
Single Trace Side-Channel Attack on the
MPC-in-the-Head Framework

Julie Godard1,2, Nicolas Aragon1, Philippe Gaborit1, Antoine Loiseau2 and
Julien Maillard1,2

1 XLIM, University of Limoges, Limoges
2 Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France

Abstract. In this paper, we present the first single trace side-channel
attack that targets the MPC-in-the-Head (MPCitH) framework based on
threshold secret sharing, also known as Threshold Computation in the
Head (TCitH) in its original version. This MPCitH framework can be
found in 5 of the 14 digital signatures schemes in the recent second round
of the National Institute of Standards and Technology (NIST) call for
digital signatures. In this work, we start by highlighting a side-channel
vulnerability of the TCitH framework and show an exploitation of it
on the SDitH algorithm, which is part of this NIST call. Specifically,
we exploit the leakage of a multiplication function in the Galois field
to make predictions about intermediate values, and we use the struc-
ture of the algorithm to combine information efficiently. This allows us
to build an attack that is both the first Soft Analytical Side-Channel
Attack (SASCA) targeting the MPCitH framework, as well as the first
attack on SDitH. More specifically, we build a SASCA based on Belief
Propagation (BP) on the evaluation of polynomials in the signature using
the threshold variant structure to reconstruct the secret key. We perform
simulated attacks under the Hamming Weight (HW) leakage model, en-
abling us to evaluate the resistance of the scheme against SASCA. We
then perform our attacks in a real case scenario, more specifically on the
STM32F407, and recover the secret key for all the security levels. We
end this paper by discussing the various shuffling countermeasures we
could use to mitigate our attacks.

Keywords: Soft Analytical Side-Channel Attack (SASCA) · Belief Prop-
agation (BP) · Syndrome Decoding in the Head (SDitH) · Post-Quantum
Cryptography (PQC) · Key recovery · Multi-Party Computation-in-the-
Head (MPCitH)

Introduction

The MPC-in-the-Head framework, introduced in 2007 by [IKOS07], is a tech-
nique for constructing zero-knowledge proofs. This framework provides a generic
way of constructing zero-knowledge proofs using secure multiparty computation
techniques. For nearly a decade, this result was considered theoretical. Then, in
2016, Giacomelli et al. presented the first practical proof system based on this

framework in [GMO16]. Since then this framework has been more widely studied
and many algorithms based on this approach have been proposed, like MQOM
[BFR23] or SDitH [AM+23].

Over the last few years, researchers have made new improvements to the
MPC-in-the-Head (MPCitH) framework, leading to renewed interest in it. This
interest is illustrated in particular by the new call from the National Institute of
Standards and Technology (NIST) for digital signature schemes, in which 7 of
the 40 candidates are based on this framework. More recently, NIST announced
the second round, in which only 14 of candidates were retained, including 5 can-
didates based on the MPCitH framework, and in particular, the SDitH algorithm
[AM+23]. It is important to note that in the following, the attack we are going to
describe is based on the implementation provided for the first round submission,
as the revision for the second round has not been released yet.

The attacks we are proposing in this paper are Soft Analytical Side-Channel
Attacks (SASCA), first introduced in [VGS14], and are effective methods to
combine outputs of supervised attacks [CRR02] on mathematically linked in-
termediate variables. In [VGS14], the authors present the case of a practical
attack on the AES Furious implementation, using the Belief Propagation (BP)
algorithm [Pea82], and demonstrated the efficiency of SASCA compared to the
best state-of-art attacks. As redundancy is a key components of the MPCitH
protocol, and particularly in SDitH, SASCA is a relevant approach.

SASCA has also been applied to post-quantum algorithms. For example, the
standardised Module-Lattice KEM (ML-KEM) algorithm [RL23], also known
as Kyber, has been the target of several attacks of this type [PPM17], [PP19],
[HHP+21] targeting the Number Theoretic Transform (NTT). We can also take
the example of the HQC algorithm with [GMGL24] and [BMG+24]. More pre-
cisely, in [GMGL24], practical attacks against the Reed-Solomon (RS) decoder
are presented. In these attacks, it is more specifically multiplication in the Galois
field that the authors target in order to recover the shared key. Among others,
in this paper, Goy et al. simulate an attack on the Reed-Solomon (RS) decoder
using a Hamming Weight (HW) leakage model. This simulation gives a success
rate of more than 0.9 up to a noise parameter σ = 2, and even up to σ = 3
for the highest HQC security level. In practice, this attack has a 100% success
rate. Their work also presents an analysis of several countermeasures, including
a full shuffling strategy that adds satisfactory combinatorial complexity to the
proposed attacks.

Our contributions In this paper, we present the first side-channel attack
against the TCitH framework, in its 2022 version [FR22], which is the one that
was current at the time of the first round of the second NIST call. More specifi-
cally, we apply our attack to the SDitH algorithm and target its secret key. Our
contributions are the following:

– We start by highlighting a vulnerability in the TCitH framework. Firstly,
we target a function executed by all the parties and that manipulates a part
of the secret key. This part is therefore dependent on the implementation.

Secondly, we look at how the inputs of the parties (i.e., the shares of the
secret key), involved in the MPC protocol, are constructed in order to find
a link between these inputs and the secret key. This part is independent of
the implementation.

– We analyze the vulnerability from a side-channel perspective. To do so, we
start by applying it to the SDitH algorithm. In this algorithm, the function
on which we focus is the polynomial evaluation using the gf mul function. We
begin our analysis by performing leakage assessment on the gf mul operands
and output on a STM32F407 platform. Then, with evidence of leakage, we
build a template attack on these values and discuss the obtained accuracies.

– To make full use of the redundancy employed in SDitH, we conduct a
SASCA. We use simulations to evaluate the resistance of the different se-
curity levels of SDitH against SASCA. Then we perform a practical attack
that leads to a successful secret key recovery. In practice, this attack led to
a perfect success rate for the three security levels.

Outline Section 1 recalls how the MPC-in-the-Head and the TC-in-the-Head
frameworks work and describes the construction of the SDitH algorithm. Section
2 introduces the point of vulnerability of the TCitH framework, how we applied
it to SDitH and introduce how SASCA works. Section 3 presents the attack
on SDitH in theory with the template on the Galois field multiplication and the
construction of the graph for the SASCA with some simulations. Section 4 shows
how to perform our attack in practice and the different results that we obtain.
Section 5 discusses shuffling countermeasures. Finally, Section 6 contains some
conclusions about our attack, as well as some ideas for future work.

1 Preliminaries

Signature schemes can be built from an identification scheme, which corresponds
to a zero-knowledge proof of knowledge of a secret key. The MPCitH paradigm
itself creates a link between the notions of multiparty computation (MPC) and
zero-knowledge protocol.

In this section, we introduce the notions of MPC protocols and the MPCitH
paradigm. We then focus on the SDitH algorithm and in particular its threshold
variant.

