
Estimating the Unpredictability of Multi-Bit Strong PUF Classes

Ahmed Bendary
Department of ECE

The Ohio State University
Columbus, OH 43210, USA

bendary.1@osu.edu

Wendson A. S. Barbosa
Department of Physics

The Ohio State University
Columbus, OH 43210, USA

desabarbosa.1@osu.edu

Andrew Pomerance
Potomac Research LLC

Alexandria, VA 22314, USA
andrew@potomacresear.ch

C. Emre Koksal
Department of ECE

The Ohio State University
Columbus, OH 43210, USA

koksal.2@osu.edu

Abstract—With the ongoing advances in machine learning
(ML), cybersecurity solutions and security primitives are be-
coming increasingly vulnerable to successful attacks. Strong
physically unclonable functions (PUFs) are a potential solution
for providing high resistance to such attacks. In this paper,
we propose a generalized attack model that leverages multiple
chips jointly to minimize the cloning error. Our analysis shows
that the entropy rate over different chips is a relevant measure
to the new attack model as well as the multi-bit strong PUF
classes. We explain the sources of randomness that affect
unpredictability and its possible measures using models of
state-of-the-art strong PUFs. Moreover, we utilize min-max
entropy estimators to measure the unpredictability of multi-bit
strong PUF classes for the first time in the PUF community.
Finally, we provide experimental results for a multi-bit strong
PUF class, the hybrid Boolean network PUF, showing its high
unpredictability and resistance to ML attacks.

1. Introduction

Ubiquitous connectivity and computing have supported
all aspects of our lives. However, benefits are threatened
by the escalation of cybersecurity attacks in recent years.
Critical data breaches have affected businesses, health care,
educational institutions, banks, and governments. Existing
cybersecurity solutions are based on protected secret keys
that may also be vulnerable to leakage. Recently, physically
unclonable functions (PUFs) have emerged as a powerful
cybersecurity solution that generates sequences on demand
that are used as secret keys. With PUFs, generated keys are
generated on demand and not stored, which reduces their
susceptibility to compromise.

PUFs can be implemented on chips and designed to
exploit random variations in the manufacturing process [1],
[2]. They are small in size, low in cost and cannot be
replicated even with the same manufacturing process, that
is, “physically unclonable”. Typical use cases are authen-
tication [1], [2], [3], [4], secret sharing [2], and intellec-
tual property protection [5], [6]. The input (denoted as a
“challenge”) to a PUF chip is mapped to the output (a
“response”) based on the design and the unknown physical
parameters. PUFs are required to be “reliable” such that

applying the same challenge many times reproduces the
same response with a low probability of error. Meanwhile,
even with the knowledge of many challenge-response pairs
(CRPs), an attacker cannot predict unseen responses with a
low probability of error, i.e., “unpredictable”.

PUFs are categorized as weak or strong according to
the size of the challenge-response space. A strong PUF
has a challenge-response space that grows rapidly with the
size of the PUF (the length of the challenge) such as the
Arbiter PUF [1], the Ring Oscillator (RO) PUF [2], and the
hybrid Boolean network (HBN) PUF [7]. Those PUFs can
be categorized also as delay-based PUFs that depend on the
timing information of the circuit. Weak PUFs are those that
have a relatively small number of challenges, and examples
are the static random access memory (SRAM) PUF [5], [8],
and the flip-flop PUF [9]. Both the SRAM PUF and flip-
flop PUF are memory-based PUFs that depend on the cell
state when powered on. We focus on strong PUFs since the
large challenge-response space cannot be exhausted easily
even when the attacker had previous access to the PUF
chip [10], [11]. In particular, the HBN-PUF generates multi-
bit responses, unlike existing strong PUFs that produce
only single-bit responses. We consider the HBN-PUF as
our use case to illustrate our proposed attack model and
unpredictability metric, rather than existing multi-bit strong
PUFs [12], [13], [14], [15], [16]. We note that comparing
existing multi-bit strong PUFs is beyond the scope of this
paper and will be considered as a separate future work.

1.1. Related Work

Existing ML attacks [17], [18], [19], [20] can efficiently
estimate the unknown parameters and fully characterize
PUFs with a sufficient subset of CRPs. However, the CRPs
are simulated. Even when hardware CRPs are used as in
[21], [22], [23], only single-bit PUFs are considered. In
addition, these modeling attacks do not use information from
other chips in the class. New attack models are required
to consider chips jointly as well as multi-bit strong PUFs.
Parallel to our results of high entropy rate of HBN PUF,
the authors in [24] shows high resistance of HBN class to a
novel ML attack that outperforms existing attacks and uses
many chips jointly as proposed in our work.

In the literature, many performance metrics, such as
uniqueness, bit-aliasing, steadiness, diffuseness,..., etc., are
proposed to assess and compare PUFs [9], [25], [26], [27],
[28], [29], [30], [31]. Some of these metrics are useful
from a design perspective [27], [30] so that weaknesses in
the PUF design can be discovered and improved. However,
achieving good scores on these metrics is necessary but not
sufficient to guarantee the unpredictability of PUFs1. Other
metrics are either qualitative [28], [29] or specific to a PUF
design [25], [26], [31]. There are established provable meth-
ods and theoretically sound bounds established to assess the
unpredictability of the PUFs; see, e.g., [32], [33]. However,
all these methods are 1) suitable for single-bit PUFs, 2) do
not consider the relation between different responses, nor
consider many chips jointly. The authors in [32] assume
independent and biased response bits, while the approach in
[33] sums up relationships between existing metrics such as
uniqueness in terms of Hamming distance (HD) and min-
entropy.

One of the major challenges to PUFs is non-invasive
attacks, in particular, machine learning (ML) attacks. An
attacker collects CRPs from different PUF chips or eaves-
drops on a target PUF and chooses a ML technique to
predict the responses to unseen challenges. Most existing
work proposes a design for a PUF and runs a handful of
well-known ML attacks to establish a cloning error for those
attacks (which is usually reported to be approximately 0.5).
This is only a statement of the ML attacks the authors ran on
their PUF and does not establish a bound for all ML attacks.
Thus, a strong notion of the unpredictability of PUFs is still
needed, where a demanding task is to verify whether a given
PUF class is resilient to non-invasive attacks or not. That is,
we are motivated to carefully assess the unpredictability of
any given PUF class.

Many works in the PUF literature (see [34], [35], [36])
use the term “entropy rate” to refer to the normalized
entropy per bit. Other works calculate the entropy rate
of CRPs for each single chip separately [37] or estimate
it using compression [9], [38]. In this paper, the entropy
rate is estimated using many chips jointly to assess the
unpredictability of a PUF class.

