
A New Public Key Cryptosystem Based on the
Cubic Pell Curve

Michel Seck1 and Abderrahmane Nitaj2(�)

1 Ecole Polytechnique de Thies, LTISI, Senegal
mseck@ept.sn

2 Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, France
abderrahmane.nitaj@unicaen.fr

Abstract. Since its invention in 1978 by Rivest, Shamir and Adleman,
the public key cryptosystem RSA has become a widely popular and a
widely useful scheme in cryptography. Its security is related to the diffi-
culty of factoring large integers which are the product of two large prime
numbers. For various reasons, several variants of RSA have been pro-
posed, and some have different arithmetics such as elliptic and singular
cubic curves. In 2018, Murru and Saettone proposed another variant of
RSA based on the cubic Pell curve with a modulus of the form N = pq.
In this paper, we present a new public key cryptosystem based on the
arithmetic of the cubic Pell curve with a modulus of the form N = prqs.
Its security is based on the hardness of factoring composite integers, and
on Rabin’s trapdoor one way function. In the new scheme, the arithmetic
operations are performed on a cubic Pell curve which is known only to
the sender and the recipient of a plaintext.

Keywords: Public Key Cryptography, Cubic Pell curve, RSA, KMOV,
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1 Introduction

The RSA cryptosystem is one of the earliest and most popular public key en-
cryption schemes. It was proposed by Rivest, Shamir, and Adleman in 1978
[RSA78] after the introduction of the concept of a trapdoor one-way function by
Diffie and Hellman in 1976 [DH76]. In RSA, to generate a public key PK and a
private key SK, the following steps are taken. First, two prime numbers, p and
q, are generated, and the modulus N is computed as N = pq. An element e in
Z/NZ is then chosen such that it is coprime with ϕ(N) = (p− 1)(q − 1), where
ϕ is the Euler function. Next, the private exponent d = e−1 (mod ϕ(N)) is com-
puted. The public key is PK = (N, e), and the private key is SK = (N, d). To
encrypt a message m ∈ Z/NZ with the public key PK = (N, e), the ciphertext
c ≡ me (mod N) is computed. To decrypt the ciphertext c using the private key
SK = (N, d), the original message is obtained as m ≡ cd (mod N).

In 1979 Rabin [Rab79,Wil85] published a public-key encryption scheme sim-
ilar to RSA whose security is also related to factoring composite integers. It is
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known that breaking the Rabin scheme is equivalent to factoring N while for
RSA this equivalence is not proven. For Rabin encryption scheme, to generate
a public key PK and a private key SK, one first generates two primes p and q
such that p, q ≡ 3 (mod 4), and computes the modulus N = pq. The public key
is PK = N and the private key is SK = (p, q). To encrypt a message m, one
computes C ≡ m2 (mod N). For the decryption of C, one proceeds as follows.
First, solve the equation X2 = C (mod p) and X2 = C (mod q). By the Chinese
Remainder Theorem, this leads to four solutions which include the plaintext.

Certain vulnerabilities of RSA are know for particular choices of the prime
factors p, q, the public exponent e, and the private exponent d [Wie90,Nit08,Bon99],
[BDF98,BDHG99,BD99,Cop97,dW02,TC23]. For example, when p < q < 2p,
and d is too small with respect to N such as d < 1

3N
0.25, one can use Wiener’s

attack [Wie90,Nit08] to efficiently recover the secrete d. It is shown that RSA
with a low public exponent e, e.g. e = 3, is vulnerable to H̊astad’s broadcast
attack[H̊as86,Bon99]. When d < N0.292, the RSA modulus N can be factored in
polynomial time [BD99] using Coppersmith’s method [Cop97] which is based on
lattice reduction techniques, especially the by the LLL algorithm [LLL82].

Some RSA-like cryptosystems have been also proposed over non-singular and
singular curves when certain groups or rings can be defined. In 1991, Koyama,
Maurer, Okamoto, and Vanstone [KMOV91] proposed a variant of RSA based on
elliptic curves over Z/NZ whenN = pq is the product of two primes with p, q ≡ 2
(mod 3). This variant is known as KMOV. In KMOV, to generate a public key
PK and a private key SK, one first generates two primes p and q such that
p, q ≡ 2 (mod 3), and computes the modulus N = pq as in RSA. Then, one
chooses an exponent e that is invertible modulo ψ(N) = lcm(p + 1, q + 1) and
computes d = e−1 (mod ψ(N)). The public key is PK = (N, e), and the private
key is SK = (N, d). To encrypt a message m = (xm, ym) ∈ (Z/NZ) × (Z/NZ)
with the public key PK, one first computes b ≡ y2m − x3m (mod N), and then
the ciphertext c = e(xm, ym) on the elliptic curve Eb : y2 = x3 + b over the
ring Z/NZ. To decrypt the ciphertext c = (xc, yc) with the private key SK, one
computes b ≡ y2c − x3c (mod N), and then m = d(xc, yc) on the elliptic curve
Eb : y2 = x3 + b. Note that the condition p, q ≡ 2 (mod 3) ensures that the
supersingular elliptic curve Eb : y2 = x3 + b has order p + 1 modulo p and
order q+1 modulo q. This guarantee the correctness of the decryption phase in
KMOV.

Another RSA variant over elliptic curves was proposed by Demytko [Dem94]
in 1993. Since then, several variants of KMOV and Demytko constructions have
been proposed in the last decades with an RSA modulus N = pq. One was
proposed by Koyama [Koy95] based on the singular cubic curve y2 + axy =
x3 (mod N), a second one was proposed in 1995 by Kuwakado, Koyama, and
Tsuruoka [KKT95] based on the singular cubic curve y2 ≡ x3 + bx2 (mod N),
and a third one was proposed in 2018 by Murru and Saettone [MS18] using the
cubic Pell curve Cr : x3 + ry3 + r2z3 − 3rxyz ≡ 1 (mod N).

Several variants of the RSA cryptosystem have been proposed where the
modulus is of a different shape. A first variant was proposed by Takagi in
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1998 with a modulus of the form N = pkq. In 1998, Okamoto, Uchiyama, and
Fujisaki [OU98] proposed EPOC and ESIGN Algorithms [OUF98], where the
modulus is of the form N = p2q. The same modulus was used by Schmidt-
Samoa [SS06] in 2005 to design a trapdoor one-way permutation. In 2000, Lim,
Kim, Yie and Lee [LKYL00] proposed a variant of RSA where the modulus is a
multi-prime power integer of the form N = prqs with r, s ≥ 1. Two more vari-
ants based on elliptic curves and Edwards curves were proposed by Boudabra
and Nitaj [BN17,BN19] with a multi-power modulus N = prqs.