1.1 MPC protocols and the MPC-in-the-Head paradigm

A Multi-Party Computation (MPC) protocol is an interactive protocol allowing
two or more parties to jointly compute a function on their private data with-
out revealing this data to the other parties. Before 2022, when implementing
MPC-based algorithms, it was necessary to emulate all the parties, say N , of
the underlying MPC protocol. But, due to the renewed of interest in this frame-
work, several optimisations have emerged. Starting in 2022, two optimisations
were released in parallel, with the aim of reducing the number of MPC protocol

emulations by modifying the generation of inputs (known as “shares”) of the
parties for the MPC protocol.

Hypercube variant. Let’s start by looking at the first variant called the hy-
percube and proposed by [MGH+22]. This approach generates party shares using
the hypercube structure, allowing the emulation of 1 + log2(N) parties instead
of N , this without any additional communication costs.

Threshold variant. There is also the Threshold Computation in the Head
(TCitH) framework proposed in [FR22]. In this variant, shares are generated
using a linear secret sharing scheme (LSSS). This comes at the cost of more
communications due to the use of Merkle tree (due to the larger size of the hash
digests in the authentication path). In addition, the number N of parties is lim-
ited by the size of the field in which the secret lies.

Other variants. One year later, in [FR23], the TCitH framework is improved
in several ways. It includes, among other things, a solution for using GGM trees
that removes the additional cost in terms of communication due to the use of
the Merkle tree. At the same time as the work in [FR23] began, the VOLE-
in-the-Head framework [BBdSG+23] was published. According to [FR23] this
framework can be seen as a sub-case of the TCitH framework for l = 1 and with
the use of GGM trees except for a few exceptions (which we will not detail in
this paper).

1.1.1 Definitions

Before taking a closer look to SDitH, we provide some necessary vocabulary and
definitions.

Zero-knowledge proofs. In a zero-knowledge proof, one party (the prover)
wants to convince another party (the verifier) that he knows a statement, like
the private key, without revealing anything about that statement.

The following definitions are based on the paper written by Feneuil and Rivain
[FR22]:

Threshold LSSS. Let F be a finite field and let V1 and V2 be two vector spaces
over F. Let t and N be integers such that 1 < t ≤ N . A (t,N)-threshold linear
secret sharing scheme (LSSS) is a method to share a secret s ∈ V1 into N shares
JsK := (JsK1, . . . , JsKN) ∈ V2 such that the secret can be reconstructed from any
t shares while no information is revealed on the secret from the knowledge of
t− 1 shares.

Formally, a (t,N)-threshold LSSS consists of a pair of algorithms:{
Share : V1 ×R 7→ VN

2

ReconstructJ : Vt
2 7→ V1

where R ⊆ {0, 1}∗ denotes some randomness space and where ReconstructJ is
indexed by a set (and defined for every) J ⊂ [N] such that |J | = t.

Shamir’s Secret Sharing. The Shamir’s Secret Sharing over F is an (l+1, N)-
threshold LSSS for which a sharing JsK of s ∈ F is constructed as follows:

– sample r1, . . . , rl uniformly in F,
– build the polynomial P as P (X) := s+

∑l
i=1 riX

i,

– build the shares JsKi as evaluations P (ei) of P for each i ∈ {1, . . . , N}, where
e1, . . . , en are non-zero public distinct points of F.

For any subset J ⊆ [N], s.t. |J | = l+1, the ReconstructJ algorithm interpolates
the polynomial P from the l+1 evaluation points JsKJ = (P (ei))i∈J and outputs
the constant term s.

1.1.2 MPC Protocols

An MPC protocol is a protocol in which, given a statement x and a relation R,
N parties Pi securely and correctly evaluate a function f on a secret sharing
JwKi of the secret witness w for a statement x to check whether (x,w) ∈ R
or not. When (x,w) ∈ R, the parties output ACCEPT, otherwise they output
REJECT.

In this MPC model, parties are required to perform only linear operations on
the shares. We can also note that this protocol is l-private, meaning that one can
open l views (composed of its input share, its random tape and all its received
messages) without getting any private information.

During the MPC protocol steps, parties can perform three types of action:

– Receiving randomness: the parties receive the same random value ϵ from
a randomness oracle OR.

– Receiving hints: the parties can receive a sharing of a hint β from a hint
oracle OH . This hint may depend on the witness w and previously sent
elements (such as random values sampled from OR).

– Computing and broadcasting: Thanks to the linearity of sharing, the
parties can perform linear transformations on their shares. That is, each
party will be able to locally compute JαK := Jφ(v)K from a sharing JvK where
φ is an F-linear function. Each of the parties Pi will then be able to broadcast
its share JαKi, allowing public reconstruction α := φ(v).

We repeat these steps t times, and then we have that the publicly recon-
structed values α1, . . . , αt satisfy the relation g(α1, . . . , αt) = 0, for a given
function g, if and only if the parties output ACCEPT.

1.1.3 MPC-in-the-Head Paradigm

Introduced by Ishai, Kushilevitz, Ostrovsky and Sahai in [IKOS07], the MPC-
in-the-Head paradigm makes it possible to construct a zero-knowledge proof of

knowledge of a secret x using an MPC protocol. By “in the Head” we mean that
the prover will emulate the MPC protocol locally. We can now explain how the
zero-knowledge protocol works:

1. the prover generates the shares JxKi of x and commits to them,

2. they receive a challenge from the verifier (the randomness ϵ),

3. thanks to this challenge, they simulate ”in their head” all the parties Pi of
the MPC protocol,

4. they then send a commitment of the result of each party’s MPC protocol
(also called party’s view),

5. they receive a second challenge to know which party’s view they need to
reveal,

6. they reveal the views,

7. and finally, the verifier can check the overall consistency of the MPC com-
putation.

For a better understanding of this framework, we can also illustrate it as
shown in Figure 1:

1 Generate and commits the shares

𝑥 𝑖

𝐶𝑜𝑚(𝑥 𝑖 , 𝜌𝑖)

5 Sends a random challenge 𝑖∗ ∈ [1, 𝑁]

7 Checks the consistency of the views

with an honest execution of the MPC

protocol and with the commitments

𝛼 𝑖

𝑖∗

𝑥 𝑖 , 𝜌𝑖 𝑖≠𝑖∗

3 Simulates « in his head » all the

parties 𝒫𝑖 of the MPC protocol

4 Sends the broadcast values 𝛼 𝑖

6 Reveals the views 𝑥 𝑖 , 𝜌𝑖 𝑖≠𝑖∗

Prover Verifier2 Sends a random challenge 𝜖
𝜖

Fig. 1: Illustration of the MPC-in-the-Head framework.

1.1.4 MPC-in-the-Head with Threshold LSSS

In this section, we will look at the main changes that come from the application
of a threshold LSSS (instead of a simple additive sharing system) to the MPCitH
paradigm:

– the parties initially receive an (l + 1, N)-threshold LSS of the witness w,

– when parties receive hints from the OH oracle, they take the form of an
(l + 1, N) threshold LSS sharing of β,

– to reconstruct the value αj from their shares, they use the algorithm Recon-
struct.

