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Abstract

Given the devastating security compromises caused by side-channel attacks on existing clas-
sical systems, can we store our private data encoded as a quantum state so that they can be
kept private in the face of arbitrary side-channel attacks?

The unclonable nature of quantum information allows us to build various quantum protection
schemes for cryptographic information such as secret keys. Examples of quantum protection
notions include copy-protection, secure leasing, and finally, unbounded leakage-resilience, which
was recently introduced by Çakan, Goyal, Liu-Zhang and Ribeiro (TCC’24). Çakan et al show
that secrets of various cryptographic schemes (such as cryptographic keys or secret shares) can
be protected by storing them as quantum states so that they satisfy LOCC (local operation and
classical communication) leakage-resilience: the scheme can tolerate any unbounded amount of
adaptive leakage over unbounded rounds. As a special case (dubbed 1-round leakage), this also
means that those quantum states cannot be converted to classical strings (without completely
losing their functionality).

In this work, we continue the study of unbounded/LOCC leakage-resilience and consider
several new primitive. In more details, we build ciphertexts, signatures and non-interactive
zero-knowledge proofs with unbounded leakage-resilience. We show the following results.

• Assuming the existence of a classical X ∈ {secret-key encryption,public-key encryption}
scheme, we construct an X scheme with LOCC leakage-resilient ciphertexts. This guaran-
tees that an adversary who obtains LOCC-leakage on ciphertexts cannot learn anything
about their contents, even if they obtain the secret key later on.

• Assuming the existence of a classical signature scheme and indistinguishability obfuscation
(iO), we construct a signature scheme with LOCC leakage-resilient signatures. This guar-
antees that an adversary who obtains LOCC-leakage on various signatures cannot produce
any valid signatures at all other than the ones it obtained honestly!

• Assuming the existence of one-way functions and indistinguishability obfuscation (iO), we
construct a NIZK proof system with LOCC leakage-resilient proofs. This guarantees that
an adversary who obtains LOCC-leakage on a NIZK proof of an hard instance cannot
produce a valid proof!
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1 Introduction

Starting with the seminal work of Wiesner [Wie83] on quantum money, a long of line research
has shown that quantum information allows us to build cryptographic applications with previously
unimaginable security guarantees, in fact, guarantees that are provably impossible to achieve with
classical information alone. In particular, based on the no-cloning principle, recent work has shown
how to achieve various security notions which can be collectively called quantum protection. These
security notions can be grouped into three categories, copy-protection (also called unclonable or
anti-piracy security) , secure leasing (also called revocable security) and finally, unbounded leakage-
resilience (also called LOCC-leakage-resilience) and intrusion detection, both recently introduced
by Çakan, Goyal, Liu-Zhang, Ribeiro [ÇGLZR24]. In the setting of LOCC leakage-resilience, we
consider a cryptographic scheme whose secret information is stored as a quantum state, and the
goal is to achieve security against adversaries who obtain any amount of adaptive leakage over
any number of rounds by specifying measurement circuits1. As a special case (dubbed 1-round
leakage), this security guarantee also means the cryptographic object that is stored as a quantum
state using such a scheme cannot be converted to a classical string without completely losing its
functionality. We note LOCC-leakage-resilience is an extremely strong security guarantee which
is in stark contrast to the classical setting, where there exists a long line of research on leakage-
resilience2 that all necessarily put arbitrary bounds on the size of the allowed leakage since otherwise
the adversary can simply obtain the secret information in full. We also note that LOCC-leakage-
resilience model readily captures all known leakage attacks (e.g. [Koc96, QS01, AARR03]) since
leakage can be naturally modeled as measurements.

Çakan et al show how to construct LOCC-leakage-resilient scheme for a wide of primitives:
such as public-key encryption, signature and PRF schemes whose secret keys satisfy unbounded
leakage-resilience. In this work, we continue the study of LOCC-leakage-resilience and consider
LOCC-leakage-resilient scheme for several new primitives: namely, ciphertexts, signatures, and
proofs. As motivation, consider the following example. Suppose a user is storing their private
date on their computer (or on a server), and an adversary obtains leakage on the storage, and
later on the secret key of the user is leaked. Another real-life scenario is a company’s employees
storing important signed internal documents and their authentication/ID cards on their computers.
An adversary obtaining leakage on such stored data should not be able to prove to other parties
that some particular documents were signed or should not be able to forge an ID card. Note that
encryption cannot be used in this scenario since the documents and the ID badge will all need to
be usable by anyone in the company. This bring us to the following question.

Is it possible to design encryption/signature/NIZK schemes with
ciphertexts/signatures/proofs that can tolerate arbitrary leakage?

In this work, we work answer this question positively by constructing an encrpytion scheme with
LOCC-leakage-resilient ciphertexts, a signature scheme with LOCC-leakage-resilient signatures and
a NIZK proof system with LOCC-leakage-resilient proofs.

1A measurement circuit is a quantum circuit with classical output
2See [KR19] for a survey
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2 Preliminaries

2.1 Notation

Unless otherwise specified, adversaries are stateful quantum polynomial time (QPT) and our cryp-
tographic assumptions are implicitly post-quantum. We write ← to denote a random sampling
from some distribution or uniform sampling from a set. We will use the quantum registers model.
We consider registers as objects storing quantum states, which can be correlated or entangled with
other registers, and whose states evolve as a result of applying channels to them.

2.2 Digital Signature Schemes

In this section we introduce the basic definitions of signatures schemes.

Definition 1. A digital signature scheme with message spaceM consists of the following algorithms
that satisfy the correctness and security guarantees below.

• Setup(1λ) : Outputs a signing key sk and a verification key vk.

• Sign(sk,m) : Takes the signing key sk, returns a signature for m.

• Verify(vk,m, s) : Takes the public verification key vk, a message m and supposed signature s
for m, outputs 1 if s is a valid signature for m.

Correctness We require the following for all messages m ∈M.

Pr

[
Verify(vk,m, s) = 1 :

sk, vk ← Setup(1λ)
s← Sign(sk,m)

]
= 1.

Adaptive existential-unforgability security under chosen message attack (EUF-CMA)
Any QPT adversary A with classical access to the signing oracle has negligible probability of winning
(i.e. challenger outputting 1) in the following game.

