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Abstract. Asynchronous complete secret sharing (ACSS) is a foundational primitive
in the design of distributed algorithms and cryptosystems that require confidentiality.
ACSS permits a dealer to distribute a secret to a collection of n servers so that
everyone holds shares of a polynomial containing the dealer’s secret.
This work contributes a new ACSS protocol, called Haven++, that uses packing and
batching to make asymptotic and concrete advances in the design and application of
ACSS for large secrets. Haven++ allows the dealer to pack multiple secrets in a single
sharing phase, and to reconstruct either one or all of them later. For even larger
secrets, we contribute a batching technique to amortize the cost of proof generation
and verification across multiple invocations of our protocol.
The result is an asymptotic improvement in the worst-case amortized communication
and computation complexity, both for ACSS itself and for its application to asyn-
chronous distributed key generation. Our ADKG based on Haven++ achieves, for
the first time, an optimal worst case amortized communication complexity of O(κn)
without a trusted setup. To show the practicality of Haven++, we implement it and
find that it outperforms the work of Yurek et al. (NDSS 2022) by more than an order
of magnitude when there are malicious, faulty parties.

1 Introduction
Many cryptographic protocols involving multiple parties begin with the distribution of
data related to the parties’ cryptographic secrets. This is the first step in group secure
messaging to agree upon shared symmetric keys, in threshold cryptosystems to distribute
each party’s public key material to the group [CKLS02], in secure multi-party computation
protocols to distribute correlated randomness during preprocessing [AJM+23a], and more.
Rather than broadcasting an (ephemeral) secret from one party to the rest, instead these
protocols require each party to disseminate shares of their ephemeral secrets that are
subsequently used to agree upon common state.

These applications can be constructed using an asynchronous complete secret sharing
protocol, or ACSS. Concretely, ACSS is a distributed protocol that protects a secret that
a dealer distributes among n parties. An ACSS protocol has a sharing phase in which a
dealer distributes shares of her secret; later, in the reconstruction phase, the parties can
collectively recover the secret. After the initial sharing phase is completed, the parties can
leverage ACSS’ confidentiality, integrity, and availability guarantees to reliably use and
compute over the disseminated secrets.

Specifically, an ACSS protocol among n parties provides three security guarantees:
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Table 1: Our Haven++ ACSS protocol, compared with other AVSS or ACSS protocols
with optimal resilience. A green background indicates the optimal setting for that cell.
Many constructions support batching of sufficiently-large messages, including ours. The
table only shows worst-case complexity. Here, n = the number of parties and κ is the
security parameter.

Comm complexity limiting setup number dual crypto
Works amortized batch size no trust? no PKI? of rounds threshold assumption
Kokoris-Kogias
et al. [KMS20]

O(κn3) O(n) ✓ ✗ 4 ✓ DL

Haven [AVZ21] O(κn2 log(n)) O(1) ✓ ✓ 3 ✗ DL + RO
e-AVSS
[BDK13]

O(κn2) O(1) ✗ ✓ 3 ✗ t-SDH [KZG10]

Das et al.
[DXR21]

O(κn2) O(1) ✓ ✗ 3 ✗ DDH + RO

Shoup et al.
[SS24]

O(κn2)† Ω(n2) ✓ ✓ 7+ ✗ RO

hbACSS2
[YLF+22]

O(κn log n) O(n2) ✓ ✗ 7+ ✗ DL + RO

Bingo
[AJM+23a]

O(κn) O(n) ✗ ✓ 7 ✓ t-SDH [KZG10]

Haven++ O(κn) O(n log n) ✓ ✓ 3 ✓ DL + RO

Table 2: ADKG protocols proposed in this paper, compared with the prior state of the art.
We show worst-case amortized word complexity, along with the smallest batch size required
to reach this amortized cost. The work of Groth et al. [GS24] includes an optimistic path
that achieves O(n) word complexity.

Scheme Amortized Word
Complexity

Batch size Crypto assumption Setup Reference

Low O(κn4) 1 DDH + RO PKI Kate et al. [KHG12]
threshold O(κn3) 1 DDH + RO PKI Das et al. [DXR21]
ADKG O(κn3) 1 RO + SXDH [BGdMM05] PKI Abraham et al. [AJM+23b]

O(κn2)† Ω(n2) RO None Groth et al. [GS24]
O(κn) O(n) DL + RO None This work

High O(κn4) 1 DL + RO None Kokoris-Kogias et al. [KMS20]
threshold O(κn3) 1 DL + RO PKI Das et al. [DXKKR23]
ADKG O(κn3) 1 t-SDH [KZG10] Trusted Abraham et al. [AJM+23a]

O(κn2) O(n) DL + RO None This work

• All honest parties possess a share of a common secret S after the sharing phase even
in the presence of t malicious parties (potentially including the dealer).

• The secret S remains confidential if up to p parties attempt to reconstruct the secret
(where p ≥ t, and often p = t).

• Reconstruction correctly recovers S if the dealer is honest.
To avoid making assumptions about an upper bound on network latency, ACSS protocols
ensure that all three security guarantees hold even if the network reorders or delays
messages arbitrarily. The only assumption made is that messages between honest parties
must eventually be delivered.

In an asynchronous setting with n = 3t+ 1, it is challenging to ensure that all honest
parties in ACSS receive shares. Imagine a scenario where a party seeks confirmation from
all others regarding their received shares’ consistency. An honest party can only wait for
messages from up to n − t parties to avoid indefinite waiting if t parties fail. Of these
messages, t of them might be from the attacker. Consequently, the party can only trust
that n− 2t = t+ 1 responses are from honest parties, leaving the possibility of t honest
parties without shares. Recent works have proposed three principal approaches to address
this issue and ensure that all honest parties in ACSS possess shares of one or more common
secrets.

1. Approaches that rely on reliable broadcast and publicly verifiable secret sharing,
as seen in [DXR21]. This method uses public key encryption and zero-knowledge
proofs. The dealer verifies that all ciphertexts are shares of the same polynomial and
broadcasts both the ciphertexts and proofs to all parties. However, this method does
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not scale because it grows linearly with the number of secrets (each secret requires
the dealer to generate n proofs, and every party has to verify all of them).

2. Approaches based on two layered secret sharing as seen in [AVZ21,AJM+23a,KMS20].
These methods split the secret into shares and then split each share into sub-shares,
such that any t+ 1 sub-shares of a share i can reconstruct back share i. The idea is
that if at least t+ 1 honest parties possess consistent sub-shares of each share and
agree on termination, then all honest parties will receive their shares by being handed
the proper sub-shares from the t+ 1 honest parties with proofs of consistency. For
large secrets, and specifically for layered secret sharing that are based on bivariate
polynomials [AJM+23a, KMS20], this approach benefits from using packed secret
sharing. Even so, prior works require each party to receive and verify O(n) proofs
per secret, so this approach also isn’t scalable.

3. Approaches that utilize Asynchronous Verifiable Information Dispersal (AVID)
[CT05], public key encryption, and dispute resolution processes as per [SS24,YLF+22].
Here, shares are not sent directly; they are encrypted and dispersed via AVID with
a proof of consistency with the original polynomial. Discrepancies in shares prompt
complaints, with the aggrieved party revealing their key for others to verify the con-
tested encrypted message. In optimistic scenarios, the dealer typically prepares O(n)
batched proofs, with each party verifying only their one assigned proof. In contrast,
a pessimistic scenario with O(n) complaints requires each honest party to engage in
extensive verification and dispute resolution, leading to quadratic communication
complexity and expensive runtime.

For real-world scenarios and for long-living systems, one might opt to go with method
#3 because in the best-case scenario, this approach achieves practical and near-optimal
amortized communication complexity. In such systems, a cheating dealer can be detected
and subsequently barred from future participation. However, this method may not be
feasible when party identities are either unknown or transient. Moreover, it complicates
the integration of the ACSS protocol with other protocols and might necessitate the
unnecessary retention of all exchanged messages in case of complaints.

An ongoing challenge is to design a practical ACSS in the worst case (when t malicious
parties are present including the dealer). The ideal protocol would minimize amortized
communication complexity while simultaneously ensuring a practical runtime. Additionally,
an advantageous feature of such a system would be its independence from any trusted
setup. This is the focus of our work.

1.1 Related Work
AVSS and ACSS. The problem of asynchronous verifiable secret sharing, or AVSS,

dates back to at least the 1990s. Early works (e.g., [CR93a,BCG93,Can96]) showed the
feasibility of AVSS with unconditional security (i.e., without any cryptographic assump-
tions), but they had a large communication complexity. In the early 2000s, Cachin et
al. [CKLS02] made two important advances: designing an AVSS with optimal message
complexity against t < n/3 malicious parties, and a dual-threshold AVSS where correctness
holds against t < n/4 parties yet secrecy holds against t < n/2 parties. However, both
constructions suffer from suboptimal O(κn3) communication complexity.

The last few years have seen a renaissance of work in this field, with several works
that improve asymptotic and concrete performance, reduce computational assumptions
and the need for trusted setup, and increase the thresholds for correctness and secrecy.
Many recent works (though not all) leverage recent innovations in the design of polynomial
commitments, vector commitments, succinct zero-knowledge proofs, Verifiable Information
Dispersal and Reliable Broadcast.
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Kokoris-Kogias et al. [KMS20] constructed the first “high-threshold” AVSS protocols
that maintain secrecy for up to p < 2n/3 parties at a cost of O(κn3) using polynomial
commitments of linear size. Subsequently, Alhaddad et al. [AVZ21] showed how to reduce
that to O(κn2) using constant size polynomial commitments and vector commitments.
They also showed how to achieve the first AVSS with worst case amortized communication
complexity of O(κn) using erasure coding techniques and encryption. However, since
the shares were part of ciphertexts, they weren’t linear and couldn’t be used directly
for multiparty computation. It was left as an open problem whether one can achieve an
amortized communication complexity O(κn) with linear shares. The subsequent work of
Das et al. [DXR21] showed how to achieve a high threshold AVSS using Public Verifiable
Secret Sharing (PVSS) and zero knowledge proofs. They leveraged the advancement
in reliable broadcast to broadcast a linear polynomial commitment (in the number of
parties) and an encryption of all shares, with a proof of consistency to all parties in O(κn2)
communication complexity. However, their work requires a PKI and doesn’t scale to large
secrets.

Afterward, the hbACSS protocol of Yurek et al. [YLF+22] showed how to achieve
O(κn logn) in the worst case, using verifiable information dispersal in their construction
hbACSS2. This work highlighted the need for complete secret sharing rather than AVSS.
In contrast to AVSS, complete secret sharing guarantees that all honest parties have shares.
However, their most concretely efficient hbACSS0 variant suffered from sub-optimal O(κn2)
worst case amortized communication complexity, and their work relies on a public key
infrastructure.

Recently, the work of Shoup et al. [SS24] focused on building practical ACSS with large
secrets, with the aim of using them for Schnorr Signatures. However, their construction
requires many rounds of communication and has a worst-case communication complexity
of O(κn2). Very recently, the Bingo protocol of Abraham et al. [AJM+23a] achieved an
optimal amortized linear complexity with linear secrets. Their insight was to update the
construction of Haven [AVZ21] to use a bivariate polynomial. That way, they can use
packed Shamir secret sharing to pack t+ 1 secrets and make sure that every party has
exactly one share of every packed secret. However, Bingo requires a trusted setup, only
works with KZG polynomial commitments [KZG10], doesn’t support batching, has seven
rounds and relies on a black box reliable broadcast that requires online error correcting
code [DXR21].

