
Proofs for Deep Thought: Accumulation for
large memories and deterministic computations

Benedikt Bünz and Jessica Chen

New York University

Abstract. An important part in proving machine computation is to
prove the correctness of the read and write operations performed from
the memory, which we term memory-proving. Previous methodologies
required proving Merkle Tree openings or multi-set hashes, resulting in
relatively large proof circuits. We construct an efficient memory-proving
Incrementally Verifiable Computation (IVC) scheme from accumulation,
which is particularly useful for machine computations with large memo-
ries and deterministic steps. In our scheme, the IVC prover PIVC has cost
entirely independent of the memory size T and only needs to commit
to approximately 15 field elements per read/write operation, marking a
more than 100X improvement over prior work. We further reduce this
cost by employing a modified, accumulation-friendly version of the GKR
protocol. In the optimized version, PIVC only needs to commit to 6 small
memory-table elements per read/write. If the table stores 32-bit values,
then this is equivalent to committing to less than one single field ele-
ment per read and write. Our modified GKR protocol is also valuable for
proving other deterministic computations within the context of IVC. Our
memory-proving protocol can be extended to support key-value stores.

Keywords: Proof system · Accumulation Scheme · Incrementally Veri-
fiable Computation.

1 Introduction

Consider the scenario where one or multiple clients outsource a large computa-
tion, possibly of infinite steps, to an untrusted server. For example, clients might
want to continuously verify that all transactions in a blockchain are valid. Natu-
rally, the clients would like the server to provide a certificate, which would allow
the clients to verify that all the computation steps run up to that point were
correct and even to continue the computation from that point onwards. The effi-
ciency of verification necessitates that the size of the proof and the complexity of
its verification be independent of the length of the computation. Moreover, since
the computation can be long or even unbounded, it would be ideal if the server
can provide the current state and a certificate upon request from the client at
any point. This is achieved by maintaining a running certificate or proof that can
be efficiently updated with each computation step. A system that achieves these

https://orcid.org/0000-0003-2082-4480
https://orcid.org/0009-0002-1289-9626

properties is called an incrementally verifiable computation (IVC) system[Val08]
1.

IVC enables the server/prover to produce an output zIVC, along with a proof
πIVC upon request from the client/verifier without requiring a priori knowledge
of an upper bound on the number of computation steps. With a valid πIVC, a
client/verifier can be convinced zIVC is the output of the correct execution of a
(potentially non-deterministic) machine computation up to this point, and can
even continue the computation. Recent developments have demonstrated that
IVC can be constructed from simple public-coin interactive protocols featuring
algebraic verifiers, such as protocols where the prover simply sends the witness.
This is achieved through the use of accumulation2 or folding schemes [BGH19;
BCMS20; BCLMS21; BDFG21; KST22; BC23; EG23]. The resulting IVC has
essentially the same computational overhead as the accumulation scheme. The
cost of the resulting IVC prover depends on two main factors:

1. The size of the recursive circuit, predominantly comprising the accumulation
verifier Vacc. Since the size of Vacc only depends on the algebraic degree of
the verifier and the number of rounds in the underlying protocol (rather than
the communication or verification complexity), minimizing these two factors
are crucial for reducing the cost of the IVC prover.

2. The cost of the accumulation prover Pacc, which is mainly influenced by
the commitment cost to the prover messages, and thus is dependent on the
number of elements in the prover messages of the underlying interactive
protocol.

The general paradigm of using IVC to prove machine computations involves
first proving the correctness of computation under the assumption that memory
accesses were executed correctly, recording all the read/write operations in the
circuit, and then proving the correctness of the recorded read/write operations.
The primary challenge lies in the latter, i.e. efficiently proving the correctness of
memory accesses, which we will refer to as memory-proving in this work. With
the above-mentioned recent advancements in IVC construction, we need only
to design a public-coin interactive protocol for memory-proving with
an algebraic verifier while ensuring that following three parameters
remain small: the number of rounds, the verifier degree, and the num-
ber of elements in the prover messages (ideally independent of T). These
parameters are the only factors on which the cost of PIVC depends. Then, by
applying existing accumulation compilers (e.g., the ProtoStar compiler [BC23])
to this interactive protocol, we can obtain an efficient accumulation scheme for
memory-proving, and finally derive an efficient memory-proving IVC scheme
from accumulation by utilizing existing IVC compilers (e.g., [BCLMS21]).

1 The literary application of IVC is the machine Deep Thought from the Hitchhiker’s
Guide to the Galaxy. It computes the answer to the ultimate question of the universe
and life over several thousand years. Given the nonsensical answer (42), it would have
been helpful to be able to efficiently verify the correctness of the computation.

2 We use accumulation to refer to split-accumulation as defined by [BCLMS21].

2

The most rudimentary method of performing memory-proving involves un-
rolling the entire memory into a circuit. However, since a circuit is at least as
large as its inputs, this circuit would be of size O(ℓT), which is prohibitively
large even medium-sized memories. An alternative approach is for the prover to
simulate memory-checking internally and prove that the memory accesses would
have been accepted by the memory-checking verifier, who only keeps a small
local state. In all previous works, using this approach, the prover’s cost is de-
pendent on the memory size T and/or hashing is required within the circuit. For
instance, Spice [SAGL18] employed offline memory-checking, requiring approxi-
mately 1500 constraints3 per read and write operation. Since the prover needs to
transmit at least one proof element per constraint, this results in 1500 elements
in the prover message per read/write operation, and thus 1500 commitments per
accumulation step for PIVC. In contrast, ProtoStar recently showed a memory-
proving protocol for static read-only memory that utilises the LogUp argument
[Hab22], in which the prover only performs two group scalar multiplications per
read instruction [BC23]. The prover’s cost in ProtoStar is independent of the
memory size T and does not involve multi-set hashing. However, their approach
does not support writes into a dynamic memory[BC23].

In this paper, we present an interactive protocol for memory-proving inspired
by the LogUp argument [Hab22]. Using accumulation techniques, we obtain an
IVC scheme for memory-proving with minimal prover overhead. We then show
an optimization of our scheme which employs an accumulation-friendly version
of the GKR protocol to further reduce the prover overhead. We note that this
adapted GKR protocol has other applications beyond improving our memory-
proving protocol.

O(ℓ) memory-proving PIVC ProtoStar has previously demonstrated that LogUp
is well suited for accumulation and, thus, IVC. It can be used to verify the ex-
istence of a set of witness values in a static table of values [BC23]. We design
LogUp-styled arguments to support reading from and writing to a fully dynamic
table.

One key challenge we address is proving only O(ℓ) table values were altered
in a table of size T >> ℓ, while ensuring that the cost of PIVC remains indepen-
dent of T . Our memory-proving protocol is public-coin with an algebraic verifier,
featuring 2 rounds of communication4, verifier degree 3, and only O(ℓ) elements
in prover messages, where ℓ denotes the number of reads and writes performed
in each computation step. This means it can be turned into an efficient accumu-
lation scheme using existing accumulation compiler (eg. [BC23]). The resulting
PIVC only needs to commit to O(ℓ) elements, which is independent of the memory
size T .

3 In group-based proof systems, the prover typically computes at least one multi-scalar
multiplication that is as large as the number of constraints.

4 Each round consists of a prover message and is possibly followed by a verifier chal-
lenge

3

This significantly improves on prior work, which either relied on Merkle trees
requiring log T hashes per memory access or required multi-set hashes [SAGL18].
These prior methods are particularly costly in the context of memory-proving,
where the hashes result in large proving circuits. In contrast, our resulting
memory-proving scheme is practically efficient with the prover only having to
commit to 15 field values per memory access. In addition, since the prover cost
is completely independent of the memory size T , our protocol can be extended
to the setting of key-value store. We describe this extension in detail at the end
of Section 5.1.

Optimizing memory-proving with GKR. One limitation of the scheme is
that the prover needs to commit to 6 large field elements per memory access,
i.e. each of size λ bits, even if the memory entries themselves are small. This is
because in the memory-proving interactive protocol, the prover needs to send 6
vectors consisting of inverses of the form 1

r+ti
where r is a constant, and each ti is

a small table entry. To resolve this overhead, we draw inspiration from [STW23;
PH23] and compute this sum using formal fractions and a modified GKR proto-
col. Our modified protocol retains GKR’s ability to prove deterministic layered
computations without committing to the intermediate values. Specifically, the
protocol relies on bivariate sumcheck instead of multilinear sumcheck, reducing
the number of rounds per layer to 3. In the context of the ProtoStar accumulation
compiler, this reduction in number of rounds significantly lowers the recursive
overhead in IVC.

With the power of GKR, the memory-proving protocol no longer requires
computing and committing to the large inverses. Thus, if we read/write ℓ s-bit
values from memory, the number of group operations decreases from O(λℓ) to
O(sℓ), i.e., the actual size of the data that is read/written. We provide a brief
overview of the resulting efficiency of our protocol in Table 1. Most importantly
the prover only needs to commit to 6 elements that are as large as the table
entries for each read/ write. If the table contains 32-bit entries then this is
equivalent to committing to 192bits per read/write or less than a single 256bit
field element. We also introduce several optimizations for our GKR-powered
memory-proving protocol, which further reduce the number of GKR rounds.

Table 1. Efficiency Table for our Memory-Proving Protocol. T is the memory size,
and ℓ is the number of read/write operations. T is the set of table entries, which might
only contain small field elements. See Table 3 for an explanation of the columns and
symbols, and more details.

Pacc Time Vacc Time

Plain (6ℓ,T)-MSM +(9ℓ,F)-MSM 3G
Using GKR (6ℓ,T)-MSM O(log T)G

4

IVC for deterministic computations. GKR has numerous other applica-
tions in accumulation beyond enhancing our memory-proving protocol. In fact,
for proving any low-depth deterministic computations, GKR only requires com-
mitting to the inputs and outputs, not the intermediate values. We demonstrate
the utility of this by describing an accumulation-friendly GKR protocol for com-
puting group scalar multiplications, which is the dominant cost within the re-
cursive circuit.

1.1 Related Work

IVC and Accumulation. Valiant [Val08] introduced incrementally verifiable
computation (IVC) and showed that IVC can be built from Succinct Non-
interactive ARguments of Knowledge (SNARKs). The core concept involves the
prover generating a SNARK at each computation step, certifying both the cur-
rent step and the verification of the SNARK from the previous step. The latter
part is commonly referred to as the recursive circuit. Subsequent to Valiant’s
work, an important line of research [BCCT13; BCTV14; COS20] has enhanced
the practicality of IVC, studied its generalization to arbitrary graphs (Proof-
Carrying Data, PCD), and advanced its theoretical foundations.

Halo [BGH19] showed that IVC can be constructed from simpler assump-
tions, sparking research on accumulation [BCMS20; BCLMS21; BDFG21; KST22;
BC23; EG23]. The idea is to construct IVC by simply accumulating or batch-
ing the verification of non-interactive arguments, postponing verification to the
end of each IVC step. In essence, in each accumulation round, the prover pro-
duces a new argument for the current step and proves its correct accumulation
into the existing accumulator. The accumulation step can be as straightforward
as taking a random linear combination between two vector commitments, and
verifying the accumulation step can be significantly cheaper than verifying the
proof. The more computationally intensive final verification, which is called the
decision step in accumulation, is executed only at the end of IVC step to verify
the correctness of the accumulated commitment. A valid accumulator implies
that all the accumulated proofs were valid.

Recently, ProtoStar introduced a new recipe for constructing accumulation
schemes and IVC [BC23] from any interactive public-coin protocol Π with an
algebraic verifier. The resulting accumulation verifier Vacc depends only on the
number of rounds and the verifier degree in the underlying interactive protocol
Π, and the resulting accumulation prover Pacc’s main cost is committing to all the
prover messages in Π. Using the [BCLMS21] compiler, an accumulation scheme
for NP directly yields an IVC, where PIVC’s cost for computing the predicate is
proportional to the cost of Pacc and the recursive circuit consisting of Vacc.

Concurrent work [APPK24] also constructed an accumulation scheme for
GKR. However, they utilize the multi-linear version of GKR and batch the poly-
nomial evaluation, similar to [BCMS20].

Memory-checking and lookup arguments. Memory-checking [BEGKN91]
enables an untrusted server to convince a client that a set of read/write opera-

5

tions is consistent with a memory without having to send the entire memory to
the client. Each entry of read/write operation consists of an address a, a value
v and a timestamp t. If a value v was written to a at time t, then any read
at time t′ > t from a shall return v with the timestamp t, unless there was
another write to a in the meantime. We briefly highlight two constructions and
their limitations here, and refer to Appendix B of Jolt [AST23] for an excellent
overview of memory-checking techniques.

One approach stores the memory in a Merkle Tree [BFRSBW13; BCTV14].
For every read operation, the prover opens the Merkle Tree at the relevant
address. For every write operation, the prover shows that the Merkle Tree is
correctly updated. The verification for either step requires O(log T) hashes, and
the prover’s computational work is also O(log T), where T is the size of the
memory. When this technique is used within IVC, the memory-checking verifier
is part of the proving circuit, and log(T) hashes per read and write operation
become a significant overhead.

The other common approach, dating back to [BEGKN91] and later refined
in [CDvGS03; DNRV09; SAGL18], relies on proving that the constructed sets of
reads and writes form a permutation. The state-of-the-art work Spice [SAGL18]
employs multi-set hashes and proves that the hash was evaluated correctly, which
results in over 1500 constraints per read/write operation, two orders of magni-
tude more than our approach. The approach also requires a linear scan of the
memory at the end of the computation, but similar as in our construction this
can be deferred to a final decider.

Recently, there has been increased attention to a related primitive called
lookup arguments. Lookup arguments can be used to verify read operation in a
static, possibly preprocessed memory. A recent line of work [ZBKMNS22; PK22;
GK22; ZGKMR22; EFG22] showed that in the preprocessing setting, one can
achieve lookup arguments independent of the table size and quasi-linear in the
number of read operations. Lasso [STW23] improves on these ideas by enabling
a fully linear prover and independence of the table size for structured table.
In the context of IVC, ProtoStar [BC23] gave a lookup argument based on
LogUp [Hab22] that is independent of the table size (for arbitrary tables) and
only requires two group scalar multiplications per read. Unfortunately, all these
lookup arguments only work for static tables and read operations. We construct
a memory-proving argument (which is more general than a lookup) that is still
independent of the table size and has minimal overhead.

1.2 Technical Overview

Our construction heavily relies on the ProtoStar compiler [BC23], which we
describe in Theorem 1 in Section 2.5. It gives a recipe for constructing accumu-
lation schemes and IVC [BC23] from any interactive public-coin protocol with
an algebraic verifier. We summarize the recipe here into five steps:
1. Begin with any k-round interactive public-coin protocol featuring L verifica-

tion checks of maximum degree d, and prover messages comprising n nonzero
elements.