1. Challenger samples the keys sk, vk ← Setup(1).

2. A receives vk, interacts with the signing oracle by sending classical messages and receiving
the corresponding signatures.

3. A outputs a message m that it has not queried the oracle with and a forged signature s for
m.

4. The challenger outputs 1 if and only if Ver(vk,m, s) = 1.

If A outputs the message m before the challenger samples the keys, we call it selective EUF-CMA
security.

2.3 Indistinguishability Obfuscation

In this section, we recall indistinguishability obfuscation.

Definition 2. An indistinguishability obfuscation scheme iO for a class of circuits C = {Cλ}λ
satisfies the following.
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Correctness. For all λ,C ∈ Cλ and inputs x, Pr
[
C̃(x) = C(x) : C̃ ← iO(1λ, C)

]
= 1.

Security. Let B be any QPT algorithm that outputs two circuits C0, C1 ∈ C of the same size, along
with auxiliary information, such that Pr

[
∀x C0(x) = C1(x) : (C0, C1,Raux)← B(1λ)

]
≥ 1−negl(λ).

Then, for any QPT adversary A,∣∣∣∣Pr[A(iO(1λ, C0),Raux) = 1 : (C0, C1,Raux)← B(1λ)
]
−

Pr
[
A(iO(1λ, C1),Raux) = 1 : (C0, C1,Raux)← B(1λ)

]∣∣∣∣ ≤ negl(λ).

2.4 Recevier Non-Committing Encryption

In this section, we recall receiver non-committing public-key encryption, and the secret-key setting
is defined similarly.

Definition 3 (Receiver Non-Committing Encryption). A receiver non-committing public-key en-
cryption scheme is a public-key with the following algorithms.

• Setup(1λ): Outputs a classical secret key sk, a classical public key pk and a classical auxiliary
information aux.

• Enc(pk,m): Takes as input the encryption key pk and a message m, outputs a classical
ciphertext.

• Dec(sk, ct): Takes as input the secret key and a ciphertext, outputs a message or ⊥.

• Sim(pk, sk, aux): Takes as input the keys and the auxiliary string, and outputs a simulated
ciphertext ct.

• Open(pk, sk, aux, ct,m): Takes as input the keys, the auxiliary string, a simulated ciphertext
and a message, outputs a simulated secret key.

We require correctness and semantic security as usual. We also recall receiver non-committing
security.

Definition 4 (Receiver Non-Committing Security). Consider the following game between an ad-
versary and a challenger.

Exp(λ,A)

1. The challenger samples pk, sk, aux← NCE.Setup(1λ) and submits pk to the adversary.

2. The adversary outputs a message m.

3. The challenger samples ct0 ← NCE.Enc(pk,m) and sets sk0 = sk.

4. The challenger samples ct1 ← NCE.Sim(pk, sk, aux) and sk1 ← NCE.Open(pk, sk, aux, ct1,m).

5. The challenger samples a bit b← {0, 1} and submits (ctb, skb) to the adversary.

6. The adversary outputs a bit b′.
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7. The challenger outputs 1 if and only if b′ = b.

An encryption scheme NCE is said to satisfy receiver non-committing security if for all QPT
adversaries A, we have

Pr[Exp(λ,A) = 1] ≤ 1

2
+ negl(λ).

Theorem 1 ([KNTY19, HMNY21]). Assuming the existence of (post-quantum) public-key encryp-
tion, there exists a (post-quantum) receiver non-committing public-key encryption for any polyno-
mial plaintext length.

Theorem 2 ([KNTY19]). Assuming the existence of (post-quantum) secret-key encryption, there
exists a (post-quantum) receiver non-committing secret-key encryption for any polynomial plaintext
length.

2.5 Quantum Information Theory

In this section we recall various results from quantum information theory that will be useful in our
constructions and proofs. We refer the reader to [NC10] for basics of quantum information and
computation.

Theorem 3 (Quantum Goldreich-Levin [CLLZ21]). Let x, ρx be a classical-quantum distribution
with x ∈ {0, 1}n. Suppose there exists an algorithm A such that Pr x,ρx

r←{0,1}n
[A(ρx, r) = ⟨x, r⟩] > 1

2+ε.

Then, there exists an algorithm A′ such that Prx,ρx [A′(ρx) = x] > 4 · ε2.

Theorem 4 (Almost As Good As New Lemma [Aar16], verbatim). Let ρ be a mixed state acting
on Cd. Let U be a unitary and (Π0,Π1 = I − Π0) be projectors all acting on Cd ⊗ Cd′. We
interpret (U,Π0,Π1) as a measurement performed by appending an ancillary system of dimension
d′ in the state |0⟩⟨0|, applying U , and then performing the projective measurement Π0,Π1 on the
larger system. Assuming that the outcome corresponding to Π0 has probability 1− ε, we have∥∥ρ− ρ′

∥∥
Tr
≤
√
ε,

where ρ′ is the state after performing the measurement, undoing the unitary U , and tracing out the
ancillary system.

2.5.1 BB84 States

A BB84 state [BB14] is a state of the form Hθ2 |X2⟩ ⊗Hθ2 |X2⟩ · · ·Hθn |Xn⟩ = Hθ|X⟩ where θ,X ∈
{0, 1}n.

Theorem 5 (Monogamy-of-Entanglement for BB84 States [TFKW13, ÇGLZR24]). Consider the
following game between a challenger and a tuple of adversaries A = (A0,A1,A2).

Exp(λ,A)

1. The challenger samples X, θ ← {0, 1}λ.

2. The challenger submits Hθ|X⟩ to A0.

3. A0 outputs a bipartite register R1,R2.
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4. For i ∈ {1, 2}, Ai receives Ri and θ, and it outputs X ′1, X
′
2.

5. The challenger checks if X = X ′1 = X ′2 and outputs 1 if so. Otherwise, it outputs 0.

Then, for any (unbounded) adversary tuple A, we have Pr[Exp(λ,A) = 1] ≤ 2−λ
CMoE where CMoE =

− log
(
1
2 + 1

2
√
2

)
≈ 0.22.

2.5.2 Subspace States

A subspace state is |A⟩ =
∑

v∈A|v⟩ where A is a subspace of the vector space Fn
2 . We will overload

the notation and usually write A,A⊥ to also denote the membership checking programs for the
subspace A and its orthogonal complement A⊥.

