
Under What Conditions Is
Encrypted Key Exchange Actually Secure?

Jake Januzelli1, Lawrence Roy∗2, and Jiayu Xu3

1Oregon State University, januzelj@oregonstate.edu
2Aarhus University, ldr709@gmail.com

3Oregon State University, xujiay@oregonstate.edu

Abstract

A Password-Authenticated Key Exchange (PAKE) protocol allows two parties to agree upon
a cryptographic key, in the setting where the only secret shared in advance is a low-entropy
password. The standard security notion for PAKE is in the Universal Composability (UC)
framework. In recent years there have been a large number of works analyzing the UC-security
of Encrypted Key Exchange (EKE), the very first PAKE protocol, and its One-encryption
variant (OEKE), both of which compile an unauthenticated Key Agreement (KA) protocol into
a PAKE.

In this work, we present a comprehensive and thorough study of the UC-security of both
EKE and OEKE in the most general setting and using the most efficient building blocks:

1. We show that among the five existing results on the UC-security of (O)EKE using a
general KA protocol, all are incorrect;

2. We show that for (O)EKE to be UC-secure, the underlying KA protocol needs to satisfy
several additional security properties: though some of these are closely related to existing
security properties, some are new, and all are missing from existing works on (O)EKE;

3. We give UC-security proofs for EKE and OEKE using Programmable-Once Public Function
(POPF), which is the most efficient instantiation to date and is around 4 times faster
than the standard instantiation using Ideal Cipher (IC).

Our results in particular allow for PAKE constructions from post-quantum KA protocols such
as Kyber. We also present a security analysis of POPF using a new, weakened notion of almost
UC realizing a functionality, that is still sufficient for proving composed protocols to be fully
UC-secure.

∗Author partially supported by the DOE CSGF (grant DE-SC0019323), the Danish Independent Research Council
(grant DFF-0165-00107B “C3PO”), and the DARPA SIEVE program (contract HR001120C0085 “FROMAGER”).
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of DARPA. Distribution Statement “A” (Approved for Public Release, Distribution
Unlimited).

1

Contents
1 Introduction 3

1.1 Existing Security Analyses of (O)EKE . 5
1.2 Our Contributions . 8

2 Preliminaries 10
2.1 (Unauthenticated) Key Agreement Protocols . 10
2.2 UC PAKE Functionality . 13

3 Attacks on Previous Instantiations of (O)EKE 15
3.1 Allowing Identity Element in Diffie-Hellman Makes OEKE Insecure 15
3.2 EKE with Plain Diffie-Hellman Is Insecure . 17
3.3 EKE Is Insecure If the Underlying KA Is Not Strongly Pseudorandom 20
3.4 Summary . 23

4 Almost Universally Composable POPF 25
4.1 The Functionality FPOPF . 25
4.2 POPF Construction . 27
4.3 Security Analysis . 28

5 PAKE Protocols Based on POPF 39
5.1 The First-Round Functionality and Protocol . 39
5.2 The EKE Protocol . 43
5.3 The OEKE Protocol . 51

6 Conclusion and Future Work 57
6.1 Subtleties in the Security Model . 57
6.2 Subtleties in the Protocol Description . 58
6.3 Subtleties in the Security Analysis . 61
6.4 Future Work . 63

A Additional Attacks and Subtleties 68
A.1 Further Subtleties in EKE with Hashed Diffie-Hellman under CDH and DDH 68
A.2 OEKE-PRF with Plain Diffie-Hellman Is Not Necessarily Secure 72
A.3 EKE and OEKE Are Insecure If the Underlying KA Is Not Pseudorandom Non-Malleable 72
A.4 EKE Using HIC/POPF Only Realizes a Weaker UC Functionality 75

B Additional Results on the Security of EKE 77
B.1 EKE Using POPF Realizes FPAKE-sp . 77
B.2 EKE Using IC Realizes FPAKE . 80

C Properties of Kyber 80

2

1 Introduction
A Password-Authenticated Key Exchange (PAKE) protocol allows two parties to agree upon a
cryptographic key in the setting where the only information shared in advance is a low-entropy
password. Crucially, such protocols must be secure against man-in-the-middle adversaries that can
arbitrarily modify the protocol messages sent between the two parties. PAKE protocols — and their
extensions such as asymmetric PAKE and threshold PAKE — provide significant advantages over
the traditional “password-over-TLS” approach to authentication, in that PAKE does not require
transmission of public keys and thus does not rely on PKI. Recent years have witnessed an increasing
amount of interest in PAKE from both academia and industry, and with the recent standardization
process by the IETF [Cry20], practical implementations — in particular, integration of PAKE
protocols and TLS — is under active consideration [DFG+23].

Security notions for PAKE. Since passwords have low entropy, an inevitable attack that must
be taken into account by any security definition for PAKE is online guessing, where the adversary
guesses a password pw∗ and executes Alice’s algorithm on pw∗ while communicating with Bob; if
pw∗ is indeed Bob’s password, then the adversary learns Bob’s session key. The game-based security
notion for PAKE [BPR00] requires that online guessing is the best possible attack; if the password
is uniformly drawn from the dictionary Dict, then the adversary’s advantage is at most negligibly
greater than q/|Dict| for q online sessions. While this notion achieves a basic level of PAKE security,
it comes with two significant drawbacks: First, it does not provide any security guarantee under
parallel composition. This is especially devastating for PAKE, since (1) applications of PAKE
generally involve a large number of users running the protocol in parallel, and (2) PAKE is usually
composed with some symmetric-key primitives and rarely used in a standalone manner. Second, it
fails to model password reuse across multiple accounts, which is (unfortunately) all too common in
real life.

For these reasons, the game-based PAKE security definition has been superseded by the definition
in the Universal Composability (UC) framework [CHK+05], where security remains under arbitrary
composition of protocols. Password reuse is addressed by letting the environment choose the password,
rather than assuming a specific distribution over the dictionary. Over the years the UC notion has
become the de facto security standard for PAKE; for example, all candidates in the second round of
the IETF standardization competition have a UC security analysis [AHH21,ABB+20,JKX18,HL19].

Encrypted Key Exchange (EKE). The very first PAKE protocol ever proposed is Encrypted
Key Exchange (EKE) by Bellovin and Merritt in 1992 [BM92]. It compiles any unauthenticated Key
Agreement (KA) protocol into a PAKE by encrypting all messages using a private-key encryption
scheme with the password as the key (and the receiver can decrypt and recover the message in the
underlying KA protocol if it holds the correct password). In the standard instantiation of EKE,
the encryption scheme is Ideal Cipher (IC). When instantiated with a 2-round KA protocol, we
immediately obtain a PAKE protocol that also has 2 rounds.1

Aside of its historical significance, EKE continues to play an important role in PAKE design.
Protocols such as SPAKE1 and SPAKE2 [AP05] are essentially EKE instantiated with specific
private-key encryption schemes and KA protocols, and others such as CPace [HL19] inherit some
design ideas from EKE. It is fair to say that EKE and its variants form one of the two major

1The term “round” has various definitions in the literature. Here by 2-round we mean 2-flow, i.e., P sends a
message to P ′, and P ′, upon receiving the message from P , sends a message back. If the two messages can be sent
simultaneously, we call the protocol 1-simultaneous round.

3

P P ′

a← R b← R
A := msg1(a)

ϕ := E(pw, A)

A := D(pw, ϕ)
B := msg2(b, A)

ϕ′ := E(pw, B)

B := D(pw, ϕ)
K := key1(a, B) K ′ := key2(b, A)
output K output K ′

Figure 1: EKE with a 2-round KA protocol

paradigms for PAKE protocols (the other is Smooth Projective Hash Function (SPHF)-based PAKEs
[GL03,GK10,KV11] which are generally less efficient).

P P ′

a← R b← R
A := msg1(a)

ϕ := E(pw, A)

A := D(pw, ϕ)
B := msg2(b, A)
K ′ ∥ τ ′ := key2(b, A)

B, τ ′

K ∥ τ := key1(a, B)
if τ = τ ′ output K output K ′

otherwise output K ← {0, 1}κ

Figure 2: OEKE with a 2-round KA protocol. This version requires a KA protocol with long key.
In OEKE-PRF the KA key K has length κ, PAKE session key is PRFK(0), and τ = PRFK(1). In
OEKE-RO PRFK(x) = H(K, x)

One-encryption EKE (OEKE). The following variant of EKE first appeared in [BCP03]: only
the P -to-P ′ message is encrypted, and upon receiving the message from P , P ′ sends a plaintext KA
message to P together with an authenticator that is the second part of K ′ (where K ′ is KA key
of P ′); the session key of P ′ is the first part of K ′.2 P computes its KA key K and checks if the
authenticator is the second part of K, and if so, outputs the first part of K as its session key. This

2Since each party has an output key in the KA protocol and an output key in the PAKE protocol (the latter being
its eventual output), it might be confusing what a “key” refers to. Throughout this work we use the terms “KA key”
and “(PAKE) session key” to distinguish them.

4

protocol is called OEKE (O for “One-encryption”).
OEKE requires that the underlying KA protocol have key length longer than PAKE session key

length κ. If we only have a KA protocol whose key K is κ-bit long, one way to implement OEKE
is to define the session key as PRFK(0) and the authenticator as PRFK(1) (where PRF is a PRF
with κ-bit outputs) — that is, we compile the KA protocol into another KA protocol whose key is
PRFK(0) ∥PRFK(1), and use the latter in OEKE. We call this protocol OEKE-PRF, and if the PRF
is defined as PRFK(x) = H(K, x) (where H is an RO), we call it OEKE-RO. All existing works on
the UC-security of OEKE follow the OEKE-PRF paradigm [SGJ23,BCP+23].3

While OEKE is not as round-efficient as EKE if the underlying KA protocol is 1-simultaneous
round (such as Diffie-Hellman), it avoids one instance of IC and is thus more efficient in computation
cost than EKE.

1.1 Existing Security Analyses of (O)EKE

Despite its deceiving simplicity and its pivotal role in over 30 years of study of PAKE, a satisfactory
formal security analysis of EKE has long been elusive. The original EKE paper in 1992 [BM92]
does not provide a security proof (in fact, even a formal security definition did not exist until 2000
[BPR00]). [BPR00], in addition to its main contribution of proposing the game-based security
definition for PAKE, proves that EKE satisfies this definition under the Computational Diffie-Hellman
(CDH) assumption if the underlying KA protocol is hashed Diffie-Hellman and the underlying
private-key encryption scheme is IC. However, this result suffers from three drawbacks:

• The result assumes a specific KA protocol (hashed Diffie-Hellman) is used in EKE, and it is
not immediately clear which properties one should require of an arbitrary KA protocol for
EKE to be secure. Pinpointing such properties is especially beneficial if we want to use a
post-quantum KA protocol to achieve a PAKE under post-quantum assumptions — which
was not a main concern when [BPR00] was published but has gained much importance and
attention since then.

• The result assumes that the underlying private-key encryption scheme is IC. While it is known
that a 8-round Feistel network is indifferentiable from an IC in the Random Oracle Model
(ROM) [DS16], using an IC in EKE results in a PAKE protocol with significant cost. In
particular, since the KA protocol is supposed to be hashed Diffie-Hellman, an IC onto a group
is needed, which in turn requires 4 RO-hash onto a group operations which are inefficient.

• Finally, the result is in the game-based setting, which as we have mentioned has some critical
drawbacks and has been superseded by the UC definition.

[BCP03] provides a security proof for OEKE, which suffers from the same drawbacks.

UC analyses of (O)EKE. It was not until 18 years later that EKE was formally proven secure
in the UC framework [DHP+18]. (For OEKE, we had to wait 20 years [SGJ23,BCP+23].) Since
then, there have been a number of UC analyses of (O)EKE, each with its own instantiation. Below
we give a brief summary of existing works in this domain:

3Formally, [SGJ23] and [BCP+23] use a Key Encapsulation Mechanism (KEM) rather than a KA protocol as a
building block, but a KEM is equivalent to a 2-round KA protocol: the first KA message is the KEM public key,
the second KA message is the KEM ciphertext, and the KA key is the KEM key. (See, e.g., [SGJ23, Section 2.2].)
[SGJ23] calls OEKE “EKE-KEM”.

5

proposed game-based analysis UC analysis
EKE 1992 [BM92] 2000 [BPR00] 2018 [DHP+18]

OEKE 2003 [BCP03] 2003 [BCP03] 2023 [SGJ23,BCP+23]

Table 1: Timeline of security analyses of (any instantiation of) EKE and OEKE

• [MRR20, Theorem 10] claims that EKE is UC-secure provided that the underlying KA protocol
is secure and pseudorandom (the KA messages are indistinguishable from uniformly random)
and the underlying encryption scheme is Programmable-Once Public Function (POPF), which
can be seen as a generalization of IC. [MRR20] introduces the necessary (game-based) properties
of the POPF for EKE to be UC-secure. Using a POPF instead of an IC drastically reduces
costs, as a POPF can be instantiated by a 2-round Feistel network (as opposed to 8-round
in IC). Since [MRR20] uses any secure and pseudorandom KA protocol, it allows for an
instantiation of EKE under post-quantum assumptions. Unfortunately, as we will see below,
the main result in [MRR20] is incorrect in three different ways.

• [SGJ23, Theorem 2] also claims UC-security of EKE assuming the underlying KA protocol is
secure and pseudorandom, and the underlying encryption scheme is Half Ideal Cipher (HIC).
[SGJ23] proposes a UC definition for HIC and shows that it is realized by a 2-round Feistel
network, except that the hash-and-XOR operation in the second round is replaced by an IC
over 2κ bit-strings. Thus, while HIC (unlike POPF) requires an IC, it achieves UC-security
and is easier to use in other contexts. However, we will show that this EKE result is incorrect
in two different ways.
In addition to the result above, [SGJ23, Theorem 3] claims that a certain variant of OEKE is
UC-secure, again using HIC and a secure and pseudorandom KA protocol. Unfortunately, it
is not entirely clear whether the protocol analyzed in [SGJ23] is OEKE-PRF or OEKE-RO,
and there seems to be a mismatch between the theorem statement and its proof, as mentioned
in [SGJ23, Footnote 14]:

The proof below assumes a version of the protocol which uses prf(K, ·) to derive
the authenticator τ and the session key [...] This version of the protocol requires
an additional assumption on KEM. We will update the proof shortly to reflect the
modified protocol and get rid of the additional assumption.

Using our terminology, the statement of [SGJ23, Theorem 3] claims the UC-security of OEKE-
RO, while its proof is about the UC-security of OEKE-PRF; the latter requires an additional
assumption on the underlying KA protocol (which is overlooked in the proof). However, it is
never specified what this “additional assumption” is! As such, at least the security proof of
[SGJ23, Theorem 3] seems incomplete.4 There is also a completely separate issue that renders
this result incorrect no matter whether OEKE-PRF or OEKE-RO is considered.

• [BCP+23, Theorem 1] proves the UC-security of EKE using IC and a secure and pseudorandom
KA protocol, with the session key being an RO hash of the KA key together with the PAKE
transcript. This result has a flavor similar to [MRR20, Theorem 10] and [SGJ23, Theorem 2],
but is less efficient (it uses IC rather than POPF or HIC). Close scrutiny shows that this
result is also incorrect: we will give two actual attacks that break the UC-security in different

4Looking ahead, this “additional assumption” is what we call pseudorandom non-malleability for the underlying
KA protocol. Furthermore, even OEKE-RO requires pseudorandom non-malleability; that is, one cannot “get rid of
the additional assumption” even if they use OEKE-RO. See Appx. A.3 for a detailed discussion.

6

result protocol
analyzed KA protocol encryption

scheme note

[DHP+18, Theorem 6] EKE

hashed
Diffie-Hellman

(PAKE transcript
included in hash)

IC proof flawed
(Appx. A.1)

[MRR20, Theorem 10] EKE general POPF
result incorrect

(Sects. 3.2 and 3.3,
Appx. A.4)

[SGJ23, Theorem 2] EKE general HIC
result incorrect

(Sect. 3.2
and Appx. A.4)

[SGJ23, Theorem 3] OEKE-? general HIC

result ambiguous,
unclear if OEKE-PRF
or OEKE-RO either
way result incorrect

(Sect. 3.1)

[LLHG23, Theorem 2] EKE

hashed twin
Diffie-Hellman

(password
included in hash)

IC

[BCP+23, Theorem 1] EKE
general (PAKE

transcript
included in hash)

IC
result incorrect

(Sect. 3.3, Appxs. A.1
and A.3)

[BCP+23, Theorem 2] OEKE-RO
general (PAKE

transcript
included in hash)

IC result incorrect
(Appx. A.3)

our Thm. 5.4 EKE general POPF
our Thm. 5.7 OEKE general POPF

Table 2: UC security analyses of (O)EKE. Flawed analyses are marked in grey.

ways, and also show a flaw in a reduction in the hybrid proof very similar to the issue in
[DHP+18, Theorem 6].
[BCP+23, Theorem 2] proves the UC-security of OEKE-RO using IC and a secure and
pseudorandom KA protocol, with the session key being an RO hash of the KA key together
with the PAKE transcript. We will show that this security statement is also incorrect.

There are two additional analyses of EKE with specific KA protocols: [DHP+18, Theorem 6] shows
that EKE using hashed Diffie-Hellman is UC-secure under CDH, and [LLHG23, Theorem 2] shows
that EKE using hashed twin Diffie-Hellman (where one party sends two group elements ga1 and
ga2 and the other sends a single group element gb, and the KA key is H(ga1b, ga2b)) is tightly
UC-secure under CDH. While both security statements are correct, we will see that the proof of
[DHP+18, Theorem 6] contains a flawed reduction in the hybrids, resulting in an incorrect bound
on the tightness of the security.

See Table 2 for a summary of existing UC security analyses of (O)EKE.
We can see that despite a large amount of works analyzing the UC-security of (O)EKE in

7

various flavors, all existing analyses using a general KA protocol are incorrect. This brings us to the
question we ask in the title:

Under what conditions is EKE (and its variants) actually secure?

1.2 Our Contributions

In this work, we present a comprehensive study of the UC-security of EKE and its one-encryption
variant. We consider the protocols instantiated with the most efficient encryption scheme, i.e.,
POPF; and the most general KA protocols, which allows us to obtain a wide range of PAKE
protocols, including ones based on post-quantum assumptions. Concretely, our contributions are as
follows:

Attacks on previous instantiations of (O)EKE. In Sect. 3 we motivate our KA security
properties with several attacks:

• In Sect. 3.1 we show that OEKE (including its PRF and RO variants) is insecure if the
underlying KA protocol does not satisfy collision resistance (Def. 3.1). This implies that
[SGJ23, Theorem 3], in addition to being ambiguous, is false no matter which interpretation
we take;

• In Sect. 3.2 we show that EKE is insecure if the underlying KA protocol does not satisfy
pseudorandom non-malleability (Def. 3.6), which implies that [MRR20, Theorem 10] and
[SGJ23, Theorem 2] are false;

• In Sect. 3.3 we show that EKE is insecure if the underlying KA protocol does not satisfy
strong pseudorandomness (Def. 2.5), which implies that [MRR20, Theorem 10] and [BCP+23,
Theorem 1] are false.

Although some of these KA notions are related to existing security properties in the Key-
Encapsulation Mechanism (KEM) literature, to the best of our knowledge we are the first to
formalize strong pseudorandomness and the first to notice the necessity of these properties for the
security of (O)EKE. In Appx. A we present several additional attacks and flaws in existing works;
in particular, Appx. A.3 shows that pseudorandom non-malleability is also needed in OEKE, and
Appx. A.4 presents a further attack that only applies to EKE using HIC or POPF (instead of IC).

POPF and “almost UC”. The results in Sect. 3 are sufficient to recover correct security proofs
of (O)EKE using IC as the encryption mechanism (those proofs are sketched in Appx. B). However,
the most efficient instantiation of (O)EKE uses POPF as defined by [MRR20], so as an additional
contribution we give our security proofs in the POPF setting. At a high level, a POPF is a function
family {Fϕ} where each Fϕ is random everywhere, except that when generating ϕ one can program
a single input/output pair (x, y) such that Fϕ(x) = y. To capture this notion of “uncontrollable
outputs”, it is required that for any weak pseudorandom function Wk, Wk(Fϕ(x′)) is pseudorandom
for x′ ̸= x. A POPF can be viewed as a randomized version of IC, where programming Fϕ(x) to be
y is analogous to encrypting y under key x (resulting in ciphertext ϕ), and evaluating Fϕ at x is
analogous to decrypting the ciphertext ϕ with key x. However, in the case of POPF there can be
many ϕ such that Fϕ(x) = y, whereas for IC there is only a single ϕ such that E(x, y) = ϕ. Although
[MRR20] used game-based security properties for POPF in the analysis of EKE, they separate
honest simulation and extraction [MRR20, Definitions 7.2-7.3], which is insufficient to analyze the
case of a man-in-the-middle adversary where the simulator may have to do both simultaneously.

8

An obvious strategy to recover a proof of security is to define a UC functionality for POPF,
and then use the UC POPF functionality in (O)EKE. Unfortunately, the POPF in [MRR20] does
not seem to realize an appropriate UC functionality. The problem is the proof that {Fϕ} has
“uncontrollable outputs” reduces to the security of the weak PRF Wk, during which the non-tight
reduction needs to make a guess over the adversary’s random oracle queries. In other words, we
reduce to the security of some schemes built on top of POPF, not to an underlying assumption.
If we attempt to show the POPF UC-realizes a functionality, the simulator must make the RO
behavior consistent with the POPF functionality, which requires it to guess the RO query, making
the simulator fail. Crucially, while a loose reduction is sufficient to prove security, a UC simulator
must correctly simulate the real world with overwhelming probability, as the environment could
otherwise tell that it is in the ideal world with significant probability.

We solve this by showing that POPF “almost UC-realizes” a functionality FPOPF, where instead
of full UC-realization of a functionality, we only require that a specific class of higher level protocols
that use FPOPF remain secure if the real POPF is used instead.5 We are able to achieve this weaker
security notion, as now the guess of an RO query can appear in a hybrid in the proof of security of
the higher level protocol, which is not an issue (a similar technique was used in [CDG+18]). At the
same time, the almost UC notion is sufficient for the higher-level protocol; in particular, (O)EKE
built on top of our POPF is (fully) UC-secure.

Analysis of (O)EKE using POPF and suitable KA protocols. Equipped with our almost
UC modeling of POPF and our additional KA properties, we now turn to our main constructive
contribution: an analysis of both EKE and OEKE in the UC framework, using a general KA
protocol. There are a large number of existing analyses of (O)EKE that vary according to:

1. The procedure by which PAKE session keys are derived.

2. The properties the KA satisfies, other than the standard notions of correctness and security.

3. The encryption mechanism used, whether that be IC, HIC, or POPF.
In this work, we clarify exactly which choices from these three dimensions result in a secure

protocol, along the way obtaining the most efficient instantiations of (O)EKE to date:
1. “Minimal” output function: We show that for EKE using POPF, the session key needs to be a

PRF of the second PAKE message under the KA key (we call this protocol EKE-PRF), and
no other items need to be included; if we use IC instead, outputting the “raw” KA key suffices
(provided that the KA protocol satisfies appropriate properties — see below). For OEKE, we
show that the “raw” version is secure, and no items need to be hashed (again, provided that
the KA protocol satisfies appropriate properties); this in particular covers both the PRF and
RO variants.

2. Exact KA properties: We show that EKE-PRF is secure if the underlying KA protocol satisfies
strong pseudorandomness and pseudorandom non-malleability, in addition to correctness and
security. Additionally, we show that OEKE is secure if the underlying KA protocol satisfies
pseudorandom non-malleability and collision resistance in addition to correctness and security,
covering both the OEKE-PRF and OEKE-RO variants. In each case, we give concrete attacks
showing that these additional KA properties are necessary for (O)EKE to be secure, and are

5This idea of only requiring it to preserve the security of protocols built on top is similar to security-preserving
samplers defined by [AWZ23]. The goal there is quite different however: the elimination of ROs from a 1-round
protocol.

9

not implied by existing standard properties.

3. Most efficient instantiations: Our main results about both EKE and OEKE use POPF, which
are the most efficient instantiations to date. This provides significant efficiency advantage over
the traditional IC implementation, as POPF only requires 2 rounds of Feistel network (as
opposed to 8 in IC). To compare, the HIC construction of [SGJ23] requires a Feistel rounds to
use an IC over 2κ bit-strings, while our construction only requires a random oracle. Though
an IC over bit-strings is much less troublesome than an ideal cipher over curve points, it is
still not trivial to instantiate — most block ciphers are designed for κ-bit block size, not 2κ.
Suitable choices will either be less efficient or less conservative than instantiating a random
oracle with a standard hash function.

Our goal is to not only present what is exactly needed, but also develop a thorough understanding
of why exactly they are needed. To achieve this, we include a large number of comments and
explanations along with our security proofs and attacks, as well as a comprehensive summary at the
end of the paper (Sect. 6.2).

In addition to the theoretical advantages outlined above, our approach allows practitioners
looking to implement (O)EKE to avoid analyzing the (O)EKE protocol as a whole, and instead
merely verify whether their chosen KA protocol satisfies a few properties, which is much easier.

2 Preliminaries
For an (efficiently samplable) set S, we write x← S for sampling an element from S according to
the uniform distribution. For an algorithm A, we write y ← A(x; r) for running A on input x and
randomness r, and obtaining A’s output y; if A is deterministic, we instead write y := A(x). We
use κ to denote the security parameter. For group operations, we use the multiplicative notation.

UC conventions. We assume w.l.o.g. that the session ID always includes the names of the two
parties. Furthermore, for ideal objects such as RO and IC, we always assume that the session ID sid
is part of the input (for IC, it is part of the key, i.e., a ciphertext is in the form of E(sid ∥ k, m)) and
do not explicitly write them. This is for brevity only; we stress that in actual protocols the session
ID should be included to achieve domain separation.

2.1 (Unauthenticated) Key Agreement Protocols

A 2-round Key Agreement (KA) protocol (henceforth KA protocol) consists of the following
(deterministic) algorithms:

• msg1(a) = A ∈M1: protocol-message function for party P

• msg2(b, A) = B ∈M2: protocol-message function for party P ′

• key1(a, B) = K ∈ K: output function for party P

• key2(b, A) = K ′ ∈ K: output function for party P ′

In a standard execution of the protocol, party P samples randomness a← R and sends A := msg1(a)
to party P ′. P ′ then samples b ← R, sends B := msg2(b, A) to P , and outputs K ′ := key2(b, A).
Upon receiving B, P outputs K := key1(a, B).

10

Definition 2.1. A KA protocol is correct if

key1(a, msg2(b, msg1(a))) = key2(b, msg1(a))

with overwhelming probability when a, b← R.

Security.
Definition 2.2. A KA protocol is secure if the following two distributions are indistinguishable:

a← R
b← R
A := msg1(a)
B := msg2(b, A)
K := key1(a, B)
output (A, B, K)

a← R
b← R
A := msg1(a)
B := msg2(b, A)
K ← K
output (A, B, K)

Pseudorandomness. We also consider the notion of pseudorandomness in which the protocol
messages are also indistinguishable from random.
Definition 2.3. A KA protocol has pseudorandom first message, or first pseudorandomness,
if the following two distributions are indistinguishable:

a← R
A := msg1(a)
output A

A←M1
output A

Definition 2.4. A KA protocol has pseudorandom second message, or second pseudoran-
domness, if the following two distributions are indistinguishable:

a← R
A := msg1(a)
b← R
B := msg2(b, A)
output (A, B)

a← R
A := msg1(a)

B ←M2
output (A, B)

The two pseudorandomness properties combined imply that the joint distribution of the two KA
messages are indistinguishable from random.

Existing works on EKE use different terms for KA pseudorandomness and security, some of
which are presented in the terms of KEM. See Table 3 for a comparison.

first KA message /
KEM public key

pseudorandomness

second KA message /
KEM ciphertext

pseudorandomness

KA/KEM key
pseudorandomness

[MRR20] KA pseudorandomness KA security
[SGJ23, Section 2.1] KA random message KA security
[SGJ23, Section 2.2] KEM uniform public key KEM anonymity6 KEM IND-security

[BCP+23] KEM fuzziness KEM anonymity KEM indistingushability

this work KA first
pseudorandomness

KA second
pseudorandomness KA security

Table 3: Terminologies for KA pseudorandomness and security

11

Strong pseudorandomness. In the security analysis for EKE we need a stronger pseudorandom-
ness property, which says that the second message is pseudorandom even given the key derivation
function used on it.

Definition 2.5. A KA protocol has strong pseudorandom second message, or strong second
pseudorandomness, if the following two distributions are indistinguishable:

a← R
A := msg1(a)
b← R
B := msg2(b, A)
K := key1(a, B)
output (A, B, K)

a← R
A := msg1(a)

B ←M2
K := key1(a, B)
output (A, B, K)

Henceforth we may call the combination of first and second pseudorandomness pseudorandomness,
and the combination of first and strong second pseudorandomness strong pseudorandomness.

To our knowledge, strong pseudorandomness does not directly correspond to any existing
KA/KEM security notion, and as such has not appeared in any existing works on EKE that use
general 2-round KA. In Sect. 3.3 we show strong pseudorandomness is necessary for the security of
EKE (but not OEKE) and is not implied by the standard notions of security and pseudorandomness.
However, a KEM that satisfies both spr-ccaS and smt-ccaS security from [Xag22] also satisfies
strong pseudorandomness by a simple hybrid argument.

Example: Diffie-Hellman. The plain (resp. hashed) Diffie-Hellman KA is defined as follows:
fix some cyclic group (G, p, g), and the relevant spaces are R = Zp, M1 =M2 = G, and K = G
(resp. K = {0, 1}κ). The algorithms are

msg1(a) = ga

msg2(b, A) = gb

key1(a, B) = Ba (resp. H(Ba))
key2(b, A) = Ab (resp. H(Ab))

where H : G → {0, 1}κ is a hash function (usually modeled as an RO). Note that the output of
msg2(b, A) does not depend on A, so this protocol can be executed in 1 simultaneous round; however,
we present it as P ′ waits for message from P , in order to fit the general description of 2-round KA
protocols.