Lastly, estimating the entropy requires a number of
samples that scales up with the cardinality of responses.
Thus, existing PUF entropy calculations consider compres-
sion techniques [9], [38] to estimate an upper bound on the
entropy, use the min-entropy [27], [28], [39], [40], [41] to
estimate a lower bound, or even use plug-in estimators [42],
[43]. Although the entropy estimation methods in [44] are
practical, the estimators used in this paper are theoretically
sound with proven guarantees for convergence and sample
complexity. Considering such recent and efficient estimators
could be a huge step toward assessing a PUF class unpre-
dictability. We note that modeling PUFs mathematically or
using an empirically trained model to accurately derive the

1. We show that, reversely, high unpredictability measured by entropy
rate guarantees high scores on these metrics, while low unpredictability
does not imply which metric(s) is low.

entropy rate is beyond the focus of this manuscript. It is of
great importance for future work, but it is not an easy task
due to the increased complexity of newly designed PUFs.

1.2. Contributions

In this paper, we provide simple and unified mathe-
matical models for state-of-the-art PUFs to explain sources
of randomness that affect reliability and unpredictability.
Unlike existing modeling attacks, we consider a generalized
attack model that leverages additional information in other
chips from the same class.

Many existing works have proposed heuristic metrics to
assess the unpredictability of PUFs, and in particular the new
aspects of the HBN-PUF stress existing approaches to as-
sessing the unpredictability. We bridge this gap and propose
an information-theoretic framework to tackle this problem
and determine whether a PUF class is unpredictable, which
can indicate whether it is resilient to machine learning
attacks or not. Then, we discuss the existing uniqueness
measures and illustrate their shortcomings with counterex-
amples. As a counter, we show that entropy is a sufficient,
precise, and consistent metric to measure the uniqueness of
strong PUFs.

Since PUF responses are sent via a public channel,
unseen responses are vulnerable to prediction/cloning at-
tacks. Thus, CRPs should be unpredictable in two different
aspects. One aspect is across different PUF chips (Inter-
PUF unpredictability), i.e., given a challenge, the response
of a PUF chip is unpredictable from other PUF chips. The
other is across different responses of a single PUF chip
(Intra-PUF unpredictability); i.e., given a set of CRPs of
a PUF chip, the remaining responses are unpredictable. We
explain two related quantities, in terms of joint and condi-
tional probability distributions of CRPs, and their relation
to different attacks. In the absence of these distributions, we
provide different finite-order entropy rate measures using the
available samples. In addition, we explain how to detect the
possible deterministic behavior of a single PUF chip and
decide whether to exclude it or not.

Lastly, we provide experimental results using recent
efficient entropy estimators, new to the PUF community,
to evaluate the unpredictability of the HBN-PUF, showing
its high entropy rate, and hence high resistance to ML
attacks. The contributions of this paper can be summarized
as follows:

• We propose a generalized attack model that con-
siders the responses of multiple PUF chips jointly
to improve the estimation of responses for unseen
challenges.

• To evaluate the strength of a PUF class, we introduce
entropy rate as a metric, which is suitable for the new
attack model as well as for multi-bit strong PUF
classes such as HBN PUF. Unlike existing works
that consider single chips separately or denote the
normalized entropy per bit as the entropy rate, we
estimate the entropy rate across different chips and
responses.

• Moreover, we use efficient entropy estimators, which
are being used for the first time in the PUF commu-
nity. We also collect a significant amount of real
data of 256-bit HBN PUF and conduct extensive
experimental analysis to estimate the entropy rate
for the HBN PUF for the first time.

Organization. The paper is organized as follows. The
PUF model, definitions, and other preliminaries are intro-
duced in section 2. A new attack model is introduced and
discussed in section 3. A measure for the new attack model,
which is also suitable for a PUF class unpredictability is
provided and investigated in subsection 3.2. In section 4,
finite-order entropy rate estimation based on the available
sample size is introduced. Then, measuring the uniqueness
of different chips and testing a single PUF chip to detect pos-
sible deterministic behavior are provided in subsection 5.1
and subsection 5.2, respectively. Experimental results using
efficient entropy estimators for HBN-PUF are given in sec-
tion 6, and the paper is concluded in section 7.

2. PUF Model and Preliminary

First, we define a PUF class and a PUF chip, which is
an important step in choosing the appropriate performance
metrics. We focus primarily on the mapping function to
understand sources of randomness and the basic parameters
that affect reliability and unpredictability. Let R and Z+

be the set of real numbers and the set of positive integers,
respectively, and N,Nr, Nv, Nw ∈ Z+. Furthermore, the
continuous-time version of a binary input x is denoted by
x(t), which has a transition from 0 to 1 (or 1 to 0) in a time
of rise (fall) denoted by τr (τf). The cardinality of a set X
is denoted by |X |. Let the challenge set, C = {0, 1}N , and
the response set, X = {0, 1}Nr , be metric spaces with a
distance function, e.g. HD dH .

Definition 1 (A PUF Class). A class of PUFs is a discrete
stochastic process of a finite number of random variables in-
dexed by the challenge space and defined by a deterministic
mapping (determined by the design/structure) as follows:

f : C × V ×W → X , (1)

where the set V ⊂ RNv and the set W ⊂ RNw are
respectively the sets of random parameters that result from
1) variations/imperfections in the manufacturing process,
e.g. path delay, and 2) model errors, e.g. thermal noise
and logic gates’ error propagation [45], and affect the
unpredictability and reliability of the PUF class. The former
set of parameters leads to variations that are non-ergodic
across different observations of the response for the same
challenge. These factors constitute the main and desired
source of variations across distinct PUFs within the same
class. The latter factors lead to variations for a given PUF
across responses for the same challenge. Hence, they lead
to unreliable operation if not properly addressed.

Definition 2 (A PUF chip). A PUF chip is a mapping, f :
C × Vm × W → X , where Vm ⊂ V is a set of unknown

deterministic parameters (generated by the manufacturing
process). Moreover, the response at time t after applying
the kth challenge to the mth chip is given by:

Xk,m = f (ck,vm,W) , 1 ≤ k ≤ 2N , (2)

where the random vector Xk,m =
[
xn
k,m

]
∈ X , vm =

[vmi] ∈ Vm is an unknown realization of the random vector
V resulted from the manufacturing process of the mth chip,
and m ∈ Z+.

C ∈ {0, 1}N

Challenge

X ∈ {0, 1}Nr

ResponsePUF

Figure 1. A PUF maps a challenge to a response.

It should be clear that, when the set of parameters from
the manufacturing process is deterministic, a PUF chip is
a noisy realization of the PUF class. We provide unified
continuous-time models for state-of-the-art strong PUFs in
AppendixA. We show that different PUF designs are based
on the similar overall idea that there are nonergodic varia-
tions due to V that affect the unpredictability and ergodic
noise due to W that affect the reliability. The response after
applying the kth challenge is given by:

Xk = f (ck,V ,W) (3)

where the random vectors Xk = [xn
k] ∈ X , ck = [ck,n] ∈

RN , V = [vi] ∈ V , and W = [wi] ∈ W .

