
mUOV:Masking the UnbalancedOil and Vinegar Digital Sigital
Signature Scheme at First- and Higher-Order

Suparna Kundu
∗

COSIC, KU Leuven

Leuven, Belgium

suparna.kundu@esat.kuleuven.be

Quinten Norga
∗

COSIC, KU Leuven

Leuven, Belgium

quinten.norga@esat.kuleuven.be

Uttam Kumar Ojha
∗

Indian Statistical Institute

Kolkata, India

uttamkumarojha1729@gmail.com

Anindya Ganguly

Indian Institute of Technology

Kanpur, India

anindyag@cse.iitk.ac.in

Angshuman Karmakar

Indian Institute of Technology

Kanpur, India

angshuman@cse.iitk.ac.in

Ingrid Verbauwhede

COSIC, KU Leuven

Leuven, Belgium

ingrid.verbauwhede@esat.kuleuven.be

ABSTRACT
TheNational Institute for Standards andTechnology (NIST) initiated

a standardization procedure for additional digital signatures and

recently announced round-2 candidates for the PQ additional digital

signature schemes. The multivariate digital signature scheme Un-

balanced Oil and Vinegar (UOV) is one of the oldest post-quantum

schemes and has been selected by NIST for Round 2. Although UOV

is mathematically secure, several side-channel attacks (SCA) have

been shown on the UOV or UOV-based digital signatures. We care-

fully analyze the sensitivity of variables and operations in the UOV

scheme from the side-channel perspective and showwhich require

protection. To mitigate implementation-based SCA, we integrate

a provably secure arbitrary-order masking technique with the key

generation and signature generation algorithms ofUOV.Wepropose

efficient techniques for the masked dot-product and matrix-vector

operations, which are both critical in multivariate DS schemes. We

also implemented and demonstrate the practical feasibility of our

masking algorithms for UOV-Ip on the ARMCortex-M4 microcon-

troller. Our first-order masked UOV implementations have 2.7× and
3.6× performance overhead compared to the unmasked scheme for

key generation and signature generation algorithms. Our first-order

masked UOV implementations use 1.3× and 1.9× stack memory

rather than the unmasked version of the key generation and signa-

ture generation algorithms.

KEYWORDS
Post-Quantum Cryptography, Masking, Multivariate-based Digital

Signatures, UOV.

1 INTRODUCTION
The National Institute for Standards and Technology (NIST) se-

lected its first Post-Quantum (PQ) Digital Signature (DS) standards

in 2022 [1] and published them recently [26, 27]. The current PQ DS

standards of NIST are (i) Dilithium [15, 26], (ii) Falcon [17], and (iii)

Sphincs+ [7, 27]. Two of the three standard DS schemes ((i) and (ii))

are based on structural lattices. Therefore, a crypt-analytical attack

on the structural lattice-based hard problemmay endanger all the

PQ standards. To prevent such disastrous situations and broaden its

portfolio by including DS schemes based on different hard mathe-

matical problems, NIST initiated another standardization procedure

∗
Three authors contributed equally to this research.

for additional digital signatures [25]. In this call, NIST has shown

interest in DS schemes with short signatures and fast verifications.

Recently, NIST announced round-2 candidates for the PQ additional

digital signature schemes [28].

The Unbalanced Oil and Vinegar (UOV) is a multivariate DS

scheme. It follows the hash-and-sign paradigm, which uses mul-

tivariate quadratic polynomial maps as trapdoor functions. This

scheme was first proposed by Kipnis et al. [24] in 1999 and later

modified by Beullens et al. and submitted to the additional digital

signatures standardization procedure of NIST [9]. This scheme has

shorter signatures compared to DS standards. This scheme has also

advanced to the second round of NIST’s competition and is a po-

tential candidate for additional DS standards. Interestingly, three

other candidates from the second round, QR-UOV [18], SNOVA [35],

and Mayo [8], also use the UOV principle. A second-round candi-

date in the ongoing Korean PQC standardization procedure [32],

MQ-Sign [34] is also based on the UOV principle.

UOV is one of the oldest PQ schemes, so its crypt-analytical se-

curity is time-tested. However, several side-channel attacks (SCA)

have been demonstrated on the UOVDS scheme [2, 3, 30, 36]. These

attacks exploit power consumption information (electromagnetic

radiation) leakages from the physical device while executing the

cryptographic algorithms. Therefore, integration of the countermea-

sure with the implementations of the UOV scheme is essential to

prevent these attacks.

1.1 Contribution
The key generation algorithm generates the secret key, and the sig-

nature generation uses this non-ephemeral secret key to generate

signatures. Key generation and signature generation are the two

algorithms of the UOV scheme that are vulnerable to SCA.We per-

form a thorough senstivity analysis on these procedures, identifying

the operations and variables which require side-channel protec-

tion. Masking is a widely known provable secure countermeasure

against SCA. In this work, we propose provably secure arbitrary-

order masked algorithms for key generation, secret key expansion,

and signature generation operations. To this end, we propose sev-

eral novel gadgets, including the SecDotProd gadget. Our approach
allows to efficiently compute themasked cross-products of all vector

elements and delaying share re-masking and final compression. The

proposed lazy compression is more efficient as it does not require

re-sharing and compression after each coefficientmultiplication, and

1

https://orcid.org/0000-0003-4354-852X
https://orcid.org/0000-0003-0983-5664
https://orcid.org/0000-0003-2594-588X
https://orcid.org/0000-0002-0879-076X

Suparna Kundu,Quinten Norga, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, and Ingrid Verbauwhede

allows us to construct efficient and secure matrix-vector multiplica-

tions. Further, we would like to note that our approach is not limited

to the UOV scheme, it can be extended to other UOV-based multi-

variate schemes, such as Mayo, QR-UOV, SNOVA, andMQ-Sign.

Finally, we implemented our masking algorithms for UOV-Ip on

the ARMCortex-M4microcontroller. We include the implementa-

tion results in this paper. Our first-order masked UOV implemen-

tations have 2.7× and 3.6× performance overhead compared to the

unmasked scheme for key generation and signature generation algo-

rithms, respectively. Our first-order masked UOV implementations

use 1.3× and 1.9× stack memory with respect to the unmasked ver-

sion of the key generation and signature generation algorithms,

respectively.

2 PRELIMINARIES
2.1 Notation
We use F𝑞 to denote a finite field with 𝑞 elements and 𝑞 a power-of-

two positive integer. All vectors and matrices are defined over F𝑞 .
Lower-case letters (e.g., 𝑥) denote field elements/ coefficients, lower-

case bold letters (e.g.,v) represent vectors andupper-case bold letters
denote matrices (e.g.,MMM). All vectors are in the column form, and the

transpose of the matrixMMM is denoted byMMM
⊤
. The identity matrix of

size𝑚 is denoted by III𝑚 , while 000𝑘 is the zero column vector. 𝑥←𝑆

represents the (random) sampling of 𝑥 from the set 𝑆 . The 𝑖th bit

position of a field element𝑥 is representedwith𝑥 [𝑖] . The 𝑗 th element

of the vector v is indicated as v[𝑗]. The (𝑗,𝑘)th element of the matrix

MMM is represented asMMM[𝑗,𝑘] and the elements of the positions (𝑗,𝑘) to
(𝑗,𝑘+𝑙) of the matrixMMM is represented collectively asMMM[𝑗,𝑘 :𝑘+𝑙]. A
sequence of𝑛 shares (𝑥1,...,𝑥𝑛) of a sensitive variable𝑥 is represented
as (𝑥𝑖)1≤𝑖≤𝑛 or (𝑥𝑖),when thenumberof shares𝑛 is clear fromcontext.

2.2 The UOV digital signature scheme
Throughout this work, we target the NIST-submitted version of the

UOVDS scheme [9], which we now briefly introduce.

The UOVmap P :F𝑛𝑞→F𝑚𝑞 is a multivariate quadratic map that

vanishes on a𝑚-dimensional secret linear subspace𝑂 . We represent

thematrix form of this quadraticmap asP= (PPP1,···,PPP𝑚). Eachmatrix

{PPP𝑖 }𝑖∈[𝑚] can be represented by three block matrices: PPP
(1)
𝑖

andPPP
(3)
𝑖

are two upper triangular square block matrices of size (𝑛−𝑚) and
𝑚 respectively; andPPP

(2)
𝑖

is a matrix of size (𝑛−𝑚)×𝑚. Interestingly,

PPP
(1)
𝑖

, PPP
(2)
𝑖

, PPP
(3)
𝑖

andOOO are related through the following Equation 1.(
OOO
⊤

III𝑚

) (PPP(1)
𝑖

PPP
(2)
𝑖

000 PPP
(3)
𝑖

) (
OOO

III𝑚

)
=OOO⊤PPP(1)

𝑖
OOO+OOO⊤PPP(2)

𝑖
+PPP(3)

𝑖
. (1)

We present the UOV digital signature scheme in Fig. 1, which

consists of three main algorithms: (i) compact key generation, (ii)

signature generation, and (iii) verification.

(i) CompactKeyGen(): the compact key generation algorithm first

samples two seeds seed
sk
and seed

pk
. The seed

sk
is used as input in

Expand
sk
to generate the secret matrixOOO, which corresponds to the

oil space. Then, the seed
pk

is used as input in Expand
pk

to construct

two public matrices: PPP
(1)
𝑖

andPPP
(2)
𝑖

. Further, PPP
(3)
𝑖

is computed follow-

ing Eq. 1. Finally, the compressed public key 𝑐𝑝𝑘 and secret key 𝑐𝑠𝑘

are returned. The compressed 𝑐𝑠𝑘 and 𝑐𝑝𝑘 can be expanded to 𝑒𝑠𝑘

and 𝑒𝑝𝑘 using the ExpandSK and ExpandPK routines (Figure 2).

CompactKeyGen()
(1) seed

sk
←{0,1}sk_seed_len

(2) seed
pk
←{0,1}pk_seed_len

(3) OOO :=Expand
sk
(seed

sk
) ## Figure 2

(4)

{
PPP
(1)
𝑖

,PPP
(2)
𝑖

}
𝑖∈ [𝑚]

:=Expand
PPP
(seed

pk
) ## Figure 2

(5) for 𝑖 =1 upto𝑚 do
(6) PPP

(3)
𝑖

:=Upper
(
−OOO⊤PPP(1)

𝑖
OOO−OOO⊤PPP(2)

𝑖

)
(7) 𝑐𝑝𝑘 :=

(
seed

pk
,

{
PPP
(3)
𝑖

}
𝑖∈ [𝑚]

)
(8) 𝑐𝑠𝑘 := (seed

pk
,seed

sk
)

(9) return (𝑐𝑝𝑘,𝑐𝑠𝑘)

Sign(𝑒𝑠𝑘,𝜇)
(1) salt←{0,1}salt_len
(2) t :=Hash(𝜇 | |salt)
(3) for 𝑐𝑡𝑟 =0 upto 255 do
(4) v :=Expandv (𝜇 | |salt | |seedsk | |ctr)
(5) LLL :=000𝑚×𝑚
(6) for 𝑖 =1 upto𝑚 do
(7) Set 𝑖-th row of LLL to v⊤SSS𝑖
(8) y := [v⊤PPP(1)

𝑖
v]𝑖∈ [𝑚]

(9) x :=LLL−1 (t−y) ## x=⊥ if det(LLL) =0
(10) if x≠⊥ then

(11) s :=
[
v
0𝑚

]
+
[
OOO

III𝑚

]
x

(12) 𝜎 := (s,salt)
(13) return 𝜎

(14) return⊥

Verify(𝑒𝑝𝑘,𝜇,𝜎)
(1) t :=Hash(𝜇 | |salt)
(2) return t== [s⊤PPP𝑖 s]𝑖∈ [𝑚]

Figure 1: UOVDS scheme [9]

(ii) Sign(𝑒𝑠𝑘 ,𝜇): the signature generation algorithm takes the secret

key 𝑒𝑠𝑘 and message 𝜇 as input. It first samples a random salt, and

computes the message digest t as Hash(𝜇 | |salt). We then compute

the pre-image s of t using the secret key via rejection sampling.

