
Single-trace side-channel attacks on MAYO
exploiting leaky modular multiplication

Sönke Jendral and Elena Dubrova

KTH Royal Institute of Technology, Stockholm, Sweden
{jendral,dubrova}@kth.se

Abstract. In response to the quantum threat, new post-quantum cryp-
tographic algorithms will soon be deployed to replace existing public-key
schemes. MAYO is a quantum-resistant digital signature scheme whose
small keys and signatures make it suitable for widespread adoption, in-
cluding on embedded platforms with limited security resources. This pa-
per demonstrates two single-trace side-channel attacks on a MAYO im-
plementation in ARM Cortex-M4 that recover a secret key with probabil-
ities of 99.9% and 91.6%, respectively. Both attacks use deep learning-
assisted power analysis exploiting information leakage during modular
multiplication to reveal a vector in the oil space. This vector is then
extended to a full secret key using algebraic techniques.

Keywords: Side-channel analysis · MAYO · Multivariate cryptography
· Post-quantum digital signature · Key recovery attack

1 Introduction

The National Institute of Standards and Technology (NIST) recently announced
the second-round candidates in its competition for additional post-quantum
cryptographic (PQC) digital signature algorithms, which aims to find schemes
based on different underlying mathematical problems and with different size and
performance characteristics to already standardised algorithms [25,24]. Among
the submissions selected by NIST for the second round is MAYO, a multivariate
quadratic digital signature scheme designed to be existentially unforgeable under
chosen message attacks (EUF-CMA) in the random oracle model [7]. EUF-CMA
security means that an adversary with access to the public key and a signing or-
acle cannot generate a valid signature for a new message. The security of MAYO
relies on the presumed hardness of the Oil and Vinegar (OV) problem and a vari-
ant of the Multivariate Quadratic (MQ) problem called the multi-target whipped
MQ problem.

As in the previous PQC competition [27], it is important to assess the se-
curity of candidates’ implementations to physical attacks. It is well understood
that an implementation of a theoretically secure algorithm can in practice be
broken by a side-channel or fault attack [33,34,16]. Identifying which compo-
nents of an implementation are susceptible to physical attacks and how they can
be modified to reduce information leakage or make fault injection more difficult



2 S. Jendral and E. Dubrova

provides guidance to product developers and helps to design effective counter-
measures, which is especially important prior to the widespread deployment of
any PQC algorithm.

Contributions: In this paper, we present two single-trace attacks on an imple-
mentation of MAYO using deep learning-assisted power analysis. Both attacks
reveal a vector in the oil space, which can then be extended to a full secret
key using known algebraic techniques [13,2,30]. To the best of our knowledge,
this is the first work evaluating the resistance of a MAYO implementation to
side-channel analysis. Previous work has focused on fault injection attacks on
MAYO.

The presented attacks exploit information leakage during modular multiply-
add operations. The first attack targets a matrix-matrix multiplication in the
key expansion procedure, which is run as a part of the signing algorithm. The
second attack targets a matrix-vector multiplication that forms the final step of
the signature generation. Both attacks enable the recovery of the full secret key
from a single power trace with probabilities of 99.9% and 91.6% respectively.

We also propose countermeasures against the presented attacks.

Organisation of the paper: The rest of this paper is organised as follows.
Section 2 describes previous work. Section 3 provides background information
on the MAYO algorithm. Section 4 outlines the experimental setup. Section
5 presents the side-channel attacks. Section 6 describes the trace preprocessing
and neural network training. Section 7 presents the partial enumeration method.
Section 8 describes the secret key recovery method. Section 9 summarises the
experimental results. Section 10 discusses possible countermeasures against the
attacks. Section 11 concludes the paper.

2 Previous work

This section gives an overview of previous attacks on multivariate signature
schemes which make use of side-channel analysis or fault injection to recover a
secret key. Specifically for MAYO, to the best of our knowledge, all previous
attacks focused on fault injection [4,18], with no studies evaluating side-channel
analysis to date.

Yi and Li [37] show several side-channel attacks on the enhanced Tame Trans-
formation Signature scheme, that combine Differential Power Analysis (DPA)
with fault injection (referred to as fault analysis attacks). The attacks first fix
the values of several variables, before recovering parts of the secret key using
DPA from the affine transformations or the central map. They simulate their
attack using a hardware design and are able to recover the full secret key in
a few hours from 2,000 traces. As countermeasures, they suggest masking and
hiding, as well as several methods at the logic level.

Yi and Nie [38] use a similar approach on Unbalanced Oil and Vinegar (UOV)
that again combines DPA on information leakage during the evaluation of poly-



2. PREVIOUS WORK 3

nomials, matrix-vector multiplications, and during vector additions with fault
injection (also referred to as fault analysis attacks). They experimentally vali-
date their attack on a SAKURA-G FPGA board and are able to recover the full
secret key of UOV in a few hours from 4,000 traces.

Park et al. [28] present a Correlation Power Analysis (CPA) attack on Rain-
bow (under equivalent keys and random affine maps) and UOV (under equivalent
keys). They use information leakage from a matrix-vector product to recover the
secret affine map S and from it, the other affine map T , which together form the
secret key. They experimentally validate their attack on Rainbow on an Atmel
XMEGA128 processor and show that they are able to recover the full secret key
from 30 traces. As countermeasures against the attack, they propose the use of
masking and hiding techniques.

Pokorný et al. [32] also present a CPA attack on Rainbow that makes use of
information leakage from a matrix-vector product and recovers the secret affine
maps S and T . They experimentally validate their attack on an STM32F303
processor and are able to recover the subkeys of the secret key with probabilities
between 0.75 and 0.95 from between 40 to 475 traces. They also propose a
multiplicative masking countermeasure, that prevents the attack by performing
multiplication using masked elements.

Aulbach et al. [2] describe a template-based side-channel attack on UOV that
makes use of information leakage of the vinegar variables during multiplication
with known constants. They are able to recover the vinegar values, and from
these, an oil vector and finally the full oil space using a combination of the Kipnis-
Shamir attack and the reconciliation attack. They experimentally validate their
attack on an STM32F303RCT7 processor and show that they are able to recover
the full secret key from a single trace with a probability greater than 97%. Their
attack is similar to our first attack on MAYO except that (1) we use neural
networks instead of templates for modelling information leakage, (2) MAYO
uses the field F16 and UOV uses the field F256, and (3) we attack multiply-add
operations instead of plain multiplications.

Sayari et al. [35] briefly discuss how side-channel analysis and fault injection
attacks in their hardware implementation of MAYO could be performed in their
discussion of countermeasures against physical attacks. For side-channel analysis
attacks, they point out that an attacker might be able to recover secret values
from vector-matrix multiplications, which are performed several times through-
out the algorithm, using the method described in [2]. They further suggest the
use of shuffling and parallelisation to increase the difficulty of performing such
attacks.

There have also been a number of fault injection attacks on multivariate
schemes [17,22,36,23,3,14], including MAYO [4,18]. Some of these attacks are
capable of recovering the full secret key of the scheme from a single faulty sig-
nature with high probability.



4 S. Jendral and E. Dubrova

Table 1. MAYO parameter sets from [9].