It is well-known that plain Diffie-Hellman satisfies computational security under the DDH
assumption, and its hashed variant satisfies computational security under the CDH assumption,
the DDH assumption, or the Gap Diffie-Hellman (GDH) assumption, with a security loss of q
(the number of the adversary’s H queries) under CDH and no security loss under DDH or GDH.
Both plain Diffie-Hellman and hashed Diffie-Hellman satisfy perfect correctness and perfect strong
pseudorandomness.

6[SGJ23, Section 2.2] uses “KEM anonymity” to refer to a slightly weaker property, where two KEM ciphertexts
on two randomly generated public keys are indistinguishable. (“KEM anonymity” in [BCP+23] requires the KEM
ciphertext to be pseudorandom over the ciphertext space, i.e., it is equivalent to our KA second pseudorandomness.)

12

Example: Kyber. Kyber7 [SAB+22] is a post-quantum KEM currently under consideration
for standardization by NIST. Without going into much detail, Kyber starts with a public-key
encryption scheme based on module-LWE PKE, then applies the Fujisaki-Okamoto (FO) transform
[FO99] to achieve KEM with CCA-security. The underlying public-key encryption has public keys
and ciphertexts that can be thought of as vectors in Z256k

q , where q = 3329 and k is set based
on the security level.8 Correctness and CPA-security hold under the module-LWE assumption.
Unfortunately, Kyber includes an optimization to compress the ciphertexts by rounding off some of
the least significant bits, and this causes a small bias in the ciphertext distribution because q is not
a power of two. Therefore, we must consider Kyber without this compression optimization. Without
it, Kyber’s public-key encryption scheme has pseudorandom public keys and ciphertexts [BCP+23].

We now describe the Kyber KEM in terms of the underlying Kyber PKE. This version is
somewhat simplified compared to actual Kyber, as some of the hashes have been rearranged to make
the presentation simpler by removing some of its optimizations. However, the modified hash calls
are indifferentiable from the originals, so this should make no difference to the security arguments.
Here are the algorithms, written as a KA instead of a KEM.

M1 = {0, 1}256 × Z256k
q

M2 = Z256(k+1)
q

K = {0, 1}256

msg1(a) = Kyber.KeyGen(a)
msg2(b, A) = Kyber.Enc(A, b; H(b, A))
key2(b, A) = H ′(b, A, msg2(b, A))

key1(a, B) =
{

H ′(Kyber.Dec(a, B), A, B) if B = msg2(Kyber.Dec(a, B), A)
H ′(a, B) otherwise

H ′ is a hash function onto {0, 1}256 (usually modeled as an RO), and Kyber.Enc(A, m; r) means to
encrypt message m under public key A using randomness r.)

For an argument why Kyber satisfies various properties we need, see Appx. C.

2.2 UC PAKE Functionality

We recall the standard UC PAKE functionality [CHK+05] in Figure 3. Below we briefly describe
the idea behind the functionality; for a more detailed explanation, see [RX23, Section 2.2].

The functionality involves two parties, P with password pw and P ′ with password pw′. Each
execution of the protocol incurs a session for P (i.e., a session initiated by P where P eventually
outputs a key) and a session for P ′, both of which have a corresponding record marked with a state:

• When a session is established (by a NewSession command), it is marked fresh, and will remain
fresh unless and until the (ideal) adversary attacks the session.

• The adversary may attack a fresh P session by sending a TestPwd command for P , on a
password guess pw∗. This models an online guessing attack in the real world, where the
adversary runs the algorithm of P ′ on a password guess pw∗ and communicates with P . If

7There are multiple versions of Kyber; our description follows the most recent draft submission (version 3). The
draft standard [Nat23] (which renames Kyber to ML-KEM) does not hash A together with session key. We need this
hash for collision resistance, so we would need to replace it by applying a hash to the KEM output.

8k = 2 for Kyber-512, k = 3 for Kyber-768, and k = 4 for Kyber-1024.

13

• On input (NewSession, sid, P, P ′, pw, role) from P , send (NewSession, sid, P, P ′, role) to S.
Furthermore, if this is the first NewSession message for sid, or this is the second NewSession
message for sid and there is a record ⟨P ′, P, ·⟩, then record ⟨P, P ′, pw⟩ and mark it fresh.

• On (TestPwd, sid, P, pw∗) from S, if there is a record ⟨P, P ′, pw⟩ marked fresh, then do:
– If pw∗ = pw, then mark the record compromised and send “correct guess” to S.
– If pw∗ ̸= pw, then mark the record interrupted and send “wrong guess” to S.

• On (NewKey, sid, P, K∗ ∈ {0, 1}κ) from S, if there is a record ⟨P, P ′, pw⟩, and this is the first
NewKey message for sid and P , then output (sid, K) to P , where K is defined as follows:

– If the record is compromised, or either P or P ′ is corrupted, then set K := K∗.
– If the record is fresh, a key (sid, K ′) has been output to P ′, at which time there was a

record ⟨P ′, P, pw⟩ marked fresh, then set K := K ′.
– Otherwise sample K ← {0, 1}κ.

Finally, mark the record completed.

Figure 3: UC PAKE functionality FPAKE

pw∗ = pw, this is a successful attack, and the session is marked compromised; otherwise
the session is marked interrupted. (Symmetrically, the adversary may attack the P ′ session
by sending a TestPwd command for P ′.) Note that once a session becomes compromised or
interrupted, it can never return to fresh; this in particular means that TestPwd can be run only
once on any specific session.

• The adversary may end a session by sending a NewKey command, and the session will output
a key depending on the states of this session and its counter session. After that, the session is
marked completed (so that TestPwd cannot be sent after the session ends).

It is subtle and critical to our later sections how exactly a session key is determined, so let us
explain the three cases under NewKey further:

• The “normal” case is that both the P session and the P ′ session are fresh, and pw = pw′.
This models a correct protocol execution in the real world, where the adversary does not
interfere and the two parties’ passwords match. Say the P ′ session ends first; then P ′ outputs
a random session key K ′ (the third case under NewKey), and when the P session ends, P
outputs session key K = K ′ (the second case).

• If both the P session and the P ′ session are fresh, but pw ̸= pw′, then this corresponds to
an incorrect protocol execution where the adversary does not interfere but the two parties’
passwords do not match. In this case P and P ′ output independent random keys (the third
case).

• If the P session is compromised, it models the real-world scenario where the adversary has
successfully performed an online guessing attack on P . In this case all security guarantees are
lost, so we might as well let the adversary choose the session key for P (the first case). The
same goes for the P ′ session (same below).

• If the P session is interrupted, it models the real-world scenario where the adversary has

14

performed an unsuccessful online guessing attack on P . This means that the adversary should
have no information about the session key of P ; furthermore, the session key of P should also
be independent of the session key of P ′. So we let P output a random session key (the third
case).

• Finally, if the P session is fresh but its counter session P ′ has been attacked (either compromised
or interrupted), then again the adversary should have no information about the session key of
P (because the P session is fresh), and the session key of P should also be independent of the
session key of P ′ (because the P ′ session is attacked, so P ′ should output a session key that
is either set by the adversary or independent of everything else). So we also let P output a
random session key (the third case).

We stress that if a party’s session key is random (the first three cases), the adversary never gains
any information about it. For example, if the P session is fresh and the P ′ session is compromised,
then the session key of P is still independent of the adversary’s view (even though the adversary
fully controls the session key of P ′). The above holds even if the adversary learns the party’s
password after the session ends with a random session key; in this case the session is already marked
completed, so the adversary cannot send TestPwd even if it gets to know the password later on.

3 Attacks on Previous Instantiations of (O)EKE
In this section, we show that a number of (O)EKE instantiations, including the ones claimed secure
in [MRR20, Theorem 10], [SGJ23, Theorem 2], [SGJ23, Theorem 3], and [BCP+23, Theorem 1], are
actually insecure. For each attack we also describe the security property necessary to prevent it.
We assume that the encryption scheme used in (O)EKE is an IC; our attacks analogously apply to
uses of POPF or HIC.

The attacks in Sects. 3.1 and 3.2 are presented with the underlying KA protocol being (some
variants of) Diffie-Hellman. This is mainly for clarity of presentation, but we stress that (1) these
attacks are sufficient to invalidate existing results on the security of (O)EKE, as (variants of) Diffie-
Hellman satisfy all properties claimed to imply security yet the corresponding (O)EKE protocols
are insecure, and (2) from these attacks it is not hard to see in general what type of additional
properties the underlying KA protocol needs to satisfy. The attack in Sect. 3.3 assumes a general
KA protocol.

3.1 Allowing Identity Element in Diffie-Hellman Makes OEKE Insecure

We begin with a simple attack on OEKE-PRF where the underlying KA protocol is plain Diffie-
Hellman; that is, P sends E(pw, ga) to P ′, P ′ samples integer b and computes its KA key K ′ =
(ga)b = gab and PAKE session key PRFK′(0), and finally sends gb together with τ ′ = PRFK′(1) to P .
P then computes K = gab as (gb)a, and checks if τ ′ = PRFK(1) (if so, P outputs PRFK(0) as its
session key; otherwise P outputs a random session key).

Consider the following adversary: it disregards the P -to-P ′ message and sends (e, PRFe(1)) to
P , where e is the identity group element. Then P computes K = ea = e, so the check passes and P
outputs session key PRFK(0) = PRFe(0). That is, an adversary that does not know the password can
predict the session key of P , which clearly breaks the security of PAKE. This attack can be easily
generalized to any version of OEKE using plain Diffie-Hellman, and in particular OEKE-RO is also
insecure; and it extends to OEKE using hashed Diffie-Hellman (the adversary sends (e, PRFH(e)(1))
to P). An obvious fix is to disallow e as a KA message, i.e., sample the exponent b from Zp \ {0}

15

rather than Zp. Note that the attack does not apply to EKE where the P ′-to-P message gb is
encrypted under pw (so sending E(pw, e) requires knowledge of pw).

P A

B∗ := e, τ∗ := PRFe(1)

output PRFe(0)

Figure 4: Attack on OEKE-PRF with plain Diffie-Hellman. A (that does not know pw) sends a
single message to P and can predict the session key of P

The attack above shows that any KA protocol underlying OEKE must satisfy some form of
contributoryness property, namely party 1 must “contribute” to the output key and party 2 cannot
single-handedly bias the distribution of the key too much. We formalize the exact property necessary
for the security of OEKE, which we call collision resistance. [SGJ23, Theorem 3] only requires the
KA protocol to be secure and pseudorandom; in other words, it allows for using plain Diffie-Hellman

— where e can be a message — in OEKE, so this theorem is false.

Definition 3.1. A KA protocol is collision-resistant if the key space is K = {0, 1}3κ, and for any
polynomially bounded q and any PPT adversary A, the winning probability of A in the following
game is negligible:

∀i ∈ [q] : ai ← R
∀i ∈ [q] : Ai := msg1(ai)
B∗ ← A(A1, . . . , Aq)
∀i ∈ [q] : Ki ∥ τi := key1(ai, B∗)
A wins if ∃i ̸=j τi = τj

Here, we split keys key1(ai, B∗) ∈ {0, 1}3κ into two chunks: K ∈ {0, 1}κ and τ ∈ {0, 1}2κ.9

Remark 3.2. A version of collision-resistance for KEMs appears in [Xag22] as scfr-cca security.
Our definition differs from theirs in three ways:

1. We do not give the adversary access to a decryption oracle;

2. We give the adversary polynomially many first messages instead of two;

3. We only require partial key collision to win the security game.

Remark 3.3. In OEKE-RO, if the authenticator τ is defined as H(pw′, K ′, 1) rather than H(K ′, 1),
then collision resistance is unnecessary since the adversary needs to know the correct password
in order to generate a valid authenticator, and the simulator can extract the password from the
adversary’s H queries. The OEKE-RO protocol analyzed in [BCP+23, Theorem 2] uses this approach,
so it does not suffer from the problem in this section.

9We require τ to be 2κ-bit long, as an adversary can win the experiment with probability roughly q2/2|τ |. Technically
this renders OEKE-PRF impossible, as K and τ now have different lengths. However, we can consider a version
of OEKE-PRF where K = PRFK̄(0) and τ = PRFK̄(1) ∥ PRFK̄(2) (where K̄ is the κ-bit key of the underlying KA
protocol). Alternatively, we can stick to a κ-bit τ if we allow the adversary’s advantage to be quadratic in κ.

16

3.2 EKE with Plain Diffie-Hellman Is Insecure

Our next attack considers the EKE instantiation where the underlying KA protocol is plain Diffie-
Hellman; that is, P sends E(pw, ga) to P ′ and P ′ sends E(pw, gb) to P , and both parties decrypt
each other’s message and agree upon the session key gab. This protocol is insecure due to the
following man-in-the-middle attack: an adversary can pass the P -to-P ′ message E(pw, ga) without
modification, then guess pw and replace the P ′-to-P message E(pw, gb) with E(pw, g2b) (by decrypting
the message and obtaining gb, then encrypting (gb)2 under pw). Assuming the password guess is
correct, P outputs K = g2ab and P ′ outputs K ′ = gab, so K = (K ′)2. In other words, an adversary
that does not attack the P ′ session but successfully attacks the P session, causes the session keys of
P and P ′ to be correlated — which is not allowed in a UC-secure PAKE.

P A P ′

a← Zp b← Zp

ϕ := E(pw, ga) ϕ

ga := D(pw, ϕ)

ϕ′ := E(pw, gb)

gb := D(pw, ϕ′)

ϕ∗ := E(pw, g2b)

output g2ab output gab

Figure 5: Attack on EKE with plain Diffie-Hellman. A only guesses pw in the second round

Indeed, the UC PAKE functionality FPAKE guarantees that if the P ′ session is not attacked but
its counter-session was (successfully or unsuccessfully) attacked, then the P ′ session is fresh and the
session key of P ′ is independent of everything else (see the last bullet at the end of Sect. 2.2). This
in particular means that the protocol above violates UC-security for PAKE: when the adversary A
passes E(pw, ga) to P ′, the UC simulator S does not know pw and has to let P ′ output a session
key by sending a (NewKey, sid, P ′, ⋆) message to FPAKE, causing P ′ to output a random session key
K ′ (independent of the view of S). Later, when A sends E(pw, g2b) to P , S can extract pw and
compromise the P session by sending a correct TestPwd message, but K ′ is still independent of the
view of S, so S cannot make K ′ and the session key of P correlated.

It is not hard to turn the above observation into a formal proof of UC-insecurity:

Theorem 3.4. EKE with the plain Diffie-Hellman KA does not UC-realize FPAKE in the FIC-hybrid
world.

Proof. We assume the password dictionary Dict is a priori fixed and known to the simulator; this
only makes the simulation potentially easier. There is no restriction on Dict except that |Dict| ≥ 2.
Suppose there is a simulator S that generates an indistinguishable view for any PPT environment.
Consider the environment Z in Figure 6 (for brevity, we omit sid in parties’ messages and outputs
below).

17

1. Sample pw← Dict, and send (NewSession, sid, P, P ′, pw) to P and (NewSession, sid, P ′, P, pw)
to P ′. // let P and P ′ run the protocol on the same password pw

2. On ϕ from P , instruct the adversary to send ϕ to P ′. Observe the output of P ′, K ′. //
pass the P -to-P ′ message without any modification

3. On ϕ′ from P ′, query B := D(pw, ϕ′) and then ϕ∗ := E(pw, B2), and instruct the adversary
to send ϕ∗ to P . Observe the output of P , K. // replace the P ′-to-P message E(pw, gb)
with E(pw, g2b)

4. Output 1 if K = (K ′)2, and 0 otherwise. // guess “real world” iff K = (K ′)2

Figure 6: Environment for EKE with plain Diffie-Hellman

In the real world, let a be the randomness of P , A = ga, and b be the randomness of P ′. Then
K ′ = Ab = gab and K = (B2)a = g2ab, so K = (K ′)2 and Z outputs 1 with probability 1.

In the ideal world, let Compromise be the event that the P ′ session is compromised before it
outputs K ′. This happens if and only if S sends (TestPwd, sid, P ′, pw) (i.e., making a correct
password guess for P ′) before P ′ outputs. The crucial observation is that at the end of step 2, the
view of S only consists of (NewSession, sid, P, P ′) and (NewSession, sid, P ′, P)10, so pw is independent
of the view of S. Thus,

Pr[Compromise] ≤ 1
|Dict| .

Now assume that Compromise does not happen; in other words, when S lets P ′ output K ′ via
a NewKey command to FPAKE, the P ′ session is fresh or interrupted. Either way, FPAKE samples
K ′ ← {0, 1}κ. In the rest of the experiment, the view of S consists of pw from IC queries, which is
independent of K ′, so K ′ is independent of the view of S throughout the experiment. Next, consider
the state of the P session before it outputs K:

• If it is fresh, and the P ′ session was also fresh before P ′ outputs K ′, then FPAKE enters the
second case under NewKey, so K = K ′. Thus, K = (K ′)2 iff K ′ = e (the identity group
element), which happens with probability 1/p;

• If it is interrupted, or it is fresh and the P ′ session was interrupted before P ′ outputs K ′, then
FPAKE enters the third case under NewKey, so K ← G (independent of K ′) and the probability
that K = (K ′)2 is 1/p;

• If it is compromised (note that at this time S knows pw from IC queries, so it is able to
compromise the P session), then FPAKE enters the first case under NewKey, so K is set by
S. However, as we have just argued, K ′ is a random element of G in the view of S, so the
probability that K = (K ′)2 is 1/p.11

We conclude that as long as Compromise does not happen, the probability that K = (K ′)2 — in
other words, the probability that Z outputs 1 — is 1/p. Overall, the probability that Z outputs 1
in the ideal world is at most

Pr[Compromise] + 1
p
≤ 1
|Dict| + 1

p
,

10Formally it also consists of ϕ which is copied from the message simulated by S itself. Below we omit such messages
for readability.

11This is assuming the group order p is odd; if it is even then the probability is up to 2/p, and the subsequent
probability analysis needs to change accordingly.

18

so the distinguishing advantage of Z is at least

1− 1
|Dict| −

1
p

,

which is non-negligible since |Dict| ≥ 2. Thus, such a “successful” simulator S does not exist, which
concludes the proof.

Remark 3.5. We note that the proof of Thm. 3.4 does not rely on the simulator S being PPT;
in other words, the failure of the simulator is “statistical” and even a computationally unbounded
simulator still cannot generate an indistinguishable view for our environment Z.

The above shows that [MRR20, Theorem 10] and [SGJ23, Theorem 2] are false, since both
theorems only require security and pseudorandomness of the underlying KA protocol, which are
satisfied by plain Diffie-Hellman.

Necessity of pseudorandom non-malleability. The issue above points to a property of the
underlying KA protocol that is not commonly seen in the literature but is required for the security
of EKE: Consider a “semi-man-in-the-middle” adversary that sees both protocol messages, but
can only modify the second, i.e., the P ′-to-P message. Then as long as the adversary modifies the
P ′-to-P message, the output key of P ′ is pseudorandom even if the adversary additionally sees the
output of P . We call this property non-malleability. In fact, we require a stronger security property
we call pseudorandom non-malleability, which says that the P ′-to-P message and the key of P ′ are
both pseudorandom (see Appx. A.3 for why we require pseudorandom non-malleability instead of
just non-malleability).

Definition 3.6. A KA protocol is pseudorandom non-malleable if the following two distributions
are indistinguishable:

a← R
b← R
A := msg1(a)
B := msg2(b, A)
K ′ := key2(b, A)
B∗ ← A(A, B, K ′)
abort if B∗ = B
K := key1(a, B∗)
output K to A

a← R

A := msg1(a)
B ←M2
K ′ ← K
B∗ ← A(A, B, K ′)
abort if B∗ = B
K := key1(a, B∗)
output K to A

Remark 3.7. Non-malleability alone is implied by the CCA-security of a KEM, but pseudorandom
non-malleability corresponds roughly to the IND$-CCA security of a KEM. A version of pseudo-
random non-malleability for KEMs appears in [Xag22] as spr-ccaS security. Our definition is the
same as spr-ccaS when the simulator S samples a uniform random ciphertext, except that we only
allow the adversary to make a single decryption oracle query.

Remark 3.8. Recall that (standard, not strong) second pseudorandomness says that B := msg2(b, A)
and B ← M2 are indistinguishable, even given A := msg1(a). This is of course implied by
pseudorandom non-malleability. We present second pseudorandomness as a separate property for
clarity, and also because it is a standard property that was mentioned in several prior works (while
pseudorandom non-malleability was not).

19

History of the attack. We stress that the flaw in Sect. 3.2 was not discovered by us. First,
[SGJ23] seems to have pointed out that [MRR20, Theorem 10] is false (“[W]e think that it is unlikely
that EKE can provably realize UC PAKE based on the POPF properties alone”), and [SGJ23] is
right that some form of non-malleability is missing in [MRR20, Theorem 10]. However, [SGJ23]
appears to believe that the non-malleability property lies in the encryption scheme, and using
a stronger encryption scheme such as HIC resolves the issue; while in fact non-malleability is a
property that must be satisfied by the underlying KA protocol, and as long as the KA protocol is
plain Diffie-Hellman, the issue remains no matter what encryption scheme is used. In other words,
[SGJ23] noticed that [MRR20, Theorem 10] is false but identified the reason incorrectly, which
explains why [SGJ23, Theorem 2] is also false.

Second, in the talk for the [SGJ23] paper [Jar23], the presenter Stanislaw Jarecki pointed out
their own mistake and mentioned the attack on EKE with plain Diffie-Hellman, which we repeat
here. According to [Jar23], the attack was found in a follow-up study (which we are not able to
identify). As such, the credit belongs to [Jar23] and the follow-up work. However, the ePrint version
of [SGJ23] has not been updated accordingly after the talk, and to the best of our knowledge, we
are the first to present this attack in written form. Furthermore, the formal proof of UC-insecurity
(Thm. 3.4) is our work.

3.3 EKE Is Insecure If the Underlying KA Is Not Strongly Pseudorandom

The two attacks in previous sections assume the (O)EKE protocol uses (some variants of) the
Diffie-Hellman KA. In this section we present a general attack showing that for EKE to be secure
the KA protocol needs to be strongly pseudorandom. This is not an issue for Diffie-Hellman which
has perfect pseudorandomness (i.e., the protocol messages are uniform), but in general strong
pseudorandomness is not implied by security and pseudorandomness — as we will show next — and
thus must be presented as a property of its own. Please see Defs. 2.2 to 2.5 for the definitions of
these properties.

Indistinguishability between six distributions (but not the seventh). In a KA protocol,
each of the first message A, the second message B, and the key K may be “real” or “random”,
resulting in 8 potential joint distributions of (A, B, K). (See Table 4 for definitions of “real” and
“random”.) The case where A, B are random but K is real (henceforth (random A, random B, real
K), or simply (random, random, real)) is not well-defined, since for K to be real, either a or b needs
to be defined (which implies that either A or B needs to be real). Are the remaining 7 distributions
indistinguishable from each other?

real random

A
a← R

A := msg1(a) A←M1

B
b← R

B := msg2(b, A) B ←M2

K
K := key1(a, B)

or
K := key2(b, A)

K ← K

Table 4: Definitions of “real” and “random” for A, B, K

Recall that first pseudorandomness says that real A is indistinguishable from random A, and

20

second pseudorandomness says that (real A, real B) is indistinguishable from (real A, random B).
Note that the definition of real B does not use a (it only uses A) and thus can be simulated by a
reduction to first pseudorandomness; this means that pseudorandomness (first and second combined)
implies that the 4 joint distributions of A and B — where both A and B might be real or random —
are indistinguishable from each other. Since random K can be simulated without any knowledge
about A or B, pseudorandomness implies that the following 4 distributions are indistinguishable
from each other:

• (real, real, random),

• (real, random, random),

• (random, real, random),

• (random, random, random).

Security says that (real, real, random) is indistinguishable from (real, real, real), so now we have 5
indistinguishable distributions under pseudorandomness plus security. Furthermore, (random, real,
real) is indistinguishable from (real, real, real); this is because a reduction to first pseudorandomness
can sample b on its own and simulate both real B and real K without knowing a. (This immediately
implies Lem. 5.2, which says that (random, real, real) is indistinguishable from (random, random,
random).) In summary, 6 out of the 7 distributions are indistinguishable from each other.

What about the last distribution, (real, random, real)? Suppose we attempt to construct a
reduction that shows the indistinguishability from (real, real, real). The reduction, on (real A, real
B) or (real A, random B), needs to simulate real K — which it cannot do because it knows neither
a (which is used in real A) nor b (which is used in real B). What we need here is that (real A, real
B) and (real A, random B) are indistinguishable even given real K, which is exactly strong second
pseudorandomness.

In summary, security plus strong pseudorandomness imply the indistinguishability between all
7 distributions of (A, B, K) (which in particular implies Lem. 5.5 which says that (real, random,
real) is indistinguishable from (real, random, random)); whereas security plus pseudorandomness
only imply the indistinguishability between 6 distributions of (A, B, K), with (real, random, real)
excluded.

Remark 3.9. If the KA protocol is 1-simultaneous round, i.e., B = msg2(b) does not depend on A,
then strong pseudorandomness is implied by pseudorandomness: the reduction, on real B or random B,
can sample a on its own and simulate both real A and real K without knowing b. [SGJ23, Theorem 2]
only considers 1-simultaneous round KAs, so the distinction between pseudorandomness and strong
pseudorandomness does not exist there; whereas [MRR20, Theorem 10] considers general 2-round
KAs and overlooks this subtlety.

Counterexample. We now present a concrete counterexample to show that security and pseudo-
randomness combined indeed do not imply the indistinguishability between (real, random, real) and
the other 6 distributions. Consider a variant of hashed Diffie-Hellman, where

msg1(a) = ga

msg2(b, A) = (gb, H0(Ab))
key2(b, A) = H1(Ab)

21

(where H0, H1 : G → {0, 1}κ are ROs). In this variant, P (that holds a) can use the H0 hash to
check whether it received a valid response to A; we use this to break strong pseudorandomness. Let

key1(a, (B0, B1)) =
{

H1(Ba
0) if B1 = H0(Ba

0)
H2(ga) otherwise

Correctness is easily verified. Security and pseudorandomness still hold, as ga and gb are uniform
elements of G, and H0(Ab) and H1(Ab) are indistinguishable from random strings assuming CDH.
However, (real, random, real) and (random, random, random) are easily distinguishable: in the
former distribution, K = H2(A) with overwhelming probability because B1 is uniform and so has
negligible chance of satisfying B1 = H0(Ba

0), while in the latter K ̸= H2(A) with overwhelming
probability, as they are independently random κ-bit strings.

Necessity of strong pseudorandomness in EKE. Consider the following simple attack on
EKE (using IC): the adversary disregards P ′, and on ϕ from P sends random ϕ∗ to P . After P
outputs K, the adversary queries A := D(pw, ϕ) and B := D(pw, ϕ∗) (where pw is the password of
P).

In the real world, A is the KA message generated by the honest P , so A is real; B is the IC
decryption of random ϕ∗, so B is random; and K is computed by the honest P on a and B, so K is
real. In other words, the environment’s view is (real, random, real). Now consider the ideal world:
before P outputs K the simulator only sees a random ϕ∗ from the adversary and has no knowledge
about pw, so it cannot send a correct TestPwd command and thus FPAKE will set the session key of
P to be random. (The simulator sees pw after the session of P completes, at which time it cannot
do anything to change the session key of P .) That is, in the ideal world the environment’s view is
(⋆, ⋆, random), where ⋆ could be real or random, depending on the simulator’s strategy. However,
we have just seen that without strong pseudorandomness (real, random, real) is distinguishable
from all other 6 distributions, so no matter what the two ⋆ are, the ideal world and the real world
are distinguishable (the environment simply runs the distinguisher between (real, random, real) and
the appropriate (⋆, ⋆, random) for KA).

22

P A
a← R
A := msg1(a)

ϕ := E(pw, A)

ϕ∗ ← {0, 1}κ

ϕ∗

B := D(pw, ϕ∗)

K := key1(a, B)

output K

A := D(pw, ϕ)

B := D(pw, ϕ∗)

Figure 7: Attack on EKE with a KA protocol that does not satisfy strong pseudorandomness. In
the real world Z sees (real A, random B, real K) (boxed texts). In the ideal world the simulator
knows pw only after the session of P completes, so K is random. Without strong pseudorandomness,
(real A, random B, real K) is distinguishable from (⋆, ⋆, random K)

The above shows that [MRR20, Theorem 10] is false in a way different from Sect. 3.2, since
it claims the security of EKE without requiring strong pseudorandomness for KA. Furthermore,
the issue persists even if K is hashed, since security plus pseudorandomness do not even imply the
unpredictability of real K given real A and random B (as shown in the counterexample above). This
suggests that [BCP+23, Theorem 1] is also false, since it does not require strong pseudorandomness.
Also note that the attack above does not apply to OEKE, where the adversary needs to come up
with a valid authenticator in order for P to output a real session key.

3.4 Summary

We summarize the requirements on the underlying KA protocol for (O)EKE in Table 5. (For the
attack on EKE using HIC/POPF, see Appx. A.4.)

23

security and
pseudorandomness

strong
pseudorandomness

pseudorandom
non-malleability

collision-
resistance

EKE-PRF
(or EKE

if IC is used)
✓

✓
(overlooked in

[MRR20,BCP+23])

✓
(overlooked in

[MRR20,SGJ23] and
security analyses

in [DHP+18,BCP+23])

OEKE ✓
✓

(overlooked in
[SGJ23,BCP+23])

✓
(overlooked in

[SGJ23])
EKE using HIC/POPF does not realize FPAKE no matter what KA protocol is used,

which is overlooked in [MRR20,SGJ23]

Table 5: Requirements on the underlying KA protocol in (O)EKE

How “real” are these attacks? It is fair to ask whether the attacks in this section correspond
to “real-world” attacks, or if they merely break the UC PAKE security notion.