This requires uniformly sampling a vinegar vector v∈F𝑛𝑞 and then

computing y = [v⊤PPP(1)
𝑖

v]𝑖∈[𝑚] . Therefore, the quadratic system
P(s)= t is converted toa linearsystemLLLx= t−y. IfLLL is invertible, then
x canbe computed byperformingGaussian elimination, allowing the

computationof s, finally.Otherwise,v is re-sampled and the previous

process is repeated. The final signature 𝜎 consists of s and salt.
(iii) Verify(𝑒𝑝𝑘 , 𝜇, 𝜎): the verification algorithm takes public key

𝑒𝑝𝑘 , message 𝜇, and signature 𝜎 as input. At first, it compute the

message digest t as Hash(𝜇 | |salt). Then, it evaluates the UOVmap

as P(s) = (s⊤PPP1s,···,s⊤PPP𝑚s) and checks whether it matches with t.
Based on this, it outputs accept or reject.

Wepresent theparameter setof thedifferentvariantsofUOVinTa-

ble1.Forall theversionsofUOV,pk_seed_len=128,sk_seed_len=
256 & salt_len = 128. Throughout this text we will denote vec-

tor/matrix dimension 𝑛−𝑚 as 𝑙 .

2

mUOV:Masking the Unbalanced Oil and Vinegar Digital Sigital Signature Scheme at First- and Higher-Order

ExpandSK(𝑐𝑠𝑘)
(1) OOO :=Expand

sk
(seed

sk
)

(2)

{
PPP
(1)
𝑖

,PPP
(2)
𝑖

}
𝑖∈ [𝑚]

:=Expand
PPP
(seed

pk
)

(3) for 𝑖 =1 upto𝑚 do
(4) SSS𝑖 :=

(
PPP
(1)
𝑖
+PPP(1)⊤

𝑖

)
OOO+PPP(2)

𝑖

(5) 𝑒𝑠𝑘 :=

(
seed

sk
,OOO,

{
PPP
(1)
𝑖

,SSS𝑖

}
𝑖∈ [𝑚]

)
(6) return 𝑒𝑠𝑘

ExpandPK(𝑐𝑝𝑘)
(1)

{
PPP
(1)
𝑖

,PPP
(2)
𝑖

}
𝑖∈ [𝑚]

:=Expand
PPP
(seed

pk
)

(2) for 𝑖 =1 upto𝑚 do

(3) PPP𝑖 =

[
PPP
(1)
𝑖

PPP
(2)
𝑖

000 PPP
(3)
𝑖

]
(4) 𝑒𝑝𝑘 := {PPP𝑖 }𝑖∈ [𝑚]
(5) return 𝑒𝑝𝑘

Figure 2: Expand functions of the UOVDS scheme [9]

Table 1: Parameter sets of different versions of UOV

ParametersScheme Security
Level 𝑛 𝑚 𝑞

UOV-Ip 112 44 256

UOV-Is

I

160 64 16

UOV-III III 184 72 256

UOV-V V 244 96 256

2.3 Masking
Introduced by Chari et al. [10], masking is a popular countermea-

sure to protect against SCA attacks. The fundamental idea is to split

sensitive variables 𝑥 into several randomized shares (𝑥1, ...,𝑥𝑛) so
that an attacker needs to learn something about all shares to learn

about the original secret 𝑥 . In this work, we use Boolean masking,

where 𝑥 =𝑥1+ ...+𝑥𝑛 , and the addition is a logical XOR (⊕).
Ishai et al. [21] introduced the 𝑡-probing model, a theoretical

framework to argue about the practical security of the masking

countermeasure. It allows an adversary to probe 𝑡 intermediate val-

ues in a masked implementation: if any such 𝑡 probes do not leak

information about the unshared secret, the implementation is 𝑡-

probing secure. As a masked algorithm or circuit grows in size, it

becomes increasingly complex to analyze its security. A solution

is to split the large function into smaller gadgets and prove their

security. Barthe et al. [4] introduced several security notions, which

allow us to prove the probing security of such gadget compositions.

We recall these security notions, as presented in [33].

Definition 2.1 (𝑡-(Strong-)Non-Interference (𝑡-(S)NI) security). A
gadget with one output sharing and𝑚𝑖 input shares is t-NI (resp.

t-SNI) secure if any set of at most 𝑡1 probes on its internal wires and

𝑡2 probes onwires from its output sharings such that 𝑡1+𝑡2 ≤ 𝑡 can be
simulatedwith 𝑡1+𝑡2 (resp. 𝑡1) shares of each of its𝑚𝑖 input sharings.

Wealso recall twoextensions for thesenotions,whichare required

when masking digital signature schemes. These involve making val-

ues public, such as the computed signatures. More specifically, all

outputs of a free-𝑡-SNI gadget can be simulated using all but one of

its input shares and the unmasked output [14]. The 𝑡-NIo notion [5]

gives the simulator access to certain intermediate values to ensure

successful simulation.

Definition 2.2 (free-𝑡-Strong-Non-Interference (free-𝑡-SNI) security).
A gadget with one output sharing 𝑏𝑖 and𝑚𝑖 input sharings is free-

𝑡-SNI secure if any set of at most 𝑡1 probes on its internal wires

such that 𝑡1 ≤ 𝑡 there exists a subset I of input indices with |𝐼 | ≤ 𝑡1,
such that the 𝑡1 intermediate variables and the output variables 𝑏 |𝐼
can be perfectly simulated from 𝑎 |𝐼 , while for any𝑂 ⊊ [1,𝑛] \𝐼 the
output variables in 𝑐 |𝑂 are uniformly and independently distributed,

conditioned on the probed variables and 𝑐 |𝐼 .

Definition 2.3 (𝑡-Non-Interference with public outputs (𝑡-NIo) secu-
rity). A gadget with public output 𝑏 and𝑚𝑖 input sharings is 𝑡-NIo

secure if, for any set of 𝑡1 ≤ 𝑡 intermediate variables, there exists

a subset I of input indices with |𝐼 | ≤ 𝑡1, such that 𝑡1 intermediate

variables can be perfectly simulated from 𝑥 |𝐼 and 𝑏.

3 SENSITIVITYANALYSIS
In this section, we analyze the sensitivity of all the variables and

operations of the UOV scheme. The goal is to identify the sensitive

variables which need to be protected against side-channel leakage

and Differential Power Attacks (DPA). We draw the sensitive UOV

procedures in color-coded diagrams, Figure 3 - 5. All public data,

including (compact/expanded) public key, message and signature

of a message, are non-sensitive and indicated in blue. All sensitive

data, and operations dealing with them, are highlighted in red.

First of all, since the ExpandPK(𝑐𝑝𝑘) and Verify(𝑒𝑝𝑘,𝜇,𝜎) do not
manipulate sensitive data, those algorithms are non-sensitive and

do not require masking. The remaining algorithms, i.e., compact key

generation, secret key expansion, and signature generation, process

sensitive data. Note that seed
pk

and

{
PPP
(1)
𝑖

}
𝑖∈[𝑚]

in 𝑐𝑠𝑘 and 𝑒𝑠𝑘 , re-

spectively, are also part of the public key, and thus are non-sensitive.

3.1 Compact Key Generation and Secret Key
Expansion

During key generation and secret key expansion, seed
sk

is sensi-

tive as it is the seed for OOO and subsequent values. Additionally,{
PPP
(3)
𝑖

}
𝑖∈[𝑚]

has to be protected during the computation, as OOO is

involved. The final value is revealed as part of the public key 𝑐𝑝𝑘 .

In contrast, {SSS𝑖 }𝑖∈[𝑚] is sensitive as it is also derived fromOOO and

requires protection as part of the secret key 𝑒𝑠𝑘 . All other variables

in the key generation and expansion can be leaked or are public and

do not require side-channel protection.

3.2 Signature Generation
In the signaturegeneration, t is thehashof amessage 𝜇 and salt is part

of the signature 𝜎 , so both are non-sensitive. Pébereau [31] shows

one vector from secret oil space is enough for a key recovery attack.

If v is known, s−
[
v
000𝑚

]
, an oil vector, is also known. So, v is sensitive.

If LLL is known, y= t−LLLx is also known and thus requires side-channel
protection.Due to the structure of the secret oil space,x are the linear
coefficientsof theoil vectorandarepartof the signature s. Thus,x can

3

Suparna Kundu,Quinten Norga, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, and Ingrid Verbauwhede

Figure 3: Sensitivity analysis of CompactKeyGen() = (cpk, csk).

Figure 4: Sensitivity analysis of ExpandSK(csk) = (esk).

be revealed after computation. The execution time of signature gen-

eration leaks 𝑐𝑡𝑟 value, so we can consider 𝑐𝑡𝑟 is also non-sensitive.

Figure 5: Sensitivity analysis of Sign(esk, 𝜇) = (𝜎).

4 MASKINGUOVATARBITRARYORDER
We now introduce and describe the complete first- and high-order

masking of UOV, a NIST Additional DS Round 1 candidate. All novel

gadgets are described by a 𝑡-order algorithm (𝑛 = 𝑡 +1 shares) and
accompanied with a detailed description. The main algorithms are

masked key generation (mCompactKeyGen, Alg. 4), secret key expan-
sion (mExpandSK, Alg. 5) and signing (mSign, Alg. 6). As the signature
verification procedure operates only on public values, no masking

is required.

First, in Section 4.1 - 4.4, we introduce several novel masked gad-

getswhich are used as subroutines in themain algorithms, including:

• SecDotProd and SecMatVec: efficient masked dot product

on twoBooleanmasked vectors. It is themain building block

for matrix-vector multiplication, as used during key gener-

ation and signing.

• SecQuad: masked evaluation of a quadratic form, as used

during signing.

All components (Table 2), including gadgets from literature, are

put together to achieve fully masked UOV in Section 4.5 - 4.7.

Table 2: Overview of used gadgets in this work, with 𝑛 = 𝑡 +1
shares.

Algorithm Description Security Reference

SecREF Refresh of Boolean masking 𝑡-SNI [4, 12]

FullAdd Secure unmasking of Boolean shares 𝑡-NI [5, 11] & Alg. 7

SecDotProd Dot prod. of two Boolean masked vectors 𝑡-SNI Algorithm 1

SecMatVec Matrix-vector multiplication 𝑡-SNI Algorithm 2

SecQuad Evaluation of a quadratic form 𝑡-SNI Algorithm 3

SecRowEch Matrix conversion to row echelon form 𝑡-NIo [29] & Alg. 8

SecBackSub Masked back substitution with public output 𝑡-NIo [29] & Alg. 9

mCompactKeyGen Masked UOV Compact Key Generation 𝑡-NIo Algorithm 4

mExpandSK Masked UOV Secret Key Expansion 𝑡-NI Algorithm 5

mSign Masked UOV Signature Generation 𝑡-NIo Algorithm 6

Methodology.We prove all algorithms/gadgets to be 𝑡-(S)NI secure

in the probing model via simulation. We show how probes on in-

termediate variables and output shares of a gadget can be perfectly

simulatedwith only a limited number of input shares. For algorithms

which are composed frommultiple gadgets, we rely on the 𝑡-(S)NI

properties of the sub-gadgets to argue about simulatability of all val-

ues. For example, the set of probes required from the input shares of a

𝑡-SNI gadget is independent from the amount of probes on its output

shares. By iterating over all possible intermediate (and output) vari-

ables of each sub-gadget, starting at the output andmoving to the in-

put of the algorithm, all required probes for simulation are summed.