1.2 SD-in-the-Head

The SDitH signature scheme is based on the hardness of the syndrome decoding
problem for random linear codes over a finite field. It uses an MPC protocol
to check whether a given shared input corresponds to the solution of a syn-
drome decoding instance. By applying the MPC-in-the-Head paradigm to the
protocol, it becomes a zero-knowledge proof of the knowledge of a low-weight
vector x solution of an instance of the Syndrome Decoding (SD) problem. The
Fiat-Shamir heuristic [FS86] can then be used to transform the interactive proof
into a non-interactive proof and thus into a signature scheme. The SDitH proto-
col, originally proposed in [FJR22], has undergone improvements in subsequent
works [MGH+22], [FR22] that gave rise to the hypercube and threshold variants
used in SDitH.

In the following, we will refer to SDitH security levels I, III and V. NIST has
defined these levels in [NIS16] as follows:

– Level I - the algorithm is at least as hard to break as AES−128 using ex-
haustive key search.

– Level III - the algorithm is at least as hard to break AES−192 using exhaus-
tive key search.

– Level V - the algorithm is at least as hard to break AES−256 using exhaustive
key search.

The notations used in the rest of the paper are summarised in Table 1:

Table 1: Notations and parameters of the SDitH scheme from [AM+23].

Syndrome decoding parameters:

m Code length.
k Code dimension.
w Hamming weight bound.
d Parameter of the d-splitting variant.

Signature parameters:

τ Number of repetitions.
t Number of random evaluation points.

Field parameters:

Fq Field with q elements: base field of the SD instance
Fpoints Extension field of Fq (base field of the MPC elements α, β, v, r, ϵ)
η Field extension s.t. Fpoints = Fqη .

MPC protocol parameters:

l Set of opened parties (I ⊆ [1 : N], |I| = l).
rcols Number of columns in the matrix composed of powers of points rk.

1.2.1 Splitting Syndrome Decoding

Let us start by defining the problem on which the SDitH algorithm is based.

The syndrome decoding problem. Let F a finite field, and m, k,w three
positive integers such that m ≥ k and m ≥ w. An instance of the syndrome
decoding problem with parameters (F,m, k, w) consists of:

– a parity-check matrix in standard form H = (H
′ |Im−k) ∈ F(m−k)×m,

– a vector y ∈ Fm−k.

A solution to the problem is a vector x = (xA|xB) ∈ Fm such that:

y := Hx = H
′
xA + xB and wt(x) ≤ w,

where wt represents the Hamming weight. Using this representation for the ma-
trix H and the vector x, we only need xA to find the solution.

d-split syndrome decoding problem. This is a variant of the syndrome

decoding problem where we split the solution x into d blocks x1, . . . , xd ∈ Fm/d
q

such that:
x = (x1| . . . |xd) s.t. wt(xj) =

w

d
∀j ∈ [1 : d].

This variant is used for security levels III and V.

1.2.2 The SDitH MPC Protocol

In the algorithm specification, in order to build the MPC protocol, it is necessary
to use linear functions, and therefore to characterise the constraint wt(x) ≤ w
linearly. To do this, the polynomial representation of [AM+23] is used.

Let f1, . . . , fq denote the elements of Fq. We want to build three witness-
polynomials S,Q, and P , and one public polynomial F such that :

S ·Q = P · F.

These polynomials are defined as follows:

– The polynomial S ∈ Fq[X] is obtained by Lagrange interpolation of the
coordinates of x, such that S(fi) = xi for i ∈ [1 : m]. This polynomial is of
degree deg(S) ≤ m− 1.

– The polynomial Q ∈ Fq[X] is defined as Q(X) =
∏

i∈E(X − fi), where E is
a subset of [1 : m] of order |E| = w, such that the non-zero coordinates of x
are contained in E. This polynomial is of degree deg(Q) = w.

– The polynomial F ∈ Fq[X] is the “vanishing polynomial” of the set f1, . . . , fm
which is defined as F (X) =

∏
i∈[1:m](X − fi). This polynomial is of degree

deg(F) = m.

– The polynomial P ∈ Fq[X] is defined as P = S ·Q/F . This polynomial is of
degree deg(P) ≤ w − 1.

By constructing these polynomials, we have that S ·Q = P · F = 0 at all points
fi ∈ [1 : m]. Then, at each point fi, either S(fi) = xi = 0, or Q(fi) = 0. But Q
can be zero in at most w points because of its degree. And by construction of the
set E, we have that S is non-zero in at most w points, meaning that wt(x) ≤ w
(more details can be found in [AM+23]).

When considering the d-split variant of the SD problem, the polynomials
P and Q are replaced by the d-split vectors P = (P [1], . . . , P [d]) and Q =
(Q[1], . . . , Q[d]) such that deg(P [j]) ≤ w/d and deg(Q[j]) = w/d ∀ j ∈ [1 : d].
We also consider the challenges r, ϵ, and by construction the shares JαK, JβK, JvK
in a d−vectorised form.

To check that the polynomial relation S · Q = P · F is true, we use the
Schwartz-Zippel lemma, which states that the equality of polynomials is unlikely
to be true at randomly chosen points if the equality is not true in general. And
since the evaluation of a polynomial at a point is a linear operation, the parties
will be able to locally compute the evaluations S(rk), Q(rk) and P − F (rk) for
each random point rk. And to check the equality S(rk) − Q(rk) = P − F (rk),
we use the protocol in [BN20].

SDitH’s MPC protocol is therefore built as follows in [AM+23]:

1. Sample r, ϵ ∈ Ft
points uniformly at random.

2. Parties locally set JxBK = y −H ′JxAK.
3. Parties locally compute JSK via Lagrange interpolation of JxK = (JxAK|JxBK).
4. Parties locally evaluate JS(rk)K, JQ(rk)K and JF · P (rk)K.
5. For all j ∈ [t], parties verify (JS(rk)K, JQ(rk)K, JF ·P (rk)K) by sacrificing the

triple (JakK, JbkK, JckK):
(a) Parties locally compute

JαkK = ϵk · JQ(rk)K + JakK, and set JβkK = JS(rk)K + JbkK.

(b) Parties broadcast JαkK and JβkK to publicly recompute αk and βk

(c) Parties locally compute

JvkK = ϵk · JF · P (rk)K − JckK + αk · JbkK + βk · JakK − αk · βk.

(d) Parties broadcast JvkK to publicly recompute vk.

(e) Parties output Accept if vk = 0 and Reject otherwise.

When parties compute JS(rk)K locally, this corresponds to a vector/matrix mul-
tiplication in the code. This multiplication is composed of the Galois field mul-
tiplication, hereafter referred to as gf mul.