Theorem 6 ([AC12]). For a subspace A, the following applied on a register R implements a pro-
jection onto the subspace state |A⟩:

1. Check for membership in A coherently on R and then rewind (Theorem 4).

2. Apply QFT to R.

3. Check for membership in A⊥ coherently R, check if the output is 1, and then rewind (Theo-
rem 4).

4. Output 1 if all the verification passed. Otherwise, output 0.

Theorem 7 (Unclonability of Subspace States [Zha19]). Consider the following game between a
challenger and an adversary A.

Exp(λ,A)

1. The challenger samples a subspace A ≤ Fλ
2 of dimension λ/2.

2. The challenger samples OP0 ← iO(A) and OP1 ← iO(A⊥).

3. The challenger submits |A⟩,OP0,OP1 to A.

4. The adversary outputs a bipartite register R1,R2.

5. The challenger applies the projection onto |A⟩ to the both registers R1,R2, and it outputs 1 if
and only if both projective measurements accept. Otherwise, it outputs 0.

Then, for any QPT adversary A, we have Pr[Exp(λ,A) = 1] ≤ negl(λ).

Theorem 8 (Direct Product Hardness [BDS23]). Consider the following game between a challenger
and an adversary A.

Exp(λ,A)

1. The challenger samples a subspace A ≤ Fλ
2 of dimension λ/2.

2. The challenger submits |A⟩ to A.

3. The adversary outputs two vectors v, w ∈ Fλ
2 .

4. The challenger checks if v ∈ A \ {0} and w ∈ A⊥ ∈ A \ {0}, and outputs 1 if so. Otherwise,
it outputs 0.

Then, for any (unbounded) adversary A, we have Pr[Exp(λ,A) = 1] ≤ negl(λ).
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3 LOCC-Leakage-Resilience Preliminaries

In this section, we recall the notion of LOCC-leakage resilience and a useful result from prior work.
We start with our definition of an LOCC-leakage adversary. This is a slight generalization of

the formal definition of [ÇGLZR24].

Definition 5 (LOCC-Leakage Adversary). An LOCC-leakage adversary is a stateful quantum
algorithm A that (adaptively) specifies quantum leakage circuits for multiple rounds to leak on a
secret quantum state. More formally, we will consider the following generalized experiment between
an LOCC-leakage adversary A and a (stateful) challenger Chal.

LEAKAGE EXP(1λ)

1. Setup Phase: The challenger Chal and the adversary A interact. At the end, Chal outputs
a quantum register R0 and outputs a public parameter pp.

2. Leakage Phase: Adversary A receives pp. Then, for multiple rounds, the following is exe-
cuted

1. The adversary A and the challenger Chal interact.

2. A specifies a quantum leakage circuit Ei that takes as input a quantum register and
outputs a classical string and the updated quantum register.

3. The challenger Chal executes Li,Ri ← Ei(Ri−1) and submits the classical string Li to A.

3. Challenge Phase: The challenger Chal and the adversary A interact. At the end, the
challenger outputs a decision bit.

We will require that the leakage circuits specified by A are consistent in the sense that the input
size of Ei is the same as the size of the quantum register Ri−1.

Note that there is no bound on the number of rounds leakage for an LOCC leakage adversary,
however, in the computational setting, this will implicitly be any unbounded polynomial. If an
adversary is allowed to leak for only k-rounds, we call it a k-round LOCC leakage adversary. We
also define an unbounded classical leakage adversary3 to be a pair of quantum algorithms (E0,A)
where A only obtains the single shot classical leakage L where L1,R1 ← E0(R0, pp).

We now recall a computational LOCC-leakage-resilience property for subspace states. While
this property was originally shown for coset-subspace states by [ÇGLZR24] through a reduction to
the monogamy-of-entanglement games for these states, an inspection of their proof shows that the
same reduction also works to prove LOCC-leakage property for subspace states using the direct
product hardness for subspace states ([BDS23]). We will utilize this result in our NIZK and
signature constructions.

Theorem 9 (Computational LOCC Leakage Property for Subspace States). Consider the following
game between an LOCC-leakage adversary (Definition 5) A and the challenger.

3In the terminology of [ÇGLZR24], this is also called a non-adaptive unbounded classical leakage adversary, since
the leakage circuit is not specified by A after getting the public parameters. However, we note that this is still
somewhat adaptive since the leakage circuit E0 does get the public parameters

8



Subspace CompLOCC(λ,A)

1. The challenger samples a subspace A of dimension λ/2 of Fλ
2 .

2. The challenger samples OP0 ← iO(A) and OP1 ← iO(A⊥).

3. The challenger submits (OP0
i ,OP

1
i )i∈[sc(λ)] to the adversary.

4. A obtains leakage on |A⟩ as in Definition 5.

5. A outputs a register R.

6. The challenger runs OP0 coherently on R, checks if the output is 1, and then rewinds (Theo-
rem 4).

7. The challenger applies QFT to R′.

8. The challenger runs OP1 coherently on R, checks if the output is 1.

9. Challenger outputs 1 if and only if all the checks pass. Otherwise, it outputs 0.

Then, assuming the existence of iO and one-way functions, for any QPT LOCC leakage adversary
A we have that

Pr[Subspace CompLOCC(λ,A) = 1] ≤ negl(λ).

If we assume the existence of subexponentially-secure iO and one-way functions, then there
exists a universal constant cSubsp LOCC > 0 such that for any QPT LOCC leakage adversary A we
have that

Pr[Subspace CompLOCC(λ,A) = 1] ≤ 2−λ
cSubsp LOCC

for all sufficiently large λ.

4 LOCC Leakage-Resilient Encryption

In this section, we introduce the notion of encryption with unbounded leakage-resilient ciphertexts.
Then, we give our information-theoretic one-time secure construction, CPA-secure secret-key con-
struction assuming classical SKE and finally public-key construction assuming classical PKE.

Definition 6 (Encryption with quantum ciphertexts). An encryption scheme with quantum ci-
phertexts consists of the following efficient algorithms.

• Setup(1λ): Outputs a classical secret key sk and a classical public key pk, which will be ⊥ if
the scheme is secret-key.

• Enc(k,m): Takes as input the encryption key k (pk in the public-key setting and sk in the
secret-key setting) and a message m, outputs a quantum register Rct.