Remark 1. The unpredictability of a PUF class is inherited
from the random variations of the manufacturing process
as well as the mapping (the PUF structure/design). On the
other hand, the reliability of PUFs is affected by thermal
noise and the mapping itself. Although other parameters
can change the unpredictability and reliability, such as
the supply voltage, operating temperature, aging, etc., we
focus mainly on the mapping, the random variations of
the manufacturing process, and the thermal noise. In ad-
dition, we restrict our representation of the response to
binary sequences ∈ X and assume that any necessary
digitization is part of the physical process, which is more
relevant to cryptographic applications. In the case of HBN-
PUF, the measurement time is a design parameter. Later,
wherever relevant, we choose an optimal measurement time
that maximizes both reliability and unpredictability. In this
work, we focus on the unpredictability and assume that
such parameters affect the unreliability of PUFs since the
enrollment phase is done under specific conditions, and any
changes are considered a source of unreliability. Related
entropy rate measures should be investigated in future work.

Definition 3. (Minimum Cloning Error) For a stochastic
process X with entropy rate H(X), let the binary entropy
H(pX) ≜ H(X)/Nr per bit. An attacker might be able
to achieve an average bit prediction error of the stochastic
process output, denoted as cloning error pcl, that is no less
the probability of error for the binary entropy pX where
0 ≤ pX ≤ pcl ≤ 0.5.

Typical use cases of PUFs are authentication, secret
sharing, and intellectual property protection. A common
phase for utilizing PUFs is the enrollment phase where a
trusted party (Alice) queries the PUF and stores different
CRPs in a look-up table. Then Alice shares the PUF with
a legitimate user (Bob). In Table 1, we give examples of
CRPs of different 5-bit numerical toy PUFs.

For secret sharing, for example, the second phase is
utilization. In this phase, a challenge is sent to Bob via
a public channel, who queries the PUF and is required to
reconstruct the same stored response corresponding to that
challenge. However, the output response is perturbed by
noise; i.e., the response is unreliable and requires careful
reconstruction. Alice sends helper data (in addition to the
challenge) for error correction, and Bob reconstructs the
correct response, which is at Alice in a look-up table. This
response should be unpredictable.

3. The Attack Model

We assume that noiseless CRPs are sent on a public
channel similar to modeling attack assumptions in [11],
[17], [18], [20]. Throughout this paper, we assume that
Alice performs several queries for each challenge to correct
noise and determine a ground truth for the corresponding
response. Consequently, we ignore the noise and consider
the PUF class mapping in (3) as a stochastic process and
the mapping of a PUF chip in (2) as deterministic mapping.
Given the kth challenge, the corresponding response over
all possible PUF chips is a random variable, Xk ∈ X .

To estimate the unknown parameters, vm, of a single-bit
strong PUF, ML framework assigns, for example, a logistic
model to the probability p(xk,m, ck|vm). The authors in
[20] successfully estimated the unknown parameters for
different single-bit strong PUFs and predicted responses for
unseen challenges with more than 99% prediction rate on
simulated PUFs. Therein, the estimation problem is mini-
mizing the negating log-likelihood as follows:

v̂m = argmin
vm∈V

∑
k

− ln p(xk,m, ck|vm), (4)

where the logistic sigmoid is assigned as p(xk,m, ck|vm) =
(1 + e−xk,mf(ck,vm))−1 and the unknown parameters are
estimated via iterative optimization techniques. For the ex-
isting single-bit strong PUFs such as RO and Arbiter, the
mapping function is as simple as an additive linear delay
architecture. Thus, with a sufficient subset of CRPs, ML
attacks [17], [18], [20] can efficiently estimate the unknown
parameters to fully characterize the simulated PUF, and
predict the remaining CRPs with high prediction rates.

Existing attack models measure the unpredictability of
such single-bit strong PUFs with the entropy of a PUF [42],
[43]. The entropy of a PUF is measured as follows:

H(PUFm) ≜ −
∑
k

p(xk,m, ck) log p(xk,m, ck). (5)

However, this entropy is a measure of the complexity of
the mapping function and the dimension of the unknown

parameters rather than the uncertainty and randomness of a
PUF chip. Also, it measures whether the mapping function
spans a large space of CRPs or not. Other work in the
literature [37] considers the entropy rate of a single PUF, i.e.,
the remaining entropy in the kth response after observing
(k−1) CRPs, as a theoretical lower bound of the prediction
rate as follows.

H(xk,m) ≜ −
∑
k

p(xk,m|xk−1
m) log p(xk,m|xk−1

m), (6)

where the sequence xk
m ≜ (x1,m, . . . xk,m). In addition,

up to the authors’ knowledge, the existing works in the
literature consider only a single PUF for modeling attacks or
measuring performance metrics and do not consider many
PUFs jointly to predict unseen CRPs. Utilizing other PUFs
jointly may help to learn the mapping function as well as
estimate common unknown parameters.

3.1. Generalized Attack Model

In our attack model, we consider multi-bit strong PUFs
such as HBN PUF. We assume that the adversary is powerful
who 1) owes (or observes CRPS from) many PUF chips
from the same class, 2) jointly utilizes all seen CRPs from
the intended chip as well as the corresponding responses
from the owned chips, and 3) predicts a response for an
unseen challenge as follows.

Definition 4 (Generalized Attack Model). An adversary
designs an optimal predictor that minimizes the expected
loss of predicting unseen responses from previously seen
responses jointly with responses from other PUF chips as
follows.

X̂k = argmin
xk∈X

E
[
ℓ (Xk,xk) |Xk−1 = xk−1,Ck = ck

]
,

(7)
where ℓ(·) is a loss function, the expectation is taken over
PXk|Xk−1=xk−1,Ck=ck

, Xk ≜ (X1, . . . Xk), and PXk|Ck

is the joint distribution of the class responses. The well
known minimum mean square estimate is given as X̂k =
E
[
Xk|Xk−1 = xk−1,Ck = ck

]
.

Example 1. (Predicting a Response) In this example, we
illustrate the prediction in (7) using Table 1. Suppose an
attacker wants to attack PUF1. The attacker already owes
M − 1 chips: PUF2 to PUFM , either by manufacturing
or simulation. The attacker has observed responses x0,1

to x28,1 from PUF1 and has the corresponding responses
from all other chips PUF2 to PUFM , x0,m to x28,m,
m ∈ {2, . . . ,M}. The predictor in (7) utilizes all known
responses to the previously sent challenges from all chips to
predict the response of PUF1 for an unseen challenge.

Remark 2. Unlike attack models in the PUF literature,
the prediction in (7) has two dimensions, one is across
different chips and the second is across responses. Thus, our
generalized attack model has the potential to extract more
information about the PUF class and enhance the prediction
than any other attack model.

TABLE 1. NUMERICAL TOY PUF EXAMPLE: CRPS OF DIFFERENT 5-BIT PUFS.

Challenges Responses PUF1 PUF2 PUF3 · · · PUFm · · · PUFM PUFM+1 PUFM+2

00000 X0 00000 00000 00000 · · · 00000 · · · 00000 00000 00000
00001 X1 01101 10111 00011 · · · 00001 · · · 00011 00001 00100
00010 X2 01011 11011 10111 · · · 00001 · · · 10111 00010 01000
00011 X3 00110 10100 10100 · · · 00000 · · · 10100 00011 01100

...
...

...
...

...
. . .

...
. . .

...
...