6

2. Compress the communication by using a homomorphic vector commitment
(e.g. Pedersen commitment) to commit to each vector in the prover messages.

3. Make the protocol non-interactive through the Fiat-Shamir transformation.
4. Use the ProtoStar compiler to convert the non-interactive protocol into an

accumulation scheme. The accumulation scheme combines the current ar-
gument with an accumulator (which has the same form as the argument)
by taking a random linear combination of the committed prover messages
with the accumulator messages. It also computes a new verification equa-
tion by appropriately canceling out the cross error terms resulted from the
accumulation.

5. If the underlying protocol can prove NP-complete relations, such as cir-
cuits, then the [BCLMS21] IVC compiler can be applied to construct an
IVC scheme from the accumulation scheme for any function F . The com-
piler ensures the correct execution of the accumulation verifier alongside
proving F .

Following this recipe, we design special-sound, algebraic protocols for memory-
proving and GKR. One important design goal is to keep the complexity of the
accumulation verifier Vacc low, as Vacc is the dominant component in the recur-
sive circuit. Notably, the complexity of Vacc relies solely on k and d, without any
dependence on n or L whatsoever. Another design goal is to minimize the com-
mitment cost of the accumulation prover Pacc, which is directly contingent on
the number of nonzero elements in prover messages, as committing to 0 is free in
Pedersen commitment. Therefore, to leverage the ProtoStar compiler to design
an efficient IVC scheme where PIVC cost is independent of the memory size T ,
we need to design an interactive, algebraic memory-proving protocol
with small values for number of rounds k, verifier degree d and num-
ber of nonzero elements in prover messages n. This implies that n should
be independent of T , since otherwise the cost of Pacc will be O(T) even if the
number of memory accesses is much smaller than T .

Constructing Read List and Write List We assume the list of “reads”
and the list of “writes” were constructed similarly to the way in the classic
offline memory-checking process [BEGKN91; CDvGS03; SAGL18]. Each entry
in the lists is in the form of a tuple (address, value, timestamp), with the local
timestamp incremented after each write operation. The specific construction is
described in Section 3.

If all memory accesses were performed correctly, the constructed lists should
satisfy three properties: 1) the read list and the write list should be permutations
of each other; 2) the initial reads are consistent with the starting/old memory;
and 3) the new memory is updated only at the addresses written to and with
the correct amount. Note that the third memory-update (or mem-update for
short) property requires examining all T addresses, not only the ones touched
by memory accesses but also the ones untouched. Therefore, the main challenge
in designing an efficient memory-proving protocol lies in proving correct mem-
update in time independent of T .

7

LogUp based mem-update. The starting point of our construction is the
LogUp lookup argument [Hab22] which uses the fact that the set of values in
w = [wi]

ℓ
i=1 is contained in a table t = [ti]

T
i=1 if and only if

ℓ∑
j=1

1

X +wj
=

T∑
i=1

mi

X + ti
,

where mi is the multiplicity of ti in w for every i ∈ [T] and X is a random
variable. ProtoStar [BC23] showed that the LogUp argument can be efficiently
accumulated. Importantly, it observes that the prover messages in the protocol
for LogUp argument, e.g. m = [mi]

T
i=1, only contains ℓ nonzero entries. This

means, in the context of the ProtoStar compiler and IVC, the accumulation
prover Pacc and thus the IVC prover PIVC only needs to do O(ℓ) work. However,
the LogUp argument only supports read operations and not write operations.

We attempt to modify the LogUp argument to use it for mem-update. As-
sume, w corresponds to the ℓ-sized update vector (the difference between the
final written value and the initial read value from each address), and t corre-
sponds to the T -sized vector ∆ that represents the difference between the new
memory and the old memory, i.e. ∆ := NM−OM. However, the LogUp argument
only cares about the membership of the w values but not their positions in ∆;
in other words, the argument only indicates that some memory value is changed
by wj , but does not constrain the change to any specific address. In addition, it
is not immediately clear how to update the memory or compute the right hand
side with ∆ in a manner that does not require a linear scan.

To resolve the first issue, we add the address vector to random linear combi-
nation in the denominators. That is,

ℓ∑
j=1

1

X + Y · bj +wj
=

T∑
i=1

mi

X + Y · i+∆i

holds if and only if wj = ∆bj for every j ∈ [ℓ], where b = [bj]
ℓ
j=1 is an address

vector and Y is another random variable. Note that this is an indexed LogUp
argument where we ensure not only the membership of the values but also their
precise indices in the lookup table. In this indexed lookup argument, mi only
takes on the values 0 or 1. Still, this modified lookup argument is not sufficient,
as it does not ensure that ∆ is 0 at the positions for which there had been no
read or write operation. This is an important criteria for correct mem-update,
since an adversarial prover may use non-zero values in ∆ to change the memory
state arbitrarily.

We make a key observation that the correct ∆ should simply be a T -sized
sparse representation of w. To ensure that ∆ is 0 at unmodified addresses, we
set the numerators to wj , ∆i instead of 1,mi. Namely,

ℓ∑
j=1

wj

X + Y · bj +wj
=

T∑
i=1

∆i

X + Y · i+∆i

8

Note that the ith fraction on the right hand side is 0 if and only if the ith value is
unmodified by any write operation, and is equal to the left hand side if and only
if the ith value is modified by the correct amount. Only ℓ out of all T fractions
on the right hand side are nonzero, which implies an honest prover only need to
do O(ℓ) work, resolving the second issue aforementioned. Section 4.3 shows that
this LogUp-style mem-update argument is secure and indeed leads to a protocol
with prover complexity independent of T .

LogUp powered memory-proving. The mem-update argument can be used
to show that the memory is updated strictly at the addresses written to and
with the correct amount. We can then use a homomorphic commitment to ∆
to efficiently update our commitment to the memory state. In addition, we can
use the indexed LogUp argument demonstrated in the intermediate step above
to show that all the values initially read are consistent with the old memory.
Nevertheless, merely checking these two properties (property 2 and 3) only suffice
in a system where all write operations happen synchronously at the end of the
computation step. Without additional checks, we would need to first update the
memory whenever we read from an address that has been previously written to.
This requires an expensive homomorphic commitment operation to be executed
by the verifier as part of the recursive circuit. To resolve this we employ the
classic permutation-based offline memory-checking idea [BEGKN91] and add a
check for property 1 in our memory-proving protocol.

All three subprotocols are based on the LogUp argument and are described
in Section 4. Section 5 discusses the overall memory-proving protocol and its
efficiency.

Accumulation-friendly verision of GKR. Our memory-proving protocols
have almost optimal parameters. It requires committing5 to only 15 field ele-
ments per memory access. However, 9 of these field elements consist of large
field elements, i.e. log |F|-bit, even if the memory itself only consists of small
entries. For instance, say the memory only contains 32-bit entries; using homo-
morphic commitments requires fields of size at least 2256, which is a factor 8
blowup. Concretely, in this example the 9 large elements contribute 2300 bits
and the 6 small elements only 192 bits to the prover’s commitment cost.

Removing this blowup motivates the second orthogonal but highly compat-
ible contribution of this paper: We construct an efficient accumulation scheme
for the GKR protocol. GKR can be used to prove low-depth deterministic com-
putations while only committing to the computation’s inputs and outputs but
not the intermediate values. Note that GKR is a special-sound interactive pro-
tocol with an algebraic verifier, which means it can directly be compiled with
the ProtoStar compiler to an accumulation scheme. Unfortunately, GKR has

5 Committing is by far the dominant prover cost in these systems. Committing to a
message is between 100 and 1000 times as expensive as doing field operations on the
same message. See https://zka.lc/.

9

https://zka.lc/

O(k · log n) rounds where k is the depth of the circuit and n its width. Compila-
tion results in an accumulation verifier with k · log n group scalar multiplications.
In the context of IVC, the accumulation verifier becomes part of the recursive
circuit, and this is a significant overhead, especially when compared with other
accumulation schemes which only have 1 to 3 group operations [KST22; KS23;
BC23]. Our goal is, therefore, to reduce the number of rounds of GKR while
maintaining the attractive efficiency properties and the compatibility with the
ProtoStar compiler.

In every round, GKR runs a multivariate sumcheck protocol, which has log n
rounds. As a strawman, we can replace this multivariate sumcheck with a uni-
variate one. This immediately reduces the number of GKR rounds from k · log n
to just k. Univariate sumcheck requires sending a quotient polynomial that is as
large as the domain of the sumcheck, in our case O(n). Committing to this poly-
nomial would be at least as expensive as directly committing to the intermediate
wires of the circuit, thus removing the benefit of using GKR. Fortunately, the
idea of using a higher degree sumcheck with fewer variables can still help. Mov-
ing to a bivariate sumcheck reduces the communication to O(

√
n) while being

only a 3-round protocol. The O(
√
n) commitment cost is, in most applications,

dominated by the cost of committing to the input and output layers; even if not,
we show that one can use a c-variate sumcheck to ensure that the sumchecks
commitment cost is marginal. Using a bivariate sumcheck presents us with a
couple of challenges. First, the verifier needs to evaluate a O(

√
n) degree poly-

nomial, which is a O(
√
n) degree check if done naively. To resolve this we built a

polynomial evaluation protocol, where with aid from the prover, the verification
degree reduces to merely 3, independent of the degree of the polynomial.

Additionally, GKR batches polynomial evaluations, after each sumcheck, in
order to only evaluate the next layer at a single point. In bivariate sumcheck, this
would require computing a high-degree interpolation polynomial. We show that
it is much simpler and more efficient to directly batch the resulting sumchecks.
This observation is also applicable to multivariate sumchecks. We then construct
a specific GKR protocol for computing the sum of fractions, e.g.

∑n
i=1

ni

di
, similar

to [PH23]. We also give specific optimizations for this instantiation, such as
breaking up the circuit into multiple parts, while still maintaining the asymptotic
properties. This optimization takes advantage of the circuit structure of sums of
fractions, where the number of sums halves in every layer.

1.3 Roadmap

In Section 2, we provide the necessary preliminaries to comprehend our construc-
tion. We describe the desired construction for lists of read/write operations in
Section 3 and outline three properties that consistent read/write lists should up-
hold. Subsequently, in Section 4, we introduce three LogUp-style special-sound
subprotocols, each tailored for proving one of the three aforementioned proper-
ties. These subprotocols are combined in parallel to form the memory-proving
interactive protocol ΠMP in Section 5, which exhibits the desired characteristics

10

for conversion into an efficient accumulation scheme and IVC using the Proto-
Star compiler. Specifically, ΠMP has only 2 rounds and verifier degree 3, and its
number of nonzero elements in prover messages is independent of T . In Section
7, we elucidate how our accumulation-friendly version of GKR (components de-
scribed in Appendix 6) can be leveraged to optimize our memory-proving IVC
scheme, and we highlight several other useful applications of GKR in the con-
text of IVC. The extension of our memory-proving protocol to the setting of
key-value store is described in Appendix B.1.

2 Preliminaries

Notation. For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We denote λ
as the security parameter and use F to denote a field of prime order p such that
log(p) = Ω(λ). For list of tuples ltup = [(ai, bi, ci, . . .)]

k
i=1 of arbitrary length

k, we use ltup.a to denote the list [ai]
k
i=1, and ltup.(a, b) to denote the list

[(ai, bi)]
k
i=1. For function f , f̃ denotes the bivariate extension of f .

2.1 Special-sound Protocols

We take the definition of special-soundness from [AFK22; BC23].

Definition 1 (Public-coin interactive proof). An interactive proof Π =
(P,V) for relation R is an interactive protocol between two probabilistic ma-
chines, a prover P, and a polynomial time verifier V. Both P and V take as
public input a statement pi and, additionally, P takes as private input a witness
w ∈ R(pi) . The verifier V outputs 0 if it accepts and a non-zero value otherwise.
Its output is denoted by (P(w),V)(pi). Accordingly, we say the corresponding
transcript (i.e., the set of all messages exchanged in the protocol execution) is
accepting or rejecting. The protocol is public coin if the verifier randomness is
public. The verifier messages are referred to as challenges. Π is a (2k−1)-move
protocol if there are k prover messages and k − 1 verifier messages.

Definition 2 (Tree of transcript). Let µ ∈ N and (a1, . . . , aµ) ∈ Nµ. An
(a1, . . . , aµ)-tree of transcript for a (2µ+1)-move public-coin interactive proof Π
is a set of a1ȧ2 . . . aµ accepting transcripts arranged in a tree of depth µ and arity
a1, . . . , aµ respectively. The nodes in the tree correspond to the prover messages
and the edges to the verifier’s challenges. Every internal node at depth i − 1
(1 ≤ i ≤ µ) has ai children with distinct challenges. Every transcript corresponds
to one path from the root to a leaf node. We simply write the transcripts as an
(aµ)-tree of transcript when a = a1 = a2 = · · · = aµ.

Definition 3 (Special-sound Interactive Protocol). Let µ,N ∈ N and
(a1, . . . , aµ) ∈ Nµ. A (2µ + 1)-move public-coin interactive proof Π for relation
R where the verifier samples its challenges from a set of size N is (a1, . . . , aµ)-
out-of-N special-sound if there exists a polynomial time algorithm that, on in-
put pi and any (a1, . . . , aµ)-tree of transcript for Π outputs w ∈ R(pi). We
simply denote the protocol as an aµ-out-of-N (or aµ) special-sound protocol if
a = a1 = a2 = · · · = aµ.

11

2.2 Commitment Scheme

Definition 4 (Commitment Scheme). (Definition 6 from [BC23]) cm =
(Setup,Commit) is a binding commitment scheme, consisting of two algorithms:
Setup(λ)→ ck takes as input the security parameter and outputs a commitment
key ck.
Commit(ck,m ∈ M) → C ∈ C, takes as input the commitment key ck and a
message m inM and outputs a commitment C ∈ C.
The scheme is binding if for all polynomial-time randomized algorithms P∗:

Pr

Commit(ck,m) = Commit(ck,m′)
∧

m ̸= m′

∣∣∣∣∣∣ ck← Setup(1λ)
m,m′ ← P∗(ck)

 = negl(λ)

Homomorphic commitment. (Adapted from Definition 17 in [KST22]) Let (C,+)
be an additive group of prime order p. We say the commitment is homomorphic
if for all commitment key produced from Setup(1λ), and for any m1,m2 ∈M2,
Commit(ck,m1) + Commit(ck,m2) = Commit(ck,m1 +m2).