Contributions : In this paper, we study the arithmetic of cubic Pell curves
PCa(N) : x3 + ay3 + a2z3 − 3axyz = 1 over Z/NZ where N = prqs is a multi-
prime power integer, and propose a new scheme. We summarize our contributions
as follows.

• We present a detailed study of the cubic Pell curves with the equation
PCa(N) : x3 + ay3 + a2z3 − 3axyz = 1, specifically regarding the number of
solutions modulo pr, qs, and N = prqs.

• We propose a new scheme using the arithmetic of the cubic Pell curve
PCa(N) : x3 + ay3 + a2z3 − 3axyz = 1 over Z/NZ where N = prqs, and
study its security.

The new scheme works as follows.

1. The public parameters in the new scheme are a prime power modulus
N = prqs, and a public exponent e.

2. To encrypt a message M with the new scheme, one represents it as

(xM , yM , 0), and then computes a ≡ 1−x3
M

y3
M

(mod N), and (xC , yC , zC) =

e⊗(xM , yM , 0) on the cubic Pell curve PCa(N) : x3+ay3+a2z3−3axyz =
1 over Z/NZ.

3. To decrypt a ciphertext (xC , yC , zC) ∈ PCa(N), one first find a so-
lution a of the quadratic equation x3C + ay3C + a2z3C − 3axCyCzC −
1 ≡ 0 (mod N). Then, one computes d = e−1 (mod |PCa(N)|), and
(xD, yD, zD) = d ⊗ (xC , yC , zC) on the cubic Pell curve PCa(N) : x3 +
ay3 + a2z3 − 3axyz = 1 over Z/NZ. Then, one of the values a leads to
the plaintext (xD, yD, zD) = (xM , yM , 0).

Since the modular equation x3C + ay3C + a2z3C − 3axCyCzC − 1 ≡ 0
(mod N) has four solutions ai, i = 1, 2, 3, 4, then there are four decryp-
tion exponents di, i = 1, 2, 3, 4, and four potential plaintexts (xi, yi, zi) =
di⊗ (xC , yC , zC). One of these plaintexts is the original one (xM , yM , 0).
For the other plaintexts, we do not know if zi = 0 for one of them.
We show that this scenario has negligible probability. We have exten-
sively experimented our scheme. In all cases, the decryption performed
correctly and uniquely.

Any attack should start by trying to find the solutions of the quadratic
equation x3C + ay3C + a2z3C − 3axCyCzC − 1 ≡ 0 (mod N). This is known to
be equivalent to factoring as in Rabin’s scheme [Rab79]. To our knowledge,
the new scheme is the first KMOV-like public key encryption scheme that has
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this additional property. A proof of concept implementation of our scheme
with SimulaMath [Sim23] and SageMath [Sag23] is provided in [Sec23].
We note that the decryption protocol in our scheme has negligible failure.

Paper Organization : The rest of this paper is organized as follows.
In Section 2, we review essential concepts related to curves over finite fields and
the ring Z/NZ, focusing on the cubic Pell curves. In Section 3, we investigate
the properties of the cubic Pell curve over Z/NZ where N = prqs is a product
of two distinct prime powers. Our public key encryption scheme is presented in
Section 4. In Section 5, we provide a security analysis of our scheme by examining
different attacks. We conclude the paper in Section 6.

2 Preliminaries

In this section, we begin by revisiting some useful definitions and properties as-
sociated with quadratic residues modulo a prime p and cubic residues modulo an
integer n. Additionally, we recapitulate key properties concerning the arithmetic
of the cubic Pell curve, which serves as a generalization of the traditional Pell
curve in the cubic setting. And finally, we recall the Chinese remainder theo-
rem, the Hensel lemma and some properties related to the number of solution of
multivariate polynomial functions overs the set of integers modulo prime power.

2.1 Quadratic and cubic residue modulo prime powers

Definition 1 (quadratic residue). Let p be a prime number and r a positive
integer. An integer a is a quadratic residue modulo pr if the equation x2 ≡
a (mod pr) has at least one solution, otherwise, a is a quadratic non-residue
modulo pr.

Definition 2 (cubic residue). Let p be a prime number. An integer a is a
cubic residue modulo p if the equation x3 ≡ a (mod p) has at least one solution,
otherwise, a is a cubic non-residue modulo p.

Notice that when p ≡ 1 (mod 3), there are (p − 1)/3 non-zero cubic residues
modulo p, and when p ̸≡ 1 (mod 3), every element in Z/pZ is a cubic residue
modulo p.

Theorem 1 ([Ros93]). The equation xk ≡ a (mod p) has a solution if and
only if a(p−1)/d ≡ 1 (mod p), where d = gcd(k, p − 1). If the congruence has a
solution, then it has d incongruent solutions modulo p.

Corollary 1. Let p ≥ 3 be a prime number.

1. An integer a is a quadratic residue modulo p if and only if a(p−1)/2 ≡ 1
(mod p).

2. An integer a is a cubic residue modulo p if and only if a(p−1)/ gcd(3,p−1) ≡ 1
(mod p).
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The Euler totient function ϕ is defined by ϕ(pr) = pr−1(p − 1) if p is a prime
number, and satisfies ϕ(mn) = ϕ(m)ϕ(n) if gcd(m,n) = 1.

Theorem 2 ([Ros93]). Let n be a positive integer with a primitive root. If k is
a positive integer and a is an integer relatively prime to n, then the congruence
xk ≡ a (mod n) has a solution if and only if

aϕ(n)/d ≡ 1 (mod n)

where d = gcd(k, ϕ(n)). If the congruence has a solution, then it has d incon-
gruent solutions modulo n.

2.2 The cubic Pell curve over a field

Let F be a field and let a ∈ F. Define the quotient ring Ra = F[t]/
(
t3 − a

)
. Note

that Ra is a field if a is a cube non-residue in F. An element w ∈ Ra can be
written as w = x+ yt+ zt2 for some (x, y, z) ∈ F3. Let w1 = x1 + y1t+ z1t

2 and
w2 = x2 + y2t+ z2t

2 be two elements of Ra. The product w1 · w2 is defined by

w1 ·w2 = [x1x2+a(y2z1+y1z2)]+ [x2y1+x1y2+az1z2]t+[y1y2+x2z1+x1z2]t
2.