1.2.3 The SDitH Signature and Verification Algorithms

Thanks to the MPCitH paradigm, we can transform the SDitH MPC protocol
into a zero-knowledge proof, and then use the Fiat-Shamir heuristic to get the
SDitH signature scheme. We start by giving the specifications of the signature

scheme from [AM+23]:

Signature:

1. Generate random sharing JxAK, JP K, JQK, JaK, JbK, JcK
2. Commit the partie’s shares:

JxAKi, JP Ki, JQKi, JaKi, JbKi, JcKi
Commit−−−−−→ comi

3. Derive the first challenge (randomness of MPC protocol):

com1, . . . , comN
Hash−−−→ h1 → r, ϵ

4. Simulate the MPC protocol:

JxAK, JP K, JQK, JaK, JbK, JcK, r, ϵ MPC−−−→ JαK, JβK, JvK

5. Derive the second challenge (index of the non-opened party):

h1, JαK, JβK, JvK Hash−−−→ h2 → I

6. Build the signature from

h1, h2, {JxAKi, JP Ki, JQKi, JaKi, JbKi, JcKi}i∈I , {comi, JαKi, JβKi, JvKi}i/∈I

We now do the same for the verification scheme from [AM+23]:

Verification:

1. Recompute the commitments, for parties i ∈ I (with I obtained from h2):

JxAKi, JP Ki, JQKi, JaKi, JbKi, JcKi
Commit−−−−−→ comi

2. Recompute the first challenge (randomness of MPC protocol):

com1, . . . , comN
Hash−−−→ h1 → r, ϵ

3. Simulate the MPC protocol, for parties i ∈ I:

JxAKi, JP Ki, JQKi, JaKi, JbKi, JcKi, r, ϵ
MPC−−−→ JαKi, JβKi, JvKi

4. Recompute the second challenge (index of non-opened party):

h1, JαK, JβK, JvK Hash−−−→ h2

5. Check that recomputed h1, h2 match the signature.

1.3 The Threshold Variant

The SDitH algorithm uses the hypercube and threshold variants (the 2022 ver-
sion). In light of the recent improvements, we have decided to focus our work on
the threshold variant, particularly on this variant over the field F256.

In this variant, the Shamir’s secret sharing is used as LSSS and the MPC
protocol calculation is run on the l+1 coefficients of the polynomial involved in
sharing Shamir’s secret. Noting:

input plain := (xA, P,Q, a, b, c),

and sampling the l vectors input coef1, ..., input coefl uniformly at random in

F
|input plain|
q , we can define the ith share of input plain as follows:

Jinput plainKi := input plain+
l∑

j=1

f j
i · input coefj . (1)

The MPC computation is then run on input plain, input coef1, ..., input coefl.
Furthermore, in [AM+23] it has been chosen to avoid calculating the Lagrange
interpolation of the polynomial S, with the result that JsAK can be given as
input to the MPC protocol for the parties instead of JxAK. The private variable
of the private key is the following:

wit plain := (sA, Q
′, P);

with Q′ the truncated version of Q.
We end this subsection with the Table 2 which summarises some parameters

of the SDitH algorithm for the threshold variant:

Table 2: The MPCitH parameters for the threshold variant from [AM+23].

l τ k m w d η t rcols
SDitH-L1 3 6 126 242 87 1 4 7 32

SDitH-L3 3 9 220 376 114 2 4 10 48

SDitH-L5 3 12 282 494 156 2 4 13 64

1.4 Soft Analytical Side-Channel Attacks and Belief Propagation

Soft Analytical Side-Channel Attack (SASCA) was originally proposed by Veyrat-
Charvillon et al. [VGS14] with the aim of combining the “divide and conquer”
approach and algebraic side-channel attacks, in order to recover keys using side-
channel leakages. Combining these two approaches, we can benefit from the low
time and memory complexity and high noise tolerance of the divide-and-conquer
approach, as well as the optimal data complexity of algebraic attacks. A real ad-
vantage of SASCA over algebraic SCAs, which uses “hard” information, is its

ability to manipulate probability distributions, typically those present at the
output of classifiers. Indeed, to perform this type of attack, it is necessary to
identify a good set of operations dependent on secret input data. Within this
set of operations, we will be particularly interested in the intermediate values
that are calculated. By using the outputs of classifiers, we obtain probability
distributions for these values. We then want to enhance our prediction of the
secret by modeling a Maximum a Posteriori Problem that considers the gath-
ered distributions. Typically, we can benefit from the BP algorithm [Pea82] on
a factor graph [KFL01], similarly to [VGS14].

The BP algorithm was first introduced by Pearl et al. [Pea82]. It is a message
passing algorithm designed to calculate the marginalisation of a function from
its factorisation. In the context of SASCA, we can model the relations between
intermediate values using a graph. As described above, we can feed this graph
with probability distributions obtained with SCA. On this type of graph, also
known as a factor graph, we can use the BP algorithm. Specifically, in this
factor graph, the probability distributions of the intermediate values are stored
in variable nodes and the links between these values are stored in factor nodes.To
initialise the algorithm, we give the variable nodes a former ”belief” marginal
obtained with an SCA, such as the output of a classifier. For variable nodes
with no prior knowledge, we initialise them with a uniform distribution. Then,
in order to calculate the marginal distributions, the algorithm performs iterative
exchanges of messages between the nodes.

More specifically, there are two types of message we can use, each with its
own update rule. Thus, using the notations of [Mac03], we can define the two
rules as follows:

From variable to factor:

qn→m(xn) =
∏

m′∈M(n)\m
rm′→n(xn),

where M(n) denotes the set of factors in which n participates.

From factor to variable:

rm→n(xn) =
∑
xm\n

fm(xm)
∏

n′∈N\n
qn′→m(xn′)

 ,

where N (n) denotes the indices of the variables that the m−th factor depends
on and x

m\n denotes the set of variables in xm with xn excluded.

Finally, we can get the marginal distributions of all the variables. Specifically,
the marginal function of xn is obtained by multiplying all the incoming messages

at that node:

Zn(xn) =
∏

m∈M(n)

rm→n(xn).

We can then normalise these marginals distributions. To do so, we use the
normalising constant Z, that we can obtain by summing any marginal function,
Z =

∑
xn

Zn(xn), and we compute:

Pn(xn) =
Zn(xn)

Z
.

If the factor graph is tree-like, then the above algorithm returns the exact
marginals. Unfortunately, in practice, factor graphs often contain cycles, in which
case the algorithm does not necessarily converge. To overcome this problem, the
loopy-BP algorithm has been proposed, which generally gives sufficiently accu-
rate approximations of the marginals. Although the exact conditions leading to
convergence of the loopy-BP algorithm are not known, Su et al. [SW15] have
listed some interesting workarounds, such as message damping, that can be use-
ful depending on the context.

2 Point of Vulnerability and Construction of the Attack

In this section, we show how to construct an attack on the TCitH framework
in order to recover the secret key and we apply it to the SDitH algorithm. To
do this, we start by highlighting a side-channel vulnerability of this framework,
which we then adapt to SDitH.