2.3 Lookup Relation

Definition 5. (Definition 12 of [BC23]) Given configuration CLK := (T, ℓ, t)
where ℓ is the number of lookups and t ∈ FT is the lookup table, the relation
RLK is the set of tuples w ∈ Fℓ such that wi ∈ t for all i ∈ [ℓ].

Lemma 1. (Lemma 5 of [Hab22]) 6 Let F be a field of characteristic p >
max(ℓ, T). Given two sequences of field elements [wi]

ℓ
i=1 and [ti]

T
i=1, we have

{wi} ⊆ {ti} as sets (with multiples of values removed) if and only if there exists
a sequence [mi]

T
i=1 of field elements such that

ℓ∑
i=1

1

X +wi
=

T∑
i=1

mi

X + ti
. (1)

2.4 Vector-valued lookup

Definition 6. (Definition 13 in [BC23]) Consider configuration CVLK := (T, ℓ, v ∈
N, t) where ℓ is the number of lookups, and t ∈ (Fv)T is a lookup table in which
the ith (1 ≤ i ≤ T) entry is

ti := (ti,1, . . . , ti,v) ∈ Fv .

A sequence of vectors w ∈ (Fv)ℓ is in relation RVLK if and only if for all i ∈ [ℓ],

wi := (wi,1, . . . ,wi,v) ∈ t .

6 This lookup argument is unofficially referred to as LogUp.

12

As noted in Section 3.4 of [Hab22], we can extend Lemma 1 and replace (1)
with

ℓ∑
i=1

1

X + wi(Y)
=

T∑
i=1

mi

X + ti(Y)
(2)

where the polynomials are defined as

wi(Y) :=

v∑
j=1

wi,j · Y j−1 , ti(Y) :=

v∑
j=1

ti,j · Y j−1 ,

which represent the witness vector wi ∈ Fv and the table vector ti ∈ Fv.

2.5 Incremental Verifiable Computation (IVC)

Definition 7 (IVC). (Adapted Definition 5 from [KST22]) An incrementally
verifiable computation (IVC) scheme is defined by PPT algorithms (G,P,V) and
deterministic K denoting the generator, the prover, the verifier, and the encoder
respectively. An IVC scheme (G,K,P,V) satisfies perfect completeness if for any
adversary A

Pr

V(vk, i, z0, zi, Πi) = 0

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
F, (i, z0, zi, zi−1, ωi−1, Πi−1)← A(pp),
(pk, vk)← K(pp, F),
zi = F (zi−1, ωi−1),
V(vk, i− 1, z0, zi−1, Πi−1) = 0,
Πi ← P(pk, i, z0, zi; zi−1, ωi−1, Πi−1)

 = 1

where F is a polynomial time computable function. Likewise, an IVC scheme
satisfies knowledge soundness if for any constant n ∈ N, and for all expected
polynomial time adversaries P∗, there exists an expected polynomial-time extrac-
tor E such that

Pr
r

 zn = z where
zi+1 ← F (zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣
pp← G(1λ),
(F, (z0, z), Π)← P∗(pp, r),
(ω0, . . . , ωn−1)← E(pp, r)

 ≈
Pr
r

V(vk, (n, z0, z), Π) = 0

∣∣∣∣∣∣
pp← G(1λ),
(F, (z0, z), Π)← P∗(pp, r),
(pk, vk)← K(pp, F)

where r denotes an arbitrarily long random tape.

An IVC scheme satisfies succinctness if the size of the IVC proof Π does not
grow with the number of applications n.

Definition 8 (Fiat-Shamir Heuristic). (Definition 9 from [BC23]) The Fiat-
Shamir Heuristic, relative to a secure cryptographic hash function H, states that
a random oracle NARK with negligible knowledge error yields a NARK that has
negligible knowledge error in the standard (CRS) model if the random oracle is
replaced with H.

13

Theorem 1 (ProtoStar compiler). (Theorem 3 from [BC23]) Let F be a
finite field, such that |F| ≥ 2λ and cm = (Setup,Commit) be a binding homomor-
phic commitment scheme for vectors in F. Let Πsps = (Psps,Vsps) be a special-
sound protocol for an NP-complete relation RNP with the following properties:

– It’s (2k − 1) move.
– It’s (a1, . . . , ak−1)-out-of-|F| special-sound. Such that the knowledge error

κ = 1−
∏k−1

i=1 (1−
ai

|F|) = negl(λ)

– The inputs are in Fℓin

– The verifier is degree d = poly(λ) with output in Fℓ

Then, under the Fiat-Shamir heuristic for a cryptographic hash function H
(Definition 8), there exist two IVC schemes IVC = (PIVC,VIVC) and IVCCV =
(PCV,IVC,VCV,IVC) with predicates expressed in RNP with the efficiencies shown in
Table 2.

Table 2. Efficiency of IVC schemes compiled from sps protocol

PIVC native PIVC recursive VIVC |πIVC|∑k
i=1 |m

∗
i |G

Psps + L′(Vsps, d+ 2)

k + 2G
k + ℓin + d+ 1F

(k + d+O(1))H+ 1Hin

∑k
i=1 |mi|G

O(ℓ) + Vsps

k + ℓin + 1F
k + 2G∑k
i=1 |mi|

In Table 2, |mi| denotes the prover message length; |m∗
i | is the number of

non-zero elements in mi; G for rows 1-3 is the total length of the messages
committed using Commit. F are field operations. H denotes the total input length
to a cryptographic hash, and Hin is the hash to the public input and accumulator
instance. Psps (and Vsps) is the cost of running the prover (and the algebraic
verifier) of the special-sound protocol, respectively. L′(Vsps, d + 2) is the cost of
computing the coefficients of the degree d+ 2 polynomial

e(X) :=

√
ℓ−1∑

a=0

√
ℓ−1∑
b=0

(X · π.βa + acc.βa)(X · π.β′
b + acc.β′

b)

d∑
j=0

(µ+X)d−j · fVsps

j,a+b
√
ℓ
(acc+X · π) ,

(3)

where all inputs are linear functions in a formal variable X7, and f
Vsps

j,i is the ith

(0 ≤ i ≤ ℓ− 1) component of f
Vsps

j ’s output. For the proof size, G and F are the
number of commitments and field elements, respectively.

7 For example if fd =
∏d

i=1(ai + bi ·X) then a naive algorithm takes O(d2) time but
using FFTs it can be computed in time O(d log2 d) [CBBZ22].

14

3 Constructing Read List and Write List

In our memory-proving algorithm, we assume that the list of “reads” and the list
of “writes” we are given were constructed in a similar way as in the classic offline
memory-checking process [BEGKN91; CDvGS03; SAGL18]. More importantly,
our algorithm makes specific use of the “initial reads” and “final writes” in the
memory-checking process, which we explicitly define in this section.

Consider an untrusted server who performs read/write operations to a mem-
ory. The memory is represented as a T -sized vector of memory values, where the
addresses are the indices 1, . . . , T . Suppose OM is the starting, old memory. The
server locally intializes two lists, RL and WL, to empty lists. As in [BEGKN91],
we assume both a value and a discrete timestamp of when the value was written
are stored at each memory address. The local timestamp t∗ is incremented when
some write operation takes place on the data structure.

When a read operation from address a is performed, and the memory re-
sponds with a value-timestamp pair (v, t), the checker updates its local state as
follows:

checks that t∗ > t

append (a, v, t) to RL

stores (v, t∗) at the memory

append (a, v, t∗) to WL

t∗ ← t∗ + 1

When a write operation of value v′ to address a occurs, the checker updates
RL,WL in the same way except that the entry appended to WL will contain the
new value v′.

Then, we extract the “initial reads” R from RL, and “final writes” W from
WL as following:

R,W,AR, AW ← {}
for (a, v, t) ∈ RL do

if a /∈ AR then do

append (a, v, t) to R

AR ← AR ∪ {a}
for (a, v, t) ∈WL.rev do

if a /∈ AW then do

append (a, v, t) to W

AW ← AW ∪ {a}
sort R,W by ascending a

At a high level, for each address a, we add the tuple containing a in RL
with the smallest timestamp to R, and add the tuple containing a in WL with
the largest timestamp to W , and hence the name “initial reads” and “final
writes.” Since the entries in RL and WL would be sorted in increasing order of

15

timestamp due to the way they were constructed, traverse the tuples in RL in
their natural order, but traverse the tuples in WL backwards (i.e in descending
order of timestamp), which is what WL.rev indicates in the pseudocode. Finally,
we sort R,W by addresses8, and return Rd := RL||W and Wr := WL||R.

Lemma 2. (Contrapositive of Lemma 1 from [BEGKN91]) If Rd and Wr are
permutations of each other, then the read/write operations are consistent with
each other. In other words, for every address, the value and timestamp read are
consistent with the value and timestamp previously written.

Remark 1. The protocol guarantees that |RL| = |WL| and RL.a = WL.a if the
memory functions correctly. It is therefore clear that if Rd and Wr were to be
permutations of each other, then it must be |W | = |R|, and W.a, R.a are equal
as sets.

Let ℓ := |R| = |W | and k := |RL| = |WL|. Note that k is at most 2ℓ, therefore
k = O(ℓ).

Remark 2. The memory accesses and the memory updates were performed cor-
rectly if and only if the following three properties are satisfied:
1. Rd and Wr are permutations of each other, as described in Lemma 2
2. All the initially read values R.v are consistent with the old memory OM.
3. The new memory NM is updated only at the addresses written to and with

the correct amount. In other words, the T -sized vector NM−OM should be
an ℓ sparse representation of the ℓ-sized vector W −R.

4 Special-Sound Subprotocols for Memory-Proving

We introduce the three LogUp-style subprotocols that will be combined later to
build the Read/Write Memory-proving algorithm.

Handling Tuples. For simplicity, we describe the protocols as lookups and
permutations on vectors of single values. However, when applied to memory-
checking the entries might be tuples of addresses, values, and/or timestamps.
Fortunately, this can be handled using a simple random linear combination, akin
to the transformation from vector lookups to lookups (Lemma 6 of [BC23]).
For sequence b = [bi]

n
i=1 where each entry is a tuple of k > 1 element (i.e.

bi = (b(i,j))
k
j=1 for every i ∈ [k]), bi will implicitly denote the random linear

combination of the elements, i.e.
∑k

j=1 Y
j−1b(i,j), whenever it appears in a for-

mula. For example,

1

X + bi
=

1

X +
∑k

j=1 Y
j−1b(i,j)

.

This is a k-special-sound transformation, so a previously (a1, . . . , aµ)-special-
sound protocol becomes (k, a1, . . . , aµ)-special sound after it.

8 Sorting takes O(ℓ log ℓ) time, but this is entirely prior to and not a part of our
memory-proving protocol.

16

Achieving Perfect Completeness. The three protocols we introduce will
not yet have perfect completeness since the prover will be sending over vectors
of fractions of the form hj =

nj

dj
∀j ∈ [|h|], where the computation of the

denominator d is dependent on values in the given witness or lookup table.
If there exists any value in some entry of the witness or lookup table such
that d = 0, then the prover message will be undefined. We can achieve perfect
completeness by following the same strategy for achieving perfect completeness
in ΠLK in [BC23], which is to have the verifier set hj = 0 in this case and

changing the verification equation from hj · dj
?
= nj to

dj · (hj · dj − nj)
?
= 0

The new check ensures that either hj =
nj

dj
or dj = 0. This increases the

verifier degree in all of the three subprotocols to 3. Without these checks, the

protocol has a negligible completeness error of (
∑

i |hi|
|F|), where h1,h2, . . . are

the vectors of fractions sent by the prover. This completeness error is negligible.
However, IVC and thus accumulation from which IVC is constructed require
the protocols to be perfectly complete [BCLMS21] because IVC is designed for
distributed computations where the continuance of computation is important,
even on adversarially generated inputs.

4.1 Checking Permutation Using Lookup Relation

Definition 9. (Definition 10 from [BC23]) Two sequences of field elements w =
[wi]

n
i=1, t = [ti]

n
i=1 are in Rperm if there exists permutation σ : [n] → [n] such

that for all i ∈ [n], wi = tσ(i).

Lemma 3. Let F be a field of characteristic p > max(ℓ, T). Given two sequences
of field elements w = [wi]

ℓ
i=1 and t = [ti]

T
i=1, we have w, t are permutations of

each other (i.e. w, t are in Rperm) if and only if ℓ = T and

ℓ∑
i=1

1

X +wi
=

T∑
i=1

1

X + ti
. (4)

See Appendix A.1 for a proof of Lemma 3.
We can therefore describe a special-sound protocol Πperm for Rperm by sim-

ply adding the check ℓ
?
= T and removing the need to compute m from ΠLK for

RLK in [BC23].

17

Special-sound protocol Πperm for Rperm

Prover P(t ∈ FT ,w ∈ Fℓ) Verifier V(t ∈ FT)

w

Compute h ∈ Fℓ,g ∈ FT x1 x1 ←$ F

hj ←
1

x1 +wj
∀j ∈ [ℓ]

gi ←
1

x1 + ti
∀i ∈ [T] h,g ℓ

?
= T

ℓ∑
j=1

hj
?
=

T∑
i=1

gi

hj · (x1 +wj)
?
= 1 ∀j ∈ [ℓ]

gi · (x1 + ti)
?
= 1 ∀i ∈ [T]

Complexity. Πperm is a 3-move protocol (i.e. k = 2); the degree of the verifier is
2; the number of non-zero elements in the prover message is at most 2ℓ+ T .

Special-Soundness. Just as ΠLK from [BC23], the perfect complete version of
Πperm is 2(ℓ+ T)-special-sound, assuming each entry wj , ti is a single value for
all j ∈ [ℓ], i ∈ [T].

4.2 Indexed-Vector Lookup Relation

Definition 10. (Indexed-Vector Lookup Relation) Given configuration Civlk :=
(T, ℓ, t) where ℓ is the number of lookups and t ∈ FT is the lookup table, the
triple (t,w ∈ Fℓ, b ∈ Fℓ) are in the relation Rivlk if for all j ∈ [ℓ], bj ∈ [T] and
wj = tbj .

Lemma 4 and 5 in the following are extensions on Lemma 4 and 5 from
[Hab22], respectively. See Appendix A.2 for proofs of Lemma 4 and Lemma 5.

Lemma 4. Let F be an arbitrary field and f1, f2 : F2 → F any functions. Then

∑
z1,z2∈F2

f1(z1, z2)

X − z1 · Y − z2
=

∑
z1,z2∈F2

f2(z1, z2)

X − z1 · Y − z2
(5)

in the rational function field F(X,Y), if and only if f1(z1, z2) = f2(z1, z2) for
every z1, z2 ∈ F2.