The norm of w = x + yt + zt2 is given by Na(w) = x3 + ay3 + a2z3 − 3axyz
(see [Bar03]). Consider the set Ua of unitary elements defined as

Ua =
{
x+ yt+ zt2 ∈ Ra : x3 + ay3 + a2z3 − 3axyz = 1

}
,

and consider the cubic Pell curve over F

P 3
a =

{
(x, y, z) ∈ F3 : x3 + ay3 + a2z3 − 3axyz = 1

}
.

The natural product on Ua induces the generalized Brahmagupta product ⊕
defined as follows.

w1 ⊕ w2 = (x1x2 + a(y2z1 + y1z2), x2y1 + x1y2 + az1z2, y1y2 + x2z1 + x1z2) ,

where w1 = (x1, y1, z1) ∈ P 3
a and w2 = (x2, y2, z2) ∈ P 3

a . Notice that (P 3
a ,⊕) is

a group with neutral element (1, 0, 0), and the inverse of w = (x, y, z) is given
by w−1 = (x2 − ayz, az2 − xy, y2 − xz).

2.3 Curves over the ring Z/NZ

Definition 3. Let F (x1, x2, . . . , xk) be a polynomial in k variables with integer
coefficients, and N a positive integer. A solution (a1, a2, . . . , ak) of the modular
equation F (x1, x2, . . . , xk) ≡ 0 (mod N) is said to be singular modulo N if it
satisfies

∂F

∂x1
(a1, a2, . . . , ak) = 0, . . . ,

∂F

∂xk
(a1, a2, . . . , ak) = 0.
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If the equation F (x1, x2, . . . , xk) ≡ 0 (mod N) has only non-singular solutions,
the curve is non-singular. We denote by cN the number of solutions of the equa-
tion F (x1, x2, . . . , xk) ≡ 0 (mod N), and by sN the number of singular solutions.
The number of non-singular or regular solutions is RN = cN − sN .

The following result is useful to count the number of solutions of the equation
F (x1, x2, . . . , xk) ≡ 0 (mod N).

Theorem 3 ([BN17]). Let F (t1, . . . , tk) ∈ Z[t1, . . . , tk] be a polynomial. Con-
sider the curve

F (t1, . . . , tk) ≡ 0 (mod pr),

Then Rpr = p(k−1)(r−1)Rp. Moreover, if the curve F (t1, . . . , tk) is non-singular,
then cpr = p(k−1)(r−1)cp.

Theorem 4 ([BN17]). Let pr and qsbe two prime power integers with gcd(p, q) =
1. Then

cpr·qs = cpr · cqs

2.4 Chinese Remainder Theorem and Hensel Lemma

The Chinese Remainder Theorem is often used to solve systems of equations
modulo a composite number with known factorisation.

Theorem 5 (Chinese Remainder Theorem [DPS96]). Let ni, i = 1, 2, . . . ,m
bem pairwise relatively prime numbers. For any set of integers ai, i = 1, 2, . . . ,m,
the system of congruences

x ≡ ai (mod ni), i = 1, 2, . . . ,m, (1)

has exactly one solution modulo N =

m∏
i=1

ni.

The following algorithm gives the details in the Chinese Remainder Algorithm
to determine the unique solution of the Equation (1) modulo N =

∏m
i=1 ni.

Algorithm 1 Chinese Remainder Algorithm

Input: m, ai, ni for i = 1, 2, . . . ,m.
Output: The unique solution X modulo N =

∏m
i=1 ni of Equation (1).

1: Compute Nk =

m∏
i=1,i ̸=k

ni for k = 1, 2, . . . ,m.

2: Compute Xi = N−1
i (mod ni) for i = 1, 2, . . . ,m.

3: Compute X =

m∑
i=1

aiXiNi (mod N).

4: Return X.

The following result is a simple application of Theorem 5.
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Corollary 2. Let pr and qs be two prime powers with p ̸= q, and N = prqs. Let
ap and aq be integers. The unique solution to the system

x = ap (mod pr), x = aq (mod qs),

is given by

X = ap × qs × [(qs)
−1

mod pr] + aq × pr × [(pr)
−1

mod qs] (mod N).

Hensel’s Lemma is useful to find a solution of a polynomial equation modulo a
prime power pr when a solution modulo p is known.

Lemma 1 (Hensel’s lemma, [Gal12]). Let p be a prime number. Let f(x) ∈
Z[x] be a polynomial and f ′(x) its derivative. If there exists an integer r1 ∈ Z/pZ
such that f(r1) ≡ 0 (mod p) and f ′(r1) ̸≡ 0 (mod p), then there exists a unique
sequence (rn)n≥1 of integers satisfying for all n ≥ 1

• rn ≡ r1 (mod p),

• f(rn) ≡ 0 (mod pn)

Moreover, for n ≥ 2, rn is given by

rn = rn−1 −
f(rn−1)

f ′(rn−1)
(mod pn),

A possible application of Hensel’s lemma is the following result which concerns
the solutions of the quadratic equation ax2 + bx+ c ≡ 0 (mod p).

Corollary 3 (Quadratic equation). Let a, b, c be integers et p an odd prime
numbers. Suppose that gcd(a, p) = 1 and ∆ = b2 − 4ac ̸= 0 (mod p). If ∆ is
a quadratic residue modulo p, then, for n ≥ 1, the equation ax2 + bx + c ≡ 0
(mod pn) has two roots yn and zn, recursively defined by

y1 =
−b+

√
∆

2a
(mod p),

z1 =
−b−

√
∆

2a
(mod p),

yn+1 = yn − ay2n + byn + c

2ayn + b
(mod pn+1),

zn+1 = zn − az2n + bzn + c

2azn + b
(mod pn+1).

Notice that if p ≡ 3 (mod 4) and ∆ is a quadratic residue modulo p, then

√
∆ ≡ ±∆

p+1
4 (mod p).

In the case of p ≡ 1 (mod 4), one can use the Tonelli-Shank algorithm [Zeu19]
to compute the square roots of ∆ modulo p.
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3 The Cubic Pell Curve over the Ring Z/NZ with
N = prqs

Let N = prqs where p and q are two different prime numbers, and r and s are
positive integers. Let a ∈ Z/NZ\{0}. In this section, we study the properties of
the cubic Pell curve with the equation

x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N).