4.1 Masked Dot Product
The (masked) matrix-vector multiplication operation is critical in

multivariate-based post-quantum crypto. As highlighted in Section

2, it is also the case for the UOV scheme. We propose a method to

efficiently compute themasked dot product (SecDotProd) using lazy
compression. The computation of a masked multiplication involves

three stages: computation of cross-products, re-sharing and com-

pression into the final 𝑛 shares. Computing a dot-product of two

𝑙-dimensional vectors requires performing 𝑙 masked multiplications

and summing them. By delaying the re-sharing and compression of

the cross-products, until completing them for all 𝑙 elements in the in-

putvectorsxandy,weonlyneed toperformthemonceat the end.We

nowdiscuss our approach indetail,which is inspiredby the approach

in [19], modifying the domain-oriented ISWmultiplication [20, 21]

by delaying the compression stage when chaining multiplications.

Computation of 𝑙 cross-products. The cross-products for 𝑙

input coefficients of (x𝑖) and (y𝑖) are computed and summed. We

observe here that since no cross-products are combined, and all input

coefficients are independent, they can be computed independently

and each summed together.

Resharing. The cross-products which contain shares of both

inputs with different share indices (𝑖 ≠ 𝑗) are now refreshed using

a fresh random share. This is to prevent the re-combination of all

shares of a single coefficient in the following step.

4

mUOV:Masking the Unbalanced Oil and Vinegar Digital Sigital Signature Scheme at First- and Higher-Order

Algorithm 1: SecDotProd

Data: Boolean sharings (x𝑖) and (y𝑖) of vectors x,y∈F𝑙𝑞 .
Result:A Boolean sharing (𝑧𝑖) of a coefficient 𝑧=x𝑇 y∈F𝑞 .

1 (𝑢𝑖 𝑗),(𝑤𝑖) :=0
2 ## Compute and sum 𝑙 cross-products

3 for 𝑘 =1 upto 𝑙 do
4 for 𝑖 =1 upto 𝑛 do
5 for 𝑗 =𝑖+1 upto 𝑛 do
6 𝑢𝑖 𝑗 =𝑢𝑖 𝑗 +x[𝑘]𝑖y[𝑘] 𝑗
7 𝑢 𝑗𝑖 =𝑢 𝑗𝑖+x[𝑘] 𝑗y[𝑘]𝑖

8 (𝑤𝑖)= (𝑤𝑖+x[𝑘]𝑖y[𝑘]𝑖)
9 ## Resharing

10 for 𝑖 =1 upto 𝑛 do
11 for 𝑗 =𝑖+1 upto 𝑛 do
12 𝑟𝑖 𝑗←F𝑞
13 𝑢𝑖 𝑗 =𝑢𝑖 𝑗 +𝑟𝑖 𝑗
14 𝑢 𝑗𝑖 =𝑢 𝑗𝑖+𝑟𝑖 𝑗

15 ## Compression

16 (𝑧𝑖) := (𝑤𝑖+
𝑛∑

𝑗=1, 𝑗≠𝑖
𝑢𝑖 𝑗)

17 return (𝑧𝑖)

Compression. The refreshed partial sums are now combined

into the final output values𝑧𝑖 . As proposed in [16], it is critical (for se-

curity) that the result of the computation of 𝑧𝑖 is stored in a memory

element and only the full result is returned. This is not necessary for

probing security, but required for 𝑡-SNI security. It is clear that only

performing the re-sharing and compression step once, as proposed

here, is more efficient than performing it for every input coefficient

pair and summing the results of those multiplications.

4.1.1 Complexity. The run-time and randomness complexity of

SecDotProd are:

𝑇SecDotProd (𝑙,𝑛)=𝑙 ·𝑛 · (
2𝑛(𝑛−1)

2

+1)+𝑛 · 3𝑛(𝑛−1)
2

+𝑛(𝑛−1)

=𝑙𝑛3−𝑙𝑛2+𝑙𝑛+ 3
2

𝑛3− 1
2

𝑛2−𝑛,

𝑅SecDotProd (𝑙,𝑛,𝑤)=𝑛 ·
𝑛(𝑛−1)

2

·𝑤 =
1

2

𝑛3𝑤− 1
2

𝑛2𝑤.

4.1.2 Security. We now show that the SecDotProd gadget is 𝑡-SNI
secure with 𝑛=𝑡+1 shares, providing resistance against a probing
adversary with 𝑡 probes and allowing us to use the gadget in larger

compositions.

Lemma 4.1. The gadget SecDotProd (Algorithm 1) is 𝑡-SNI secure.

Proof. The full proof is included in Appendix A.

4.2 MaskedMatrix-VectorMultiplication
We now show how the optimized SecDotProd gadget is used to

compute a masked matrix vector multiplication (SecMatVec) in an
efficientmanner. As shown inAlgorithm 2, by applying the dot prod-

uct on each row (𝑚 in total) of a Boolean masked matrix (A𝑖), the

shared vector (b𝑖) with b=Ax∈F𝑚𝑞 can be computed (𝑚 iterations,

𝑚 coefficients).

Algorithm 2: SecMatVec

Data: 1. A Boolean sharing (A𝑖) of a matrixA∈F𝑚×𝑙𝑞 .

2. A Boolean sharing (x𝑖) of a vector x∈F𝑙𝑞 .
Result:A Boolean sharing (b𝑖) of the vector b=Ax∈F𝑚𝑞

1 for 𝑗 =1 upto𝑚 do
2 (b[𝑗]𝑖) :=SecDotProd((A[𝑗,:]𝑖),(x𝑖))
3 return (b𝑖)

4.2.1 Complexity & Security. The run-time and randomness com-

plexity of SecMatVec are:

𝑇SecMatVec (𝑙,𝑚,𝑛)=𝑚 ·𝑇SecDotProd (𝑛,𝑙)

=𝑙𝑚𝑛3−𝑙𝑚𝑛2+𝑙𝑚𝑛+ 3
2

𝑚𝑛3− 1
2

𝑚𝑛2−𝑚𝑛,

𝑅SecMatVec (𝑙,𝑚,𝑛,𝑤)=𝑚 ·𝑅SecDotProd (𝑛,𝑙,𝑤)

=
1

2

𝑚𝑛3𝑤− 1
2

𝑚𝑛2𝑤.

We now prove Algorithm 2 to be 𝑡-SNI secure with 𝑛=𝑡+1 shares,
providing resistance against a probing adversary with 𝑡 probes and

allowing us to use the gadget in larger compositions.

Lemma 4.2. The gadget SecMatVec (Algorithm 2) is 𝑡-SNI secure.

Proof.This is a direct result from the SecDotProd gadget being 𝑡-SNI
secure. As each iteration is 𝑡-SNI secure and independent, the whole

loop is 𝑡-SNI too. It is clear that if an adversary can probe 𝑡 times in

total across different iterations or independent outputs, these can

be simulated with no more number of input shares. □

4.3 Masked Quadratic Form Evaluation
The quadratic form evaluation is used in the UOV scheme to com-

pute the vector y= [x𝑇PPP𝑗x] 𝑗∈[𝑚] . Our masked gadget operates on

the Boolean shares (x𝑖) and public matrices {PPP𝑗 } 𝑗∈[𝑚] , and it is

described in Algorithm 3. The computation happens in two steps:

first the masked matrix (TTT𝑖) = (PPP𝑗x𝑖) is computed in a share-wise

manner, using𝑚 public matrices to compute its𝑚 columns. After

which the SecMatVec gadget is used to compute the matrix-vector

multiplication (y𝑖)= (x𝑇𝑖) (TTT𝑖) on two Boolean shared operands.
Computation of TTT= {PPP𝑗 } 𝑗∈[𝑚]x. As the𝑚 matrices {PPP𝑗 } are
public, they can be multiplied in a share-wise manner with the sen-

sitive vector (x𝑖). Each masked multiplication (Line 3) is a column

of matrix (TTT𝑖).

Computation of y = x𝑇TTT. After the full Boolean masked ma-

trix (TTT𝑖) is constructed, it is multiplied with Boolean masked (x𝑖) on
Line 4. Here, we rely on the property (x𝑇TTT)𝑇 =TTT

𝑇 x to calculate the
desired result through the SecMatVec gadget. Also, the masking of

vector (x𝑖) is first refreshed to ensure both inputs of the gadget are
independent (Line 1).

5

Suparna Kundu,Quinten Norga, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, and Ingrid Verbauwhede

Algorithm 3: SecQuad

Data: 1. Public matrices {PPP𝑗 ∈F𝑙×𝑙𝑞 } 𝑗∈[𝑚] .
2. A Boolean sharing (x𝑖) of the vector x∈F𝑙𝑞

Result:A Boolean

sharing (y𝑖) of the vector y= [x𝑇PPP𝑗x] 𝑗∈[𝑚] ∈F𝑚𝑞
1 (s𝑖) :=SecREF((x𝑖))
2 for 𝑗 =1 upto𝑚 do
3 (TTT[:, 𝑗]𝑖)= (PPP𝑗x𝑖) /* TTT𝑖 ∈F𝑙×𝑚𝑞 */

4 (y𝑖) :=SecMatVec((TTT𝑇𝑖),(s𝑖)) /* y𝑇 = (x𝑇TTT)𝑇 = TTT𝑇 x */

5 return (y𝑖)

(x𝑖)

𝐺1

SecREF

𝐺2

Loop

𝐺3

SecMatVec
(y𝑖)

Figure 6: An abstract diagram of SecQuad (Algorithm 3). The
𝑡-NI gadgets are depicted with a single border, the 𝑡-SNI
gadgets with a double border.

4.3.1 Complexity. The run-time and randomness complexity of

SecQuad are:

𝑇SecQuad (𝑙,𝑚,𝑛)=𝑇SecREF (𝑛,𝑙)+𝑚 ·𝑙2 ·𝑛+𝑇SecMatVec (𝑛,𝑙,𝑚)

= (3
2

𝑙𝑛2− 3
2

𝑙𝑛)+(1
2

𝑙2𝑚2𝑛+ 1
2

𝑙2𝑚𝑛)

+(𝑙𝑚𝑛3−𝑙𝑚𝑛2+𝑙𝑚𝑛+ 3
2

𝑚𝑛3− 1
2

𝑚𝑛2−𝑚𝑛),

𝑅SecQuad (𝑙,𝑚,𝑛,𝑤)=𝑅SecREF (𝑛,𝑙,𝑤)+𝑅SecMatVec (𝑛,𝑙,𝑚,𝑤)

= (1
2

𝑙𝑛2𝑤+ 1
2

𝑙𝑛𝑤)+(1
2

𝑚𝑛3𝑤− 1
2

𝑚𝑛2𝑤).

4.3.2 Security. We now argue about the first- and high-order se-

curity of Algorithm 3 by proving it to be 𝑡-SNI secure with 𝑛=𝑡+1
shares. This means it provides resistance against an adversary with

𝑡 probes and allows using the algorithm in larger compositions.

Lemma 4.3. The gadget SecQuad (Algorithm 3) is 𝑡-SNI secure.

Proof. Figure 6 depicts an overview of the construction of Algorithm

3 from its elementary gadgets. Apart from those listed in Table 2, we

model the loop of linear operations in Line 2-3 as a 𝑡-NI gadget𝐺2

(‘Loop’), which we prove first. Subsequently, we prove the security
of the larger composition.

Wefirst argue that a single iteration (Line 3) is 𝑡-NI,which is trivial

as the inputs are processed in a share-wisemanner. Similar as before,

if an attacker can probe across different independent iterations, the 𝑡

intermediate values can be simulatedwith nomore number of shares

of input (x𝑖). As a result, the whole loop is considered to be executed
in parallel and modeled as single 𝑡-NI gadget𝐺2.

We now prove that the combination of all operations (whole gad-

get) are 𝑡-SNI (Lemma 4.3). An adversary can probe each gadget (𝐺𝑖)

internally or at its output. The number of internal and output probes

for each gadget are denoted as 𝑡𝐺𝑖
and 𝑜𝐺𝑖

, respectively. The total

number of probes 𝑡𝐴3
and output shares |𝑂 | of Algorithm 3 are:

𝑡𝐴3
=

3∑︁
𝑖=1

𝑡𝐺𝑖
+

2∑︁
𝑖=1

𝑜𝐺𝑖
, |𝑂 |=𝑜𝐺3

We show that the internal and output probes can be perfectly simu-

latedwith≤ 𝑡𝐴3
input shares. Firstly, to simulate the internal and out-

put probes on gadget𝐺3, only 𝑡𝐺3
shares of both inputs are required.