Parameter set n m o k q salt len digest len pk seed len f(z)

MAYO1 66 64 8 9 16 24 32 16 f64(z)

MAYO2 78 64 18 4 16 24 32 16 f64(z)

MAYO3 99 96 10 11 16 32 48 16 f96(z)

MAYO5 133 128 12 12 16 40 64 16 f128(z)

3 Background

This section describes the key steps in the MAYO algorithm specification.

3.1 MAYO algorithm

MAYO is a multivariate quadratic digital signature scheme introduced by Beul-
lens [7], based on the Oil and Vinegar (OV) signature scheme originally in-
troduced by Patarin [29]. In the random oracle model, the security of MAYO
is based on the assumed hardness of two problems, called the OV and multi-
target whipped Multivariate Quadratic (MQ) problems. In OV schemes, the pub-
lic key is a multivariate map P : Fn

q → Fm
q of m n-variate quadratic polynomials

p1(x), . . . , pm(x) over a finite field Fq. The map features a trapdoor, which is
a secret subspace O on which it vanishes. Using the trapdoor, it is possible to
efficiently find a preimage s of a hash t such that P(s) = t. The idea is to choose
s = v + o, where v is a random vector (sometimes called a vinegar vector) and
o is in the so-called oil space O. For such a construction, finding the preim-
age reduces to solving a system of linear equations (for more details, we refer
to [7]). Without knowledge of the trapdoor, finding a preimage is assumed to be
difficult, which is known as the MQ problem.

Distinguishing a map with a trapdoor from a fully random map is similarly
assumed to be difficult and the corresponding problem is known as the OV
problem. MAYO employs an optimisation to reduce the size of the public key by
constructing a larger map P∗ from a smaller map P before finding the preimage.
Beullens refers to this process as “whipping up” the map and the resulting variant
of the MQ problem that asks to find a preimage in P∗ is therefore called the
multi-target whipped MQ problem.

An overview over the possible sets of parameters for MAYO is given in Ta-
ble 1. For further details we refer to the specification [9]. Note that these are the
parameters from the first-round submission, as the parameters for the second-
round submission have not yet been published at the time of writing. The impli-
cations of the tentative second-round parameters presented by Beullens [8] are
briefly addressed in Section 10. We are focusing on MAYO1 in this paper, though
other variants can be approached similarly.

The main components of the MAYO scheme are the key generation algorithm,
the signing algorithm and the verification algorithm.



3. BACKGROUND 5

Algorithm 1 MAYO.KeyGen() [7]

Output: Public key pk, secret key sk
1: seedsk ← {0, 1}λ
2: (seedpk,O bytes)← SHAKE256(seedsk)
3: O← Decode(O bytes)
4: for i from 1 to m do
5: P

(1)
i ← Expand(seedpk ∥ P1 ∥ i)

6: P
(2)
i ← Expand(seedpk ∥ P2 ∥ i)

7: P
(3)
i ← Upper(−OP

(1)
i OT −OP

(2)
i )

8: return (pk, sk) = ((seedpk, {P(3)
i }1≤i≤m), seedsk)

Algorithm 2 MAYO.Sign(sk,M) [7]

Input: Secret key sk, message M
Output: Signature σ
1: seedsk ← sk
2: (seedpk,O bytes)← SHAKE256(seedsk)
3: O← Decode(O bytes)
4: for i from 1 to m do
5: P

(1)
i ← Expand(seedpk ∥ P1 ∥ i)

6: P
(2)
i ← Expand(seedpk ∥ P2 ∥ i)

7: R← {0, 1}r ▷ Deterministic variant: R← {0}r
8: salt← SHAKE256(M ∥ R ∥ seedsk)
9: t← SHAKE256(M ∥ salt)
10: for ctr from 0 to 255 do
11: V← SHAKE256(M ∥ salt ∥ seedsk ∥ ctr)
12: v1, . . . , vk ← Decode(V)
13: (A,y)← BuildLinearSystem({v1, . . . , vk},O,P(1),P(2), t)
14: x← SampleSolution(A,y) ▷ Try to find Ax = y (i.e. P∗(s) = t)
15: if x ̸=⊥ then break
16: s← {vi +Oxi ∥ xi}1≤i≤k

17: return σ = (s, salt)

Key generation (Algorithm 1) The key generation samples a secret random

seed seedsk, from which a public seed seedpk and a secret matrix O ∈ Fo×(n−o)
q

are derived. From the public seed, the sequences of m matrices P
(1)
i and P

(2)
i

of the multivariate quadratic map P are expanded pseudorandomly. This allows
the public key to only contain the seed instead of the matrices, thereby reducing

its size. Finally, the remaining sequence of m matrices P
(3)
i is chosen such that

the map P vanishes on the oil space O. The public key consists of the public
seed seedpk and the sequence of matrices P(3). The secret key consists of the
secret seed seedsk.

Signing (Algorithm 2) The signing algorithm recomputes the oil space O and
the sequences of matrices P(1) and P(2) from the secret key. It then computes
the salt and the target value t. From the message M , the salt, the secret seed



6 S. Jendral and E. Dubrova

Algorithm 3 MAYO.Verify(pk,M, σ) [7]

Input: Public key pk, message M , signature σ
Output: Boolean

1: (seedpk,P
(3))← pk

2: for i from 1 to m do
3: P

(1)
i ← Expand(seedpk ∥ P1 ∥ i)

4: P
(2)
i ← Expand(seedpk ∥ P2 ∥ i)

5: (s, salt) = σ
6: t← SHAKE256(M ∥ salt)
7: t′ ← EvaluateP(1),P(2),P(3)(s) ▷ P∗(s) = t′

8: return true if t = t′ else false

seedsk and a counter value ctr, the vinegar values v1, . . . , vk are derived. Then,
a system of linear equations is constructed and solved, which corresponds to
finding s with P∗(s) = t for the multivariate quadratic map P∗. If the matrix A
does not have full rank, due to the choice of vinegar values, the system cannot
be solved and the algorithm restarts with different vinegar values. The trapdoor
in P∗ allows the system to be solved efficiently, provided that the oil space O
is known. The signature consists of the sequence s of vinegar-masked oil vectors
v1 +Ox1, . . . , vk +Oxk concatenated with vectors x1, . . . , xk, and the salt.

Verification (Algorithm 3) Given a signature (s, salt) for a message M and
a public key pk, the verification algorithm simply needs to check if P∗(s) =
Hash(M ∥ salt). It does this by extracting the sequences of matrices P(1), P(2)

and P(3) from the public key. It also extracts the preimage s, as well as the
salt from the signature. It then derives the original target value t (by hashing
the message using SHAKE256) and evaluates the multivariate quadratic map P∗

with the preimage s to compute the value t′. If the resulting values t and t′

match, the signature is valid.

4 Experimental setup

This section describes the equipment used in the experiments, as well as the
target implementation of MAYO.

4.1 Equipment

The equipment used in our experiments is shown in Fig. 1. The CW308-STM32F4
target board contains an ARM Cortex-M4 STM32F415RGT6 processor running
at a frequency of 24 MHz. It is mounted on a CW313 adapter board. Power
traces are captured using a ChipWhisperer-Husky.