The generalized Brahmagupta product ⊕ defined in Section 2.2 works perfectly
for two solutions of the cubic Pell curve modulo N . Moreover, for a positive
integer n, we define the scalar multiplication of a solution (x, y, z) by n as follows

n⊗ (x, y, z) = (x, y, z)⊕ · · · ⊕ (x, y, z) (n times).

Proposition 1. Let N > 3 be an integer, and a ∈ Z/NZ. The cubic Pell curve

PCa(N) : x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N),

is nonsingular.

Proof. Let F (x, y, z) = x3 + ay3 + a2z3 − 3axyz − 1. Consider the system of
equations modulo N ,

F (x, y, z) ≡ 0,
∂F

∂x
(x, y, z) ≡ 0,

∂F

∂y
(x, y, z) ≡ 0,

∂F

∂z
(x, y, z) ≡ 0, (2)

that is 
x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N)

3x2 − 3ayz ≡ 0 (mod N),
3ay2 − 3axz ≡ 0 (mod N),
3a2z2 − 3axy ≡ 0 (mod N),

This implies that  3x3 − 3axyz ≡ 0 (mod N),
3ay3 − 3axyz ≡ 0 (mod N),
3a2z3 − 3axyz ≡ 0 (mod N),

Summing the three sides, we get

3
(
x3 + ay3 + a2z3 − 3axyz

)
≡ 0 (mod N).

Since x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N), then 3 ≡ 0 (mod N), which is
impossible. Hence the system (2) has no solution and the cubic Pell curve is
nonsingular. ⊓⊔

For a prime power pr and a ∈ Z/prZ, let PCa (p
r) be the set of the solutions of

the cubic Pell curve

x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod pr).

The proof of the following result can found in [DM22].
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Lemma 2. Let p be a prime number with p ≡ 1 (mod 3). Let a be an integer
with gcd(a, p) = 1. The cardinality of PCa (p) is

|PCa (p) | =

{
p2 + p+ 1 if a is a cube non-residue modulo p,

(p− 1)2 if a is a non-zero cube residue modulo p.

When r ≥ 2, we have the following result.

Lemma 3. Let pr be a prime power with p ≡ 1 (mod 3), and r ≥ 1. Let a ∈
Z/prZ with gcd(a, p) = 1. The cardinality of PCa (p

r) is

|PCa (p
r) | =

{
p2(r−1)

(
p2 + p+ 1

)
if a is a cubic non residue modulo p,

p2(r−1)(p− 1)2 if a is a cubic residue modulo p.

Proof. Suppose that p is a prime number such that p ≡ 1 (mod 3) and let a be an
integer with gcd(a, p) = 1. By Proposition 1, the curve x3+ay3+a2z3−3axyz ≡ 1
(mod pr) is non-singular. Therefore, by applying Lemma 3 with k = 3, we get

|PCa (p
r) | = p(3−1)(r−1)|PCa (p) | = p2(r−1)|PCa (p) |.

Combining with Lemma 2, we get

|PCa (p
r) | =

{
p2(r−1)

(
p2 + p+ 1

)
if a is a cubic non residue modulo p,

p2(r−1)(p− 1)2 if a is a cubic residue modulo p.

This terminates the proof. ⊓⊔

For N = prqs and a ∈ Z/NZ, let PCa(N) be the set of the solutions of the cubic
Pell curve

x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N).

The following result is an easy consequence of Lemma 3.

Corollary 4. Let N = prqs be a prime power modulus with p, q ≡ 1 (mod 3).
The number of solutions of the cubic Pell curve x3 + ay3 + a2z3 − 3axyz ≡ 1
(mod N) is given by

|PCa(N)| = |PCa (p
r)| |PCa (q

s)| ,

where PCa (p
r) and PCa (q

s) are the sets of the solutions of the cubic Pell equa-
tion x3 + ay3 + a2z3 − 3axyz ≡ 1 modulo pr and modulo qs respectively.

Proof. Let N = prqs with p, q ≡ 1 (mod 3). Let a ∈ Z/NZ with a ̸= 0.
By the Chinese Remainder Theorem, there is a bijection between Z/NZ and
Z/prZ × Z/qsZ. This induces a bijection between the solutions (xN , yN , zN )
of the cubic Pell curve x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N), and the solu-
tions ((xpr , ypr , zpr ) , (xqs , yqs , zqs)) formed by a solution of the cubic Pell curve
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x3+ay3+a2z3−3axyz ≡ 1 modulo pr and a solution of the same curve modulo
pr. Moreover, this implies that

|PCa(N)| = |PCa (p
r)| |PCa (q

s)| ,

where PCa (p
r) and PCa (p

r) are the sets of the solutions of the cubic Pell equa-
tion x3 + ay3 + a2z3 − 3axyz ≡ 1 modulo pr and modulo qs respectively. ⊓⊔

The properties of the cubic Pell curve modulo a prime power modulus N = prqs

with p, q ≡ 1 (mod 3) can be summarized as follows.

1. For a prime power modulus N = prqs, let R3(N) be the set of the cubic
residues a modulo p with (gcd(a,N) = 1. Its cardinality is∣∣R3(N)

∣∣ = pr−1qs−1(p− 1)(q − 1)

9
.

2. Define the values

ψ1(N) = p2(r−1)q2(s−1)
(
p2 + p+ 1

) (
q2 + q + 1

)
,

ψ2(N) = p2(r−1)q2(s−1)(p− 1)2(q − 1)2,

ψ3(N) = p2(r−1)q2(s−1)
(
p2 + p+ 1

)
(q − 1)2,

ψ4(N) = p2(r−1)q2(s−1)(p− 1)2
(
q2 + q + 1

)
.

(3)

For a ∈ Z/NZ with gcd(a,N) = 1, the number of solutions of the equation
x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N) is then

|PCa(N)| =


ψ1(N) if a /∈ R3(p) and a /∈ R3(q),

ψ2(N) if a ∈ R3(p) and a ∈ R3(q),

ψ3(N) if a /∈ R3(p) and a ∈ R3(q),

ψ4(N) if a ∈ R3(p) and a /∈ R3(q).

where R3(p) is the set of the cubic residues modulo p, and R3(q) is the set
of the cubic residues modulo q.