This is a direct result of the 𝑡-SNI property of𝐺3: the simulation of a

𝑡-SNI gadget can be performed independent of the number of probed

output shares. As a direct result, the propagation of output shares

to the input shares is stopped. The simulation succeeds on a column-

level as 𝐺2 produces𝑚 independent outputs and 𝑡𝐺3
shares of𝑚

independent columns are required Secondly, the simulation of 𝑡𝐺2

internal and𝑜𝐺2
output probes ongadget𝐺2 requires 𝑡𝐺2

+𝑜𝐺2
shares

of its input, as it is 𝑡-NI. Finally, due to the 𝑡-SNIpropertyof gadget𝐺1,

𝑡𝐺1
input shares are required to simulate 𝑡𝐺1

intermediate probes and

𝑜𝐺1
output shares. Finally, we sum up the required shares of the in-

puts for simulation of all gadgets |𝐼 |. As |𝐼 |=𝑡𝐺1
+𝑡𝐺2
+𝑜𝐺2

+𝑡𝐺3
≤ 𝑡𝐴3

and independent from |𝑂 | , Algorithm 3 is 𝑡-SNI. □

4.4 Other Auxiliary Gadgets
4.4.1 FullAdd (Alg. 7). For securely unmasking sensitive values

and making them public, e.g. the signature after signing, we rely on

the FullAdd gadget. Its twomain steps are a strong (free-𝑡-SNI)mask

refreshing and combining all shares. The free-𝑡-SNI notion allows

for the simulation of all outputs of the refresh (𝑦𝑖) with all but one
share of the input (𝑥𝑖), and the unmasked value𝑦 [12]. As a result,

the subsequent unmasking (which involves all shares) can be per-

fectly simulated. In contrast, standard 𝑡-(S)NI refresh would result

in unsound simulation as all shares of its input would be required,

which is not probing secure. It is shown in [12] that the 𝑡-SNI refresh

in [4] also satisfies the free-𝑡-SNI notion. We refer to [12, 13] for the

security proof of its 𝑡-NIo with public output𝑦 notion.

4.4.2 SecRowEch & SecBackSub (Alg. 8 & 9). A method for solv-

ing a masked system of linear equations using (masked) Gaussian

elimination with back substitution was proposed in [29]. We recall

the SecRowEch and SecBackSub gadgets in Appendix B. Their ap-

proach relies on converting a shared matrix (TTT𝑖) to its row-echelon
representation by making leading pivot-elements 1. If the matrix

is invertible, and thus has a unique solution 𝑥 , it can be found by

performing back substitution on the reduced matrix. We refer to the

original work for the complexity and security analysis, including

their 𝑡-NIo security proofs.

4.5 Masked UOV (Compact) Key Generation
The compact key generation of UOV is used to generate the compact

public key 𝑐𝑝𝑘 and compact secret key 𝑐𝑠𝑘 . Our approach consists

of splitting secret key components and derived (ephemeral) secrets

into multiple shares and performing their operations in a masked

fashion. Our masking strategy is formally described in Algorithm

4 and shown in Figure 7.

When masked, the compact secret key 𝑐𝑠𝑘 is defined as (𝑠𝑒𝑒𝑑𝑝𝑘 ,
(𝑠𝑒𝑒𝑑𝑠𝑘,𝑖)1≤𝑖≤𝑛) with the secret-key component seed

sk
returned as

a Boolean sharing. Each share is a randomly sampled binary string of

length sk_seed_len. Both compact secret key components are used

6

mUOV:Masking the Unbalanced Oil and Vinegar Digital Sigital Signature Scheme at First- and Higher-Order

to compute the upper-triangluar matrix PPP
(3)
𝑗

, which is unmasked

after computation and returned as part of the compact public key

𝑐𝑝𝑘 = (𝑠𝑒𝑒𝑑𝑝𝑘 ,
{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

). This procedure is explained below.

Algorithm 4: mCompactKeyGen
Result: Compact public key

and Boolean shared compact secret key (𝑐𝑝𝑘,𝑐𝑠𝑘)
1 seed

pk
←{0,1}pk_seed_len

2 (seed
sk,𝑖)1≤𝑖≤𝑛←{0,1}sk_seed_len

3 (OOO𝑖) :=mExpandsk ((seedsk,𝑖)) /* OOO𝑖 ∈F𝑙×𝑚𝑞 */

4 {PPP(1)
𝑗

,PPP
(2)
𝑗
} 𝑗∈[𝑚] :=ExpandPPP (seedpk) /* PPP

(1)
𝑗
∈F𝑙×𝑙𝑞 */

5 (QQQ𝑖) :=SecREF((OOO𝑖)) /* PPP
(2)
𝑗
∈F𝑙×𝑚𝑞 */

6 for 𝑗 =1 upto𝑚 do
7 (AAA𝑖) := (−PPP(1)𝑗

OOO𝑖) /* A𝑖 ∈F𝑙×𝑚𝑞 */

8 AAA1=AAA1−PPP(2)𝑗

9 for 𝑘 =1 upto𝑚 do
10 (BBB[:,𝑘]𝑖)=SecMatVec((AAA𝑇𝑖),(QQQ[:,𝑘]𝑖))
11 (CCC𝑖) :=Upper(BBB𝑖) /* C𝑖 ∈F𝑚×𝑚𝑞 */

12 PPP
(3)
𝑗

:=FullAdd((CCC𝑖))

13 return (𝑐𝑝𝑘 = (seed
pk
,

{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

)

, 𝑐𝑠𝑘 = (seed
pk
,(seed

sk,𝑖)1≤𝑖≤𝑛))

Generation ofOOO. The shares of the secret matrixOOO are obtained

by expanding the masked seed ((𝑠𝑒𝑒𝑑𝑠𝑘,𝑖)1≤𝑖≤𝑛) using the masked

PRNG mExpand
sk

in Line 3. The masked PRNG is instantiated us-

ing masked shake256(), derived from the Keccak primitive, and

produces Boolean shares (OOO𝑖).
Computation of

{
AAA𝑗

}
𝑗∈[𝑚] =

{
−PPP(1)

𝑗
OOO−PPP(2)

𝑗

}
𝑗∈[𝑚]

. The𝑚

upper-triangular matrices PPP𝑗 consist of three sub-matrices. The first

two {PPP(1)
𝑗

,PPP
(2)
𝑗
} 𝑗∈[𝑚] can be computed in the clear (Line 4), and are

used to compute the third

{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

. The first step is to compute

𝑚 matrices

{
AAA𝑗

}
𝑗∈[𝑚] in a masked fashion (Line 7). During each of

the𝑚 iterations, only share-wise (linear) matrix multiplication and

subtraction are required. The public matrix PPP
(1)
𝑗

is multiplied with

each share of secret matrix (OOO𝑖). As sub-matrix PPP
(2)
𝑗

is also public,

it is only subtracted from one (first) share of eachAAA𝑗 (Line 8).

Computation of
{
BBB𝑗

}
𝑗∈[𝑚] =

{
OOO𝑇AAA𝑗

}
𝑗∈[𝑚] . The second step

is to compute𝑚 matrices

{
BBB𝑗

}
𝑗∈[𝑚] in a masked fashion, which

requires multiplying two masked matrices. Each of the resulting𝑚

sub-matrices is computed in a column-wise fashion, using our pro-

posed SecMatVec gadget. This gadget securely multiplies a shared

matrix (AAA𝑇𝑖) with a shared vector (QQQ[:,𝑘]𝑖) in Line 10, which is col-
umn 𝑘 of a masked matrixQQQ. The matrixQQQ is a full mask refreshing

of secret matrixOOO.We refresh one of the inputs, to ensure both input

sharings of the SecMatVec gadget are independent.

Recombining the shares of
{
PPP(3)
𝑗

}
𝑗∈[𝑚]

. The Upper function is

applied share by share, on each of𝑚matrices

{
BBB𝑗

}
in Line 11. Finally,

one can securely recombine the shares of each BBB𝑗 to obtain each

PPP
(3)
𝑗

, using the FullAdd gadget (Line 12). Its details are discussed in

Section 4.4 and its security in a larger composition is explained below.

Figure 7: Graphical representation of mCompactKeyGen().
Here, red representsmasked variables and components, and
blue represents unmasked operations and variables. The
components introduced or modified due to masking are in
dark red color.

4.5.1 Complexity. The run-time and randomness complexity of

mCompactKeyGen are:

𝑇mCompactKeyGen (𝑙,𝑚,𝑛)=1+𝑛+𝑇mExpandsk (𝑙,𝑚,𝑛)+𝑇Expand𝑝𝑝𝑝 (𝑙,𝑚,𝑛)

+𝑇SecREF (𝑙,𝑚,𝑛)+𝑚 · ((𝑙2𝑚𝑛)+(𝑙𝑚)
+(𝑚 ·𝑇SecMatVec (𝑙,𝑚,𝑛))+(𝑛 ·𝑇Upper (𝑚,𝑛))
+𝑚2 ·𝑇FullAdd (𝑛))
=1+𝑛+𝑇mExpandsk (𝑙,𝑚,𝑛)+𝑇mExpandpk (𝑙,𝑚,𝑛)

+(3
2

𝑙𝑚𝑛2− 3
2

𝑙𝑚𝑛)+(𝑙2𝑚2𝑛)+(𝑙𝑚2)+(𝑙𝑚3𝑛3

−𝑙𝑚3𝑛2+𝑙𝑚3𝑛+ 3
2

𝑚3𝑛3− 1
2

𝑚3𝑛2−𝑚3𝑛)

+(𝑚𝑛 ·𝑇Upper (𝑚,𝑛))+(3
2

𝑚3𝑛2− 3
2

𝑚3𝑛+𝑚3𝑛

−𝑚3),

𝑅mCompactKeyGen (𝑙,𝑚,𝑛,𝑤)=𝑅mExpandsk (𝑙,𝑚,𝑛,𝑤)+𝑅SecREF (𝑙,𝑚,𝑛,𝑤)
+𝑚 · ((𝑚 ·𝑅SecMatVec (𝑙,𝑚,𝑛,𝑤))
+(𝑚2 ·𝑅FullAdd (𝑛,𝑤)))

=𝑅mExpandsk (𝑙,𝑚,𝑛,𝑤)+(1
2

𝑙𝑚𝑛2𝑤

− 1
2

𝑙𝑚𝑛𝑤)+(1
2

𝑚3𝑛3𝑤− 1
2

𝑚3𝑛2𝑤)

+(1
2

𝑚3𝑛2𝑤− 1
2

𝑚3𝑛𝑤).

4.5.2 Security. To argue about the first- and high-order security
of Algorithm 4, we prove it to be 𝑡-NIo secure with 𝑛= 𝑡 +1 shares
and public output

{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

, providing resistance against a prob-

ing adversary with 𝑡 probes. The proof requires us to show how

probes on intermediate and output variables in the algorithm can

be perfectly simulated with only a limited set of input shares.

Lemma 4.4. The gadget mCompactKeyGen (Algorithm 4) is 𝑡-NIo

secure with public output
{
PPP(3)
𝑗

}
𝑗∈[𝑚]

.

7

Suparna Kundu,Quinten Norga, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, and Ingrid Verbauwhede

(OOO𝑖)

𝐺1

SecREF

𝐺2

Linear (ln. 7+8)

𝐺3

SecMatVec
𝐺4

Upper
𝐺5

FullAdd
PPP
(3)
𝑗

Figure 8: An abstract diagram of an iteration 𝑗 in
mCompactKeyGen (Alg. 4). The 𝑡-NI gadgets are depicted
with a single border, the 𝑡-SNI gadgets with a double border.