Concurrent work has explored linear communication complexity in the asynchronous
setting. [AAPP24] focuses on AMPC with perfect security and optimal resilience; they
introduce a primitive called Weak-Binding Secret Sharing with t < n/4. This primitive is
distinct from ACSS and does not guarantee full reconstruction of the dealer’s shares. [JLS24]
considers ACSS in the information-theoretic setting for t < n/3 and achieves linear
communication complexity. However, their communication complexity is on the order
of O(Nnκ + n12κ2) , where N denotes the number of secrets, n denotes the number of
parties, and κ denotes the security parameter)and it also requires many communication
rounds. This renders their approach impractical even for small n and κ. In fact, [JLS24]
needs hundreds of millions of secrets to benefit from its linear communication complexity
(even for small n such as 4).

ADKG. Asynchronous distributed key generation enables robust, fault-tolerant
communication over an unreliable network. As such, it is a valuable building block
toward many distributed protocols, including those used for threshold cryptography and
blockchains/state machine replication. Several of the works cited above also consider
ADKG, as do standalone works like Das et al. [DXKKR23].
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Polynomial and vector commitments. Our construction uses polynomial and
vector commitments as a building block to achieve consensus on the bivariate polynomial
ϕ. For our polynomial commitment scheme, we consider Bulletproofs [BBB+18], which
have transparent setup but require log-sized proofs. Our Haven++ protocol uses these
commitments in a black-box manner, so we could alternatively use any polynomial com-
mitment scheme that is deterministic and homomorphic (e.g., [KZG10, BG18, BFS20]).
We also use the related idea of vector commitments, which were initially introduced by
Libert-Yung [LY10] and Catalano-Fiore [CF13].

1.2 Our Contributions
This work presents asymptotic and tangible improvements in the design and application of
Asynchronous Complete Secret Sharing (ACSS) for large secrets. Specifically, we build upon
method #2 (layered secret sharing) and introduce Haven++: the first practical ACSS that
achieves an O(κn) worst-case amortized communication complexity. Compared to Yurek et
al. [YLF+22] that uses method #3, our benchmarks show a 3× performance improvement
when everyone is honest, and orders of magnitude improvement with malicious parties.

Efficient Batched and Packed Two Layered ACSS. In §3, we contribute a new
ACSS construction called Haven++. This protocol has optimal amortized communication
complexity and rounds, and it avoids the need for a trusted setup or PKI when combined
with bulletproofs [BBB+18]. Haven++ is also a dual-threshold scheme, which means that it
has two different reconstruction protocols with different thresholds: either t+ 1 parties or
p+1 parties are required, for any choice of p ∈ (t, n− t). Haven++ supports reconstruction
of all packed secrets under the higher threshold, and reconstruction of a single secret with
the smaller threshold.

To improve efficiency on large secrets, we leverage the dual-threshold property in order
to pack p− t+ 1 secrets inside of a single ACSS invocation. Additionally, we show how to
batch multiple invocations of Haven++ and only disseminate n2 proofs independently of
how many invocations are being batched. This further improves communication complexity
by a log(n) factor. See Table 1 for a detailed comparison between Haven++ and prior
works.

Implementation and experimental evaluation. To demonstrate that these tech-
niques improve concrete efficiency in addition to asymptotic efficiency, in §4 we implement
our constructions on top of the open-source framework of hbACSS [YLF+22], which is
the only prior work with near optimal amortized communication complexity that has
an open-source implementation. Our implementation reuses all of their low-level field
arithmetic and crypto primitives in order to provide an apples-to-apples comparison.

Our experiments show that Haven++ substantially reduces computation time compared
to hbACSS by a factor of at least 3× when all parties are honest, and often by more
than an order of magnitude when some parties are malicious as shown in Figure 1. The
exact performance improvement depends on the number of parties and the batch size; see
Figures 3-5 for details.

Application to ADKG. In §5, we contribute a new, non-black-box application of
our batched and packed ACSS protocol Haven++ to improve the asymptotic complexity
of asynchronous distributed key generation, or ADKG. Our ADKG achieves for the first
time an optimal O(κn) communication complexity in the worst case (where κ denotes the
security parameter), and it also does not require trusted setup or a PKI. This new result is
only possible because our ACSS allows parties to have independent shares of each packed
secret share. An ADKG protocol allows a collection of parties to agree on a public key
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Figure 1: The computational cost per party for Haven++, compared against hbACSS0
and hbACSS2 from Yurek et al. [YLF+22] (lower is better). For sufficiently many parties
n, Haven++ wins by a factor of 3× or more, for any batch size.

and each possess a share of the corresponding secret key. It is a critical component of
distributed protocols like Byzantine agreement [CKS05] and randomness beacons [HMW18],
and of cryptographic protocols like threshold signatures [Bol03,GJKR07] and multiparty
computation [YLF+22, GS24]. Our ADKG protocol based on Haven++ is the first to
achieve optimal amortized word complexity even in the worst case; see Table 2 for details.

Application to AMPC. In §5, we contribute a new protocol to generate pre-
processing material for secure multi-party computation. Specifically, we provide the first
dual secret sharing (also known as random double sharing) in the asynchronous setting on
top of Haven++ with a worst-case amortized word complexity of O(κn2) with t < n/3. It
was only previously known how to achieve similar results in the synchronous setting [DN07].

1.3 Technical Overview of Our Constructions
In this section, we provide a high-level overview of the main techniques used in our ACSS
and ADKG constructions.

ACSS construction, against a DoS adversary. We describe our Haven++ con-
struction here and in Figure 2. For simplicity, we begin by describing the protocol in the
(unrealistic) scenario that the t faulty parties will be truthful in any message that they
send, i.e., they are only allowed to drop messages.

The Haven++ construction incorporates several design elements of Haven [AVZ21]
(hence the name), and it also uses a bivariate polynomial ϕ in a related (but not identical)
manner as in prior dual-threshold ACSS protocols [KMS20,AJM+23a]. Concretely, ϕ is
a polynomial of degree p in the horizontal direction and t in the vertical direction. To
construct ϕ, the dealer packs p− t+ 1 secrets on the points of the x-axis to the left of the
y-axis; that is, at locations (−k + 1, 0) for k ∈ [1, p − t + 1]. The dealer then randomly
chooses sufficiently many points (as shown in the pink shaded region in Fig. 2) to uniquely
determine a degree− (p, t) bivariate polynomial. The dealer commits to ϕ in a manner
that we specify later, and reliably broadcasts this commitment during the 3 rounds of the
sharing phase.
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Figure 2: The 2d input space to a bivariate polynomial ϕ(x, y) used in our ACSS con-
struction; this example uses t = 2, n = 7, and p = 3. The dealer creates a bivariate
polynomial ϕ by packing p − t + 1 = 2 secrets s1 and s2 on the x-axis (shown in red)
and randomly choosing the remaining points in the pink shaded region. In the sharing
phase, the parties receive points in the yellow region: specifically, party i learns the row
polynomial ϕ(i,−) (of degree p, shown in brown) and column polynomial ϕ(−, i) (of degree
t, shown in blue). Then, the parties can reconstruct all secrets (via the x-axis) or one
secret (via the corresponding column, shown in orange).

In the sharing phase, each party learns both the ith row and column of ϕ; as a result,
the parties collectively learn the points in the yellow shaded region of Fig. 2 (which is
disjoint from the pink region). The sharing phase proceeds in three rounds as follows:

1. The dealer sends each party Pi the ith row polynomial ϕ(i,−), as shown in brown
in Fig. 2. Looking ahead, the parties will reach agreement if at least n− 2t honest
parties receive row polynomials that are consistent with ϕ, but the t malicious parties
and up to t honest parties might receive nothing from the dealer.

2. Any honest party i that received a row polynomial in step 1 now sends the point
ϕ(i, j) to party j. As a result, every honest party receives enough points to interpolate
their column polynomial (shown in blue in Fig. 2).

3. Each party i sends the point ϕ(j, i) to party j. After this round, every honest party
receives enough points to interpolate their row polynomial, whether or not they
received it previously from the dealer in step 1 above.

This construction has O(κn2) word complexity, where κ denotes both the security parameter
and field size of an individual secret. After the sharing phase is complete: p+ 1 honest
parties can reconstruct all secrets by revealing the points on the x-axis, or t+ 1 honest
parties can reconstruct a single secret by revealing the points on the corresponding column
(shown in orange in Fig. 2).

ACSS construction, against a malicious adversary. To account for malicious
parties (including the dealer), we use polynomial and vector commitments so that everyone
can prove that they are sending points on the polynomial ϕ. We do not use bivariate
polynomial commitments directly in Haven++; instead, the dealer produces a polynomial
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commitment to each column polynomial ϕ̂i = pCom(ϕ(−, i)) and broadcasts a vector
v⃗ = [ϕ̂i]i∈[n] of these commitments. Anyone who receives v⃗ is eventually assured that these
polynomial commitments collectively correspond to a bivariate polynomial because: (i)
they can check directly that each commitment corresponds to some column polynomial of
degree at most t, and (ii) collectively they know that at least t+ 1 parties have checked
that t+ 1 rows are of degree p and by lemma 1 this vector commitment must have been
for a bivariate polynomial commitment.

Whenever the parties send a point ϕ(i, j), they always attach a proof of inclusion on
the corresponding column polynomial ϕj . We emphasize that even in steps 1 and 3 that
involve sending points on a row, the corresponding proofs are still with respect to the
respective column polynomials instead.

These proofs become the dominant cost in the Haven++ protocol. For this reason, the
protocol benefits even more by batching O(n) executions in parallel, which collectively
contain a total of O(n2) secrets. We construct a batch proof in Algorithm 4 that efficiently
proves correctness of all O(n) row or column polynomials at once. Batching improves the
amortized communication complexity by a factor of n, as shown in Table 1.

ADKG construction. Asynchronous distributed key generation allows n parties to
agree on a public key such that each party holds one share of the corresponding secret key.
In this work, we construct an ADKG protocol by combining n instances of ACSS (one
per party) with a multi-valued Byzantine agreement or MVBA protocol. However, it’s
worth noting that the way we combine the n instances of our ACSS is novel and relies on
the dual threshold property of our ACSS. The full construction is shown in Figure 6 and
Algorithm 5; we provide only a brief overview here.

The high-level idea of our construction is simple: each of the n parties acts as the
dealer and disperses a bivariate polynomial, each packed with t+ 1 secrets, and then we
“mix and match” columns from everyone to form t + 1 new bivariate polynomials that
the adversary does not fully know. This is only possible because our ACSS construction
guarantees that every party (except the dealer) has exactly one share of every packed
secret on every column being mixed.

One challenge here is that some parties might act maliciously as the dealer and disperse
shares that will never reach agreement. This is where the multi-valued Byzantine agreement
protocol comes in: it allows the n parties to ‘vote’ on which n− t of the dispersed bivariate
polynomials to use in the mix-and-match stage. Confidentiality is maintained even if the
adversary knows t of these polynomials.