The trace capture is triggered via ARM CoreSight DWT watchpoints, thus
avoiding any modification of the assembly code otherwise caused by inserting
a trigger. Alternative trigger sources, such as communication with peripheral



5. SIDE-CHANNEL ATTACKS 7

Fig. 1. Equipment used in the experiments: ChipWhisperer-Husky, CW313 adapter
board (red) and CW308T-STM32F4 board (blue).

devices or similarity of the power consumption to reference waveforms, could be
used by an attacker that does not have control over the target device.

4.2 Target implementation

In our experiments, we use the MAYO implementation by Beullens et al. [10].
Specifically, we use the most recent commit (fe46236) of the main branch, not
the nibbling-mayo branch.

The first attack in this paper is specific to the bitsliced version in the main

branch and does not work for the nibbled version that is expected to become the
default in the second round [8]. The second attack is not specific to the bitsliced
version, as the corresponding code is used in both versions.

It is worth pointing out that in the implementation by Gringiani et al. [15],
exactly the same code is used for the two functions that we attack in this paper,
though they are called from different procedures. In other words, our first attack
on the key expansion in the implementation by Beullens et al. translates to an
attack on the matrix-vector multiplication at the end of the signing algorithm
in the implementation by Gringiani et al., and vice versa.

The implementation is compiled using arm-none-eabi-gcc with the highest
optimization level -O3 (recommended default).

5 Side-channel attacks

In this section, we describe the two side-channel attacks we conducted. Both
attacks target multiplication operations involving the matrix O that forms the
oil space. This is a (n−o)×o = 58×8 matrix with entries in F16. Due to known
algebraic attacks, which we describe in Section 8, it is sufficient to recover a



8 S. Jendral and E. Dubrova

0 10 20 30 40 50 60 70 80 90 100 110 120

0

200

400

600

800

1000

Bit 0

Bit 1

Bit 2

Bit 3

Trace point

T
-
t
e
s
t
 s

c
o
r
e

Fig. 2. T-test results for each bit of an entry of O during the processing by
gf16 madd bitsliced.

−0.2 −0.1 0

0

0.002

0.004

0.006

0.008

−0.2 −0.1 0 −0.2 −0.1 0 −0.2 −0.1 0

Bit = 0

Bit = 1

P
r
o
b
a
b
il
it

y
 m

a
s
s

Bit 0 Bit 1 Bit 2 Bit 3

ADC measurement (ADU)

Fig. 3. Distributions of power consumption for each bit of an entry of O at the trace
point of maximum t-test score during the processing by gf16 madd bitsliced.

single vector in the span of the column vectors of O. All other entries can then
be derived from this vector. In our attacks, the vector we recover is exactly one
of the column vectors of O (as opposed to a linear combination of them), thus
the goal of the attacker is to acquire the 58 4-bit entries of this vector through
side-channel analysis.

5.1 First attack: gf16 madd bitsliced

The first attack exploits information leakage in the gf16 madd bitsliced pro-
cedure, which is part of the matrix multiplication to compute a sequence of

matrices (P
(1)
i + P

(1)T
i )O during the key expansion algorithm. In the imple-

mentation by Beullens et al. [10], the key expansion is executed prior to the
generation of the signature on every invocation of the signing algorithm.

The assembly code for the gf16 madd bitsliced procedure is given in List-
ing 1.1. The leakage is caused by the conditional execution of the highlighted
blocks of instructions. Each block begins with a tst instruction, which tests the
value of a specific bit of an entry of O and, depending on the value, either exe-



5. SIDE-CHANNEL ATTACKS 9

1 eor.w r11, r7, r10

2 eor.w r12, r9, r10

3 eor.w r14, r8, r9

4

5 tst.w r0, #1

6 nop.n

7 itttt ne

8 eorne.w r3, r3, r7

9 eorne.w r4, r4, r8

10 eorne.w r5, r5, r9

11 eorne.w r6, r6, r10

12 tst.w r0, #2

13 nop.n

14 itttt ne

15 eorne.w r3, r3, r10

16 eorne.w r4, r4, r11

17 eorne.w r5, r5, r8

18 eorne.w r6, r6, r9

19 tst.w r0, #4

20 nop.n

21 itttt ne

22 eorne.w r3, r3, r9

23 eorne.w r4, r4, r12

24 eorne.w r5, r5, r11

25 eorne.w r6, r6, r8

26 tst.w r0, #8

27 nop.n

28 itttt ne

29 eorne.w r3, r3, r8

30 eorne.w r4, r4, r14

31 eorne.w r5, r5, r12

32 eorne.w r6, r6, r11

Listing 1.1. The assembly code of the gf16 madd bitsliced procedure. The blocks of
instructions that are conditionally executed according to on the values of the bits are
highlighted in color.



10 S. Jendral and E. Dubrova

cutes or skips the following instructions with an it pseudoinstruction. As noted
by Chou et al. [12] for their implementation of Rainbow, from which this code
is derived [10], the ARM v7-m architecture reference manual [1, Section A4.1.2]
states that conditional instructions, whose condition is not fulfilled, behave as
NOPs. As both the eor instruction and the NOP instruction are single-cycle in-
structions, the procedure executes in constant time, regardless of the value of
the bits (i.e. there is no timing leakage). The lack of timing leakage could sug-
gest that such an implementation is secure against side-channel attacks, as is
claimed in e.g. [15]. However, our findings show that this interpretation is not
correct in the context of power side-channel attacks. The differences in power
consumption between the instructions being executed (i.e. the bit having value
“1”) or skipped (i.e. the bit having value “0”) are significant (see Figs. 2 and 3)
and can be used to recover the value of the entry.

A property of the matrix multiplication implementation useful to attackers is
that the individual entries of O are processed by gf16 madd bitsliced m

32 · (n−
o−1) = 114 times. The specifics of how this multiplication is carried out are not
relevant here, but essentially, the implementation can compute 32 of the matrices
in parallel, hence the entire procedure must be performed twice. Further, because

the matrices P
(1)
i are upper-triangular and F16 has characteristic 2, each entry

of O is involved in 57 computations because the entries along the diagonal are
0. An attacker can thus not only choose which of the o = 8 column vectors of
O to recover, but also combine information from any of the 114 computations.
In our attack, we recover the second column vector of O (which we found to
leak slightly stronger than the first column vector) from the first set of the 114
computations. As the entries along the diagonals are 0, this set of computations
did not include any leakage for the first entry of the column vector, which is
instead simply enumerated.

5.2 Second attack: mul f and decode

The second attack exploits leakage in the mul f procedure called from the
mat mul procedure, which is responsible for computing the oil vectors Oxi at
the end of the signing algorithm.

The C and assembly code for the mul f procedure is shown in Listings 1.2
and 1.3. The procedure performs multiplication of an entry of O (a in the C
code) with an entry of a vector xi (b in the C code) modulo the polynomial
x4 + x + 1. It does this by performing several multiplications shown in lines 3
to 6 of Listing 1.2 before combining the results in lines 9 and 10. The t-test
results in Fig. 4 and the distributions of power consumption at the trace point
of maximum t-test score in Fig. 5 show that three of the four bits of the entry
of O leak information.