• The attack in Sect. 3.1 allows the adversary to predict a party’s session key without knowing
its password. Obviously, this completely breaks the security of PAKE.

• The attack in Sect. 3.3 breaks the forward secrecy of PAKE: the adversary sends a random
message during the protocol session, but if it learns the password at any point after the session
completes, the adversary can distinguish the party’s session key from random (or even predict
it). Forward secrecy is a standard requirement of modern key exchange, so this also constitutes
a practical attack.

• The attack in Sect. 3.2 can be viewed as an attack on a generalized “per session” version of
forward secrecy. Here, the adversary only learns the password during the second (P ′-to-P)
session, after the first (P -to-P ′) session has already completed and P ′ has output its session
key. In this case the session key of P ′ should be secure (because the adversary did not learn
the password until after the session ended), yet the adversary can cause the two parties’ session
keys to be correlated.

As a general point, attacks that break UC-security but don’t appear to correspond to a “real-world”
attack on the protocol directly can often be used to create a “real-world” attack on a higher-level
composed protocol. As one example, in [ABB+20] the authors define a weakening of the UC-PAKE
functionality called lazy-extraction PAKE (lePAKE) and show that several PAKE protocols that do
not realize the full UC-PAKE functionality still realize this weaker functionality. Although it may
not be clear initially how the definition of lePAKE leads to a “real-world” attack on the protocol
itself, as observed in [Sho20] it is immediate that composing an lePAKE with a secure channels
protocol is insecure.

On “folklore” results. We remark that the UC-security of EKE had long been a “folklore” result
in the community, before a formal proof was presented. However, it seems unclear which exact version
of EKE was understood to be UC-secure, and as [MRR20, Theorem 10] and [SGJ23, Theorem 2]
suggest, some might have held the false belief that EKE with plain Diffie-Hellman is UC-secure
(while others seem to have the correct understanding that the Diffie-Hellman output has to be
hashed). This reveals the problem with such “folklore” results: without a formal analysis, people

24

cannot even agree upon what the result exactly is!
Our observation echoes Oded Goldreich’s comment in 2020 [Ode20]:

In contrast to its sociological meaning, in TOC this term (i.e., folklore) typically means
some vaguely specified fact that is known to some experts. I wish to highlight two key
ingredients regarding this notion: First, that the known fact is not clearly defined (i.e., its
definition is lacking when compared to the standard norms of the discipline). Second, that
this knowledge is “shared” by few people, who typically publicize their claim of knowledge
only after others who were excluded from the folklore actually discover it, distill it, study
it, and publish it. [...] [O]ne should hope for the elimination of all folklore: Any fact of
value should be specified, distilled, worked-out, and published.

4 Almost Universally Composable POPF
As mentioned in Sect. 1.2, the POPF definition in [MRR20] is unusual in requiring a higher-order
security definition, saying that any weak PRF must remain secure when using the POPF as input.
We now generalize this idea significantly to UC protocols, by defining a notion of almost UC
realization, which means that a protocol must be composable with some class of protocols built on
top.

Definition 4.1. Let F be an ideal functionality and P be a set of tuples of functionalities, protocols,
and simulators. A protocol π P-almost UC realizes an ideal functionality F if, for every protocol ρ
that UC realizes an ideal functionality F ′ in the F-hybrid model using a simulator12 S such that
(F ′, ρ,S) ∈ P, the composed protocol ρF→π (i.e., ρ with F instantiated by π) UC realizes F ′.

If P contains every possible (F ′, ρ,S) then Def. 4.1 describes the standard notion of UC-
realization, by the UC composition theorem.

4.1 The Functionality FPOPF

A POPF can be thought of as a family of random functions {Fϕ}, with two interfaces: Program,
where a party picks a function Fϕ with Fϕ(x∗) := y∗ for (x∗, y∗) of its choice, and Eval, where a
party evaluates a function Fϕ on a specific input x. Crucially, every honest function Fϕ can be
programmed at only one point (x∗, y∗), and for any x ≠ x∗, Fϕ is random. Furthermore, POPFs
must satisfy the uncontrollable output property: for an adversarially generated ϕ∗, the output of
Fϕ∗(x) is pseudorandom — in particular, it is a suitable input of some higher-level schemes which
use random inputs (e.g., a weak PRF, as in the definition in [MRR20]) — except on a single x
“extracted” during the evaluation of Fϕ∗(x).

Our POPF ideal functionality, FPOPF, is shown in Figure 8. We now define POPFs using it and
our almost UC definition above.

Definition 4.2. A protocol π is a POPF if it P-almost UC realizes FPOPF. Here, P is the set
of all (F ′, ρ,S) such that S emulates TestOutput in the same way as FPOPF. That is, S must
(lazily) sample a random function R← Y{0,1}κ×X , use it to emulate (TestOutput, sid, α, x) queries
by returning R(α, x), and only make read-only oracle queries to R (without programming R in any
way).

12Technically, UC realization requires one simulator for every adversary. We only care about the simulator for the
dummy adversary, which simply obeys whatever commands the environment gives to it.

25

Global variables (per sid):
• Transcript T = {} of POPF evaluations.
• Set Φ = {} of honest POPF indices.
• Malicious POPF index ϕ∗ = ⊥.
• Random function R← Y{0,1}∗×X of uncontrollable outputs (defined via lazy sampling).
• String α∗ = ⊥.

On (Program, sid, x∗, y∗) from party P (where x ∈ X and y ∈ Y):
1. There are two cases, depending on whether there is an entry (·, x∗, y∗) ∈ T .

A. If there is no such entry, or if P is malicious, send (Program, sid) to A∗. Wait until A∗

responds with (Program, sid, ϕ) such that there is no entry (ϕ, ·, ·) ∈ T . Then add ϕ to
Φ.

B. Otherwise, there is such an entry, and P is honest. Send (Program, sid, {ϕ | (ϕ, x∗, y∗) ∈
T}) to A∗. Wait until A∗ responds with (Program, sid, ϕ) such that (ϕ, ·, ·) /∈ T or
(ϕ, x∗, y∗) ∈ T .

2. If (ϕ, x∗, y∗) /∈ T , add (ϕ, x∗, y∗) to T .
3. Send (Program, sid, ϕ) to P .

On (Eval, sid, ϕ, x) from party P (where x ∈ X):
4. If ϕ ̸∈ Φ, ϕ∗ = ⊥, and P is honest, then:

(1) Send (Extract, sid, ϕ) to A∗ and wait for response (Extract, sid, x∗, α).
(2) Send (Eval, sid, ϕ, x∗) to A∗ and wait for response (Eval, sid, y∗).
(3) Set ϕ∗ := ϕ, α∗ := α, and add (ϕ, x∗, y∗) to T .

5. Check if there is an entry (ϕ, x, y) ∈ T . If not, generate y according to three cases:
A. If ϕ ∈ Φ, sample y ← Y.
B. If ϕ = ϕ∗, let y := R(α∗, x).
C. Otherwise, send (Eval, sid, ϕ, x) to A∗ and wait for response (Eval, sid, y).

Finally, add (ϕ, x, y) to T .
6. Send (Eval, sid, y) to P .

On (TestOutput, sid, α, x) from A∗ (where α ∈ {0, 1}∗ and x ∈ X):
7. Send (TestOutput, sid, R(α, x)) to A∗.

Figure 8: Ideal functionality FPOPF (with domain X and range Y).

26

We require Def. 4.2 to ensure the simulator for the higher-level protocol does not program R,
since the simulator for the POPF must program R in order for R to match evaluations of the POPF.
FPOPF maintains a set T of defined function values, where (ϕ, x, y) ∈ T means that Fϕ(x) = y.

When party P (either honest or malicious) wants to program on a pair (x∗, y∗), FPOPF lets the
adversary specify a function index ϕ. In particular, if there are no functions Fϕ in the family such
that Fϕ(x∗) is set to be y∗, the adversary must choose a new index ϕ; this ensures that Fϕ is never
programmed on two distinct points. FPOPF also adds ϕ to the set of honest POPF indices Φ, which
indicates that Fϕ is “programmable-once” and has been programmed on one input/output pair. On
the other hand, if there are such functions Fϕ such that Fϕ(x∗) = y∗ (and P is honest), FPOPF lets
the adversary know all such indices ϕ.13 Then the adversary has two options: either pick one of
these existing indices (i.e., the programming process is identical to a previous one), or choose a new
index ϕ, just as in the previous case.

When a party P wants to evaluate Fϕ(x), whose result has not been defined through T , FPOPF
has several cases based on how ϕ was generated.

• If ϕ is an honest index, this means that Fϕ is “programmable-once” and has already been
programmed on another input/output pair, so it chooses Fϕ(x) at random.

• If ϕ is the “designated malicious index” ϕ∗, we want to use Fϕ(x) as the input of some
higher-level scheme. The adversary should be able to learn Fϕ(x), but not control it when
x differs from its chosen target x∗. Therefore, we set Fϕ(x) to be the output of a random
function R, queried on α and x. (α allows for the partial control of Fϕ(x) given by rejection
sampling on ϕ.)

• Otherwise, i.e., if ϕ is a malicious index other than ϕ∗, FPOPF allows the adversary to program
Fϕ on all inputs; in particular, FPOPF asks the adversary for Fϕ(x).

The “designated malicious index” ϕ∗ is chosen as the first malicious POPF index ϕ∗ given to
Eval by an honest party. Having only a single designated target is a necessary limitation of our
POPF construction — requiring that multiple POPFs have jointly uncontrollable outputs is much
more stringent than just requiring a single POPF to be uncontrollable. In all existing protocols
that use POPFs, they only need to be individually uncontrollable and not jointly uncontrollable, so
this limitation is not too onerous.

4.2 POPF Construction

Our POPF construction is identical to the 2-round Feistel POPF in [MRR20]. It uses an abelian
group G14 and two ROs H : {0, 1}∗ × {0, 1}3κ → G and H ′ : {0, 1}∗ ×G→ {0, 1}3κ. The function
family is indexed by ϕ = (s, t) ∈ {0, 1}3κ ×G and defined as

Fϕ(x) = H(x, s⊕H ′(x, t)) · t.
To program on an input/output pair (x∗, y∗), one can compute ϕ = (s, t) via the following

process: sample r ← {0, 1}3κ, and solve the equations{
H(x∗, r) · t = y∗,

s⊕H ′(x∗, t) = r

13A malicious party could exploit this to find whether a given point (x∗, y∗) has been evaluated, so we only allow
honest parties to trigger this case.

14In this section the group G does not need to be cyclic, which is different from the Diffie-Hellman group in Sects. 2
and 3. In particular, the EKE and OEKE protocols in Sect. 5 can work in a non-cyclic Abelian group when instantiated
with the POPF in this section. To make this distinction clear, in this section we simply use |G| (rather than p) for the
group order.

27

for first t, then s. Note that for a pair of (x∗, y∗), there are exponentially many ϕ such that
Fϕ(x∗) = y∗. This is a crucial difference from the ideal cipher, where the encryption is deterministic.

The formal description of our construction is shown in Figure 9. Both of the two ROs are
implemented in the same ideal functionality FRO.

Parameters:
• Random oracle functionality FRO (see Figure 10).

On (Program, sid, x∗, y∗) (where x∗ ∈ X and y∗ ∈ G):
1. Choose r ← {0, 1}3κ.
2. Query h := H(x∗, r), and compute t := y∗/h.
3. Query h′ := H ′(x∗, t), and compute s := r ⊕ h′.
4. Output (Program, sid, (s, t)).

On (Eval, sid, (s, t), x) (where x ∈ X , s ∈ {0, 1}3κ, and t ∈ G):
5. Query h′ := H ′(x, t), and compute r := s⊕ h′.
6. Query h := H(x, r), and compute y := h · t.
7. Output (Eval, sid, y).

Figure 9: POPF construction πPOPF (with domain X and range G). The ROs H, H ′ are queried
using FRO

4.3 Security Analysis

Theorem 4.3. The protocol πPOPF is a POPF. That is, for any protocol ρ that UC realizes an
ideal functionality F ′ in the FPOPF-hybrid model, where the simulator emulates TestOutput and R
in the same way as FPOPF, the composed protocol ρF→π UC realizes F ′.

4.3.1 The Pseudo-simulator

As the first step of our security analysis, we describe in Figure 11 what we call the “pseudo-simulator”
for πPOPF, Spseudo. Spseudo can be viewed as an attempt to prove that πPOPF realizes FPOPF;
however, to successfully program a maliciously generated POPF’s output to match the random
function R, Spseudo has to make a random guess over all of the adversary’s H ′ queries, and its
simulation is successful only if the guess is correct. As such, Spseudo is not a valid simulator showing
that πPOPF realizes FPOPF, but it is a critical step towards building the actual simulator presented
next.

Below we explain how Spseudo works. It can be divided into two separate goals: simulating
honestly generated POPFs without knowing where they were programmed, and forcing maliciously
generated POPFs to have output matching the random function R.

Honest POPFs. When Spseudo is asked to program on an input/output pair (which Spseudo does
not know), it simply chooses a random ϕ = (s, t). It then needs to answer the adversary’s RO
queries appropriately, so that evaluating the POPF via the RO gives the same result as calling Eval
on the ideal functionality. On an H(x, r) query, Spseudo checks if r = s⊕H ′(x, t) for some honest
ϕ = (s, t), i.e., the adversary is trying to compute y = Fϕ(x) = H(x, r) · t. If so, then Spseudo sends
an Eval command to FPOPF to obtain y, and then programs H(x, r) := y/t.

28

Parameters:
• Abelian group G with order 22κ ≤ |G| < 22κ+1.

Global variables:
• Initialize a list TRO := [] of RO evaluations.

On H(x, r) (for session sid) from party P :
1. Ignore this query if r /∈ {0, 1}3κ.
2. If there is not a matching query “h = H(x, r)” ∈ TRO, sample h ← G and append

“h = H(x, r)” to TRO.
3. Return h to P .

On H ′(x, t) (for session sid) from party P :
1. Ignore this query if t /∈ G.
2. If there is not a matching query “h′ = H ′(x, t)” ∈ TRO, sample h′ ← {0, 1}3κ and append

“h′ = H ′(x, t)” to TRO.
3. Return h′ to P .

Figure 10: Ideal functionality FRO.

Malicious POPFs. On the other hand, the H(x, r) query might be the adversary computing
Fϕ∗(x) for the “designated malicious index” ϕ∗ = (s∗, t∗). Note that ϕ∗ might not have been chosen
yet — Spseudo only learns ϕ∗ when Extract is called. It only knows that if this H query is evaluating
Fϕ∗(x) then H ′(x∗, t∗) must have been queried to compute s∗, and H ′(x, t∗) must have been queried
to find r. Therefore, Spseudo has to choose a guess tg for what t∗ will be, among all of the adversary’s
H ′ queries. Then Spseudo guesses s∗ by solving for sg = H ′(x, tg)⊕r, obtains y by explicitly querying
the random function R15, and programs H(x, r) := y/tg. In all other cases, Spseudo answers the RO
queries by lazy sampling.

Later, Extract will be called, and Spseudo will have to find the unique point x∗ programmed by
the POPF. Recall that to find (s∗, t∗), the adversary needs to compute first t∗ = y∗/H(x∗, r), then
s∗ = r ⊕H ′(x∗, t∗); the query H ′(x∗, t∗) is called the anchor query. That is, Spseudo identifies the
adversary’s anchor query as the query (x∗, t∗) to H ′ (resulting in h∗) such that H(x∗, s∗ ⊕ h∗) was
queried before the H ′ query. However, note that there is an exception: given any ϕ = (s, t), the
adversary can choose another index ϕ′ = (sϕ, tϕ) and input x∗ such that

sϕ ⊕H ′(x∗, tϕ) = s⊕H ′(x∗, t),

causing
Fϕ′(x∗) = Fϕ(x∗) · (tϕ/t)

without making any H query. In this case, the anchor query is defined as the query H ′(x∗, t).
Either way, Spseudo outputs x∗ in the anchor query, which implicitly sets Fϕ(x∗) because the ideal
functionality sends an Eval command to the simulator when Fϕ(x∗) is evaluated. Finally, to answer
an Eval command, Spseudo simply returns the honestly computed function value (note that this
might trigger a fresh H query, and how to answer it is described at the beginning of this paragraph).

The guessing step while answering H ′ queries is why the pseudo-simulator is not (quite) a
simulator, as the probability of a correct guess is 1/(q′

h + 1) (including the additional guess that
Extract will never be called or that H ′(x, t∗) wasn’t queried.). Since we cannot prove that πPOPF
realizes FPOPF, we turn to the “almost UC” notion of Def. 4.1.

15If Spseudo were to send an Eval command to FPOPF here, FPOPF might enter step 5C in Fig. 8 (note that it would
not enter step 4 since it is Spseudo that sends the command, and would not enter step 5A since ϕ∗ is a malicious
index), in which case FPOPF would send an Eval command back to Spseudo and cause a loop.

29

Initialize a list TRO := [] of RO evaluations and a set Φ := {} of honest POPF indices. Sample
g ← [0, q′

h] and A←
(
{0, 1}3κ

){0,1}3κ×G. Set tg := ⊥.

On (Program, sid) or (Program, sid, Σ) from FPOPF:
1. Choose s← {0, 1}3κ and t← G.
2. Add (s, t) to Φ and send (Program, sid, (s, t)) to FPOPF.

On (Extract, sid, ϕ∗ = (s∗, t∗)) from FPOPF:
3. Abort if the guess tg is wrong. There are two cases:

A. If H ′(x, t∗) has been queried for some x, abort if tg ̸= t∗.
B. Otherwise, abort if g ̸= 0.

4. Search for the anchor query “h′ = H ′(x∗, t∗)” ∈ TRO, which is the query satisfying one of
these conditions:

A. There is an earlier query “h∗ = H(x∗, r∗)” ∈ TRO such that r∗ = s∗ ⊕ h′.
B. There is an earlier query “h′

Φ = H ′(x∗, tΦ)” ∈ TRO, for some (sΦ, tΦ) ∈ Φ, such that
s∗ ⊕ h′ = sΦ ⊕ h′

Φ.
5. If there is no anchor query, choose an arbitrary x∗ ∈ X .
6. Send (Extract, sid, x∗, A(s, t)) to FPOPF.

On (Eval, sid, ϕ = (s, t), x) from FPOPF:
7. Evaluate y := H(x, s⊕H ′(x, t)) · t, using the FRO interface defined below.
8. Send (Eval, sid, y) to FPOPF.

On H(x, r) from P aimed at FRO:
9. Find a query “h = H(x, r)” ∈ TRO, or determine h using to the following three cases if none

exists:
A. If there exist (s, t) ∈ Φ and “h′ = H ′(x, t)” ∈ TRO such that r = s ⊕ h′, then send

(Eval, sid, (s, t), x) to FPOPF. On response (Eval, sid, y) from FPOPF, compute h := y/t.
B. Otherwise if tg ̸= ⊥ and there is a query “h′ = H ′(x, tg)” ∈ TRO, then set sg :=

r⊕h′. Send (TestOutput, sid, A(sg, tg), x) to FPOPF, and on response (TestOutput, sid, y),
compute h := y/tg.

C. Otherwise sample h ∈ G.
In all cases, append “h = H(x, r)” to TRO.

10. Return h to P .

On H ′(x, t) from P aimed at FRO:
11. If g ̸= 0 and t is the g-th unique value that appears in such a query, set tg := t.
12. Find a query “h′ = H ′(x, t)” ∈ TRO, or if none exists, sample h′ ← {0, 1}3κ and append

“h′ = H ′(x, t)” to TRO.
13. Return h′ to P .

At the end of the experiment:
14. If Extract has not been called, abort unless g = 0.

Figure 11: POPF pseudo-simulator Spseudo.

30

Parameters:
• Simulator S for overlying protocol ρ UC realizing F ′.

Global variables:
• Lists TRO, TR of RO evaluations.
• The extraction target ϕ∗ = (s∗, t∗).
• A randomly sampled string α∗ ← {0, 1}3κ.

Run the simulator S, delivering its messages with F ′ as normal. Communication of S with A and
the corrupted parties is filtered when S is acting as FPOPF. Such messages are handled as follows.

On queries (Program, sid), (Program, sid, A), (Extract, sid, ϕ), (Eval, sid, ϕ, x), H(x, r), or H ′(x, t):
1. Handle the query as in Spseudo, except:

A. In Extract, skip the abort (step 3), and return α∗ instead of A(s∗, t∗).
B. In H(x, r), remove case 9B to avoid querying R (through TestOutput).

2. At the end of the experiment, skip the abort (step 14).

Additionally, modify S to replace the random function R with the following.
On lookup R(α, x):

3. If there is a tuple (α, x, r) ∈ TR, return r.
4. Pick r according to two cases:

A. If α = α∗ and x ̸= x∗, evaluate r := H(x, s∗ ⊕H ′(x, t∗)) · t∗.
B. Otherwise, sample r ← G.

5. Add (α, x, r) to TR.
6. Return r.

Figure 12: POPF simulator SPOPF.

4.3.2 The Simulator

Let F ′ be an ideal functionality and S be the simulator for the overlying protocol ρ UC realizing F ′.
In Figure 12, the POPF simulator SPOPF is constructed from S and the pseudo-simualtor.

4.3.3 Security Proof

Proof overview. To prove that πPOPF is a POPF (Def. 4.2), we must show that its composition
with ρ is simulated by SPOPF. If πPOPF realized FPOPF, we could simply apply the UC theorem.
Unfortunately, it does not, because of the aforementioned aborts in the pseudo-simulator Spseudo.

Our proof has a similar structure to the proof of the UC theorem, but adjusted to take into
consideration the aborts inside Spseudo. Recall that the UC theorem states that, if an “inner protocol”
πinner realizes functionality Finner (let Sinner be the simulator), and an “outer protocol” ρ realizes
functionality F ′ in the Finner-hybrid world (let S be the simulator for ρ), then the combined protocol
ρFinner→πinner also realizes F ′. At a high level, the hybrid proof goes through the following steps:

1. Real world: ρFinner→πinner ⇔ A. The composed protocol is interacting with an adversary A.
2. Intermediate world: ρ ⇔ Sinner ⇔ A. Now ρ uses Finner directly, and the adversary A has

been wrapped by interacting with Sinner. This is indistinguishable from the real world, since
πinner UC realizes Finner.

3. Ideal world: F ′ ⇔ S ⇔ Sinner ⇔ A. Now there are no protocols, and the adversary is doubly
wrapped by two simulators (or equivalently, the two simulators have been combined together).
This is indistinguishable from the intermediate world, since ρ realizes F ′.

31

In our setting, the “inner protocol” is πPOPF, whose simulator Spseudo has high probability of
abort. Thus, we add aborts to our real and ideal worlds, and show that the “real world with abort”
and the “ideal world with abort” are indistinguishable. Below we use the notation pW to represent
running process W with probability p, and aborting instead with probability 1− p.

1. Real world with abort: 1
q′

h
+1(ρFPOPF→πPOPF ⇔ A).

2. Pseudo-intermediate world: ρ⇔ Spseudo ⇔ A. Assuming that Spseudo does not abort, πPOPF
is indistinguishable from FPOPF ⇔ Spseudo, so this is indistinguishable from the real world.
The probability 1

q′
h

+1 was chosen to make the abort occur with equal probability between the
two worlds, so that they are indistinguishable.

3. Pseudo-ideal world: F ′ ⇔ S ⇔ Spseudo. This is indistinguishable from the pseudo-intermediate
world, since ρ realizes F ′.

4. Ideal world with abort: 1
q′

h
+1(F ′ ⇔ SPOPF). This step has no analogy with the UC theorem.

The idea is to combine Spseudo with S, then make some tweaks so that the abort will no longer
be necessary. While we cannot prove that πPOPF realizes FPOPF due to the abort in Spseudo,
we can remove the abort in the context of combined protocols, because SPOPF can now modify
S’s definition of the random function R (as we specifically required that S not program R).

The proof concludes by noting that, if the environment has advantage AdvPOPF-abort of dis-
tinguishing the real world with abort from the ideal world with abort, then its actual advan-
tage of distinguishing the real world from the ideal world (without abort) is upper-bounded as
AdvPOPF ≤ (q′

h + 1)AdvPOPF-abort.

Bad events. Even if Spseudo does not abort, its simulation is still not perfect, due to the possibility
of some bad events. It is more convenient to exclude the bad events from the beginning of the proof
(i.e., in the real world). Formally, this can viewed as modifying the real world so that if any of these
bad events occur then it will reset, and start running the ideal world from the start instead. Note,
however, that these events will be defined using Φ and ϕ∗ = (s∗, t∗), which are defined in the ideal
functionality, not the real world. But they can all be observed by the honest parties (and so by the
environment) in the real world: Φ is the set of all outputs generated by the ideal functionality’s
Program interface, which is only run by honest parties as it is never called by the simulator, and ϕ∗

is the first index not in Φ that is passed to Eval by an honest party. In the real world, we define
them to match these observables.

Below we list these bad events:

• Bad1: When (Program, . . .) queries h = H(x∗, r) and h′ = H ′(x∗, t), the inputs overlaps with
previous H and H ′ queries. That is, h and h′ are not freshly random.

• Bad2: When (Program, . . .) computes (s, t), there is some (s′, t) ∈ Φ; or if (s∗, t∗) is defined,
t = t∗.

• Bad3: When (Program, . . .) is queried, returning (s, t), look through the queries of the form
“H(x, r)” in FRO’s set TRO from before this Program query. That is, exclude the H query made
during Program. The bad event occurs if there is a corresponding entry “s⊕r = H ′(x, t)” ∈ TRO,
or if this entry is later added to TRO.

• Bad4: The honest POPF used by a given RO query is ambiguous. That is, for some “H(x, r)” ∈
TRO, there are distinct (s, t), (s′, t′) ∈ Φ such that both “s⊕r = H ′(x, t)” and “s′⊕r = H ′(x, t′)”
are in TRO.

32

• Bad5: The anchor query is not unique. That is, after all queries have been made, there are
two distinct queries “H ′(x0, t)”, “H ′(x1, t)” ∈ TRO that both satisfy the conditions of being an
anchor query.

Let Bad be the disjunction of these bad events. Assuming that Bad cannot occur can change
the advantage by at most Pr[Bad]. Therefore, the environment’s advantage will be bounded as
AdvPOPF ≤ (q′

h + 1)AdvPOPF-abort + Pr[Bad].

Detailed proof. Let Z be the environment, and A be the adversary.

Lemma 4.4. Assume Z issues qp Program commands, qh commands to FRO where the last bit of
sid is 0 (i.e., H queries), and q′

h commands to FRO where the last bit of sid is 1 (i.e., H ′ queries).
Then in the real world,

Pr[Bad] ≤ (2q′
h + 3qp + 1)qp

2|G| + qp(qp + 3)(qh + qp) + (qh + q′
h + qp)2(q′

h + qp)
23κ+1 .

Proof. We bound the probability of each bad event, assuming that the previous bad events do not
occur. All of our bad events are contained in unions of simpler bad events, such as sampling t← G
and finding that it equals a predetermined value g ∈ G, which have obviously negligible probabilities.
The sizes of these unions are polynomials in the number of executions of Program, H, and H ′. Note,
however, that the total number of executions of H (resp. H ′) is really qh + qp (resp. q′

h + qp), not qh

(resp. q′
h), because every call to Program issues one query to each of H and H ′,

• Bad1: When the h := H(x∗, r) query is executed by Program, the value r is freshly sampled
from {0, 1}3κ. There are qh + qp previous executions of H, so r overlaps a past query with
probability at most qh/23κ. Assuming that r is distinct, the result h is freshly random from
G. Then H ′(x∗, t) will also be distinct from all past queries, except with probability at most
q′

h/|G|, because t = y∗/h. That is, t will be uniformly random in G, independent from all past
queries to H ′, of which there are at most q′

h + qp. Therefore, a union bound shows that

Pr[Bad1] ≤ (qh + qp)qp

23κ
+ (q′

h + qp)qp

|G|
.

• Bad2: We first note that a pair (s, t) is added to Φ only when a Program command is issued by
Z, so |Φ| ≤ qp. The value t is generated by πPOPF using an RO query as t = y∗/H(x∗, r), and
H(x∗, r) is freshly random assuming that Bad1 does not occur. Therefore, t ∈ G is uniformly
random and independent of Φ, and the probability that t is already in Φ, i.e., there is a
collision in the t values in Φ, is at most

(qp

2
)
/|G|. Also, the probability that Program generates

a pair (s, t) such that t = t∗ is at most qp/|G|. Therefore,

Pr[Bad2 ∧ ¬Bad1] ≤
q2

p + qp

2|G| .

• Bad3: For Bad3 to occur, it must hold that s⊕ r = H ′(x, t) (or equivalently, s = r ⊕H ′(x, t))
for some s, t generated by Program and some x, r with H(x, r) previously queried by either
Z or Program. There are at most qp (s, t) pairs and at most qh + qp H queries; these two
combined uniquely determine the values of x and t, which in turn determine the H ′(x, t) query.
For each pair (s, t) ∈ Φ and each H(x, r) query, assuming that Bad1 does not occur, s is a

33

uniformly random string in {0, 1}3κ independent of r and H ′(x, t)16, so the probability that
s = r ⊕H ′(x, t) is 1/23κ. A union bound gives

Pr[Bad3 ∧ ¬Bad1] ≤ qp(qh + qp)
23κ

.

• Bad4: For Bad4 to occur, it must hold that s ⊕ r = H ′(x, t) and s′ ⊕ r = H ′(x, t′) for some
distinct pairs (s, t), (s′, t′) generated by Program and some x, r with H(x, r) queried by Z or
Program. This implies that s ⊕ s′ = H ′(x, t) ⊕ H ′(x, t′). Similarly to the analysis of Bad3,
the query H(x, r) and the POPF indexes (s, t) and (s′, t′) uniquely determine the values of
x, t, t′, which in turn determine both the H ′(x, t) query and the H ′(x, t′) query. Assuming
that Bad1 and Bad2 do not occur, we have that t ̸= t′, so s, s′, H ′(x, t), H ′(x, t′) are mutually
independent strings in {0, 1}3κ. Therefore,

Pr[Bad4 ∧ ¬Bad1 ∧ ¬Bad2] ≤ qp(qp − 1)(qh + qp)
23κ+1 .