2.1 Point of Vulnerability

In order to mount an attack on the TCitH framework, we need the following
requirements to be fulfilled:

1. Firstly, the search of a function manipulating the secret key. We will concen-
trate here on the functions used in the MPC protocol, i.e., executed by the
parties and which manipulate a share of the secret key or part of the secret
key of each party. This part therefore depends on the implementation of the
algorithm targeted by the attack.

2. In a second phase, we are going to take a closer look at the TCitH framework
itself. Specifically to the construction of the shares given as input of the MPC
protocol for the parties. This will enable us to make a link between the shares
of the secret key and the secret key in order to reconstruct it or part of it.
This part is independent of the implementation of the algorithm.

We can then see how to adapt this attack to SDitH:

1. We start by targeting the Galois field multiplication function gf mul in the
polynomial evaluation function. Specifically, we choose to target the S poly-
nomial as we can quickly find the secret key from it. The gf mul function
has the desired characteristics, i.e. being used in the MPC protocol and
manipulating the share JsAK of each party.

2. We use the equation (1), that link JsAKi to sA, in order to reconstruct sA in
the secret key.

2.2 Exploitation of the Vulnerability with SASCA

We can represent the vulnerability of SDitH introduced in the previous section
in the form of a factor graph. One advantage of this representation is that we
can also represent the construction part, which is independent of the implemen-
tation. This representation allows us to perform a SASCA, which is even more
interesting for this algorithm as it presents redundancy, due to the MPC proto-
col that we repeat τ times. Since this redundancy is favourable to SASCA, this
enables us to have better results when we retrieve the secret key.

Now that we have seen how to exploit the vulnerability in SDitH, we will
see in the next sections how to perform our attack both in simulation and in
practice.

3 The Attack - Simulation Part

This section presents the theoretical part of our attack on SDitH. It consists of
the template on the gf mul function, the construction of the SASCA graph and
some attack simulations.

3.1 The Template

As we said in the previous section, we want to conduct our template attack on
a function in the MPC protocol that manipulates a share of a variable linked to
the private key, i.e., using the notation introduced earlier, we are looking for a
function that manipulates a share JwKi of the witness, or a part of this witness.

In the case of SDitH, this function is the evaluation in rk of a polynomial.
And as we said earlier, this evaluation is composed of the gf mul function, so we
will execute our attack on gf mul.

3.1.1 Attacker Model

The type of attack we are considering in this article requires an attacker capable
of performing profiling attacks on the SDitH signature, in order to recover the
secret key. Our attacker therefore needs a clone of the physical device on which
we are going to perform the attack. It is from this clone that he will be able
to carry out the profiling phase. For ease of use, we have chosen to carry out
the profiling and attack procedures on the same physical device. In the profiling

phase, the attacker must be able to create models, in this case from the gf mul
operation.

To create these models, it is assumed that the attacker can isolate a sequence
of gf mul calculations within a larger sequence, such as the execution of the MPC
protocol by the parties. This part of model creation will not be studied in this
paper. We will assume that it can be achieved using matching techniques.

3.1.2 Experimental Setup

To acquire our traces, we chose the STM32F407 as our device under test, as it is
a commonly used board in the state of the art [KFT+21], [GMGL24]. More pre-
cisely, we acquired our traces using a “Langer Near Field” electromagnetic probe
connected to a Rhode-Schwarz RT02024 oscilloscope with a sampling frequency
of 1 GHz. As previously mentioned, we are interested in the gf mul multiplica-
tion function of the SDitH reference implementation. This code is compiled with
the −O3 optimisation, surrounded by a GPIO-based trigger, and allows us to
collect traces of 1125 points each for an execution time of 42µs.

3.1.3 Templates on Galois Field Multiplication

In the following, tests will be performed using the following reference implemen-
tation from [AM+23] for the gf mul function:

Algorithm 1 Multiplication in GF (28) from [AM+23]

1 #define MODULUS 0x1B

2

3 uint8_t gf256_mul(uint8_t a, uint8_t b) {

4 uint8_t r;

5 r = (-(b>>7) & a);

6 r = (-(b>>6 & 1) & a) ^ (-(r>>7) & MODULUS) ^ (r+r);

7 r = (-(b>>5 & 1) & a) ^ (-(r>>7) & MODULUS) ^ (r+r);

8 r = (-(b>>4 & 1) & a) ^ (-(r>>7) & MODULUS) ^ (r+r);

9 r = (-(b>>3 & 1) & a) ^ (-(r>>7) & MODULUS) ^ (r+r);

10 r = (-(b>>2 & 1) & a) ^ (-(r>>7) & MODULUS) ^ (r+r);

11 r = (-(b>>1 & 1) & a) ^ (-(r>>7) & MODULUS) ^ (r+r);

12 return (-(b & 1) & a) ^ (-(r>>7) & MODULUS) ^ (r+r);

13 }

The gf mul function is a “schoolbook” style implementation, which means it
is more likely to leak. So to check that the gf mul function is leaking, we are
going to use the Linear Regression Analysis (LRA) as a leakage assessment tool.
LRA is a statistical method whose aim is to predict the value of a variable, called
the dependent variable, from the value of other variables, called the independent

variables. To do this, we build a model in which we express the leakage for a
side-channel measurement (in this case, a measurement of one byte of gf mul) in
linear form. Here we used the linear model defined in [GMGL24]. Furthermore,
as the LRA is univariate, it must be applied for each time sample.

Once this model has been built, we want to measure its performance, that is,
how well the model fits the data and how well it can predict future results. To do
this, we will use the R2 metric, also known as the coefficient of determination.
This will allow us to calculate the proportion of the total variation in the de-
pendent variable that is captured by the linear model based on the independent
variables. The closer R2 is to 1, the more accurate the model is. So we compute
the coefficient of determination for the different variables involved in gf mul, i.e.
the two operands and the output, which gives us the Figure 2:

Fig. 2: Coefficients of determination computed for both inputs and the output of the
Galois field multiplication

Thanks to Figure 2, we can make several observations:

– the leakage of the operand 0 is distributed throughout the calculation, but
is not very important;

– the leakage of the operand 1 is distributed in the same way as the first, but
is more important, and this due to the numerous shifts performed on this
operand;

– the output of the gf mul calculation leaks at the end of the function, when
it is stored in the main memory, and its leakage is greater than the one
of the operands. This can be explained by the numerous logical operations
performed on this output.

Now that the analysis of the coefficient of determination has shown us that
the gf mul function leaks, we can build our templates. More precisely, we build
three templates on the gf mul function that targets the HW of its inputs (operands
0 and 1) and its output. We start by training these templates with 100000 train-
ing traces and by splitting the datasets into 90% training traces and 10% valida-
tion traces. After that, we use Fisher’s Linear Discriminant Analysis (LDA) to

project our data into a lower-dimensional space and as our classifier. Moreover,
we trained each LDA on the HW of one of the three variables of interest.