Intriguingly, one of the bits, bit 2 (which corresponds to the operation (a

& 4)*b in line 5 of the C code), does not appear to leak any information. The
assembly code in Listing 1.3 provides some clues about this phenomenon. We
see that the operation (a & 1)*b in line 3 in the C code is realised as a signed
bitfield extraction of the lowest bit in line 4 of the assembly code, followed by a



5. SIDE-CHANNEL ATTACKS 11

1 unsigned char mul_f(unsigned char a, unsigned char b) {

2 unsigned char p;

3 p = (a & 1)*b;

4 p ^= (a & 2)*b;

5 p ^= (a & 4)*b;

6 p ^= (a & 8)*b;

7

8 // reduce mod x^4 + x + 1

9 unsigned char top_p = p & 0xf0;

10 unsigned char out = (p ^ (top_p >> 4) ^ (top_p >> 3)) & 0x0f;

11 return out;

12 }

Listing 1.2. C code of the mul f procedure. The multiplications that depend on the
values of the bits are highlighted in color.

1 ...

2 ldrb.w r4, [r6, #-8] # Entry of O
3 ldr r7, [sp, #28] # Entry of xi
4 sbfx ip, r4, #0, #1

5 and.w r3, r4, #2

6 smulbb r3, r3, r7

7 and.w ip, ip, r7

8 eor.w ip, ip, r3

9 ldr r7, [sp, #28]

10 and.w r5, r4, #4

11 smulbb r5, r5, r7

12 and.w r4, r4, #8

13 smulbb r4, r4, r7

14 eor.w r5, ip, r5

15 eors r5, r4

16 ...

Listing 1.3. Simplified excerpt of the assembly code of the mul f procedure. The
multiplications that depend on the values of the bits are highlighted in color.



12 S. Jendral and E. Dubrova

0 10 20 30 40 50

0

200

400

600

0 10 20 30 40 50 60 70 80 90 100

Bit 0

Bit 1

Bit 2

Bit 3

HW

T
-
t
e
s
t
 s

c
o
r
e

decode mat_mul

Trace point

Fig. 4. T-test results for each bit of an entry of O and its Hamming weight during the
processing by decode and mul f.

−0.2 −0.1 0

0

0.002

0.004

0.006

0.008

−0.2 −0.1 0 −0.2 −0.1 0 −0.2 −0.1 0

Bit = 0

Bit = 1

P
r
o
b
a
b
il
it

y
 m

a
s
s

Bit 0 Bit 1 Bit 2 Bit 3

ADC measurement (ADU)

Fig. 5. Distributions of power consumption for each bit of an entry of O at the trace
point of maximum t-test score during the processing by mul f.

1 void decode(unsigned char *m, unsigned char *mdec, int mdeclen) {

2 int i;

3 for (i = 0; i < mdeclen / 2; ++i) {

4 *mdec++ = m[i] & 0xf;

5 *mdec++ = m[i] >> 4;

6 }

7

8 if (mdeclen % 2 == 1) {

9 *mdec++ = m[i] & 0x0f;

10 }

11 }

Listing 1.4. C code of the decode procedure. The operations that store individual
entries are highlighted in color.



5. SIDE-CHANNEL ATTACKS 13

bitwise AND in line 7. The signed bitfield extraction sign-extends its extracted
value, which is simply the lowest bit of a. In our case, the ip register thus
contains either the value 0x0 or the value 0xffffffff and the bitwise AND
in line 7 results in the value 0 or the value b. It is not clear why the compiler
used a signed bitfield extraction and a bitwise AND instead of a bitwise AND
followed by a signed multiplication, as is the case for the other bits. However, the
difference in Hamming weight between the two possible values leaks information
about the value of the lowest bit of a. The other operations from the C code
follow a different pattern and are realised by a bitwise AND followed by a signed
multiplication. A reasonable assumption would be that the signed multiplication
of the corresponding bit of a with b would leak information. Indeed, we observe
this behaviour for bits 1 (corresponding to (a & 2)*b) and 3 (corresponding to
(a & 8)*b) in Figs. 4 and 5. However, the same is not true for bit 2, for which
we observe no exploitable leakage.

In fact, even in an isolated case where we utilise the exact same sequence of
instructions and registers and only change the immediate value in the bitwise
AND, we observe leakage for the values 2 and 8, but no leakage for the value
4. We further observe no leakage for values 1, 16 or 64, but do observe leakage
for the values 32 and 128. Our best hypothesis is that the ARM Cortex-M4
contains an optimisation for odd powers of 2, likely by performing bitshifts in
these cases and that these bitshifts are causing the leakage we observe for bits 1
and 3 (while bit 0 leaks because it uses signed bitfield extraction and bit 2 does
not leak, because it uses multiplication by an even power of 2). We are not able
to definitively confirm that this optimisation exists, nor are we able to explain
why this optimisation does not apply to even powers of 2, but in Section 10, we
provide an alternative implementation of this part of the mul f procedure that
reduces leakage by replacing multiplications by 2 and 8 with multiplications by
64 and 16.

In the context of our attack, the lack of leakage for bit 2 means that we
need to either enumerate its value for each of the 58 entries, or obtain additional
information from a different leakage point. We chose to include leakage of the
Hamming weight of the entry during the decode procedure, which is called
during both the key expansion and signature generation. The C code of the
decode procedure is shown in Listing 1.4. The procedure takes a sequence of
bytes and splits each byte into two 4-bit entries. Storing these 4-bit entries (see
lines 4, 5 and 9 of Listing 1.4) leaks their Hamming weight. Fig. 4 shows this
leakage via t-test results obtained by partitioning the traces into two sets TA

and TB , such that Ta contains the traces where the entry being processed has
Hamming weight< 2 andTB contains the traces where the entry being processed
has Hamming weight > 2. By combining knowledge about three of the four bits
with knowledge of the Hamming weight of all four bits, we are able to recover
the missing bit without enumeration.

As in the first attack, the operations targeted in this attack are also per-
formed multiple times during the generation of a single signature, which can be
used to increase the success probability of the attack. Specifically, because in



14 S. Jendral and E. Dubrova

Table 2. Neural network architectures used for oil vector recovery.

Layer type
Output shape

Attack 1 Attack 2
mul f decode

Batch Normalization 1 140 990 110
ReLU 140 990 110
Dense 1 128 128 128

Batch Normalization 2 128 128 128
ReLU 128 128 128
Dense 2 64 64 64

Batch Normalization 3 64 64 64
ReLU 64 64 64
Dense 3 32 32 32

Batch Normalization 4 32 32 32
ReLU 32 32 32

Softmax 16 8 5

the implementation of Beullens et al. [10] the key expansion is performed dur-
ing every signature generation and both the key expansion and the signature
generation procedures perform the decode operation, we are able to combine in-
formation from both points. Similarly, because all k = 9 oil vectors Oxi require
multiplication with O, we are able to combine information from all 9 points.

6 Trace preprocessing and neural network training

In this section, we describe the trace preprocessing and neural network training
process for our attacks. We use a profiled deep learning-assisted attack method
based on the Hamming weight leakage model.

6.1 First attack: gf16 madd bitsliced

For profiling, we use a dataset containing 570, 000 trace segments, obtained by
capturing t = 10, 000 traces {T1, . . . , Tt} for known matrices {O1, . . . ,Ot}. We
apply the cut-and-join technique of [26] to divide each trace Ti, i ∈ {1, . . . , t},
into n − o − 1 = 57 segments Ti[j], j ∈ {1, . . . , 57}, (recall from Section 5.1
that the first entry is not leaked in the section we selected for capture, hence
no segment for it is created). Each individual segment covers the multiplication
of one entry Oi[j, 2] of the second column vector of Oi and the segments are
labeled with the corresponding values.