Another challenge is that ADKG requires polynomial arithmetic “in the exponent,”
since it is used to determine a public/secret key pair in a group where the discrete logarithm
is assumed to be hard. Fortunately, all of our polynomial operations like evaluation and
interpolation are linear, so they can be performed in the exponent. See §5 for details.

2 Preliminaries
In this section, we introduce our model and some of building blocks that are going to be
used in this paper for our constructions.

2.1 Network and Adversary Model
We study a network of n parties, each pair interconnected via an authenticated and
private channel. A malicious adversary, denoted by A, can corrupt up to t parties. Our
network is asynchronous: A can delay but must eventually deliver messages between
honest parties. To evaluate the latency of asynchronous protocols, we adopt the standard
concept of asynchronous rounds [CR93a]. A protocol operates in R asynchronous rounds
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if its execution time is at most R times the longest message delay between honest parties
during the protocol run.

2.2 Definitions and Building Blocks
Dual-threshold Verifiable Secret Sharing. Secret sharing is a method where

a secret is divided into shares in such a way that only specific subsets of shares can
reconstruct the original secret. Verifiable Secret Sharing (VSS) enhances this by allowing
participants to verify that their shares reconstruct to the same secret, even in the presence
of a bad dealer. In verifiable secret sharing, an attacker is allowed to control t out of n
parties, and if the attacker doesn’t corrupt the dealer then the attacker learns nothing
about the secret being shared. Moreover, any t+ 1 parties can reconstruct the secret. VSS
schemes have two phases: the sharing phase in which a special party called the dealer
disperses a secret s among the n parties, and the reconstruction phase in which the n
parties collaborate to recover s.

Dual-threshold verifiable secret sharing adds another degree of flexibility: the number
of shares p that is insufficient to reconstruct the message is not restricted to t but can be
higher. Additionally, we can use packed secret sharing to store multiple secrets within set
of shares, and then reconstruct either all secrets or a specific secret (say, in location k).
The following definition is adapted from Abraham et al. [AJM+23a] to incorporate the
dual threshold property.

Definition 1 (AVSS [AJM+23a]). A dual-threshold asynchronous verifiable secret sharing
protocol contains three protocols Share, Reconstruct, and Reconstruct(k) that satisfy
the following three properties, even against an adversary who controls t malicious parties.

• Termination: If the dealer is honest, then all honest parties will complete Share.
Also if one honest party completes Share, then all honest parties will. Finally, if
all honest parties complete Share and invoke Reconstruct or Reconstruct(k), then
they all will complete reconstruction.

• Correctness: All honest parties who complete the partial reconstruction protocol
Reconstruct(k) should agree on the same secret. The same is true for Reconstruct,
and moreover it should produce the same secret at location k. Finally, this secret
should be the same as the one initially used by the dealer in the Share protocol, if
the dealer was honest.

• Secrecy: An adversary should not be able to learn anything about the kth secret
until the point at which some honest party invokes Reconstruct(k). For the full
reconstruction protocol Reconstruct, an adversary should not be able to learn
anything even if it participates in the protocol with up to p− t honest parties.

An asynchronous complete secret sharing protocol, or ACSS, additionally satisfies the
completeness property.

Definition 2 (Completeness [DXR21]). If some honest party completes Share, then there
exists a degree-t polynomial p such that p(0) = s and each honest party i will eventually
hold a share si = p(i). Moreover, when the dealer is honest, then s is the secret that it
initially shared.

Reed-Solomon Error Correcting Code. Reed-Solomon error-correcting codes play
a fundamental role in state-of-the-art reliable broadcast protocols, verifiable secret sharing
schemes, and information-theoretic multi-party computation protocols. In adversarial
settings, they empower honest parties to reconstruct the dealer’s secret (or the plaintext
message in reliable broadcasts) even amidst failures.
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Formally, an (m,n) error-correcting code is defined by a pair of algorithms (ECCEnc,
ECCDec). The encoding algorithm, denoted by ECCEnc(M,m, k), ingests a message
M comprised of k symbols, interprets it as a polynomial of degree k − 1, and emits
m evaluations of said polynomial. Conversely, the decoding algorithm, represented by
ECCDec(k, r, T ), receives a set of symbols T—some potentially erroneous—and produces a
polynomial of degree k − 1, or equivalently, k symbols. This is achieved by amending up
to r errors (incorrect symbols) within T . It is a well-established fact [MS77] that ECCDec
can rectify up to r errors in T and yield the initial message given that |T | ≥ k + 2r.

Note that in this paper we will only formally call the decoding algorithm. The encoding
algorithm will not be called.

Online Error Correcting. Online error correction (OEC) refers to a set of techniques
where error detection and correction are performed as data is transmitted or processed. It
was first used by Canetti et al. [BCG93] for doing verifiable secret sharing and was later
used for asynchronous reliable broadcast [DXR21], [ADD+22a] and asynchronous verifiable
information dispersal [ADD+22b]. In contrast to traditional error-correcting codes that
first gather all data before starting the correction procedure, online methods operate as
data streams in. This capability is particularly useful to honest parties that are trying to
filter out bad shares as they are receiving them. For our use case, when n = 3t+ 1 and
when all honest parties have evaluation of a polynomial of degree t, it allows a receiver to
recover the polynomial of degree t after hearing from 2t+ 1 honest parties, even though t
parties might send bad evaluations. We refer the reader to the original paper of Canetti et
al. [BCG93] for full details.

2.3 Polynomial and Vector Commitments
We consider polynomial commitment scheme that allows a prover to commit non interac-
tively to a polynomial such that, later, the prover can be asked to open the commitment
at any particular point and reveal the corresponding value. We follow the same definition
as Haven; like them, we require the polynomial commitment to be deterministic and
additively homormorphic. We re-state the definition for convenience with the addition
of three extra optional algorithms AggBatchProof, AggBatchVerify and BatchProof that
are all used strictly for the batched variant of our algorithm described in §3.3.

Definition 3. A polynomial commitment scheme P comprises four algorithms Setup,
pCom, Eval, Verify and four optional algorithms Hom, AggBatchProof, AggBatchVerify,
BatchProof that act as follows:

• Setup(1κ,F, D)→ pp is given a security parameter κ, a finite field F, and an upper
bound D on the degree of any polynomial to be committed. It generates public
parameters pp that are required for all subsequent operations.

• pCom(pp, ϕ(x), d)→ ϕ̂ is given a polynomial ϕ(x) ∈ F[x] of degree d ≤ D. It outputs
a commitment string ϕ̂ (throughout this work, we use the hat notation to denote a
commitment to a polynomial).

• Eval(pp, ϕ, i) → ⟨i, ϕ(i), w⟩ is given a polynomial ϕ as well as an index i ∈ F. It
outputs a 3-tuple containing i, the evaluation ϕ(i), and witness string wi.

• Verify(pp, ϕ̂, y, d) → True/False takes as input a commitment ϕ̂, a 3-tuple y =
⟨i, j, w⟩, and a degree d. It outputs a Boolean value indicating whether the provided
evaluation j corresponds to the committed polynomial ϕ̂ evaluated at the point
determined by i. Specifically, Verify checks whether ϕ(i) = j. If the evaluation is
consistent with the commitment and the degree constraint, the function returns True;
otherwise, it returns False.

• Hom(pp, ϕ̂1, ϕ̂2, a)→ ̂ϕ1 + aϕ2 takes in commitments to two polynomials ϕ1 and ϕ2
of degree at most D, as well as a field element a ∈ F. Outputs the commitment
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pCom(pp, ϕ,max{d1, d2}) to the polynomial ϕ = ϕ1 + aϕ2.
• BatchProof(pp, ϕ, n, d) is given a polynomial ϕ of degree d, where n is a positive

integer. It outputs n 3-tuples ⟨i, ϕ(i), wi⟩ where 1 ≤ i ≤ n and wi is a proof for ϕ(i).
Each such proof can be verified with Verify.

• AggBatchProof(pp, [ϕ1, . . . , ϕβ ], n, d) is given a list of polynomials ϕ1 . . . ϕβ of the
same degree d, and a positive integer n. It outputs n different 3-tuples ⟨i, (ϕ1(i),
. . . , ϕβ(i)), wi⟩ for 1 ≤ i ≤ n. That is, each tuple contains evaluations of all β
polynomials together with a single proof string wi.

• AggBatchVerify(pp, [ϕ̂1, . . . ϕ̂β ], y, d) takes as input a list of polynomial commitments
[ϕ̂1, . . . ϕ̂β ], a 3-tuple y = ⟨i, (j1 . . . jβ), w⟩, and a degree d. It outputs True if
ϕz(i) = jz ∀z ∈ {1 ≤ z ≤ β}, and False otherwise.

We also use vector commitments in this work; these are also succinct commitments to
a large set of data, but the data need not correspond to points on a polynomial. That is,
vector commitments are cryptographic primitives that allow one to commit to an ordered
sequence of values (or a vector) and later prove the value of a specific position in the
vector without revealing any other information about the rest of the vector. Much like
polynomial commitments, the commitment size is constant, not dependent on the size of
the vector. For our implementation, we instantiate Haven++ with Merkle trees for vector
commitments and Bulletproofs [BBB+18] for polynomial commitments.We note that for
Bulletproofs the setup function is transparent and non-interactive meaning it does not
require a trusted party or external secret information for its initialization. Instead, all the
cryptographic parameters used in the commitment scheme are generated publicly and can
be verified by anyone.

Defining vector commitments

This paper follows the convention of Alhaddad et al. [AVZ21] and restricts attention to
commitment schemes that are deterministic and homomorphic. We leverage the determin-
istic property in the Haven++ construction so that vector and polynomial commitments
do not need a separate “decommitment randomness” string that itself would need to be
reliably dispersed.

This approach does introduce one security challenge: a deterministic commitment
cannot be hiding when used to commit to an arbitrary secret, only for a randomly-chosen
secret. This challenge is solvable through a simple blinding technique previously used
by [BBB+18, BFS20, AVZ21, CFS17, BCC+16] among others. Concretely: rather than
committing to an arbitrary secret directly, the committer can produce a hiding commitment
to an ephemeral random secret vector (or secret polynomial), and then use the homomorphic
property to construct a non-hiding proof of the correct opening of a linear combination of
the desired secret and the ephemeral random secret. We omit the details here and refer
interested readers to [AVZ21, §3.3] for more information.

Definition 4. A deterministic vector commitment scheme

V = (vSetup, vCom, vGen, vVerify)

comprises four algorithms that operate as follows:

• vSetup(1κ, U, L) → p̄p is given a security parameter κ, a set U , and a maximum
vector length L. It generates public parameters p̄p.

• vCom(p̄p, v⃗)→ C is given a vector v⃗ ∈ U ℓ where ℓ ≤ L. It outputs a commitment
string C.

• vGen(p̄p, v⃗, i)→ πi is given a vector v⃗ and an index i. It outputs a proof string πi.
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• vVerify(p̄p, C, ui, π)→ True/False takes as input a vector commitment C, an indexed
element ui ∈ U , and a proof string π. It outputs True if ui = v⃗[i] and π is a witness
to this fact and False otherwise.

Security guarantees for commitments

We begin by discussing the security requirements for polynomial commitments. Just
like any kind of commitment scheme, a polynomial commitment must satisfy correctness,
binding, and hiding. We make two special requirements for polynomial commitments: first,
we want the commitment to bind to a particular polynomial and to its (max) degree, and
second, the hiding property only needs to hold for a random polynomial for the reason
stated above. The specific definitions below are taken from Alhaddad et al. [AVZ21] since
they also focus on the setting of polynomial commitments that are deterministic and
homomorphic.