For the LDA, we tested different values for the size of the dimensional space.
This shows that the accuracy value is higher when the data is projected into a
2− or 3−dimensional space. In order to have a better visual representation, we
therefore chose to use 2 dimensions for Figure 3. As we consider our data in
a 2−dimensional space, we can then get a first idea of the separability of the
different classes with the following Figure 3:

(a) Operand 0 (b) Operand 1 (c) Output

Fig. 3: LDA projection of the traces

We can also calculate the accuracy of our models. For this we repeat each attack
100 times and we summarised them in Table 3.

Table 3: Hamming weight accuracy on gf mul.

Hamming weight template accuracy

Operand 0 0.4023

Operand 1 0.5142

Output 0.9965

Discussion. We can see that the HW of the output can be found almost all the
time, with an accuracy of 99.65%. For the two operands, we also have satisfactory
results, with respectively 40.23% and 51.42% accuracy for operands 0 and 1.

In the same way as for the coefficient of determination, the number of log-
ical operations performed on the variables of interest has a direct effect on the
percentage of accuracy obtained. This can be seen visually in the separability of
the HW classes in Figure 3.

Even if we have an accuracy of 99.65% for the output, we must not forget
that it is in HW, therefore it does not mean that 99.65% of sA’s coefficients
can be found. Indeed, if we consider that the information we have is the HW of
the output and the value of the operand 1 (because the public matrix r powers

is behind this one), since the function gf mul is non-injective, so there are still
many possible values for the operand 0.

As we said earlier, an advantage of a SASCA attack is that using the HW
templates on multiple intermediate variables, we can exploit the links between
them to recover the values of the coefficients of sA.

3.2 SASCA Graph and Simulations

In this section, we build a factor graph that models the polynomial evaluation
for the SDitH algorithm from which we will be able to perform simulations of
SASCA with the HW leaker.

3.2.1 Construction of the Graph

For SDitH, we illustrate our graph in Figure 4. Specifically, it is first composed
of the evaluation of the polynomial S at points rk by the different parties. The
second part of the graph is built from the structure of the threshold variant,
more precisely using the construction of parties’ shares below:

input share[e][i] = input plain+
l∑

j=1

f j
i · input coef[e][j] when i ̸= N. (2)

We recall that this construction is independent from the implementation of
SDitH and comes directly from the mathematical specificities of this algorithm.
This will enable us to make the link between input coef (S0, S1 and S2) and
input plain (S). Specifically, we will retrieve the first k bytes of S, corresponding
to the value of sA. It is from this value that we will be able to reconstruct the
Q and P polynomials that make up the rest of the secret key.

×𝑚𝑎𝑡

𝑆𝑖

: public value
: secret value
: leaky variable

𝑆2,𝑖

× × ×𝑓0 𝑓1 𝑓2

⊕ ⊕ ⊕

×

⊕

×

⊕

×

⊕

×

⊕

×

⊕

×

⊕

𝑆1,𝑖

𝑆0,𝑖

𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑟𝑒0,𝑖 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑟𝑒1,𝑖 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑟𝑒2,𝑖

𝑟{𝑖,:}_𝑝𝑜𝑤𝑒𝑟𝑠

𝑓0

𝑓0

𝑓1

𝑓1

𝑓2

𝑓2

𝑆𝑖(𝑟𝑘)

Fig. 4: Evaluation of polynomial S factor graph.

In Figure 4, we have three types of factors: (i) the XOR factor ⊕, (ii) the gf mul
factor ×, and (iii) and the vector/matrix multiplication factor ×mat composed of
the gf mul factor. In multiplication ×mat, r powers is the matrix composed of the
powers of the random points {rk}k∈[t] with rk sampled from Fpoints = Fqη . We
can also see on this figure the brown block that corresponds to the reconstruction
part of S from equation (2) and that is independent from the implementation
of SDitH. The dotted block will be used later to describe the entire graph, i.e.
repeated several times.

We repeat this graph for each byte i, i ∈ [0 : k], to recover the secret key sA.
Moreover, when the signature algorithm is run, the MPC protocol is performed
τ times. In other words, we repeat τ times our full graph (graph repeat for all
bytes) with other values for Sj , fj and input sharej (j ∈ [0, 2]).

Note that the variable r powers remains the same for all τ . Moreover, each
time the graph is run, the reconstruction part of the S polynomial is performed
in the same S variable. For a coefficient of S we then have the graph Figure 5:

𝑟{𝑖,:}_𝑝𝑜𝑤𝑒𝑟𝑠

𝑆𝑖

∙∙∙∙∙∙

𝑡 = 1 𝑡 = 2 𝑡 = 𝜏

: public value
: secret value
: leaky variable

Fig. 5: Full factor graph for a coefficient of S

At the end, we have the above graph for the k coefficients of S. Since this
full graph contains cycles, it benefits from the loopy-BP convergence proof.

3.2.2 Simulated Attack

Now that we’ve built our graph, let us simulate our attack using a noisy HW
model. These simulations give us a generic analysis of our attack.

As we can see if we look at the reference implementation and at the Figure 4,
the leaky variables are used as the first operands and the output in the function
gf mul. So we start by initialising the marginal probabilities of the first operand
and the outputs for all gf mul computation from a HW leakage model with a
Gaussian noise σ.

Moreover, we can define the leakage model that is affected by the manipula-
tion of a gf mul operand 0, denoted a, with the following formula:

L(a) = α ·HW(a) + β,

with β ∼ N (0, σ) and α = 1 for an easier interpretability of the results. We can
define the leakage model in the same way for an output of gf mul.

Remaining Complexity. When we run the simulations, we notice that for
the coefficients of the S polynomial multiplied by the first row of the r powers
matrix, the BP algorithm does not converge to the correct coefficients. This can
be explained by the particular form of this first line, which is made up exclusively
of 0 and 1s, unlike the other lines. The nature of the information available to us
(HW on the output) and the absence of “useful” redundancy, i.e., multiplication
by 0 and 1 only, means that, even with perfect knowledge of the HW, it is not
possible to isolate a single candidate for these coefficients of S. As SDitH uses
a split version of the SD problem, there are exactly d coefficients (including the
first coefficient) of the polynomial S which are multiplied by the first line, so
the convergence problem affects d coefficients (i.e. d = 1 for security level I and
d = 2 for security levels III and V).

We can see, by looking at how the syndrome x is constructed in the key
generation algorithm, that one byte of x has a m−w

m % (about 65% for all secu-
rity levels) chance of being 0. And so, by constructing S, its first coefficient also
has the same percentage chance of being 0. When it is not, since we are using
simulated HW leakage, we can find this coefficient in at most 70 attempts, i.e
how many elemnts in GF(256) have a HW of 4 (as this is the most represented
HW). When d = 2, for the second coefficient that does not converge, we will also
need 70 attempts. The bruteforce complexity is therefore of 70 for security level
I and of 702 for security levels III and V.

So in the following, we will assume that the attack has succeeded when we
find the k−d coefficients of the polynomial S. Once our attack simulations have
been performed, we illustrate them with Figure 6, which shows the success rate
of the simulated attack as a function of the noise parameter σ. Each attack was
simulated 50 times for each security level of SDitH.