We use a multilayer perceptron (MLP) neural network with the architecture
shown in Table 2. The network is of typeN : R140 → {0, . . . , 15}, where 140 is the
number of sample points in each segment. The network maps each segment Ti[j]
into a score vector Si,j = N (Ti[j]), such that Si,j [c] represents the probability



6. TRACE PREPROCESSING AND NEURAL NETWORK TRAINING 15

that Oi[j, 2] takes value c ∈ {0, . . . 15}:

Si,j [c] = Pr[Oi[j, 2] = c].

During training, we use the Nadam optimiser with a learning rate of 0.01
and a numerical stability constant ϵ = 10−8. We train for a maximum of 100
epochs using early stopping with a patience of 15 and a batch size of 1024, and
use 70% of the data for training and 30% for validation.

6.2 Second attack: mul f and decode

For profiling, we use two datasets each containing 580, 000 trace segments, ob-
tained by capturing t = 10, 000 traces for known matrices {O1, . . . ,Ot}. Due to
limitations in the maximum capture size of our equipment, these traces are ob-
tained from four separate sets of captures with the same matrices {O1, . . . ,Ot}.
Three of the four sets each contain the computation of three of the k = 9 oil
vectors Oixi,l and the fourth set contains both decode operations involving Oi,
the first during the key expansion and the second during the signature genera-
tion. With different equipment that supports larger capture sizes, it would be
possible to capture all of these sets in a single capture. Thus, going forward, we
consider the set of traces {T1, . . . , Tt} where each trace Ti, i ∈ {1, . . . , t}, is the
concatenation of the ith trace of each of the four sets.

We again apply the cut-and-join technique of [26], however, this time we
select the n− o = 58 segments in a slightly different manner. To create the first
dataset {Tmul f

1 , . . . , Tmul f
t }, we divide each trace Ti into (n − o) · k = 58 · 9

segments covering the multiplication of one entry Oi[j, 1], j ∈ {1, . . . , 58}, of
the first column vector of Oi with one entry of each of the k vectors xi,l[j],
l ∈ {1, . . . , k}. We then concatenate the nine segments where the entry Oi[j, 1]
is the same. Hence, each trace Tmul f

i consists of 58 segments, where each segment
j covers 9 multiplications involving the entry Oi[j, 1].

To create the second dataset {T decode
1 , . . . , T decode

t }, we similarly divide each
trace Ti into 58 · 2 segments covering the decoding of one entry Oi[j, 1], j ∈
{1, . . . , 58}, of the first column vector of Oi during the key expansion or during
the signature generation. We then concatenate both segments where the entry
Oi[j, 1] is the same. Thus, each trace T decode

i consists of 58 segments, were each
segment j covers both decode operations involving the entry Oi[j, 1].

We again use MLP networks with the architectures shown in Table 2. The
networks are of typesNmul f : R990 → {0, . . . , 7} andNdecode : R110 → {0, . . . , 4}.
The first network Nmul f maps each trace segment Tmul f

i [j] to a score vector
Smul f,i,j such that its cth entry represents the probability that bits 0, 1, and
3 of Oi[j, 2] together take value c (recall from Section 5.2 that the value of bit
2 cannot be recovered in this way). The second network Ndecode instead maps
each trace segment T decode

i [j] to a score vector Sdecode,i,j such that its cth entry
represents the probability that the Hamming weight of Oi[j, 2] takes value c.

We again use the Nadam optimiser with a learning rate of 0.01 and ϵ = 10−8,
and we also train for a maximum of 100 epochs with early stopping with a



16 S. Jendral and E. Dubrova

patience of 15 and a batch size of 1024, and we use 70% of the data for training
and 30% for validation.

7 Partial enumeration method

As mentioned in Section 5.2, certain entries cannot be recovered using side-
channel analysis, because they are not processed by the device. In practice,
we also find that neural network models are not able to recover entries with
perfect accuracy. In this section, we describe enumeration methods for both of
the presented attacks that are able to increase the success probability of the
presented attacks.

Following [19], we use the maximum predicted class probabilities to guide
the selection of entries (or bits) to enumerate.

For the first attack on the gf16 madd bitsliced procedure, we enumerate
all four bits of an entry j if the maximum predicted class probability max(Si,j) <
α = 0.99999. The value α was chosen empirically to maximise the number of
entries which are enumerated without exceeding a maximum enumeration cost
of 232.

For the second attack on the mul f and decode procedures, we enumerate
all four bits of an entry j if the maximum predicted class probabilities for the
value of bits 0, 1, and 3, max(Smul f,i,j), and the Hamming weight of the en-
try, max(Sdecode,i,j), are both lower than α = 0.99999. If max(Sdecode,i,j) <
α, but max(Smul f,i,j) ≥ α, we enumerate only the value of bit 2. Lastly, if
max(Sdecode,i,j) ≥ α and max(Smul f,i,j) ≥ α, we compute the value of bit 2
from the difference between the predicted Hamming weight and the Hamming
weight of the prediction for bits 0, 1, and 3, without enumeration, unless the dif-
ference between the Hamming weights is larger than 1, in which case we again
enumerate all four bits. As before, α was selected empirically to maximise the
number of entries which are enumerated without exceeding a maximum enumer-
ation cost of 232.

8 Secret key recovery method

Both attacks presented in Section 5 allow the attacker to recover a single vector
in the oil space O. In this section, we describe known methods that enable the
recovery of the full secret key of OV schemes using knowledge of a single oil
vector.

The reconciliation attack [13] allows finding additional vectors in the oil space
by solving systems of linear equations. The Kipnis-Shamir attack [21,20] in-
stead finds oil vectors by identifying eigenvectors of specifically chosen matrices.
Aulbach et al. combined both the reconciliation attack and the Kipnis-Shamir
attack in their attack on UOV [2] to recover the full oil space from a single oil
vector. Beullens’ intersection attack [6,7] also combines ideas from the reconcili-
ation attack and the Kipnis-Shamir attack to recover two oil vectors simultane-
ously, which can be used in the reconciliation attack to recover the full oil space.



9. EXPERIMENTAL RESULTS 17

Pébereau [30] improved upon these approaches with an efficient algorithm that
recovers the full oil space from a single vector, using the kernels of the matrices
representing the public key. The results are applicable to UOV and UOV-like
schemes, like MAYO.

In this paper, we use the approach from the reconciliation attack [13] to
recover the secret key from the vector o1 in the oil space. The idea behind the
attack, as described in [7], is to use the vector o1 to create a system of equations{

P∗(oi) = 0

P∗(o1,oi) = 0

and then solve this system (under o additional affine constrains) to find vectors
oi (with i ∈ {2, . . . ,m}) to form a basis. In this way, the original oil space O
is recovered. In practice, the necessary computations can be performed in less
than a second.

9 Experimental results

This section describes the results of our side-channel attacks.

We train neural networks as described in Section 6 to perform recovery of
an oil vector, additionally making use of the enumeration method described in
Section 7. The neural networks are trained and tested on a PC with an AMD
Ryzen 7 Pro 5850U running at 1.9 GHz and 32GB RAM. The stated probabilities
are empirical probabilities (mean over 1000 secret keys selected at random) for
recovering an oil vector from a single trace. Recall that, due to the techniques
mentioned in Section 8, knowledge of a single oil vector is sufficient to recover
the full secret key.