• Dec(sk,Rct): Takes as input the secret key and a ciphertext register ct, outputs a message or
⊥.

We require correctness and semantic security as usual.

Definition 7 (Encryption with LOCC Leakage-Resilient Ciphertexts). Consider the following game
between an LOCC-leakage-adversary (Definition 5) and a challenger.

9



LOCC CT(λ,A)

1. The challenger samples pk, sk ← Sch.Setup(1λ) and submits pk to the adversary.

2. The adversary outputs pairs of messages (m0
1,m

1
i )i∈[q(λ)].

3. The challenger samples a bit b← {0, 1} and samples Ri ← Sch.Enc(sk,mb
i) for i ∈ [q(λ)].

4. The adversary A obtains leakage on R = (Ri)i∈[q(λ)] as in Definition 5.

5. The challenger submits sk to the adversary.

6. The adversary outputs a bit b′.

7. The challenger outputs 1 if and only if b′ = b.

An encryption scheme Sch with quantum ciphertexts (Definition 6) is said to satisfy computational/information-
theoretic LOCC-leakage-resilient ciphertext security if for all QPT/unbounded adversaries A, we
have

Pr[LOCC CT(λ,A) = 1] ≤ 1

2
+ negl(λ).

If the above is satisfied only for adversaries with an a-priori bound on the number of challenge
ciphertexts q(λ), then the scheme is said to satisfy q(λ)-time LOCC-leakage-resilient ciphertext
security.

We emphasize that the adversary obtains even the secret key (after the leakage phase) and still
it gains no advantage over random guessing.

4.1 LOCC Leakage-Resilience of BB84 States

We first prove an information-theoretic LOCC leakage-resilience property for BB84 states.

Theorem 10 (LOCC Leakage Property for BB84 States). Consider the following LOCC-leakage
game (Definition 5) between an LOCC leakage adversary A and the challenger.

BB84 LOCC(λ,A)

1. The challenger samples X, θ ← {0, 1}λ.

2. A obtains leakage on Hθ|X⟩ as in Definition 5.

3. After the leakage is over, the challenger submits θ to A.

4. A outputs X ′.

5. The challenger outputs 1 if X ′ = X, and otherwise it outputs 0.

Then, for any LOCC leakage adversary A,

Pr[BB84 LOCC(λ,A) = 1] ≤ 2−
CMoE

2
·λ+2−λ

for all sufficiently large λ, where CMoE = − log
(
1
2 + 1

2
√
2

)
≈ 0.22 is the universal constant from

BB84 monogamy-of-entanglement games (Theorem 5).
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Note that the above theorem can also be phrased as showing that the min-entropy of X con-
ditioned on the final internal state of the leakage adversary is at least CMoE

2 + 2−λ ≈ 0.11 · λ+ 2−λ

bits.

Proof. We will prove this through a reduction to the monogamy-of-entanglement (MoE) game for
BB84 states. Suppose for a contradiction that there exists an LOCC-leakage adversary A such that

Pr[BB84 LOCC(λ,A) = 1] > 2−
CMoE

2
·λ+2−λ

for infinitely many values of λ. Any claims below will
be only for such values of λ. We will also assume that A has a fixed number of leakage rounds n(λ),
with a fixed size c(λ) for each leakage circuit description and fixed size ℓ(λ) for leakage output; it
is easy to see that this is all without loss of generality.

Let T = (E1, L1, . . . , Eℓ, Lℓ) be the random variable defined as the transcript of the leakage
phase of A playing BB84 LOCC. That is, Ei denotes the leakage circuit output by A at round i,
and Li denotes the corresponding measurement result. Define T ∗λ to be the transcript with the
lowest probability, that is,

T ∗λ = argmin
T∈Supp(T )

Pr
T
[T = T ]

and also set k to be the smallest integer such that

(2−
CMoE

2
+2−λ

)2 ·
(
1− exp

[
−Pr
T
[T = T ∗λ ] · k

])
≥ 2−CMoE·λ.

Note that since Supp(T ) is of finite size (namely, 2n(λ)·c(λ)·ℓ(λ)), T ∗λ is well-defined, and consequently
k is finite. Let ρ0 denote the non-uniform quantum advice of A. We create a tuple for adversaries
A′ = (A′0,A′2,A′2) for the MoE game, where A′0 has the advice ρ⊗k. Note that if A does not have
non-uniform advice, then we consider ρ to be ⊥, and in that case our MoE adversary will not have
non-uniform advice either. Now we define our MoE adversaries.

A′0(RBB84)

1. Simulate the leakage phase of A on RBB84. Let T = (E1, L1, . . . , Eℓ, Lℓ) be the transcript of
the leakage phase. That is, Ei denotes the leakage circuit output by A at round i, and Li

denotes the corresponding measurement result. Let ρT be the internal state of A after the
leakage phase is done.

2. Set cnt = k∗. While cnt > 0, run the following:

1. Simulate the leakage phase of A as follows, starting with i = 1. When it outputs a
measurement circuit E′i, check if E′i = Ei. If so, submit Li to A and move to next round
of leakage simulation by increasing i. Otherwise, decrement cnt by one and move to the
next iteration of the outer loop.

2. When the simulated leakage phase of A is complete, let ρ′ be the internal state of the
adversary.

3. If cnt = 0, output (⊥,⊥). Otherwise, output (R1 = ρT ,R2 = ρ′).

A′i(Ri, θ) for i ∈ {1, 2}

• If the input register ⊥, output ⊥. Otherwise, simulate the challenge phase of A on θ, with
the internal state Ri.
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Now we will prove that A′ wins BB84 MoE with probability greater than 2−CMoE·λ, which will be
a contradiction by Theorem 5. Observe that for any fixed transcript T , conditioned on obtaining
that transcript during the run of A′ and conditioned on not terminating with ⊥, we have that the
probability of A′ winning is Pr[A wins BB84 LOCC|T = T ]2. This is since for each transcript T ,
we have two completely independent runs of the challenge phase of A. Further, we have that the
probability of A′ terminating with ⊥ is 1− (1− PrT [T = T ])k. Combining these, we get that the
probability of A′ winning BB84 MoE is∑

T∈Supp(T )