18

Lemma 5. Let F be a field of characteristic p > max{ℓ, T}. Given a sequence
of field elements w ∈ Fℓ, b ∈ Fℓ, t ∈ FT , we have (T, ℓ, t,w, b) ∈ Rivlk if and
only if the following equation holds in the function field F (X,Y)

ℓ∑
j=1

1

X + Y · bj +wj
=

T∑
i=1

mi

X + Y · i+ ti
(6)

where m = {mi}Ti=1 is the counter vector such that mi is the count of (i, ti) in
(b,w).

We can therefore describe a special-sound protocol for the indexed-vector
lookup relation.

Special-sound protocol Πivlk for Rivlk

Prover P(Civlk,w ∈ Fℓ, b ∈ Fℓ) Verifier V(Civlk)

Compute m ∈ FT such that

mi =

ℓ∑
j=1

1(wj = ti) ∀i ∈ [T] w, b,m

x1, x2 x1, x2 ←$ F2

Compute h ∈ Fℓ,g ∈ FT

hj ←
1

x1 + x2 · bj +wj
∀j ∈ [ℓ]

gi ←
mi

x1 + x2 · i+ ti
∀i ∈ [T] h,g

ℓ∑
j=1

hj
?
=

T∑
i=1

gi

hj · (x1 + x2 · bj +wj)
?
= 1 ∀j ∈ [ℓ]

gi · (x1 + x2 · i+ ti)
?
= mi ∀i ∈ [T]

Complexity. Πivlk is a 3-move protocol (i.e. k = 2); the degree of the verifier is
3; the number of non-zero elements in the prover message is at most 5ℓ.

Lemma 6. Πivlk is ((ℓ+ T), 2(ℓ+ T))-special-sound.

See Appendix A.2 for a proof of Lemma 6.

4.3 Mem-Update Relation

Definition 11 (Mem-Update Relation). Given configuration Cmu := (T, ℓ,∆)
where ℓ is the number of lookups and ∆ ∈ FT is the update table, the triple
(w ∈ Fℓ, b ∈ Fℓ, ∆) are in the relation Rmu if for all j ∈ [ℓ], if wj ̸= 0 then
wj = ∆bj

, and for all i ∈ [T], if ∆i ̸= 0 then there exists j ∈ [ℓ] such that bj = i
and ∆i = wj.

19

Lemma 7. Let F be a field of characteristic p > max{ℓ, T}. Given the sequences
of field elements w ∈ Fℓ, b ∈ Fℓ, ∆ ∈ FT , we have (T, ℓ,∆,w, b) ∈ Rmu if and
only if the following equation holds in the function field F (X,Y)

ℓ∑
j=1

wj

X + Y · bj +wj
=

T∑
i=1

∆i

X + Y · i+∆i
(7)

See Appendix A.3 for a proof of Lemma 7.
We describe a ((ℓ+ T), 2(ℓ+ T))-special-sound protocol for the mem-update

relation.

Special-sound protocol Πmu for Rmu

Prover P(Cmu,w ∈ Fℓ, b ∈ Fℓ) Verifier V(Cmu)

w, b

x1, x2 x1, x2 ←$ F2

Compute h ∈ Fℓ,g ∈ FT

hj ←
wj

x1 + x2 · bj +wj
∀j ∈ [ℓ]

gi ←
∆i

x1 + x2 · i+∆i
∀i ∈ [T] h,g

ℓ∑
j=1

hj
?
=

T∑
i=1

gi

hj · (x1 + x2 · bj +wj)
?
= wj ∀j ∈ [ℓ]

gi · (x1 + x2 · i+∆i)
?
= ∆i ∀i ∈ [T]

Complexity. Πmu is a 3-move protocol (i.e. k = 2); the degree of the verifier is
3; the number of non-zero elements in the prover message is at most 4ℓ.

Lemma 8. Πmu is ((ℓ+T), 2(ℓ+T))-special-sound, assuming each entry wj , ∆i

for all j ∈ [ℓ], i ∈ [T] is a single value.

See Appendix A.3 for a proof of Lemma 8.

Efficiency in Accumulation. We refer to Table 3 for an overview over the
efficiency of the protocol. Importantly the prover time is entirely independent
of T . The protocol can also be combined with our GKR protocol as layed out
in Section 7. This reduces the prover time by eliminating the multi-scalar mul-
tiplication with full field elements. It is, thus, a useful option when the size of
the table elements is significantly smaller than the field, e.g. 32-bit elements vs
a 256-bit field.

5 The LogUp-Powered Memory-Proving Algorithm

5.1 Using LogUp-style Relations for Memory-Proving

The full Read/Write Memory-Proving Algorithm ΠMP is given in Appendix B.

20

Table 3. Efficiency Table for Accumulating Πmu. We only list the dominant efficiency
factors, ignoring the cost for Pacc to compute the vectors. Column 2 refers to the
total size of the prover messages. Here T is the set of small elements that are stored
in the table, whereas F refers to full field elements. Column 3 is the verifier degree.
Column 5 is the number of prover messages. Note that the number of messages in
the GKR case can be further reduced with the optimizations mention in Section 7.
Column 6 is the dominant factor in the prover time. An (a,B)-MSM refers to a multi-
scalar multiplication of a scalars that are each within the set B. The MSM scales
roughly linear in | logB|. Column 7 is the number of group scalar multiplications the
accumulation verifier performs.

P Time |P Msg| deg(V) # P Msgs Pacc Time Vacc Time

Plain O(ℓ) 2ℓ F+ 2ℓT 3 2 (2ℓ,T)-MSM + (2ℓ,F)-MSM 4G
With GKR O(ℓ) 2ℓ F+ 2ℓ T 7 (c+ 1) log T (2ℓ,T)-MSM + O(ℓ log ℓ)F (c+ 1) log TG

Given the old memory OM = [vi]
T
i=1; Rd = RL||W = [(ai,vi, ti)]

k
i=1 and

Wr = WL||R = [(ai,vi, ti)]
k
i=1, which were constructed as described in Section 3.

Let ℓ := |W | = |R|.
In ΠMP, the prover takes as input (OM,Rd = RL||W,Wr = WL||R), and the

verifier takes as input (OMV,RL,WL), where OMV is the verifier’s stored state of
the memory. At the start of the protocol, the prover sends R,W to the verifier,
and the verifier checks that they are sorted in the same order by addresses,

i.e. R.a
?
= W.a. The rest of the protocol is composed of the following three

LogUp-style protocols:

1. Use Πperm to show that (k,Rd,Wr) are in Rperm.
2. Use Πivlk to show that (T, ℓ,OM, r, b) are in Rivlk, where b := R.a and

r := R.v.
3. Suppose W,R are all ordered by the addresses of the entries. The prover

computes w := W.v − R.v ∈ Fℓ, b = R.a ∈ Fℓ, and then use them to
efficiently compute ∆ ∈ FT as follows.

∀i ∈ [T], ∆i =

{
wj if i = bj ∃j ∈ [ℓ]

0 otherwise

which the prover then use to efficiently compute the updated memory NM
as follows:

∀i ∈ [T], NMi =

{
OMi +∆i if i = bj ∃j ∈ [ℓ]

OMi otherwise

This update only takes time linear in ℓ and independent of the total memory
size T .
The prover then sends the NM to the verifier, who will compute w, b from
R,W and ∆ from NM,OMV by himself, and they run Πmu to show that
(T, ℓ,∆,w, b) are in Rmu.

21

If all the check passes, the verifier accepts NM as the correctly updated
memory. In the next round, the previously computed NM becomes the new
OM,OMV for the prover and the verifier, respectively.

Complexity. It is a 3-move protocol (i.e. k = 2); the degree of the verifier is 4;
the number of non-zero elements in the prover message is at most 8k+6ℓ. This is
important because the prover pays linearly in the number of non-zero elements
when computing the commitments. It is important to note that the total time
of running the protocol is independent of T: running Πperm is linear in k, and
Πivlk and Πmu are linear in ℓ; the final step of computing the updated memory
can also be done in O(ℓ) time. As we assume k << T , i.e. the total number of
entries in Rd,Wr are much smaller than the total size of the memory, the time
it costs to run this memory-proving algorithm is O(ℓ) and independent of T .

Security. In this algorithm, Πperm is (3, 4k)-special-sound, Πivlk is ((ℓ+T), 2(ℓ+
T))-special-sound, and Πmu is ((ℓ + T), 2(ℓ + T))-special-sound. Therefore, the
algorithm is ((ℓ+ T), 2(ℓ+ T))-special-sound overall.

Computing commitments in the accumulation scheme When we use the
ProtoStar compiler to turn our memory-proving protocol ΠMP into an accumu-
lation scheme, the resulting accumulation prover Pacc will send the homomorphic
commitments to the prover messages instead of the plain vectors. The homomor-
phic commitments to the O(ℓ)-sized and ℓ-sparse vectors can all be computed in
time independent of T since committing to 0 is free. Moreover, the commitment
to NM can be computed in one step by adding the commitment to ∆ and the
commitment to OM.

Speeding up Memory-Proving with LogUp-GKR (described in Sec-
tion 7). In the memory-proving protocol the prover’s messages are either O(ℓ)
sized or O(ℓ) sparse. However, a more fine-grained view looks at the actual bit-
length of the messages. When compiling to an IVC, the prover needs to commit
to all the messages and this operation is linear in the bit-length of messages.
In the first round of the protocol the prover sends R,W,m, ∆. These values are
representations of values read or written to memory, or their addresses and times-
tamps respectively. If the memory architecture only supports λ′-bit values, e.g.
λ′ = 32, then these values are all much smaller then the size of the field (which
is proportional to the security parameter). In the second prover message, the
prover sends multiple inverses. These values are large, even if the denominator
itself is small. Note that all vectors are either O(ℓ)-sized or O(ℓ)-sparse.

Instead of sending the second round values and having the verifier perform
the sum over the fractions, we will take the approach of LogUp [PH23], where
the sum of fractions is computed using formal fractions. Importantly, this does
not require sending the fractions itself. This can significantly reduce the prover
cost as it now does not need to commit to λ-bit “full” field elements.

22

The bivariate GKR protocol for LogUp as described in Section 7, requires
the prover to commit to messages of size c · T 1/c for any parameter c. We can
set c such that T 1/c is a marginal cost, compared to committing to the “small”
numerators and denominators.

In ΠMP, some of the vectors of fractions sent by the prover are sparse (E.g.
givlk, gmu). Even though they contain T entries in total, at most ℓ of them are
non-zero. We can take advantage of this sparseness in LogUp GKR by setting
di to 1 whenever ni = 0 for all i ∈ [T], and the prover will store di− 1 = 0 in its
head to facilitate computation. [CMT12] shows that sumcheck is linear in the
sparseness of the vector, which implies that GKR is also linear in the sparseness.
Therefore, the time it takes to run LogUp-GKR for those sparse polynomials
will be independent of its size.

It is not necessary to run LogUp-GKR from the sum over the entire vector.
We can break the overall summation into a sum of several smaller summations,
and run LogUp-GKR for each. This reduces the rounds of GKR, and we can
then check the final sum in a straightforward manner.

After running GKR, we check that the two fractions are equal by checking
the products of one numerator and the other denominator are equal.

Extending to key-value store Our protocol can be extended to prove the
correctness of key-value store, which is very similar to memory access but the
storage does not have a fixed size T . We describe the details of this extension in
Appendix B.1.

5.2 Accumulation prover runs in time independent of T

When we use the ProtoStar compiler to turn ΠMP into an accumulation scheme,
the resulting Pacc will run in time independent of the memory size T , because
the messages of the underlying special-sound prover, the cross error terms, and
the updated accumulator can all be computed time independent of T .

Underlying special-sound prover runs in O(ℓ) time As can be seen in
Appendix C, all computations of the prover in ΠMP can be done in O(ℓ) time.
Vectors hperm, gperm,hivlk,hmu all have O(ℓ) size, so they can clearly be com-
puted in O(ℓ) time. Vectors m, ∆, givlk, gmu have size T , but they all have at
most ℓ nonzero entries, so an honest prover only needs O(ℓ) time to compute
them. Updating the memory also takes O(ℓ) time for an honest prover, since
only ∆ is sparse and only ℓ locations in the memory table need to be changed.

Computing the cross error terms in O(ℓ) time In the following, we use
acc to represent the accumulator, π the current proof, and acc′ to represent the
updated accumulator. We refer the readers to Section 3.4 in [BC23] for a gen-
eral formula on how cross error terms [ej]

d−1
j=1 are computed in the accumulation

scheme. Pacc will linearly combine the old accumulator and the current proof us-
ing a random challenge and use them as inputs to the decider (which is algebraic

23

of degree d). For an honest prover, the zero coefficient of the polynomial should
be the old accumulator’s error term, and the highest-degree coefficient should
be 0. The prover needs to then compute and commit to each of the coefficients
in between (a.k.a. cross error terms). For most Vsps checks, it is intuitive how
the cross error terms can be computed in O(ℓ) time, as the vectors will be ei-
ther O(ℓ)-sized or ℓ-sparse. The detailed algorithm for computing the cross error

term of the less intuitive givlk
i · (x1 + x2 · i+OMi)

?
= mi ∀i ∈ [T] check in time

independent of T in the kth round of accumulation is given Appendix C.1.
Note that this helper algorithm is only required when LogUp-GKR (described

in Section 7) is not used. Using LogUp-GKR the cross error term computation
(using the algorithms described in [BC23]) takes only O(c · T 1/c) = o(T) time,
i.e. is insignificant compared to the rest of the prover computation.

Updating the accumulator in O(ℓ) time The prover still needs to compute
the new accumulator acc′.g← acc.g+X ·π.g and acc′.OM← acc.OM+X ·π.OM.
While computing acc′.g clearly takes O(ℓ) time because π.g is ℓ-sparse, the
complexity for naively computing acc′.OM is linear in T . We show a trick in
Appendix C.2 that enables us to accumulate OM in time independent of T .