In the first attack on gf16 madd bitsliced, we can recover an oil vector in
99.9% of 1000 attempts from a single trace, with an average enumeration of 8.30
bits and a maximum enumeration of 24 bits. When restricting enumeration to
only the 4 bits that cannot be recovered from side-channel leakage, the attack
still succeeds with the probability of 98.5%.

In the second attack on mul f and decode, we can recover an oil vector in
91.6% of 1000 attempts from a single trace, with an average enumeration of
23.18 bits and a maximum enumeration of 32 bits. Without enumeration, the
attack succeeds with the probability of 50.4%.

10 Countermeasures

This section discusses possible countermeasures against the presented side-channel
attacks. We first describe countermeasures that are applicable to both attacks,
and then suggest countermeasures specific to the second attack against the mul f

and decode procedures.



18 S. Jendral and E. Dubrova

10.1 Countermeasures common to both attacks

A simple approach to increase the difficulty of the presented attacks is to increase
the number of entries that need to be recovered, i.e. to increase the value n− o.
As the recovery probability for a full oil vector is approximately exponential in
the number of entries, even a small increase in the number of entries can cause a
significant decrease in the recovery probability. The tentative second-round pa-
rameters presented by Beullens [8] suggest that the second-round submission for
MAYO will likely feature an increase in n− o (albeit with a different underlying
motivation). Our rough estimates, based on the data captured in this paper,
however, suggest that the proposed increase is not sufficient to make the pre-
sented attacks infeasible. We estimate that the probability for attack 1 decreases
to 72.9% and the probability for attack 2 decreases to 82.23% if the number of
entries increases from 58 to 78.

A second possible approach is to store the expanded secret key, instead of re-
computing it each time during the signature generation. The choice to recompute
the expanded key was likely made to reduce the overall memory consumption of
the algorithm, while real-world implementations will presumably opt to store the
expanded key instead (not least of all because the key expansion accounts for a
significant portion of the runtime of the signing algorithm). If the key expansion
is only performed once (for example after key generation), the first presented
attack can only be conducted by attackers that are able to observe this process,
which is a significantly smaller window of opportunity. For the second presented
attack, reducing the number of times that the key expansion is performed would
eliminate one of the two sources of leakage for the Hamming weight during the
decode operation, but the other source of leakage for the Hamming weight and
the leakage of three of the bits would be unaffected, thus the attack would likely
still be applicable.

A third approach would be to ensure that computations involving entries of
O are performed in parallel, whenever possible, as suggested in [35]. Both of
the attacks presented in this paper make use of the fact that entries of O are,
at some point, processed one-by-one. The nibbled implementation presented by
Beullens et al. [10] makes progress towards this goal by replacing bitsliced matrix
multiplications with table lookups. Notably, however, due to concerns about side-
channel leakage [10], these table lookups cannot be used when the matrices being
multiplied are not public, as is the case for O. This is the reason why the second
attack is applicable to both the bitsliced and nibbled version, as the latter does
not replace the vulnerable parts with a different implementation. It may be the
case that the matrix-vector multiplications Oxi can be realised differently from
matrix-matrix multiplications using table lookups or using a different technique
that processes multiple entries simultaneously.

Lastly, known generic countermeasures, such as masking and shuffling [11],
can also be used to make the presented attacks more difficult. The idea behind
masking, as described in [11] is to split a value into multiple shares, perform
computation on the shares and then combine the results. In that way, leakage
during the computation only reveals information about the shares, not the value.



10. COUNTERMEASURES 19

1 ...

2 ldrb.w r4, [r6, #-8] # Entry a = a3a2a1a0 of O
3 ldr r7, [sp, #28] # Entry b = b3b2b1b0 of xi
4 and.w ip, r4, #1

5 smulbb ip, ip, r5

6 and.w r3, r4, #4

7 smulbb r3, r3, r5

8 eor.w ip, ip, r3

9 eor.w r4, r4, r7, lsl #4 # Mask HW of a with b
10 rbit r4, r4 # Convert b3b2b1b0a3a2a1a0

11 rev r4, r4 # into a0a1a2a3b0b1b2b3
12 and.w r5, r4, #16

13 smulbb r5, r5, r7

14 eor.w r5, r5, ip, lsl #1

15 and.w r4, r4, #64

16 smulbb r4, r4, r7

17 eor.w r5, r4, r5, lsl #4

18 mov.w r5, r5, lsr #5

19 ...

Listing 1.5. Excerpt of the modified assembly code of the mul f procedure to reduce
leakage.

Shuffling, on the other hand, randomises the order of execution, thus even if an
attacker can successfully recover correct values, they do not know the order of
the values. In practice, a number of successful side-channel attacks have been
conducted on masked and shuffled implementations [31,26,5,19], thus care must
be taken when implementing these countermeasures.

10.2 Countermeasures specific to the second attack

As mentioned in Section 5.2, it is possible to reduce the information leakage in
the mul f procedure by avoiding multiplications with odd powers of 2. Listing 1.5
shows a possible approach. Recall that the behaviour being realised here is that
of lines 3 to 6 of the C code in Listing 1.2, which may be easier to understand
than the assembly code.

The idea is to move the bits of the entry a of O that originally were in
positions corresponding to odd powers of 2 so that they are in positions that
correspond to even powers of 2, extract the bits in these positions, perform the
- now not leaky - multiplications and shift the result so that the procedure has
the same functionality.

A central challenge is to move the problematic bits into the correct positions
without resorting to bitshifts or multiplications, as these would produce leakage.
Our approach is to reverse the order of bits of the register containing a using
a rbit instruction (see line 10 of Listing 1.5) and then reverse the byte order
using a rev instruction (line 11). The effect of this is that bit 1, which originally



20 S. Jendral and E. Dubrova

corresponded to the leaky multiplication by 21, now corresponds to the non-
leaky multiplication by 26 and bit 3, which originally corresponded to the leaky
multiplication by 23, now corresponds to the non-leaky multiplication by 24.

However, we found that the rbit and rev instructions still leak information
about the Hamming weight of a, which is indeed also the case for the initial load
of a in line 2. For the rbit and rev instructions, we can mitigate the leakage
by masking the Hamming weight with b (i.e. by setting the upper 4 bits of a to
b), which makes the Hamming weight dependent on both a and b. This is not a
useful approach in general, because the value of b is part of the signature and
thus known to an attacker. A better approach is to store entries of O in such a
way that their upper 4 bits always contain a random value, for example by using
the output of SHAKE256 directly, instead of applying the decode operation first
(which would coincidentally also remove the decode operations as another source
of leakage for the Hamming weight). We did not implement this approach, as it
would be incompatible with the current specification.