Pr
T
[T = T ] · (1− (1− Pr

T
[T = T ])k) · Pr[A wins BB84 LOCC|T = T ]2

≥
∑

T∈Supp(T )

Pr
T
[T = T ] ·

(
1− exp

[
−Pr
T
[T = T ∗]λ · k

])
· Pr[A wins BB84 LOCC|T = T ]2

≥

 ∑
T∈Supp(T )

Pr
T
[T = T ] · Pr[A wins BB84 LOCC|T = T ]2

 · 2−CMoE·λ

(2−
CMoE

2
+2−λ

)2

≥

 ∑
T∈Supp(T )

Pr
T
[T = T ] · Pr[A wins BB84 LOCC|T = T ]

2

· 2−CMoE·λ

(2−
CMoE

2
+2−λ

)2

=(Pr[A wins BB84 LOCC])2 · 2−CMoE·λ

(2−
CMoE

2
+2−λ

)2
> 2−CMoE·λ

The third line follows by definition of k, fourth line follows by Jensen’s inequality, and the last line
follows by our contradiction hypothesis for A. Note that the above contradicts Theorem 5, thus
the proof is complete.

4.2 One-Time Secure Secret Key Encryption

In this section, we give our information-theoretically 1-time secure encryption scheme with LOCC-
leakage-resilient ciphertexts for 1-bit messages. In the later sections, we show how to generically
upgrade such schemes to CPA-secure SKE or PKE schemes for plaintexts of any length.

OTE.Setup(1λ)

1. Sample θ ← {0, 1}λ.

2. Output sk = θ.

OTE.Enc(sk, b)

1. Parse θ = sk.

2. Sample X, r ← {0, 1}λ.

3. Output Rct = (Hθ|X⟩, r, (⟨X, r⟩ ⊕ b)).
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OTE.Dec(sk,Rct)

1. Parse (R′, r, eb) = Rct and θ = sk.

2. Apply Hθ to R′.

3. Measure R′ in the computational basis and let s be the measurement result.

4. Output eb⊕ ⟨s, r⟩.

Perfect correctness follows easily due to the fact that (Hθ)(Hθ) = I.

Theorem 11. OTE satisfies 1-time information-theoretic semantic security.

Proof. Suppose for a contradiction that there exists an adversary that can predict b with probability
1/2 + ε for non-negligible ε, given Hθ|X⟩, r, (⟨X, r⟩ ⊕ b). Then, by a simple argument (e.g. see
Theorem 12), there exists an adversary that can predict ⟨X, r⟩ with probability 1/2 + ε, given
Hθ|X⟩. Then, by quantum Goldreich-Levin theorem (Theorem 3), there exists an adversary that
can predict X with probability 4 · ε2, given Hθ|X⟩. Since ε is non-negligible, so is 4 · ε2, however,
this is a contradiction since maximum prediction probability for X given Hθ|X⟩ is exponentially
small in λ by a simple trace distance argument.

Theorem 12. OTE satisfies 1-time information-theoretic LOCC-leakage-resilient ciphertext secu-
rity for 1-bit messages.

Proof. We will prove our result through a reduction to the LOCC-leakage-resilience property for
BB84 states.

Suppose for a contradiction that there exists an LOCC-leakage adversaryA such that Pr[LOCC CT(λ,A) = 1] >
1
2 + ε(λ) for infinitely many values of λ where ε = 1

2 · 2
−CMoE

4
·λ+2−λ−1

. Let A1 denote the leakage-
phase of the adversary A and let A2 denote the challenge phase. We will construct an LOCC-
leakage-adversary ABB84 for BB84 leakage game BB84 LOCC. First, we construct the leakage-phase
ALeak,BB84 of the adversary.

ALeak,BB84(R)

1. Sample r ← {0, 1}λ and b′ ← {0, 1}.

2. Simulate A1 on R, r, b′ to obtain a state ρ.

3. Output ρ, b′.

Now, consider the following adversary A′ that accepts as input θ and the output R, b′ of
ALeak,BB84: It simulates A2 on R, θ, and then it outputs b′ ⊕ b′′ where b′′ is the output of A2.
By a standard argument it is easy to see that A′ predicts ⟨x, r⟩ with probability 1/2 + ε(λ).

Now we will construct the challenge phase adversary AChal,BB84. Consider the classical-
quantum distribution X, ρX = ALeak,BB84(H

θ|X⟩ where X, θ ← {0, 1}λ. Note that this is sim-
ply the distribution of X along with the side-information which is the final internal state of the
leakage-phase adversaryALeak,BB84 (which will be the input ofAChal,BB84). By above, we have that
given ρX , A′ can output ⟨x, r⟩ with probability 1/2+ ε(λ). Then, by the quantum Goldreich-Levin
theorem (Theorem 3), there exists an algorithm AChal,BB84 that can predict X with probability

4 · ε2 > 2−
CMoE

2
·λ+2−λ

, which is a contradiction by Theorem 10.

It is easy to see that ℓ(λ)-way parallel repetition of our scheme is secure for ℓ(λ)-bit messages.
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4.3 Upgrading to Public-key Encryption

In this section, we show how to construct a public-key encryption with LOCC-leakage-resilient
ciphertexts for ℓ-bit messages, based on a one-time secure LOCC-leakage-resilient scheme (OTE)
for ℓ-bit messages and a classical receiver non-committing public-key encryption scheme (NCE).
We note that the latter can be constructed based on any standard public-key encryption scheme
(Definition 3). We further note that the same transformation technique has been previously used
by [HMNY21] to upgrade 1-time secure unclonable encryption to PKE with unclonable ciphertexts.

PKE.Setup(1λ)

1. Sample pk, sk ← NCE.Setup(1λ).

2. Output pk, sk.

PKE.Enc(pk,m)

1. Sample isk ← OTE.Setup(1λ).

2. Sample R← OTE.Enc(isk,m).

3. Sample ict← NCE.Enc(pk, isk).

4. Output R, ict.

PKE.Dec(sk,R)

1. Parse (R′, ict) = R.

2. Decrypt isk = NCE.Dec(sk, ict).

3. Decrypt m← OTE.Dec(isk,R).

4. Output m.

Correctness and the semantic security of the scheme follows in a straightforward way.

Theorem 13. PKE satisfies LOCC leakage-resilient ciphertext security.