(The analysis of Bad4 is not covered by the analysis of Bad3, since here r might depend on s.)

• Bad5: Recall that for an anchor query (x, t), either of the followings must hold:

– r = s⊕H ′(x, t), where H(x, r) was previously queried by Z; or
– s⊕H ′(x, t) = sΦ ⊕H ′(x, tΦ) for some (sΦ, tΦ) sampled by an honest party,

where s, t are specified by the Extract command. Therefore, if there are two distinct anchor
queries, then one of the followings must happen:

– r0 ⊕H ′(x0, t) = s = r1 ⊕H ′(x1, t) for some previous queries H(x0, r0) and H(x1, r1);
– r ⊕ H ′(x0, t) = s = sΦ ⊕ H ′(x1, tΦ) ⊕ H ′(x1, t) for some previous H(x0, r) query and

some (sΦ, tΦ) sampled by an honest party; or
– sΦ,0 ⊕H ′(x0, tΦ,0) ⊕H ′(x0, t) = s = sΦ,1 ⊕H ′(x1, tΦ,1) ⊕H ′(x1, t) for some (sΦ,0, tΦ,0)

and (sΦ,1, tΦ,1) sampled by an honest party.

Let us count the ways in which these sub-events can occur. All variables in the first sub-event
are determined by the two H queries and an H ′ query; assuming Bad2 does not occur, all
variables in the second sub-event are determined by the queries H(x0, r), H ′(x0, t), and
H ′(x1, tΦ) (note that sΦ is uniquely determined by tΦ); assuming Bad2 does not occur, all
variables in the third sub-event are determined by the H ′(x0, t), H ′(x0, tΦ,0), and H ′(x1, tΦ,1)
queries. In all three sub-events, one of the H ′ queries will come last, and so be uniformly
random in {0, 1}3κ, independent of the H queries and the other variables, and so will trigger
the bad event with probability 2−3κ. Adding up, we get

Pr[Bad5 ∧ ¬Bad2] ≤ q2
h(q′

h + qp) + 2qh(q′
h + qp)2 + (q′

h + qp)3

23κ+1 = (qh + q′
h + qp)2(q′

h + qp)
23κ+1 .

Summing up the five bad events above yields the lemma.

Lemma 4.5. Assume that Bad does not occur. Then Z’s distinguishing advantage between the real
world with abort and the pseudo-intermediate world is at most q2

h/23κ+1.
16We can ignore the H ′(x∗, t) query made in Program, because the corresponding H(x∗, r) query has been excluded.

34

Proof. Consider the following hybrid argument:
Hybrid 0: This is the real world with abort. The environment Z’s view is shown in Figure 13. Note
that the experiment aborts with probability q′

H/(q′
H + 1) (see steps 5 and 8), but otherwise behaves

exactly as the same as the real world.

Sample g ← [0, q′
H].

On (Program, sid, x∗, y∗) (where x∗ ∈ X and y∗ ∈ G):
1. Choose r ← {0, 1}3κ.
2. Compute t := y∗/H(x∗, r).
3. Compute s := r ⊕H ′(x∗, t).
4. Output (Program, sid, (s, t)).

On (Eval, sid, (s, t), x) (where x ∈ X , s ∈ {0, 1}3κ, and t ∈ G):
5. If this is the first Eval message for sid, abort if either g ̸= 0 and t is not the g-th unique

value that appears in a query H ′(·, t), or if g = 0 and H ′(·, t) has been queried before.
6. Compute y := H(x, s⊕H ′(x, t)) · t.
7. Output (Eval, sid, y).

At the end of the experiment:
8. If Eval has not been called, abort unless g = 0.

Figure 13: Z’s view in the real world with abort.

Hybrid 1: At the end of (Program, sid, x∗, y∗), define F(s,t)(x∗) := y∗; at the beginning of (Eval, sid, (s, t), x),
if F(s,t)(x) is already defined, then return (Eval, sid, y) where y := F(s,t)(x); at the end of (Eval, sid, (s, t), x),
define F(s,t)(x) := y.

Suppose that in hybrid 1, F(s,t)(x) is already defined when Z sends a command (Eval, sid, (s, t), x).
This means that there is a previous command (Program, sid, x, y) with t = y/H(x, r) and s =
r ⊕ H ′(x, t) for some r ∈ {0, 1}3κ. But then y = F(s,t)(x) = H(x, r) · t = H(x, s ⊕ H ′(x, t)) · t,
exactly as how y is computed in hybrid 0. The only other difference between hybrids 0 and 1 is the
bookkeeping of the F function. Therefore, hybrids 0 and 1 are identical.

The following hybrids 2 and 3 consider the indices of honest POPFs (s, t) ∈ Φ.
Hybrid 2: On (Program, sid, x∗, y∗), choose (s, t) ← {0, 1}3κ × G and output (Program, sid, (s, t)).
Furthermore, compute r := s⊕H ′(x∗, t); if H(x∗, r) is queried, return y∗/t.

Assuming Bad4 does not occur, when Z queries H(x∗, r), there do not exist two distinct pairs
(s, t), (s′, t′) such that r = s⊕H ′(x∗, t) = s′⊕H ′(x∗, t′), so the query can be answered unambiguously
if we only consider those queries defined by Program commands. Furthermore, assuming Bad3 does
not occur, it cannot happen that an H-query defined by a Program command has already been
queried during a previous Eval command. It follows that H queries can be answered unambiguously,
and thus hybrid 2 is well-defined.

We can see that in both hybrids 1 and 2, the variables s, t, r, h = H(x∗, r) satisfy the equations

s⊕ r = H ′(x∗, t), y∗ = h · t;

if we choose (r, h)← {0, 1}3κ ×G then we get hybrid 1, whereas if we choose (s, t)← {0, 1}3κ ×G
then we get hybrid 2. So hybrids 1 and 2 are identical.
Hybrid 3: On (Eval, sid, (s, t), x), if F(s,t)(x) is undefined and (s, t) ∈ Φ, sample y ← G, set
F(s,t)(x) := y, and return (Eval, sid, y). Furthermore, compute r := s ⊕H ′(x, t); when H(x, r) is

35

queried, return y/t.
Similar to the analysis in hybrid 2, assuming neither Bad3 nor Bad4 occurs, hybrid 3 is well-defined.

By an analysis similar to that in hybrid 2, hybrids 2 and 3 are identical.

The following hybrids 4–7 consider the “designated malicious index” (s∗, t∗).

Hybrid 4: In step 5 of Figure 13 (note that the previous hybrids do not change this step), if the
experiment does not abort, set (s∗, t∗) := (s, t) and find the anchor query “H ′(x∗, t∗)”. If there is no
anchor query, choose an arbitrary x∗ ∈ X .

Assuming Bad5 does not occur, the anchor query is uniquely defined, hence hybrid 4 is well-defined.
The only difference between hybrids 3 and 4 is bookkeeping, so they are identical.

Hybrid 5: Sample A ←
(
{0, 1}3κ

){0,1}3κ×G at the beginning of the experiment. In the case that
there is an “h′ = H ′(x, tg)” query and then an “H(x, r)” query for some x, r (where x may or may
not be equal to x∗), set sg := r ⊕ h′, y := R(A(sg, tg), x), and answer with h := y/tg.

Let Collide be the event that two queries A(sg, tg), A(s′
g, t′

g) generate the same output; obviously,
Pr[Collide] ≤ q2

h/23κ+1. We now argue that in hybrid 5, if Collide does not occur, then the y values
are independently random in Z’s view for different H(x, r) queries. Suppose that there are two
different queries H(x0, r0), H(x1, r1). We have that (1) if x0 ̸= x1, then the corresponding inputs to
R are different; (2) if x0 = x1 = x but r0 ̸= r1, then the corresponding s values are r0 ⊕H ′(x, tg)
and r1 ⊕H ′(x, tg) which are different, so the corresponding inputs to R are different because Collide
does not occur. We conclude that all the outputs of R — i.e., the y values — are independently
random in Z’s view.

We can see that in both hybrids 4 and 5, the variables y, h satisfy the equation

y = h · tg;

if we choose h← G then we get hybrid 4, whereas if we choose y ← G then we get hybrid 5 (except
when Collide occurs). Therefore, Z’s distinguishing advantage between hybrids 4 and 5 is at most
Pr[Collide] ≤ q2

h/23κ+1.

Hybrid 6: In the condition in hybrid 4 — that is, when step 5 of Figure 13 runs, assuming it does not
abort — if F(s∗,t∗)(x∗) is not already defined and x ̸= x∗, then compute y∗ := H(x∗, s∗⊕H ′(x∗, t∗))·t∗

and set F(s∗,t∗)(x∗) := y∗ (in addition to what hybrid 4 already does). Note that the condition in
hybrid 5 may be triggered while computing the H output.

In hybrid 5, F(s∗,t∗)(x∗) is defined as y∗ when Z sends (Eval, sid, (s∗, t∗), x∗), whereas in hybrid
6, F(s∗,t∗)(x∗) is defined as y∗ when Z sends (Eval, sid, (s∗, t∗), x) for the first time for any x. This
change does not affect Z’s view.

Hybrid 7: On (Eval, sid, (s∗, t∗), x), if x ̸= x∗ and F(s∗,t∗)(x) is undefined, set y := R(α∗, (s∗, t∗), x)
and F(s∗,t∗)(x) := y, and return (Eval, sid, y).

The difference between hybrids 6 and 7 is that an (Eval, sid, (s∗, t∗), x) command is answered
with H(x, s∗ ⊕H ′(x, t∗)) · t∗ in hybrid 6 and R(α∗, (s∗, t∗), x) in hybrid 7. We consider two cases:

• If Z has queried H(x, s∗ ⊕H ′(x, t∗)):

– If Z queried H(x, s∗ ⊕ H ′(x, t∗)) and then H ′(x, t∗), this means that H ′(x, t∗) is an
anchor query and thus x = x∗, so the change in hybrid 7 does not affect this case.

– If Z queried H ′(x, t∗) and then H(x, s∗ ⊕ H ′(x, t∗)), according to the description of
hybrid 5, we have that R(α∗, (s∗, t∗), x) = H(x, s∗ ⊕H ′(x, t∗)) · t∗ since t∗ = tg (because
we haven’t aborted), so Z’s views in hybrids 6 and 7 are identical.

36

• If Z has not queried H(x, s∗ ⊕H ′(x, t∗)):

– H(x, s∗ ⊕H ′(x, t∗)) appears in the experiment only when Z sends (Eval, sid, (sΦ, tΦ), x)
for some other (sΦ, tΦ) such that s∗ ⊕H ′(x, t∗) = sΦ ⊕H ′(x, tΦ). But then H ′(x, t∗) is
an anchor query and thus x = x∗, so the change in hybrid 7 does not affect this case.

– If H(x, s∗ ⊕ H ′(x, t∗)) does not appear in the experiment, then both R(α∗, (s∗, t∗), x)
and H(x, s∗ ⊕H ′(x, t∗)) are random elements of G, so Z’s views in hybrids 6 and 7 are
identical.

We conclude that Z’s views in hybrids 6 and 7 are identical.

We now claim that hybrid 7 is identical to the pseudo-intermediate world. In both worlds, a
(Program, sid, x∗, y∗) command is answered with (s, t)← {0, 1}3κ ×G, and an H ′ query is answered
with a random string in {0, 1}3κ. For an (Eval, sid, (s, t), x) command, in both worlds,

• If F(s,t)(x) is already defined, then the answer is F(s,t)(x). This can be seen from hybrid 1 and
step 5 (without entering any of the sub-conditions) of Figure 8.

• If F(s,t)(x) is undefined and (s, t) ∈ Φ, then the answer is a uniformly random element of G.
This can be seen from hybrid 3 and step 5A of Figure 8.

• If F(s,t)(x) is undefined and (s, t) = (s∗, t∗), then if x = x∗, the answer is H(x∗, s∗⊕H ′(x∗, t∗))·t∗

as can be seen from hybrid 6 and step 4 of Figure 8; if x ̸= x∗, the answer is R(α∗, (s∗, t∗), x)
as can be seen from hybrid 7 and step 5B of Figure 8.

• If F(s,t)(x) is undefined, (s, t) ∈ Φ and (s, t) ̸= (s∗, t∗), then the answer is H(x, s⊕H ′(x, t)) · t.
This is unchanged throughout the hybrids and in the pseudo-intermediate world can be seen
from step 5C of Figure 8.

Finally, for an H(x, r) query, in both worlds,

• If r = s⊕H ′(x, t) for some (s, t) ∈ Φ, then the answer is y/t = F(s,t)(x)/t. This can be seen
from hybrid 3 and step 9A of Figure 11.

• If there is an “h′ = H ′(x, tg)” query and then an “H(x, r)” query for some x, r, then the
answer is y/tg = R(α∗, x)/tg. This can be seen from hybrid 5 and step 9B of Figure 11.

• Otherwise the answer is a random element in G. This is unchanged throughout the hybrids
and in the pseudo-intermediate world can be seen from step 9C of Figure 11.

We conclude that hybrid 7 and the pseudo-intermediate world are identical. The only hybrid that
generates a non-identical view is hybrid 5, so Z’s distinguishing advantage between the real world
with abort and the pseudo-intermediate world is at most q2

h/23κ+1. This completes the proof.

Lemma 4.6. Assume that Bad does not occur, and at most qR queries to R are made by S. Then
Z’s distinguishing advantage between the pseudo-ideal world from the ideal world with abort is at
most 3q2

R/23κ+1.

Proof. Consider the following hybrid argument:

Hybrid 0: This is the pseudo-ideal world. Step 9B of the pseudo-simulator Spseudo currently programs
H so that H(x, H ′(x, tg)⊕ sg) · tg = R(A(sg, tg), x) holds for all sg, whenever the H ′ query is made

37

before the H query. In particular, this holds for (sg, tg) = (s∗, t∗) and x ≠ x∗, by the uniqueness of
the anchor query (or else Bad5 would occur). When such an H query is made for any sg, Spseudo
computes α = A(sg, tg) and R(α, x), and uses them to define the output of H. R(α, (sg, tg), x) is
either a freshly random value here, or if it was previously queried (e.g., by S) then it was sampled
randomly when it was first queried.

Hybrid 1: Change to an equivalent distribution by swapping which of H and R is used to define
the other. Instead of sampling R and programming H to match as with case 9B, let H be sampled
uniformly and program R to match. However, there is no need to program R(α, x) other than when
α = α∗ (i.e., α = A(s∗, t∗)), since no other evaluation of A is ever revealed by Spseudo. Therefore,
we only program R(α∗, x) for x ̸= x∗.

More precisely, let H be defined as in the ideal world, by removing step 9B from Spseudo.
Then whenever R(α∗, x) is evaluated (after s∗, t∗ and α∗ have been defined), if x ̸= x∗, compute
r = H(x, H ′(x, t∗)⊕s∗)·t∗ and program R(α∗, x) := r. Steps 1B and 3–6 of Figure 12 are pseudocode
for these two changes.

This change can only be noticed if either the R evaluations are not all independently random, or
if Z manages to make an R(α, x) query on some α = A(sg, tg) not yet revealed by the simulator.
That is, either there was a collision in A, or when Z’s R(α, x) query was made either α ̸= α∗ or α∗

was not yet been returned by Extract. There are at most qR queries to A and to R, since A is only
queried by H, and before the hybrid queries to H result in queries to R.Therefore, these events
are upper bounded by q2

R/23κ+1 and q2
R/23κ, respectively, so Z’s distinguishing advantage between

hybrids 1 and 2 is at most 3q2
R/23κ+1.

Hybrid 2: Remove the RO A, and instead just sample α∗ ← {0, 1}3κ and replace the query to
A(s∗, t∗) with α∗. The is equivalent because A is only called on input (s∗, t∗).

Hybrid 3: Notice that g and tg are no longer used, except for the abort. This abort always has
probability q′

H/(q′
H + 1), so we can remove g and replace it with a simple abort with this probability.

Hybrid 4: Combine the higher-level protocol’s simulator S with the modified pseudo-simulator
Spseudo. Call their composition SPOPF. We are now at the pseudo-ideal world.

The only hybrid that generates a non-identical view is hybrid 5, so Z’s distinguishing advantage
between the real world with abort and the pseudo-intermediate world is at most 3(qh + qR)2/23κ+1.
This completes the proof.

We can now put these lemmas together to get a proof of Thm. 4.3.

Proof. First, we bound AdvPOPF-abort using the hybrid argument outlined above. These hybrids are
first those given in Lem. 4.5, then a single hybrid change for the security of ρ, and finally those in
Lem. 4.6. Adding the advantages together, we get

AdvPOPF-abort ≤
q2

h

23κ+1 + Advρ + 3q2
R

23κ+1

= Advρ + q2
h + 3q2

R

23κ+1 .

38

Finally, put this together with Lem. 4.4 to get:

AdvPOPF ≤ (q′
h + 1)AdvPOPF-abort + Pr[Bad]

≤ (q′
h + 1)Advρ + (q′

h + 1)(q2
h + 3q2

R)
23κ+1 + (2q′

h + 3qp + 1)qp

2|G|

+ qp(qp + 3)(qh + qp) + (qh + q′
h + qp)2(q′

h + qp)
23κ+1

≤ (q′
h + 1)Advρ + (2q′

h + 3qp + 1)qp

2|G| + (qh + q′
h + qR + qp + 1)3

23κ
.

5 PAKE Protocols Based on POPF
In this section we present our main results, namely the UC-security analysis of EKE and OEKE
using POPF. Concretely,

• In Sect. 5.2 we prove that EKE-PRF using POPF is UC-secure assuming the underlying
KA protocol satisfies security, strong pseudorandomness, and pseudorandom non-malleability.
Additional results about the “raw” version of EKE, including (1) EKE using IC is UC-secure,
and (2) EKE using POPF realizes the weaker “PAKE with same password test” functionality
FPAKE-sp (both results are under the same assumptions on KA), are argued in Appx. B.

• In Sect. 5.3 we prove that OEKE using POPF is UC-secure assuming the underlying KA
protocol satisfies security, pseudorandomness, pseudorandom non-malleability, and collision
resistance. This covers the OEKE-PRF and OEKE-RO variants in existing works.

Our starting observation is that the first round of EKE and OEKE are exactly identical. To make
our security proofs more concise and modular, we abstract the first round into an ideal functionality
FEKE-1r, and prove that the first round of (O)EKE realizes FEKE-1r; after that, we prove separately
that the EKE and OEKE are secure in the FEKE-1r-hybrid world.

5.1 The First-Round Functionality and Protocol

The functionality. See Figure 14 for the UC functionality FEKE-1r representing the first-round
of (O)EKE, parameterized by a specific underlying KA protocol KA. (Although we name the func-
tionality FEKE-1r, we stress that the first round of OEKE is represented by the same functionality.)

Recall that in the first round of both EKE and OEKE, party P (with password pw) computes
its KA message A, programs ϕ such that A = Fϕ(pw), and sends ϕ to P ′. Then P ′ (with password
pw′) evaluates A′ = Fϕ(pw′), samples randomness b← R, sends B := msg2(b, A′) to P , and outputs
K ′ := key2(b, A′). (Note that the randomness a that corresponds to A is not used in the first round.)
The man-in-the-middle adversary has the following capacity:

• The adversary can evaluate Fϕ(x) for any (fresh) x of its choice. If x = pw (which is the point
at which Fϕ is programmed) the result is A, otherwise the result is a random value.

• The adversary may or may not modify the P -to-P ′ message ϕ:

– Suppose the adversary does not modify the message. Then if pw = pw′ (i.e., the passwords
of P and P ′ match), P ′ will send B = msg2(b, A) to P and output K ′ = key2(b, A); if
pw ̸= pw′, P ′ will send B = msg2(b, A′) and output K ′ = key2(b, A′) where A′ = Fϕ(pw′)
is a random value, so B and K ′ are pseudorandom.

39

Parameters: KA protocol KA = (msg1, msg2, key1, key2).

• On input (Program, sid, P, P ′, pw, A) from P , send (Program, sid, P, P ′) to S. If this is the
first Program message for sid, then record ⟨Program, P, P ′, pw, A⟩.

• On input (SampleResp, sid, P ′, P, pw′) from P ′, send (SampleResp, sid, P ′, P) to S. If
this is the first SampleResp message for sid, then sample b ← R and record
⟨SampleResp, P ′, P, pw′, b⟩.

• On (Eval, sid, P, P ′, x) from S, send A to S, where A is defined as follows:

– If there is a record ⟨Program, P, P ′, pw, A′⟩ with pw = x, set A := A′.
– Otherwise if there is a record ⟨Eval, pw, A′′⟩ with pw = x, set A := A′′.
– Otherwise sample a← R and set A := msg1(a). Record ⟨Eval, x, A⟩.

• On (Deliver, sid, P, P ′, pw∗, A∗) from S, if there is a record ⟨SampleResp, P ′, P, pw′, b⟩, and
this is the first Deliver message for sid, then output (sid, B, K ′) to P ′, where B and K ′ are
defined as follows:

1. If pw∗ = ⊥ and there is a record ⟨Program, P, P ′, pw, A⟩, overwrite pw∗ := pw and
A∗ := A.

2. Next, if pw∗ = pw′, then set B := msg2(b, A∗) and K ′ := key2(b, A∗). Else, sample
B ←M2 and K ′ ← K.

Figure 14: Ideal functionality FEKE-1r representing the first round of (O)EKE.

– Suppose the adversary modifies the message ϕ to some other ϕ∗, which incorporates
a password guess pw∗. Let A∗ = Fϕ∗(pw∗); if pw∗ = pw′ (i.e., the password guess is
correct), P ′ will send B = msg2(b, A∗) to P and output K ′ = key2(b, A∗), and the
adversary may compute K ′ as key1(a∗, B) (where a∗ is the randomness corresponding
to A∗). If pw∗ ̸= pw′, P ′ will send B = msg2(b, A′) and output K ′ = key2(b, A′) where
A′ = Fϕ∗(pw′) is a random value, so B and K ′ are pseudorandom.

In the real world, the evaluation of Fϕ(x) is modeled by the Eval command that defines the
answer A just as in the ideal world, except that if pw ̸= x the answer is the “real” msg1(a) instead
of random. For the password test modeled by the Deliver command, the ideal adversary S may
specify a pw∗ and an A∗, and there are three cases:

• pw∗ = ⊥ models the real-world scenario where the adversary does not modify the P -to-P ′

message. Then if pw = pw′, the functionality sets B = msg2(b, A) and K ′ = key2(b, A).
(Concretely, the functionality enters step 1 and redefines pw∗ := pw and A∗ := A, and then
enters step 2, checks that pw∗ = pw′, and sets B = msg2(b, A∗) and K ′ = key2(b, A∗).)

• pw∗ ≠ ⊥ models the real-world scenario where the adversary modifies the P -to-P ′ message and
incorporates a password guess pw∗ for P ′. If pw∗ = pw′, the functionality sets B = msg2(b, A∗)
and K ′ = key2(b, A∗).

• Otherwise (i.e., pw∗ = ⊥ and pw ̸= pw′; or pw∗ ̸= ⊥ and pw∗ ̸= pw′) the functionality samples
B and K ′ at random.

40

Parameters:
• POPF functionality FPOPF (see Figure 8) with domain {0, 1}∗ and range M1.

On input (Program, sid, P, P ′, pw, A), party P does the following:
1. Send (Program, sid, pw, A) to FPOPF and wait for response (Program, sid, ϕ).
2. Send (sid, ϕ) to P ′.

On input (SampleResp, sid, P ′, P, pw′), party P ′ samples b← R and records ⟨pw′, b⟩.

On message (sid, ϕ) from P , if there is a record ⟨pw′, b⟩ then party P ′ does the following:
3. Send (Eval, sid, ϕ, pw′) to FPOPF and wait for response (Eval, sid, A′).
4. Compute B := msg2(b, A′) and K ′ := key2(b, A′).
5. Output (sid, B, K ′).

Figure 15: (O)EKE first-round protocol, in the FPOPF-hybrid world.

The protocol. See Figure 15 for the first-round protocol. Recall that the first round of all
(O)EKE variants we analyze in this work is identical.

Security analysis.

Lemma 5.1. Suppose that KA is a secure and pseudorandom KA protocol. Then the protocol in
Figure 15 realizes FEKE-1r (Figure 14) in the FPOPF-hybrid world via a simulator S that emulates
TestOutput in the same way as FPOPF.

Proof. The following lemma will be useful while analyzing the security of the first-round protocol (a
proof and further discussion is provided in Sect. 3.3):

Lemma 5.2. If a KA protocol is secure and pseudorandom then the following two distributions are
indistinguishable:

A←M1
b← R
B := msg2(b, A)
K ′ := key2(b, A)
output (A, B, K ′)

A←M1

B ←M2
K ′ ← K
output (A, B, K ′)

We construct the simulator S in Figure 16. As standard in UC, we assume that the adversary A
is “dummy” that merely passes all messages to and from the environment Z. We use the following
conventions: if S sends a message m to Z that pretends to be from functionality F to A, or from
party P to P ′ and intercepted by A, we abbreviate it as “send m from F to A (or from P to P ′)”

— although A does not exist in the ideal world. Similarly, if S receives a message m from Z that
instructs A to send m to F or P , we abbreviate it as “on m from A to F (or P)”. These conventions
are reused in later proofs.

41

On (Program, sid, P, P ′) from FEKE-1r:
1. Send (Program, sid) from FPOPF to A.
2. On (Program, sid, ϕ) from A to FPOPF, send (sid, ϕ) from P to P ′.

On (SampleResp, sid, P ′, P) from FEKE-1r and (sid, ϕ∗) from A to P ′:
3. If ϕ∗ = ϕ, send (Deliver, sid, P, P ′,⊥,⊥) to FEKE-1r.
4. Otherwise do the following steps:

(1) Send (Extract, sid, ϕ∗) from FPOPF to A.
(2) On (Extract, sid, pw∗, α∗) from A to FPOPF, send (Eval, sid, ϕ∗, pw∗) from FPOPF to A.
(3) On (Eval, sid, A∗) from A to FPOPF, send (Deliver, sid, P, P ′, pw∗, A∗) to FEKE-1r.

Simulation of FPOPF: run the code of FPOPF (Figure 8), except that when A queries (Eval, sid, ϕ, x)
in step 5A, if ϕ has been generated (in step 2), send (Eval, sid, P, P ′, x) to FEKE-1r and return
FEKE-1r’s response to A.

Figure 16: Simulator S for the (O)EKE first-round protocol.
We now argue that S generates an ideal-world view that is indistinguishable from the real-world

view. The proof goes by the following hybrid argument:

Hybrid 0: This is the real world. Recall that the passwords of P and P ′ are pw and pw′, respectively;
in the real world the flow of events is (for brevity, we omit sid in parties’ messages and outputs
below — same for later proofs):

• P sends ϕ to P ′ (intercepted by the man-in-the-middle adversary A);

• A sends ϕ∗ to P ′;

• P ′ outputs (B, K ′).

Furthermore, A can evaluate Fϕ∗(x) for ϕ∗, x of its choice by querying (Eval, sid, ϕ∗, x) to FPOPF
and receiving answer A.

Hybrid 1: In the case that ϕ∗ = ϕ ∧ pw ̸= pw′, P ′ outputs B ←M2 and K ′ ← {0, 1}κ.
In hybrid 0, A′ = Fϕ∗(pw′) = Fϕ(pw′) is uniformly random in M1, and B = msg2(b, A′) and

K ′ = key2(b, A′). By Lem. 5.2, hybrids 0 and 1 are indistinguishable.

Hybrid 2: Consider the case that ϕ∗ ̸= ϕ (i.e., Amodifies the P -to-P ′ message), and on (Extract, sid, ϕ∗)
from FPOPF, A replies with (Extract, sid, pw∗, α∗) where pw∗ ̸= pw′. (Intuitively, ϕ∗ contains a wrong
password guess for P ′.) Then sample B ←M2 and K ′ ← {0, 1}κ.

In hybrid 1 K ′ = key2(b, A′), where A′ = Fϕ∗(pw′) is determined via the following process:
FPOPF sends (Extract, sid, ϕ∗) and receives A’s response (Extract, sid, pw∗, α∗), and later defines A′

as R(α∗, pw′) (i.e., FPOPF enters step 5B of Figure 8) which is uniformly random in M1. Thus, a
reduction to Lem. 5.2, on input (A′, B, K ′), can randomly guess an R query and program the answer
as A′, and simulate other parts of hybrid 1 as usual and copy Z’s output bit. The reduction loses a
factor of 1/q, where q is the number of R queries. By Lem. 5.2, hybrids 1 and 2 are indistinguishable.

Hybrid 3: When A queries (Eval, sid, ϕ, x) to FPOPF, sample a← R and answer with msg1(a).
The only difference between hybrids 2 and 3 is that Fϕ(x) (where x ≠ pw) is set to A←M1 in

hybrid 2 and msg1(a) in hybrid 3. Note that a is not used anywhere else in the entire experiment,
so a straightforward reduction to the first pseudorandomness of KA shows that hybrids 2 and 3 are
indistinguishable.

42

Comparison between hybrid 3 and the ideal world. We now argue that hybrid 3 is identical
to the ideal world, where the simulator S as defined in Figure 16 interacts with FEKE-1r. There are
four cases:

• ϕ∗ = ϕ∧pw = pw′: In hybrid 3 A′ = Fϕ∗(pw′) = Fϕ(pw) = A, so B = msg2(b, A′) = msg2(b, A)
and K ′ = key2(b, A′) = key2(b, A). In the ideal world S sends (Deliver, sid, P, P ′,⊥,⊥) to
FEKE-1r, which enters step 1 and overwrites pw∗ := pw and A∗ := A; then FEKE-1r enters step
2 and pw∗ = pw = pw′, so B = msg2(b, A∗) = msg2(b, A) and K ′ = key2(b, A∗) = key2(b, A).
So hybrid 3 and the ideal world are identical.