...
01111 X15 11000 11010 00010 · · · 01010 · · · 00010 01111 11001
10000 X16 00111 00101 11101 · · · 10101 · · · 11101 10000 11101

...
...

...
...

...
. . .

...
. . .

...
...

...
11100 X28 11001 01011 01011 · · · 11111 · · · 01011 11100 10011
11101 X29 10100 00100 01000 · · · 11110 · · · 01000 11101 10111
11110 X30 10010 10000 11100 · · · 11110 · · · 11100 11110 11011
11111 X31 11111 11111 11111 · · · 11111 · · · 11111 11111 11111

e.g.1: ck1
Xk1

10101 01010 01010 · · · 10101 · · · 01010 10101 10101
e.g.2: ck2

Xk2
11110 11110 11111 · · · 11111 · · · 11110 10101 11111

Theorem 1. The generalized attack model that utilizes
CRPs jointly from many PUFs has a minimum cloning error
that is no greater than the minimum cloning error of any
other attack model under the same conditions.

Proof. The proof is simple, based on the fact that con-
ditioning reduces entropy, which increases the predic-
tion rate. By Definition 3, the minimum cloning er-
ror for an attacker that uses only PUFm equals the
probability pm where H(pm) = H(PUFm)/Nr. Sim-
ilarly, for the generalized attack model, the minimum
cloning error equals the probability p′m where H(p′m) =
H(PUFm|PUF 1, · · · , PUFm−1)/Nr. Since

H(PUFm|PUF 1, · · · , PUFm−1) ≤ H(PUFm), (8)

we have
p′m ≤ pm. (9)

The “same conditions” means that both attack models
have the same sample size and methodology/technique, and
differ only on the amount of information used. Throughout
this paper, we omit the conditioning on challenges since it
is obvious from the subscript of the response. Thus, PXk|Ck

is denoted as PXk .

3.2. Unpredictability Measure for the Generalized
Model

Since the mapping of a PUF class is a stochastic process,
an attacker has nothing to do except guess responses based
on the joint probability distribution. For k i.i.d. random
responses (the members of the stochastic process), we need
kH(X) bits, where H(X) is the entropy of a random re-
sponse. However, if these responses are not independent, the
joint entropy H(X1,X2, . . . ,Xk) grows (asymptotically)
linearly with k at a rate:

H(X) = lim
k→∞

1

k
H(X1,X2, . . . ,Xk), (10)

which is the well-known entropy rate of the stochastic
process [46]. Thus, the entropy rate suffices to measure the
Inter-PUF unpredictability. We note that a related quantity,
the partitioning entropy [26], describes the unpredictabil-
ity/complexity of the dynamical systems and is related to
the metric entropy (Kolmogorov-Sinai entropy).

Without loss of generality, for a finite number of chal-
lenges, we can calculate two quantities related to the entropy
rate:

1) The normalized joint entropy
1
kH(X1,X2, . . . ,Xk), which measures the
average Inter-PUF unpredictability contained in k
responses excluding any dependencies.

2) Conditional entropy H(Xk|X1,X2, . . . ,Xk−1)
measures how much Inter-PUF unpredictability
left in the kth response after observing (k − 1)
responses.

The second quantity is relevant to an attack scenario in
which the attacker observes several CRPs and tries to predict
an unseen response. Thus, the entropy rate gives the maxi-
mum number of CRPs that can be used before an attacker
can successfully predict all the remaining CRPs and hence,
clone the PUF. In other words, it measures the maximum
number of independent CRPs that can be used.

On the other hand, the average entropy assumes that re-
sponses are independent and does not measure dependencies
between them. The average entropy is given as follows,

Havg =
1

K

K∑
k=1

H(Xk). (11)

It is worth noting that the uniqueness in terms of µinter

does the same besides assuming independent bits across a
multi-bit response. The following example illustrates nu-
merically the difference between the average entropy and
the entropy rate of responses to motivate using the entropy
rate as the Inter-PUF unpredictability metric instead of the
average entropy.

TABLE 2. XORING RESPONSES WITH INDICES A = {1, 2, 29}.

Challenges Responses PUF1⊕
00001 X1 01101⊕
00010 X2 01011⊕
11101 X29 10100

= 11110 X30 10010

Example 2. Suppose there are K = 2N identically-
distributed discrete (Nr-bit) random variables Xk, 1 ≤
k ≤ K, and each has an entropy H(X). Assume that
there are unknown dependencies between these responses
as follows: When XORing some responses, the index of
the resulting response Xj results from XORing the indices
of these responses, and vice versa. Table 2 provides a
numerical example of this relation. Given a set of indices A,
the relation between responses can be described as follows:

j =
⊕
i∈A

i ⇐⇒ Xj =
⊕
i∈A

Xi. (12)

Thus, there are only Nr independent responses and the
normalized joint entropy is Nr

K H(X), while the average
entropy is H(X). A numerical example can be given by
the CRPs in Table 1, where N = Nr. There are only
5 independent responses of a total of 32 responses. For
example, X1, X2, X4, X8, X16 are independent responses.
Thus, the normalized joint entropy is 5

32H(X) = 25
32

bits/response, while the average entropy is H(X) = 5
bits/response. Clearly, the average entropy fails to account
for dependencies between different responses.

Thus, in the case of k i.i.d. responses, kH(X) bits
suffices. Otherwise, for non-i.i.d. responses, the entropy rate,
H(X), suffices. To sum up, besides being a natural, suffi-
cient, and consistent measure, the entropy rate: 1) precisely
measures the unpredictability in a PUF class and excludes
any dependency, 2) measures how much unpredictability is
left in the kth response after observing (k − 1) responses,
and 3) gives the maximum number of CRPs that can be used
before an attacker can successfully guess all the remaining
CRPs.

In the case of using the empirical distribution of CRPs,
we estimate the entropy rate, as we show in section 4, via
the following finite-order quantities based on the available
number of samples and the processing cost:

1) The kth-order normalized joint entropy of CRPs.
2) Average of marginal entropy of CRPs. (Assuming

CRPs are independent.)
3) The nth-order entropy over bits and averaged over

CRPs.
4) Average entropy over bits and CRPs. (Assuming

both bits and CRPs are independent.)

Remark 3. The last quantity measures the uniqueness
across chips. However, many works in the literature replace
this quantity with the average HD over different responses
denoted as µinter. In subsection 5.1, we show that the
second quantity above is the correct measure for uniqueness.

Even the third and the last quantities are more precise than
the average HD.

The uniqueness is a widely used metric in the PUF
literature to measure the independence between different
PUF chips [39]. The uniqueness of the kth response Xk is
calculated empirically by the average pairwise normalized
HD of responses from different PUF chips when queried
with the kth challenge, and is given as follows [27], [30],
[47]:

HD(Xk) =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

1

Nr
dH (xk,i,xk,j) ,

(13)
where M is the number of PUFs. The average over different
responses is denoted as µinter in the PUF literature.

Last, we could use the entropy rate across PUF chips
to measure the number of independent PUF chips, which is
sufficient to completely identify a PUF class. In other words,
it measures the number of independent PUF chips such that
there is no new information left in any other chip.