3. Let PCa (N) be the set of the solutions of the cubic Pell curve x3 + ay3 +

a2z3 − 3axyz ≡ 1 (mod N) in (Z/NZ)3. Then (PCa(N),⊕) is an abelian
group with order |PCa(N)|.

4. The neutral element of PCa(N) is (1, 0, 0).
5. The inverse of a solution (x, y, z) ∈ PCa(N) is

(
x2 − ayz, az2 − xy, y2 − xz

)
(mod N).

6. The sum of two solutions (x1, y1, z1), (x2, y2, z2) ∈ PCa(N) is (x3, y3, z3)
with

(x3, y3, z3) = (x1x2 + a(y2z1 + y1z2), x2y1 + x1y2 + az1z2, y1y2 + x2z1 + x1z2) .

7. The scalar product of a solution (x, y, z) ∈ PCa(N) by an integer n is

n⊗ (x, y, z) = (x, y, z)⊕ · · · ⊕ (x, y, z) (n times).
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8. For any positive integer k, and any solution (x, y, z) ∈ PCa(N),

(1 + k|PCa(N)|)⊗ (x, y, z) = (x, y, z).

In PCa(N), the addition ⊕, the doubling, and the scalar multiplication by an
integer are summarized in the following algorithms.

Algorithm 2 Addition in PCa(N)

Input: N = prqs, a ∈ Z/NZ\{0}, and (x1, y1, z1), (x2, y2, z2) ∈ PCa(N).
Output: (x3, y3, z3) = (x1, y1, z1)⊕ (x2, y2, z2) ∈ PCa(N).
1: x3 ≡ x1x2 + a(y2z1 + y1z2) (mod N).
2: y3 ≡ x2y1 + x1y2 + az1z2 (mod N).
3: z3 ≡ y1y2 + x2z1 + x1z2 (mod N).
4: Return (x3, y3, z3).

Algorithm 3 Doubling in PCa(N)

Input: N = prqs, a ∈ Z/NZ\{0}, and (x1, y1, z1) ∈ PCa(N).
Output: (x3, y3, z3) = 2⊗ (x1, y1, z1) ∈ PCa(N).
1: x3 ≡ x21 + 2ay1z1 (mod N).
2: y3 ≡ 2x1y1 + az21 (mod N).
3: z3 ≡ y21 + 2x1z1 (mod N).
4: Return (x3, y3, z3).

Algorithm 4 Left-to-right scalar multiplication in PCa(N)

Input: N = prqs, a ∈ Z/NZ\{0}, (x1, y1, z1) ∈ PCa(N), and an integer n ≥ 2.
Output: (x2, y2, z2) = n⊗ (x1, y1, z1) ∈ PCa(N).
1: Expand n in base 2, that is n = (nk−1nk−2 . . . n1n0)2.
2: (x2, y2, z2) = (1, 0, 0).
3: For i from k − 1 downto 0 do
4: (x2, y2, z2) = 2⊗ (x2, y2, z2).
5: If ni = 1 then
6: (x2, y2, z2) = (x2, y2, z2)⊕ (x1, y1, z1).
7: End If
8: End For
9: Return (x2, y2, z2).
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4 Our construction

In this section, we present a new scheme based on the cubic Pell curve. It is a
variant of both RSA and KMOV. We also provide a numerical example for our
scheme.

4.1 The new public key encryption scheme

In the following algorithms, we give the algorithms of the new public key en-
cryption scheme, namely, the key generation, the encryption, and the decryption
algorithm.

Algorithm 5 Key Generation

Input: A security parameter λ, and two small positive integers r and s.
Output: A public key PK and a private key SK.
1: Choose a prime number p of λ bit size with p ≡ 1 (mod 3).
2: Choose a prime number q of λ bit size with q ≡ 1 (mod 3).
3: Compute N = prqs.
4: For i = 1, 2, 3, 4, compute ψi(N) using (3).
5: Choose an integer e ∈ Z/NZ such that

gcd
(
e, pq

(
p2 + p+ 1

) (
q2 + q + 1

)
(p− 1)(q − 1)

)
= 1.

6: For i = 1, 2, 3, 4, compute di ≡ e−1 (mod ψi(N)).
7: The public key is PK = (N, e).
8: The private key is SK = (p, q,N, d1, d2, d3, d4, r, s).
9: Return the keypair (PK,SK).

Algorithm 6 Encryption Process

Input: A message M = (xM , yM ) ∈ (Z/NZ)× (Z/NZ) and a public key PK = (N, e).
Output: The ciphertext of M .
1: Represent the message M as M = (xM , yM , 0).

2: Compute a ≡ 1−x3
M

y3
M

(mod N). ▷ (xM , yM , 0) ∈ PCa(N)

3: Compute (xC , yC , zC) = e⊗ (xM , yM , 0) on the cubic Pell curve with the equation

PCa(N) : x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N).

4: Return the ciphertext (xC , yC , zC).
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Algorithm 7 Decryption Process

Input: A ciphertext (xC , yC , zC), and a private key SK = (p, q,N, d1, d2, d3, d4, r, s).
Output: The decryption of (xC , yC , zC).
1: Find the solutions x = ap,1 and x = ap,2 of the equation

x3C + xy3C + x2z3C − 3xxCyCzC ≡ 1 (mod pr).

2: Find the solutions y = aq,1 and y = aq,2 of the equation

x3C + yy3C + y2z3C − 3yxCyCzC ≡ 1 (mod qs).

3: Using the Chinese Remainder Theorem, compute ai ∈ Z/NZ, i = 1, 2, 3, 4 such
that

a1 ≡ ap,1 (mod pr), a1 ≡ aq,1 (mod qs),

a2 ≡ ap,1 (mod pr), a2 ≡ aq,2 (mod qs),

a3 ≡ ap,2 (mod pr), a3 ≡ aq,1 (mod qs),

a4 ≡ ap,2 (mod pr), a4 ≡ aq,2 (mod qs).

4: For i = 1, 2, 3, 4 do
5: Set

Di =


d1 if ai /∈ R3(p) and ai /∈ R3(q),

d2 if ai ∈ R3(p) and ai ∈ R3(q),

d3 if ai /∈ R3(p) and ai ∈ R3(q),

d4 if ai ∈ R3(p) and ai /∈ R3(q),

where R3(p) and R3(q) are the sets of the cubic residues in Z/pZ and Z/qZ re-
spectively.