• ϕ∗ = ϕ ∧ pw ̸= pw′: In hybrid 3 B ←M2 and K ′ ← {0, 1}κ (changed in hybrid 1). In the
ideal world, FEKE-1r enters step 1 and overwrites pw∗ and A∗ just as in the previous case, but
then it enters step 2 and pw∗ = pw ̸= pw′, so B ←M2 and K ′ ← {0, 1}κ. So hybrid 3 and
the ideal world are identical.

• ϕ∗ ≠ ϕ ∧ pw∗ = pw′: In hybrid 3 A′ = Fϕ∗(pw′), B = msg2(b, A′) and K ′ = key2(b, A′).
In the ideal world S sends (Deliver, sid, P, P ′, pw∗, A∗) to FEKE-1r, where A∗ = Fϕ∗(pw∗) =
Fϕ∗(pw′) is the value programmed by A. Then FEKE-1r enters step 2 and pw∗ = pw′, so
B = msg2(b, A∗) = msg2(b, A′) and K ′ = key2(b, A∗) = key2(b, A′). So hybrid 3 and the ideal
world are identical.

• ϕ∗ ≠ ϕ ∧ pw∗ ̸= pw′: In hybrid 3 B ←M2 and K ′ ← {0, 1}κ (changed in hybrid 2). In the
ideal world, FEKE-1r enters step 2 just as in the previous case, but pw∗ ̸= pw′, so B ←M2
and K ′ ← {0, 1}κ. So hybrid 3 and the ideal world are identical.

Finally, A can evaluate Fϕ∗(x) by querying FPOPF. Both hybrid 3 and the ideal world simply
run the code FPOPF, except that when ϕ∗ = ϕ ∧ x ≠ pw, both hybrid 3 and the ideal world answers
with msg1(a) where a← R. So hybrid 3 and the ideal world are identical.

We conclude that hybrid 3 and the ideal world are identical in all cases. This completes the
proof.

Remark 5.3. Lem. 5.1 essentially covers the hybrids that are reused in the proofs for EKE and
OEKE, namely if (1) ϕ∗ = ϕ ∧ pw ̸= pw′ (i.e., the adversary passes the first message without
modification, and the two parties’ passwords do not match), or (2) ϕ∗ ̸= ϕ ∧ pw∗ ̸= pw′ (i.e., the
adversary modifies the first message, which contains a wrong password guess), it is safe to change
everything on the P ′ side to uniformly random (and independent of the P side); furthermore, Fϕ(x)
(where x ̸= pw) can be set to msg1(a) for a ← R, instead of a random A ← M1. Readers who
would prefer to get rid of the FPAKE−1r functionality and see a UC-security proof for (O)EKE as
a monolith, can easily merge the hybrids above into the main proof, with the indistinguishability
argument and the argument that the environment’s view in the last hybrid matches the ideal world
essentially unchanged.

5.2 The EKE Protocol

Theorem 5.4. Suppose that KA is a correct, secure, strongly pseudorandom, and pseudoran-
dom non-malleable KA protocol. Then the EKE-PRF protocol (Figure 17) realizes FPAKE in the
(FPOPF,FEKE-1r)-hybrid world via a simulator S that emulates TestOutput in the same way as
FPOPF.17

17Applying a PRF while producing the session key is necessary for the protocol to realize FPAKE; for an explanation,
see Appx. A.4.

43

Parameters:
• EKE first round functionality FEKE-1r (Figure 14) for a KA protocol KA.
• POPF functionality FPOPF (see Figure 8) with domain {0, 1}∗ and range M2.
• A pseudorandom function PRFK : Φ→ K with key space K.

On input (NewSession, sid, P, P ′, pw, “initiator”), party P does the following:
1. Sample and record a← R, and compute A := msg1(a).
2. Send (Program, sid, P, P ′, pw, A) to FEKE-1r.

On input (NewSession, sid, P ′, P, pw′, “respondent”), party P ′ sends (SampleResp, sid, P, P ′, pw′) to
FEKE-1r.

On message (sid, B, K ′) from FEKE-1r, party P ′ does the following:
3. Send (Program, sid, pw′, B) to FPOPF and wait for response (Program, sid, ϕ′).
4. Send (sid, ϕ′) to P .
5. Output (sid, PRFK′(ϕ′)).

On message (sid, ϕ′) from P ′, party P does the following:
6. Send (Eval, sid, ϕ′, pw) to FPOPF and wait for response (Eval, sid, B).
7. Retrieve a and compute K := key1(a, B).
8. Output (sid, PRFK(ϕ′)).

Figure 17: EKE-PRF protocol, in the (FPOPF,FEKE-1r)-hybrid world.

Proof. The following lemma will be useful while analyzing the security of EKE-PRF (cf. Sect. 3.3):

Lemma 5.5. If a KA protocol is secure and strongly pseudorandom then the following two distribu-
tions are indistinguishable:

a← R
A := msg1(a)
B ←M2
K := key1(a, B)
output (A, B, K)

a← R
A := msg1(a)
B ←M2
K ← K
output (A, B, K)

The simulator S is shown in Figure 18.
The proof goes by the following hybrid argument (see Table 6 for a summary):

Hybrid 0: This is the real world. Recall that the passwords of P and P ′ are pw and pw′, respectively;
the flow of events is:

• P tells FEKE-1r to Program a function mapping pw 7→ A and send it to P ′;

• It is intercepted by the man-in-the-middle adversary A, who possibly modifies it to program
pw∗ 7→ A∗ instead (intuitively pw∗ is A’s guess for the password of P ′, pw′);

• A tells FEKE-1r to Deliver the function to P ′;

• P ′ tells FEKE-1r to SampleResp, which generates B, K ′;

• P ′ tells FPOPF to program a function Fϕ′ mapping pw′ 7→ B;

• P ′ outputs PRFK′(ϕ′) and sends ϕ′ to P ;

44

Let T = {} be the record of honest POPF evaluations as in FPOPF.
Maintain a local random function h : {0, 1}∗ → R. Whenever h(x) is referred to but undefined,
sample a ← R and define h(x) := a. We stress that h is local to S and is unavailable to other
parties.

On (NewSession, sid, P, P ′, “initiator”) from FPAKE:
1. Send (Program, sid, P, P ′) from FEKE-1r to A.

On (NewSession, sid, P ′, P, “respondent”) from FPAKE:
2. Send (SampleResp, sid, P ′, P) from FEKE-1r to A.

On (Eval, sid, P, P ′, x) from A to FEKE-1r:
3. Set a := h(x), compute A := msg1(a), and return A to A.

On (Deliver, sid, P, P ′, pw∗, A∗) from A to FEKE-1r:
4. Send (Program, sid) from FPOPF to A and wait until A responds with (Program, sid, ϕ′) to
FPOPF such that there is no entry (ϕ′, ·, ·) ∈ T .

5. Send (sid, ϕ′) from P ′ to P .
6. If pw∗ = ⊥, send (NewKey, sid, P ′, 0κ) to FPAKE.
7. If pw∗ ̸= ⊥ do:

(1) Send (TestPwd, sid, P ′, pw∗) to FPAKE.
(2) Sample b← R and compute (K ′)∗ := key2(b, A∗).
(3) Send (NewKey, sid, P ′, PRF(K′)∗(ϕ′)) to FPAKE.

On (sid, (ϕ′)∗) from A to P :
8. If either (1) pw∗ = ⊥ ∧ (ϕ′)∗ = ϕ′ or (2) pw∗ ̸= ⊥ ∧ (ϕ′)∗ = ϕ′ and the password guess on

Deliver was incorrect, send (NewKey, sid, P, 0κ) to FPAKE.
9. If pw∗ ̸= ⊥ ∧ (ϕ′)∗ = ϕ′ and the password guess on Deliver was correct:

(1) Send (TestPwd, sid, P, pw∗) to FPAKE.
(2) Set a := h(pw∗), compute K∗ = key1(a, msg2(b, A∗)) and SK∗ = PRFK∗(ϕ′), and send

(NewKey, sid, P, SK∗) to FPAKE.
10. Otherwise (i.e., if (ϕ′)∗ ̸= ϕ′ or ϕ′ is undefined because no Deliver message has been sent):

(1) Send (Extract, sid, (ϕ′)∗) from FPOPF to A.
(2) On (Extract, sid, (pw′)∗, α∗) from A to FPOPF, send (Eval, sid, (ϕ′)∗, (pw′)∗) from FPOPF

to A.
(3) On (Eval, sid, (B′)∗) from A to FPOPF, set a := h((pw′)∗), send (TestPwd, sid, P, (pw′)∗),

compute K∗ := key1(a, (B′)∗), and send (NewKey, sid, P, PRFK∗((ϕ′)∗)) to FPAKE.

Simulation of FPOPF: run the code of FPOPF as in Figure 8, except that on (Eval, sid, ϕ′, pw∗), if
the password guess on Deliver was correct return B = msg2(b, A∗).

Figure 18: Simulator S for the EKE-PRF protocol.

45

case addressed change property used
1 pw = pw′ and A eavesdrops or re-encrypts K := K ′ KA correctness

2 pw = pw′ ∧ pw∗ = ⊥ B, K ′ $ KA pseudorandom
non-malleability

3 (ϕ′)∗ contains a wrong password guess
or pw ̸= pw′ ∧ (ϕ′)∗ = ϕ′ K $

Lem. 5.5
(KA security / strong
pseudorandomness)

4 pw∗ ̸= ⊥ ∧ pw = pw′ ̸= pw∗ ∧ (ϕ′)∗ = ϕ′ K $
Lem. 5.5

(KA security / strong
pseudorandomness)

5 A eavesdrops SK := SK ′ none
6 all cases except pw∗ = pw′ PRFK′ $ PRF property
7 cases in hybrids 3 and 4 PRFK $ PRF property
8

A re-encrypts

SK := PRFK((ϕ′)∗) PRF property

9 K := key1(a, B)
Lem. 5.5

(KA security / strong
pseudorandomness)

Table 6: Summary of hybrids for EKE-PRF security. “$” denotes “chosen at random from respective
range”. SK, SK ′ denote the outputs of P, P ′ respectively.

• It is again intercepted by A, who possibly modifies it to (ϕ′)∗ representing a function F(ϕ′)∗

programmed on (pw′)∗ 7→ (B′)∗ instead (intuitively (pw′)∗ is A’s guess for the password of P ,
pw);

• A sends (ϕ′)∗ to P ;

• P computes the key exchange message B∗ = F(ϕ′)∗(pw) and uses it to output PRFK((ϕ′)∗).

Note that there are three B values here: B = Fϕ(pw′) is computed by P ′, (B′)∗ = F(ϕ′)∗((pw′)∗) is
computed by A, and B∗ = F(ϕ′)∗(pw) is computed by P .

Throughout the proof, when (ϕ′)∗ ̸= ϕ′ (i.e., A modifies the P ′-to-P message), and on
(Extract, sid, (ϕ′)∗) from FPOPF, A replies with (Extract, sid, (pw′)∗, α∗), we call this case “(ϕ′)∗

contains the correct password guess” if (pw′)∗ = pw, and “(ϕ′)∗ contains a wrong password guess” if
(pw′)∗ ̸= pw. (Note that we view (ϕ′)∗ = ϕ′ as (ϕ′)∗ contains no password guess, neither correct nor
wrong.)

Hybrid 1: In the case that pw = pw′ ∧ pw∗ = ⊥ ∧ B∗ = B and (ϕ′)∗ does not contain a wrong
password guess, P sets K := K ′ instead of K := key1(a, B∗). We have two sub-cases here:

• pw = pw′ ∧ pw∗ = ⊥ ∧ (ϕ′)∗ = ϕ′ (which implies B∗ = B as B∗ = F(ϕ′)∗(pw) = Fϕ′(pw′) = B).
Intuitively this means that A merely eavesdrops.

• pw = pw′ ∧ pw∗ = ⊥ ∧ (ϕ′)∗ ̸= ϕ′ ∧B∗ = B. Intuitively this means that A re-encrypts.

By the syntax of FEKE-1r, B = msg2(b, A) and K ′ = key2(b, A), where A = msg1(a) according
to protocol description (step 2). By the correctness of KA,

key1(a, B∗) = key1(a, B) = key1(a, msg2(b, msg1(a))) = key2(b, msg1(a)) = K ′

with overwhelming probability, so hybrid 1 is (statistically) indistinguishable from hybrid 0.

46

Hybrid 2: In the case that pw = pw′ ∧ pw∗ = ⊥, P ′ samples B ←M2 and K ′ ← K.
The difference between hybrids 1 and 2 is that in hybrid 1, B = msg2(b, A) and K ′ = key2(b, A),

whereas in hybrid 2, B ← M2 and K ′ ← K. We construct a reduction R to the pseudorandom
non-malleability of KA: R, given (A, B, K ′), can simulate the experiment up to when P ′ outputs

— which includes A’s access to FEKE-1r, as well as B and K ′ — without knowing a or b. (Note
that in FEKE-1r, b is used only when computing B and K ′.) R simulates the second message ϕ′ as
expected, by programming Fϕ′(pw′) = B into the POPF. When A sends (ϕ′)∗, R checks whether
B∗ = F(ϕ′)∗(pw) equals B = Fϕ′(pw′) = Fϕ′(pw), and proceeds as follows:

• If B∗ ̸= B, R outputs B∗ to the pseudorandom non-malleability challenger and receives K,
outputting PRFK((ϕ′)∗) to Z.

• If B∗ = B, the pseudorandom non-malleability experiment prohibits R from outputting
B∗. Instead, R checks whether (ϕ′)∗ contains a wrong password guess by checking that
(ϕ′)∗ ̸= ϕ′ and sending the appropriate Extract query from FPOPF to A. If (ϕ′)∗ does contain
a wrong password guess, R aborts. If not, R picks some other element of M2 to output to
the pseudorandom non-malleability challenger (just to finish the experiment) and outputs
PRFK′((ϕ′)∗) to Z (note that in hybrid 1 P was changed to use K = K ′ in this case, so the
correct value for P is still output to Z).

Finally, R copies Z’s output bit.
We can see that if B = msg2(b, A) and K ′ = key2(b, A) then R simulates hybrid 1, and if

B ← M2 and K ′ ← K then R simulates hybrid 2, as long as we don’t have that B∗ = B and
(ϕ′)∗ contains a wrong password guess. If that latter case occurs, F(ϕ′)∗ is programmed on some
(pw′)∗ ̸= pw, therefore B∗ = F(ϕ′)∗(pw) = R(α∗, pw) for some α∗ (i.e., FPOPF enters step 5B of
Figure 8), i.e., B∗ is a uniformly random element of M2 that is independent of B. So B = B∗

happens with probability 1/|M2|, which is negligible when KA is a correct and secure KA protocol.18

We conclude that R’s distinguishing advantage (in the pseudorandom non-malleability experiment
for KA) is negligibly smaller than Z’s distinguishing advantage between hybrids 1 and 2, so hybrids
1 and 2 are indistinguishable.

Hybrid 3: In the case that (ϕ′)∗ contains a wrong password guess or pw ̸= pw′ ∧ (ϕ′)∗ = ϕ′, P
samples K ← K.

In hybrid 2,

• If (ϕ′)∗ contains a wrong password guess, then as we have just argued under hybrid 2,
B∗ = R(α∗, pw).

• If pw ̸= pw′ ∧ (ϕ′)∗ = ϕ′ we have B∗ = F(ϕ′)∗(pw) = Fϕ′(pw). Since ϕ′ was programmed on
pw′ ̸= pw, B∗ is again defined as R(α∗, pw).

Either way, B∗ = R(α∗, pw) is a uniformly random element of M2. This means that in hybrid 2
K = key1(a, B∗) for A = msg1(a) and B∗ ←M2, whereas in hybrid 3 K ← K. Thus, a reduction
to Lem. 5.5, on input (A, B∗, K), can randomly guess an R query and program the answer as B∗,
and simulate the other parts of hybrid 2 as usual (using A and K for P), copying Z’s output bit.

18An adversary A may break the security of a correct KA with probability negligibly close to 1/|M2| as follows.
Given A = msg1(a), B = msg2(b, A) with a, b ← R, A samples b′ ← R and computes B′ = msg2(b′, A). If B = B′

then with overwhelming probability key1(a, B) = key1(a, B′) = key2(b′, A) by correctness, therefore A can distinguish
key1(a, B) from random. It is well-known that if Hα(X) is the Rényi entropy of a random variable X one has
Hα(X) non-increasing in α. In particular, H2(X) ≤ H0(X): setting X = [msg2(b, A) : b ← R] gives the inequality
Pr[B = B′] ≥ 1/|M2|.

47

The reduction loses a factor of 1/q, where q is the number of R queries. Since KA is secure and
strongly pseudorandom, by Lem. 5.5, hybrids 2 and 3 are indistinguishable.
Hybrid 4: In the case that pw∗ ̸= ⊥ ∧ pw = pw′ ̸= pw∗ ∧ (ϕ′)∗ = ϕ′, P samples K ← K.

The change in this hybrid is the same as in hybrid 3 (P samples K ← K instead of K :=
key1(a, B∗)), but the argument for indistinguishability is different. In this case B∗ = F(ϕ′)∗(pw) =
Fϕ′(pw′) = B, so FPOPF does not enter step 5B and use R to compute B∗. However, by the syntax
of FEKE-1r, when pw∗ ̸= pw′ we still have B ← M2. Therefore the reduction to Lem. 5.5 under
hybrid 3 still works, except that here it does not need to guess an R query and lose a factor of q.

Summary of hybrid 4. Let us pause a bit and summarize the changes we have made so far. On
the P ′ side, we have changed B and K ′ in some cases; on the P side, we have changed K in some
cases. See Tables 7 and 8 for a summary.

case B, K ′ definitions according to...
1 pw = pw′ ∧ pw∗ = ⊥ B, K ′ $ hybrid 2
2 pw ̸= pw′ ∧ pw∗ = ⊥ B, K ′ $ FEKE-1r syntax

3 pw∗ = pw B = msg2(b, A∗)
K ′ = key2(b, A∗) FEKE-1r syntax

4 pw∗ ̸= ⊥ ∧ pw′ ̸= pw B, K ′ $ FEKE-1r syntax

Table 7: Definitions of B and K ′ in hybrid 4

case K definition according to...

1 pw = pw′ ∧ pw∗ = ⊥ ∧ (ϕ′)∗ = ϕ′

(eavesdropping case) K = K ′ hybrid 1

2 pw∗ = pw = pw′ ∧ (ϕ′)∗ = ϕ′ K = key1(a, B∗) protocol description
3 pw∗ ̸= ⊥ ∧ pw = pw′ ̸= pw∗ ∧ (ϕ′)∗ = ϕ′ K $ hybrid 4
4 pw ̸= pw′ ∧ (ϕ′)∗ = ϕ′ K $ hybrid 3

5
pw = pw′ ∧ pw∗ = ⊥ ∧B∗ = B∧

(ϕ′)∗ contains the correct password guess
(re-encryption case)

K = K ′ hybrid 1

6 all other cases where
(ϕ′)∗ contains the correct password guess K = key1(a, B∗) protocol description

7 (ϕ′)∗ contains a wrong password guess K $ hybrid 3

Table 8: Definition of K in hybrid 4. Both eavesdropping and re-encryption cases assume the two
parties’ passwords match

Changing session keys. Now we consider the outputs of P and P ′ under a variety of cases (note
that up until now we have changed only KA keys K, K ′, not the PAKE session keys that P and P ′

output). Let SK be the session key of P and SK ′ be the session key of P ′.
The following hybrids 5–7 are immediate (hybrid 5 is purely conceptual, while hybrids 6 and 7

uses the fact that PRF is a PRF):
Hybrid 5: In case 1 of Table 8, set SK := SK ′.
Hybrid 6: In cases 1, 2 and 4 of Table 7, replace PRFK′ with a random function G′.

48

Hybrid 7: In cases 3, 4 and 7 of Table 8, replace PRFK with a random function G.

The following hybrids 8 and 9 deal with case 5 (re-encryption).

Hybrid 8: In case 5 of Table 8, set SK := PRFK((ϕ′)∗).
This case is covered by hybrid 1, which sets K := K ′ (and thus SK = PRFK((ϕ′)∗) =

PRFK′((ϕ′)∗)); then by hybrid 6, which changes (SK, SK ′) from (PRFK′((ϕ′)∗), PRFK′(ϕ′)) to
(G′((ϕ′)∗), G′(ϕ′)). Since (ϕ′)∗ ̸= ϕ′, SK and SK ′ are independent of each other, so changing SK
back to PRFK((ϕ′)∗) generates an indistinguishable view.

At this point, in the cases when K = K ′ (eavesdropping and re-encryption), P does not use a
random function to output (hybrids 5 and 8 define SK specifically in these cases). Therefore P
and P ′ don’t ever use the same G or G′ to output: P ′ outputs with G′ and P outputs with G, with
G, G′ independently drawn.

Hybrid 9: In case 5 of Table 8, P sets K := key1(a, B).
Note that in hybrid 8 K = K ′ is only used while computing SK (in particular, the P ′ side

has been changed to all random and does not use K ′). In hybrid 8 K ← K, whereas in hybrid
9 K = key1(a, B) for A = msg1(a) and B ← M2. Thus, a reduction to Lem. 5.5 (that uses its
challenge K to compute SK for P) shows that hybrids 8 and 9 are indistinguishable.

Comparison between hybrid 9 and the ideal world. We now argue that hybrid 9 is identical
to the ideal world, where the simulator S as defined in Figure 18 interacts with FPAKE. We first
consider the P ′ side output SK ′. We refer to cases in Table 7:

• In cases 1 and 2, in hybrid 9 SK ′ is uniformly random. In the ideal world, S enters step
6, where it sends NewKey without TestPwd, so the P ′ session is fresh and FPAKE samples a
uniformly random SK ′ for P ′.

• In case 3, in hybrid 9 SK ′ = PRFK′(ϕ′) where K ′ = key2(b, A∗). In the ideal world, S enters
step 7, where it sends TestPwd resulting in “correct guess” and then NewKey where the session
key is PRFK′(ϕ′) where K ′ = key2(b, A∗), so the P ′ session is compromised and FPAKE sets
SK ′ := PRFK′(ϕ′) for P ′.

• In case 4, in hybrid 9 SK ′ is uniformly random. In the ideal world, S enters step 7, where it
sends TestPwd resulting in “wrong guess” and then NewKey, so the P ′ session is interrupted
and FPAKE samples a uniformly random SK ′ for P ′. (Note that in this case the session key
chosen by S in NewKey does not matter.)

We conclude that for SK ′, hybrid 9 and the ideal world are identical in all cases.
Next, we consider the P side output SK. We refer to cases in Table 8:

• In case 1 (eavesdropping), in hybrid 9 SK = SK ′. In the ideal world, S enters step 8(1),
where it sends NewKey without TestPwd, so the P session is fresh. Since the P ′ session was
also fresh when P ′ output and pw = pw′, FPAKE sets SK := SK ′ for P .

• In case 2, in hybrid 9 SK = PRFK((ϕ′)∗) = PRFK(ϕ′) where K = key1(a, B∗). Note
that B∗ = F(ϕ′)∗(pw) = Fϕ′(pw′) = B = msg2(b, A∗). In the ideal world, S enters step
9, where it sends TestPwd resulting in “correct guess” and then NewKey where the session
key is PRFK∗(ϕ′) and K∗ = key1(a, msg2(b, A∗)). Then the P session is compromised and
FPAKE sets SK := PRFK∗(ϕ′) for P . We can see that in both hybrid 9 and the ideal world,
SK = PRFkey1(a′,msg2(b,A∗))(ϕ′).

49

• In case 3, in hybrid 9 SK is uniformly random. In the ideal world, S enters step 8(2), where it
sends NewKey without TestPwd, so the P session is fresh. Since the P ′ session was interrupted
by a wrong password guess when P ′ output, FPAKE samples a uniformly random SK for P .

• In case 4, in hybrid 9 SK is uniformly random. In the ideal world there are several sub-cases:
(i) if pw∗ = ⊥, then S enters step 8(1). This is identical to case 1, except that the P ′ session
was fresh when P ′ output but pw ̸= pw′, so FPAKE samples a uniformly random SK for P
(independent of SK ′); (ii) if pw∗ = pw′ ̸= pw′, then S enters step 9, where it sends TestPwd
resulting in “wrong guess” and then NewKey, so the P session is interrupted and FPAKE
samples a uniformly random SK for P ; (iii) if pw∗ ̸= ⊥ ∧ pw∗ ̸= pw′, then S enters step 8(2),
so SK is uniformly random by the same argument as in case 3.

• Case 5 (re-encryption) is the most complicated one because it is changed five times: in hybrids
1, 2, 6, 8 and 9, where both K and SK are changed back and forth between the “real” value
and uniformly random. Eventually in hybrid 9 SK = PRFK((ϕ′)∗) where K = key1(a, B). In
the ideal world, S enters step 10, where it sends TestPwd resulting in “correct guess” and then
NewKey where the session key is PRFK∗((ϕ′)∗) and K∗ = key1(a, (B′)∗). Note that in this case
(B′)∗ = B∗ = B. Then the P session is compromised and FPAKE sets SK := PRFK∗((ϕ′)∗) for
P . We can see that in both hybrid 9 and the ideal world, SK = PRFkey1(a,B)((ϕ′)∗).

• Case 6 is similar to case 5, except that B∗ might not equal B. In hybrid 9 SK = PRFK((ϕ′)∗)
where K = key1(a, B∗). Since (ϕ′)∗ contains a correct password guess, (pw′)∗ = pw, so
B∗ = F(ϕ′)(pw) = F(ϕ′)((pw′)∗) = (B′)∗. The ideal world is identical to case 5: FPAKE sets
SK := PRFK∗((ϕ′)∗) for P , where K∗ = key1(a, (B′)∗). We can see that in both hybrid 9 and
the ideal world, SK = PRFkey1(a,(B′)∗)((ϕ′)∗).

• In case 7, in hybrid 9 SK is uniformly random. In the ideal world, S enters step 10, where it
sends TestPwd resulting in “wrong guess” and then NewKey, so the P ′ session is interrupted
and FPAKE samples a uniformly random SK for P .

We conclude that for SK, hybrid 9 and the ideal world are identical in all cases.
We also must argue that the simulation of FPOPF is indistinguishable between hybrid 9 and the

ideal world. The outputs of the POPF are independent of the rest of the simulation, except for
the programmed ones. A already knows any outputs it programs, but P ′ also programs an output:
Fϕ′(pw′) = B. Therefore if A ever guesses pw′ correctly it will know B, and so we must adjust
the simulation to output B in this case — which is exactly what our simulator does. Note that
it suffices to only simulate this after the password guess on Deliver, as A must provide a ϕ′ that
has never been evaluated previously; therefore A cannot evaluate Fϕ′(pw′) before the simulator can
program that output into FPOPF.

Finally, the careful reader will note that our argument that hybrid 9 and the ideal world are
identical assumes that A delivers all messages (possibly after modification). If A drops the message
to one party or the other, that does not affect the indistinguishability of the simulation: since
that party no longer outputs, we no longer need to simulate them. For example, if A drops the
first message and supplies its own second message to P (as if P ′ does not exist), the simulator
can proceed as if A had modified the second (P ′-to-P) message, since the simulation only depends
on what A sends to P . Even if A chooses to send messages out of order this still does not affect
simulation. For example, suppose when A receives Deliver, it first sends (ϕ′)∗ to P so P outputs,
and then sends the Deliver message to FEKE-1r. Since A does not see the output of P after it
sends (ϕ′)∗, the Deliver message is independent of any information gathered from sending (ϕ′)∗.
Therefore without loss of generality we may assume that these messages are sent in the opposite

50

Parameters:
• EKE first round functionality FEKE-1r (see Figure 14) for a KA protocol KA.

On input (NewSession, sid, P, P ′, pw, “initiator”), party P does the following:
1. Sample and record a← R, and compute A := msg1(a).
2. Send (Program, sid, P, P ′, pw, A) to FEKE-1r.

On input (NewSession, sid, P ′, P, pw′, “respondent”), party P ′ sends (SampleResp, sid, P, P ′, pw′)
to FEKE-1r.

On message (sid, B, K ′ ∥ τ ′) from FEKE-1r, party P ′ does the following:
3. Send (sid, B, τ ′) to P .
4. Output (sid, K ′).

On message (sid, B, τ ′) from P ′, party P does the following:
5. Retrieve a and compute K ∥ τ := key1(a, B).
6. Check if τ = τ ′. If so, output (sid, K). Otherwise output (sid, K$) where K$ ← {0, 1}κ.

Figure 19: OEKE protocol, in the FEKE-1r-hybrid world.

order, reducing A to an adversary that delivers all messages (possibly after modification).
We conclude that hybrid 9 and the ideal world are identical in all cases. This completes the

proof.

The theorem immediately implies the following: let KA be a correct, secure, strongly pseudoran-
dom, and pseudorandom non-malleable KA protocol. Beginning with the protocol in Figure 17,
replace FEKE-1r with the protocol in Figure 15, and FPOPF with the protocol in Figure 9. Then by
Lem. 5.1 and Thms. 4.3 and 5.4 the resulting protocol realizes FPAKE in the ROM.

Remark 5.6. Our security analysis of EKE-PRF critically relies on the fact that P is the initiator
and P ′ is the responder, i.e., the message and session key of P ′ depend on the message of P . If
the underlying KA is 1-simultaneous round, and there is no mechanism ensuring that P ′ always
outputs first, then whether ϕ or ϕ′ is the first message depends on the adversary who decides which
one to deliver first. So in this case both messages need to be included in the PRF, i.e., the session
key should be PRFK(ϕ, ϕ′).