Definition 5 (Strong correctness). Let pp ← Setup(1κ,F, D). For any polynomial
ϕ(x) ∈ F[x] of degree d with associated commitment ϕ̂ = pCom(pp, ϕ, d):

• If d ≤ D, then for any i ∈ F the output y ← Eval(pp, ϕ̂, i) of evaluation is successfully
verified by Verify(pp, ϕ̂, y, d).

• If d > D, then no adversary can succeed with non-negligible probability at creating
a commitment ϕ̃ that is successfully verified at d+ 1 randomly chosen indices.

Definition 6 (Evaluation binding). Let pp← Setup(1κ,F, D). For any PPT adversary
A(pp) that outputs a commitment ϕ̃, a degree d, and two evaluations y = ⟨i, j, w⟩ and
y′ = ⟨i′, j′, w′⟩, there exists a negligible function ε(κ) such that:

Pr
[
(ϕ̃, y, y′, d)← A(pp) : i = i′ ∧ j ̸= j′ ∧Verify(pp, ϕ̃, ỹ, d) ∧Verify(pp, ϕ̃, ỹ′, d)

]
< ε(κ).

Definition 7 (Degree binding). Let pp ← Setup(1κ,F, D). For any PPT adversary A
that outputs a polynomial ϕ of degree deg(ϕ), evaluation ỹ, and integer d, there exists a
negligible function ε(κ) such that:

Pr
[
(ϕ, ỹ, d)← A(pp), ϕ̂ = pCom(pp, ϕ,deg(ϕ)) : Verify(pp, ϕ̂, ỹ, d) ∧ deg(ϕ) > d

]
< ε(κ).

Definition 8 (Hiding for random polynomials). Let pp ← Setup(1κ,F, D), d be an
arbitrary integer less than D, and I ⊂ F be an arbitrary set of indices with |I| ≤ d.
Randomly choose a ϕ← F[x] of degree d and construct its commitment ϕ̂ = pCom(pp, ϕ, d).
For all PPT adversaries A, there exists a negligible polynomial ε(κ) such that:

Pr
[
(x, y)← A(pp, ϕ̂, {Eval(pp, ϕ, i)}i∈I) : y = ϕ(x) ∧ x /∈ I

]
< ε(κ),

where the probability is taken over A’s coins and the random choice of ϕ.

Finally, we discuss the security requirements for vector commitments. We omit a formal
specification here because they are analogous to Definitions 5, 6, and 8 above, but with
polynomial commitments and proofs replaced with vector commitments and proofs. That
is: correctness requires that honestly-created opening proofs will verify, evaluation binding
requires that the adversary cannot find two openings to the vector commitment at the
same index i that will both verify, and hiding requires that there is a negligible probability
that an adversary can produce an opening proof corresponding to a vector commitment
for a random vector that the adversary was never given. There is no equivalent to degree
binding for vector commitments; only evaluation binding is required.
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2.4 Multi-Valued Byzantine Agreement
In this section, we provide a formal definition of multi-valued Byzantine agreement (MVBA).
Looking ahead, we use this primitive as a building block in §5 to construct an asynchronous
distributed key generation (ADKG) protocol.

MVBA was initially introduced by Cachin et al. [CKPS01]. It generalizes Byzantine
agreement to allow for a message v that is more than one bit in length. Additionally, it
introduced the ability for parties to check that the agreed-upon message satisfies some
predicate Q, possibly when matched with some additional information w that is also
decided during the protocol. Later, Abraham et al. [AMS19] to rule out trivial solutions in
which parties always decide on some pre-defined externally valid value, they add another
another property to the MVBA, which they call quality. The quality property bounds the
probability that the decision value was proposed by an honest party. We explicitly add
the quality property and use the definition of Cachin et al. [CKPS01].

A precise definition follows.

Definition 9 (MVBA). A multi-valued Byzantine agreement scheme is an interactive
protocol between n parties that satisfies the following five criteria.

• Termination: If all honest parties input a message that satisfies the predicate Q(v, w)
for some w, then all honest parties eventually output v.

• Agreement: If an honest party outputs v, then every honest party also terminates
and outputs v.

• External validity: Every honest party that terminates decides v validated by w such
that the predicate Q(v, w) is true.

• Integrity: If all parties follow the protocol, and if an honest party decides v validated
by w, then some party proposed v validated by w.

• Quality: The probability of terminating with a value v that was proposed by a
correct replica is at least 1/2.

3 Our ACSS Construction
In this section, we introduce our dual-threshold ACSS protocol, called Haven++ that
achieves all the properties of a dual-threshold ACSS as shown in §3.2. We present the
construction in two parts: first with packing of multiple secrets into a single bivariate
polynomial, and then batching across multiple bivariate polynomials. For simplicity and
without loss of generality we instantiate our protocol with n = 3t+ 1 (optimal resilience)
and with p = 2t. Note that our protocols are executed from the perspective of party i.
When party i sends infoi,j to party j, it provides the necessary information for party j
to continue the protocol. Since all parties perform this operation, party i also receives
information from other parties. Specifically, party i receives infoj,i from each party j. In
our notation, the first parameter of infoj,i represents the sender (in this case, j), while the
second parameter represents the receiver (in this case i).

3.1 Haven++ with Packing
Haven++ has two phases: a sharing phase in which the dealer distributes shares of her
secret s, and a reconstruction phase in which the parties collectively reconstruct one or
more secrets.
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Algorithm 1 Sharing phase of Haven++, for server Pi and tag ID.d.
1: upon receiving (ID.d, in, share, s1 . . . sb): ▷ only if party is the dealer Pd

2: Uniformly sample ϕ(X,Y ) with degree 2t in X and t in Y such that ϕ(−k+ 1, 0) =
sk,∀k ∈ [1, b].

3: for i ∈ [1, n] do
4: ϕi(Y ) = ϕ(i, Y )
5: ϕ̂i = pCom(pp, ϕi(Y ), t) ▷ Commit to every column polynomial
6: for i ∈ [1, n] do
7: compute y⃗i = [Eval(pp, ϕj(Y ), i) for j ∈ [1, n]] ▷ evaluate and create witnesses

for every point on every column polynomial
8: send “ID.d, send, seti” to party Pi, where seti = {[ϕ̂1 · · · ϕ̂n], y⃗i} ▷ send every

party i all column polynomial commitments and the ith evaluation of every column
polynomial with the proper opening proof

9: Upon receiving (ID.d, send, seti) from Pd for the first time: ▷ echo stage
10: if ∀j, Verify(pp, ϕj , y⃗i[j], t) and all points (j, y⃗i[j]) form a degree 2t polynomial

then
11: C = vCom(p̄p, [ϕ̂1 · · · ϕ̂n]) ▷ commit to all polynomial commitments
12: for j ∈ [1, n] do
13: πj = vGen(p̄p, [ϕ̂1 · · · ϕ̂n], j) ▷ send message to each party Pj

14: send “ID.d, echo, infoi,j” to Pj , where infoi,j = {C, ϕ̂j , πj , y⃗i[j]}

15: Upon receiving (ID.d, echo, infom,i) from Pm for the first time: ▷ ready stage
16: if vVerify(pp, C, ϕ̂i, i, πi) and Verify(pp, ϕ̂i, y⃗i[m], t) = True then
17: if not yet sent ready and received 2t+ 1 valid echo with the same C then
18: interpolate ϕi = ϕ(i, Y ) from any t+ 1 valid y⃗i[m] in the received echo ▷

interpolate column i with the help of other honest parties
19: send “ID.d, ready, infoi,j” to Pj where infoi,j = (yi =

Eval(pp, ϕi, j), ϕ̂i, πi, C) ▷ completes Bracha consensus on C, and also sends to party
j a point on their row

20: Upon receiving (ID.d, ready, infom,i) from Pm for the first time:
21: if vVerify(pp, C, ϕ̂m,m, πm) and Verify(pp, ϕ̂m, y⃗m[i], t) = True then
22: if not yet sent ready and received t+ 1 valid ready with this C then
23: wait to receive t+ 1 valid echo with this C ▷ must happen eventually
24: interpolate ϕi = ϕ(i, Y ) from any t+ 1 valid y⃗i[m] ▷ interpolate column i

with the help of other honest parties
25: send “ID.d, ready, infoi,j” to Pj where infoi,j = (yi =

Eval(pp, ϕi, j), ϕ̂i, πi, C) ▷ Bracha consensus on C, while also sending to party j, a
point on their row

26: if received 2t+ 1 valid ready messages then
27: interpolate ϕ(X, i) from the 2t+ 1 valid ready messages ▷ construct the row

polynomial from the column points of other parties
28: output (ID.d, out, shared) ▷ locally halt
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Algorithm 2 Reconstruction phase of Haven++ for all packed secrets, for server Pi and
tag ID.d

1: Upon receiving (ID.d, in, reconstruct) from Pi for the first time:
2: send (ID.d, reconstruct-share, ϕ̂m, y∗

m = ⟨0, ϕ(m, 0), w⟩) to all parties ▷ from Party
Pm

3: Upon receiving (ID.d, reconstruct-share, ϕ̂m, y
∗
m): ▷ from Party Pm

4: if ϕ̂m in C and Verify(pp, ϕ̂m, y
∗
m, t) then

5: if received 2t+ 1 valid reconstruct-share messages then
6: interpolate ϕ(X, 0) from the 2t+ 1 valid points
7: output (ID.d, out, reconstructed, ϕ(−k + 1, 0) = sk,∀k ∈ [1, b])

Algorithm 3 Reconstruction phase of Haven++ for a packed secret share j, for server Pi

and tag ID.d
1: Upon receiving (ID.d, in, reconstruct, j) from Pi for the first time:
2: send (ID.d, reconstruct-share, ϕ(−j,m)) to all parties ▷ from Party Pm

3: Upon receiving (ID.d, reconstruct-share, ϕ(−j,m)): ▷ from Party Pm

4: if received at least t+ 1 reconstruct-share then ▷ Run Online Error correcting code
5: ϕ̃−j = ECC(points, t, e) ▷ with e initialized to 1, attempt to interpolate the

column polynomial at −j, ϕ(−j, Y )
6: if ϕ̃−j ̸= ⊥ then
7: output (ID.d, out, reconstructed, ϕ−j(0))
8: e = e + 1 ▷ increase the number of errors by one with each failed decoding

Sharing phase. The construction of Haven++ is heavily influenced by Haven
[AVZ21]. It operates in three rounds of communication, and follows the same commu-
nication pattern as Bracha’s asynchronous reliable broadcast [Bra87]. However, unlike
Haven, our construction uses a bivariate polynomial when producing the shares and uses a
distributed check to make sure that recovery polynomials are consistent with the shares.

Below, we describe the protocol for the optimal resilience case of n = 3t+ 1. Conceptu-
ally, the protocol contains three distinct phases.