Overall prover efficiency We display the effciency metric of both the resulting
plain protocol as well as the GKR-version in Table 4. The key prover efficiency is
the Pacc Time. In the plain protocol (see Appendix B), the prover first commits
to R,W and m. It also commits to ∆ in order to compute the commitment to
the updated memory NM. R, and W are each of size ℓ and contain tuples of three
elements (a, v, t). Note that the a values will be exactly the same in R and W , so
committing to R,W takes an MSM of size 5ℓ. Committing to ∆ is an additional
sparse MSM with ℓ non-zero elements. Committing to m is a negligble cost as
m is a bit-vector. The prover also needs to commit to the vectors of fractions
in the second round of the protocol. There are 6 such vectors that are either
of size ℓ (for simplicity we assume k = ℓ) or ℓ-sparse. Finally the accumulation
prover needs to compute the cross terms for accumulation. We show how to do
this in Section 5.2 and it requires an additional 3 ℓ-sparse MSMs. This results
in a prover time that only requires committing to 15ℓ elements. We can replace
the second round of the plain protocol using GKR. The GKR protocol requires
committing to O(T 1/c) for an arbitrary constant c. This reduces the overall
accumulation prover complexity to only 6ℓ elements, each of which is only as
large as the elements stored in the table. Note that this is almost minimal,
as even just recording a single read or write, already requires 3 elements, the
address, the value and the timestamp.

24

Table 4. Efficiency Table for Accumulating Memory-Proving Protocol. See Table 3
for an explanation of the columns and symbols. For simplicity we assume that k = ℓ.
They are of the same order.

P Time |P Msg| deg(V) # P Msgs Pacc Time Vacc Time

Plain O(ℓ) 5ℓT+ 6ℓF 3 2
(6ℓ,T)-MSM
+(9ℓ,F)-MSM

4G

Using GKR O(ℓ log ℓ) 5ℓT+O(T 1/c) 7 (c+ 1) · log T (6ℓ,T)-MSM (c+ 1) log TG

6 Accumulation-Friendly GKR

Right now, th prover in our memory-proving IVC scheme needs to commit to 15
field elements per memory access, 9 of which are small memory entries, and 6 of
which are large field elements, i.e. log |F|-bit, since they are the inverses of the
memory entries. As an example, say the memory only contains 32-bit entries.
Using homomorphic commitments require fields of size at least 2256, leading to
a factor 256/32 = 8 blowup when computing commitments.

An intuitive solution is to employ the GKR protocol, since it has the advan-
tage of only requiring committing to the inputs/outputs and not any intermedi-
ate values of the circuit wires. Unfortunately, naively using GKR in accumulation
results in log2 n rounds (assuming n is the number of inputs), which is expensive
since the ProtoStar accumulation compiler pays linearly in the number of rounds.
We design a version of the GKR protocol that is better suited for accumulation.
It takes fewer rounds but retains the desired property of not requiring com-
mitting to any intermediate values. The core ingredient is a bivariate sumcheck
protocol which only has two rounds.

6.1 Subprotocol for the verifier to efficiently evaluate a function

Bivariate sumcheck requires the verifier to evaluate polynomials of degreeΘ(
√
n),

where n is the width of the GKR circuit. This is prohibitively large. Fortunately,
we can transform evaluation into a low-degree check by sending additional wit-
nesses. We describe the low-degree evaluation protocol Πeval below.

Subprotocol Πeval for evaluating f : Fk → F at some a ∈ (F \H)k s.t. m := |H| > deg(f)

Prover P(f,a = [a1, . . . ,ak]) Verifier V(f,a, [f(x)]x∈Hk)

ai ← [ai
1, . . . ,a

i
k] ∀i ∈ {2, 4, . . . ,m}

A := (a,a2,a4 . . . ,am)

LH
x(u) :=

cx(u
m − 1)

u− x
∀x ∈ H A, LH

x(u) ∀x ∈ H A(0)
?
= a A(i)

?
= A(i− 1)2 ∀i ∈ {1, . . . , logm− 1}

k∏
j=1

LH
xj
(aj) ·

k∏
j=1

(aj − xj)
?
=

k∏
j=1

cxj · (A(logm, j)− 1) ∀x ∈ Hk

f(a)←
∑
x∈Hk

(k∏
j=1

LH
xj
(aj)f(x)

)

Efficiency. The verification degree is 2k. The prover sends m+ k · logm values.

25

In the protocol above, H is a multiplicative subgroup of F, and we assume
m := |H| is a multiple of 2. This implies that the ith element of H is the ith
root of unity and also that the Lagrange polynomial Lx has the form described
above, where cx is the barycentric weight. Note that P sends over a logm × k
matrix A. A(i) := a2i denotes the ith row of A, and A(i, j) := a2i

j .

Security. The protocol has perfect completeness and soundness. The first line
of checks ensure that the matrix A was computed correctly as claimed by the

prover. In the second line of check, note that A(logm, j) = a2log m

j = am
j . Hence

if the equality holds, we have

eq(x,a) =

k∏
j=1

cxj
(am

j − 1)

aj − ωxj

=

k∏
j=1

LH
xj
(aj) ∀x ∈ Hk

which indicates that eq(x,a) was computed correctly as claimed by the verifier.
This implies that the two polynomials f(a) and

∑
x∈Hk eq(x,a)f(x) are equal

on mk points. Since both of these polynomials have degree strictly smaller than
m, being equal on mk points indicates that they are the same polynomial.

6.2 Bivariate Sumcheck

We describe a bivariate sumcheck protocol because the ProtoStar compiler pays
linearly in the number of rounds, and hence the number of variables in sumcheck.
While there is a tradeoff between the number of variables and the degree in each
variable, high degrees can be tolerated in the final accumulation scheme because
the decider only runs once.

Bivariate Sumcheck to prove
∑

x∈G1,y∈G2
f(x, y) = T , where G1,G2 ⊂ H s.t. m := |H| = deg(f) + 1

Prover P(f, T) Verifier V(f, T)

f1(X)←
∑
y∈G2

f(X, y) f1(ωi) ∀i ∈ [m]

a a←$ F \H

f2(Y)← f(a, Y) f2(ωi) ∀i ∈ [m]

b b←$ F \H

T ∗ ← f2(b) T ∗
Use Πeval to evaluate f1(a), f2(b)∑
x∈G1

f1(x)
?
= T

∑
y∈G2

f2(y)
?
= f1(a)

T ∗ ?
= f2(b)

T ∗ ?
= f(a, b)

26

Security. The protocol is clearly perfectly complete. It is (m,m)-special-sound.
For a fixed challenge ai, to show that f2(Y) = f(ai, Y) requires the equality to
hold for deg(f2) + 1 = degY (f) + 1 ≤ deg(f) + 1 = m different challenges for Y ,
i.e. b1, . . . , bm. Then, since f2(Y) = f(ai, Y), checking whether

∑
y∈G2

f2(y) =
f1(ai) is equivalent to checking

∑
y∈G2

f(ai, y) = f1(ai) for any fixed ai. To
show that f1(X) =

∑
y∈G2

f(X, y) requires the equality to hold for deg(f1) +
1 = degX(f) + 1 ≤ deg(f) + 1 = m different challenges for X, i.e. a1, . . . , am.
Therefore, with m different challenges on X and m different challenges on Y ,
the verifier can be sure that

∑
x∈G1

f1(x) =
∑

x∈G1,y∈G2
f(x, y). Finally, since∑

x∈G1
f(x) = T , it is verified that

∑
x∈G1,y∈G2

f(x, y) = T .

Table 5. Efficiency Table for Accumulating Bivariate SumCheck Using Subprotocol
Πeval (n := |f | ≥ m2). In most applications f will be a composition of multiple
polynomials; in order to compute f1(X), the prover will need to perform FFTs which
take n logn operations in F.

P Time |P Msg| deg(V) # P Msgs

n lognF 4
√
n+ o(

√
n)F or hashes 2 3

The number of P messages shown in Table 5 is the number when the poly-
nomial f in the sumcheck is non-sparse. Since the polynomial f will be sparse
(independent of the memory size T) when performing memory-proving using our
LogUp-powered protocol, the actual number of P messages will be much smaller.

6.3 Batching subprotocol for GKR

Description of the Batching Subprotocol for batching k sumchecks into one:
– Given a list of tuples [(gj ∈ F[X1, . . . , Xc], Tj ∈ F)]kj=1 and Hc, such

that
∑

x∈Hc gj(x) = Tj for all j ∈ [k].
– V chooses r ←$ F at random and sends it to P.
– V batches all k sumchecks checks into one as follows

∑
x∈Hc

f(x)
?
=

k∑
j=1

rj−1Tj

for f(x) :=
∑k

j=1 r
j−1gj(x). Note that if gj(x) = eq(zj ,x)g(x) then

f(x) = g(x) · (
∑

j∈[k] r
j−1 · eq(zj ,x))

Efficiency. In GKR we call this protocol with gj(x) = g(x)·eq(zj ,x). This means
that the complexity of the batched sumcheck is equivalent to the complexity of
sumcheck over g plus evaluating a random linear combination of the eq functions.
This is only a small additive overhead over a single sumcheck of g.

27

Security. The batching subprotocol is perfectly complete. It is k-special-sound.
We can define the following degree (k − 1) polynomial:

g(r) :=
(∑

x∈Hc

f(x)
)
−
(k∑

j=1

rj−1Tj

)

=
∑
x∈Hc

(k∑
j=1

rj−1gj(x)
)
−

(k∑
j=1

rj−1Tj)
)
=

k∑
j=1

rj−1
(∑

x∈Hc

gj(x)− Tj

)

If g(r) is the zero polynomial, then
∑

x∈Hc f(x) =
∑k

j=1 r
j−1Tj . In order to get

g = 0, we need deg(g) + 1 = k points of r at which g(r) = 0.

7 LogUp GKR protocol using the batching subprotocol

We incorporate the subprotocols described in Section 6 with LogUp-GKR [PH23],
where the circuit is designed for computing the cumulative sums of the fractions
using projective coordinates for the additive group of F. The full protocol is in
Appendix D. We will use this protocol to do the verifier checks for the LogUp-
style arguments in ΠMP.

Further reducing communication and rounds. The bivariate GKR proto-
col only uses 3 · log2(k) rounds and has communication complexity

√
k. This is

significantly fewer rounds than GKR with the standard multi-linear sumcheck
which would use O(log2 k) rounds. In most cases the additional communication
of
√
k is only marginal, as the prover needed to commit to the input and output

layers (of size k). However, in particular when using the protocol with sparse
inputs the

√
k may indeed become dominant.

c-variate sumcheck. Fortunately, we can naturally generalize the protocol by
relying on a c-variate sumcheck. In this case, the protocol has (c + 1) · log2(k)
rounds but the communication complexity is only O(c ·k1/c). This exponentially
decays as c gets bigger. In the protocol we would expand the dimension in each
variable, one by one, such that the size of the layer still grows by a factor of 2
in each round.

Higher degree reductions. Another optimization is to combine 2 rounds of
GKR into one. This increases the degree of the GKR round polynomial by a
factor of 2 but also decreases the number of rounds by the same factor. Using
the ProtoStar compiler we only pay for the highest degree verification check,
so this optimizations is particularly useful if the circuit already contains high
degree checks.

28

Splitting the summation for round reduction. The core motivation for
proving the fractional sum within GKR instead of proving it directly, is that
the prover does not need to commit to the inverses. When the numerator and
denominator are composed of c-bit values and log |F| = Θ(λ) then this can reduce
the commitment cost from O(λm) to just O(c ·m), i.e. save a factor of λ

c . Note
that the circuit computed by GKR has a triangle form and each layer is half the
width of its parent layer. We can take advantage of this by splitting the sum
into p parts each of m

p , component. The prover would need to commit to the

outputs of each sum, i.e. p fractions. The total commitment cost is O(c ·m+λp).
As long as p ≥ c·m

λ , the total commitment cost is still O(c ·m). However, the
sums computed within GKR are now significantly smaller, and only log λ− log c
GKR layers are required. A similar optimization applies when the input layer is
sparse; however, then more layers are required to significantly bring down the
cost of committing to the dense output layer.

Table 6. Efficiency Table for Accumulating GKR. See Table 3 for an explanation of
the columns. Here, n is width of the GKR circuit, c is the number of variant in the
sumcheck protocol, and k is the degree of the sumcheck polynomial.

Variant P Time |P Msg| deg(V) # P Msgs Pacc Time Vacc Time

bivariate
∑

O(n logn) O(n1/2) 7 3 logn
O(n1/2)-MSM
+O(n logn)F 3 logn+ 2G

c-variate
∑

O(n logn) O(c · n1/c) 7 (c+ 1) logn
O(c · n1/c)-MSM
+O(n logn)F

(c+ 1) logn
+2G

k-round GKR O(n logn) O(c · n1/c) 7 (c+ 1)k
O(c · n1/c)-MSM
+O(n logn)F

(c+ 1) · k
+2G

7.1 Other Applications of GKR in IVC

GKR has many applications beyond the use in lookup protocols. For instance,
GKR can be used to more efficiently prove that a scalar multiplication was
done correctly. This is particularly intriguing as group scalar multiplications
are the most expensive operations within the recursive circuit. Concretely the
GKR circuit for group scalar multiplication takes as input, a scalar s in bit
representation sλ−1 . . . s1s0 where si is either 0 or 1 for every i ∈ {0, . . . , λ− 1}
and sλ−1 is the most significant bit, a base elliptic curve point in projective
coordinates (X,Y, Z), and an output curve point also in projective coordinates.
The reason to use projective coordinates is that the double-and-add operation
can be represented using low-degree (specifically degree 11) algebraic formulas
[RCB16]. Using GKR, the prover would only need to commit to 6 scalars and
λ bits. However, the depth of the circuit might be a bottleneck. We can further
reduce the number of layers by providing more intermediary values. E.g. by
providing k additional curve points, we can reduce the depth from λ to λ/(k+1).

29

In Appendix D.1, we give a concrete formula for scalar multiplication s · G
using GKR in the short Weierstass curves Y 2 = X3 + b.

Acknowledgments. We would like to thank Arasu Arun and Lev Soukhanov
for inspiring conversations on memory-checking and accumulation for GKR. We
thank Shang Gao for pointing out several typos throughout our paper. We would
also like to thank Sebastian Angel for the discussion on Spice and key-value store.
This work was supported by Chaincode, and Alpen Labs.

30

References

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. “Fiat-Shamir
Transformation of Multi-round Interactive Proofs”. In: TCC 2022,
Part I. Ed. by Eike Kiltz and Vinod Vaikuntanathan. Vol. 13747.
LNCS. Springer, Heidelberg, Nov. 2022, pp. 113–142. doi: 10.
1007/978-3-031-22318-1_5.

[APPK24] Kasra Abbaszadeh, Christodoulos Pappas, Dimitrios Papadopou-
los, and Jonathan Katz. Zero-Knowledge Proofs of Training for
Deep Neural Networks. Cryptology ePrint Archive, Paper 2024/162.
https://eprint.iacr.org/2024/162. 2024. url: https:
//eprint.iacr.org/2024/162.

[AST23] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: SNARKs
for Virtual Machines via Lookups. Cryptology ePrint Archive,
Paper 2023/1217. https://eprint.iacr.org/2023/1217.
2023. url: https://eprint.iacr.org/2023/1217.