5.3 The OEKE Protocol

Theorem 5.7. Suppose that KA is a correct, pseudorandom non-malleable, and collision resistant
KA protocol, whose key space K = {0, 1}3κ. Then the OEKE protocol (Figure 19) realizes FPAKE in
the FEKE-1r-hybrid world.19

Proof. The simulator S is shown in Figure 20. In this proof we use the following convention: for
a 3κ-bit string s, s[1] denotes its first κ bits (the K part), and s[2] denotes its last 2κ bits (the τ
part).

The proof goes by the following hybrid argument (see Table 9 for a summary):
Hybrid 0: This is the real world. Recall that the passwords of P and P ′ are pw and pw′, respectively;
the flow of events is:

• P tells FEKE-1r to Program a function mapping pw 7→ A and send it to P ′;
19Our protocol realizing FEKE-1r (Figure 15) additionally requires KA to be secure and pseudorandom.

51

Initialize T := {} as the set of FEKE-1r evaluations.
On (NewSession, sid, P, P ′, “initiator”) from FPAKE:

1. Send (Program, sid, P, P ′) from FEKE-1r to A.

On (NewSession, sid, P ′, P, “respondent”) from FPAKE:
2. Send (SampleResp, sid, P ′, P) from FEKE-1r to A.

On (Eval, sid, P, P ′, x) from A to FEKE-1r:
3. If there exists (x, A, a) ∈ T , return A to A.
4. Otherwise, sample a← R and A := msg1(a).
5. Add (x, A, a) to T , and return A to A.

On (Deliver, sid, P, P ′, pw∗, A∗) from A to FEKE-1r:
6. If pw∗ = ⊥, send (NewKey, sid, P ′, 0κ) to FPAKE. Furthermore, sample B ← M2 and

τ ′ ← {0, 1}2κ, and send (sid, B, τ ′) from P ′ to P .
7. Otherwise do the following steps:

(1) Send (TestPwd, sid, P ′, pw∗) to FPAKE, and procede according to its response:
“correct guess”: Sample b ← R and compute B := msg2(b, A∗) and K ′ ∥ τ ′ :=

key2(b, A∗).
“wrong guess”: Sample (B, K ′, τ ′)←M2 × {0, 1}κ × {0, 1}2κ.

(2) Send (NewKey, sid, P ′, K ′) to FPAKE and (sid, B, τ ′) from P ′ to P .

On (sid, B∗, τ∗) from A to P :
8. If pw∗ = ⊥ ∧B∗ = B ∧ τ∗ = τ ′, send (NewKey, sid, P, 0κ) to FPAKE.
9. Otherwise (i.e., if pw∗ is undefined because no Deliver message has been sent, pw∗ ̸= ⊥,

B∗ ̸= B, or τ∗ ̸= τ ′), then for every (x, A, a) ∈ T , compute K ∥ τ = key1(a, B∗) and check
whether τ∗ = τ .

A. If there is more than one such entry, output Collision and abort.
B. If there is exactly one such entry, send (TestPwd, sid, P, x) and then (NewKey, sid, P, K)

to FPAKE.
C. If there is no such entry, send (TestPwd, sid, P,⊥) and then (NewKey, sid, P, 0κ) to
FPAKE.

Figure 20: Simulator S for the OEKE protocol.

52

case addressed change property used

1 pw∗ = ⊥ ∧ pw = pw′

∧B∗ = B
K = K ′ if τ∗ = τ ′

K $ otherwise KA correctness

2 pw∗ = ⊥ ∧ pw = pw′ K ′, τ ′ $ KA pseudorandom
non-malleability

3 pw∗ = ⊥ ∧ pw ̸= pw′

∧B∗ = B ∧ τ∗ = τ ′ K $ none

4

pw∗ ̸= ⊥
∨B∗ ̸= B ∨ τ∗ ̸= τ ′

exclude collisions
while extracting “good” (pw′)∗ KA collision resistance

5 K = key1(a∗, B∗)[1] if pw “good”
K $ otherwise KA collision resistance

6
extract “good” (pw′)∗

K = key1(a∗, B∗)[1] if (pw′)∗ = pw
K $ if (pw′)∗ ̸= pw or no (pw′)∗

none

Table 9: Summary of hybrids for OEKE security. “$” denotes “chosen at random from respective
range”.

• It is intercepted by the man-in-the-middle adversary A, who possibly modifies it to program
pw∗ 7→ A∗ instead;

• A tells FEKE-1r to Deliver the function to P ′;

• P ′ tells FEKE-1r to SampleResp, which generates B, K ′, τ ′;

• P ′ outputs K ′ and sends (B, τ ′) to P (again intercepted by A);

• A sends (B∗, τ∗) to P ;

• P outputs K if τ∗ matches τ , and a random K$ otherwise.

The case that pw∗ = ⊥. The following hybrids 1–3 only affect the case where pw∗ = ⊥, i.e., A
does not modify the P -to-P ′ message.
Hybrid 1: In the case that pw∗ = ⊥ ∧ pw = pw′ ∧B∗ = B, do the following:

• If τ∗ = τ ′ (i.e., A is an eavesdropper), then P outputs K := K ′;

• Otherwise, P outputs K$ ← {0, 1}κ.

In hybrid 0, we have that

• If τ∗ = τ = key1(a, B∗)[2], then P outputs K := key1(a, B∗)[1];

• Otherwise, P outputs K$ ← {0, 1}κ.

The difference is that in hybrid 0, P outputs K if τ∗ = τ , whereas in hybrid 1, P outputs K ′ (and
defines K as K ′) if τ∗ = τ ′. Since B∗ = B, we have K ∥ τ = key1(a, B∗) = key1(a, B); by the syntax
of FEKE-1r in the case of pw∗ = ⊥ and pw = pw′, B = msg2(b, A) and K ′ ∥ τ ′ = key2(b, A), where
A = msg1(a) according to protocol description (step 1). Then by correctness of KA, (K, τ) = (K ′, τ ′)
with overwhelming probability, so hybrids 0 and 1 are (statistically) indistinguishable.
Hybrid 2: In the case that pw∗ = ⊥ ∧ pw = pw′, sample B ←M2 and K ′ ∥ τ ′ ← {0, 1}3κ.

53

The difference between hybrids 1 and 2 is that in hybrid 1, B = msg2(b, A) and K ′∥τ ′ = key2(b, A),
whereas in hybrid 2, B ← M2 and K ′ ∥ τ ′ ← {0, 1}3κ. We construct a reduction R to the
pseudorandom non-malleability of the underlying key agreement protocol KA: R, given (A, B, K ′, τ ′),
can simulate the experiment up to when P ′ outputs — which includes A’s access to FEKE-1r, as
well as B, K ′ and τ ′ — without knowing a or b. (Note that in FEKE-1r, b is used only when
computing B and K ′.) When A sends (B∗, τ∗), R checks whether B∗ ̸= B. If B∗ ̸= B, R outputs
B∗ to the pseudorandom non-malleability challenger and receives K ∥ τ , then checks if τ∗ = τ and
accordingly outputs either K or a random string to Z. Alternatively, if B∗ = B, the pseudorandom
non-malleability experiment prohibits R from outputting B∗. Instead, R picks some other element
ofM2 to output (just to finish the experiment), and uses K ′ ∥τ ′20 instead of K ∥τ to choose what to
output to Z. R copies Z’s output bit. We can see that if B = msg2(b, A) and K ′ ∥ τ ′ = key2(b, A′)
then R simulates hybrid 1, and if B ←M2 and K ′ ∥ τ ′ ← {0, 1}3κ then R simulates hybrid 2. Thus,
R’s distinguishing advantage is equal to Z’s distinguishing advantage between hybrids 1 and 2, so
hybrids 1 and 2 are indistinguishable.

Hybrid 3: In the case that pw ̸= pw′ ∧ pw∗ = ⊥ ∧B∗ = B ∧ τ∗ = τ ′, P outputs K$ ← {0, 1}κ (i.e.,
the check of P always fails).

The difference between hybrids 2 and 3 is that in hybrid 2, P computes K ∥ τ = key1(a, B∗) =
key1(a, B) and outputs K$ ← {0, 1}κ only when τ ̸= τ∗ = τ ′, whereas in hybrid 3, P always outputs
K$ ← {0, 1}κ. Note that FEKE-1r outputs a uniformly random τ ′ ← {0, 1}2κ, so the probability that
τ = τ ′ is negligible. Thus, hybrids 2 and 3 are indistinguishable.

All cases where the adversary does not eavesdrop. Both the case where pw∗ ̸= ⊥ (i.e., A
modifies the P -to-P ′ message, or chooses its own message first), and the case where pw∗ = ⊥ and
B∗ ̸= B ∨ τ∗ ̸= τ ′ (i.e., A modifies the P ′-to-P message) are affected by the following hybrids 4–6.

Hybrid 4: In the case that pw∗ ̸= ⊥ ∨B∗ ̸= B ∨ τ∗ ≠ τ ′, output Collision and abort if there exists
more than one “good” (pw′)∗. Here, and in subsequent hybrids, we call (pw′)∗ “good” if (1) there
was a query (Eval, sid, P, P ′, (pw′)∗) to FEKE-1r and (2) τ∗ = key1(a∗, B∗)[2]. (Intuitively a “good”
(pw′)∗ is a password guess for P that can be extracted from (B∗, τ∗).)

We upper-bound Pr[Collision] via a reduction to the collision-resistance of KA. Suppose that
FEKE-1r receives at most q distinct Eval queries. The reduction, given (A1, . . . , Aq), handles the
i-th such query by outputting Ai, without knowing the corresponding “trapdoor” ai. Then the
reduction simulates the P ′ side to Z, producing some B, K ′ and τ ′. (Note that after hybrid 2,
the only case where these are not sampled uniformly at random is that pw∗ = pw′. In this case
B = msg2(b, A∗) and K ′ ∥ τ ′ = key2(b, A∗), where A∗ is chosen by A, so the simulation of this case
also does not require knowledge of a.) When A sends (B∗, τ∗), the reduction outputs B∗. If Collision
happens, then the reduction wins. By the collision-resistance of KA, Pr[Collision] is negligible and
thus hybrids 3 and 4 are indistinguishable.

Hybrid 5: In the case that pw∗ ̸= ⊥∨B∗ ̸= B ∨ τ∗ ̸= τ ′, P outputs K$ ← {0, 1}κ if pw is not “good”.
The difference between hybrids 4 and 5 occurs when τ∗ = τ (i.e., the check of P passes), but

pw is never sent to FEKE-1r via Eval (otherwise pw would be “good”). Then in hybrid 4, P outputs
K = key1(a, B∗)[1], except for the special case where pw∗ = ⊥ ∧ pw = pw′ ∧B∗ = B, which already
outputs a random K$ because of hybrid 1. In hybrid 5, P instead outputs K$. We argue that
the probability pw is never sent in an Eval query and τ∗ = τ is negligible, via a reduction to the
collision-resistance of KA.

Let q ≥ 2 be a parameter to be decided later. The reduction ignores its input (A1, . . . , Aq), and
20In hybrid 1 we already changed P to use K′ ∥ τ ′ = key2(b, A) instead of key1(a, B) in this case.

54

simulates the P ′ side as in the reduction under hybrid 4. When A sends B∗, the reduction also
outputs B∗.

Assuming Eval(. . . , pw) is never queried, the correct A Programed by P is never used and is
unknown to A, so for any i ∈ [q] we could pretend that A = Ai and it would make no difference to the
probability that τ∗ = τ . Therefore, for any i, the probability p (given that B∗ takes its value) that
τ∗ = key1(a, B∗)[2] is the same as the probability that τ∗ = key1(ai, B∗)[2]. Then the chance of a
collision is at least the chance that there exists i ̸= j such that τ∗ = key1(ai, B∗)[2] = key1(aj , B∗)[2].
These are just q independent events, so this probability is exactly

p′ =
q∑

k=2

(
q

k

)
pk(1− p)q−k ≥

(
q

2

)
p2(1− p)q−2,

which is obviously increasing in both p and q, so for a lower bound on p′ we can reduce p to be at
most 1

2 , and then reduce q so that q ≤ 2 + 1
2p . Then (1− p)q−2 ≥ (1− p)

1
2p = 2

log2(1−p)
2p ≥ 1

2 , since
log2(1− p) ≥ −2p for p ≤ 1

2 . Substituting q 7→ min
(
q, 2 + 1

2p

)
into p′ gives

p′ ≥ 1
4

(
min

(
q, 2 + 1

2p

)
− 1

)2
p2 = 1

4 min
(

(q − 1)2p2,

(
2 + 1

2p
− 1

)2
p2
)
≥ 1

4 min
(

(q − 1)2p2,
1
4

)
,

which is valid for p ≤ 1
2 . Next, to make it always valid, substitute p 7→ min(p, 1

2) to get

p′ ≥ 1
4 min

(
(q − 1)2 min

(
p,

1
2

)2
,
1
4

)
≥ 1

4 min
(

(q − 1)2p2,
1
4

)
,

so this inequality is actually always valid.
To summarize, we have related p (the probability of the “bad event” that allows Z to distinguish

between hybrids 4 and 5) and p′ (a lower bound of the reduction’s advantage against the collision-
resistance of KA). Now for any polynomial q, if the reduction has advantage Advq = p′ < 1

16 , then
by the inequality above, Advq ≥ 1

4(q − 1)2p2. Therefore, hybrids 4 and 5 can be distinguished with
probability at most

p <
2

q − 1
√

Advq.

Hybrid 6: In the case that pw∗ ̸= ⊥ ∨B∗ ̸= B ∨ τ∗ ̸= τ ′, do:

• If there is exactly one “good” (pw′)∗, and (pw′)∗ = pw, then P outputs K := key1(a, B∗)[1];

• If there is exactly one “good” (pw′)∗, and (pw′)∗ ̸= pw, then P outputs K$ ← {0, 1}κ;

• If there is no “good” (pw′)∗, then P also outputs K$ ← {0, 1}κ.

The difference between hybrids 5 and 6 is that

• In hybrid 5, P outputs K if pw is “good”, and K$ otherwise;

• In hybrid 6, P outputs K if there exists exactly one “good” (pw′)∗ and (pw′)∗ = pw, and K$
otherwise.

(If there is more than one “good” (pw′)∗, then both hybrids 5 and 6 output Collision and abort.)
Assuming Collision does not happen, there is at most one “good” pw∗. If pw is “good”, this

means that there is exactly one “good” pw∗ and pw∗ = pw. Vice versa, if there is exactly one
“good” pw∗ and pw∗ = pw, then of course pw is “good”. Thus, the conditions in hybrids 5 and 6 are
equivalent, so hybrids 5 and 6 are identical.

55

Comparison between hybrid 6 and the ideal world. We now argue that hybrid 6 is identical
to the ideal world, where the simulator S as defined in Figure 20 interacts with FPAKE. We first
consider the P ′ side message B, τ ′ and session key K ′. This is very similar to the corresponding
argument in the proof of Thm. 5.4: in hybrid 6 (in fact, after hybrid 2) the only case where
B, τ ′ and K ′ are not uniformly random is that pw∗ = pw′; in this case B = msg2(b, A∗) and
K ′ ∥ τ ′ = key2(b, A∗) (cf. Table 7). In the ideal world,

• If pw∗ = ⊥, S enters step 6, where it sends NewKey without TestPwd, so the P ′ session is
fresh and FPAKE samples a uniformly random K ′ for P ′. S also samples uniformly random B
and τ ′ as the message.

• If pw∗ = pw′, S enters step 7, where it sends TestPwd resulting in “correct guess” and
then NewKey where the session key is key2(b, A∗)[1] where b ← R, so the P ′ session is
compromised and FPAKE sets K ′ := key2(b, A∗)[1] for P ′. S also computes B = msg2(b, A∗)
and τ ′ = key2(b, A∗)[2].

• If pw∗ ̸= ⊥ ∧ pw∗ ≠ pw′, S enters step 7, where it sends TestPwd resulting in “wrong guess”
and then NewKey, so the P ′ session is interrupted and FPAKE samples a uniformly random K ′

for P ′. (Note that in this case the session key chosen by S in NewKey does not matter.) S
also samples uniformly random B and τ ′.

We conclude that for B, τ ′ and K ′, hybrid 6 and the ideal world are identical in all cases.
Next, we consider the P side output, which is either K or a uniformly random K$. Since there

are fewer hybrids than in the proof in Thm. 5.4, here we do not make a table of all cases and state
them in the text instead:

• If pw = pw′ ∧ pw∗ = ⊥ ∧ B∗ = B ∧ τ∗ = τ (A eavesdrops and the two parties’ passwords
match), in hybrid 6 P outputs K = K ′ (changed in hybrid 1). In the ideal world, S enters
step 8, where it sends NewKey without TestPwd, so the P session is fresh. Since the P ′ session
was also fresh when P ′ output and pw = pw′, FPAKE sets K := K ′ for P .

• If pw ̸= pw′∧pw∗ = ⊥∧B∗ = B∧ τ∗ = τ (A eavesdrops and the two parties’ passwords do not
match), in hybrid 6 P outputs K$ (changed in hybrid 3). In the ideal world, this is identical
to the previous case, except that the P ′ session was fresh when P ′ output but pw ̸= pw′, so
FPAKE samples a uniformly random session key for P (independent of K ′).

• If A does not eavesdrop and there is more than one “good” (pw′)∗, hybrid 6 outputs Collision
and aborts the experiment (changed in hybrid 4). In the ideal world, S enters step 9A, where
it also outputs Collision and aborts.

• If A does not eavesdrop, there is exactly one “good” (pw′)∗, and (pw′)∗ = pw, in hybrid 6 P
outputs P outputs K = key1(a, B∗)[1] (changed in hybrid 6). In the ideal world, S enters
step 9B, where it sends TestPwd resulting in “correct guess” and then NewKey where the
session key is key1(a, B∗)[1] and a is the value sampled by (Eval, . . . , pw). Then the P session
is compromised and FPAKE sets K := key1(a, B∗)[1] for P . We can see that in both hybrid 9
and the ideal world, K = key1(a, B∗)[1].

• If A does not eavesdrop, there is exactly one “good” (pw′)∗, and (pw′)∗ ≠ pw, in hybrid 6
P outputs K$ (changed in hybrid 6). In the ideal world, S enters step 9B, where it sends
TestPwd resulting in “wrong guess” and then NewKey, so the P session is interrupted and
FPAKE samples a uniformly random session key for P .

56

• If A does not eavesdrop and there is no “good” (pw′)∗, in hybrid 6 P outputs K$ (changed in
hybrid 5). In the ideal world, S enters step 9C, where it sends TestPwd resulting in “wrong
guess” (note that S’s password guess is ⊥) and then NewKey, so the P session is interrupted
and FPAKE samples a uniformly random session key for P .

We conclude that for K, hybrid 6 and the ideal world are identical in all cases. In summary, hybrid
6 and the ideal world are identical. This completes the proof.

The theorem immediately implies the following: let KA be a correct, secure, pseudorandom,
pseudorandom non-malleable, and collision-resistant KA protocol. Beginning with the protocol in
Figure 19, replace FEKE-1r with the protocol in Figure 15, and FPOPF with the protocol in Figure 9.
Then by Lem. 5.1 and Thms. 4.3 and 5.7 the resulting protocol realizes FPAKE in the ROM.

OEKE-PRF and OEKE-RO. Since our Thm. 5.7 considers a general OEKE protocol with any
KA protocol whose key length is 3κ, this immediately covers OEKE-PRF as a special case, where
the KA protocol is obtained via taking another KA protocol whose key length is κ and applying a
PRF to the key (on inputs such as 0, 1 and 2). OEKE-RO is in turn a special case of OEKE-PRF,
where the PRF is an RO.

6 Conclusion and Future Work
Why are there so many recent works on the UC-security of (O)EKE, the very first PAKE protocol
that has been around for over 30 years? Why are there so many subtleties in the analysis of this
simple and seemingly innocuous protocol? In this final section, we offer some insights and personal
perspectives.

6.1 Subtleties in the Security Model

The first source of complication lies in the security model. To begin with, any security notion
of PAKE must consider a man-in-the-middle adversary; in other words, the parties cannot have
authenticated channels between each other. This setting is different from the vast majority of works
on multi-party computation, and as we have seen in Sects. 3 and 5, the most complicated and subtle
case is that the man-in-the-middle adversary passes the first message without modification but then
modifies the second — which does not have a correspondence in “normal” 2PC where one party is
honest and the other is corrupt. Failure to consider such cases (e.g., [MRR20]) renders the security
proof incomplete and might even result in incorrect security statements.

Next, the UC PAKE functionality is also non-trivial and somewhat difficult to understand.
PAKE is a quintessential example of a cryptographic primitive whose security notion is easy to see
intuitively but hard to define formally. At first glance, the security requirement is simply “the only
feasible attack is online guessing”. But a complete description of the two parties’ output behaviors
must consider a large number of cases, as each party has three possible states: no attack, successfully
attacked, and unsuccessfully attacked (corresponding to the sessions being fresh, compromised, and
interrupted, respectively); furthermore, the output of one party depends on not only the state of
itself, but also (if the party is unattacked) the state of its counterparty and whether the two parties’
passwords match. This is why the UC PAKE functionality (Figure 3) contains some complicated
sentences such as

If the record [⟨P, P ′, pw⟩] is fresh, a key (sid, K ′) has been output to P ′, at which time
there was a record ⟨P ′, P, pw⟩ marked fresh, then set K := K ′.

57

which essentially just says that if there is no attack on either session and the two parties’ passwords
match, then they should output the same (uniformly random) key. The complication here is that to
formally describe this, the party that outputs first needs to output a random key, and the party
that outputs next needs to output a key which is the same as the first party’s. (It is interesting
that this simplest case needs the most complicated language to describe.)

What complicates things even further is that in UC, the order of events matters. For example,
consider a 2-round PAKE and assume the two parties’ passwords match; if one direction is successfully
attacked and the other direction is not, one might expect that the unattacked party should output
an independent random key. However, this is not necessarily true. Consider two cases: (1) the
adversary passes the first (P -to-P ′) message without modification, but then modifies the second
(P ′-to-P) and successfully attacks the P session, and (2) the adversary modifies the first message
and successfully attacks the P ′ session, but then passes the second message. As we have seen in
Sect. 3, in case (1) the unattacked P ′ should indeed output an independent random key, as its
session is fresh and the simulator does not know the key of P ′. However, in case (2) when P ′ outputs
the simulator already knows both the password and the session key of P ′, so even if the adversary
does not modify the P ′-to-P message, the simulator can still use the password to compromise the P
session and set the session key of P to be correlated to that of P ′. In other words, the simulator in
case (2) has more options and is “stronger”. This explains why almost all flaws in prior works are
failures to consider case (1), rather than case (2).

We also caution that there is a significant gap between game-based security and UC-security of
PAKE. As we explained at the end of Sect. 3, UC-security is much more subtle, and it is dangerous
to give a game-based security proof and then believe that it “naturally extends” to UC-security.21

6.2 Subtleties in the Protocol Description

The second type of complexity comes from the fact that both EKE and OEKE have a large number
of variants. These variants have two dimensions: whether IC, HIC or POPF is used in protocol
messages, and how exactly the parties’ session keys are derived. Since we have already poured a lot
of ink on POPF, here we mainly focus on output derivation.

The case of EKE. In EKE there is, of course, the option to output the “raw” KA key K.
However, it appears generally understood that the KA key needs to be hashed. Still, there are a
lot of confusions on what exactly should be included in the hash: Should the transcript ϕ, ϕ′ be
included? What about the password pw? And is it possible to avoid explicitly working in the ROM
by using a PRF instead?

Indeed, it is highly non-trivial to see what needs to be hashed and what does not, and what
exactly will go wrong if we don’t hash those items that are necessary.22 Now equipped with our
(in)security results, we can give a summary here:

• Outputting the “raw” K requires pseudorandom non-malleability of the underlying KA
protocol, which covers an adversary that passes the first message but modifies the second
(Sect. 3.2 and Appx. A.3).

21Our opinion is that the game-based security definition is outdated and should not be used anyway. But the bottom
line is that if a PAKE protocol is proven game-based secure, then this only provides a minimal security guarantee,
and UC-security needs to be proven separately.

22Of course, the “safest” option is to simply hash everything. But this comes with the risk of writing a flawed
security proof, as one would then be sure that this version “works”. To put it in another way, given a complete security
proof, it should be immediately clear what exact items have to be hashed.

58

• Outputting an RO hash of K — which can be viewed as using a modified KA protocol whose
key is H(K) instead of K, then outputting the “raw” key of this modified KA protocol —
essentially creates a new KA protocol that has pseudorandom non-malleability in the specific
case of KA protocols with perfect pseudorandomness (such as Diffie-Hellman); however, there
is a Θ(q) loss while reducing to KA security (Appx. A.1, the “reducing to DDH” case).
Furthermore, if we take a secure and (strong) pseudorandom KA protocol and hash the key
at the end, this does not yield a pseudorandom non-malleable KA protocol in general, so
pseudorandom non-malleability is still needed (Appx. A.3).

• Including pw in the hash does not help, as all attacks on the “raw” protocol require the
adversary to know pw (and query the IC accordingly), so the simulator can already extract
pw from protocol messages and additionally allowing extraction from the final hash does not
provide any advantage.

• Including the first message ϕ in the hash does not help either, as all attacks on the “raw”
protocol require the adversary to pass ϕ without modification — in other words, the first
message is consistent among (and known to) all parties including the adversary, so there is no
need to hash it.

• Including the second message ϕ′ in the hash helps only when HIC or POPF is used, and the
problematic case is again the adversary passes the first message but modifies the second. This
time the adversary can replace ϕ′ with another (ϕ′)∗ which corresponds to the same underlying
KA message, and (standard) UC PAKE security dictates that in this case the two parties
must output independent keys (Appx. A.4) — which is achieved exactly by letting P ′ output
H(ϕ′, K) and P output H((ϕ′)∗, K).23

• Finally, a trivial observation is that H(ϕ′, K) in the bullet above can be replaced by PRFK(ϕ′),
avoiding explicit mentioning of an RO. This is what our Thm. 5.4 analyzes.

Independently of the above, strong pseudorandomness of the underlying KA protocol is required
no matter what is included in the hash (Sect. 3.3).

See Table 10 for a summary of the discussion above.
23In the case of using a 1-simultaneous round KA protocol, it might be unclear which message is the second, so

both messages need to be hashed. See Remark 5.6.

59

output function
insecure

with plain
Diffie-Hellman?

Θ(q2) loss
under CDH /

Θ(q) loss
under DDH
with plain

Diffie-Hellman?

only realizes
FPAKE-sp if
HIC/POPF

used?

analyzed in...

K ✓ ✓

[MRR20, Theorem 10]
[SGJ23, Theorem 2]

(both theorems
overlook both issues)

our Thms. B.1 and B.2
H(K) ✓ ✓

H(ϕ, ϕ′, K) ✓

[DHP+18, Theorem 6]
[BCP+23, Theorem 1]

(both proofs
overlook the security loss)

H(pw, ϕ, ϕ′, K) ✓
H(ϕ′, K) ✓
PRFK(ϕ′)

(EKE-PRF) ✓ our Thm. 5.4

In all cases, strong pseudorandomness and pseudorandom non-malleability needed in general
(overlooked in [MRR20, Theorem 10], [SGJ23, Theorem 2], [BCP+23, Theorem 1])

Table 10: Summary of various versions of EKE. [DHP+18, Theorem 6] uses Diffie-Hellman KA and
IC; [MRR20, Theorem 10] uses general KA and POPF; [SGJ23, Theorem 2] uses general KA and
HIC; [BCP+23, Theorem 1] uses general KA and IC; our Thm. 5.4 uses general KA and POPF

The case of OEKE. The “raw” version of OEKE needs a KA protocol whose key is longer than
the PAKE session key (κ bits), as there are two things that need to appear independent of each
other: the session key SK and the authenticator τ . Our result assumes such a KA protocol, but
existing works assume a KA protocol whose key is κ-bit long and then use specific methods to
compile it into a KA protocol with long key:

• In OEKE-PRF, SK = PRFK(0) and τ = PRFK(1). This version requires the underlying KA
to be pseudorandom non-malleable, as an attack similar to that of EKE with “raw” key —
where the adversary passes the first message and modifies the second — can cause the two
parties’ KA keys to be correlated, and the PRF offers no security guarantee in this case
(Appx. A.2). (A difference with the EKE attack is that here the adversary does not even need
to know the password, as the second message is not encrypted.) A second attack involves the
adversary (that also doesn’t need to know the password) unilaterally biasing the KA key of
P and predicting the session key of P , revealing the necessity of collision resistance in the
underlying KA protocol (Sect. 3.1).

• In OEKE-RO, SK = H(K, 0) and τ = H(K, 1). Now the RO guarantees independent
outputs even if the KA keys are correlated. However, a more sophisticated attack shows
that pseudorandom non-malleability is still needed (Appx. A.3). Furthermore, this does not
alleviate the second attack above, so collision resistance is also needed.

60

• Including the password pw in the hash for τ eliminates the second attack above, as coming up
with a valid τ requires knowledge of pw, and if the adversary knows pw (and uses it to attack
the P session), then we have to allow it to predict the session key of P anyway. Therefore,
collision resistance is not needed anymore (Remark 3.3). Note that including pw in the hash
for the session key SK does not provide any additional advantage.

• The transcript ϕ, (B, τ) is not used in any of the attacks, so there is no need to including it in
the hash.

See Table 11 for a summary of the discussion above.

output function
(session key,

authenticator)

collision
resistance
needed?

analyzed in...