H(PUF) = lim
k→∞

1

k
H(PUF 1, PUF 2, . . . , PUF k), (14)

and

H(PUF) = lim
k→∞

H(PUF k|PUF 1, PUF 2, . . . , PUF k−1).

(15)
In appendix section B, we discuss the analogy between

strong PUFs and one-way functions (OWF) such that we
could leverage the entropy rate estimation to analyze the
unpredictability of OWFs.

4. Finite-Order Entropy Rate Estimation

One main limitation is that the joint distribution of
responses is not available for any existing PUF class to
the authors’ knowledge. This requires us to estimate such
performance metrics instead of calculating them directly
using probability distributions; future work will focus on
deriving the probability distributions to accurately calculate
different performance metrics. Nonetheless, estimating these
metrics requires a sufficient number of samples that may be
obtained either from hardware implementation, simulation,
or both, which is not an easy task in general. We do not
make any implicit assumptions about independent CRPs or
chips but rather we calculate a finite-order entropy rate based
on the available sample size and the estimator performance
to avoid estimation bias.

In the absence of the joint distribution of responses, we
want to estimate the entropy rate, which is an asymptotic
notion and is a difficult task in general. Existing work pro-
poses and analyzes entropy and entropy rate estimators for
special cases of stochastic processes such as stationary and
ergodic processes. Plug-in estimators and data compression
techniques can be used for this task. However, the effective
alphabet size grows exponentially with the number of ran-
dom variables of a stochastic process. On the other hand,

entropy estimation requires a sample complexity O(|X |
log |X |),

while optimal compression techniques need more than |X |
samples [48]. In addition, a PUF class may be neither an
ergodic nor a stationary process. More importantly, collect-
ing a sufficient number of samples requires fabricating many
chips. That is, it is an under-sampled regime.

In the following, we explain how we use the entropy es-
timators and the structure of our data set to estimate a finite-
order of the entropy rate. One parameter of an estimator is
the symbol size s bits. Each s-bit symbol that comprises
our sample set is transformed into an integer. Thus, the
estimator receives a vector of integer samples as input data
and returns a scalar estimate of the Shannon entropy. For
each PUF size Nr and time delay τ , the collected data are a
three-dimensional array of size (M,L,Nr). Here, M is the
number of different PUF chips realized experimentally and
L ≤ K = 2N is the number of Nr-bit responses generated
from L different challenges. The structure of this data block
is

x1,1 x1,2 x1,3 · · · x1,M

x2,1 x2,2 x2,3 · · · x2,M

...
...

...
. . .

...
xL,1 xL,2 xL,3 · · · xL,M

(16)

We denote xl,m = {xn
l,m} as the lth Nr-bit response of the

mth PUF chip, where 1 ≤ n ≤ Nr and 1 ≤ l ≤ L.
For PUF sizes of interest for cryptography applications,

N > 32, the number of symbols would be too large for an
accurate estimate of the entropy of the full N -bit response;
this is compounded as we attempt to estimate the joint
entropy. The k-th order joint entropy has an alphabet size
|X |k = 2kNr .

The preceding part concerns calculating the uncondi-
tional entropy of a single response. However, the entropy
rate in (10), calculated over observed responses, is the true
metric of interest. Therefore, we need a method to estimate
the correlations across responses and PUFs, subject to a
constraint on s, which is the largest symbol size for which
the entropy can be effectively estimated with a negligible
estimation bias. Thus, we sample s bits from k responses
to form one symbol. This approach has similar limitations
as those of calculating the entropy of a single response,
extended to correlations between responses. Despite some
weaknesses, it is a practical method to move forward and
several examples are illustrative. To estimate the entropy of
a response using the chunks of 8 bits, we simply set s = 8
and k = 1. We denote this as an 8-bit first-order entropy
rate. Another example is to set s and let k = 2. Here, to
compose the symbol, Nb = s/k = s/2 bits are chosen from
each of k = 2 responses; with the suitable summation, this
yields an estimate of the Nb-bit second-order entropy rate.
The Nb bits are randomly chosen among the Nr bits, but in
the same order for both responses2.

Illustrative examples are shown in Figure 2 and Figure 3
where we choose s = 8 and k = 4 for Nr = 16 bits. The

2. We select bits using the same positions in both responses to compose
the symbol.

R1

R2

R3

R4

shuffle bits

S1 S2 S3 S4 S5 S6 S7 S8

integer S1 (decimal representation)

Figure 2. Creating Ns = Nrk/s = 8 symbols of size s = 8 bits from a
set of k = 4 responses of size Nr = 16 bits. Left: first four responses of a
given PUF chip. The colors represent the position of the bit. The ordering
is arbitrary. Right: The bits are shuffled but the bit order is the same across
responses. Symbols are created by the concatenation of Nb = s/k = 2
bits from each response. The symbols of s bits are transformed into an
integer S for entropy estimation.

responses are shown on the left with the colors representing
the bit positions: dark red is the first bit and black is the last
bit. On the right, the bits are shuffled in a way that the bit
order is the same across responses. The symbols are formed
by concatenating Nb = s/k = 2 bits from each response and
then transformed into an integer S (decimal representation).
In other words, the first two bits of each shuffled response
form the first symbol S1, and the third and fourth bits of each
response form the second symbol S2, ..., etc. In the entire
data set composed of L responses, there are NL = L/k
sets of k responses. For each set, Ns = Nrk/s symbols are
formed. For every set of k responses of a given PUF, Ns

s = 8 bits

PUF 1

PUFs

...

Symbol 1

Symbol 2

Symbol 3

Symbol NS

...

Symbol 1

Symbol 2

Symbol 3

Symbol NS

Symbol 1

Symbol 2

Symbol 3

Symbol NS

Group 1 Group 2 Group 𝑁𝑔 = 𝑀/𝑘
...

𝑁𝑏

Responses

Bits

k = 4 responses

... PUF M-1

PUF M

Figure 3. The entropy estimation is done along the vertical axe.

symbols are created and the new block of data that contains

integers representing the symbols is formed as:

S1
1,1 S1

2,1 · · · S1
Ns,1

S2
1,1 S2

2,1 · · · S2
Ns,1

...
...

. . .
...

SM
1,1 SM

2,1 · · · SM
Ns,1

−−−− −−−− −−−− −−−−
...

...
. . .

...
−−−− −−−− −−−− −−−−
S1
1,NL

S1
2,NL

· · · S1
Ns,NL

S2
1,NL

S2
2,NL

· · · S2
Ns,NL

...
...

. . .
...

SM
1,NL

SM
2,NL

· · · SM
Ns,NL

(17)

where Sm
i,j is the ith symbol of the jth set of k responses

for the mth PUF chip. Each column of this data block is
treated as a set consisting of M samples over which the
entropy is estimated. Thus, applying the entropy estimator
results in an NL×Ns matrix with entropy estimations given
by:

Ĥ1,1 Ĥ2,1 · · · ĤNs,1

Ĥ1,2 Ĥ2,2 · · · HNs,2

...
...

. . .
...