Proof. Suppose there exists an LOCC-leakage adversary A that wins the leakage-resilience game
with non-negligible advantage. Define Hyb0 to be the original leakage-resilience game LOCC CT(λ,A).
We define Hyb1 by modifying Hyb1 as follows: First, when encrypting the challenge message mb,
instead of sampling the ciphertext as R← PKE.Enc(pk,mb), we instead sample it as

1. Sample isk ← OTE.Setup(1λ).

2. Sample R′ ← OTE.Enc(isk,m).

3. Sample ict← NCE.Sim(pk, sk).

4. R = (R′, ict).

Further, later during the challenge phase, instead of submitting sk to the adversary, we instead
sample sk′ ← NCE.Open(sk, ict, isk) and submit sk′. By the security of NCE, we get Hyb0 ≈ Hyb1.
Thus, Pr[Hyb1 = 1] ≥ 1

2 + 1
p(λ) for a polynomial p(·). Now we construct an adversary A′ for the

one-time leakage-resilience game for OTE.
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A′(R)

1. Setup Phase: Simulate A to obtain the challenge messages m0,m1, output m0,m1.

2. Leakage Phase: Sample pk, sk ← NCE.Setup(1λ) and ict ← NCE.Sim(pk, sk). Then, simu-
late A on R, ict.

3. Challenge Phase: On input isk, simulate A on NCE.Open(sk, ict, isk), and output its
output.

Then, observe that probability of A′ winning the one-time leakage-resilience game for OTE is
exactly the same as Pr[Hyb1 = 1]. Thus, A′ wins with probability 1

2 +
1

p(λ) , which is a contradiction
to the leakage-resilience security of OTE.

Since non-committing public-key encryption can be constructed from any standard public-key
encryption scheme (Theorem 1), we obtain the following.

Corollary 1. Assuming the existence of a public-key encryption scheme, there exists a secret-key
encryption scheme with LOCC-leakage-resilient ciphertexts.

It is easy to see that our transformation works the same in the secret-key setting too. Since
non-committing secret-key encryption can be constructed from any standard secret-key encryption
(Theorem 2), we obtain the following.

Theorem 14. Assuming the existence of a secret-key encryption scheme, there exists a secret-key
encryption scheme with LOCC-leakage-resilient ciphertexts.

5 LOCC Leakage-Resilient Signatures and Non-Interactive Zero-
Knowledge Proofs

We first formally introduce signature schemes with unbounded leakage-resilience, then we give our
construction based on indistinguishability obfuscation and any signature scheme.

Definition 8 (Signature scheme with quantum signatures). An signature scheme with quantum
signatures consists of the following efficient algorithms.

• Setup(1λ): Outputs a classical signing key sk and a classical verification key vk.

• Sign(sk,m): Takes as input the signing key and a message m, outputs a quantum register
Rsig.

• Verify(vk,m,Rsig): Takes as input the verification key, a message m and a register Rsig con-
taining an alleged signature for m, outputs 1 or 0.

We require correctness and existential unforgeability under chosen message attacks (EUF-CMA)
security as usual.

Definition 9 (Signature Scheme with LOCC Leakage-Resilient Signatures). Consider the following
game between an LOCC-leakage adversary (Definition 5) and challenger.
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LOCC SIG(λ,A)

1. Setup Phase: The challenger samples sk, vk ← Sch.Setup(1λ) and submits vk to the adver-
sary. It also initializes the list M = [].

2. Query Phase: For multiple rounds, the adversary outputs a message and the challenger
responds by sampling Rsig ← Sch.Sign(sk,m) and submitting Rsig to the adversary. For each
the challenger also adds m to the list M .

3. The adversary outputs a list of messages (mi)i∈[q(λ)].

4. Leakage Phase: The challenger samples Ri ← Sch.Sign(sk,mi) for i ∈ [q(λ)]. The adversary
A obtains leakage on R = (Ri)i∈[q(λ)] as in Definition 5. During each leakage round, the
adversary can submit signature queries to the challenger, and the challenger responds by
sampling the signature as Rsig ← Sch.Sign(sk,m), submitting Rsig to the adversary and adding
m to the list M .

5. Challenge Phase: The adversary outputs a message mchal and an alleged signature Rforged.
The challenger executes b ← Sch.Verify(vk,mchal,Rforged) and outputs 1 if and only if b = 1
and mchal ̸∈M .

A signature scheme Sch with quantums signatures (Definition 6) is said to satisfy LOCC-leakage-
resilient signature security if for all QPT adversaries A, we have

Pr[LOCC SIG(λ,A) = 1] ≤ negl(λ).

Our definition requires that an adversary, who obtains multiple signatures directly and also
LOCC-leakage on multiple signatures, cannot produce a valid signature for a message for which it
has not honestly obtained a signature for. That is, it can be thought of as EUF-CMA security with
the addition that adversary obtains leakage on various signatures, however, the leakage should not
help it at all.

Theorem 15. Assuming the existence of indistinguishability obfuscation and a signature scheme,
there exists a signature scheme with LOCC-leakage-resilient signatures.

Since signature schemes can be constructed from iO and one-way functions ([SW14]), we obtain
the following corollary.

Corollary 2. Assuming the existence of indistinguishability obfuscation and one-way functions,
there exists a signature scheme with LOCC-leakage-resilient signatures.

5.1 Construction

In this section, we give our construction. We note that our construction is similar to the folklore
construction of unclonable signatures from public-key quantum money and a classical signature
scheme, where a signature on a message m consists a banknote along with a classical signature
on the serial number concatenated with the message m. While this construction can be proven
to be unclonable based on any public-key quantum money, we note that this is not the case for
LOCC-leakage. In fact, instantiating this signature scheme with a classically-transferable public-key
quantum money scheme [AGKZ20] yields a scheme that is provably insecure against LOCC-leakage!
Thus, we rely specifically on the subspace state quantum money and prove the leakage-resilience
of the construction through a new proof. This also shows that unclonable signature security does
not imply LOCC-leakage-resilient signature security.