6: Compute Mi = (xi, yi, zi) = Di ⊗ (xC , yC , zC) on the cubic Pell curve

PCai(N) : x3 + aiy
3 + a2i z

3 − 3aixyz ≡ 1 (mod N).

7: End For
8: Return the plaintext (xi, yi, zi) for which zi = 0. ▷ M=(xi, yi, 0) is the original

message.

Notice that in Algorithm 7, Step 1 to Step 3 are devoted to the computation
of the parameter a of the cubic Pell curve used in the encryption process given
only the ciphertext (xC , yC , zC) and the private parameters p, q, r, s. Since these
steps require the computation of square roots modulo p and modulo q, one can
choose p and q so that p, q ≡ 7 (mod 12), which implies p, q ≡ 1 (mod 3) and
p, q ≡ 3 (mod 4). This allows to compute the square roots of a quadratic residue
∆ mod p as ±∆(p+1)/4 (mod p).

4.2 The failure of the decryption algorithm

In several schemes such as LWE [Reg05], RLWE [LPR13], Ramstake [Sze17], New
Hope [SAB+17], and several variants of CRYSTALS-Kyber [BDK+18], the de-
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cryption protocol is probabilistic with a negligible probability of failure. Despite
their possible failure, some of the former schemes are used in many cryptographic
applications such as electronic voting, electronic auction, and digital signatures.

We do not know if our new scheme presents a possibility of decryption failure.
We have extensively experienced it, and the decryption protocol was always suc-
cessful and unique. The following result shows that the probability of a possible
failure is negligible.

Lemma 4. Let N = prqs be a prime power modulus, xM , yM ∈ Z/NZ, and
(xC , yC , zC) = e(xM , yM , 0) be the ciphertext computed with the cubic Pell curve

PCa(N) : x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N) with a ≡ 1−x3
M

y3
M

(mod N). The

failure probability of the decryption of the scheme lies in the interval
(

1
16N ,

16
N

)
,

and is negligible.

Proof. Let (xM , yM , 0) be a plaintext, and (xC , yC , zC) be the corresponding
ciphertext over the cubic Pell curve x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N)

where a ≡ 1−x3
M

y3
M

. Suppose that another solution a0 of the quadratic equation

x3C + a0y
3
C + a20z

3
C − 3a0xCyCzC ≡ 1 (mod N) is such that d(xC , yC , zC) =

(x1, y1, 0) for one decryption exponent d ∈ {d1, d2, d3, d4}, on the cubic Pell curve
PCa0

(N) : x3+a0y
3+a20z

3−3a0xyz ≡ 1 (mod N), and (xM , yM , 0) ̸= (x1, y1, 0).
Then, (x1, y1, 0) ∈ PC0

a0
(N) where PC0

a0
(N) is the set of the solutions of the

cubic equation
PC0

a0
(N) : x3 + a0y

3 ≡ 1 (mod N).

This scenario happens with probability

Prob(z = 0) =
|PC0

a0
(N)|

|PCa0(N)|
. (4)

The curve PC0
a0
(N) is a specific case of the cubic Pell equation. Hence, if PC0

a0
(p)

is the number of the solutions of x3+ay3 ≡ 1 (mod p), then, by Theorem 3, the
number of the solutions of the equation x3 + ay3 ≡ 1 (mod pr) is∣∣PC0

a0
(pr)

∣∣ = pr−1
∣∣PC0

a0
(p)

∣∣ .
Using the Chinese Remainder Theorem, it follows that the number of solutions
of the equation x3 + ay3 ≡ 1 (mod N) is∣∣PC0

a0
(N)

∣∣ = pr−1ps−1
∣∣PC0

a0
(p)

∣∣ ∣∣PC0
a0
(q)

∣∣ .
The curve x3 + ay3 ≡ 1 (mod p) is a specific form of the Selmer curve. It is
birationally equivalent to the elliptic curve

Ep : v2 ≡ u3 − 432a2 (mod p),

under the transformations

u = −12a1y

x− 1
, v = 36a1

x+ 1

x− 1
,

x =
v + 36a1
v − 36a1

, y = − 6u

v − 36a1
.
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By Hasse Theorem [Gal12], the order of Ep satisfies

(
√
p− 1)

2 ≤ |Ep| ≤ (
√
p+ 1)

2
.

Since |Ep| =
∣∣PC0

a0
(p)

∣∣, then using
(√
p− 1

)2
> 1

2p and
(√
p+ 1

)2
< 2p, we get

1

2
p <

∣∣PC0
a0
(p)

∣∣ < 2p.

By Theorem 3 and the Chinese Remainder Theorem, this implies that
∣∣PC0

a0
(N)

∣∣
satisfies

1

4
pr−1ps−1pq ≤

∣∣PC0
a0
(N)

∣∣ ≤ 4
1

4
pr−1ps−1pq,

that is

1

4
N ≤

∣∣PC0
a0
(N)

∣∣ ≤ 4N. (5)

On the other hand, the orders ψi(N), i = 1, 2, 3, 4 as defined in 3 satisfy

pr−1ps−1(p− 1)2(q − 1)2 ≤ ψi(N) ≤ pr−1ps−1
(
p2 + p+ 1

) (
q2 + q + 1

)
.

Since |PCa0(N)| ∈ {ψ1(N), ψ2(N), ψ3(N), ψ4(N)}, and since (p − 1)2 > 1
2p

2,
and p2 + p+ 1 < 2p2 for p > 4, we get

1

4
N2 ≤ |PCa0

(N)| ≤ 4N2.

Combining this with (5), the probability (4) satisfies

1

16N
< Prob(z = 0) <

16

N
.

This shows that the decryption failure is negligible. ⊓⊔

4.3 A numerical example for the scheme

Let us consider the following small example.

1. Key Generation

• Let p = 922039, q = 760531, r = 1 and s = 3. Then

N = 922039× 7605313 = 405601968528411801552349.

