moduli.

B Active, Proactive Security

We provide a refresher of the real/ideal security framework – the reader can find more details in
Goldreich’s book on secure computation [27] – and then discuss the issues that relate to proactive
security. Security is defined by comparing the protocol to an ideal execution of a threshold-ECDSA
functionality, FTS (Figure 8), which is secure by definition. In the case of threshold signatures,
the functionality is reactive, which means it might be queried repeatedly, providing new output in
response to each query. A distinguisher, D, is provided a transcript of messages that were either

38

received by an adversary A while executing the signing protocols in the real execution, or they
were generated by a simulator S, who was given only black-box access to A, and access to FTS. In
addition, D is given the output of the honest party, H. Formally, D must distinguish whether it is
given a sample from

Realπ,A(1κ, τ, z) = (viewπ,A(1κ, τ, z), outπ,H(1κ, τ))

or
IdealFTS,S(1κ, τ, z) = (viewFTS,S(1κ, τ, z), outFTS,H(1κ, τ)),

where π is the real-world execution of the protocol, κ is the computational security parameter, τ is
the statistical security parameter, and z is some arbitrary auxiliary information. We provide some
of the details of the experiments defining these two joint distributions next.

Setup: D provides an arbitrary, identical sequence of commands to both the adversary and the hon-
est party, drawn from the set: {(KeyGen,G, G, q), (ssid,Sign,m), (ssid,Refresh), (ssid,Corrupt, Pi),
(ssid,De-corrupt)}, with KeyGen, appearing exactly once, either as the first command in the se-
quence, or immediately after a single Corrupt command. (We will discuss some additional con-
straints on the command sequence later in this section.) The values of m that are to be signed
can be chosen arbitrarily as well. This sequence can be fixed adaptively, with D choosing the next
command after seeing the result of the previous one, but for simplicity we consider the simpler case.
D does not know whether he has provided the command sequence to S and H, acting in the ideal
world, or to A and H acting in the real execution. After the experiment concludes, D will output
a guess as to which was the case.

Ideal world execution: In the ideal-world execution, S is given black-box oracle access to A.
A may or may not follow the protocol honestly. For each command in the command sequence, S
queries FTS to learn A’s output: X during KeyGen and the ECDSA signature (r, s) on m during
signing. After interacting with A, S eventually outputs a transcript, and indicates to FTS whether
to provide output to H for this command. (This is known as security with abort.) It then proceeds
to the next command in the same manner. If D provides the command (ssid,Corrupt, Pi), S provides
a simulated view of the stored state of Pi, and continues simulating the view of Pi until it arrives
at command (ssid,De-corrupt). At that point, it provides no output until the next command of the
form (ssid,Corrupt, Pi).

Real world execution: In the real world execution of the protocols, D provides the sequence
of commands to the adversary A, and to honest party H. The two of them execute the protocols
corresponding to the commands, sending messages back and forth. At the end, A forwards its entire
view of those executions to D, and H forwards its outputs from the same executions. When the
command is (ssid,Corrupt, Pi), A takes control of Pi, gaining access to its stored state, and begins
behaving as it likes on behalf of Pi in further protocol executions, until it arrives at command
(ssid,De-corrupt).

Security: We say that the threshold signatures scheme securely realizes FTS if D cannot distinguish
between the ideal-world execution and the real-world execution with better than negl(κ) advantage.

Security of Refresh: We note that in the ideal-world, there are no key shares held by the two
parties, or even by the ideal functionality. Rather, FTS generates a standard ECDSA key, provides
the two parties with the public key, and stores the secret key for signing. Therefore, there is no

39

input/output behavior for Refresh defined in FTS. Nevertheless, it is still important to prove that
a) refresh does not leak anything about the secret key, and b) that it performs its intended role of
re-randomizing the secret key. These properties are captured by a) requiring S to simulate the view
of the adversary during Refresh, and b) requiring S to simulate the state of party Pb on command
(ssid,Corrupt, Pb). In the latter case, S would fail if the execution of Refresh did not result in a
uniformly distributed key share.

Hybrid world execution: To simplify the presentations of the protocols and the proofs, we
modify the real-world execution, giving the parties access to two ideal functionalities related to
zero knowledge of discrete log: FRDL

zk , and FRDL

com−zk, as well as Fcoin, a functionality for producing
a random coin flip. By a classic result of Canetti [7], it suffices to prove that this hybrid-world
execution is indistinguishable from the ideal-world execution. In practice, these functionalities can
then later be replaced by any secure protocols that realize them, yielding a full description of a
true real-world execution. Canetti’s result says (generically) that if the hybrid-world protocol is
indistinguishable from the ideal-world execution, then it follows immediately that the resulting real-
world protocol is secure. In the ideal-world execution, there is only FTS, and no other functionalities.
It is the role of S to simulate the output of Fzk, Fcom−zk and Fcoin.
We note that realizing these ideal functionalities requires a zero knowledge proof of knowledge: the
simulator needs to be able to extract the witness in order to provide it to the functionality. Such
constructions for discrete log are well known. Two other zero knowledge proofs that we use in
our constructions, ΠGCD and Πeq, are not proofs of knowledge, and so we do not define ideal
functionalities for these. Instead we use them in-line, and make use of the simulators that are
known to exist. We define those proof below.