[BC23] Benedikt Bünz and Binyi Chen. ProtoStar: Generic Efficient
Accumulation/Folding for Special Sound Protocols. Cryptology
ePrint Archive, Paper 2023/620. https://eprint.iacr.org/
2023/620. 2023. url: https://eprint.iacr.org/2023/620.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
“Recursive composition and bootstrapping for SNARKS and
proof-carrying data”. In: 45th ACM STOC. Ed. by Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum. ACM Press, June
2013, pp. 111–120. doi: 10.1145/2488608.2488623.

[BCLMS21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra,
and Nicholas Spooner. “Proof-Carrying Data Without Succinct
Arguments”. In: CRYPTO 2021, Part I. Ed. by Tal Malkin and
Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Hei-
delberg, Aug. 2021, pp. 681–710. doi: 10.1007/978-3-030-
84242-0_24.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas
Spooner. “Recursive Proof Composition from Accumulation Schemes”.
In: TCC 2020, Part II. Ed. by Rafael Pass and Krzysztof Pietrzak.
Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 1–18.
doi: 10.1007/978-3-030-64378-2_1.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. “Scalable Zero Knowledge via Cycles of Elliptic Curves”.
In: CRYPTO 2014, Part II. Ed. by Juan A. Garay and Rosario
Gennaro. Vol. 8617. LNCS. Springer, Heidelberg, Aug. 2014,
pp. 276–294. doi: 10.1007/978-3-662-44381-1_16.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. “Halo
Infinite: Proof-Carrying Data from Additive Polynomial Com-
mitments”. In: CRYPTO 2021, Part I. Ed. by Tal Malkin and
Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Hei-

31

https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2023/1217
https://eprint.iacr.org/2023/1217
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-662-44381-1_16

delberg, Aug. 2021, pp. 649–680. doi: 10.1007/978-3-030-
84242-0_23.

[BEGKN91] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kan-
nan, and Moni Naor. “Checking the Correctness of Memories”.
In: 32nd FOCS. IEEE Computer Society Press, Oct. 1991, pp. 90–
99. doi: 10.1109/SFCS.1991.185352.

[BFRSBW13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty,
Andrew J. Blumberg, and Michael Walfish. Verifying Computa-
tions with State (Extended Version). Cryptology ePrint Archive,
Report 2013/356. https://eprint.iacr.org/2013/356. 2013.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive
Proof Composition without a Trusted Setup. Cryptology ePrint
Archive, Report 2019/1021. https://eprint.iacr.org/2019/
1021. 2019.

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang.
HyperPlonk: Plonk with Linear-Time Prover and High-Degree
Custom Gates. Cryptology ePrint Archive, Report 2022/1355.
https://eprint.iacr.org/2022/1355. 2022.

[CDvGS03] Dwaine E. Clarke, Srinivas Devadas, Marten van Dijk, Blaise
Gassend, and G. Edward Suh. “Incremental Multiset Hash Func-
tions and Their Application to Memory Integrity Checking”. In:
ASIACRYPT 2003. Ed. by Chi-Sung Laih. Vol. 2894. LNCS.
Springer, Heidelberg, 2003, pp. 188–207. doi: 10.1007/978-3-
540-40061-5_12.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler.
“Practical verified computation with streaming interactive proofs”.
In: ITCS 2012. Ed. by Shafi Goldwasser. ACM, Jan. 2012, pp. 90–
112. doi: 10.1145/2090236.2090245.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal:
Post-quantum and Transparent Recursive Proofs from Hologra-
phy”. In: EUROCRYPT 2020, Part I. Ed. by Anne Canteaut
and Yuval Ishai. Vol. 12105. LNCS. Springer, Heidelberg, May
2020, pp. 769–793. doi: 10.1007/978-3-030-45721-1_27.

[DNRV09] Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikun-
tanathan. “How Efficient Can Memory Checking Be?” In: TCC 2009.
Ed. by Omer Reingold. Vol. 5444. LNCS. Springer, Heidelberg,
Mar. 2009, pp. 503–520. doi: 10.1007/978-3-642-00457-5_30.

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quo-
tients for fast lookups. Cryptology ePrint Archive, Report 2022/1763.
https://eprint.iacr.org/2022/1763. 2022.

[EG23] Liam Eagen and Ariel Gabizon. ProtoGalaxy: Efficient ProtoStar-
style folding of multiple instances. Cryptology ePrint Archive,
Paper 2023/1106. https://eprint.iacr.org/2023/1106.
2023. url: https://eprint.iacr.org/2023/1106.

32

https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1109/SFCS.1991.185352
https://eprint.iacr.org/2013/356
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2022/1355
https://doi.org/10.1007/978-3-540-40061-5_12
https://doi.org/10.1007/978-3-540-40061-5_12
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-642-00457-5_30
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2023/1106

[GK22] Ariel Gabizon and Dmitry Khovratovich. flookup: Fractional decomposition-
based lookups in quasi-linear time independent of table size. Cryp-
tology ePrint Archive, Report 2022/1447. https://eprint.
iacr.org/2022/1447. 2022.

[Hab22] Ulrich Haböck. Multivariate lookups based on logarithmic deriva-
tives. Cryptology ePrint Archive, Report 2022/1530. https://
eprint.iacr.org/2022/1530. 2022.

[KS23] Abhiram Kothapalli and Srinath Setty. HyperNova: Recursive
arguments for customizable constraint systems. Cryptology ePrint
Archive, Paper 2023/573. https://eprint.iacr.org/2023/
573. 2023. url: https://eprint.iacr.org/2023/573.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova:
Recursive Zero-Knowledge Arguments from Folding Schemes”.
In: CRYPTO 2022, Part IV. Ed. by Yevgeniy Dodis and Thomas
Shrimpton. Vol. 13510. LNCS. Springer, Heidelberg, Aug. 2022,
pp. 359–388. doi: 10.1007/978-3-031-15985-5_13.

[PH23] Shahar Papini and Ulrich Haböck. Improving logarithmic deriva-
tive lookups using GKR. Cryptology ePrint Archive, Paper 2023/1284.
https://eprint.iacr.org/2023/1284. 2023. url: https:
//eprint.iacr.org/2023/1284.

[PK22] Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent
lookup arguments. Cryptology ePrint Archive, Report 2022/957.
https://eprint.iacr.org/2022/957. 2022.

[RCB16] Joost Renes, Craig Costello, and Lejla Batina. “Complete Ad-
dition Formulas for Prime Order Elliptic Curves”. In: EURO-
CRYPT 2016, Part I. Ed. by Marc Fischlin and Jean-Sébastien
Coron. Vol. 9665. LNCS. Springer, Heidelberg, May 2016, pp. 403–
428. doi: 10.1007/978-3-662-49890-3_16.

[SAGL18] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan
Lee. Proving the correct execution of concurrent services in zero-
knowledge. Cryptology ePrint Archive, Report 2018/907. https:
//eprint.iacr.org/2018/907. 2018.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the
lookup singularity with Lasso. Cryptology ePrint Archive, Paper
2023/1216. https://eprint.iacr.org/2023/1216. 2023. url:
https://eprint.iacr.org/2023/1216.

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs
of Knowledge Imply Time/Space Efficiency”. In: TCC 2008. Ed.
by Ran Canetti. Vol. 4948. LNCS. Springer, Heidelberg, Mar.
2008, pp. 1–18. doi: 10.1007/978-3-540-78524-8_1.

[ZBKMNS22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary
Maller, Anca Nitulescu, and Mark Simkin. “Caulk: Lookup Ar-
guments in Sublinear Time”. In: ACM CCS 2022. Ed. by Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press,
Nov. 2022, pp. 3121–3134. doi: 10.1145/3548606.3560646.

33

https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://doi.org/10.1007/978-3-031-15985-5_13
https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2022/957
https://doi.org/10.1007/978-3-662-49890-3_16
https://eprint.iacr.org/2018/907
https://eprint.iacr.org/2018/907
https://eprint.iacr.org/2023/1216
https://eprint.iacr.org/2023/1216
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1145/3548606.3560646

[ZGKMR22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller,
and Carla Ràfols. Baloo: Nearly Optimal Lookup Arguments.
Cryptology ePrint Archive, Report 2022/1565. https://eprint.
iacr.org/2022/1565. 2022.

34

https://eprint.iacr.org/2022/1565
https://eprint.iacr.org/2022/1565

A Proofs for Lemmas

A.1 Proof for Lemma in Section 4.1

Lemma 3. Let F be a field of characteristic p > max(ℓ, T). Given two sequences
of field elements w = [wi]

ℓ
i=1 and t = [ti]

T
i=1, we have w, t are permutations of

each other (i.e. w, t are in Rperm) if and only if ℓ = T and

ℓ∑
i=1

1

X +wi
=

T∑
i=1

1

X + ti
. (4)

Proof. Suppose ℓ = T and (4) holds. This implies there exists a sequence [mi]
T
i=1

of field elements where mi = 1 ∀i ∈ [T] such that

ℓ∑
i=1

1

X +wi
=

T∑
i=1

mi

X + ti
and

ℓ∑
i=1

mi

X +wi
=

T∑
i=1

1

X + ti

By Lemma 1, this means {wi} ⊆ {ti} and {ti} ⊆ {wi} as sets. Hence, it must
be that w = t. The converse direction is trivial.

A.2 Proofs for Lemmas in Section 4.2

Lemma 4. Let F be an arbitrary field and f1, f2 : F2 → F any functions. Then∑
z1,z2∈F2

f1(z1, z2)

X − z1 · Y − z2
=

∑
z1,z2∈F2

f2(z1, z2)

X − z1 · Y − z2
(5)

in the rational function field F(X,Y), if and only if f1(z1, z2) = f2(z1, z2) for
every z1, z2 ∈ F2.

Proof. Our proof strategy follows the proof of Lemma 4 in [Hab22].
Suppose that Equation (5) holds. Then

∑
z1,z2∈F2

f1(z1, z2)− f2(z1, z2)

X − z1 · Y − z2
= 0

Fix Y at any arbitrary point y ∈ F, we get
∑

z1,z2∈F2
f1(z1,z2)−f2(z1,z2)

X−z1·y−z2
, and

therefore have the polynomial

p(X, y) =
∏
q∈F

(X − q) ·
∑

z1,z2∈F2

f1(z1, z2)− f2(z1, z2)

X − z1 · y − z2

=
∑

z1∈F,z2∈F
(f1(z1, z2)− f2(z1, z2)) ·

∏
q∈F\{z1·y−z2}

(X − q) = 0

35

In particular, for every pair z1 ∈ F, z2 ∈ F,

(f1(z1, z2)− f2(z1, z2)) ·
∏

q∈F\{z1·y−z2}

(z1 · y − z2 − q) = 0

Since
∏

q∈F\{z1·y−z2}(z1 · y − z2 − q) is not zero, it must be that f1(z1, z2) =

f2(z1, z2) for every pair z1, z2 ∈ F2. The other direction is trivial.

Lemma 5. Let F be a field of characteristic p > max{ℓ, T}. Given a sequence
of field elements w ∈ Fℓ, b ∈ Fℓ, t ∈ FT , we have (T, ℓ, t,w, b) ∈ Rivlk if and
only if the following equation holds in the function field F (X,Y)

ℓ∑
j=1

1

X + Y · bj +wj
=

T∑
i=1

mi

X + Y · i+ ti
(6)

where m = {mi}Ti=1 is the counter vector such that mi is the count of (i, ti) in
(b,w).

Proof. Our proof strategy follows the proof of Lemma 5 in [Hab22].
Suppose (T, ℓ, t,w, b) ∈ Rivlk, then the equation is guaranteed to be true.

T∑
i=1

mi

X + Y · i+ ti
=

ℓ∑
j=1

mbj

X + Y · bj + tbj

=

ℓ∑
j=1

1

X + Y · bj +wj

Conversely, suppose (6) holds. Collect fractions with the same denominator
for the left side and re-expressing the right side we obtain,

ℓ∑
j=1

1

X + Y · bj +wj
=

∑
z1∈F,z2∈F

µw(z1, z2)

X + Y · z1 + z2
=

T∑
i=1

mi

X + Y · i+ ti

where µw(z1, z2) is the count of the tuple (z1, z2) in (b,w). By the uniqueness
of bivariate fractional representations from Lemma 4, we have that for every

non-zero µw(z1,z2)
X+Y ·z1+z2

, there must exist a fraction in the
∑T

i=1
mi

X+Y ·i+ti
decompo-

sition with equivalent numerator and denominator. This implies that for non-zero
µw(z1, z2) = mz1 , and tz1 = z2. Thus, for all j ∈ [ℓ] such that µw(z1, z2) ̸= 0,
tbj

= wj and mbj
is the count of (bj ,wj) = (i, ti) in (b,w).

Lemma 6. Πivlk is ((ℓ+ T), 2(ℓ+ T))-special-sound.

Proof. We construct an extractor Ext that outputs w, b. We look at the (ℓ+ T)

transcripts that all have w, b,m as the first message but different (x
(p)
1) as

the first challenge in the second message; then for each fixed x
(p)
1 , we look at

2(ℓ+T) transcripts that have x
(p)
1 as the first challenge but different (x

(q)
2 ,h(q) ∈

Fℓ,g(q) ∈ FT) as the rest of the transcript, totalling 2(ℓ+ T)2 transcripts.
By the pigeonhole principle, for each p ∈ [ℓ + T], there must exist a subset

of S ⊆ [2(ℓ+ T)] transcripts such that |S| = ℓ+ T and x
(p)
1 + x

(q)
2 · bj +wj ̸= 0

36

for all j ∈ [ℓ] and q ∈ S, and x
(p)
1 + x

(q)
2 · i+ ti ̸= 0 for all i ∈ [T] and q ∈ S. For

these transcripts, we have hj = 1

x
(p)
1 +x

(q)
2 ·bj+wj

and gi = mi

x
(p)
1 +x

(q)
2 ·i+ti

. Define

the degree ℓ+ T − 1 polynomial

f(X,Y) =

ℓ∏
p=1

(X + Y · bp +wp) ·
T∏

q=1

(X + Y · 1 + tq)

·

 ℓ∑
j=1

wj

X + Y · bj +wj
−

T∑
i=1

ti
X + Y · i+ ti

If f(X,Y) is the zero polynomial then

∑ℓ
j=1

1
X+Y ·bj+wj

=
∑T

i=1
mi

X+Y ·i+ti

and by Lemma 7 (Civlk;w, b) ∈ Rmu. Since we have (ℓ+T) points (x
(p)
1 , x

(q)
2) at

which f(x
(p)
1 , x

(q)
2) = 0, we get f = 0 and thus that the extracted witness (w, b)

is valid.