1. The broadcast phase (lines 1-8): The dealer samples a random bivariate polynomial
ϕ(X,Y ) such that each row polynomial is of degree 2t and each column polynomial
is of degree t. Also, the row polynomial at index 0, encodes b secrets. Each packed
secret sk ∈ s1 . . . sb, is packed at ϕ(−k + 1, 0). Using pCom, the dealer commits
to the first n column polynomial of degree t (lines 3-5). The dealer evaluates each
column polynomial ϕj(Y ) at indices 1 . . . n and at the same time produces n proofs
for every point on every column by calling Eval (lines 6-7). Remember that Eval
returns both the (x, y) coordinate as well as a proof that this coordinate is on the
committed polynomial. The dealer then sends each row (not column) of evaluation
proofs with all n polynomial commitments to every party (lines 6-8).

2. The echo phase (lines 9-14): when a party i receives the first broadcast message from
the dealer: The party verifies that the row evaluation proofs are consistent with the
column polynomial polynomial commitments and checks that the evaluation points
are on a polynomial of degree 2t (line 10). If both check pass, then the party commits
using a vector commitment to all the polynomial commitments (line 11) in the same
order it got from the dealer and produces proofs of inclusion (lines 12-13). It then
sends an echo message to every party pj containing the vector commitment C, the
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polynomial commitment ϕ̂j , the corresponding inclusion proof πj and the evaluation
proof at j, y⃗i[j] (lines 12-14). Note that when party pi sends an echo message, she
doesn’t yet know whether her polynomial commitments will become the consensus
ones, because the Bracha broadcast protocol on C might not be complete

3. The ready phase (lines 15-28): When a party pi hears 2t + 1 echo messages from
different parties with the same vector commitment C, the proper column polynomial
commitment and its inclusion proof at position i and with 2t+ 1 valid evaluation
proofs on the column polynomial. pi interpolates its own column polynomial and
generates n evaluation proofs (line 18-19). pi then sends each party j the jth

evaluation on its own column polynomial (every point on the column of this party,
is also a point on the row of another party) with its own polynomial commitment,
inclusion proof and C (line 19).
To guarantee that every honest party sends a ready, just like Bracha broadcast
protocol, we also have an amplification step. If a party has not yet sent a ready
message because it hasn’t received 2t + 1 valid echo messages, but then receives
t+ 1 ready messages from other parties, it adjusts its waiting condition. Instead of
waiting for 2t+ 1 valid echo messages, the party now waits until it has received t+ 1
valid echo messages on top of the t+ 1 ready messages it has already received, and
then sends its own ready message. This condition must be met eventually because at
least one honest party heard 2t+ 1 echo messages where t+ 1 must have came from
honest parties. Once t+ 1 valid echo messages are heard the protocol continues as
before. i.e. pi interpolates its own column polynomial and generates n evaluation
proofs (line 24). pi then sends each party j the jth evaluation on its own column
polynomial with its own polynomial commitment, inclusion proof and C (line 25).
When a party hears ready messages from 2t+ 1 different parties pm that contain the
same vector commitment C, the associated column polynomial commitment ϕm and
its inclusion proof πm at position m and with 2t+ 1 valid evaluation proofs for ϕm(i)
(line 26): then, the party interpolates its row polynomial and finishes the dispersal.

Reconstruction phase. We provide two algorithms for reconstruction; the first one
(Algorithm 2) enables reconstruction of all secrets at the same time (or one secret that
requires a high threshold to recover), and the second one (Algorithm 3) allows selective
opening of a specific secret. Both protocols are simple: each party sends one or more
points on the bivariate polynomial to the recipient along with corresponding proofs. The
most important difference between the two protocols is which points are included. As
shown in Fig. 2, reconstructing all secrets requires interpolation on a polynomial of degree
p, whereas reconstructing a single secret requires interpolation on a different polynomial
of degree t. Both types of reconstruction are possible because each party holds one row
and one column of data after the sharing phase.

Theorem 1. Assuming that the underlying polynomial and vector commitment schemes sat-
isfy Definitions 5-8, then the Haven++ protocol is a dual-threshold ACSS with O(κn2 logn)
communication complexity, where κ is the security parameter.

3.2 Security Analysis
In this section, we provide the proofs for each of the properties in Definition 1.

3.2.1 Proof of Liveness

If the dealer Pd is honest, then Pd will send everyone the same univariate polynomial
commitments. Also, each party i receives one evaluation at index i on every univariate
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polynomial (a row polynomial). All of the checks on line 10 pass, so the honest parties can
vector commit to the same list of polynomial commitments and produce the same vector
commitment C along with the same proofs of inclusion for the polynomial commitments.
This will enable every party to echo the right evaluations and corresponding proofs to
everyone. As a result, all honest parties will pass the checks on lines 17 and interpolate
their own univariate column polynomial and will be able to send ready messages with the
right evaluations and proofs. This will enable every honrest party to reconstruct their row
polynomial from the correct ready messages linked to the vector commitment C send by
at least n− t honest parties. If any dishonest party tries to send a malformed commitment
or evaluation in their echo message or ready, then the evaluation binding property of the
underlying commitment (cf. Definition 6) ensures that it will not link back to the same
root commitment, so honest parties will eventually disregard this message. Finally, if an
honest party completes dispersal and invokes Reconstruct(j), then every honest party
(n− t) will evaluate their row polynomial at j and return it. This enables the honest party
to run the online error correcting and reconstruct the univariate polynomial of degree 2t
since there are only t possible errors that can happen.

3.2.2 Proof of Secrecy

Without loss of generality let’s assume dispersal has been be done with t packed secrets.
We will first analyze what the attacker learns during dispersal and then look at the
reconstruction step with an inductive approach.

During dispersal, each party’s view consists of n polynomial commitments, one row
and one column polynomial together with evaluation proofs. As a result an attacker that
can corrupt t parties has access to t full rows and t full columns. The hiding property of
the polynomial commitments (Def. 8) guarantees that this is insufficient to distinguish any
other point on the column polynomial from random with non-negligible probability. It is
left to show that the evaluations themselves don’t leak information.

Let us first consider the information available for the attacker after dispersal has
finished. The attacker has t points on every column polynomial (including the ones holding
the secret) and knows t full columns. This is because the dealer sends a row polynomial to
every party and during echo every party helps every other party reconstruct its column.
Although the attacker knows t points on each column polynomial of degree t. Column-wise,
Shamir secret sharing guarantees that the Adv learns nothing about any particular secret,
unless they will learn one more point on that column. As a result column-wise from that
information alone, a packed secret i is safe. Row-wise the attacker has t points on every
row polynomial including the row 0 polynomial of degree 2t holding the t + 1 packed
secrets. For row 0, Shamir secret sharing also guarantees that the Adv learns nothing
about any of the t+ 1 packed secrets. This is because information theoretically, it is easy
to see that even if the attacker holds the t shares of a degree 2t polynomial, the other t+ 1
points are still indistinguishable from random. Ergo, the packed secrets could be anything.
For example, let the packed secrets be the vector of all 0, interpolate a new polynomial
made of degree 2t where t+ 1 points have the value 0 (the packed points), and the other t
points are the attacker’s points.

Let us consider the new information learned by the attacker when the reconstruction
algorithm for the first packed secret i is called. The attacker learns the column polynomial
i of degree t. i.e the attacker learns a new point on every row polynomial of degree
2t, including the row 0 polynomial of degree 2t holding the t + 1 packed secrets. Still,
information theoretically the other t packed secrets are still indistinguishable from random.
Even if the attacker holds t+ 1 shares of a degree 2t polynomial the other t points are free.
Ergo, the other t packed secrets could still be anything.

Let us consider the new information learned by the attacker when the reconstruction
algorithm is called the tth time. The attacker has learned t column polynomials each
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of degree t on top of the ones they learned from dispersal. i.e the attacker has learned
2t points on every row polynomial of degree 2t, including the the row 0 polynomial of
degree 2t holding the 1 secret left. Still, information theoretically the last packed secrets
is still indistinguishable from random. Even if the attacker holds 2t shares of a degree
2t polynomial, there is one point that is free. Ergo, the last packed secret could still be
anything.

Lemma 1. Let ϕ1 . . . ϕn be a list of column polynomials of degree t. Suppose there exists
a set S ⊂ {1, . . . , n} of size t + 1 such that for all i ∈ S, the row polynomial formed by
interpolating ϕ1(i), ϕ2(i), . . . , ϕn(i) is of degree p. Then, there exists a unique bivariate
polynomial f(x, y) of degree p in one dimension and t in the other dimension where
ϕi(·) = f(·, i).

Proof. Let S = {x1, . . . , xt+1}. Let ψx1 . . . ψxt+1 be the row polynomials of degree p given
by the statement of the lemma. Define f(x, y) =

∑t+1
i=1 ψxi(y)Li(x), where Li(x) the

appropriate Lagrange coefficient (namely, the unique degree-t univariate polynomial that
vanishes at xj for i ̸= j and is 1 at xi).

Observe that f is of degree p in one variable and t in the other. Now we need to
prove f(x, y) = ϕy(x). If x ∈ S, then this is true by construction, because f(x, y) = ψx(y)
(because there is only Lagrange coefficient that doesn’t vanish at x), which is equal to
ϕy(x) by definition of ψ. Since f(·, y) and ϕy(·) are degree-t polynomials that agree on
t+ 1 points (namely, all points in S), they must be equal as polynomials, and thus the
statement is true for all x, not just x ∈ S.

We now need to prove uniqueness. Observe that for every i, f(x, i), as a polynomial of
degree less than n in x, is unique if it agrees with ϕi(x) in n points (because two different
univariate polynomials of degree less than n cannot agree on n points). Thus, viewing
f(x, y) as a univariate polynomial in y that evaluates to polynomials in x, we know that its
n evaluations are unique. Since it it has degree less than n in y, it must also be unique.

3.2.3 Proof of Correctness

Correctness states that all nonfaulty parties who complete reconstruction of the kth secret
should agree on the same secret, which in turn should be the same as the one used by the
dealer if it was honest.

We reason about correctness in the following steps. First, our use of Bracha’s broadcast
ensures that all honest parties have agreement over the root commitment by the end of
the sharing phase. Second, for the broadcast to succeed, at least t + 1 honest parties
must have received the actual vector of polynomial commitments in the dealer’s sharing
phase (or else they would not have echoed the root commitment, or anything else for that
matter) and have checked that it forms a bivariate polynomial (lemma 1). These parties
collectively hold enough data to reconstruct the secrets. Moreover, in Algorithm 1 they
will provide every honest party with their column polynomial and its commitment. Finally,
this implies that the honest parties have enough information at reconstruction for the
online error correction to terminate and produce the correct secret.

3.3 Haven++ with Batching and Aggregate Proofs
In this section, we explain how we can batch multiple invocations of Haven++ to save on
amortized communication complexity and also enhance run time. The core idea is that
instead of the dealer generating one packed bivariate polynomial, the dealer has to generate
a batch of them. Batching enables the dealer to always generate n2 proofs regardless of
how many secrets are being batched.
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3.3.1 Batching for multiple polynomial evaluation

Consider a set of β polynomial commitments {ϕ̂1 . . . ϕ̂β} and a single evaluation point
j. If a prover wants to prove that ϕi(j) = yi for all i ∈ {1 . . . β}, then the prover has to
send β witnesses, one for each (yi, ϕ̂i). However, one can build one succinct proof for all β
polynomials at index j.