After performing the multiplications, the results must be shifted and accumu-
lated together, so that the modified procedure has the same functionality as the
original procedure. For bit 3, where we performed multiplication by 24 instead of
23, we need to shift the result right by one bit before XORing it with the results
for bit 0 and 2. Similarly, for bit 1, where we performed multiplication by 26

instead of 21, we need to shift the result right by five bits before XORing it with
the results for bit 0, 2 and 3. However, we found that it is preferable to instead
shift the accumulated result from bit 0 and 2 to the left by one bit, perform the
XOR with the result from bit 3, shift the combined value to the left by four more
bits, perform the XOR with the result from bit 1, and finally shift the combined
value to the right by five bits. These steps are functionally equivalent, but each
of the XOR operations now leak information about the Hamming weight of the
combined value, instead of the individual results, which is more difficult for an
attacker to exploit.

Note that we do not claim that this implementation is entirely resistant to
side-channel attacks. Importantly, when we claim that multiplication by even
powers of 2 does not leak information, we mean that the power consumption of
the device is not fully dictated by a. It might be possible to use knowledge of b to
distinguish the values of a, even if only multiplications by even powers of 2 are
used, though this might be counteracted by masking the value of b. Addition-
ally, because the value of O generally remains the same for multiple signatures,
an attacker might be able to combine information from several traces, thereby
amplifying small leakages, and potentially succeed with recovering the entries
regardless. Nonetheless, the idea of replacing multiplications by odd powers of 2
with multiplications by even powers of 2 may be useful in other contexts.

A different approach is to decrease the number k of vectors xi that are mul-
tiplied with O. In our attacks, we combine leakage from all 9 vectors to increase
the success probability of the attack. The fewer vectors are multiplied, the less
information an attacker has available. In the tentative second-round parame-
ters [8], the value of k in the MAYO1 parameter set increases to 10, however, the



11. CONCLUSION 21

MAYO2 parameter set (which has the same security level) remains at the smaller
value of 4 (which reduces the size of the signature, at the cost of increasing the
size of the public key). As mentioned previously, attackers are generally able to
combine information from several signatures, thus even if we would set k = 1,
an attacker that is capable of observing the signature generation for 9 signatures
will have the same information as for a single signature with k = 9, so this may
not be an effective countermeasure in practice.

11 Conclusion

We presented two practical single-trace power analysis-based side-channel at-
tacks on an implementation of MAYO that are able to recover the full secret key
of the scheme. Both attacks succeed with high probability, greater than 90%.

We also proposed countermeasures against the presented attacks and de-
scribed an alternative implementation for one of the procedures targeted by the
attacks that reduces the leakage by replacing multiplications with odd powers
of 2 by multiplications with even powers of 2.

Our work demonstrates the importance of protecting modular multiplica-
tions against side-channel attacks. It also highlights opportunities for developing
countermeasures by considering processor-specific behaviour and low-level opti-
misations. Future work includes developing stronger countermeasures against
side-channel attacks on implementations of PQC algorithms, such as MAYO.

12 Acknowledgement

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation and by the Swedish Civil Contingencies Agency (Grant No. 2020-11632).

References

1. Arm: Arm v7-m architecture reference manual (2021), https://developer.arm.com/
documentation/ddi0403/ee/

2. Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., Stöttinger, M.: Separating
oil and vinegar with a single trace: Side-channel assisted Kipnis-Shamir attack on
UOV. IACR Transactions on Cryptographic Hardware and Embedded Systems
2023(3), 221–245 (June 2023). https://doi.org/10.46586/tches.v2023.i3.221-245

3. Aulbach, T., Kovats, T., Krämer, J., Marzougui, S.: Recovering Rainbow’s secret
key with a first-order fault attack. In: Batina, L., Daemen, J. (eds.) Progress in
Cryptology - AFRICACRYPT 2022. pp. 348–368. Springer Nature Switzerland,
Cham (2022). https://doi.org/10.1007/978-3-031-17433-9 15

4. Aulbach, T., Marzougui, S., Seifert, J.P., Ulitzsch, V.Q.: MAYo or MAY-
not: Exploring implementation security of the post-quantum signature scheme
MAYO against physical attacks. Workshop on Fault Diagnosis and Tolerance
in Cryptography (September 2024), https://fdtc.deib.polimi.it/FDTC24/slides/
FDTC2024-talk-2.2.pdf

https://developer.arm.com/documentation/ddi0403/ee/
https://developer.arm.com/documentation/ddi0403/ee/
https://doi.org/10.46586/tches.v2023.i3.221-245
https://doi.org/10.1007/978-3-031-17433-9_15
https://fdtc.deib.polimi.it/FDTC24/slides/FDTC2024-talk-2.2.pdf
https://fdtc.deib.polimi.it/FDTC24/slides/FDTC2024-talk-2.2.pdf


22 S. Jendral and E. Dubrova

5. Backlund, L., Ngo, K., Gärtner, J., Dubrova, E.: Secret key recovery attack on
masked and shuffled implementations of CRYSTALS-Kyber and Saber. In: Zhou,
J., Batina, L., Li, Z., Lin, J., Losiouk, E., Majumdar, S., Mashima, D., Meng,
W., Picek, S., Rahman, M.A., Shao, J., Shimaoka, M., Soremekun, E., Su, C.,
Teh, J.S., Udovenko, A., Wang, C., Zhang, L., Zhauniarovich, Y. (eds.) Applied
Cryptography and Network Security Workshops. pp. 159–177. Springer Nature
Switzerland, Cham (2023)

6. Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut, A.,
Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021. pp. 348–
373. Springer International Publishing, Cham (2021)

7. Beullens, W.: MAYO: Practical post-quantum signatures from oil-and-vinegar
maps. In: AlTawy, R., Hülsing, A. (eds.) Selected Areas in Cryptography. pp. 355–
376. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-
3-030-99277-4 17

8. Beullens, W.: MAYO: Overview + Updates. NIST PQC Seminar (September
2024), https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/
documents/pqc-seminars/presentations/20-mayo-09242024.pdf

9. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: MAYO (June
2023), https://pqmayo.org/assets/specs/mayo.pdf

10. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: Nibbling MAYO:
Optimized implementations for AVX2 and Cortex-M4. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2024(2), 252–275 (March 2024).
https://doi.org/10.46586/tches.v2024.i2.252-275

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Advances in Cryptology - CRYPTO ’99. vol. 1666,
pp. 398–412. Springer (1999)

12. Chou, T., Kannwischer, M.J., Yang, B.: Rainbow on Cortex-M4.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 650–675 (2021).
https://doi.org/10.46586/TCHES.V2021.I4.650-675, https://doi.org/10.46586/
tches.v2021.i4.650-675

13. Ding, J., Yang, B.Y., Chen, C.H.O., Chen, M.S., Cheng, C.M.: New differential-
algebraic attacks and reparametrization of Rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A., Yung, M. (eds.) Applied Cryptography and Network Security.
pp. 242–257. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

14. Furue, H., Kiyomura, Y., Nagasawa, T., Takagi, T.: A new fault attack on
UOV multivariate signature scheme. In: Cheon, J.H., Johansson, T. (eds.) Post-
Quantum Cryptography. pp. 124–143. Springer International Publishing, Cham
(2022). https://doi.org/10.1007/978-3-031-17234-2 7

15. Gringiani, A., Meneghetti, A., Signorini, E., Susella, R.: MAYO: Optimized im-
plementation with revised parameters for ARMv7-m. Cryptology ePrint Archive,
Paper 2023/540 (2023), https://eprint.iacr.org/2023/540

16. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its application
on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology –
CRYPTO 2020. pp. 359–386. Springer International Publishing, Cham (2020)

17. Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multi-
variate public key cryptosystems. In: Yang, B.Y. (ed.) Post-Quantum Cryp-
tography. pp. 1–18. Springer Berlin Heidelberg, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 1

18. Jendral, S., Dubrova, E.: MAYO key recovery by fixing vinegar seeds. Cryptology
ePrint Archive, Paper 2024/1550 (2024), https://eprint.iacr.org/2024/1550

https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-99277-4_17
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/20-mayo-09242024.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/20-mayo-09242024.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://doi.org/10.46586/tches.v2024.i2.252-275
https://doi.org/10.46586/TCHES.V2021.I4.650-675
https://doi.org/10.46586/tches.v2021.i4.650-675
https://doi.org/10.46586/tches.v2021.i4.650-675
https://doi.org/10.1007/978-3-031-17234-2_7
https://eprint.iacr.org/2023/540
https://doi.org/10.1007/978-3-642-25405-5_1
https://eprint.iacr.org/2024/1550


12. ACKNOWLEDGEMENT 23

19. Jendral, S., Ngo, K., Wang, R., Dubrova, E.: Breaking SCA-protected
CRYSTALS-Kyber with a single trace. In: 2024 IEEE International Sympo-
sium on Hardware Oriented Security and Trust (HOST). pp. 70–73 (2024).
https://doi.org/10.1109/HOST55342.2024.10545390

20. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) Advances in Cryptology — EUROCRYPT ’99. pp. 206–222.
Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

21. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) Advances in Cryptology — CRYPTO ’98. pp. 257–266.
Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

22. Krämer, J., Loiero, M.: Fault attacks on UOV and Rainbow. In: Po-
lian, I., Stöttinger, M. (eds.) Constructive Side-Channel Analysis and Se-
cure Design. pp. 193–214. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-16350-1 11

23. Mus, K., Islam, S., Sunar, B.: Quantumhammer: A practical hybrid attack
on the LUOV signature scheme. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. p. 1071–1084. CCS
’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3372297.3417272

24. National Institute of Standards and Technology: NIST announces additional digital
signature candidates for the PQC standardization process (June 2023), https://
csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates

25. National Institute of Standards and Technology: NIST announces 14 candidates
to advance to the second round of the additional digital signatures for the post-
quantum cryptography standardization process (October 2024), https://csrc.nist.
gov/news/2024/pqc-digital-signature-second-round-announcement

26. Ngo, K., Dubrova, E., Johansson, T.: Breaking masked and shuffled CCA secure
Saber KEM by power analysis. In: Proc. of the 5th Workshop on Attacks and
Solutions in Hardware Security. pp. 51–61 (2021)

27. NIST: PQC standardization process: Announcing four candidates to
be standardized, plus fourth round candidates. NIST Computer Se-
curity Resource Center (July 2022), https://csrc.nist.gov/News/2022/
pqc-candidates-to-be-standardized-and-round-4

28. Park, A., Shim, K., Koo, N., Han, D.: Side-channel attacks on post-quantum
signature schemes based on multivariate quadratic equations - Rainbow and
UOV -. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 500–523
(2018). https://doi.org/10.13154/TCHES.V2018.I3.500-523, https://doi.org/10.
13154/tches.v2018.i3.500-523

29. Patarin, J.: The oil and vinegar signature scheme. In: Presented at the Dagstuhl
Workshop on Cryptography September 1997 (1997)

30. Pébereau, P.: One vector to rule them all: Key recovery from one vector in UOV
schemes. In: Saarinen, M.J., Smith-Tone, D. (eds.) Post-Quantum Cryptography.
pp. 92–108. Springer Nature Switzerland, Cham (2024)

31. Pessl, P.: Analyzing the shuffling side-channel countermeasure for lattice-based
signatures. In: Dunkelman, O., Sanadhya, S.K. (eds.) Progress in Cryptology –
INDOCRYPT 2016. pp. 153–170. Springer International Publishing, Cham (2016)

32. Pokorný, D., Socha, P., Novotný, M.: Side-channel attack on Rain-
bow post-quantum signature. In: 2021 Design, Automation & Test
in Europe Conference & Exhibition (DATE). pp. 565–568 (2021).
https://doi.org/10.23919/DATE51398.2021.9474157

https://doi.org/10.1109/HOST55342.2024.10545390
https://doi.org/10.1007/978-3-030-16350-1_11
https://doi.org/10.1145/3372297.3417272
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://csrc.nist.gov/news/2024/pqc-digital-signature-second-round-announcement
https://csrc.nist.gov/news/2024/pqc-digital-signature-second-round-announcement
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://doi.org/10.13154/TCHES.V2018.I3.500-523
https://doi.org/10.13154/tches.v2018.i3.500-523
https://doi.org/10.13154/tches.v2018.i3.500-523
https://doi.org/10.23919/DATE51398.2021.9474157


24 S. Jendral and E. Dubrova

33. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) Cryptographic Hard-
ware and Embedded Systems – CHES 2017. pp. 513–533. Springer International
Publishing, Cham (2017)

34. Ravi, P., Roy, D.B., Bhasin, S., Chattopadhyay, A., Mukhopadhyay, D.: Number
“not used” once - practical fault attack on pqm4 implementations of NIST candi-
dates. In: Polian, I., Stöttinger, M. (eds.) Constructive Side-Channel Analysis and
Secure Design. pp. 232–250. Springer International Publishing, Cham (2019)

35. Sayari, O., Marzougui, S., Aulbach, T., Krämer, J., Seifert, J.P.: HaMAYO: A fault-
tolerant reconfigurable hardware implementation of the MAYO signature scheme.
In: Wacquez, R., Homma, N. (eds.) Constructive Side-Channel Analysis and Secure
Design. pp. 240–259. Springer Nature Switzerland, Cham (2024)

36. Shim, K.A., Koo, N.: Algebraic fault analysis of UOV and Rainbow with the leak-
age of random vinegar values. IEEE Transactions on Information Forensics and
Security 15, 2429–2439 (2020). https://doi.org/10.1109/TIFS.2020.2969555

37. Yi, H., Li, W.: On the Importance of Checking Multivariate Public Key Cryptog-
raphy for Side-Channel Attacks: The Case of enTTS Scheme. The Computer Jour-
nal 60(8), 1197–1209 (02 2017). https://doi.org/10.1093/comjnl/bxx010, https:
//doi.org/10.1093/comjnl/bxx010

38. Yi, H., Nie, Z.: Side-channel security analysis of UOV signature for cloud-
based Internet of Things. Future Generation Computer Systems 86, 704–
708 (2018). https://doi.org/https://doi.org/10.1016/j.future.2018.04.083, https://
www.sciencedirect.com/science/article/pii/S0167739X18304151

https://doi.org/10.1109/TIFS.2020.2969555
https://doi.org/10.1093/comjnl/bxx010
https://doi.org/10.1093/comjnl/bxx010
https://doi.org/10.1093/comjnl/bxx010
https://doi.org/https://doi.org/10.1016/j.future.2018.04.083
https://www.sciencedirect.com/science/article/pii/S0167739X18304151
https://www.sciencedirect.com/science/article/pii/S0167739X18304151

	Single-trace side-channel attacks on MAYO exploiting leaky modular multiplication 