A.3 Proof for Lemma in Section 4.3

Lemma 7. Let F be a field of characteristic p > max{ℓ, T}. Given the sequences
of field elements w ∈ Fℓ, b ∈ Fℓ, ∆ ∈ FT , we have (T, ℓ,∆,w, b) ∈ Rmu if and
only if the following equation holds in the function field F (X,Y)

ℓ∑
j=1

wj

X + Y · bj +wj
=

T∑
i=1

∆i

X + Y · i+∆i
(7)

Proof. Suppose (T, ℓ,∆,w, b) ∈ Rmu, then the equation is guaranteed to be
true.

T∑
i=1

∆i

X + Y · i+∆i
=

ℓ∑
j=1

∆bj

X + Y · bj +∆bj

=

ℓ∑
j=1

wj

X + Y · bj +wj

Conversely, suppose (7) holds. Collect fractions with the same denominator
for the left side and re-expressing the right side we obtain,

ℓ∑
j=1

wj

X + Y · bj +wj
=

∑
z1∈F,z2∈F

z2 · µw(z1, z2)

X + Y · z1 + z2
=

T∑
i=1

∆i

X + Y · i+∆i

where µw(z1, z2) is the count of the tuple (z1, z2) in (b,w). By the uniqueness
of bivariate fractional representations from Lemma 4, we have that for every non-

zero z2·µw(z1,z2)
X+Y ·z1+z2

, there must exist a fraction in the
∑T

i=1
∆i

X+Y ·i+∆i
decomposition

with equivalent numerator and denominator. This implies that for non-zero z2 ·
µw(z1, z2) = ∆z1 = z2, so µw(z1, z2) = 1. Thus, for all j ∈ [ℓ] such that wj ̸= 0,
∆bj

= wj .

For every ∆i

X+Y ·i+∆i
, there must exist a fraction in the

∑
z1∈F,z2∈F

z2·µw(z1,z2)
X+Y ·z1+z2

decomposition with the equivalent numerator and denominator, which implies
∆i = z2 · µw(z1, z2) = z2 for every ∆i. Therefore if ∆i ̸= 0 then µw(z1, z2) ̸= 0,
and thus there exists j ∈ [ℓ] such that bj = i and ∆i = wj .

37

Lemma 8. Πmu is ((ℓ+T), 2(ℓ+T))-special-sound, assuming each entry wj , ∆i

for all j ∈ [ℓ], i ∈ [T] is a single value.

Proof. We construct an extractor Ext that outputs w, b. We look at the (ℓ+ T)

transcripts that all have w, b as the first message but different (x
(p)
1) as the

first challenge in the second message; then for each fixed x
(p)
1 , we look at 2(ℓ+

T) transcripts that have x
(p)
1 as the first challenge but different (x

(q)
2 ,h(q) ∈

Fℓ,g(q) ∈ FT) as the rest of the transcript, totalling 2(ℓ+ T)2 transcripts.
By the pigeonhole principle, for each p ∈ [ℓ + T], there must exist a subset

of S ⊆ [2(ℓ+ T)] transcripts such that |S| = ℓ+ T and x
(p)
1 + x

(q)
2 · bj +wj ̸= 0

for all j ∈ [ℓ],and q ∈ S, and x
(p)
1 +x

(q)
2 · i+∆i ̸= 0 for all i ∈ [T] and q ∈ S. For

these transcripts, we have hj =
wj

x
(p)
1 +x

(q)
2 ·bj+wj

and gi =
∆i

x
(p)
1 +x

(q)
2 ·i+∆i

. Define

the degree ℓ+ T − 1 polynomial

f(X,Y) =

ℓ∏
p=1

(X + Y · bp +wp) ·
T∏

q=1

(X + Y · q +∆q)

·

 ℓ∑
j=1

wj

X + Y · bj +wj
−

T∑
i=1

∆i

X + Y · i+∆i

If f(X,Y) is the zero polynomial then

∑ℓ
j=1

wj

X+Y ·bj+wj
=

∑T
i=1

∆i

X+Y ·i+∆i

and by Lemma 7 (Cmu;w, b) ∈ Rmu. Since we have (ℓ+ T) points (x
(p)
1 , x

(q)
2) at

which f(x
(p)
1 , x

(q)
2) = 0, we get f = 0 and thus that the extracted witness (w, b)

is valid.

B Full Memory-Proving Protocol

38

Special-sound Lookup-Powered Memory-Proving Protocol ΠMP

Prover P(OM,Rd = RL||W,Wr = WL||R) Verifier V(OMV,RL,WL)

Compute b ∈ Fℓ, r ∈ Fℓ,m ∈ FT ,

w ∈ Fℓ,∆ ∈ FT such that:

b := R.a r := R.v

mi := 1 if i = bj ∃j ∈ [ℓ],

0 otherwise. ∀i ∈ [T]

w := W.v −R.v

∆i := wj if i = bj ∃j ∈ [ℓ],

0 otherwise. ∀i ∈ [T]

Efficiently computes NM← ∆+ OM R,W,m,NM R.a
?
= W.a Rd := RL||W Wr := WL||R

x1, x2, x3 x1, x2, x3 ←$ F3

Compute, on the fly, the linear combinations bV := R.a rV := R.v

of the values in the tuples of Rd,Wr: w := W.v −R.v ∆ := NM− OMV

Rd′j ← Rdj .a+ x2 · Rdj .v + x3 · Rdj .t ∀j ∈ [k] Similarly, compute the linear combinations

Wr′j ←Wrj .a+ x2 ·Wrj .v + x3 ·Wrj .t ∀j ∈ [k] on the fly:

hperm
j :=

1

x1 + Rd′j
∀j ∈ [k] Rd′j ← Rdj .a+ x2 · Rdj .v + x3 · Rdj .t ∀j ∈ [k]

gperm
j =

1

x1 +Wr′j
∀j ∈ [k] Wr′j ←Wrj .a+ x2 ·Wrj .v + x3 ·Wrj .t ∀j ∈ [k]

hivlk
j :=

1

x1 + x2 · bj + rj
∀j ∈ [ℓ]

givlk
i =

mi

x1 + x2 · i+ OMi
∀i ∈ [T]

hmu
j :=

wj

x1 + x2 · bj +wj
∀j ∈ [ℓ]

gmu
i =

∆i

x1 + x2 · i+∆i
∀i ∈ [T]

hperm,gperm,hivlk,givlk,

hmu,gmu

k∑
j=1

hperm
j

?
=

k∑
j=1

gperm
j

ℓ∑
j=1

hivlk
j

?
=

T∑
i=1

givlk
i

ℓ∑
j=1

hmu
j

?
=

T∑
i=1

gmu
i

hperm
j · (x1 + Rd′j)

?
= 1 ∀j ∈ [k]

gperm
j · (x1 +Wr′j)

?
= 1 ∀j ∈ [k]

hivlk
j · (x1 + x2 · bj + rj)

?
= 1 ∀j ∈ [ℓ]

givlk
i · (x1 + x2 · i+ OMi)

?
= mi ∀i ∈ [T]

hmu
j · (x1 + x2 · bj +wj)

?
= wj ∀j ∈ [ℓ]

gmu
i · (x1 + x2 · i+∆i)

?
= ∆i ∀i ∈ [T]

Updates OMV ← NM

B.1 Extending to key-value store

Key-value store bears a strong resemblance to memory access, with two notable
differences: 1) Instead of reading/writing to addresses, the server gets/inserts
values under specified keys. 2) Unlike memory, the storage does not have a fixed
size T ; rather, it is only as large as the number of distinct keys inserted. In
other words, the storage is initially empty and only grows as values are inserted
under new keys. Key-value store was the setting considered in Spice [SAGL18].
Although the absence of a fixed storage bound T seems problematic when ap-
plying our memory-proving protocol, our protocol can be extended to support a
verifiable key-value store. We give a brief description below.

39

Set T to be a cryptographically large number (e.g. 2256) and initialize a T -
sized storage table to all zeroes (To support actually storing the value 0, one can
either use a one-bit flag to indicate whether a 0 entry is empty, or store a special
symbol for the value 0). Suppose we perform ℓ key-value get/insert operations.
Whenever we need to insert a value under key k, we write that value to the kth
entry in the storage table. Since T is huge, obviously ℓ << T , and only a small
subset of {1, . . . , T} would ever be used as keys.

In each round of accumulation, Pacc needs to commit to the prover messages of
the underlying interactive protocol, which includes some T -sized vectors. While
committing to the T -sized vectors seems overwhelmingly expensive, we note that
those vectors will be sparse with at most ℓ nonzero entries, so the commitment
cost is O(ℓ). However, we do need random access to the commitment keys in
order to avoid generating all T commitment keys. For instance, we can use a
hash function that maps from {1, . . . , T} to a prime order group; then, we only
need to use the hash function for the keys inserted into the storage. Since we
only need to do O(ℓ) commitments, only O(ℓ) hashes will be needed in each
round.

At the end of each IVC step, the prover needs to send all the decommitted,
accumulated vectors to the decider for the final verification checks. Note that the
T -sized vectors will again be sparse: suppose we do O(ℓ) get/insert operations
per accumulation round and have a total of a accumulation rounds, then the total
number of nonsparse entries in the T -sized vectors will be at most O(aℓ) << T .
Thus, instead of sending the full vectors, we can send a table of the nonsparse
vector values.

There are two limitations in extending our memory-proving protocol to verifi-
able key-value store. First, as previously noted, our scheme necessitates random
access to commitment keys. Second, this scheme for verifiable key-value store
may not be compatible with our optimization using the accumulation-friendly
GKR, because the GKR circuit will be very large with log T depth. We leave
these as open questions for future research.

C Subalgorithms for O(ℓ) accumulation prover time

C.1 Computing the cross error terms in O(ℓ) time

Let acc be the current accumulator, π the current proof, and acc′ the updated
accumulator. We need to compute the cross error terms for

givlk
i · (x1 + x2 · i+ OMi)−mi ∀i ∈ [T]

We give a description of the idea below. See Figure 1 for the algorithm.
For simplicity, we just use g to denote givlk, and OM′ to denote (x1 · 1T +

x2 · i+OM), where i = [1, 2, . . . , T] is the address/index vector of OM. In vector
form, the above expression is equivalent to

g ◦ OM′ −m

40

When compiled by the ProtoStar compiler, the accumulation prover will combine
acc and π using random linearly combination into the new accumulator acc′, and
then compute a commit to each of the expanded terms of the verifier polynomial
in acc′. In other words, it will compute a commit to each of the expanded terms
of the following,

acc′.g ◦ acc′.OM′ − acc′.µ ◦ acc′.m =

(acc.g +X · π.g) ◦ (acc.OM′ +X · π.OM′)− (acc.µ+X · π.µ) · (acc.m+X · π.m)

As stated earlier, for an honest prover, the zero coefficient should be 0 and
the highest-degree coefficient should be 0, so the prover only needs to compute
and commit to the degree-1 coefficient in this case, which is

e1 := acc.g ◦ π.OM′ + π.g ◦ acc.OM′ + acc.µ · π.m+ π.µ · acc.m

Since π.g, π.m are sparse (only ℓ out of T nonzero entries), the complexity of
computing π.g ◦ acc.OM′, acc.µ ·π.m, π.µ · acc.m is clearly O(ℓ); moreover, since
the two resulting Hadamard products will also be sparse vectors, committing
them only takes O(ℓ) time. π.µ is simply 1 in the accumulation scheme, so the
commitment of π.µ·acc.m is simply Commit(ck, acc.m), one of the commitments
to accumulated prover messages included in the accumulator instance. The only
term remaining to be analyzed is acc.g ◦ π.OM′, which is equivalent to

acc.g ◦ π.OM′ := acc.g ◦ (π.x1 · 1T + π.x2 · i+ π.OM)
= π.x1 · acc.g + π.x2 · acc.g ◦ i+ acc.g ◦ π.OM

π.x1 · acc.g can be easily committed as a scalar multiplication of the com-
mitment of acc.g, which is included in the accumulator instance as one of the
accumulated commitments. As for the other two terms, we can store values from
the previous round of accumulation to aid the computation.

Let ˆacc and π̂ denote the accumulator and the proof in the previous round,
and r denote the challenge in the previous round, i.e. acc = ˆacc + r · π̂. Then,
we can re-express the terms in the following way,

π.x2 · acc.g ◦ i = π.x2 · (ˆacc.g + r · π̂.g) ◦ i
= π.x2 · (ˆacc.g ◦ i+ r · π̂.g ◦ i)

acc.g ◦ π.OM = (ˆacc.g + r · π̂.g) ◦ π.OM
= ˆacc.g ◦ π.OM+ r · π̂.g ◦ π.OM
= ˆacc.g ◦ (π̂.OM+ π̂.∆) + r · π̂.g ◦ π.OM
= ˆacc.g ◦ π̂.OM+ ˆacc.g ◦ π̂.∆+ r · π̂.g ◦ π.OM

Observe that ˆacc.g ◦ i and ˆacc.g ◦ π̂.OM were already computed and committed
to in the previous round of accumulation. The other terms can be computed and
committed to in time independent of T since π̂.∆ and π̂.g are sparse, and the
resulting Hadamard products are also sparse. Thus, the prover can compute and
commit to acc.g ◦ π.OM′ in time independent of T , which means the prover will
be able to compute and commit to e1 in time independent of T as well.

41

Given:
ρacc – random oracle for accumulation,
ck – commitment key,
acc.(x1, x2, µ,g,OM) – items accumulated up to (k − 1)th round,
Cg = Commit(ck, acc.g), Cm = Commit(ck, acc.m) – accumulated commitments,
π.(x1, x2, µ,g,OM) – proof items,
The items stored from the previous round:

ˆacc.g – item accumulated up to (k − 2)th round,
π̂.(g,∆) – proof items from the (k − 1)th round,
r(k−1) – random accumulation challenge from the (k − 1)th round,

Êa2 = Commit(ck, ˆacc.g ◦ i), Êa3 = Commit(ck, ˆacc.g ◦ π̂.OM) – partial
commitments from the (k − 1)th round.

Goal: Compute a commitment to the degree-1 cross error term

e1 := acc.g ◦ π.OM′ + π.g ◦ acc.OM′ + acc.µ · π.m+ π.µ · acc.m

DO:

Ea2 ← Êa2 + r(k−1) · Commit(ck, π̂.g ◦ i),

Ea3 ← Êa3 + Commit(ck, ˆacc.g ◦ π̂.∆+ r(k−1) · π̂.g ◦ π.OM),

Ea ← π.x1 · Cg + π.x2 · Ea2 + Ea3,

eb ← π.g ◦ acc.OM′,

ec ← acc.µ · π.m,

E1 ← Ea + Commit(ck, eb + ec) + Cm,

Use ρacc to generate the random accumulation for this round r(k).