(PRFK(0), PRFK(1))
(OEKE-PRF) ✓

[SGJ23, Theorem 3] proof
(overlooks this property)

(H(K, 0), H(K, 1))
(OEKE-RO) ✓

[SGJ23, Theorem 3] statement
(overlooks this property)

(H(K), H(pw, K))
(H(ϕ, B, τ, K),
H(pw, ϕ, B, K)) [BCP+23, Theorem 2]

(K[1], K[2])
(OEKE) ✓ our Thm. 5.7

In all cases, pseudorandom non-malleability needed
(overlooked in [SGJ23, Theorem 3], [BCP+23, Theorem 2])

Table 11: Summary of various versions of OEKE. [SGJ23, Theorem 3] uses general KA and HIC;
[BCP+23, Theorem 2] uses general KA and IC; our Thm. 5.7 uses general KA and POPF

Remark 6.1. For an example of whether hashing the password or not while deriving the session key
actually matters, see [AP05] which proposes two PAKE protocols, SPAKE1 and SPAKE2, whose
only difference is that SPAKE2 includes the password in the final hash while SPAKE1 does not.
Careful analysis shows that the (game-based) security of SPAKE1 is in the non-concurrent setting
and non-tight under CDH, while SPAKE2 has concurrent security and a tight reduction to CDH.

6.3 Subtleties in the Security Analysis

Regarding the security analysis, the general lesson is that in the context of UC, a reduction needs to
act as the simulator (plus the functionality) while communicating with the environment/adversary;
however, while performing the simulator’s task, the reduction loses some information compared with
the actual simulator because it needs to embed some challenges in the experiment. (Of course, “losing
some information” is the case for reductions in general. But the complexity of the UC framework
leads to this principle being overlooked more frequently.) As we have seen in Appx. A.1, the flaws in
the proofs of [BCP+23, Theorem 1] and [DHP+18, Theorem 6] are that in both proofs the reduction
to CDH/DDH does not know a (because it needs to embed the CDH/DDH challenge ga in the
experiment), so gar (for adversarially chosen r such that gr is known to the reduction) looks random
and the reduction cannot tell which H query is H(gar) — which is overlooked in the proofs. This
issue is particularly subtle since it emerges after P ′ outputs, so one who thinks the reduction is
done once P ′ outputs would fail to detect it (this is where [BCP+23] fails). In addition, the issue is

61

non-existent if the adversary modifies the first message but passes the second — in other words,
the two messages are not “symmetric”. Thus, a tight reduction to CDH in the latter case does not
imply a tight reduction in the former case (this is where [DHP+18] fails).

Since most hybrid proofs for UC PAKE are complicated and involve a large number of hybrids,
it might be helpful to provide a table similar to Tables 6 and 9 at the beginning — in addition to, or
in lieu of, a prose summary of the chain of hybrids. We believe this helps the reader understand the
essence of the proof without digging into the details of too many hybrids. Furthermore, (assuming
the hybrids begin in the real world) it would be useful to include an argument on why the last hybrid
is identical to the ideal world, with the challenger split into the simulator and the functionality; this
is far from obvious in many cases.

Sampling from Zp and Z∗
p might make a difference. Last but not least, we wish to bring up

a point which shows that even seemingly minor issues might become significant in some contexts
and thus should not be ignored. Let us start from a topic that appears unrelated. Suppose we have
a group of prime order p. Recall that the Square Diffie-Hellman (SDH) assumption says that given
ga where a ← Zp, it is hard to compute ga2 . A standard reduction to CDH (see, e.g., the proof
of [FKL18, Theorem 3.1]) works as follows: the reduction, on A = ga, samples r ← Zp and feeds
(A, Ar) to the CDH solver; upon receiving X from the CDH solver, the reduction outputs X

1
r .

However, this reduction fails in the case of r = 0, which happens with probability 1/p. A
complete description of the reduction should say that it aborts if r = 0 and thus loses an additive
term 1/p, which is generally missing in existing works. Alternatively, the reduction could sample
r ← Z∗

p = Zp \ {0} — which is a reduction between variants of CDH and SDH where a, b are also
sampled from Z∗

p.24

A similar issue appears in the 2HashDH Oblivious PRF (OPRF) [JKK14,JKKX16,JKKX17,
JKX18,HJKW23,DFG+23], which (in its simplest form) involves two parties jointly evaluating the
function fk(x) = H2(x, H1(x)k) on some input x: a user, that holds x, samples r ← Zp and sends
A := H1(x)r to a server; the server, that holds k, sends B := Ak to the user; finally, the user outputs
H2(x, B

1
r). Obviously the user fails if r = 0, and it should instead sample r ← Z∗

p. All of the cited
works on the 2HashDH OPRF have the user sample r ← Zp, and since this protocol is used as a
building block in various protocols (including the OPAQUE strong asymmetric PAKE protocol that
has been recommended for standardization by IETF [JKX18]), this issue has dragged on for years.

While it might appear pedantic to insist on the edge case of r = 0, it turns out that sampling
from Zp and Z∗

p might actually make an essential difference, as we have seen in the attack on OEKE
in Sect. 3.1. Recall again that the attack works as follows: the adversary sends B = e and τ = Fe(1)
to P , causing P to output Fe(0) — which the adversary can predict without knowing the password.
This issue is somewhat hidden as sampling from Z∗

p is indeed unnecessary for the standard security
notion of Diffie-Hellman; however, the key point is that in OEKE we are using Diffie-Hellman
in a somewhat non-standard manner, namely in the context where there is a man-in-the-middle
adversary in the higher-level protocol that can in particular control the message gb. This means
that missing the seemingly 1/p probability of sampling b = 0 actually “translates to” missing the
collision resistance property of the KA protocol, which is necessary for the security of OEKE.

In general, it seems “safer” to always sample from Z∗
p, as this excludes the r = 0 case that might

cause us trouble. However, we believe it is warranted to develop a thorough understanding of whether
sampling from Zp and sampling from Z∗

p — or other seemingly minor issues — make an essential
24A better reduction would sample r ← Zp and feed (A, Agr) to the CDH solver, and upon receiving X output X/Ar.

This reduction works even if r = 0. Another advantage is that this reduction works nicely even in a composite-order
cyclic group.

62

difference in a certain context, and what the reason exactly is (see, e.g., [PX23, Definition 2.1] and
[MX23, Footnote 12]). This might help reveal some general patterns that are hidden otherwise, such
as collision resistance in our case (cf. Footnote 22).

Remark 6.2. The case of the 2HashDH OPRF in [HJKW23,DFG+23] has a slightly more significant
(but still minor) issue: they only require the GDH or the one-more GDH assumption in a cyclic
group, without any specific requirements on the order. (Earlier works require the order to be prime.)
This means that there might be more than one r-th root of B = H1(x)kr, and the user might use
a wrong one (i.e., other than H1(x)k) in the OPRF output — even assuming that the r-th root(s)
exist and can be efficiently computed. As a concrete example, say the group order is 2p where p is
prime (e.g., Z∗

q where q is a strong prime). Assume the user’s exponent r ← Z2p is even, which
happens with probability 1/2. If r = 0 then the r-th root of B does not exist, so the user fails.
Otherwise there are two r-th roots of B, H1(x)k and H1(x)k+p, and the user has a 1/2 chance of
using the wrong one in the OPRF output (note that if k ← Z2p then which one is the right value is
independent of the user’s view). Overall this OPRF protocol has an over 1/4 correctness failure
probability.25 However, this is unrelated to our main point.

6.4 Future Work

The first future direction that comes to mind is that in recent years there have been a number of
asymmetric PAKE (aPAKE) protocols using IC or HIC [GJK21, SGJK22, SGJ23], and it would
be interesting to see whether the (H)IC there can be replaced by the more efficient POPF as well.
We expect the security analyses to be significantly more complicated than the ones in this work,
as those aPAKE protocols are built from Authenticated Key Exchange (AKE) rather than KA,
and defining the security of AKE (let alone any additional properties necessary in the context of
aPAKE) is a much more complicated and delicate task.

Another direction is to explore the quantum security of (O)EKE. While Kyber is a post-quantum
KA protocol, the POPF in (O)EKE uses an RO, to which our analysis only considers classical
queries. As such, our analysis serves as a first step towards the post-quantum security of (O)EKE,
but a complete analysis would at least require working in the Quantum-accessible ROM (QROM)
[BDF+11], rather than the ROM. One difficulty is that the study of QROM and the study of
UC have been developed mostly in parallel; while there have been works proving the universal
composability theorem with a quantum environment [Unr10], to the best of our knowledge there
have been no works on formalizing the QROM in the quantum UC framework. It seems that some
theoretical foundations need to be laid out before we can pursue this direction.

References
[ABB+20] Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw Jarecki, Jonathan Katz,

and Jiayu Xu. Universally composable relaxed password authenticated key exchange.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume
12170 of LNCS, pages 278–307. Springer, Cham, August 2020.

[AHH21] Michel Abdalla, Björn Haase, and Julia Hesse. Security analysis of CPace. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of
LNCS, pages 711–741. Springer, Cham, December 2021.

25Interestingly, another section of [DFG+23] correctly requires the group order to be prime (see Theorem 3 in
Appendix D). But their analysis of the 2HashDH OPRF (Theorem 2 in Appendix C.2) does not make this requirement.

63

[AP05] Michel Abdalla and David Pointcheval. Simple password-based encrypted key exchange
protocols. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages
191–208. Springer, Berlin, Heidelberg, February 2005.

[AWZ23] Damiano Abram, Brent Waters, and Mark Zhandry. Security-preserving distributed
samplers: How to generate any CRS in one round without random oracles. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of
LNCS, pages 489–514. Springer, Cham, August 2023.

[BCP03] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Security proofs for an
efficient password-based key exchange. In Sushil Jajodia, Vijayalakshmi Atluri, and
Trent Jaeger, editors, ACM CCS 2003, pages 241–250. ACM Press, October 2003.

[BCP+23] Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricosset, and Mélissa Rossi.
GeT a CAKE: Generic transformations from key encaspulation mechanisms to password
authenticated key exchanges. In Mehdi Tibouchi and Xiaofeng Wang, editors, ACNS
23International Conference on Applied Cryptography and Network Security, Part II,
volume 13906 of LNCS, pages 516–538. Springer, Cham, June 2023.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Berlin,
Heidelberg, December 2011.

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-ODH:
Relations, instantiations, and impossibility results. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 651–681.
Springer, Cham, August 2017.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In 1992 IEEE Symposium on Security and
Privacy, pages 72–84. IEEE Computer Society Press, May 1992.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange
secure against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 139–155. Springer, Berlin, Heidelberg, May 2000.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory
Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
280–312. Springer, Cham, April / May 2018.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie.
Universally composable password-based key exchange. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Berlin, Heidelberg,
May 2005.

[Cry20] Crypto Forum Research Group. PAKE selection, 2020. https://github.com/cfrg/pa
ke-selection.

[DFG+23] Gareth T. Davies, Sebastian H. Faller, Kai Gellert, Tobias Handirk, Julia Hesse, Máté
Horváth, and Tibor Jager. Security analysis of the WhatsApp end-to-end encrypted

64

https://github.com/cfrg/pake-selection
https://github.com/cfrg/pake-selection

backup protocol. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part IV, volume 14084 of LNCS, pages 330–361. Springer, Cham, August 2023.

[DHP+18] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia Yak-
oubov. Fuzzy password-authenticated key exchange. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 393–424.
Springer, Cham, April / May 2018.

[DS16] Yuanxi Dai and John P. Steinberger. Indifferentiability of 8-round Feistel networks. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of
LNCS, pages 95–120. Springer, Berlin, Heidelberg, August 2016.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its
applications. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 33–62. Springer, Cham, August 2018.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,
pages 537–554. Springer, Berlin, Heidelberg, August 1999.

[GJK21] Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk. KHAPE: Asymmetric PAKE from
key-hiding key exchange. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 701–730, Virtual Event, August 2021. Springer,
Cham.

[GK10] Adam Groce and Jonathan Katz. A new framework for efficient password-based authen-
ticated key exchange. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 2010, pages 516–525. ACM Press, October 2010.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated
key exchange. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
524–543. Springer, Berlin, Heidelberg, May 2003.

[HJKW23] Julia Hesse, Stanislaw Jarecki, Hugo Krawczyk, and Christopher Wood. Password-
authenticated TLS via OPAQUE and post-handshake authentication. In Carmit Hazay
and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages
98–127. Springer, Cham, April 2023.

[HL19] Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based PAKE protocol
tailored for the IIoT. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 1–48, 2019.

[Jar23] Stanislaw Jarecki. Randomized half-ideal cipher on groups with applications to UC
(a)PAKE. https://www.youtube.com/watch?v=GL4m7StDsPg, 2023. Talk at EURO-
CRYPT 2023.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-
protected secret sharing and T-PAKE in the password-only model. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
233–253. Springer, Berlin, Heidelberg, December 2014.

65

https://www.youtube.com/watch?v=GL4m7StDsPg

[JKKX16] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-efficient and
composable password-protected secret sharing (or: How to protect your bitcoin wallet
online). In IEEE EuroS&P 2016, pages 276–291. IEEE, March 2016.

[JKKX17] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: Cost-
minimal password-protected secret sharing based on threshold OPRF. In Dieter Goll-
mann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17International Conference
on Applied Cryptography and Network Security, volume 10355 of LNCS, pages 39–58.
Springer, Cham, July 2017.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of
TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 273–293. Springer, Berlin, Heidelberg,
August 2012.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric PAKE
protocol secure against pre-computation attacks. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 456–486.
Springer, Cham, April / May 2018.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenti-
cated key exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
293–310. Springer, Berlin, Heidelberg, March 2011.

[LLHG23] Xiangyu Liu, Shengli Liu, Shuai Han, and Dawu Gu. EKE meets tight security in the
Universally Composable framework. In Alexandra Boldyreva and Vladimir Kolesnikov,
editors, PKC 2023, Part I, volume 13940 of LNCS, pages 685–713. Springer, Cham,
May 2023.

[MRR20] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Minimal symmetric PAKE and 1-
out-of-N OT from programmable-once public functions. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 425–442. ACM
Press, November 2020.

[MX23] Ian McQuoid and Jiayu Xu. An efficient strong asymmetric PAKE compiler instantiable
from group actions. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023,
Part VIII, volume 14445 of LNCS, pages 176–207. Springer, Singapore, December 2023.

[Nat23] National Institute of Standards and Technology. Module-lattice-based key-encapsulation
mechanism standard. Technical Report Federal Information Processing Standards
Publications (FIPS PUBS) 203, Initial Public Draft, U.S. Department of Commerce,
Washington, D.C., 2023.

[Ode20] Oded Goldreich. On folklore in TOC, 2020. https://www.wisdom.weizmann.ac.il/
~oded/etc.html#op25.

[PX23] Chris Peikert and Jiayu Xu. Classical and quantum security of elliptic curve VRF, via
relative indifferentiability. In Mike Rosulek, editor, CT-RSA 2023, volume 13871 of
LNCS, pages 84–112. Springer, Cham, April 2023.

[RX23] Lawrence Roy and Jiayu Xu. A universally composable PAKE with zero communication
cost - (and why it shouldn’t be considered UC-secure). In Alexandra Boldyreva and

66

https://www.wisdom.weizmann.ac.il/~oded/etc.html#op25
https://www.wisdom.weizmann.ac.il/~oded/etc.html#op25

Vladimir Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS, pages 714–743.
Springer, Cham, May 2023.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai
Ding. CRYSTALS-KYBER. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/post-quantum-
cryptography/selected-algorithms-2022.

[SGJ23] Bruno Freitas Dos Santos, Yanqi Gu, and Stanislaw Jarecki. Randomized half-ideal
cipher on groups with applications to UC (a)PAKE. In Carmit Hazay and Martijn Stam,
editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 128–156. Springer,
Cham, April 2023.

[SGJK22] Bruno Freitas Dos Santos, Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk. Asymmetric
PAKE with low computation and communication. In Orr Dunkelman and Stefan
Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages
127–156. Springer, Cham, May / June 2022.

[Sho20] Victor Shoup. Security analysis of SPAKE2+. https://www.youtube.com/watch?v=
IAUhBRr8Rgc&t=1379s, 2020. Talk at TCC 2020.

[Unr10] Dominique Unruh. Universally composable quantum multi-party computation. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 486–505. Springer,
Berlin, Heidelberg, May / June 2010.

[Xag22] Keita Xagawa. Anonymity of NIST PQC round 3 KEMs. In Orr Dunkelman and Stefan
Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277 of LNCS, pages
551–581. Springer, Cham, May / June 2022.

67

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.youtube.com/watch?v=IAUhBRr8Rgc&t=1379s
https://www.youtube.com/watch?v=IAUhBRr8Rgc&t=1379s

A Additional Attacks and Subtleties
In Sect. 3 we presented three attacks on (O)EKE, showing that the underlying KA protocol must
satisfy the notions of strong pseudorandomness (for EKE), pseudorandom non-malleability (for
EKE), and collision resistance (for OEKE). In this section we present four more attacks revealing
further subtleties in the security of (O)EKE; in particular, Appx. A.3 shows that pseudorandom
non-malleability is also needed for OEKE, and Appx. A.4 shows that EKE using HIC or POPF
only realizes a weaker UC PAKE functionality (no matter what the underlying KA protocol is).

A.1 Further Subtleties in EKE with Hashed Diffie-Hellman under CDH and
DDH

Recall that in the attack on EKE in Sect. 3.2, the adversary passes the P -to-P ′ message but modifies
the P ′-to-P message, and causes the key of P to be the square of the key of P ′. This issue appears
to go away if we replace the output key gab with H(gab), where H is a hash function (potentially
an RO). Indeed, since hashed Diffie-Hellman is secure under CDH/DDH in the ROM, one might
conjecture that CDH/DDH suffices for the UC-security of EKE with this KA protocol. While this
is true, close scrutiny reveals that there are further subtleties involving the tightness of the security
analysis.

Consider a generalization of the attack in Sect. 3.2: the adversary (that correctly guesses pw)
passes ϕ = E(pw, ga) from P to P ′ (so the session key of P ′ is H(gab)), and replaces the P ′-to-P
message ϕ′ = E(pw, gb) with (ϕ′)∗ = E(pw, X), where X ≠ gb is a group element of the adversary’s
choice. Then the session key of P is H(Xa). The UC-security of the protocol requires H(gab) to
be pseudorandom even given H(Xa) (because in the ideal world the simulator cannot compromise
the P ′ session, so the session key of P ′, H(gab), is independent of everything else; cf. Sect. 3.2). In
other words, UC-security implies the hardness of following problem: given ga, gb (where a, b← Zp),
the adversary outputs a group element X ≠ gb and receives H(Xa), and needs to distinguish H(gab)
from a random string.

This is the Oracle Diffie-Hellman (ODH) assumption, except that the oracle Ha(·) can be queried
only once. (ODH says that given ga, gb and access to Ha(·) which on input X ̸= gb outputs H(Xa),
it is hard to distinguish H(gab) from random.) Henceforth we call this assumption 1-query ODH.
While 1-query ODH is equivalent to CDH in the ROM (i.e., assuming that H is an RO), if DDH
is hard the reduction to CDH loses a factor of Θ(q2) where q is the number of the adversary’s H
queries. Indeed, an adversary on ga, gb can sample a random integer r ← Zp, make q queries to
H including h1 := H(gar), output X = gr and receive h2, check if h1 = h2, and abort if not. To
simulate this, the reduction to CDH must make a guess on which H query is gar and lose a factor of
Θ(q), since it only sees ga and X = gr. Next, assuming the guess is correct, this essentially becomes
reducing the security of hashed Diffie-Hellman to CDH — where the reduction needs to make a
second guess on which H query is gab, losing another factor of Θ(q).

68

P A P ′

a← Zp b← Zp

ϕ := E(pw, ga) ϕ

ga := D(pw, ϕ)

ϕ′ := E(pw, gb)

ga := D(pw, ϕ)
gb := D(pw, ϕ′)

ϕ∗ := E(pw, X)

output H(Xa) output H(gab)

Figure 21: Attack on EKE with hashed Diffie-Hellman. A only guesses pw in the second round. UC-
security requires H(gab) to be pseudorandom even given H(Xa), which is 1-query ODH. Assuming
X = gr, A can make q queries to H including H((ga)r), and Z can check for consistency with the
output of P ; the reduction to CDH/DDH needs to make a guess on which H query is H(gar)

The above shows that if we instantiate EKE with hashed Diffie-Hellman, there is a quadratic
security loss while reducing to the CDH assumption. This was first briefly observed in [LLHG23]
(and in fact is the starting point of that paper); however, [LLHG23] presents the reduction having
to guess the H(gab) query and having to guess the H(gar) query as two separate issues, while in
fact both of them can appear in the same session, causing a quadratic loss.

We note that if the reduction has access to a DH oracle, then both guesses can be replaced by
going over all H queries and checking which one is the “right” query; in other words, tight security
can be achieved if we reduce to the GDH assumption. Furthermore, since hashed Diffie-Hellman is
tightly secure under the DDH assumption, a reduction to DDH only needs to make the first guess,
which incurs a Θ(q) security loss.26

reduce to... first guess second guess overall loss
CDH ✓ ✓ Θ(q2)
DDH ✓ Θ(q)
GDH none

Table 12: Security loss of reducing 1-query ODH to various assumptions

The issue above persists even if the hashed Diffie-Hellman KA includes the entire transcript
in the final hash, i.e., the key is H(ga, gb, gab) rather than H(gab). The adversary would make
Θ(q) H(ga, gr, ⋆) queries including h1 := H(ga, gr, gar), and after it outputs X = gr and receives
h2, it can still check if h1 = h2. To simulate the experiment, the reduction again has to make
a guess on which H query contains gar, even though it knows both ga and gr. This attack also
naturally extends to the case where the PAKE session key is H(ϕ, ϕ′, gab) where ϕ = E(pw, ga) and

26The game-based proof in [BPR00] uses a variant of the CDH assumption where the adversary on ga, gb outputs
a list of group elements, and wins if one of them is gab. Since hashed Diffie-Hellman is tightly secure under this
assumption, their proof also only has a Θ(q) security loss.

69

ϕ′ = E(pw, gb).

Remark A.1. The concrete security loss under CDH is slightly lower if the entire transcript is
hashed, since the adversary’s best strategy is to make q/2 H(ga, gb, ⋆) queries and q/2 H(ga, gr, ⋆)
queries, and both of the reduction’s guesses choose one of q/2 queries at random — incurring a
q2/4 loss.27 By contrast, if the key is H(gab), then the reduction needs to guess over q queries
on which one would be H(gab) (say it is the i-th query) and then guess over i possibilities: which
of the first i − 1 queries would be H(gar), or none of them would be H(gar) — so the loss is∑q

i=1 i = q(q + 1)/2. (Note that at the i-th query the reduction can output the query input and stop
simulating the experiment, so if the H(gar) query happens after that, it does not matter which exact
query is H(gar). However, the reduction does need to guess if the H(gar) query would happen before
or after the H(gab) query.) Still, the loss is Θ(q2) in both cases.

Remark A.2. [BFGJ17] presents a comprehensive study of a large number of variants of the ODH
assumption, including 1-query ODH (called sn-PRF-ODH therein28). However, their main result
about 1-query ODH is in the standard model, where the RO H(K) is replaced by a PRF PRFK(x)
(for some adversarially chosen x).

Flaw in [BCP+23]. We now show the flaw in the proof of [BCP+23, Theorem 1]. This is subtle
so let us proceed slowly. [BCP+23] presents a general statement using any 2-round KA protocol
that is secure and pseudorandom (called a KEM that is indistinguishable, fuzzy, and anonymous
therein), and the PAKE session key is an RO H of the PAKE transcript and the KA key (see
[BCP+23, Fig.5]). When instantiated with Diffie-Hellman, it becomes the “reduce to DDH” case in
Table 12, so the reduction to DDH needs to make a guess over all H queries. [BCP+23] uses qH to
denote the number of H queries29 and Advind

KEM(t) to denote the adversary’s advantage against KA
security; using these notations, there should be a

qH · Advind
KEM(t)

additive term in the overall distinguishing advantage of the environment. However, such a term
does not appear in [BCP+23, Theorem 1]. What exactly goes wrong in the proof of this theorem?

Let us first recall the attacking scenario that causes the security loss above. The adversary
passes ϕ = E(pw, ga) from P to P ′; after that, P ′ sends ϕ′ = E(pw, gb) aimed at P and outputs
its session key H(ϕ, ϕ′, gab). Upon receiving ϕ′, the adversary chooses r ← Zp and computes
ϕ∗ = E(pw, gr) (here the adversary needs to know pw), gets ga by decrypting ϕ and makes Θ(q)
H(ϕ, ϕ∗, ⋆) queries including H(ϕ, ϕ∗, (ga)r), and sends ϕ∗ to P . After that, P outputs H(ϕ, ϕ∗, gar)
and the environment can check if it matches the H query, and aborts if not. (We stress that the
primary goal of this attack is to cause the reduction to fail, rather than to actually distinguish
between the real world and the ideal world.)

The relevant hybrid in the proof is game G6.1 on pp.29–30, which says

On Bob’s side: Upon receiving Epk from an honest Alice, instead of setting SK ←
H(ssid, Pi, Pj , Epk, Ec, K), if SamePwd(ssid, Pi, Pj) = true, one sets K ′ ← H∗

K(ssid, success)
[...] and updates the definition SK ← H(ssid, Pi, Pj , Epk, Ec, K ′).

27Here we assume q is even; if q is odd, the loss is [(q + 1)/2] · [(q − 1)/2] = (q2 − 1)/4.
28[BFGJ17] considers all cases where the adversary may or may not have access to the “left oracle” Ha(·) that on X

computes Xa and the “right oracle” Hb(·) that on X computes Xb. In 1-query ODH there is a single query to Ha(·)
and no query to Hb(·), so it is called “sn”.

29In fact [BCP+23] uses the notation qH without defining it, but from the context it is clear that qH is the number
of H queries.

70

In our terms (using the specific Diffie-Hellman KA), this means
On the side of P ′, upon receiving ϕ from P (passed by the adversary without modification),
instead of setting the key of P ′ as H(ϕ, ϕ′, gab), if the passwords of P and P ′ are equal,
one sets the key of P ′ as H(ϕ, ϕ′, K ′) where K ′ ← G.

(Note that up to game G6.1, there is no change on the side of P in our attacking scenario; in
particular, the paragraph “On Alice’s side” below specifies that “one keeps” the key of P .) The
subsequent analysis says “we can simply successively replace [(ga, gb, gab)] with [(ga, gb, K ′)], using
the indistinguishability of the KEM [the DDH assumption]: the gap is bounded by q′

D1
·Advind

KEM(t).”
(The text in brackets is a translation to our terms.)

While this appears to be a straightforward reduction to DDH, the problem is that the reduction,
given (ga, gb, gab) or (ga, gb, K ′), can embed gab or K ′ while computing the session key of P ′,
but it must simulate the rest of the experiment — that is, after P ′ outputs — which involves ga.
The rest of the experiment includes the following: the adversary chooses r ← Zp and computes
ϕ∗ = E(pw, gr), makes Θ(q) H(ϕ, ϕ∗, ⋆) queries including H(ϕ, ϕ∗, gar), and sends ϕ∗ to P . After
that, the environment can check if the output of P is H(ϕ, ϕ∗, gar). While the simulator knows a,
the reduction does not (since ga is part of its DDH challenge), so gar looks random to the reduction
even though it knows both ga and gr. Hence, in order for the output of P to be H(ϕ, ϕ∗, gar), the
reduction must guess over all H queries and lose a factor of Θ(q). This subtle point is overlooked
in [BCP+23], which misses this Θ(q) factor.

Flaw in [DHP+18]. A very similar (yet more hidden) issue appears in the proof of [DHP+18,
Theorem 6], which shows the UC-security of EKE using IC and hashed Diffie-Hellman (like [BCP+23],
the entire PAKE transcript is hashed while deriving the session keys) under CDH. The problematic
hybrid is game G9 on p.51, which says

F now generates a random session key upon a first NewKey query for an honest party
Pi with fresh record (Pi, pwi) where the other party is also honest, if (at least) one of the
following events happens: [...] No output was sent to the other party yet.

In our terms, this means
In the case that the adversary passes the P -to-P ′ message without modification, P ′ now
outputs a random session key.

(Note that up to game G9, there is no change on the side of P in our attacking scenario; in particular,
game G5 deals with the case that the adversary makes an incorrect password guess while sending a
message to P , and game G6 deals with the case that the adversary modifies the P -to-P ′ message.)
[DHP+18] then claims the indistinguishability between game G9 and the previous game in Lemma
13, whose proof is only sketched and says “it is similar to the proof of Lemma 12 [under game G5]”
and that the reduction should simply embed ga, gb as its CDH challenge.

However, the proofs of Lemma 13 and Lemma 12 are actually quite different. Game G5 says
that if the adversary modifies the P ′-to-P message ϕ′ = E(pw, gb) to another ϕ∗ = E(pw∗, ⋆), then
P outputs a random session key if pw∗ ̸= pw. The reduction to CDH here is relatively simple: since
D(pw, ϕ∗) is some gb∗ where b∗ is unknown to the adversary, the reduction can use it to embed a
CDH challenge. (Of course, since the session key is a hash of the KA key, the reduction needs to
guess over all of the adversary’s H queries and lose a factor of qH — which the proof correctly
identifies.) However, just as what we have seen about the flaw in [BCP+23], in game G9 the
reduction needs to simulate the rest of the experiment even after P ′ outputs its session key, which
forces the reduction to make another guess on which H query is H(ϕ, ϕ∗, gar) (where the adversary
sends ϕ∗ = E(pw, gr) to P). This part of the reduction is missing in [DHP+18].

71

How serious are these flaws? The flaws in the security proofs in [BCP+23,DHP+18] do not
affect the theorem statements much: the concrete security bound in [BCP+23, Theorem 1] misses an
additive factor, and technically speaking the statement of [DHP+18, Theorem 6] is correct (it only
claims the UC-security of EKE without presenting any concrete bound). While our other attacks
reveal more serious issues in (O)EKE security analyses, the attack in this section shows that there
are significant issues in the security proofs of EKE: not only are there flaws in the reductions, but
they actually miss an entire class of adversaries. In the specific case of hashed Diffie-Hellman, a
similar attack on TLS has been noticed in prior works [JKSS12] (in fact this is one of the main
motivations of studying the 1-query ODH assumption), yet this attack has been overlooked in the
context of PAKE, and we believe we are the first to point out the necessity of 1-query ODH in the
security of EKE.