Ĥ1,NL
Ĥ2,NL

· · · ĤNs,NL

(18)

where Ĥi,j is the entropy estimation for the ith symbol of
the jth set of k responses calculated over M PUF chips. To
obtain the Nb-bit kth-order entropy rate estimate Ĥk,Nb

, 1)
divide by number of responses k, 2) sum over Ns symbols,
and 3) average over NL chunks as follows:

Ĥk,Nb
=

1

kNL

Ns∑
i=1

NL∑
j=1

Ĥi,j . (19)

5. Entropy for Other PUF Measures

5.1. Uniqueness: Entropy or Hamming Distance?

Entropy is a fundamental quantity in information theory
[46] to describe a random variable Xk. It can be defined
as a lower bound on the average number of bits required to
describe or encode a random variable. Hence, the entropy is
sufficient to measure the uniqueness of a response. In the
following, we give a counterexample that high µinter does
not necessarily imply high entropy, and thus does not imply
high independence between chips.

Example 3. (Entropy is precise while HD is misleading)
We measure the uniqueness of a response in terms of HD
and the entropy of the responses in Table 1, e.g., 1 and 2
(the last two rows). In both examples, the response of any
PUF chip is selected with equal probability from a set of
only two responses, Xk1

∈ {10101, 01010} in e.g.1 and
Xk2

∈ {11110, 11111} in e.g.2. This means both have the
same underlying distribution and the same structure (only

two available symbols, i.e., each half of PUFs in that class
cannot be separated). In the first example, the two responses
differ in all bit positions. Thus, the normalized HD is either
0 or 1, which gives the highest HD(Xk1

) = 0.5. This indi-
cates that the responses are independent. In the second ex-
ample, only the last bit position differs. Thus, the normalized
HD is 0 or 1/5, which gives a low HD(Xk2

) = 0.1. This
indicates that responses have a low independence level. On
the other hand, guessing such two responses is equivalent to
guessing an unbiased flipping coin with equal probability,
i.e., one bit only suffices to describe the two different re-
sponses. Here, HD gives two different levels of independence
between PUF chips, HD(Xk1

) = 0.5 and HD(Xk2
) = 0.1,

with the same entropy, H(Xk1
) = H(Xk2

) = 1 bit. In fact,
they have the same level of independence. Although in the
case of low µinter where designers can identify a weakness
in this PUF class, high µinter is not sufficient for high
independence (inconclusive) and, thus, is misleading. For
a sufficiently large M , µinter converges to 0.5, indicating
independent PUF chips. However, it is unclear whether this
implies high entropy or not. Last, the entropy in both cases
is 1 bit. Here, entropy gives a precise measure of the number
of bits needed to describe uniqueness.

The previous example shows that high uniqueness re-
quires more bits and hence the entropy is high, and vice
versa. That is, the entropy is a consistent measure of
uniqueness. In addition, unlike entropy, HD considers each
bit independently, and hence, it does not capture possible
dependencies between response bits in the case of multi-bit
strong PUFs. This is typical in many PUF designs, in partic-
ular strong PUFs, where each response bit is driven by the
same input challenge, and there are possible dependencies
across the response bits.

Even for independent response bits3, HD does not pro-
vide any advantage over entropy. The authors in [39] explain
the relationship between min-entropy and uniqueness in
terms of HD, while the authors in [49] try to estimate the
min-entropy of responses using HD and µinter. In both
works, the empirical estimates of the three metrics are
directly related. Figure 4 shows that the three metrics are
directly related if the response bits are independent. Thus,
even for independent bits, there is no need to use the min-
entropy or µinter to estimate the actual entropy.

Figure 5 shows a numerical illustration of the number of
samples required for an empirical estimate to converge for
the three quantities and that µinter is a maximum likelihood
estimator for both entropy and min-entropy. Miller-Madow
entropy estimator [50] converges faster than using µinter.
In section 6, we use different estimators that converge even
faster than the Miller estimator. Moreover, µinter requires
a number of computations (computation complexity) that
increases quadratically with the number of samples (PUF
chips) as M(M − 1)/2. In other words, µinter does not
provide a better estimate for entropy, uses less number of
samples nor conveys any additional measure for uniqueness.

3. Assuming bits are independent is reasonable for memory-based PUFs.

Figure 4. The three metrics are directly related if response bits are inde-
pendent.

Figure 5. Miller converges faster than µinter when estimating Entropy and
min-entropy.

Example 4. Another interesting case is when specific PUFs
act as counters. Can the entropy be high in this case (as
the counter does not repeat), yet the Hamming distance is
quite low? Interestingly, both the Hamming distance and
entropy is maximum for a counter, HD = 0.5 and H=Nr

bits, respectively. We note that entropy is used for random
sequences that are not deterministic as counters. In subsec-
tion 5.2, we provide an idea for testing a single chip against
possible deterministic behavior such as acting as counters.
Also, we show that a random challenge generator should
be used in the enrollment phase rather than a deterministic
one, for example, counter in section 6.

In summary, we justify the use of entropy instead of
HD as a uniqueness metric as follows. First, we give a
counterexample that high µinter does not necessarily imply
high entropy, and thus does not imply high independence
between chips. Second, µinter does not capture possible
dependencies between response bits in the case of multi-
bit strong PUFs. Third, the computation complexity of
µinter scales quadratically with the number of samples
(PUF chips). Last, even if we assume independent bits in a
response, entropy gives a precise measure of independence
compared to HD, as shown in Figure 4.

5.2. Testing a PUF chip: Intra-PUF Unpredictabil-
ity

Now, excluding noise in Definition 2 and focusing on
deterministic mapping, a PUF chip could be completely
identified by a set of fixed parameters vm. However, this
set of parameters is unknown and attackers try to estimate
it4. We use the entropy function to indicate whether or not
a PUF chip spans a large number of different responses.
We exploit the set of responses of a PUF chip to obtain the
frequency distribution of the responses and, therefore, the
entropy of the PUF chip H(PUFm) as a measure of the
Intra-PUF unpredictability for the mth PUF chip. We show
the histogram of the s-order Intra-PUF entropy estimate of
HBN-PUF at delay time 10 in Figure 6, which can answer
an interesting question: Given a PUF chip, what is the
probability that the entropy of this chip deviates from the
expected entropy? In other words, what is the percentage of
bad PUF chips from a PUF class?

Figure 6. Few HBN PUFs have relatively low entropy.

Remains to 1) detect any unwanted behavior, such as
periodic responses or the existence of some deterministic
patterns, and 2) prevent a single PUF chip from showing
such unwanted behavior. We plot the responses of a bad toy
PUF chip in the space of the challenges as in Figure 7 for

4. Hash functions are used to prevent such parameter estimation attacks.

Figure 7. Example of a toy 8-bit PUF that shows a deterministic behavior
though its responses (shown in decimal) span all the response space.

example. Fast Fourier transform (FFT) can be used to detect
any peak that indicates unwanted deterministic behavior.
Then, the number of challenges that can be used should
not be more than double the number that results from FFT
mimicking the Nyquist sampling theorem. Thus, we still can
use a PUF chip that shows an unwanted behavior, but with a
limited (reduced) number of CRPs. Future work will further
investigate this idea.