END DO

Return:
E1 – commitment to the degree-1 cross error term e1,
Items to store for the next round of accumulation:

acc.g – item accumulated up to (k − 1)th round,
π.(g,∆) – proof item from this round,
r(k) – the random accumulation challenge of this round,
Ea2, Ea3 – the partial commitments.

Fig. 1. Algorithm for computing and committing to the cross error term for givlk
i ·

(x1 + x2 · i + OMi)
?
= mi ∀i ∈ [m] in time independent of T in the kth round of

accumulation, where T := |OM|. For simplicity, we refer to givlk by just g in the
algorithm. OM′ denotes the sum (x1 · 1T + x2 · i+OMi), where i = [1, 2, . . . , T] is the
address/index vector for the memory.

C.2 Updating the accumulator in O(ℓ) time

The prover still needs to compute the new accumulator acc′.g← acc.g+X ·π.g
and acc′.OM← acc.OM+X · π.OM. While computing acc′.g clearly takes O(ℓ)
time because π.g is ℓ-sparse, the complexity for naively computing acc′.OM is

42

linear in T . Here, we introduce a trick that will enable us to accumulate OM in
time independent of T . See Figure 2 for the algorithm.

Let the subscript (j) denote the items in the jth round. We make a key
observation that for every round j and every i ∈ [T], π(j).OMi only differs from
π(j−1).OMi if π(j−1).∆i ̸= 0. Then, for k > j > 0 such that j is most recent
round before round k such that π(j−1).∆i ̸= 0, the accumulator of OMi for every
i ∈ [T] in round k will be

acc(k).OMi

= acc(k−1).OMi + r(k) · π(k).OMi

= acc(k−2).OMi + r(k−1) · π(k−1).OMi + r(k) · π(k−1).OMi + r(k) · π(k−1).∆i

= acc(k−2).OMi + (r(k−1) + r(k)) · π(k−1).OMi + r(k) · π(k−1).∆i

= acc(j).OMi + (r(j+1) + r(j+2) + · · ·+ r(k)) · π(k−1).OMi + r(k) · π(k−1).∆i

= acc(j).OMi +
(k∑

q=j+1

r(q)

)
· (π(k).OMi − π(k−1).∆i) + r(k) · π(k−1).∆i

Let r∗(j) :=
∑j

q=1 r(q) denote the sum of all challenges up to round j. Using
the observation above, we can let the prover cache the sum of all the challenges
seen so far r∗ = r∗(k), the update vector from previous round π(k−1).∆

9, and a

separate vector R ∈ FT (initialized to all zeros at the beginning of accumulation)
such that Ri = r∗(j) where j is the most recent round such that π(j).∆i ̸= 0

respectively for every i ∈ [T]. Then, acc(k).OM can be expressed as,

acc(k).OM← acc(k−1).OM+ (r∗ · 1T −R) ◦ (π(k).OM− π(k−1).∆) + rk · π(k−1).∆

In round k, for every i ∈ [T], we evaluate acc(k) and set Ri ← r∗ if and only if
π(k−1).∆i = 0. This way, in every round, only ℓ positions of the accumulated OM
and ℓ positions of R need to be computed, achieving O(ℓ) complexity. Whenever
we need to use acc(k).OM (either in Pacc and in the decider), we substitute it
with acc(k−1).OM+ (r∗ · 1T −R) ◦ π(k).OM.

Note that, importantly, using this delayed-evaluation trick will not change
the computations done by Vacc because the commitment to acc(k).OM will still
be computed as the random linear combination between the commitment to
acc(k−1).OM and the commitment to π(k).OM.

9 This is also needed for computing the cross error terms, so we don’t need to store it
again. See the subsection above and Appendix C

43

Given:
r∗ – sum of all random accumulation challenges up to the (k − 1)th round,
r(k) – the random accumulation challenge of this round,

R – helper vector such that Ri =
∑j

q=1 r(q), where j is the most recent round
such that π(j).∆i ̸= 0 for the corresponding i ∈ [T],
acc(k−1).OM – the current accumulated OM,
π(k).(OM,∆) – memory and update vectors in the new proof.
Item stored from the previous round:

π̂(k−1).∆ – update vector from the previous round.

Goal: Compute the updated accumulator item

acc(k).OM := acc(k−1).OM+ r(k) · π(k).OM

DO:

r∗ ← r∗ + r(k)

for i ∈ [T] s.t. π(k−1).∆i ̸= 0 :

acc(k).OMi ← acc(k−1).OMi+

(r∗ −Ri) · (π(k).OMi − π(k−1).∆i) + r(k) · π(k−1).∆i

Ri ← r∗

end for

\\Whenever acc(k).OM is needed for computation,

\\substitute it with acc(k).OM+ (r∗(k) · 1T −R) ◦ π(k).OM

END DO

Return:
acc(k).OM – updated accumulator item,
r∗ – sum of all random accumulation challenges up to this round,
R – updated helper vector.
Item to store for the next round of accumulation:
π(k).∆ – update vector of this round.

Fig. 2. Algorithm for accumulating OM in the kth round of accumulation in time
independent of T , where T := |OM|. Since evaluation/update at any accumulated
memory index is delayed to when a nonzero change occurs at that index of π.OM, only
2ℓ updates need to be done per round.

D Full Adapted LogUp-GKR Protocol

Layer 0 denotes the output layer in the circuit. Let
√
m := |H|, then H2 is a√

m ×
√
m 2-dimensional square. Assume logm/2 is a positive integer w.l.o.g.

In the protocol, |Hi| = 2|Hi−1| for i = 1, . . . , logm/2, with H0 = {1, 1} and
Hlogm/2 = H. The protocol has logm rounds in total. We describe the protocol
in four phases.

44

Phase 1 contains round 0 of LogUp-GKR. At the end of phase 1, V uses the
batching subprotocol and linearly combines the four claimed evaluations sent by
P using a random value.

In Phase 2 and 3, V continues using the batching subprotocol in each round.
Phase 2 contains rounds 1 to logm/2 − 1 of LogUp-GKR. Round i in Phase
2 does sumcheck in H0 × Hi. Phase 3 contains rounds logm/2 to logm − 1 of
LogUp-GKR. Round i in Phase 3 does sumcheck in Hi−logm/2+1 ×H.

Finally, Phase 4 contains the final, direct check done by V at the input layer
of the circuit.

Phase 1:
– At the start of the protocol, P sends over functions D : H2 → F and

N : H2 → F claimed to equal d0 and n0 (the output functions that
satisfy d0(1, 1) = d∗, the denominator in the cumulative sum of the
fractions, and n0(1, 1) = n∗, the numerator in the cumulative sum),
respectively.

– V picks random x0, y0 ∈ F2 and random r0 ∈ F, and lets T0 ← Ñ(x0, y0)+

r0 · D̃(x0, y0).
– In round i = 0:
• Define the univariate polynomial

fr0(v) :=LH0(y0, v) ·
(
n1(1, v) · d1(1, ω · v)

+ n1(1, ω · v) · d1(1, v) + r0 · d1(1, v) · d1(1, ω · v)
)

• P claims that
∑

v∈H0
fr0(v) = T0.

• P and V apply the sum-check protocol to fr0 , up until V’s final check
in that protocol, when V must evaluate fr0 at a randomly chosen
point y1 ∈ F.

• P sends over [T
(1)
j]4j=1, which are the claimed evaluations of ñ1 and

d̃1 on (1, y1) and (1, ω · y1):

T
(1)
1 := ñ1(1, y1) T

(1)
2 := ñ1(1, ω · y1)

T
(1)
3 := d̃1(1, y1) T

(1)
4 := d̃1(1, ω · y1)

• V uses [T
(1)
j]4j=1 to perform the final check in the sum-check proto-

col.
• V chooses r1 ←$ F at random, sends it to P, and sets

T1 ←
4∑

j=1

rj−1
1 T

(1)
j

45

Phase 2:
– For i = 1, . . . , logm/2: use the batching subprotocol to combine the

four checks for the evaluations of ñi, d̃i on (1, yi) and (1, ωm/2i · yi) into
one sumcheck.
• Define the univariate polynomial

f (i)
ri (v) :=

(
LHi(yi, v) + ri · LHi(ωm/2i · yi, v)

)
·
(
ni+1(1, v) · di+1(1, ω

m/2i · v)

+ ni+1(1, ω
m/2i · v) · di+1(1, v)

)
+
(
r2i · LHi(yi, v) + r3i · LHi(ωm/2i · yi, v)

)
·
(
di+1(1, v) · di+1(1, ω

m/2i · v)
)

• P claims that
∑

v∈Hi
f
(i)
ri (v) = Ti.

• P and V apply the sum-check protocol to f
(i)
ri , up until V’s final

check in that protocol, when V must evaluate f
(i)
ri at a randomly

chosen point yi+1 ∈ F.
• P sends over [T

(i+1)
j]4j=1, which are the claimed evaluations of ñi+1

and d̃i+1 on (1, yi+1) and (1, ωm/2i · yi+1)

• V uses [T
(i+1)
j]4j=1 to perform the final check in the sumcheck pro-

tocol.
• V chooses ri+1 ←$ F at random and sets Ti+1 ←

∑4
j=1 r

j−1
i+1 T

(i+1)
j .

Phase 3:
– For i = logm/2 + 1, . . . , logm − 1: use the batching subprotocol to

combine the four checks for the evaluations of ñi, d̃i on (xi, yi) and

(ωm/2i · xi, yi) into one sumcheck.a

• Let i′ := i− logm/2 Define the bivariate polynomial

f (i)
ri (u, v) :=(
LHi′ (xi, u) · LH(yi, v) + ri · LHi′ (ωm/2i · xi, u) · LH(yi, v)

)
·
(
ni+1(u, v) · di+1(ω

m/2i · u, v) + ni+1(ω
m/2i · u, v) · di+1(u, v)

)
+
(
r2i · LHi′ (xi, u) · LH(yi, v) + r3i · LHi′ (ωm/2i · xi, u) · LH(yi, v)

)
·
(
di+1(u, v) · di+1(ω

m/2i · u, v)
)

• P claims that
∑

u,v∈Hi′ ,H
f
(i)
ri (u, v) = Ti.

46

• P and V apply the sum-check protocol to f
(i)
ri , up until V’s final

check in that protocol, when V must evaluate f
(i)
ri at a randomly

chosen point (xi+1, yi+1) ∈ F2.

• P sends over [T
(i+1)
j]4j=1, which are the claimed evaluations of ñi+1

and d̃i+1 on (xi+1, yi+1) and (ωm/2i · xi+1, yi+1).

• V uses [T
(i+1)
j]4j=1 to perform the final check in the sumcheck pro-

tocol.
• V chooses ri+1 ←$ F at random and sets Ti+1 ←

∑4
j=1 r

j−1
i+1 T

(i+1)
j .

a It is implicitly defined that xlogm/2 = 1.

Phase 4:
– Let d := logm. V checks directly whether

Td
?
= ñd(xd, yd) + rd · ñd(ω · xd, yd) + r2d · d̃d(xd, yd) + r3d · d̃d(ω · xd, yd)

D.1 Concrete Formula for short Weierstass curves Y 2 = X3 + b

Suppose we are given a scalar s in bit representation sλ−1 . . . s1s0, and a base
elliptic curve point in projective coordinates G = (X,Y, Z) which is represented
using three scalars such that Y 2Z = X3+bZ3. We give a concrete example below
for scalar multiplication s · G using GKR in the special case short Weierstrass
curves with a = 0. Before running the GKR protocol, prover sends s = sλ−1 . . . s0
and G. Note that when the protocol is compiled using the ProtoStar compiler,
s and G will be sent in commitments. Even so, this will not be a problem for
accessing s and G while running GKR, because only the decider will be running
GKR with the prover and the decider has access to the original values of all the
prover messages/commitments.

Initialize Aλ = (Xλ, Yλ, Zλ) to the identity point (0, 1, 0). At the ith layer,
suppose we have intermediary elliptic curve projective coordinatesAi = (Xi, Yi, Zi).
Let A′

i = (X ′
i, Y

′
i , Z

′
i) be the point of doubled coordinates of Ai. Specifically, the

doubling formulas are

X ′
i = 2XiYi(Y

2
i − 9bZ2

i),

Y ′
i = (Y 2

i − 9bZ2
i)(Y

2
i + 3bZ2

i) + 24bY 2
i Z

2
i ,

Z ′
i = 8Y 3

i Zi.

47

Then, using the double-and-add heuristic, we computeAi−1 = (Xi−1, Yi−1, Zi−1)
as

Xi−1 =(1− si) ·X ′
i

+ si ·
(
(X ′

iY +XY ′
i)(Y

′
i Y − 3bZ ′

iZ)− 3b(Y ′
i Z + Y Z ′

i)(X
′
iZ +XZ ′

i)
)

Yi−1 =(1− si) · Y ′
i

+ si ·
(
(Y ′

i Y + 3bZ ′
iZ)(Y ′

i Y − 3bZ ′
iZ) + 9bX ′

iX(X ′
iZ +XZ ′

i)
)

Zi−1 =(1− si) · Z ′
i

+ si ·
(
(Y ′

i Z + Y Z ′
i)(Y

′
i Y + 3bZ ′

iZ) + 3X ′
iX(X ′

iY +XY ′
i)
)

A0 = (X0, Y0, Z0) being the final output of the scalar multiplication s ·G.
The degree is 11 as (X ′

i, Y
′
i , Z

′
i) can be computed using a degree 4 formula

andXi−1 has a si ·X ′
iY ·Y ′

i Y term. We can turn these algebraic expressions into a
layered GKR protocol by having each layer consist of the tuple (Xi, Yi, Zi). This
results in 3 checks per layer. We can combine them using the batch sumcheck
protocol (Section 6.3). If we are doing multiple EC multiplications in parallel
then these can be combined using Lagrange polynomials.

48

	Proofs for Deep Thought: Accumulation for large memories and deterministic computations
	Introduction
	Preliminaries
	Constructing Read List and Write List
	Special-Sound Subprotocols for Memory-Proving
	The LogUp-Powered Memory-Proving Algorithm
	Accumulation-Friendly GKR
	LogUp GKR protocol using the batching subprotocol
	Proofs for Lemmas
	Full Memory-Proving Protocol
	Subalgorithms for O(l) accumulation prover time
	Full Adapted LogUp-GKR Protocol