C Zero Knowledge Proof of GCD

Let α be some lower bound on the largest prime divisor of GCD(N,ϕ(N)). Then the probability
that a random element in Z∗N has an Nth root is at most 1

α (Lemma A.8, [26]). The protocol
proceeds with the verifier sending random challenge values, y1, . . . , ym to the prover. The prover
demonstrates that each of these has an Nth root, by finding t1, . . . , tm such that tNi ≡ yi mod N .
Taking m = τ

logα suffices for soundness 2−τ , once the verifier has determined that N has no factor

smaller than α. In practice, setting α ≈ 10, 000 and using 10 repetitions (in the non-interactive
setting) provides good efficiency, and suffices for computational security κ = 128.
While Goldberg et al. [26] introduced the use of α for improved efficiency, they in turn cite Gennaro
et al. [25] for proofs of completeness, soundness and zero knowledge. We will use SGCD to refer to
the simulator that they describe in Section 3.1, when demonstrating that the construction below is
zero knowledge.
R queries the challenger to receive challenge N∗1 , C

∗
1 , X

∗, and plays the part of S, interacting with
A. R simulates key generation by running the honest protocol. It stores X,x1 for use in what
follows.
Until the ith event, when P2 is malicious during refresh, and each time there is a new corruption
of P2, R uses its knowledge of x1 (which might be updated during refresh procedures) to run
the protocol honestly. In particular, it constructs C = EncN (x1) honestly. Note that it still uses

simulated proofs π̃ and Ψ̃.
In the ith event, R uses its challenge to construct (C∗1 , N

∗
1 , π̃, Ψ̃), using simulated proofs π̃ ←

SGCD(N∗) and Ψ̃ ← Seq(N∗1 , C
∗
1 , X

∗); this is done whether the ith event is an execution of refresh

40

ΠGCD

Inputs: Prover: N,ϕ(N).
Verifier: N .

Prover: Compute: y1, . . . , ym = H(N).
Compute: d = N−1 mod ϕ(N).
Compute: For i ∈ {1, . . . ,m}, ti = ydi mod N .
Send: t1, . . . , tm.

Verifier: Compute: y1, . . . , ym = H(N).
For i ∈ {1, . . . ,m}, verify that yi = tNi mod N .

Figure 9: Non-interactive Zero Knowledge proof for the language LGCD, due to Goldberg et al. [26].
We present the protocol in the random oracle model, using the Fiat-Shamir transform.

with malicious P2, or a new corruption of P2 during refresh or sign. In the latter case, R uses X∗

when simulating X1 in state2.
In the ith refresh command prior to the next de-corrupt command, R queries its challenger and
receives N∗i , C

∗
i . It updates X∗ = X∗ + (r × G), where r ← [q] is the simulated output of Fcoin

created by R. It simulates P1’s message using (N∗i , C
∗
i , π̃, Ψ̃). In any sign commands prior to

the next de-corrupt command, R verifies the correctness of C ′ sent by P2 by using the current
instance of the Paillier-EC-Refresh oracle: it extracts k2 and x2 from P2’s calls to FRDL

com−zk, sets

α = k−12 m mod q and β = k−12 rx2 mod q, and submits query (C ′, α, β) to its oracle OCi∗ .
In the remaining events, R proceeds as S does (and as R did in Hybrid H1). If the challenge bit b

in the Paillier-EC-Refresh game is 1, then R produces the same distribution as in Hybrid H
(i−1)
2 .

Otherwise, it produces that of Hybrid H
(i)
2 .

41

	Introduction
	ECDSA
	Threshold Signatures
	Lindell's Threshold ECDSA Breakthrough
	Shortcomings of Lindell's Threshold ECDSA
	Expensive Key Generation
	Global Abort and Fresh Key Generation
	Lack of Proactive Security

	Contributions
	Other Related Work
	Performance Highlights
	Higher Security Levels

	Preliminaries
	Notation
	Paillier Cryptosystem
	Active, Proactive Security.
	Zero Knowledge
	Zero Knowledge Proof of GCD

	Zero Knowledge Proof of Consistency
	Key Generation
	Signing
	Key Refresh
	Simulation-based Proof of Security
	The Paillier-EC-Refresh Assumption
	Security Proof

	The Paillier-EC-Refresh Assumption and Robustness to CCA-like Attacks
	Generic Model Evidence for the Assumption
	Solution Sets Are Arithmetic Progressions
	Statistical Results
	Would a Weaker Refresh Be Sufficient?

	Active, Proactive Security
	Zero Knowledge Proof of GCD