Proof.We model a single iteration 𝑗 of Algorithm 4 as a sequence

of 𝑡-(S)NI gadgets, which is visually shown in Figure 8. In addition

to the gadgets listed in Table 2, we model the linear operations in

Line 7-8 and Line 11 as 𝑡-NI gadgets𝐺2 and𝐺4, respectively. This

can be trivially shown as the operations are share-wise. Note that

the algorithm is independent of the specific masked implementation

used for mExpandsk, which produces a uniformly masked matrixOOO.

We also consider the iterations of the loop in Line 9-10 to be inde-

pendent and executed in parallel, each generating one of𝑚 columns.

This means the probes are defined on a column level here (and not

variable level) to ensure successful simulation. We summarize the

inner loop into a single gadget𝐺3.

We complete the full proof in two steps: we first prove the com-

position of gadgets 𝐺1 - 𝐺4 to be 𝑡-SNI. Finally, we prove the full

Algorithm 4 to be 𝑡-NIo, thanks to the final gadget𝐺5 (FullAdd).
Part I : As shown in Figure 8, an adversary can place a number of

probes at the output (𝑜𝐺𝑖
) and internally (𝑡𝐺𝑖

) in each gadget𝐺𝑖 . The

number of probes of gadget𝐺1-𝐺4 of Algorithm 4 are defined as 𝑡𝐴4

and output shares |𝑂 | with

𝑡𝐴4
=

4∑︁
𝑖=1

𝑡𝐺𝑖
+

3∑︁
𝑖=1

𝑜𝐺𝑖
, |𝑂 |=𝑜𝐺4

We now prove Part 𝐼 of Lemma 4.4 by showing that the internal

and output probes can be perfectly simulated with ≤ 𝑡𝐴4
of the in-

put shares (OOO𝑖), and is independent of |𝑂 |. To simulate the internal

probes and output shares of gadgets𝐺3 and𝐺4, we require 𝑡𝐺3
shares

of both inputs of𝐺3. This is because the 𝑡-SNI gadget𝐺3 stops the

propagation of probes at its output (e.g.𝐺4) to the input shares. Fol-

lowing the flow through gadgets𝐺2 and𝐺1, the simulation of𝐺1 -𝐺4

of Algorithm 4 requires |𝐼 |=𝑡𝐺1
+𝑡𝐺2
+𝑜𝐺2

+𝑡𝐺3
of the input shares

(OOO𝑖). Note that without 𝑡-SNI refresh𝐺1, the simulation would re-

quire at least 2·𝑡𝐺3
shares of the input and hencewould not be sound.

As |𝐼 | ≤ 𝑡𝐴4
(no duplicate entries) and independent of 𝑜𝐺4

, the first

part of Algorithm 4 is 𝑡-SNI.

Part II : Gadget 𝐺5 satisfies the 𝑡-NI property if the simulator has

access to the public value PPP
(3)
𝑗

, which is also the output of the full

algorithm. As the composition of𝐺1-𝐺4 is 𝑡-SNI and𝐺5 is 𝑡-NI, its

composition and iteration 𝑗 of the mCompactKeyGen algorithm is

𝑡-NIo with public output PPP
(3)
𝑗

.

Finally, as each iteration 𝑗 is independent and can be executed in

parallel, we can summarize the gadgets in each iteration as a single

gadget across all iterations. As a result, the entire Alg. 4 is 𝑡-NIo with

public output

{
PPP
(3)
𝑗

}
𝑗∈[𝑚]

. □

4.6 Masked UOV Secret Key Expansion
Thesecretkeyexpansion inUOVderives theexpandedsecretkey𝑒𝑠𝑘 ,

as used during signing, from the compact secret key 𝑐𝑠𝑘 . We propose

ourmaskingapproach inAlgorithm5, andshowagraphical represen-

tation in Figure 9. Our strategy consists of using the shared compact

secret key to generate the shared expanded key in a masked fashion.

Again, the sensitive part of the secret key 𝑐𝑠𝑘 is the Boolean

masked (𝑠𝑒𝑒𝑑𝑠𝑘,𝑖)1≤𝑖≤𝑛 . Together with the public 𝑠𝑒𝑒𝑑𝑝𝑘 , they are
used to compute the masked expanded secret key components: ma-

trix (OOO𝑖) and matrices {(SSS𝑗,𝑖)1≤𝑖≤𝑛} 𝑗∈[𝑚] .

Algorithm 5: mExpandSK
Data: Boolean shared

compact secret key 𝑐𝑠𝑘 = (seed
pk
,(seed

sk,𝑖)1≤𝑖≤𝑛)
Result: Boolean shared expanded secret key 𝑒𝑠𝑘

1 (OOO𝑖) :=mExpandsk ((seedsk,𝑖))
2 {PPP(1)

𝑗
,PPP
(2)
𝑗
} 𝑗∈[𝑚] :=ExpandPPP (seedpk)

3 for 𝑗 =1 upto𝑚 do
4 (SSS𝑗,𝑖)1≤𝑖≤𝑛 :=

((
PPP
(1)
𝑗
+PPP(1)𝑇

𝑗

)
OOO𝑖

)
/* SSS𝑗,𝑖 ∈F𝑙×𝑚𝑞 */

5 SSS𝑗,1=SSS𝑗,1+PPP(2)𝑗

6 return 𝑒𝑠𝑘 = ((seed
sk,𝑖),(OOO𝑖),{PPP(1)𝑗

,(SSS𝑗,𝑖)1≤𝑖≤𝑛} 𝑗∈[𝑚])

Generation ofOOO and {PPP(1)
𝑗

,PPP(2)
𝑗
} 𝑗∈[𝑚] . We refer to Section 4.5,

as this procedure (Line 1 - 2) is identical in mCompactKeyGen.

Computationof
{
SSS𝑗

}
𝑗∈[𝑚] =

{(
PPP(1)
𝑗
+PPP(1)𝑇

𝑗

)
OOO+PPP(2)

𝑗

}
𝑗∈[𝑚]

. The

sequence of matrices

{
SSS𝑗

}
𝑗∈[𝑚] is computed in a masked fashion,

by performing share-wise matrix multiplication and addition. Both

{PPP(1)
𝑗

,PPP
(2)
𝑗
} 𝑗∈[𝑚] are public values: the sumofPPP

(1)
𝑗

and its transpose

is first multiplied with each share of matrix (OOO𝑖) (Line 4). Subse-
quently,PPP

(2)
𝑗

is added to the first share, to obtain the final𝑚matrices

{(SSS𝑗,𝑖)1≤𝑖≤𝑛} 𝑗∈[𝑚] (Line 5).

Figure 9: Graphical representation of mExpandSK(). Here, red
representsmasked variables and components, and blue rep-
resents unmasked operations and variables. The components
introduced ormodified due tomasking are in dark red color.

8

mUOV:Masking the Unbalanced Oil and Vinegar Digital Sigital Signature Scheme at First- and Higher-Order

4.6.1 Complexity. The run-time and randomness complexity of

mExpandSK are:

𝑇mExpandSK (𝑙,𝑚,𝑛)=𝑇mExpandsk (𝑙,𝑚,𝑛)+𝑇Expand𝑃𝑃𝑃 (𝑙,𝑚,𝑛)
+𝑚 · ((𝑙2𝑛+𝑙2𝑚𝑛)+(𝑙𝑚))
=𝑇mExpandsk (𝑙,𝑚,𝑛)+𝑇mExpandpk (𝑙,𝑚,𝑛)
+(𝑙2𝑚𝑛+𝑙2𝑚2𝑛+𝑙𝑚2),

𝑅mExpandSK (𝑙,𝑚,𝑛,𝑤)=𝑅mExpandsk (𝑙,𝑚,𝑛).

4.6.2 Security. To argue about the first- and high-order security
of Algorithm 5, we prove it to be 𝑡-NI secure with 𝑛 = 𝑡 +1 shares,
providing resistance against a probing adversary with 𝑡 probes.

Lemma 4.5. The gadget mExpandSK (Algorithm 5) is 𝑡-NI secure.

Proof. This is a direct result that the operations in a single iteration
(multiplication and addition) are linear and performed share-wise

(𝑡-NI). If an attacker places 𝑡 probes across different (independent)

iterations, the intermediate values can be simulated with no more

number of shares of the input (OOO𝑖). □

4.7 Masked UOV Signature Generation
The UOV signing procedure generates a valid signature 𝜎 of an

incoming message 𝜇 via rejection sampling. As the computation in-

volves the expanded secret key 𝑒𝑠𝑘 , we propose to split all secret key

and ephemeral components into multiple shares. All computations

are performed in a masked manner, as described in Algorithm 6. We

also present a graphical version of our masked signature generation

operation in Figure 10.

Following its expansion (see previous section), the expanded se-

cret key consists of three Boolean shared components: (seed
sk,𝑖),

(OOO𝑖) and {(SSS𝑗,𝑖)1≤𝑖≤𝑛} 𝑗∈[𝑚] . The secret (seedsk,𝑖) is used to derive
the vinegar vector (v𝑖). In combination with the public matrices

{PPP(1)
𝑗
} 𝑗∈[𝑚] , all components are used to securely compute the un-

masked s. Together with a uniformly random string (salt), they form

the signature 𝜎 = (s,salt).
Generation of v. The shares of the secret vinegar vector v are
sampled from a masked PRNG mExpandv in Line 4, based on the

message 𝜇, the masked secret seed (seed
sk,𝑖), a counter and random

salt. It is instantiated with a masked shake256(), producing the

Boolean shared (v𝑖).
ComputationofLLL=v𝑇SSS. Wecompute theBoolean sharedmatrix

(LLL𝑖) in a column-wise fashion in Line 5-6. The𝑚 Boolean sharedma-

trices {(SSS𝑗,𝑖)1≤𝑖≤𝑛} 𝑗∈[𝑚] aremultipliedwith Boolean shared vector

(v𝑖), using the SecMatVec gadget.We rely on the transpose property

LLL
𝑇
= (v𝑇SSS)𝑇 =SSS

𝑇 v.
Computation of y= [v𝑇PPP(1)

𝑗
v] 𝑗∈[𝑚] . We propose to compute

the Boolean masked vector (y𝑖) using the previously introduced

gadget SecQuad (Line 7). Th publicmatricesPPP
(1)
𝑗
] 𝑗∈[𝑚] are firstmul-

tiplied with the Boolean shared vector (v𝑖) and then again with its
transpose to obtain (y𝑖).
SolvingLLLx= t−y. The system of linear equations is solved using

masked Gaussian elimination, using the techniques introduced in

[29]. The Boolean shared matrix (LLL𝑖) is first converted to its row-
echelon form (SecRowEch, Line 9). Finally, if the resulting (extended)
matrix (TTT𝑖) has a non-zero pivot element in each row, the system

is back substituted and the public result x is obtained (SecBackSub,

Algorithm 6: mSign
Data: 1. Boolean shared expanded secret key

𝑒𝑠𝑘 = ((seed
sk,𝑖),(OOO𝑖),{PPP(1)𝑗

,(SSS𝑗,𝑖)1≤𝑖≤𝑛} 𝑗∈[𝑚])
2. Message 𝜇

Result: Signature 𝜎

1 salt←{0,1}salt_len
2 t :=Hash(𝜇 | |salt)
3 for 𝑐𝑡𝑟 =0 upto 255 do
4 (v𝑖) :=mExpandv (𝜇 | |salt| | (seedsk,𝑖) | |ctr) /* v𝑖 ∈F𝑙𝑞 */

5 for 𝑗 =1 upto𝑚 do /* LLL𝑇 = (v𝑇SSS)𝑇 = SSS𝑇 v */

6 (LLL[:, 𝑗]𝑖)=SecMatVec((SSS𝑇𝑗,𝑖)1≤𝑖≤𝑛,(v𝑖))

7 (y𝑖) :=SecQuad({PPP(1)𝑗
} 𝑗∈[𝑚] ,(v𝑖)) /* y𝑖 ∈F𝑚𝑞 */

8 y1=y1+t
9 (TTT𝑖) :=SecRowEch((LLL𝑖),(y𝑖)) /* TTT𝑖 ∈F𝑚×(𝑚+1)𝑞 */

10 if (TTT𝑖)≠⊥ then
11 x :=SecBackSub((TTT𝑖) /* x∈F𝑚𝑞 */

12 (u𝑖) := (v𝑖+OOO𝑖x)
13 w :=FullAdd((u𝑖)) /* w∈F𝑙𝑞 */

14 s :=
[
w
x

]
15 return 𝜎 = (s,salt)

16 return⊥

Line 11). We securely unmask and make the output public, as it is

a part of the public signature s (Line 15).
Computation and unmasking of w. The second part of the

signature,w, is computed in a share-wise fashion: each share of (v𝑖)
is added to the product of the public vector x and Boolean shared

matrix (OOO𝑖) in Line 12. Finally, the resulting shares are securely com-

bined (FullAdd, Line 13) and the vectorw is made public as part of

the signature s.