• Let e = 190681261905711342654691. The public key is

(N, e) = (405601968528411801552349, 190681261905711342654691).
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• The private exponents are

d1 = e−1 (mod p2(r−1)q2(s−1)
(
p2 + p+ 1

) (
q2 + q + 1

)
),

= 118972772223283451014251175069491011419223088520,

d2 = e−1 (mod p2(r−1)q2(s−1) (p− 1)
2
(q − 1)

2
),

= 52673607813631318169063886466607845951930222411,

d3 = e−1 (mod p2(r−1)q2(s−1)
(
p2 + p+ 1

)
(q − 1)

2
),

= 110562086970292565355181851346394599567010668711,

d4 = e−1 (mod p2(r−1)q2(s−1) (p− 1)
2 (
q2 + q + 1

)
),

= 155064179962520723245280314053380086273645670395.

• The private key is (p, q,N, d1, d2, d3, d4, r, s).
2. The plaintext

Consider the plaintext (xM , yM , 0) with

xM = 94727413669590175405397,

yM = 400429216716868987768230.

3. Encryption :
• First we compute

a ≡ 1− x3M
y3M

(mod N) = 402129345655132093067351.

• The cubic Pell curve is then

PCa(N) : x3 + ay3 + a2z3 − 3axyz ≡ 1 (mod N).

• We compute (xC , yC , zC) = e ⊗ (xM , yM , 0) on the cubic Pell curve
PCa(N) using the Algorithm 4. We get the ciphertext (xC , yC , zC) with

xC = 296657492079316956423913,

yC = 336170831341196089366817,

zC = 351828474470867029080629.

4. Decryption :
• Solving the equation

x3C + xy3C + x2z3C − 3xxCyCzC ≡ 1 (mod p),

we get the solutions x1 = 124693, and x2 = 29301.
• Apply Hensel’s lemma with x1 and x2 to solve the equation

x3C + xy3C + x2z3C − 3xxCyCzC ≡ 1 (mod pr).

We get x = ap,1 = 124693 and x = ap,2 = 29301.
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• Solve the equation

x3C + yy3C + y2z3C − 3yxCyCzC ≡ 1 (mod q).

We get the solutions y1 = 272543, and y2 = 758118.
• Apply Hensel’s lemma with y1 and y2 to solve the equation

x3C + yy3C + y2z3C − 3yxCyCzC ≡ 1 (mod qs).

We get y = aq,1 = 362045505517707447 and y = aq,2 = 228874968160044609.
• Using the Chinese theorem with ap,1 and aq,1, we get

a1 = 402129345655132093067351 (mod N).

• Using the Chinese theorem with ap,2 and aq,2, we get

a2 = 261500816821281874691178 (mod N).

• Using the Chinese theorem with ap,1 and aq,2, we get

a3 = 170916396245462831245876 (mod N).

• Using the Chinese theorem with ap,2 and aq,1, we get

a4 = 87111797702539334960304 (mod N).

• We can check that a1 is a cubic residue modulo p and a cubic non-residue
modulo q. So D1 = d4. We then compute (x1, y1, z1) = d4 ⊗ (xC , yC , zC)
on the cubic Pell curve PCa1

(N) using Algorithm 4. We get

(x1, y1, z1) = (94727413669590175405397, 400429216716868987768230, 0),

which is the original plaintext.
• We can check that a2 is a cubic non-residue modulo p and a cubic non-

residue modulo q. So D2 = d1. We then compute (x2, y2, z2) = d1 ⊗
(xC , yC , zC) on the cubic Pell curve PCa1

(N) using Algorithm 4. We get
a solution (x2, y2, z2) with

x2 = 315084178973498538996923,

y2 = 334849906408238591863534,

z2 = 119465479892270850302989.

which is not the original plaintext.
• We can check that a3 is a cubic residue modulo p and cubic non-residue
modulo q. So D3 = d4. We then compute (x1, y2, z2) = d4 ⊗ (xC , yC , zC)
on the cubic Pell curve PCa1(N) using Algorithm 4. We get a solution
(x3, y3, z3) with

x3 = 348782910156330842695269,

y3 = 334241529189406423678081,

z3 = 147702892801927905973570.

which is not the original plaintext.
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• We can check that a4 is a cubic non-residue modulo p and a cubic non-
residue modulo q. So D4 = d1. We then compute (x4, y4, z4) = d1 ⊗
(xC , yC , zC) on the cubic Pell curve PCa1(N) using Algorithm 4. We get
a solution (x4, y4, z4) with

x4 = 61028682486757871707051,

y4 = 401037593935701155953683,

z4 = 377364555618754745881768.

which is not the original plaintext.
We notice that the decryption performs perfectly, and is unique.

5 Security Analysis

In this section, we study the security of the new scheme as described in Section
4.

5.1 Resistance against finding the cubic Pell curve

In the new scheme, the value of a in the Pell curve x3 + ay3 + a2z3 − 3axyz ≡ 1
(mod N) is not public. Indeed, the public parameters are N and a solution
(xC , yC , zC) ∈ PCa(N). To compute the parameter a, one should solve the mod-
ular equation

z3Ca
2 +

(
y3C − 3xCyCzC

)
a+ x3C − 1 ≡ 0 (mod N),

which is quadratic in a. The discriminant of the equation is

∆ =
(
y3C − 3xCyCzC

)2 − 4z3C
(
x3C − 1

)
.

Then, finding a is equivalent to solving the quadratic equation

x2 ≡ ∆ (mod N),

where the factorization of N is unknown. This is known as the SQRT-MOD-N
problem, and is equivalent to the integer factoring problem [Gal12].

5.2 Resistance against the small private exponent attacks

It is known that using a small private exponent is insecure in several schemes
such as RSA [Cop97,Wie90,BD99], KMOV[Nit14], and others [NAAA21]. The
main known techniques are based on the continued fraction algorithm [Wie90]
or on Coppersmith’s method [Cop97,BD99]. The attacks based on the continued
fraction algorithm use the following well known result of Legendre (see Theorem
184 of [HW79]).
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Theorem 6 (Legendre). Let ξ be a positive number. Let a and b be integers
such that gcd(a, b) = 1 and ∣∣∣ξ − a

b

∣∣∣ < 1

2b2
.

Then a
b is one of the convergents of the continued fraction expansion of ξ.

In most cases, the RSA moduli and their variants are the product of large prime
numbers of the same bit size. In our schemes, we also suppose that the prime
numbers p and q in the modulus N = prqs are of the same bit size, and ordered
so that q < p < 2q. The following result gives effective bounds for p and q.

Proposition 2. Let N = prqs be a prime power modulus with q < p < 2q. Then

2
−1
r+sN

1
r+s < q < N

1
r+s < p < 2

s
r+sN

1
r+s .