To achieve this, hbACSS [YLF+22] built their own “Batch Inner-Product” that gener-
alizes the inner product argument of Bulletproofs [BBB+18] and used it to empower their
ACSS construction. Similarly Alhaddad et al. [ADVZ21], built a generic construction that
works for any additive homomorphic polynomial commitments. For this work, we instanti-
ate the generic construction of Alhaddad et al. [ADVZ21] using both Bulletproofs [BBB+18]
and AMT [TCZ+20] with some modifications that we describe below.

To recall, the scheme of Alhadadd et al. [ADVZ21] is a three-round sigma protocol
that is made non-interactive using the Fiat-Shamir transform. It has three steps: (1) a
commitment, (2) a public coin challenge, and (3) a response.

1. Commitment: prover commits to β different polynomials {ϕ1 . . . ϕβ} with the same
degree d. For each i ∈ {1, . . . , β}, the prover runs ϕ̂i = pCom(pp, ϕi, d) and sends
the pair (ϕi(j), ϕ̂i).

2. Challenge: verifier generates a random point c ∈ F and sends it to the prover.

3. Response: prover interpolates the polynomial ϕc from {ϕ1, . . . , ϕβ} using Lagrange
interpolation: ϕc(X) =

∑β
i=1 ϕi(X) · ℓi(c) where ℓi(c) =

∏β
k=1
k ̸=i

c−k
i−k . After computing

ϕc, the prover runs Eval(pp, ϕ̂c, j) to obtain the witness w, and then sends w to the
verifier.

The verifier computes ϕc(j) =
∑β

i=1 ϕi(j) · ℓi(c) by interpolating all ϕi(j), where
i ∈ {1, . . . , β} and ℓi(c) is the i-th Lagrange basis polynomial evaluated at c, defined by
ℓi(c) =

∏β
k=1
k ̸=i

c−k
i−k . Subsequently, the verifier calculates ϕ̂c =

∑β
i=1 ϕ̂i · ℓi(c). The verifier

can compute ϕ̂c thanks to the additive homomorphic property of the employed polynomial
commitment scheme. The verifier accepts the proof if Verify(pp, ϕ̂c, (j, ϕc(j), w), d) returns
True, and rejects it otherwise.

Consider a prover who wishes to perform n simultaneous evaluation proofs for a verifier.
If implemented naively with Fiat-Shamir, the prover has to generate n different challenges
and interpolate n different polynomials. Instead, we adopt the same approach used in
hbACSS, where we employ a common challenge for all proofs across all verifiers.

If a prover intends to create multiple proofs across various indices, it is not possible to
send every set of evaluations to each verifier individually. To address this, we construct a
Merkle tree in which each leaf node contains all of the transcripts associated with a specific
verifier, and the root hash of the Merkle tree serves as the shared challenge. Subsequently,
we provide each verifier with a Merkle branch, allowing them to reconstruct the root hash
and verify that it fully encompasses all of the verifier’s transcripts.

We formally define our batch proof in Algorithm 4. Note that our algorithm is
named Aggregate Batch Proof rather than Double Batch Proof, as referred to in Yurek et
al. [YLF+22], despite identical functionality and parameters. This terminology is chosen
to emphasize the dual enhancements of aggregating multiple proofs and improving prover
efficiency through the batching of multiple evaluations.

Construction. To support efficient batched calls to Haven++, our batched Haven++
protocol makes some changes to the sharing phase in Algorithm 1. The main changes can
be summarized with the following:
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Algorithm 4 Aggregate Batch Proof Algorithm
Require: A polynomial commitment scheme P that is additively homomorphic. Public

parameters pp of the polynomial commitment scheme. A batch of β independent
polynomials [ϕ1(X), . . . , ϕβ(X)], each of degree at most d, defined over a finite field F
The number of evaluations n (e.g., the total number of parties). A collision resistant
hash function H : {0, 1}∗ → F mapping to field elements of F.

1: AggBatchProof(pp, [ϕ1(X), . . . , ϕβ(X)], n, d)
2: Initialize an empty list W
3: for i = 1 to n do
4: Compute the vector of evaluations yi = [ϕ1(i), . . . , ϕβ(i)]
5: Compute the leaf node leafi = H(pp, i,yi)
6: Construct root = MerkleTree.Create(leaf1, . . . , leafn]) ▷ Build a Merkle tree over

the leaves {leaf1, . . . , leafn}
7: For each i, compute the Merkle proof branchi (path from leafi to root)
8: Compute ϕroot(X) =

∑β
k=1 ϕk(X) · ℓk(root) where ℓk(root) =

∏β
j=1
j ̸=k

root−j
k−j ▷

Interpolate the polynomial ϕroot(X) from [(1, ϕ1(X)), . . . , (β, ϕβ(X))] using Lagrange
interpolation

9: y1 . . . yn = BatchProof(pp, ϕroot, n, d)
10: for i = 1 to n do
11: Parse y as ⟨i, ϕroot(i), wi⟩
12: Construct the tuple w′

i = ⟨i,yi,branchi||wi⟩
13: Append w′

i to the list W
14: return W
15: AggBatchVerify(pp, [ϕ̂1, . . . , ϕ̂β ], y, d)
16: Parse y as ⟨i,yi,branchi||wi⟩
17: Compute leafi = H(pp, i,yi)
18: if not MerkleTree.Verify(leafi,branchi) then
19: return False
20: Let root = branchi[0] ▷ get the root of the Merkle tree from the Merkle proof
21: Compute ϕ̂root =

∑β
k=1 ϕ̂k · ℓk(root)

22: Compute ϕroot(i) =
∑β

k=1 ϕk(i) · ℓk(root) using yi

23: return Verify(pp, ϕ̂root, wi, d)
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1. The dealer creates β batches of bivariate polynomoials each packing b secrets.

2. The dealer calls AggBatchProof to generate n proofs for β univariate column poly-
nomials at a time.

3. Instead of every party vector committing to all the univariate polynomial commitment
directly. They commit to lists of column polynomial commitments (of size β) where
each column polynomial commitment is from a different bivariate polynomial.

4. Every party can verify β points at time (each point is on a column that belong to a
different bivariate polynomial) using AggBatchVerify.

We now offer more details into the full protocol:

• The broadcast phase: Instead of generating one bivariate polynomial, the dealer
generates a batch β of bivariate polynomials. Each bivariate polynomial packs b
secrets s1 . . . sb (line 2). To cater for a list of bivariate polynomials, the dealer
commits using pCom to n univariate polynomials of every bivariate polynomial
(lines 3-5). Instead of producing proofs for every evaluation point, we now batch
across all β bivariate polynomials using the algorithm AggBatchProof 4. In more
details, for a specific column j, ϕi,j of every bivariate polynomial i ∈ [1, β] is used
as input to the new algorithm AggBatchProof, which will produce n proofs i.e
AggBatchProof(pp, [ϕ1,j . . . ϕβ,j ], n, t]). Party pi will receive the ith proof. Instead
of sending one row to every party, the dealer sends β rows (ith row of every bivariate
polynomial) at a time with n proofs, regardless of how big β can be. Still, the dealer
has to send all (n ∗ β) polynomial commitments and polynomial evaluations to every
party.

• The echo phase (lines 9-14): Each party pi verifies that all row evaluations and
proofs are consistent with the column polynomials. One batch of β univariate column
polynomial at a time. Let Cj be the jth univariate polynomial commitment of every
bivariate added together in a list and let r1 . . . rβ be the row evaluation of every bi-
variate polynomial. The verifier calls AggBatchVerify(Cj , ⟨j, [r1[j] . . . rβ [j]], y⃗i[j]⟩, t)).
This allows the verifier check β points each from every row at the same time, for
one proof. Also, just like before, each row of evaluations must be on a degree 2t
polynomial (line 10).
Instead of committing to all univariate polynomial commitments directly (line 11),
party pi vector commits to every Ci (after hashing it) instead, producing one vector
commitment C. Remember that every Ci is a list of column polynomial commitments,
where each polynomial commitment is at index i of the list of batched bivariate
polynomials. Just as before the party also produces proofs of inclusion with the
exception that that every element inside of the vector commitment is a hash to a
list of polynomial commitments instead of hash of a single polynomial commitment.
(lines 12-13) The party then sends an echo message to every party pj containing the
vector commitment C, the polynomial commitments Cj , the corresponding inclusion
proof πj and the evaluation proof at j, y⃗i[j] (lines 12-14).

• The ready phase (lines 15-28): When a party pi hears 2t + 1 echo messages from
different parties with the same vector commitment C, the proper column polynomial
commitments and its inclusion proof at position i and with 2t+ 1 valid evaluation
proofs for all column polynomials. pi interpolates its own β column polynomials
and generates n evaluation proofs by calling AggBatchProof on the list of column
polynomials it just interpolated. pi then sends each party j the jth evaluation on
its own column polynomial for every bivariate polynomial with its own polynomial
commitments Ci, inclusion proof and C (line 19).
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Figure 3: The computational cost per party in Haven++ is reduced as the number of
batches increases. Each batch packs t+1 secrets. (Each curve has a fixed number of parties
n, and lower is better.)

If a party didn’t send a ready and hears t+ 1 ready. The party waits until it hears
t+ 1 valid echo messages instead of 2t+ 1. Once t+ 1 valid echo messages are heard
the protocol continues as before. i.e. pi interpolates its own β column polynomials
and generates n evaluation proofs by calling AggBatchProof (line 24). pi then sends
each party j the jth evaluation on its own column polynomial for every bivariate
polynomial with its own polynomial commitments Ci, inclusion proof and C (line
25).
When a party hears 2t+ 1 ready messages from every different party pm with the
same vector commitment C, the proper column polynomial commitments Cm and
its inclusion proof πm at position m and with 2t+ 1 valid evaluation proofs (line 26).
The party interpolates β row polynomials and finishes the dispersal.

We describe the asymptotic communication complexity of Haven++ in §5.2.3.

4 Experimental Results
We have implemented the Haven++ protocol in Python, and our open-source code is
available at https://github.com/nicolas3355/AMPC. In this section, we describe some
features of our code, and we provide detailed experimental results (with a few different
polynomial commitment schemes) and comparisons to the hbACSS family of protocols.

Implementation details. The implemented version of the Haven++ protocol gen-
erally performs the same computation as shown in Algorithms 1-3 and described in §3.
However, there are a few noteworthy differences that we describe below.

First, in the dealing step, the dealer sends both a row polynomial and column polynomial
to every party, rather than just a row polynomial. This has no impact on confidentiality
or asymptotic communication, and provides a small efficiency boost in the honest dealer
setting. This is because if a party pi has received a column and row polynomial from the
dealer for a specific root commitment C, and other parties are sending echos and ready
messages with evaluations with the root commitment C, then pi can disregard verifying
and using those evaluations because pi already has that information from the dealer.

https://github.com/nicolas3355/AMPC
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Figure 4: Haven++ batching instantiated with AMT [TCZ+20] and Bulletproofs [BBB+18]
vs hbACSS batch proof [YLF+22]. Our batch proof substantially beats hbACSS in batch
creation for any number of polynomials batched.

Second, the implemented version uses fast Fourier transforms over the roots of unity in
order to evaluate and interpolate the polynomials efficiently. The implemented version
also batches multiple bivariate polynomials as described in §3.3, and it is also a multi-core
implementation that delegates each bivariate polynomial to a different core.