Figure 10: Graphical representation of mSign(). Here, red
representsmasked variables and components, and blue rep-
resents unmasked operations and variables. The components
introduced ormodified due tomasking are in dark red color.

4.7.1 Complexity. The full randomness complexity computation

is included in Appendix C.

9

Suparna Kundu,Quinten Norga, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, and Ingrid Verbauwhede

(v𝑖)

{(SSS𝑇𝑗,𝑖)} 𝑗∈[𝑚]

(OOO𝑖)

𝐺1

SecMatVec

𝐺2

SecQuad
𝐺3

+

𝐺4

SecRowEch
𝐺6

SecBackSub

𝐺5

+ and *
𝐺7

FullAdd

c

x

w

Figure 11: An abstract diagram of an iteration ctr in mSign
(Alg. 6). The 𝑡-NI gadgets are depicted with a single border,
the 𝑡-SNI gadgets with a double border.

4.7.2 Security. We now discuss the first- and high-order security

of Algorithm 6 and prove it to be 𝑡-NIo secure with 𝑛= 𝑡+1 shares
and public outputs s and c. The signature s is public, while c is made

public by gadget SecRowEch and indicates if all pivot-elements are

non-zero. As a result, our masked algorithm provides resistance

against a probing adversary with 𝑡 probes.

Lemma 4.6. The gadget mSign (Algorithm 6) is 𝑡-NIo secure with
public outputs s (w,x) and c.

Proof.Wemodel a single iteration of Algorithm 6 as a composition of

𝑡-(S)NI gadgets, which is visually shown in Figure 11. Apart from the

gadgets listed in Table 2, wemodel the share-wise operations in Line

8 and 12 as 𝑡-NI gadgets𝐺3 and𝐺5, respectively. It is trivial to show

that linear operations are 𝑡-NI. We also model all iterations in the

inner loop (Line 5-6) as a single 𝑡-SNI gadget𝐺1. As the iterations are

independent and we define probes on a column level, simulation is

successful. Each iteration produces one of𝑚 independent columns of

(TTT𝑖) and is assumed to be executed in parallel. We note that the algo-

rithm and its security proof are independent of the specific masked

implementation used for the PRNG mExpandv. An adversary can

probe any intermediate values in any gadget (𝑡𝐺𝑖
) and their output

shares 𝑜𝐺𝑖
. The total number of probes in Algorithm 6 is

𝑡𝐴6
=

7∑︁
𝑖=1

𝑡𝐺𝑖
+

5∑︁
𝑖=1

𝑜𝐺𝑖

We now show that all probes in a single iteration of mSign can be
simulated with no more number of shares of its inputs (|𝐼 |): |𝐼 | ≤ 𝑡𝐴6

if the simulator has access to x,w and c. The simulation of 𝑡𝐺6
and

𝑡𝐺7
intermediate probes requires an equal amount of shares of the

outputs of𝐺4 and𝐺5, respectively. This is due to the 𝑡-NI property of

both gadgets. Similarly, the simulation of 𝑡𝐺4
+𝑜𝐺4

probes requires

𝑡𝐺4
+𝑜𝐺4

shares of both the output of𝐺3 and𝐺1, and giving the simu-

lator access to c. The simulation of 𝑡𝐺5
+𝑜𝐺5

probes requires the same

amount of shares of inputs (v𝑖) and (OOO𝑖). Due the 𝑡-SNI property
of𝐺1 and𝐺2, the simulation of probed intermediate values and out-

put shares only requires 𝑡𝐺1
and 𝑡𝐺2

shares of inputs {(SSS𝑇𝑗,𝑖)} 𝑗∈[𝑚]
and/or (v𝑖), respectively. We now follow the flow from the output

to the input and sum all required shares of the input for simulation

of Algorithm 6: |𝐼 | = 𝑡𝐺1
+𝑡𝐺2
+𝑡𝐺5
+𝑜𝐺5

+𝑡𝐺7
≤ 𝑡𝐴6

. As a result, the

iteration is 𝑡-NI secure with public outputs s and c.
Finally, we note that the signing procedure only requires multi-

ple iterations if the system of linear equations is unsolvable and no

unique solution x can be found. In that case, all masked computa-

tions are performed again using a new vinegar vector (v𝑖) and thus
are different from the previous iteration. As different iterations are

independent, the entire outer loop (Line 3-15) is also 𝑡-NI securewith

public outputs s and c. □

5 IMPLEMENTATIONRESULTS
This section presents the implementation results of masked UOV

algorithms for first-order. We implemented our masked key gener-

ation and signature generation algorithm for ARMCortex-M4 using

the popular PQM4 [22, 23] framework. We have used the NUCLEO-

L4R5ZI board and arm-none-eabi-gcc compiler with version 10.3.1.

We have used on-chip TRNG to generate random bytes. Therefore,

our performance results include random bytes generation, too.

Due to the memory constraints of the NUCLEO-L4R5ZI board

(640 KB RAM), we are restricted to NIST security level 1 parame-

ters, i.e., UOV-Ip. To run our masked implementations along with

benchmarking code, we choose the pkc variant of UOV-Ip. In the pkc

variant, CompactKenGen and ExpandSk are combined in key gener-

ation. We have adopted the masked implementation of shake256
from [6] for the PRNG in mExpand𝑠𝑘 and mExpand𝑣𝑣𝑣 .

We present the performance results and memory consumption

of our masked implementation of UOV-Ip with the unmasked imple-

mentation of UOV-Ip [23] in Table 3. Here, we report averages of 10

measurements of all the algorithms. Our first-order masked key gen-

eration and signature generation implementations use 1,055,464 and

25,587 (1000×)cycles, introducing 2.7× and 3.5× overhead over the
unmasked implementation, respectively. Additionally, our masked

implementation utilizes 5,796 and 10,160 bytes of stack memory for

the key generation and signature generation algorithm, introducing

1.3× and 1.9× overhead over the unmasked implementation.

6 CONCLUSIONS
Themultivariate digital signatureUOV is susceptible to side-channel

attacks. We thoroughly analyze the sensitivity of all variables and

functions, which could lead to such physical attacks. As a counter-

measure,we propose arbitrary-ordermasked key generation and sig-

nature generation algorithms of UOV. Finally, we implemented our

first-order masking algorithms for UOV-Ip on the ARMCortex-M4

microcontroller. Our first-ordermasked UOV implementations have

2.7× and 3.6× performance overhead compared to the unmasked

scheme for key generation and signature generation algorithms.

Finally, we would like to note that our approach is not limited to the

UOV scheme but can be extended to other UOV-based multivariate

schemes, such as Mayo, QR-UOV, SNOVA, andMQ-Sign.

Acknowledgements. This work was partially supported by Hori-
zon 2020 ERC Advanced Grant (101020005 Belfort), Horizon Europe

(101070008 ORSHIN), CyberSecurity Research Flanders with refer-

ence number VOEWICS02, BE QCI: Belgian-QCI (3E230370) (see

beqci.eu), and Intel Corporation. A.G. thanks to TCS research fel-

lowship.

REFERENCES
[1] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene

Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. 2022.

Status Report on the Third Round of the NIST Post-Quantum Cryptog-

raphy Standardization Process. Online. Accessed 26th January, 2024.

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

[2] Thomas Aulbach, Fabio Campos, Juliane Krämer, Simona Samardjiska, and Marc

Stöttinger. 2023. Separating Oil and Vinegar with a Single Trace Side-Channel

10

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

mUOV:Masking the Unbalanced Oil and Vinegar Digital Sigital Signature Scheme at First- and Higher-Order

Table 3: Comparing the performance andmemory consumption ofmasked implementations of UOV-Ip with the unmasked ones

Key-generation SignScheme: UOV-Ip unmasked masked unmasked masked
Speed (1000× cycles) 390,347 1,055,464 (2.7×) 7,127 25,587 (3.6×)
Memory (bytes) 4,484 5,796 (1.3×) 5,232 10,160 (1.9×)

Assisted Kipnis-Shamir Attack on UOV. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2023, 3 (2023), 221–245. https://doi.org/10.46586/TCHES.V2023.I3.221-245

[3] Thomas Aulbach, Fabio Campos, and Juliane Krämer. 2024. SoK: On the Physical

Security of UOV-based Signature Schemes. Cryptology ePrint Archive, Paper

2024/1818. https://eprint.iacr.org/2024/1818

[4] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin

Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. 2016. StrongNon-Interference

and Type-Directed Higher-Order Masking. InACMCCS 2016, Edgar R. Weippl,

Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi

(Eds.). ACM Press, 116–129. https://doi.org/10.1145/2976749.2978427

[5] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Gré-

goire,Mélissa Rossi, andMehdi Tibouchi. 2018. Masking theGLP lattice-based sig-

nature scheme at any order. InAdvances in Cryptology–EUROCRYPT 2018: 37th An-
nual International Conference on the Theory andApplications of Cryptographic Tech-
niques,TelAviv, Israel,April 29-May3, 2018Proceedings,Part II 37. Springer, 354–384.

[6] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar,

Josep Balasch, and Ingrid Verbauwhede. 2020. A Side-Channel Resistant

Implementation of SABER. Cryptology ePrint Archive, Paper 2020/733.

https://doi.org/10.1145/3429983

[7] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost

Rijneveld, andPeter Schwabe. 2019. The SPHINCS
+
Signature Framework. InACM

CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan

Katz (Eds.). ACM Press, 2129–2146. https://doi.org/10.1145/3319535.3363229

[8] Ward Beullens, Fabio Campos, Sofia Celi, Basil Hess, andMatthias J. Kannwischer.

2023. MAYO Specification Document. https://csrc.nist.gov/csrc/media/Projects/

pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf

[9] Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias J. Kannwis-

cher, JacquesPatarin, Bo-YuanPeng,Dieter Schmidt,Cheng-Jhih Shih,Chengdong

Tao, and Bo-Yin Yang. 2023. UOV: Unbalanced Oil and Vinegar Algorithm Spec-

ifications and Supporting Documentation Version 1.0. https://csrc.nist.gov/csrc/

media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf

[10] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999.

Towards Sound Approaches to Counteract Power-Analysis Attacks. In Advances
in Cryptology — CRYPTO’ 99, Michael Wiener (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 398–412.

[11] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. 2014.

Secure conversion between boolean and arithmetic masking of any order. In

International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 188–205.

[12] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.

2022. High-order Polynomial Comparison and Masking Lattice-based En-

cryption. IACR Trans. Cryptogr. Hardw. Embed. Syst. (11 2022), 153–192.

https://doi.org/10.46586/tches.v2023.i1.153-192

[13] Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun.

2023. Improved Gadgets for the High-Order Masking of Dilithium.

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023, 4 (Aug. 2023), 110––145.

https://doi.org/10.46586/tches.v2023.i4.110-145

[14] Jean-Sébastien Coron and Lorenzo Spignoli. 2021. SecureWire Shuffling in the

Probing Model. In Advances in Cryptology – CRYPTO 2021, Tal Malkin and Chris

Peikert (Eds.). Springer International Publishing, Cham, 215–244.