Now we move onto our construction. Let CSS be a classical signature scheme.
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DS.Setup(1λ)

1. Sample sk, vk ← CSS.Setup(1λ).

2. Output sk, vk.

DS.Sign(sk,m)

1. Sample a subspace A of Fλ
2 of dimension λ/2.

2. Initialize the register R with |A⟩.

3. Sample isig ← CSS.Sign(sk,m||iO(A)||iO(A⊥)).

4. Output R, isig, iO(A), iO(A⊥).

DS.Verify(vk,m,R)

1. Parse (R′, isig, P0, P1) = R.

2. Verify CSS.Verify(vk,m||P0||P1, isig).

3. Run P0 coherently on R′, check if the output is 1, and then rewind (Theorem 4).

4. Apply QFT to R′.

5. Run P1 coherently on R′, check if the output is 1, and then rewind (Theorem 4).

6. Output 1 if all the verification passed. Otherwise, output 0.

The correctness follows in a straightforward manner. EUF-CMA security is implied by leakage-
resilience security since an adversary can simply ignore the leakage information it obtains.

5.2 Proof of Security

We will prove leakage-resilience security through a series of hybrids, each of which is constructed by
modifying the previous one. Without loss of generality, we will assume that the adversary obtains
leakage on a fixed number q(λ) of signatures.

Hyb0: The original game LOCC SIG(λ,A).

Hyb1: Let MLeak be the set of message on which the adversary obtains leakage on. We add an
additional condition for winning the game as follows: At the end of the game, the challenger also
checks if mchal ∈MLeak, and if not, the challenger outputs 0 (hence the adversary loses).
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Hyb2: At the beginning of the game, we sample a random index i∗ ← [q(λ)]. Let mi∗ be the i∗-th
element of MLeak. We add another winning requirement: The challenger checks if mchal = mi∗ ,
and if not it outputs 0.

Lemma 1. Hyb0 ≈ Hyb1.

Proof. In Hyb0, the challenge message needs to satisfy m ̸∈M , whereas in Hyb1, it needs to satisfy
m ∈MLeak\M . Therefore, the two hybrids can differ only if the adversary outputs a valid signature
for some mchal ̸∈ M ∪MLeak. However, observe that the adversary only obtains signatures of the
scheme for CSS for messages in M∪MLeak, and its forged signature needs to include a CSS signature
for mchal by construction of DSS.Verify. By EUF-CMA security of DSS, this can only happen with
negligible probability, thus showing Hyb0 ≈ Hyb1.

Lemma 2. Pr[Hyb2 = 1] ≥ Pr[Hyb1=1]
q(λ) .

Proof. Note that in Hyb1, it is required that mchal ∈ MLeak. Let i∗∗ ∈ [q(λ)] denote the position
of mchal in MLeak. Then, independent of all the previous events, i∗ will satisfy i∗ = i∗∗ with
probability 1/q(λ), and thus the result follows.

Now suppose for a contradiction that there exists a QPT adversaryA such that Pr[LOCC SIG(λ,A) = 1] >
1/p(λ) for some polynomial p(·) and infinitely many values of λ. We construct an adversary for
the LOCC-leakage-resilience game Subspace CompLOCC for subspace states (Theorem 9). We first
construct the leakage-phase adversary.

ALeak(R)

1. Simulate the setup phase and the query phase of the game Hyb2 by simulating both the
challenger and the adversary A.

2. Simulate the adversary A and the challenger to obtain the first leakage circuit output E0

of A. Let P0, P1 be the obfuscated membership checking programs received from the chal-
lenger of Subspace CompLOCC. Then, output the following circuit E′0 to the challenger of
Subspace CompLOCC.

E′0(Rsubsp)

Hardcoded: E0, (mi)i∈[q(λ)], sk, P0, P1

1. For i ∈ [q(λ)] \ {i∗}, sample Ri ← DSS.Sign(sk,mi).

2. Sample isig ← CSS.Sign(sk,mi∗ ||P0||P1).

3. Set Ri∗ = (Rsubsp, isig, P0, P1) and R = (Ri)i∈[q(λ)].

4. Simulate E0 on R to obtain the leakage output L and the leftover state R′.

5. Output L as the leakage output L and R′ as the leftover state.

3. Simulate the rest of the leakage phase by simulating both the challenger and the adversary
A, by forwarding the leakage circuit outputs of A to the challenger of Subspace CompLOCC
and forwarding leakage results to A.

4. Output the final internal state of A and the internal state of the challenger of LOCC SIG.

Now we construct the challenge-phase adversary AChal for Subspace CompLOCC.
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ALeak(Rinternal)

1. Simulate the challenge phase of the game LOCC SIG by simulating the adversary A and the
challenger using Rinternal.

2. Let mchal and Rforged be the output A. Parse (R′forged, isig
∗, P ∗1 , P

∗
2 ). Output R′forged to the

challenger of Subspace CompLOCC.

Observe that the probability of (ALeak,AChal) winning Subspace CompLOCC is exactly the same
as Pr[Hyb2 = 1]. We assumed for contradiction that Pr[LOCC SIG(λ,A) = 1] > 1/p(λ), which by
above implies Pr[Hyb2 = 1] ≥ 1

2·q(λ)·p(λ) , which is thus a contradiction by Theorem 9.

5.3 Non-Interactive Zero-Knowledge Proofs

In this section, we introduce the notion of non-interactive zero-knowledge proofs with LOCC-
leakage-resilient proofs. Then, we give our construction, which is similar to the constructions of
[JK23] and [GMR23]. However, as in the case of signatures, while their constructions can be based
black-box on any public-key quantum money (PKQM) scheme, in our setting there are explicit
attacks if the construction is instantiated with a large class of PKQM schemes (namely, classically-
transferable PKQM). Thus, our construction explicitly uses subspace quantum money and needs a
new proof security.

Since the high level ideas are similar to signature construction, we will focus on the single proof
for simplicity, and the general case follows similarly.

We recall hard instance distributions.

Definition 10 (Hard Distributions for NP ). Let L be an NP language with the relation RL. Let
D be an efficient distribution over RL. Then, D is said to be a hard distribution if for any QPT
adversary,

Pr

[
(x,w∗) ∈ RL :

x,w ← D
w∗ ← A(x)

]
≤ negl(λ).

Now we define LOCC-leakage-resilient proofs.

Definition 11 (NIZK Proof Systems with LOCC Leakage-Resilient Proofs). Consider the following
game between an LOCC-leakage-adversary (Definition 5) and a challenger.