6. Experimental Results

In this part, we exploit the theoretical framework to care-
fully assess the performance of HBN-PUF that benefits from
the chaotic behavior of the autonomous Boolean networks
and generates responses as fast as just a few nanoseconds.
HBN PUF is a promising multi-bit strong PUF class that
is developed by our team at the Physics Department, the
Ohio State University. The new class, HBN-PUF, benefits
from the chaotic behavior of the autonomous (unclocked)
Boolean networks and generates responses as fast as just a
few nanoseconds. We illustrate the basic idea of the HBN-
PUF in subsection A.3.

To measure performance metrics for HBN-PUFs, we fo-
cus on collecting many CRPs from different PUF chips. Cur-
rently, HBN-PUFs are implemented on field-programmable
gate array (FPGA) broads. We implemented 218 Cyclone
10 LP chips (part number 10CL006YU256I7G), collected
65536 randomly chosen challenges/board, and 100 re-
sponses/challenge. Thus, we have some practical limitations
to collect a sufficient number of CRPs for two reasons:
1) the limited number of FPGA boards, and 2) the large
dimensions5 of HBN-PUFs, which imposes an exponential
increase in the number of both required samples and compu-
tations. In addition, estimating the joint entropy increases the
number of required samples. In summary, we want to tackle
the limitations of both the sample size and computation to
estimate the unpredictability of the HBN-PUFs as accurately
as possible.

Under specific assumptions, we perform the finite-order
entropy rate estimation within 1% estimation bias using the
available chips. More chips would result in better estimates.
Thus, manufacturers can use databases from many chips
in the enrollment phase (compared to our limited number
218 chips) to better estimate the unpredictability using our
procedures. We use different entropy estimators in the lit-
erature such as the maximum likelihood estimator (MLE),
the center Dirichlet Mixture (CDM) based estimator [51],
the minimax estimators in [52], [53], denoted as JVHW
and WY, respectively, and the approximate profile maximum
likelihood (PML) [54].

In the following, we use a variety of distributions (e.g.,
uniform, beta, etc.) to test these estimators. It is worth noting
that we do not make any assumption that the distribution of
PUF responses is uniform. We use a variety of distribu-
tions to test different estimators and choose the one that

5. For example, one PUF has N = 256 nodes and generates Nr = 256
bits/response, i.e., 256−bit PUF.

Figure 8. CDM estimator outperforms other estimators for a variety of
distributions and large support sizes.

X 100

Y 6.77849

X 760

Y 6.77362

X 40

Y 6.76097

Figure 9. CDM and JVHW estimators converge with a relatively small
number of samples compared to other estimators.

performs well in general. We show only (as an example)
the performance in the case of the uniform distribution (i.e.,
highest entropy) in Figure 8. As shown in Figure 8, the CDM
estimator converges faster specifically for a large support
size. For example, the CDM estimator is within a one-bit
error compared to the JVHW estimator, which is within a
four-bit error when the sample size is

√
|X |.

In Figure 9, we show the convergence of different esti-
mators for 8-bit HBN-PUFs. Using only 40 PUFs, the CDM
and JVHW estimators converge to the true entropy. We use
such convergence plots to decide the sufficient number of
samples M and the number of bits per symbol s without
introducing an estimation bias.

In Figure 10, we plot the convergence of CDM and
JVHW estimators for different sizes of uniform bits per
symbol. Approximately 200, 6000, and 5 × 108 samples
(i.e., PUFs) are needed for sizes 8, 16, and 32, respectively,
when using the JVHW estimator compared to 200, 2000, and
2×105 samples when using the CDM estimator to estimate
the entropy within 1-bit estimation bias. This figure allows
us to choose the number of samples needed to estimate
the entropy for a specific bias. We note that the JVHW
estimator has good performance for small alphabet sizes
(e.g., |X | = 256) compared to the CDM estimator.

Now, it is clear that the main problem is overcoming
the estimation bias due to the limited number of samples.
We use the available samples (M = 218) and estimate
an upper bound on the entropy. In particular, we assume

Figure 10. Determining the number of samples needed to estimate the
entropy using CDM and JVHW estimators.

that the response is independent on a“symbol-wise” basis.
This means we first choose the symbol size s, measured
in bits. Within each response, we assume that symbols are
independent.

For instance, if we assume a 256-bit PUF, we can divide
each response into 32 symbols, each with 8 bits. This is
based on the effective upper limit of the alphabet size for
which the estimator yields reasonable results. We assume
that within each symbol, there may be correlations of up to
s order that are captured by the entropy estimation routine.
However, we assume that no dependencies exist between
symbols, so we can sum the entropy over the 32 symbols
of our 256-bit PUF.

This assumption raises two issues. Firstly, the correlation
between any two bits may be missed if they are partitioned
between two different symbols. We overcome this by Monte
Carlo sampling, which shuffles the bits to create different
symbols. Secondly, there might be a high correlation be-
tween larger than s bits, but the entropy drops to only around
s bits. For example, suppose that s is 8 and we estimate the
entropy as 250 bits by summing the entropy of 32 symbols,
but any 10 bits or larger are fully dependent, such that the
actual entropy should drop to around 9 bits. This is not
captured by the upper bound.

To solve this issue, we compare the decrease of the
upper bound of the entropy when increasing the estimation
symbol size s for a fixed sample size and i.i.d. generated
bits vs. the PUF responses. A comparable decrease should
be due to the small sample estimation bias; otherwise, there
are higher-order correlations. Using randomly generated
responses for a fixed number of samples (M = 218),
Figure 11 compares the bias of the entropy estimation as
the symbol size increases for both i.i.d. uniform bits and
the PUF responses. We use the estimation at s = 1 since
1) the estimate is reliable and 2) for larger symbol sizes,
we cannot differentiate between the estimation bias and the
reduction due to correlations between symbols. There is no
sharp reduction, indicating that s > 8 bits are not fully
dependent.

We normalize the result to get an upper bound as fol-

X 1

Y 232.049

Y Delta [-5.24759 5.24759]

X 1

Y 254.358

Figure 11. There is no sharp reduction. Thus, s > 8 bits are not fully
dependent.

lows:

Ĥnorm
1,1 =

Nr × Ĥ1,1

Ĥiid

=
256× 232.049

254.358
= 233.547 bits,

(20)
where Ĥiid is the entropy estimate from i.i.d. data at the
same sample and symbol sizes. At 1% estimation bias, i.e.,
reduction due to sample size, we can use the symbol size up
to 10 bits. Thus, to capture the correlation across responses,
we calculate the 1-bit tenth-order entropy rate estimate using
ten responses to create symbols, i.e., k = 10 and s = 10. At
delay 8, Ĥnorm

10,1 = 231.6895 bits/response. We use both
randomly generated responses and gray-coded responses.
The former is more realistic and valid for the astronomical
response space. The latter captures the true entropy of the
PUF.