[15] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor

Seiler, and Damien Stehle. 2017. CRYSTALS – Dilithium: Digital Signa-

tures from Module Lattices. Cryptology ePrint Archive, Paper 2017/633.

https://eprint.iacr.org/2017/633 https://eprint.iacr.org/2017/633.

[16] Sebastian Faust, Vincent Grosso, Santos Pozo, Clara Paglialonga, and François-

Xavier Standaert. 2018. ComposableMasking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. IACR Trans. Cryptogr. Hardw. Embed. Syst.
(08 2018), 89–120. https://doi.org/10.46586/tches.v2018.i3.89-120

[17] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,

Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, WilliamWhyte,

and Zhenfei Zhang. 2020. Falcon: Fast-Fourier Lattice-based Compact Signatures

over NTRU. https://falcon-sign.info/falcon.pdf.

[18] Hiroki Furue, Yasuhiko Ikematsu, Fumitaka Hoshino, Tsuyoshi Takagi, Kan

Yasuda, Toshiyuki Miyazawa, Tsunekazu Saito, and Akira Nagai. 2023. QR-UOV

Specification Document. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-

sig/documents/round-1/spec-files/qruov-spec-web.pdf

[19] Hannes Gross, Rinat Iusupov, and Roderick Bloem. 2018. Generic Low-Latency

Masking in Hardware. IACR Transactions on Cryptographic Hardware and
Embedded Systems (05 2018), 1–21. https://doi.org/10.46586/tches.v2018.i2.1-21

[20] Hannes Gross, Stefan Mangard, and Thomas Korak. 2016. Domain-Oriented

Masking: CompactMaskedHardware Implementationswith Arbitrary Protection

Order. In Proceedings of the 2016 ACM Workshop on Theory of Implementation
Security (Vienna, Austria) (TIS ’16). Association for Computing Machinery, New

York, NY, USA, 3. https://doi.org/10.1145/2996366.2996426

[21] Yuval Ishai, Amit Sahai, and David Wagner. 2003. Private circuits: Securing

hardware against probing attacks. In Advances in Cryptology-CRYPTO 2003:
23rd Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003. Proceedings 23. Springer, 463–481.

[22] Matthias J. Kannwischer, Markus Krausz, Richard Petri, and Shang-Yi Yang.

2024. pqm4: Benchmarking NIST Additional Post-Quantum Signature

Schemes on Microcontrollers. Cryptology ePrint Archive, Paper 2024/112.

https://eprint.iacr.org/2024/112

[23] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffe-

len. [n. d.]. PQM4: Post-quantum crypto library for the ARM Cortex-M4.

https://github.com/mupq/pqm4.

[24] Aviad Kipnis, Jacques Patarin, and Louis Goubin. 1999. Unbalanced Oil and

Vinegar Signature Schemes. InAdvances in Cryptology— EUROCRYPT ’99, Jacques
Stern (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 206–222.

[25] NIST. 2023. NIST Announces Additional Digital Signature Candidates for

the PQC Standardization Process. Online. Accessed 10th November, 2024.

https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates

[26] NIST. 2024. FIPS 204 Module-Lattice-Based Digital Signature Standard. Online.

Accessed 10th November, 2024. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.

FIPS.204.pdf

[27] NIST. 2024. FIPS 205 Stateless Hash-Based Digital Signature Standard. Online.

Accessed 10th November, 2024. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.

FIPS.205.pdf

[28] NIST. 2024. PQC digital signature second round announcement. Online. Accessed

10th November, 2024. https://csrc.nist.gov/News/2024/pqc-digital-signature-

second-round-announcement

[29] Quinten Norga, Suparna Kundu, Uttam Kumar Ojha, Anindya Ganguly, Angshu-

man Karmakar, and Ingrid Verbauwhede. 2024. Masking Gaussian Elimination

at Arbitrary Order, with Application to Multivariate- and Code-Based PQC.

Cryptology ePrint Archive, Paper 2024/1777. https://eprint.iacr.org/2024/1777

[30] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. 2018. Side-

channel attacks on post-quantum signature schemes based on multivariate

quadratic equations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 3 (Aug.
2018), 500–523. https://doi.org/10.13154/tches.v2018.i3.500-523

[31] Pierre Pébereau. 2023. One vector to rule them all: Key recovery from

one vector in UOV schemes. Cryptology ePrint Archive, Paper 2023/1131.

https://eprint.iacr.org/2023/1131

[32] Quantum-Resistant Cryptography Research Group. 2024. KpqC Competition

Round 2. https://www.kpqc.or.kr/competition_02.html Accessed: 2024-10-30.

[33] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. 2019.

Efficiently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based

Crypto. In Public-Key Cryptography – PKC 2019: 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Beijing, China,
April 14-17, 2019, Proceedings, Part II (Beijing, China). Springer-Verlag, Berlin,
Heidelberg, 534–564. https://doi.org/10.1007/978-3-030-17259-6{_}18

[34] Kyung-Ah Shim, Jeongsu Kim, and Youngjoo An. 2023. MQ-Sign: A New

Post-Quantum Signature Scheme based on Multivariate Quadratic Equations:

Shorter and Faster. https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf

[35] Lih-Chung Wang, Chun-Yen Chou, Jintai Ding, Yen-Liang Kuan, Ming-Siou

Li, Bo-Shu Tseng, Po-En Tseng, and Chia-Chun Wang. 2023. SNOVA Spec-

ification Document. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-

sig/documents/round-1/spec-files/SNOVA-spec-web.pdf

[36] Haibo Yi and Zhe Nie. 2018. Side-channel security analysis of UOV signature

for cloud-based Internet of Things. Future Gener. Comput. Syst. 86 (2018), 704–708.
https://doi.org/10.1016/J.FUTURE.2018.04.083

11

https://doi.org/10.46586/TCHES.V2023.I3.221-245
https://eprint.iacr.org/2024/1818
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/3429983
https://doi.org/10.1145/3319535.3363229
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://doi.org/10.46586/tches.v2023.i1.153-192
https://doi.org/10.46586/tches.v2023.i4.110-145
https://eprint.iacr.org/2017/633
https://eprint.iacr.org/2017/633
https://doi.org/10.46586/tches.v2018.i3.89-120
https://falcon-sign.info/falcon.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://doi.org/10.46586/tches.v2018.i2.1-21
https://doi.org/10.1145/2996366.2996426
https://eprint.iacr.org/2024/112
https://github.com/mupq/pqm4
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf
https://csrc.nist.gov/News/2024/pqc-digital-signature-second-round-announcement
https://csrc.nist.gov/News/2024/pqc-digital-signature-second-round-announcement
https://eprint.iacr.org/2024/1777
https://doi.org/10.13154/tches.v2018.i3.500-523
https://eprint.iacr.org/2023/1131
https://www.kpqc.or.kr/competition_02.html
https://doi.org/10.1007/978-3-030-17259-6{_}18
https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf
https://doi.org/10.1016/J.FUTURE.2018.04.083

Suparna Kundu,Quinten Norga, Uttam Kumar Ojha, Anindya Ganguly, Angshuman Karmakar, and Ingrid Verbauwhede

APPENDICES
A Proof Lemma 4.1
The security proof follows from the potential observations that a

probing adversary can make. We note that probes are defined on

the coefficient-level: the output of the gadget is a coefficient and the

inputs are vectors, consisting of 𝑙 independent coefficients. We now

show that all potential observations can be perfectly simulated using

a limited amount of shares of each of the 𝑙 (independent) inputs.

Let Ω= (I, O) be a set of 𝑡 observations made by an adversary on

the internal and output values, respectively, where |I | = 𝑡𝐴1
, such

that 𝑡𝐴1
+|O| ≤ 𝑡 . We construct a perfect simulator of the adversary’s

probes, which makes use of at most 𝑡𝐴1
shares of the secret input

coefficients x[𝑘] and y[𝑘] (1≤𝑘 ≤ 𝑙).
Let𝑤1,...,𝑤𝑡 be the set of probed values. We classify the internal

wires in the following groups:

(1) 𝑥 [𝑘]𝑖 ,𝑦 [𝑘] 𝑗 , 𝑥 [𝑘]𝑖𝑦 [𝑘] 𝑗 at iteration 𝑖, 𝑗,𝑘 ,
(2) 𝑢𝑖 𝑗 ,𝑢𝑖 𝑗 +𝑥 [𝑘]𝑖𝑦 [𝑘] 𝑗 at iteration 𝑖, 𝑗,𝑘 ,
(3) 𝑥 [𝑘] 𝑗 ,𝑦 [𝑘]𝑖 , 𝑥 [𝑘] 𝑗𝑦 [𝑘]𝑖 at iteration 𝑖, 𝑗,𝑘 ,
(4) 𝑢 𝑗𝑖 ,𝑢 𝑗𝑖+𝑥 [𝑘] 𝑗𝑦 [𝑘]𝑖 at iteration 𝑖, 𝑗,𝑘 ,
(5) 𝑥 [𝑘]𝑖 ,𝑦 [𝑘]𝑖 , 𝑥 [𝑘]𝑖𝑦 [𝑘]𝑖 at iteration 𝑖,𝑘 ,
(6) 𝑤𝑖 ,𝑤𝑖+𝑥 [𝑘]𝑖𝑦 [𝑘]𝑖 at iteration 𝑖,𝑘 ,
(7) 𝑢𝑖 𝑗 +𝑟𝑖 𝑗 with 𝑖, 𝑗 =1,...,𝑡+1,

The output variables are the final values of (𝑧𝑖).
We define two arrays of sets of indices 𝐼𝑘 and 𝐽𝑘 (1≤𝑘 ≤ 𝑙) such

that |𝐼𝑘 | ≤ 𝑡𝐴1
and |𝐽𝑘 | ≤ 𝑡𝐴1

and the values of the probes can be per-

fectly simulated given only knowledge of (x[𝑘]𝑖)𝑖∈𝐼𝑘 and (y[𝑘]𝑖)𝑖∈ 𝐽𝑘 .
The sets are constructed as follows.

• Initially all 𝐼𝑘 and 𝐽𝑘 are empty (1≤𝑘 ≤ 𝑙).
• For every probe as in group (1) add 𝑖 to 𝐼𝑘 and 𝑗 to 𝐽𝑘 .

• For every probe as in group (2) and (7) add 𝑖 to 𝐼𝑚 and 𝑗 to

𝐽𝑚 with𝑚=1,...,𝑘 .

• For every probe as in group (3) add 𝑗 to 𝐼𝑘 and 𝑖 to 𝐽𝑘 .

• For every probe as in group (4) add 𝑗 to 𝐼𝑚 and 𝑖 to 𝐽𝑚 with

𝑚=1,...,𝑘 .

• For every probe as in group (5) add 𝑖 to 𝐼𝑘 and 𝐽𝑘 .

• For every probe as in group (6) add 𝑖 to 𝐼𝑚 and 𝐽𝑚 with

𝑚=1,...,𝑘 .

An adversary is allowed to make 𝑡𝐴1
internal probes at most, thus

it holds that |𝐼𝑘 | ≤ 𝑡𝐴1
and |𝐽𝑘 | ≤ 𝑡𝐴1

(1≤𝑘 ≤ 𝑙).
We now construct the simulator with the probed wires denoted

𝑤ℎ with ℎ=1,...,𝑡 and show it is able to simulate any internal wire

𝑤ℎ . For each variable 𝑟𝑖 𝑗 entering in the computation of any probe,

the simulator assigns a random value.

1. For each observation as in group (1) (or (3)), by definition of

𝐼𝑘 and 𝐽𝑘 the simulator has access to 𝑥 [𝑘]𝑖 and 𝑦 [𝑘] 𝑗 (or 𝑥 [𝑘] 𝑗 and
𝑦 [𝑘]𝑖 , respectively) and thus the values are perfectly simulated.