LOCC PROOF(λ,A)

1. The challenger samples crs← NIZK.Setup(1λ) and submits crs to the adversary.

2. The challenger samples an instance (x,w)← D.

3. The challenger samples a proof R← NIZK.Proof(crs, x, w).

4. The adversary A obtains leakage on R as in Definition 5.

5. The adversary outputs a proof Rproof .

6. The challenger outputs the output NIZK.Verify(crs, x,Rproof).

A NIZK scheme Sch with quantum proofs is said to satisfy LOCC-leakage-resilient proof security
if for all hard distributions D and for all QPT adversaries A, we have

Pr[LOCC PROOF(λ,A) = 1] ≤ negl(λ).
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Now we give our construction for an NP language L. Let Com be a perfectly binding commitment
scheme, PKE be a public-key encryption scheme and CNIZK be a classical NIZK scheme for following
language L′

{(x, ct, P0||P1) : ∃w, r1, r2 such that (ct = PKE.Enc(pk, w; r1)∧(x,w) ∈ RL)∨(com∗ = Com(P0||P1; r2))}

where pk, com∗ will be sampled during setup of NIZK.

NIZK.Setup(1λ)

1. Sample icrs← CNIZK.Setup(1λ).

2. Sample pk, sk ← PKE.Setup(1λ).

3. Sample a subspace A∗ of Fλ
2 of dimension λ/2.

4. Sample OP∗0 ← iO(A∗).

5. Sample OP∗1 ← iO((A∗)⊥).

6. Sample com∗ ← Com(OP∗0||OP∗1).

7. Output icrs, com∗, pk.

NIZK.Prove(crs, x, w)

1. Parse (icrs, com∗) = crs.

2. Check if (x,w) ∈ RL, otherwise output ⊥ and terminate.

3. Sample r ← {0, 1}r(λ).

4. Compute ct = PKE.Enc(pk, w; r).

5. Sample a subspace A of Fλ
2 of dimension λ/2.

6. Sample OP0 ← iO(A).

7. Sample OP1 ← iO(A⊥).

8. Sample a proof π using CNIZK.Prove for the statement (x, ct,OP0||OP1) using the witness
(w, r,⊥).

9. Initialize the register R with |A⟩.

10. Output R, iO(A), iO(A⊥), π, ct.
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NIZK.Verify(crs, x,R)

1. Parse (icrs, com∗) = crs.

2. Parse (R′, P0, P1, π, ct) = R.

3. Verify CNIZK.Verify(crs, x, ct, P0||P1, com
∗, π).

4. Run P0 coherently on R′, check if the output is 1, and then rewind (Theorem 4).

5. Apply QFT to R′.

6. Run P1 coherently on R′, check if the output is 1, and then rewind (Theorem 4).

7. Output 1 if all the verification passed. Otherwise, output 0.

Theorem 16. NIZK satisfies completeness, computational soundness and zero-knowledge.

Proof. Completeness and zero-knowledge property follows in a straightforward manner from the
same properties of CNIZK. For soundness, observe that by soundness of CNIZK, any statement-
proof that passes verification must satisfy either the PKE part in definition of the language L′, or
the commitment part. By perfect binding of the commitment scheme, there does not exist r, P0, P1

such that com∗ = Com(P0||P1; r) but P0||P1 ̸= OP∗0||OP∗1. However, note that given only OP∗0,OP
∗
1,

a QPT adversary cannot output a state that passes the state verification of NIZK.Verify due to
unclonability of |A∗⟩ (Theorem 7). Thus, for a proof to be accepted, the statement must satisfy
the PKE condition, which necessarily means x is in L, thus completing the proof.

Theorem 17. NIZK satisfies LOCC-leakage-resilience.

Proof. We will prove security through a series of hybrids.

Hyb0: The original game LOCC PROOF(λ,A).

Hyb1: Instead of sampling the subspace state |A⟩ and the associated programs OP0,OP1 during
proof generation, we move these samplings to the setup phase. Then, instead of sampling com∗ as
com∗ ← Com(OP∗0||OP∗1), we instead sample r′ and compute com∗ = Com(OP0||OP1; r

′).

Hyb2: During the proof generation, instead of using the witness (w, r,⊥), we instead use (⊥,⊥, r′).

Hyb3: Instead sampling r and computing ct as ct = PKE.Enc(pk, w; r), we instead sample ct as

ct← PKE.Enc(pk, 0ℓ(λ)).

Now we argue indistinguishability of the hybrids. We first claim Hyb0 ≈ Hyb1. This follows due
to the hiding property of the commitment scheme Com.

We claim Hyb1 ≈ Hyb2. This follows by the zero-knowledge property of CNIZK.
We claim Hyb2 ≈ Hyb3. This follows by the semantic security of PKE since sk is never used in

the experiment.
Suppose for a contradiction that Pr[LOCC PROOF(λ,A) = 1] is non-negligible, then so is Pr[Hyb3 = 1]

by the hybrid argument above. Now we claim that decrypting the ciphertext ct′ contained in the
proof output yields a witness w′ such that (x,w) ∈ RL. First, observe that by perfect binding
property of Com, there does not exist r such that com∗ = Com(P0||P1; r) and P0||P1 ̸= OP0||OP1.
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Then suppose that the programs P0, P1 contained in the proof output by the adversary satisfy
P0||P1 ̸= OP0||OP1. However, then observe that we can create an adversary for LOCC-leakage-
resilience game for subspace states (Theorem 9) by simulating our NIZK leakage adversary, since
the state verification of NIZK in Hyb3 exactly corresponds to the verification of the LOCC-leakage-
resilience game. Thus, we must have P0||P1 ̸= OP0||OP1, Now, since the commitment condi-
tion cannot be satisfied, by soundness of CNIZK, we must have that there exist r′′ such that
ct′ = PKE.Enc(pk, w′) and (x,w′) ∈ RL. This means that decrypting ct′ gives us a valid witness
w′ for x, whereas the experiment never uses a witness for x. This contradicts the hardness of the
distribution D.

Since classical NIZKs can be constructed from one-way functions and iO ([SW14]), we obtain
the following corollary.

Corollary 3. Assuming the existence of indistinguishability obfuscation and one-way functions,
there exists a NIZK proof system with LOCC-leakage-resilient proofs.
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