Fig. 6: Simulated success rate of SASCA on the polynomial evaluation of SDitH.

Simulation results. We observe that we can find all the coefficients for σ ≤ 1.4
for security level I, and for σ ≤ 1.3 for security levels III and V.

The curves also show that security levels III and V are very close. This can be
explained by the fact that there are 62 more S coefficients to be found between
levels III and V, whereas in comparison there were more (94) between levels I
and III. On the other hand, between each level the value of τ increases by 3, and
m by 16. And during the simulations we noticed that the value of τ had a non-
negligible impact on the number of coefficients retrieved, i.e. more coefficients
can be found for the same noise level. So, considering these two remarks, it can
explain why the curves for safety levels III and V are this close.

4 The Attack - Practical Part

In order to robustly compute success rates on a practical attack, we use the
structure of prediction matrices. Prediction matrices have been introduced in
[GMGL24] as a structure which aims at providing a repeatable “real-case-like”
simulations by storing multiple template predictions. Specifically, when we ran-
domly sampled elements from such a matrix, we can see it as a real template
prediction. To construct these prediction matrices, we associate each value of the
coefficients of S with an estimate of the leakage model based on HW (computed
thanks to the template predictions). Precisely, we construct a dictionary that
contains the coefficients of S as keys and array of output distributions as values.

And in the same way as we did for the HW leaker, we build our prediction
matrices on the first operand and the output. Therefore, three attacks can be
derived from this:

1. leakage on the operand 0 and the output;

2. leakage on the operand 0;

3. leakage on the output.

Results. Now that we have constructed the prediction matrices, we are able to
execute our attacks. For the first and third attacks, they show a perfect success
rate for all the security levels on SDitH, and can be performed in a few minutes.
For the second one, due to the accuracy of the operand 0 in Table 3, the BP
graph does not converge and the attack does not succeed as might be expected.

In what follows, we define the term “epochs” as the iterations during which
the BP algorithms operate on our graph factor. Each epoch represents a cycle of
information updates between nodes, progressively refining the attacker’s knowl-
edge of the secret key. In order to get an idea of the efficiency of these attacks,
we will look at how the different coefficients of sA converge depending on the
number of epochs of the BP algorithm in Figure 7 and Figure 8:

(a) Level I (b) Level III (c) Level V

Fig. 7: Evolution of the rank of sA coefficients as a function of the number of epochs
using real HW leakages on operand 0 and output.

(a) Level I (b) Level III (c) Level V

Fig. 8: Evolution of the rank of sA coefficients as a function of the number of epochs
using real HW leakage on the output.

If we look at the Figure 7 and Figure 8, for which the attack succeeds, we
can see that we need 7 iterations of the BP algorithm to achieve such a result.
We can also see, as we explained in the SASCA simulations, that d coefficients
of S do not converge on the correct value in our graph.

5 Shuffling Countermeasures

As mentioned above, SASCA attacks have already targeted Kyber’s NTT. To
counter these attacks, Ravi et al. proposed in [RPBC20] two shuffling counter-
measures: fine shuffling and coarse shuffling. The security of these countermea-
sures has been studied (and shown to be insufficient) in [GMGL24] for HQC and
adapted to vector/matrix multiplication using the gf mul operation. Therefore,
in the same way we can adapt them for SDitH.

Fine shuffling. The fine shuffling can be used to randomise the input of gf mul,
allowing to manipulate the secret data (i.e., a coefficient of S) behind operand 0
once in two cases. To understand more precisely how this countermeasure works,
we can use the following pseudo-code of Algorithm 2:

Algorithm 2 Fine shuffling for a function f with two inputs

Require: f a function, a and b two inputs
Ensure: f(a, b) or f(b, a)

r
$←− {0, 1}

if r = 0 then
return f(a, b)

else
return f(b, a)

end if

Coarse shuffling. The coarse shuffling itself can shuffle the rows/columns
together in the r powers matrix. This type of shuffling changes the sequence
in which operations, i.e. gf mul, in ×mat are performed. As with fine shuffling,
we can explain coarse shuffling in more detail using the pseudo-code of Algo-
rithm 3 below:

Algorithm 3 Coarse shuffling for a function of multiplication vector/matrix

Require: f a function, v ∈ Fr
q, M ∈ Fr×c

q

Ensure: z = v ×mat M
rows = random permutation([0, 1, . . . , r − 1])
z ← (0, . . . , 0) ∈ Fr

q

for i in rows do
cols = random permutation([0, 1, . . . , c])
for j in cols do

z[i]← z[i] + f(v[j],M [j][i])
end for

end for
return z

However, following the same reasoning as for HQC, these two countermea-
sures are not effective for SDitH.

[GMGL24] also introduced new countermeasures, called window shuffling and
full shuffling.

Window shuffling. For the window shuffling, the idea is to compute each
window in a random order, allowing us to change the order of the coefficients in
the computation of S. We consider here an iteration of our graph in Figure 4 as a
window, and as they are independent, we can use this countermeasure. Changing
the order of execution of the windows leads the BP algorithm to converge on
a permutation of the real value of S. We can also explain this countermeasure
with the pseudo-code in Algorithm 4:

Algorithm 4 Window shuffling

Require: f window
index window = random permutation([0, 1, . . . , k − 1])
for i in index window do

Execute(f window(i)) ▷ a window corresponds to the graph in Figure 4
end for

Once again, as for HQC and using the Hungarian algorithm, this countermea-
sure is not effective for SDitH.

Full shuffling. The idea for full shuffling is to combine the window shuffling
and the coarse shuffling. This result in the randomisation of the order of gf mul
calculations and leads to an overhead equal to the cost of shuffling a list the size
of the r powers matrix, i.e., (m/d) × rcols. And as we have that the size of the
r powers matrix is much larger than the size of the Galois field, as in [GMGL24],
the complexity of full shuffling inversion corresponds to the number of permuta-
tions of the r powers matrix, meaning that we respectively have a complexity of
21208, 21248 and 21449 for the three security levels of SDitH. Consequently, this
countermeasure is efficient against the attack proposed in this paper.

6 Conclusion and Further Work

In this paper, we presented the first side-channel attack on the TCitH framework,
specifically the first single trace attack, targeting the secret key. We begin by
highlighting a point of vulnerability which we can divide into two parts and that
we exploit on SDitH:

– the first part depends on the implementation of the chosen algorithm (here
SDitH) in which we are looking for a function run by the parties in the
MPC protocol and that manipulates a share of the secret. This function
corresponds to the polynomial evaluation in SDitH.

– the second part is independent of the implementation and creates a link
between the shares of the secret and the actual secret, i.e., the coefficients
of sA for SDitH.

Furthermore, we exploit the redundancy inherent to this type of framework
through SASCA.