Experimental setup. We implemented the Haven++ protocol using Python 3.7.3.
on top of the existing open source implementation of hbACSS [YLF+22]. For easy
comparison, we use the same Python wrapper that implements the elliptic curve (BLS12-
381) in Rust (field size is 381 bits), the same setting of n = 3t + 1, and also run in the
same docker container as hbACSS for easy reproduciblity of both our work and theirs.
The containers run on our machine which has an AMD 3700X CPU (released in 2019)
with 8 main cores and 80GB RAM. Note that Haven++ comfortably runs with less than
8GB of RAM.

We use asyncio for managing concurrent communication. All parties are simulated
using a single core and run one after the other in a queue. It is important to note that our
dealer makes use of multiple cores when generating the proofs to simulate a real use case
scenario and exploit the way we batch proofs. Also, parties use multiple cores to verify the
dealer message. However, when verifying messages from each other no multi-core is used.

The experimental results shown in Yurek et al. [YLF+22] are extrapolated: they run
their protocol with dummy polynomial commitments, and use this to estimate the total
runtime. By contrast, the figures shown in this work are based on actual executions of
their protocol using the primitives that they have developed.

Experimental results. We show the results of our experiments in Figures 1-5. The
overall results are that our construction scales better to a large message with a large
number of parties, using less CPU and RAM resources and benefiting from batching.

Figure 1 compares the performance of Haven++ and the two fastest variations of
hbACSS, namely variants 0 and 2. Variant 0, is the fastest in the optimistic case where
there are no faults, while Variant 2 is better in the pessimistic case where there are t faults.
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Figure 5: Haven++ batching instantiated with AMT [TCZ+20] and Bulletproofs [BBB+18]
vs hbACSS’s batch proof verification [YLF+22]. Our batch proof verification substantially
beats hbACSS in batch creation for any number of polynomials batched.

We show results for a constant batch size, and for a batch size that scales linearly in the
number of parties. The figure shows that as n scales, our amortized computational cost
per party remains low whereas hbACSS grows rapidly.

The remaining figures show the impact of batching. Figure 3 shows how Haven++
becomes more efficient as the batch size grows, even while holding fixed the number of
parties and the number of secrets packed into each polynomial. Figures 4 and 5 show
the costs of creating and verifying a proof, respectively. They show a 2-8× speedup for
Haven++ relative to hbACSS.

5 Applications of ACSS
ACSS is a building block for a wide array of applications, including Byzantine Agreement,
Weak Leader Election (and Weak Common Coin), ADKG and Asynchronous Multi Party
Computation in general. Our ACSS serves as a drop in replacement, for many of the AVSS
and ACSS primitives in those applications.

We will provide a brief overview of each application before focusing primarily on
our ADKG application. This focus is twofold: (1) to introduce a novel method of
combining randomness, which could be of independent interest, and (2) to highlight new
asymptotic improvements in amortized word complexity. Note that for simplicity we
will demonstrate the application of Haven++ without batching and use word complexity
instead of communication complexity. However, for real world applications, batching would
enhance the communication complexity by an extra log factor when batching at least
log(n) invocation of Haven++.

1. Byzantine Agreement and Weak Leader Election: Haven++ shares the same
interface with Bingo: (1) it allows a dealer to share up to k secrets where k ≤ t+ 1,
(2) it allows reconstruction of any single secret if t+ 1 parties are present, and (3)
it allows to reconstruct the sum of those secrets. As such, Haven++ can also be
used to create Validated Byzantine Agreement and weak common coin in the same
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way that Bingo did, i.e., by using the techniques of Abraham et al. [AJM+23b] of
running gather and of Canetti et al. [CR93b] to generate weak common coin from
verifiable secret sharing (note that this implies weak leader election).

2. Asynchronous MPC: Most modern MPC constructions rely on pre-processing of
shared correlated randomness in the offline phase, which it can then use later to speed
up the online phase of the computation. A prominent example of such a technique
is the generation of Beaver triples [Bea91], where parties maintain secret shares of
three variables a, b, and c with the condition that c = ab. While we conjecture that
Haven++ could enhance the amortized communication complexity for generating
these triples, in this work we focus on another type of correlated randomness:
Haven++ enables the generation of dual-threshold shares, which enable multiplication
in the online phase with just one round of communication [BTH07, DN07]. We
provide details in §5.3. When the distributed randomness technique of §5.1 is
applied, Haven++ enables the generation of the pre-processing material with a word
complexity of just O(κn2) without the need for a trusted dealer with b = 1, n = 3t+1,
and p = 2t.

3. ADKG: Haven++ can be used to produce both low and high threhsold ADKG; we
provide constructions of both in §5.2. For low threshold ADKG our amortized word
complexity is O(κn). While our High threshold ADKG is O(κn2). To do this, we
introduce a new way of generating randomness from bivariate polynomials (discussed
in §5.1) and use it as a stepping stone for our ADKG construction described in
§5.2. For simplicity, we assume that we have a black box access to an Multi-Valued
Byzantine Agreement (MVBA) protocol, rather than building one from Haven++.

5.1 Generating Distributed Secret Shared Randomness
A common technique to generate distributed secret shared common randomness among
n parties is to have every party secret-share a random secret using ACSS. An MVBA
protocol (as defined in §2.4) is run by the parties to agree on a set of n− t (sometimes t+1)
parties that finished the sharing phase. Afterward, every party sums up the shares from
the set of parties that finished dispersal and reveals the sum of the shares. The common
random secret is computed as the sum of all those secrets. The idea is that as long as one
party is honest and chooses its own secret uniformly at random then the output is random.
Notice, that this technique requires to sacrifice n calls to the ACSS disperse to get one
common random number.

In this section, we show how to use n calls to Haven++ (with b = t+ 1) in order to
produce O(n2) distributed random secrets that are secret shared using low threshold or
O(n) distributed random secrets that are secret shared using high threshold (b = 1). We
summarize our Distributed Randomness protocol in Algorithm 5 and describe it below.

Sharing Phase. Each party pi samples b uniformly random numbers from a finite
field s1 . . . sb. Each party pi then calls the dispersal phase of Haven++ and passes the
secrets as input.

Agreement Phase. During the agreement phase, parties run a multi-valued validated
Byzantine agreement (MVBA) protocol to reach consensus on a subset of terminated
dispersals of Haven++. Specifically, each party i waits for a set Si of 2t+ 1 instances to
finish. Party i subsequently inputs Si into the MVBA protocol. Additionally, party pi

maintains a comprehensive set S representing all instances that have terminated so far that
is incrementally updated. For a given value Sj provided to the MVBA by party pj , party
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Algorithm 5 Generating Distributed Randomness for party i
SHARING PHASE:

1: S ← {}
2: Sample b random secrets s1, . . . , sb ← Zq

3: ϕ1, . . . , ϕb = Haven++ (s1, . . . , sb) ▷ Let ϕ0, . . . , ϕb be the column univariate
polynomial used in Haven++ dispersal

4: S ← S ∪ {j} when j-th Haven++ dispersal terminates at party pi

AGREEMENT PHASE:
5: if |S| = 2t+ 1 then
6: Let Si ← S, invoke MVBA(Si) with predicate P (Sj , S) ▷ Sj is the input value

of some party pj , S is party pi’s local variable defined in the Sharing Phase. P (Sj , S)
only returns 1 once Sj ⊆ S.
RANDOMNESS EXTRACTION PHASE:

7: Let T be the output of the MVBA protocol after picking exactly the first 2t+ 1
8: Let Brow = [] ▷ used to store row i of every bivariate polynomial, there is going to be
b of them

9: Let Bcol = [] ▷ used to store column i of every bivariate polynomial, there is going to
be b of them

10: Let Bcom = [] ▷ used to store the column polynomial commitments of the
new bivariate polynomials, there is going to be b of them. It is enough to store 2t+ 1
column polynomial commitments

11: Let Ocol,1, Ocol,n be the columns that pi has dispersed during the Haven++ dispersal
and let Ocol,−b, Ocol,0 be the columns holding the packed secrets.

12: for each j ∈ T do
13: Let Orow,i be row i that pj has dispersed during the Haven++ dispersal.
14: Let ϕ̂1 . . . ϕ̂n, be all n column polynomial commitments that has been dispersed by

pj during the Haven++ dispersal.
15: Compute ϕ̂−b . . . ϕ̂0 homomorphically from ϕ̂1 . . . ϕ̂2t+1
16: for each k ∈ [−b, 0] do
17: Bcom[−k].append(ϕ̂−k)
18: Bcol[−k].append(Ocol,−k)
19: Brow[−k].append(Orow,j(k))
20: if |Brow[−k]| = 2t+ 1 then
21: Brow[−k] = interpolate(Brow[−k])
22: for each j \ T do ▷ only needed if the higher threshold of every bivariate need to

be opened
23: for each k ∈ [−b, 0] do
24: send (−k, rowi(j)) to Pj ▷ ensure that all parties have columns

DISTRIBUTION PHASE:
25: if i \T then ▷ only needed if the higher threshold of every bivariate need to be opened
26: Upon receiving((k, val) from party Pm for the first time with k:
27: Bcol[k].append(m, val)
28: if |Bcol[k]| ≥ t+ 1 then ▷ Run Online Error correcting code
29: ˜ϕcol = ECC(Bcol[k], t, ek) ▷ with ek initialized to 1, attempt to interpolate

the column polynomial of degree t
30: if ˜ϕcol ̸= ⊥ then
31: Bcol[k] = ˜ϕcol

32: ek = ek + 1 ▷ increase the number of errors by one with each failed decoding
33: if for all k ∈ [−b, 0] Bcol[k] is a polynomial of degree t then
34: output(Bcom, Bcol, Brow)
35: else
36: output(Bcom, Bcol, Brow)
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Figure 6: Producing t+ 1 uniform random bivariate polynomials from Haven++. In this
figure, n = 3t+ 1 where t = 2.

pi leverages the predicate P (Sj , S) to verify that |Sj | ≥ 2t+ 1 and Sj ⊆ S, confirming that
all dispersal instances within Sj have indeed terminated at party pi. Upon completion,
the MVBA protocol yields a set T , where |T | ≥ 2t+ 1. Following the determination of
set T by the MVBA protocol, every party pi pick the first 2t+ 1 parties of the set T and
remove the rest.

Randomness Extraction Phase. For every party pj that was in the set T , party
pi saves the row polynomial that it got from the dispersal phase of that party and all
the column polynomial commitments. The first part is to set the column polynomial
commitments for each new bivariate polynomial. To this end pi has to first compute
homomorphically the column polynomials that has been shared by every pj . Let ϕ̂−b . . . ϕ̂0
be the polynomial commitments for party pj that has been computed by pi. Party pi

considers each ϕ̂k as the jth polynomial commitment of the −k bivariate polynomial where,
−b ≤ k ≤ 0. Now that pi has polynomial commitments for every new bivariate polynomial,
pi has to compute its row polynomials. Party pi first evaluates the row polynomial rowj

(acquired from Haven++’s dispersal of pj) at b points from [−b, 0]. Recall that at those
locations, each evaluation, would be a share of the packed secret with threshold t (as shown
in Fig 6). Party pi considers each (1, row1(−k)), (2, row2(−k)) . . . (2t+ 1, row2t+1(−k)) as
rowi of the −k bivariate polynomial where, −b ≤ k ≤ 0.