2. For each observation as in group (2) (or (4)), by definition of

{𝐼𝑚}1≤𝑚≤𝑘 and {𝐽𝑚}1≤𝑚≤𝑘 the simulator has access to 𝑥 [𝑚]𝑖 and
𝑦 [𝑚] 𝑗 (or 𝑥 [𝑚] 𝑗 and𝑦 [𝑚]𝑖 , respectively) for𝑚=1,...,𝑘 and thus the

values are perfectly simulated.

3. For each observation as in group (5), by definition of 𝐼𝑘 and 𝐽𝑘
the simulator has access to 𝑥 [𝑘]𝑖 and𝑦 [𝑘]𝑖 and thus the values are
perfectly simulated.

4. For eachobservationas ingroup (6), bydefinitionof {𝐼𝑚}1≤𝑚≤𝑘
and {𝐽𝑚}1≤𝑚≤𝑘 the simulator has access to 𝑥 [𝑚]𝑖 and 𝑦 [𝑚]𝑖 for
𝑚=1,...,𝑘 and thus the values are perfectly simulated.

5. For each observation as in group (7), by definition of {𝐼𝑘 }1≤𝑘≤𝑙
and {𝐽𝑘 }1≤𝑘≤𝑙 thesimulatorhasaccess to𝑥 [𝑘]𝑖 and𝑦 [𝑘] 𝑗 for𝑘 =1,...,𝑙
and we distinguish three cases:

• If 𝑖 = 𝑗 , the simulator assigns 𝑟𝑖𝑖 to 0 and perfectly simulates

the value𝑤ℎ using 𝑥 [𝑘]𝑖 and𝑦 [𝑘]𝑖 for 𝑘 =1,...,𝑙 .
• If 𝑗 ∈ 𝐼 and 𝑖 ∈ 𝐽 , then by definition the adversary has also

probed𝑢 𝑗𝑖 and thus a value containing in its computation

the randomvalue 𝑟𝑖 𝑗 . The simulator then perfectly simulates

𝑤ℎ using 𝑥 [𝑘]𝑖 and 𝑦 [𝑘] 𝑗 for 𝑘 = 1,...,𝑙 and the 𝑟𝑖 𝑗 assigned
previously.

• In all other cases, 𝑟𝑖 𝑗 does not enter in the computation of

any other probe and𝑤ℎ is assigned a fresh random value

and thus perfectly simulated.

We now consider the observations of the output values. We dis-

tinguish two cases:

• If an intermediate sum is also observed, then the previously

probed partial sums are already simulated. By definition

of the gadget, there always exists one random bit 𝑟𝑜𝑝 in

𝑤ℎ which does not appear in the computation of any other

observed element. Thus, the simulator can assign a fresh

random value to𝑤ℎ .

• If no internal values have been probed by an adversary, then

by definition of the gadget, each output share contains 𝑡

random values and atmost one of them can enter in the com-

putation of each other output variable 𝑧𝑖 . An adversary may

have probed 𝑡−1 other values and thus there exists one ran-
domvalue𝑟𝑜𝑝 in𝑤ℎ whichdoesnot enter in the computation

of anyother observed value. The simulator can thus simulate

𝑤ℎ using a fresh random value, completing the proof. □

B Auxiliary Algorithms

Algorithm 7: FullAdd, from [5, 11]

Data:A Boolean sharing (𝑦𝑖)
Result: Unmasked value𝑦 such that𝑦=

𝑛∑
𝑖=1

𝑦𝑖

1 (𝑎𝑖) :=SecREF((𝑦𝑖)) /* free-𝑡-SNI */

2 𝑦 :=𝑎1+···+𝑎𝑛
3 return𝑦

12

mUOV:Masking the Unbalanced Oil and Vinegar Digital Sigital Signature Scheme at First- and Higher-Order

Algorithm 8: SecRowEch, from [29]

Data: 1. A Boolean sharing (AAA𝑖) of matrixAAA∈F𝑚×𝑚𝑞

2. A Boolean sharing (b𝑖) of the vector b∈F𝑚𝑞
Result:Masked conversion to row echelon form or⊥

1 (TTT𝑖) := [AAA𝑖 | b𝑖] /* TTT𝑖 ∈F𝑚×(𝑚+1)𝑞 */

2 for 𝑗 =1 upto𝑚 do
3 ## Try to make pivot (TTT[𝑗, 𝑗]) non-zero

4 for 𝑘 = 𝑗+1 upto𝑚 do
5 (𝑧𝑖) :=SecNonzero((TTT[𝑗, 𝑗]𝑖))
6 (𝑧𝑖)=SecNOT((𝑧𝑖))
7 (TTT[𝑗, 𝑗 :𝑚+1]𝑖)=

SecCondAdd((TTT[𝑗, 𝑗 :𝑚+1]𝑖),(TTT[𝑘,𝑗 :𝑚+1]𝑖),(𝑧𝑖))

8 ## Check if pivot is non-zero

9 (𝑡𝑖) :=SecNonzero((TTT[𝑗, 𝑗]𝑖))
10 c[𝑗] :=FullAdd((𝑡𝑖))
11 if c[𝑗]≠0 then

12 ## Multiply row 𝑗 with the inverse of its pivot

13 (𝑝𝑖) :=B2Minv((TTT[𝑗, 𝑗]𝑖))
14 (TTT[𝑗, 𝑗 :𝑚+1]𝑖)=SecScalarMult((TTT[𝑗, 𝑗 :𝑚+1]𝑖),(𝑝𝑖))
15 ## Subtract scalar

multiple of row 𝑗 from the rows below

16 for 𝑘 = 𝑗+1 upto𝑚 do
17 (𝑠𝑖) :=SecREF((TTT[𝑘,𝑗]𝑖))
18 (TTT[𝑘,𝑗 :𝑚+1]𝑖)=

SecMultSub((TTT[𝑗, 𝑗 :𝑚+1]𝑖),(TTT[𝑘,𝑗 :𝑚+1]𝑖),(𝑠𝑖))

19 else return⊥
20 return (TTT𝑖)

Algorithm 9: SecBackSub, from [29]

Data:A Boolean sharing

(TTT𝑖)= [AAA𝑖 |b𝑖] of matrixAAA∈F𝑚×𝑚𝑞 and vector b∈F𝑚𝑞 .

Result: Unique, public solution x∈F𝑚𝑞 such thatAAAx=b

1 for 𝑗 =𝑚 downto 2 do
2 x[𝑗]=FullAdd((b[𝑗]𝑖))
3 for 𝑘 =1 upto 𝑗−1 do
4 (b[𝑘]𝑖) := (b[𝑘]𝑖+x[𝑗] ·AAA[𝑘,𝑗]𝑖)

5 x[1]=FullAdd((b[1]𝑖))
6 return x

C Complexity Algorithm 6 (mSign())
The run-time and randomness complexity of mSign are:

𝑇mSign (𝑙,𝑚,𝑛)=1+𝑇Hash (𝑚,𝑛)+ctr· (𝑇mExpand𝑣𝑣𝑣 (𝑙,𝑛)
+(𝑚 ·𝑇SecMatVec (𝑙,𝑚,𝑛))+(𝑇SecQuad (𝑙,𝑚,𝑛))
+(𝑚)+(𝑇SecRowEch (𝑚,𝑛))+(𝑇SecBackSub (𝑚,𝑛))
+(𝑙𝑚𝑛+𝑙𝑛)+(𝑙 ·𝑇FullAdd (𝑛)))
=1+𝑇Hash (𝑚,𝑛)+ctr· (𝑇mExpand𝑣𝑣𝑣 (𝑙,𝑛)

+(𝑙𝑚2𝑛3−𝑙𝑚2𝑛2+𝑙𝑚2𝑛+ 3
2

𝑚2𝑛3− 1
2

𝑚2𝑛2

−𝑚2𝑛)+(3
2

𝑙𝑛2− 3
2

𝑙𝑛)+(1
2

𝑙2𝑚2𝑛+ 1
2

𝑙2𝑚𝑛)

+(𝑙𝑚𝑛3−𝑙𝑚𝑛2+𝑙𝑚𝑛+ 3
2

𝑚𝑛3− 1
2

𝑚𝑛2−𝑚𝑛)

+(𝑚)+(𝑚
2−𝑚
2

· (((5𝑛2+2𝑛−1)+⌈log(𝑤+1)⌉·

(5𝑛2−𝑛+2))+1)+ 2𝑚
3+3𝑚2+𝑚

6

· (5𝑛2−3𝑛)+𝑚·

((5𝑛2+2𝑛−1)+⌈log(𝑤+1)⌉ · (5𝑛2−𝑛+2))

+𝑚 · 3𝑛
2−𝑛−2
2

+𝑚+𝑚 · 5𝑛
2−5𝑛+4
2

+𝑚
2+3𝑚
2

· (5𝑛2−3𝑛)+𝑚
2−𝑚
2

·

3𝑛2−3𝑛
2

+ 2𝑚
3+3𝑚2+𝑚

6

· 7𝑛
2−3𝑛
2

)

+(3
2

𝑛2𝑚− 3
2

𝑚𝑛−𝑚+𝑚2𝑛)+(𝑙𝑚𝑛+𝑙𝑛)

+((3
2

𝑙𝑛2− 3
2

𝑙𝑛+𝑙𝑛−𝑙)),

𝑅mSign (𝑙,𝑚,𝑛,𝑤)=ctr· (𝑅mExpand𝑣𝑣𝑣 (𝑙,𝑛,𝑤)+(𝑚 ·𝑅SecMatVec (𝑙,𝑚,𝑛,𝑤))
+(𝑅SecQuad (𝑙,𝑚,𝑛,𝑤))+(𝑅SecRowEch (𝑚,𝑛,𝑤))
+(𝑅SecBackSub (𝑚,𝑛,𝑤))+(𝑙 ·𝑅FullAdd (𝑛,𝑤)))

=ctr· (𝑅mExpand𝑣𝑣𝑣 (𝑙,𝑛,𝑤)+(
1

2

𝑚2𝑛3𝑤− 1
2

𝑚2𝑛2𝑤)

+(1
2

𝑙𝑛2𝑤+ 1
2

𝑙𝑛𝑤)+(1
2

𝑚𝑛3𝑤− 1
2

𝑚𝑛2𝑤)

+(𝑚
2−𝑚
2

· ⌈log(𝑤+1)⌉
2−⌈log(𝑤+1)⌉
2

·

(𝑛2−𝑛)+ 2𝑚
3+3𝑚2+𝑚

6

· (𝑛2−𝑛)𝑤+𝑚·

⌈log(𝑤+1)⌉2−⌈log(𝑤+1)⌉
2

· (𝑛2−𝑛)

+𝑚 · (𝑛
2−𝑛)𝑤
2

+𝑚 · 𝑛
2−𝑛
2

·𝑤+𝑚
2+3𝑚
2

·

(𝑛2−𝑛)𝑤+𝑚
2−𝑚
2

· (𝑛
2−𝑛
2

·𝑤)+ 2𝑚
3+3𝑚2+𝑚

6

·

𝑛2−𝑛
2

·𝑤)+((𝑛
2−𝑛)𝑚𝑤

2

)+(1
2

𝑙𝑛2𝑤− 1
2

𝑙𝑛𝑤)).

13

	Abstract
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	2.1 Notation
	2.2 The UOV digital signature scheme
	2.3 Masking

	3 Sensitivity Analysis
	3.1 Compact Key Generation and Secret Key Expansion
	3.2 Signature Generation

	4 Masking UOV at Arbitrary Order
	4.1 Masked Dot Product
	4.2 Masked Matrix-Vector Multiplication
	4.3 Masked Quadratic Form Evaluation
	4.4 Other Auxiliary Gadgets
	4.5 Masked UOV (Compact) Key Generation
	4.6 Masked UOV Secret Key Expansion
	4.7 Masked UOV Signature Generation

	5 Implementation results
	6 Conclusions
	References
	A Proof Lemma 4.1
	B Auxiliary Algorithms
	C Complexity Algorithm 6 (mSign())