A.2 OEKE-PRF with Plain Diffie-Hellman Is Not Necessarily Secure

We now show that the OEKE-PRF protocol is also not necessarily UC-secure if we use plain Diffie-
Hellman as the underlying KA protocol, due to an attack similar to that in Sect. 3.2. The adversary
passes the P -to-P ′ message E(pw, ga) without modification, causing P ′ to output PRFgab(0). If PRF
is such that PRFk2(x) is predictable from PRFk(x) for a random k ← G,30 then the adversary, upon
seeing B = gb and τ ′ = PRFgab(1) from P ′, can send B∗ = B2 and τ∗ = PRFg2ab(1) to P ; the check
of P will pass and P will output PRFg2ab(0) — again, the session keys of P and P ′ are correlated.
Note that unlike the attack on EKE in Sect. 3.2, here the adversary does not even need to know the
password.

P A P ′

a← Zp b← Zp

ϕ := E(pw, ga) ϕ

ga := D(pw, ϕ)

B∗ := g2b, τ∗ := PRFg2ab(1) B := gb, τ ′ := PRFgab(1)

output PRFg2ab(0) output PRFgab(0)

Figure 22: Attack on OEKE-PRF with plain Diffie-Hellman, assuming PRFk2(x) is predictable from
PRFk(x). A does not need to know pw

The above shows that OEKE-PRF with a general PRF is insecure when instantiated with plain
Diffie-Hellman; rather, the PRF has to satisfy the requirement that PRFk2(x) cannot be predicted
from PRFk(x). This condition is trivially met if PRFk(x) = H(k, x) (where H is an RO), i.e.,
OEKE-RO is not subject to this attack.

A.3 EKE and OEKE Are Insecure If the Underlying KA Is Not Pseudorandom
Non-Malleable

The attack in Sect. 3.2 shows that some form of non-malleability is necessary for the security of
EKE, but it does not really show that pseudorandom non-malleability (Def. 3.6) is needed in EKE,

30Note that the security definition of PRF requires that the key be chosen at random, and says nothing about the
PRF’s behavior under two correlated keys.

72

or any form of non-malleability is needed in OEKE.
Here by non-malleability, we mean that it satisfies a variant of Def. 3.6 where B is sampled as a
real KA message in both experiments, i.e., the following two distributions are indistinguishable:

a← R
b← R
A := msg1(a)
B := msg2(b, A)
K ′ := key2(b, A)
B∗ ← A(A, B, K ′)
abort if B∗ = B
K := key1(a, B∗)
output K to A

a← R
b← R
A := msg1(a)
B := msg2(b, A)
K ′ ← K
B∗ ← A(A, B, K ′)
abort if B∗ = B
K := key1(a, B∗)
output K to A

In contrast, in the security experiment of Def. 3.6, the experiment on the right also changes B
to random — which is why we call this property pseudorandom non-malleability. Pseudorandom
non-malleability is needed for the following reason. Suppose the adversary passes the P -to-P ′

message ϕ without modification, and on ϕ′ from P ′ queries B∗ := D(pw∗, ϕ′) on some password
guess pw∗. In the real world B∗ is the “real” msg2(b, A) if pw∗ = pw, and uniformly random
otherwise. However, in the ideal world the simulator does not know whether pw∗ is the correct
password at this point, so its simulation must be indistinguishable from both cases. By transitivity,
the adversary must not distinguish B := msg2(b, A) from B ← M2. In other words, the joint
distribution of B and K ′ must be indistinguishable from random, even to an adversary that gets to
modify ϕ′ and see what session key P then generates.

Of course, in the Diffie-Hellman example there is no difference between computing B as
B := msg2(b, A) and sampling B ← M2, as the messages in Diffie-Hellman KA are uniform.
But in the general case there is a difference (even assuming the KA protocol satisfies strong pseudo-
randomness); indeed, in this section we present a counterexample showing that KA security, strong
pseudorandomness, and non-malleability combined do not imply pseudorandom non-malleability.

We then show that both EKE and OEKE with our KA protocol are insecure, demonstrating
why pseudorandom non-malleability is necessary for the security of (O)EKE.

Counterexample. The counterexample is similar to the one in Sect. 3.3, using an additional field
of the message to detect improperly generated or modified messages.

msg1(a) = ga

msg2(b, A) = (gb, H0(Ab))

key1(a, (B0, B1)) =


H1(Ba

0) if B1 = H0(Ba
0)

H2(ga) if B1 = H0(Ba
0)− 1

H3(a, B) otherwise
key2(b, A) = H1(Ab)

(where H0, H1, H2 : G→ {0, 1}κ, H3 : Zp ×G→ {0, 1}κ are ROs).
Correctness, security, and pseudorandomness all hold assuming CDH, for the same reasons as

with the previous counterexample. Additionally, strong pseudorandomness holds because a uniformly
random B triggers the H3(a, B) case with overwhelming probability, which is indistinguishable from

73

random because a cannot be guessed by the adversary (without solving discrete log); and a real B
triggers the H1(Ba

0) case, which is also indistinguishable from random by CDH.31

Now let’s see why pseudorandom non-malleability fails. The adversary A receives (A, B, K ′)
(where B = (B0, B1)) from the challenger, and outputs B∗ = (B0, B1 + 1). The challenger then
sends K = key1(a, B∗). In the real distribution this will trigger the second case and so K = H2(A),
while in the random distribution it will trigger the third case and output H3(a, B) — because in
the random distribution B1 is uniform, so B1 + 1 is as well, so both of them have negligible chance
of equaling H0(Ba

0). To distinguish, A simply checks whether K = H2(A).

Attacks on EKE and OEKE. This counterexample also works on the whole EKE protocol,
not just the pseudorandom non-malleability definition. Below we illustrate the attack, where the
adversary behaves similarly to the pseudorandom non-malleability experiment: it passes the P -to-P ′

message without modification, and on the P ′-to-P message ϕ′, the adversary decrypts using pw
(the password of P) and obtains (B0, B1), then encrypts (B0, B1 + 1). If pw′ (the password of
P ′) is equal to pw, then (B0, B1) = (gb, H0(gab)), so key1 will enter the second case and P will
output the predictable value H2(ga); otherwise (B0, B1) is uniformly random, so with overwhelming
probability key1 will enter the third case and P will output H3(a, (B0, B1 + 1)). In other words,
the enviroment/adversary can check if the passwords of P and P ′ match by modifying the P ′-to-P
message and observing the session key of P only — which is not allowed by the UC-security of
PAKE (throughout the entire experiment the simulator never knows pw′, so it cannot make any
decision based on whether pw = pw′ or not). Note that this attack requires the adversary to know
pw but not pw′; and unlike other attacks where the adversary passes the first message and changes
the second (Sect. 3.2 and Appxs. A.2 and A.4), here the environment does not need to observe the
session key of P ′.

P A P ′

a← Zp b← Zp

ϕ := E(pw, ga) ϕ

A := D(pw′, ϕ)

ϕ′ := E(pw′, (gb, H0(Ab)))

ga := D(pw, ϕ)
(B0, B1) := D(pw, ϕ′)

ϕ∗ := E(pw, (B0, B1 + 1))

output key1(a, (B0, B1 + 1)) output H1(Ab)

Figure 23: Attack on EKE with the KA protocol in this section (which is not pseudorandom
non-malleable). A causes P to output the predictable H2(ga) if pw = pw′ and the unpredictable
H3(a, (B0, B1 + 1)) otherwise, without attacking the P ′ session. This is not allowed by UC-security

A similar attack works against OEKE, with the adversary again modifying only the second
31The KA protocol can be additionally made collision-resistant by changing the ROs H1, H2, H3 to have 3κ-bit

outputs and requiring B0 to not be the identity element, since all three cases of key1 hash something that uniquely
identifies A.

74

(P ′-to-P) message. For OEKE, the adversary receives (B0, B1, τ ′) from P ′, and changes them to
(B0, B1 + 1, τ∗), where K∗∥τ∗ := H2(ga) (this requires the adversary to know pw and decrypt the
P -to-P ′ message). If pw = pw′, we have key1(a, (B0, B1 + 1)) = H2(ga), so τ∗ = τ and P will output
K∗. If pw ≠ pw′, with overwhelming probability key1(a, (B0, B1 + 1)) = H3(a, (B0, B1)) which has
negligible probability of matching τ∗, so the session key of P is uniformly random with overwhelming
probability. Again, the enviroment/adversary can check if the passwords of P and P ′ match by
modifying the P ′-to-P message and observing the session key of P only.

Non-malleability. Given how badly EKE and OEKE break when using this KA protocol, it might
seem that non-malleability is the problem. However, our KA protocol does satisfy non-malleability
under CDH, as we will prove now. It is just pseudorandom non-malleability that is the problem.

The reduction to CDH, on challenge A = ga and B = gb, samples K ′ ← {0, 1}κ and sends
(A, B, K ′) to the non-malleability adversary A. Next, A outputs some B∗ ̸= B, and the reduction
responds with some K according to the following rules:

• If B∗
0 = B0 and B∗

1 = B1 + 1, respond with H2(A).

• If B∗
1 = H0(X) for some past H0(X) query, sample a random bit d← {0, 1} to decide whether

to treat it as a correct guess. If d = 1, output H1(X).

• If B∗
1 = H0(X) + 1 for some past H0(X) query, sample a random bit d ← {0, 1} to decide

whether to treat it as a correct guess. If d = 1, output H2(A).

• If none of these cases matches, or if d = 0, output K ← {0, 1}κ.

So far, we have a nearly perfect simulation of the random K ′ distribution. The only exceptions are
that A could guess a in a H3-query, but we could then use a to solve CDH; and the (negligible)
chance that there is a collision in H0 or that A will find a new H0 pre-image to B∗

1 after it was
already sent to the reduction.

In order for A to distinguish this from the real K ′ distribution, it must make a query to the
preimage H1(gab). Therefore, the reduction guesses a random H1(X) query, and outputs X in the
CDH experiment. If A has advantage AdvNM and makes q queries to H1, then the reduction has
advantage

AdvCDH ≥
1
2q

AdvNM − negl.,

since the reduction wins when both guesses (d and the H1 query) are correct, which have probabilities
1/2 and 1/q, respectively.

The above shows a crucial difference between non-malleability and pseudorandom non-malleability:
non-malleability can be obtained by taking any secure and pseudorandom KA protocol and ap-
plying an RO hash to the key, although the reduction is loose (an extension of non-malleability
of hashed Diffie-Hellman under DDH); whereas pseudorandom non-malleability is not implied by
any existing properties and must be presented as a property on its own. This in particular means
that [BCP+23, Theorem 1] and [BCP+23, Theorem 2] are false: while the (O)EKE protocols there
hashes the KA key at the end, this only guarantees non-malleability, and the theorems do not
mention pseudorandom non-malleability which is actually needed.

A.4 EKE Using HIC/POPF Only Realizes a Weaker UC Functionality

All attacks we have discussed work for (O)EKE no matter whether the underlying encryption scheme
is IC, HIC or POPF; in this section we present an attack that only applies to EKE using HIC and

75

POPF. Here we are satisfied with giving an informal argument, and do not prove the UC-insecurity
(like what we did in Thm. 3.4). Like the attack in Sect. 3.2, the attack in this section was first
mentioned in Jarecki’s EUROCRYPT talk [Jar23] and is not our original work. The modification of
the protocol (item (3) below) was also suggested in the talk. The modification of the UC PAKE
functionality (item (2) below) is ours.

A key difference between HIC/POPF and IC is that the encryption algorithm in the latter is
deterministic, whereas the former is randomized; that is, in HIC/POPF the output of E(pw, m; r)
depends on the randomness r used in the algorithm. This yields the following attack: the adversary
passes the P -to-P ′ message without modification, causing P ′ to output session key K ′. Then on the
P ′-to-P message ϕ′ = E(pw, B; r′), the adversary sets pw∗ = pw with probability 1/2 and pw∗ ̸= pw
with probability 1/2, and decrypts and re-encrypts using pw∗. That is, the adversary computes
B∗ = D(pw∗, ϕ′) and sends

ϕ∗ := E(pw∗, B∗; r∗)

to P , where r∗ is a fresh randomness sampled from the corresponding space. Let K be the session
key of P ; K is equal to K ′ with probability 1/2 (if pw∗ = pw) and independent of K ′ with probability
1/2 (if pw∗ ̸= pw).

P A P ′

a← R b← R
A := msg1(a)

ϕ := E(pw, A; r) ϕ

B := msg2(b, A)

ϕ′ := E(pw, B; r′)

B∗ := D(pw∗, ϕ′)

ϕ∗ := E(pw∗, B∗; r∗)

K := key1(a, B∗) K ′ := key2(b, A)
output K output K ′

Figure 24: Attack on EKE using HIC/POPF (with any KA protocol). A sets pw∗ = pw with
probability 1/2 and pw∗ ̸= pw with probability 1/2. Either way ϕ∗ ̸= ϕ′ with overwhelming
probability due to the fresh r∗, but in the former case K = K ′ and in the latter case K and K ′ are
independent. This “second round conditional password test” is not allowed by standard UC-security

The simulator can extract pw∗ in the second round (which happens after P ′ outputs K ′), but it
does not know whether pw∗ = pw unless and until it sends (TestPwd, sid, P, pw∗) to FPAKE. The
simulator has two options here. If it sends the TestPwd command, then the simulation fails in the
case of pw∗ = pw, since (as we argued in Sect. 3.2) K ′ is independent of the simulator’s view, so
after compromising the P session, it cannot set K to be equal to K ′. If the simulator does not send
the TestPwd command, then the simulation fails in the case of pw∗ ̸= pw, as the P session is fresh
and FPAKE will let P output the same session key as P ′, while the two session keys are independent
in the real world. Either way, the simulator fails with probability roughly 1/2. (Note that this is
not an issue if we use IC, since the simulator can detect whether pw∗ = pw by observing whether

76

ϕ∗ = ϕ′, and send TestPwd only if pw∗ ̸= pw. Here the randomization of HIC/POPF ensures that
even if pw∗ = pw, ϕ∗ and ϕ are still independent.)

The above shows that [MRR20, Theorem 10] and [SGJ23, Theorem 2] are false in a manner
different from Sects. 3.2 and 3.3, since these two theorems imply that EKE with plain Diffie-Hellman
is secure using POPF and HIC, respectively. (In fact the same attack works even if we use hashed
Diffie-Hellman, if only the key is hashed.) Closer scrutiny shows that EKE using HIC/POPF realizes
a weaker UC functionality, with an additional command TestSamePwd that works in the same way
as TestPwd except that no change is made if pw∗ = pw = pw′ (where pw′ is the key of P ′). (In the
attacking scenario above, this allows the simulation to go through in the case of pw∗ = pw, as the
TestSamePwd command does not have any effect and the P session is still fresh, so FPAKE will set
K to be equal to K ′.) We call this modified PAKE functionality PAKE with same password test, or
FPAKE-sp.

Of course, another way to get around this issue is to modify the protocol so that the P ′-to-P
message is included in the final hash, or rather (if we do not want to explicitly use the ROM here)
to define the session key as PRFK(ϕ′). We call this modified protocol EKE-PRF. Furthermore, as
we noticed above, the attack does not work if IC is used. In this work we present three results:

1. EKE (with the underlying KA satisfying appropriate properties, same below) using IC realizes
FPAKE;

2. EKE using POPF realizes FPAKE-sp;

3. EKE-PRF using POPF realizes FPAKE.
Our main result is (3) (Thm. 5.4), and we briefly argue (1) and (2) in Appx. B. For (2), we believe
our FPAKE-sp functionality might be of independent interest; for (1), we believe it would be helpful
to present a (correct) proof for EKE using IC, as this is the most studied version of EKE so far.

B Additional Results on the Security of EKE
In this section we give proof sketches for the security of (“raw”) EKE. Recall that in Thm. 5.4 we
only proved the UC-security of EKE-PRF (where the session key is FK(ϕ′) rather than the KA key
K), and that is because EKE only realizes a weaker functionality, FPAKE-sp, if instantiated with
POPF — as demonstrated by the attack in Appx. A.4. Below we argue for two results:

1. EKE using IC realizes FPAKE; and

2. EKE using POPF realizes FPAKE-sp,
which correspond to items (1) and (2) in Appx. A.4. In both results, the vast majority of the proof
is identical to that of Thm. 5.4, so we only highlight the differences. We begin with (2) since the
proof of (1) is almost immediate given the proof of (2).

B.1 EKE Using POPF Realizes FPAKE-sp

We first present the FPAKE-sp functionality in Figure 25. The only difference with FPAKE is that the
ideal adversary can additionally send a TestSamePwd command, which works exactly as TestPwd
except that if pw∗ = pw = pw′ (i.e., the password guess is correct and the two parties’ passwords
match) then the functionality does not do anything.

Consider the EKE protocol, which is the EKE-PRF protocol in Figure 17 except that P outputs
K instead of PRFK(ϕ′), and P ′ outputs K ′ instead of PRFK′(ϕ′). We have:

77

• On input (NewSession, sid, P, P ′, pw, role) from P , send (NewSession, sid, P, P ′, role) to S.
Furthermore, if this is the first NewSession message for sid, or this is the second NewSession
message for sid and there is a record ⟨P ′, P, ·⟩, then record ⟨P, P ′, pw⟩ and mark it fresh.

• On (TestPwd, sid, P, pw∗) from S, if there is a record ⟨P, P ′, pw⟩ marked fresh, then do:
– If pw∗ = pw, then mark the record compromised and send “correct guess” to S.
– If pw∗ ̸= pw, then mark the record interrupted and send “wrong guess” to S.

• On (TestSamePwd, sid, P, pw∗) from S, if there is a record ⟨P, P ′, pw⟩ marked fresh, then do:
– If pw∗ = pw = pw′, then ignore the command (and the record remains fresh).
– If pw∗ = pw ̸= pw′, then mark the record compromised and send “correct guess” to S.
– If pw∗ ̸= pw, then mark the record interrupted and send “wrong guess” to S.

• On (NewKey, sid, P, K∗ ∈ {0, 1}κ) from S, if there is a record ⟨P, P ′, pw⟩, and this is the first
NewKey message for sid and P , then output (sid, K) to P , where K is defined as follows:

– If the record is compromised, or either P or P ′ is corrupted, then set K := K∗.
– If the record is fresh, a key (sid, K ′) has been output to P ′, at which time there was a

record ⟨P ′, P, pw⟩ marked fresh, then set K := K ′.
– Otherwise sample K ← {0, 1}κ.

Finally, mark the record completed.

Figure 25: UC PAKE with same password test functionality FPAKE-sp

Theorem B.1. The EKE protocol realizes FPAKE-sp in the (FPOPF,FEKE-1r)-hybrid world.

Proof (sketch). The simulator S is shown in Figure 26.
The only modifications from the EKE-PRF simulator in Figure 18 are:

• In a NewKey command, we replace PRFK∗(ϕ′) or PRFK∗((ϕ′)∗) with K∗;

• We add case 12(3)(i), where a TestSamePwd command instead of TestPwd is sent.

The first modification is consistent with what changes in the real world, namely parties output
K (resp. K ′) rather than PRFK((ϕ′)∗) (resp. PRFK′(ϕ′)). For the second modification, recall
that TestSamePwd is exactly the same as TestPwd, except that in the case of (pw′)∗ = pw = pw′,
FPAKE-sp on TestSamePwd does nothing. This means that the only essential difference between the
ideal world here and the ideal world in the proof of Thm. 5.4, is that if

pw = pw′ ∧ pw∗ = ⊥ ∧ (ϕ′)∗ ̸= ϕ′ ∧B∗ = B ∧ (ϕ′)∗ contains the correct password guess,

we now let P and P ′ output the same session key. (This is the re-encryption case in Appx. A.4 and
the proof of Thm. 5.4.) This again matches what changes in the real world, where in this case the
session keys of P and P ′ are indeed the same.

Given the intuition above, we can easily come up with a series of hybrids that are very similar
to those in the proof of Thm. 5.4, with only two modifications:

• Wherever PRFK(ϕ′) (resp. PRFK′(ϕ′) or PRFK∗(ϕ′)) is mentioned, it is replaced by K (resp.
K ′ or K∗). Furthermore, the following hybrids that trivially reduce to the fact that PRF is a
PRF are now removed:

78

Initialize U := {} as the set of H-evaluations.
Let T = {} be the record of honest POPF evaluations as in FPOPF.

To compute H(x):
1. If there is an entry (x, y) ∈ U return y.
2. Otherwise sample y ← R, add (x, y) to U and return y.

On (NewSession, sid, P, P ′, “initiator”) from FPAKE:
3. Send (Program, sid, P, P ′) from FEKE-1r to A.

On (NewSession, sid, P ′, P, “respondent”) from FPAKE:
4. Send (SampleResp, sid, P ′, P) from FEKE-1r to A.

On (Eval, sid, P, P ′, x) from A to FEKE-1r:
5. Compute A = msg1(H(x)) and return A to A.

On (Deliver, sid, P, P ′, pw∗, A∗) from A to FEKE-1r:
6. Send (Program, sid) from FPOPF to A and wait until A responds with (Program, sid, ϕ′) to
FPOPF such that there is no entry (ϕ′, ·, ·) ∈ T .

7. Send (sid, ϕ′) from P ′ to P .
8. If pw∗ = ⊥, send (NewKey, sid, P ′, 0κ) to FPAKE.
9. If pw∗ ̸= ⊥ do:

(1) Send (TestPwd, sid, P ′, pw∗) to FPAKE.
(2) Sample b← R and compute (K ′)∗ := key2(b, A∗).
(3) Send (NewKey, sid, P ′, (K ′)∗) to FPAKE.

On (sid, ϕ′∗) from A to P :
10. If either (1) pw∗ = ⊥∧ ϕ′∗ = ϕ′ or (2) pw∗ ≠ ⊥∧ ϕ′∗ = ϕ′ and the password guess on Deliver

was incorrect, send (NewKey, sid, P, 0κ) to FPAKE.
11. If pw∗ ̸= ⊥ ∧ ϕ′∗ = ϕ′ and the password guess on Deliver was correct:

(1) Send (TestPwd, sid, P, pw∗) to FPAKE.
(2) Compute K∗ = key1(H(pw∗), msg2(b, A∗)) and send (NewKey, sid, P, K∗) to FPAKE.

12. Otherwise (i.e., if ϕ′∗ ̸= ϕ′ or ϕ′ is undefined because no Deliver message has been sent):
(1) Send (Extract, sid, ϕ′∗) from FPOPF to A.
(2) On (Extract, sid, pw′∗, α∗) from A to FPOPF, send (Eval, sid, ϕ′∗, pw′∗) from FPOPF to
A.

(3) On (Eval, sid, B∗) from A to FPOPF,
(i) If pw∗ = ⊥ ∧ (ϕ′)∗ ̸= ϕ′, and there has been an (Eval, sid, ϕ′, (pw′)∗) command

to FPOPF whose answer is (Eval, sid, B∗), then send (TestSamePwd, sid, P, (pw′)∗)
to FPAKE, compute K∗ := key1(H((pw′)∗), B∗), and send (NewKey, sid, P, K∗) to
FPAKE.

(ii) Otherwise send (TestPwd, sid, P, (pw′)∗) to FPAKE, compute K∗ :=
key1(H((pw′)∗), B∗), and send (NewKey, sid, P, K∗) to FPAKE.

Simulation of FPOPF: run the code of FPOPF as in (Figure 8) except that on (Eval, sid, ϕ′, pw∗), if
the password guess on Deliver was correct return B = msg2(b, A∗).

Figure 26: Simulator S for the EKE protocol realizing FPAKE-sp.

79

– Hybrid 5 which sets the two session keys equal when K = K ′;
– Hybrid 6 which replaces PRFK′ (where K ′ is a random string independent of the rest of

the experiment) with a random function G′; and
– Hybrid 7 which replaces PRFK (where K is a random string independent of the rest of

the experiment) with a random function G.

• Hybrid 8 in the previous proof — which exactly deals with the re-encryption case above,
and the change is that P and P ′ output session keys (PRFK((ϕ′)∗), G′(ϕ′)) rather than
(G′((ϕ′)∗), G′(ϕ′)) — is also removed. The reason is slightly different than the above, though;
the key point is that in our setting both before the hybrid and after the hybrid, the session
keys of P and P ′ are the same, so this hybrid is not needed anymore.

• Hybrid 9 in the previous proof — which changes K from K ′ (which is uniformly random since
hybrid 2) back to the “real” key1(a, B) in the re-encryption case — should change both K and
K ′ back to key1(a, B), because here K and K ′ need to be the same. This hybrid goes through
due to KA security.

B.2 EKE Using IC Realizes FPAKE

We now turn to protocol EKE using IC, which is the EKE protocol in Appx. B.1 except that POPF
Program is replaced by IC encryption and POPF Eval is replaced by IC decryption. we have:

Theorem B.2. The EKE using IC protocol realizes FPAKE in the (FIC,FEKE-1r)-hybrid world.

Proof (sketch). This is simpler than Thm. B.1 so we only provide a more high-level sketch. The
only modifications from the EKE-PRF simulator in Figure 18 are:

• In a NewKey command, we replace PRFK∗(ϕ′) with K∗;

• We simulate the interface of FIC rather than FPOPF.

The key point is that now the re-encryption case becomes non-existent, since it is impossible to have
ϕ′ = E(pw, B), (ϕ′)∗ = E(pw, B), and (ϕ′)∗ ≠ ϕ′. So we simply remove hybrids 8 and 9, and (as in
the proof of Thm. B.1) also remove hybrids 5, 6, and 7.

Remark B.3. Our FPAKE-sp functionality accurately captures the real adversary’s ability while
attacking EKE instantiated with POPF. The only additional attack compared to EKE using IC
is re-encryption, where the adversary only attacks the P session but can simultaneously check the
password of P ′ if the password guess for P is correct (in which case P and P ′ output the same key
if and only if the passwords of P and P ′ match). This “conditional same password check” is exactly
what the TestSamePwd command does.

C Properties of Kyber
In this section we argue that Kyber (Sect. 2.1) satisfies correctness, security, strong pseudorandom-
ness, pseudorandom non-malleability, and collision resistance — properties that are needed for the
security of (O)EKE.

For correctness, the idea is that Kyber.Dec(a, B) = b, so key1 will see B as being a valid message
(i.e., B = msg2(b, A)) and will output H ′(b, A, B), the same as key2. Security and pseudorandomness
follow easily from the corresponding properties of the underlying public-key encryption scheme:

80

CPA-security, pseudorandom public keys, and pseudorandom ciphertexts.
By applying the FO transform we have added the properties of strong pseudorandomness,

pseudorandom non-malleability, and collision resistance. Collision resistance is the easiest to see:
key1 always outputs either H ′(b, A, B) or H ′(a, B), and in both cases something that uniquely
identifies A is included in the RO. Therefore, collision resistance holds as long as H ′ has sufficient
output length for τ to be at least 2κ-bit long.

For strong pseudorandomness, notice that a uniformly random ciphertext B has negligible
probability of equaling msg2(Kyber.Dec(a, B), A), since msg2 is defined using H(b, A), and this
will be a fresh RO query. (Technically, this requires Kyber.Enc to preserve sufficient entropy from
H(b, A); this is true for Kyber.) Therefore, key1(a, B) = H ′(a, B) on uniformly random B, so the
key is indistinguishable from uniformly random. This shows that (real A, random B, real K) is
indistinguishable from (real A, random B, random K), which (by Sect. 3.3) is sufficient to show
strong pseudorandomness.

Finally, we need to show pseudorandom non-malleability. Normal non-malleability is implied by
the CCA-security of the FO transform, which suggests that we should look for a similar argument to
show pseudorandom non-malleability. The main idea of the FO transform is that on any adversarially
generated B, one can look through all H(b, A) queries made by the adversary and see whether
it matches any of them. If it does, then we already know b, and can simulate the output of key1
without knowing a by just computing H ′(b, A, B). If there is no such query, then there is negligible
probability that B = msg2(Kyber.Dec(a, B), A), as either H(Kyber.Dec(a, B), A) is a fresh query
and will add enough entropy to msg2 to stop it from matching B, or it is one of the previous H(b, A)
queries that are already known to not produce the correct B. In that case, key1 can be simulated
by just outputting a uniformly random value, since H ′(a, B) is indistinguishable from random.
Therefore, the FO transform allows any key1 to be simulated without knowledge of a, and without
key1 pseudorandom non-malleability is just a combination of security and pseudorandomness.

81

	Introduction
	Existing Security Analyses of (O)EKE
	Our Contributions

	Preliminaries
	(Unauthenticated) Key Agreement Protocols
	UC PAKE Functionality

	Attacks on Previous Instantiations of (O)EKE
	Allowing Identity Element in Diffie-Hellman Makes OEKE Insecure
	EKE with Plain Diffie-Hellman Is Insecure
	EKE Is Insecure If the Underlying KA Is Not Strongly Pseudorandom
	Summary

	Almost Universally Composable POPF
	The Functionality FPOPF
	POPF Construction
	Security Analysis

	PAKE Protocols Based on POPF
	The First-Round Functionality and Protocol
	The EKE Protocol
	The OEKE Protocol

	Conclusion and Future Work
	Subtleties in the Security Model
	Subtleties in the Protocol Description
	Subtleties in the Security Analysis
	Future Work

	Additional Attacks and Subtleties
	Further Subtleties in EKE with Hashed Diffie-Hellman under CDH and DDH
	OEKE-PRF with Plain Diffie-Hellman Is Not Necessarily Secure
	EKE and OEKE Are Insecure If the Underlying KA Is Not Pseudorandom Non-Malleable
	EKE Using HIC/POPF Only Realizes a Weaker UC Functionality

	Additional Results on the Security of EKE
	EKE Using POPF Realizes FPAKE-sp
	EKE Using IC Realizes FPAKE

	Properties of Kyber