Distribution Phase. To guarantee that every party has columns and not just
rows, party pi sends every party pj , r1(j) . . . rb(j) evaluations where r1 . . . rb are the row
polynomials for the newly distributed random bivariates (as shown in Figure 6). If a party
doesn’t have some columns (because it wasn’t picked as part of the MVBA set), then that
party uses online error correcting code to reconstruct its columns from other parties.
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5.2 Low and High Threshold ADKG
In this section, we show how the protocol from §5.1 can be extended, with the help of
private polynomial commitments, to build either a low, or high threshold asynchronous
distributed key generation protocol. We begin by defining the properties of a private
polynomial commitment, followed by detailing how it can be instantiated on top of any
additively homomorphic polynomial commitment. Finally, we present the construction of
a low- and high-threshold asynchronous distributed key generation protocol.

5.2.1 Defining Private Polynomial Commitments

For our ADKG construction, we require an additional property of our polynomial commit-
ment. A prover must demonstrate that a value is a correct polynomial evaluation in the
exponent, while maintaining the privacy of the polynomial evaluation itself. The verifier,
upon receiving the polynomial commitment, the index, the evaluation in the exponent,
and the proof, can return true if the claim is correct or false otherwise.

1. PrivateEval(pp, ϕ, i)→ ⟨i, gϕ(i), w⟩ is given a polynomial ϕ as well as an index i ∈ F.
It outputs a 3-tuple containing i, the evaluation in the exponent gϕ(i), and witness
string wi. Here g is a random generator of a group G where discrete log is hard.

2. PrivateVerify(pp, ϕ̂, y, d) → True/False takes as input a commitment ϕ̂, a 3-tuple
y = ⟨i, j, w⟩, and a degree d. It outputs True if the verification succeeds, and False
otherwise.

We instantiate private polynomial commitments on top of any additively homomorphic
polynomial commitment in the next section.

5.2.2 Constructing Private Polynomial Commitments

Private polynomial commitments (as defined in §5.2.1) can be instantiated using zk-
SNARKs. However, we make the observation that Bulletproofs [BBB+18] already supports
this primitive, with a small modification. In fact, we can construct private polynomial
commitments from any additively homomorphic polynomial commitment such that the
same field is used to specify the polynomial and the exponents of a Diffie-Hellman group.

We describe the main ideas here, and show the full construction in Algorithm 6. Bul-
letproofs demonstrate the application of inner product arguments to construct polynomial
commitments. To verify a polynomial f ’s evaluation at a point i, the prover discloses
an inner product involving two vectors, v1 and v2. Here, v1 represents the coefficients
of the polynomial f . The evaluation point i is exponentiated across a range from 0 to
d, with d being the polynomial’s degree, to form v2: v2 = ⟨1, i, i2, . . . , id⟩. Employing
this technique reveals details about the coefficients within the vector v1. To make it
confidential, a standard technique [BBB+18] would be to ask the verifier for a challenge c,
the prover sends both f(i) and f ′(i) and proves the evaluation for (f + cf ′)(i) instead of
f(i) where f ′ is picked uniformly at random from the field. Hence, v1 contains information
about the coefficients of f + cf ′ instead of f . The same methods can be used to build
private polynomial commitments on top of discrete log systems. Instead of the prover
sending f(i) and f ′(i), the prover sends gf(i) and gf ′(i) (standard Feldman Commitments)
and proves the evaluation for (f + cf ′)(i) as before. The verifier can check the proof for
(f + cf ′)(i) using the inner product argument and then check in the exponent that indeed
gf(i)(̇gf ′(i)c == g(f+cf ′)(i). In this method, in the same way as the standard technique, it
is acceptable to reveal information about (f + cf ′)(i) because the polynomial f ′ serves as
a one-time pad that hides f from the verifier. Soundness follows from the fully binding
property of the Feldman commitments (gf(i), gf ′(i) and g(f+cf ′)(i)) and the correctness of
the Polynomial Commitment (in this case Bulletproofs).
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Algorithm 6 Private Polynomial Commitments from Additively Homomorphic Polynomial
Commitments
Require: ϕ is a polynomial of degree d where every coefficient is uniformly sampled from

Zp, i ∈ Zp the index that the polynomial need to be opened at, g ∈ G of order p, and
pp denotes the public parameters used by the polynomial commitment.

1: P’s input: (g, ϕ, i)
2: V’s input: (g, ϕ̂, i)
3: P : ϕ′ ← random ∈ Zd

p

4: P → V : ϕ̂′ = pCom(pp, ϕ′, d)
5: V : c← random ∈ Zp

6: V → P : c
7: P → V : gϕ′(i), gϕ(i) and ⟨i, (ϕ+ cϕ′)(i), wi⟩ = Eval(pp, (ϕ+ cϕ′), i)
8: V computes:
9: ϕ̂+ cϕ′ = Hom(pp, ϕ̂, ϕ̂′, c)

10: if Verify(pp, ϕ̂+ cϕ′, ⟨i, (ϕ+ cϕ′)(i), wi⟩) and g(ϕ+cϕ′)(i) = (gϕ(i)) ∗ (gϕ′(i)c) then
11: return Vaccepts

12: else
13: return Vrejects

We show in Algorithm 6 a formal construction for the case of Bulletproofs, where the
main modification occurs in lines 7 and 10. We believe the technique generalizes to work
for any additively homomorphic polynomial commitment.

5.2.3 Constructing Low and High Threshold ADKG

To recall, at the end of our distributed randomness protocol in Algorithm 5, every party
has a row and column of every bivariate polynomial. In other words, for every bivariate
polynomial, every party pi has t+ 1 secret shares of t+ 1 different secrets (each of degree
t), or one secret share of one secret that is of degree 2t. Moreover, every party has a
univariate polynomial commitment for every column of every bivariate polynomial. What’s
left is to have public keys that correspond to packed univariate polynomial commitment(s).
To this end, we use private polynomial commitments as defined in §5.2.1.

Let g be a random generator of a group G where discrete log is hard. We show how
to get public keys for one distributed bivariate polynomial but without lost of generality
the same can be done with all bivariates. Let ϕi be the column polynomial that party
pi has. pi runs PrivateEval(pp, ϕi, 0) to generate the tuple yi = ⟨i, gϕi(0), w⟩ and sends
it to all parties. Every party j verifies that the tuple (and the public key is correct) by
checking that PrivateV erify(pp, ϕ̂i, yi, d) returns True. Recall that Party j already has
consensus over all polynomial commitments (party i doesn’t have to send it). Once party
pi hears 2t+ 1 valid private polynomial commitments from 2t+ 1 different parties. For
every packed secret k, where −b ≤ k ≤ 0, party pi computes gk =

∏
gϕj(0)Lj(k) where j

is the index of the party that sent a valid private polynomial commitment and L is the
Lagrange polynomial.

In case of high threshold, b = 0, there will only be one public key per bivariate
polynomial. While in case of low threshold, b = t+ 1, every bivariate would be packing
t+ 1 public keys that can be evaluated from z = −b to z = 0.

Word Complexity Analysis. Our ADKG construction can be decomposed into
the sum of the costs for our ACSS, MVBA, and the transmission of private polynomial
commitment evaluations. The total cost is as follows:
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• Haven++ incurs a word complexity of O(κn2) when instantiated with Bulletproofs.
In our ADKG, we have n calls to our Haven++, which results in a word complexity
of O(κn3).

• The MVBA incurs a word complexity of at most O(κn3), if instantiated with the
latest MVBAs [DWZ23,AJM+23a,AJM+23b].

• Broadcasting the private polynomial commitments incurs a word complexity of O((κn)
per party per bivariate polynomial. We have a batch of O(n) (t+ 1) polynomials
and we have n parties. Thus a total word complexity of O((κn3)

For high threshold ADKG, it is possible to construct O(n) (t+ 1) ADKGs (when b = 1),
with the total amortized word complexity being O(κn2). For low threshold ADKG, it is
possible to construct O(n2) ((t+ 1)× (t+ 1)) ADKGs with b = t+ 1. The total amortized
word complexity is thus O(κn).

Communication Complexity and Runtime Analysis. Each proof is of size
O(log(βn)κ) where β is the number of bivariate polynomials being batched rather than
O(β log(n)κ). Notice that β is inside the log. So, the (non-amortized) concrete communica-
tion complexity when batching across β bivariate polynomials is: 6βn2κ+ 3n2(log(βn)) +
n2κ+n2κ log(n). This complexity is independent of packing: it’s the same for one secret as
for packing t+ 1 secrets per polynomial. In the latter case, the amortized asymptotic com-
munication complexity for each one of the β(t+1) secrets is O(βnκ+n log(βn)+n log(n)κ).
Note that if β = log(n), then we get O(nκ); there is no extra log factor.

As for the concrete runtime performance boost for both the verifier and dealer: intu-
itively, batching achieves this because the proof size is log(βn) rather than β log(n). The
runtime to produce all the proofs is: O(βnκ) + O(n2 log(βn)κ) when batching across β
bivariates. Compare this with O(βn2 log(n)κ) if no batching is used. For multicore, you
can divide by the number of cores.

5.3 Asynchronous MPC
Just like with Beaver triples [Bea91], dual secret sharing (or random double sharing)
[BTH07,DN07] is a pre-processing building block for performing multiplication gates in
MPC. This technique requires having two secret different sharing of the same random
secret under two different thresholds t, and 2t respectively. For each multiplication, the pre-
processing material is consumed and never used again. Our construction from Algorithm 5
instantiated with b = 1, can be used to generate distributed dual secret-shared randomness
with no trusted dealer. To open the secret under a 2t threshold, one can use Algorithm 2,
while to open the same secret under a t threshold, one can use Algorithm 3. We remind
the reader how to use {t, 2t} dual sharing to do multiplication in the honest but curious
case. Note that support for multiplication with malicious security can be achieved, if
additively homomorphic polynomial commitments are used.

Multiplication in the Honest But Curious Setting. Assume there are two
secrets s1 and s2 secret shared using Shamir secret sharing, such that any t+ 1 parties
can reconstruct either secrets. If each party i multiplies the two shares it has, this will
result in a polynomial S of degree 2t where S(0) = s1s2 and each party i has the share
S(i). If the parties need to do more multiplications, the parties need to lower the threshold
from 2t to t while still maintaining the same constant coefficient. The trick involves a pre-
processing step, given a random number r, secret shared among n parties using two random
polynomials HR and R of degree 2t and t respectively, such that HR(0) = R(0) = r and
where each party i has the pair of shares HR(i), R(i) . Each party opens HR(i)− S(i).
It is okay to open this value because HR(i) is random and will act as a blinding factor
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to the value S(i). Given 2t shares, the polynomial HR − S is opened at 0 in the clear.
Each party i locally adds R(i) to the constant (HR − S)(0). It is clear to see that this
will result with every party having shares of s1s2 under a degree t polynomial.

6 Conclusion
This work presents a dual-threshold ACSS construction called Haven++, which doesn’t
require trusted setup and is free from any complaint phase. Haven++ accommodates both
low and high thresholds to reconstruct the entire message, and it boasts an optimal number
of rounds and communication complexity while also demonstrating practical efficiency.
Furthermore, we introduce an innovative method to construct an ADKG system by utilizing
secret shared bivariate polynomials coupled with private polynomial commitments.
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