Proof. Suppose that q < p < 2q. Then qr < pr < 2rqr and qs < ps < 2sqs.
Multiplying the former inequalities, we get

qr+s < N < 2r+sqr+s,

which implies that q < N
1

r+s and 2
−1
r+sN

1
r+s < q.

Multiplying qs < ps < 2sqs by pr, we get

N < pr+s < 2sN,

and N
1

r+s < p < 2
s

r+sN
1

r+s . Summarizing all inequalities, we get

2
−1
r+sN

1
r+s < q < N

1
r+s < p < 2

s
r+sN

1
r+s .

This terminates the proof. ⊓⊔

For i = 1, 2, 3, 4, and ψ(N) ∈ {ψ1(N), ψ2(N), ψ3(N), ψ4(N)} as given in (3), the
following result gives an approximation of ψi(N) in terms of N .

Proposition 3. Let N = prqs be a prime power modulus with q < p < 2q. Let
ψ(N) ∈ {ψ1(N), ψ2(N), ψ3(N), ψ4(N)} as given in (3). Then N2 is an approx-
imation of ψ(N) with ∣∣ψ(N)−N2

∣∣ < 8N2− 1
r+s .

Proof. Let ψ(N) ∈ {ψ1(N), ψ2(N), ψ3(N), ψ4(N)}. Then

p2(r−1)q2(s−1)(p−1)2(q−1)2 ≤ ψ(N) ≤ p2(r−1)q2(s−1)
(
p2 + p+ 1

) (
q2 + p+ 1

)
.

This can be rewritten as

N2

(
1− 2

p
+

1

p2

)(
1− 2

q
+

1

q2

)
≤ ψ(N) ≤ N2

(
1 +

1

p
+

1

p2

)(
1 +

1

q
+

1

q2

)
By Proposition 2, we have N

1
r+s < p. Then

1− 2

p
+

1

p2
> 1− 2

p
> 1− 2N

−1
r+s .



20 Michel Seck and Abderrahmane Nitaj

Similarly, by Proposition 2, we have 2
−1
r+sN

1
r+s < q. Then

1− 2

q
+

1

q2
> 1− 2

q
> 1− 21+

1
r+sN

−1
r+s .

Using the former inequalities, we get

ψ(N) > N2
(
1− 2N

−1
r+s

)(
1− 21+

1
r+sN

−1
r+s

)
= N2

(
1− 21+

1
r+sN

−1
r+s − 2N

−1
r+s + 22+

1
r+sN

−2
r+s

)
> N2

(
1− 8N

−1
r+s

)
.

Using this, we get

ψ(N)−N2 > −8N2− 1
r+s . (6)

Also, by Proposition 2, we have N
1

r+s < p. Then

1 +
1

p
+

1

p2
< 1 +

2

p
< 1 + 2N

−1
r+s .

Similarly, by Proposition 2, we have 2
−1
r+sN

1
r+s < q. Then

1 +
1

q
+

1

q2
< 1 +

2

q
< 1 + 2

r+s+1
r+s N

−1
r+s .

Plugging this in ψ(N), we get

ψ(N) < N2
(
1 + 2N

−1
r+s

)(
1 + 2

r+s+1
r+s N

−1
r+s

)
= N2

(
1 + 2

r+s+1
r+s N

−1
r+s + 2N

−1
r+s + 21+

r+s+1
r+s N

−2
r+s

)
< N2

(
1 + 8N

−1
r+s

)
.

Using this, we get

ψ(N)−N2 < 8N2− 1
r+s . (7)

Combining (6) and (7), we get∣∣ψ(N)−N2
∣∣ < 8N2− 1

r+s .

This completes the proof. ⊓⊔

The following result which is based on the continued fraction algorithm shows
that using a small private exponent d is vulnerable.
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Proposition 4. Let N = prqs be a prime power modulus with q < p < 2q. Let e
be a public exponent, and d ≡ e−1 (mod ψ(N)) where ψ(N) is one of the orders
ψ1(N), ψ2(N), ψ3(N), or ψ4(N). If e < ψ(N), and

d <

√
2

4
N

1
2(r+s) ,

then one can find d and factor N in polynomial time.

Proof. The relation d ≡ e−1 (mod ψ(N)) can be rewritten as ed − kψ(N) = 1
with a positive integer k. This can be rewritten as∣∣∣∣ e

ψ(N)
− k

d

∣∣∣∣ = 1

dψ(N)
.

Suppose e < ψ(N). Using Proposition 3, we have
∣∣ψ(N)−N2

∣∣ < 8N2− 1
r+s .

Then ∣∣∣∣ eN2
− k

d

∣∣∣∣ < ∣∣∣∣ eN2
− e

ψ(N)

∣∣∣∣+ ∣∣∣∣ e

ψ(N)
− k

d

∣∣∣∣
< ψ(N)

∣∣∣∣ψ(N)−N2

N2ψ(N)

∣∣∣∣+ 1

dψ(N)

<
8N2− 1

r+s

N2
+

1

dψ(N)

<
8

N
1

r+s

+
1

N2d
.

Suppose that d <
√
2
8 N

1
2(r+s) . Then d < 1

4N
2, and∣∣∣∣ eN2

− k

d

∣∣∣∣ < 1

4d2
+

1

4d2
=

1

2d2
.

By Legendre’s Theorem 6, this implies that k
d is a convergent of the continued

fraction expansion of e
N2 , which can be found in polynomial time. Using k and

d in the equation ed− kψ(N) = 1, we get

ψ(N) =
ed− 1

k
.

Using ψ(N), we get

g = gcd
(
N2, ψ(N)

)
= p2(r−1)q2(s−1).

In turn, this gives

pq =
N
√
g
,

and, combining with N = prqs, we finally get

p =

(
Ns−1

g
s
2

) 1
s−r

, q =

(
Nr−1

g
r
2

) 1
r−s

.

This completes the proof. ⊓⊔
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6 Conclusion

In this paper, we proposed a new public key cryptosystem based on the cubic
Pell curve modulo a prime power modulus of the form N = prqs to perform
encryption and decryption. We studied its security and showed that it is based on
two computationally hard problems, namely, the integer factorization problem,
and the Rabin trapdoor. The advantage of the new scheme is that the arithmetic
operations have to be performed on a cubic Pell curve which is known only to
the sender and the recipient.
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