After a leakage assessment showing leakages on the Galois field multiplica-
tion, we built templates so as to predict the Hamming weight of the operands and
output. We then use SASCA to directly retrieve the values of sA. We simulated
the leakages with increasing noise level in order to evaluate the noise resilience
of SASCA on SDitH. We were able to recover the full secret key (to within d
coefficients) for σ ≤ 1.4 for security level I and for σ ≤ 1.3 for security levels
III and V. With real physical measurements, we were able to perform attacks
with either (i) leakage on the operand 0 and the output, (ii) leakage on operand

0, and (iii) leakage of the output. Only the second attack does not work, as we
might have expected given the value of the accuracy previously obtained. For
the two other attacks, we can retrieve the full private key with an bruteforce
complexity of 70 for security level I, and of 702 for security levels III and V. In
addition, we can run them in just a few minutes.

We end this paper with a discussion on some shuffling countermeasures. This
enabled us to determine that the full shuffling [GMGL24] represents a good
countermeasure for the SDitH algorithm.

Future work could investigate to which extent the structure of our attack can
be adapted to the new TCitH [FR23] and VOLEitH [BBdSG+23] frameworks,
and if so, how. Furthermore, as signature schemes can allow an attacker to gather
traces of several signatures, we believe that multi-trace attack scenarios, profiled
or not, are an interesting research path.

Acknowledgement

This work was supported by the French National Research Agency in the frame-
work of the ”Investissements d’avenir” program (IRT Nanoelec, ANR-10-AIRT-
05).

References

AM+23. C Aguilar-Melchor et al. The syndrome decoding in the head (SD-in-
the-Head) signature scheme. submission to the NIST call for additional
post-quantum signatures, 2023.

BBdSG+23. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem,
Michael Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Pub-
licly verifiable zero-knowledge and post-quantum signatures from vole-in-
the-head. In Helena Handschuh and Anna Lysyanskaya, editors, Advances
in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part V, volume 14085 of Lecture Notes in Computer
Science, pages 581–615. Springer, 2023.

BFR23. Ryad Benadjila, Thibauld Feneuil, and Matthieu Rivain. MQ on my mind:
Post-quantum signatures from the non-structured multivariate quadratic
problem. IACR Cryptol. ePrint Arch., page 1719, 2023.

BMG+24. Chloé Bäısse, Antoine Moran, Guillaume Goy, Julien Maillard, Nicolas
Aragon, Philippe Gaborit, Maxime Lecomte, and Antoine Loiseau. Secret
and shared keys recovery on hamming quasi-cyclic with SASCA. IACR
Cryptol. ePrint Arch., page 440, 2024.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, Public-Key Cryptography - PKC 2020 - 23rd IACR
International Conference on Practice and Theory of Public-Key Cryptog-
raphy, Edinburgh, UK, May 4-7, 2020, Proceedings, Part I, volume 12110
of Lecture Notes in Computer Science, pages 495–526. Springer, 2020.

CRR02. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th In-
ternational Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers, volume 2523 of Lecture Notes in Computer Science, pages
13–28. Springer, 2002.

FJR22. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome de-
coding in the head: Shorter signatures from zero-knowledge proofs. In
Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology
- CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceed-
ings, Part II, volume 13508 of Lecture Notes in Computer Science, pages
541–572. Springer, 2022.

FR22. Thibauld Feneuil and Matthieu Rivain. Threshold linear secret sharing to
the rescue of mpc-in-the-head. IACR Cryptol. ePrint Arch., page 1407,
2022.

FR23. Thibauld Feneuil and Matthieu Rivain. Threshold computation in
the head: Improved framework for post-quantum signatures and zero-
knowledge arguments. IACR Cryptol. ePrint Arch., page 1573, 2023.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA,
1986, Proceedings, volume 263 of Lecture Notes in Computer Science,
pages 186–194. Springer, 1986.

GMGL24. Guillaume Goy, Julien Maillard, Philippe Gaborit, and Antoine Loiseau.
Single trace HQC shared key recovery with SASCA. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2024(2):64–87, 2024.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster
Zero-Knowledge for boolean circuits. In 25th usenix security symposium
(usenix security 16), pages 1069–1083, 2016.

HHP+21. Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine
van Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2
secure kyber. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):88–
113, 2021.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007,
pages 21–30. ACM, 2007.

KFL01. Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Fac-
tor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory,
47(2):498–519, 2001.

KFT+21. Tendayi Kamucheka, Michael Fahr, Tristen Teague, Alexander Nelson,
David Andrews, and Miaoqing Huang. Power-based side channel attack
analysis on PQC algorithms. IACR Cryptol. ePrint Arch., page 1021,
2021.

Mac03. David J. C. MacKay. Information theory, inference, and learning algo-
rithms. Cambridge University Press, 2003.

MGH+22. Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing,
David Joseph, and Dongze Yue. The return of the sdith. IACR Cryptol.
ePrint Arch., page 1645, 2022.

NIS16. CFP NIST. Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process, 2016.

Pea82. Judea Pearl. Reverend bayes on inference engines: A distributed hierar-
chical approach. In David L. Waltz, editor, Proceedings of the National
Conference on Artificial Intelligence, Pittsburgh, PA, USA, August 18-20,
1982, pages 133–136. AAAI Press, 1982.

PP19. Peter Pessl and Robert Primas. More practical single-trace attacks on
the number theoretic transform. In Peter Schwabe and Nicolas Thériault,
editors, Progress in Cryptology - LATINCRYPT 2019 - 6th International
Conference on Cryptology and Information Security in Latin America,
Santiago de Chile, Chile, October 2-4, 2019, Proceedings, volume 11774
of Lecture Notes in Computer Science, pages 130–149. Springer, 2019.

PPM17. Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-
channel attacks on masked lattice-based encryption. In Wieland Fischer
and Naofumi Homma, editors, Cryptographic Hardware and Embedded
Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in
Computer Science, pages 513–533. Springer, 2017.

RL23. Gina M Raimondo and Laurie E Locascio. Module-lattice-based key-
encapsulation mechanism standard. National Institute of Standards and
Technology, Gaithersburg, 2023.

RPBC20. Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chat-
topadhyay. On configurable SCA countermeasures against single trace
attacks for the NTT - A performance evaluation study over kyber and
dilithium on the ARM cortex-m4. In Lejla Batina, Stjepan Picek, and
Mainack Mondal, editors, Security, Privacy, and Applied Cryptography
Engineering - 10th International Conference, SPACE 2020, Kolkata, In-
dia, December 17-21, 2020, Proceedings, volume 12586 of Lecture Notes
in Computer Science, pages 123–146. Springer, 2020.

SW15. Qinliang Su and Yik-Chung Wu. On convergence conditions of gaussian
belief propagation. IEEE Trans. Signal Process., 63(5):1144–1155, 2015.

VGS14. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Stan-
daert. Soft analytical side-channel attacks. In Palash Sarkar and Tetsu
Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science,
pages 282–296. Springer, 2014.

	Single Trace Side-Channel Attack on the MPC-in-the-Head Framework