In Figure 12, we plot the best-case normalized entropy
rate estimate Ĥnorm

10,1 /Nr for different delays to decide the
optimal delay time. In the best case, we assume that there is
no further reduction due to using more than ten responses.
Since the estimated entropy rate is for noisy responses, we
also plot the entropy of µmaj

intra, which is the reduction due to
error correction where µmaj

intra is the average error per bit but
after the majority voting of responses. Here, we assume that
two forms of error correction can be performed. The first is
majority voting after querying the PUF many times for the
same challenge. This is done in both the enrollment and the
utilization phases. The second is a suitable error-correcting
code where helper data are used.

In the worst case where we assume that there is always
a further linear reduction with more responses, we may
use only Ĥnorm

1,1 × k
Ĥnorm

1,1 −Ĥnorm
10,1

noisy responses, where

Ĥnorm
1,1 − Ĥnorm

10,1 is the reduction due to the use of ten
responses. For example, at delay 8, we may use only noisy
responses 233.547 × 10

1.8575 = 1257 in the worst-case sce-
nario. In the best case, an attacker might be able to achieve a
cloning error down to the probability of error for the binary
entropy of Ĥnorm

k,Nb
/Nr per bit using only k CRPs from the

attacked PUF and other M −1 PUFs. For example, at delay
8, the cloning error could be reduced to 32%, the probability
of error for the binary entropy of 231.6895/256 = 0.905

Figure 12. Normalized entropy rate peak is at delays 10 − 12, similar to
using 40 PUFs.

Figure 13. Worst-case estimate is 6000 noisy responses at delay 11 for
random responses.

per bit, using only ten randomly generated CRPs from the
attacked PUF and another 217 PUFs. Thus, a PUF of entropy
0.905 per bit is due to a bias of 0.32 such that the attacker
generates a response of all ones to achieve a probability of
cloning error 0.32. Our approach gives a precise measure of
unpredictability and does not only indicate whether a PUF
is susceptible to a specific attack or not.

In Figure 14, we plot the best-case estimate
Ĥnorm

k,Nb

Nr
−

H(µmaj
intra) that corresponds to the remaining entropy per

bit after using public helper data to correct errors. This
precisely determines the optimal querying time. The entropy
rate of approximately 231.6895

256 −0.043 = 0.862 per bit can be
achieved using the 1000 majority votes. The corresponding
cloning error is shown in Figure 15. For randomly chosen
responses, the cloning error is around 29%, while using
gray-coded responses reduces the cloning error to 18%.

We conclude the following lessons from the previous
part. A random challenge generator should be used in the en-
rollment phase rather than a deterministic one, e.g., counter.
Since correlated challenges (that have a small Hamming
distance) could generate correlated responses, we suggest
using a threshold on the minimum HD, for example, 40
bits, between randomly generated challenges to reduce the
PUF predictability. Furthermore, if the attacker has access
to the PUF, a good approach is to use gray-coded challenges
to query the PUF and get as many responses as possible.

Figure 14. Normalized entropy rate peak is moved back to delay 8.

Figure 15. Minimum cloning error at delay 8 is around 29%.

Then, the attacker may be able to clone the PUF using his
gray-coded CRPs database with a low probability of error.

7. Conclusion

We explain the parameters and sources of randomness
that affect the unpredictability and reliability of strong PUFs.
Our proposed attack model uses chips jointly to predict
responses with a minimized cloning error. We show how
to measure and estimate the unpredictability of a multi-bit
strong PUF class via the entropy rate. Moreover, entropy
outperforms the Hamming distance when measuring the
uniqueness of PUFs, even with the same number of samples.
Efficient min-max entropy estimators are used to estimate
a finite-order entropy rate of the Hybrid Boolean Network
PUF. Experimental results show its high unpredictability and
resistance to ML attacks. Proposing an entropy estimator for
the undersampled regime is crucial to the PUF community
due to the scarcity of available data to analyze. Additionally,
considering Bayesian estimators that are relevant to the na-
ture of binary responses can improve the existing estimators.

References

[1] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas, “Identi-
fication and Authentication of Integrated Circuits,” Concurrency and
Computation: Practice and Experience, vol. 16, no. 11, pp. 1077–
1098, 2004.

[2] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in 2007 44th ACM/IEEE
Design Automation Conference, 2007, pp. 9–14.

[3] A. Bendary, C. E. Koksal, D. Canaday, and A. Pomerance, “Uncondi-
tional Authentication for Constrained Applications via Strong PUFs,”
in 2021 IEEE Conference on Communications and Network Security
(CNS), 2021, pp. 272–280.

[4] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. De-
vadas, “Slender PUF Protocol: A Lightweight, Robust, and Secure
Authentication by Substring Matching,” in 2012 IEEE Symposium on
Security and Privacy Workshops, 2012, pp. 33–44.

[5] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA
Intrinsic PUFs and Their Use for IP Protection,” in Cryptographic
Hardware and Embedded Systems - CHES 2007, P. Paillier and
I. Verbauwhede, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 63–80.

[6] J. Zhang, Y. Lin, Y. Lyu, and G. Qu, “A PUF-FSM Binding Scheme
for FPGA IP Protection and Pay-Per-Device Licensing,” IEEE Trans-
actions on Information Forensics and Security, vol. 10, no. 6, pp.
1137–1150, 2015.

[7] N. Charlot, D. Canaday, A. Pomerance, and D. J. Gauthier, “Hy-
brid Boolean Networks as Physically Unclonable Functions,” IEEE
Access, vol. 9, pp. 44 855–44 867, 2021.

[8] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State
as an Identifying Fingerprint and Source of True Random Numbers,”
IEEE Transactions on Computers, vol. 58, no. 9, pp. 1198–1210, Sep.
2009.

[9] V. Van der Leest, G.-J. Schrijen, H. Handschuh, and P. Tuyls, “Hard-
ware Intrinsic Security from D Flip-Flops,” in Proceedings of the
Fifth ACM Workshop on Scalable Trusted Computing, ser. STC ’10.
New York, NY, USA: Association for Computing Machinery, 2010,
p. 53–62.

[10] U. Rührmair, J. Sölter, and F. Sehnke, “On the Foundations of
Physical Unclonable Functions,” IACR Cryptol. ePrint Arch., vol.
2009, p. 277, 2009.

[11] U. Rührmair and M. van Dijk, “PUFs in Security Protocols: Attack
Models and Security Evaluations,” in 2013 IEEE Symposium on
Security and Privacy, 2013, pp. 286–300.

[12] S. Choi, D. Kim, Y. Choi, W. Sun, and H. Shin, “Multibit-Generating
Pulsewidth-Based Memristive-PUF Structure and Circuit Implemen-
tation,” Electronics, vol. 9, no. 9, 2020.

[13] C. Xu, J. Zhang, M.-K. Law, X. Zhao, P.-I. Mak, and R. P. Martins,
“An N X N Multiplier-Based Multi-Bit Strong PUF using Path Delay
Extraction,” in 2020 IEEE International Symposium on Circuits and
Systems (ISCAS), 2020, pp. 1–5.

[14] V. K. Rai, S. Tripathy, and J. Mathew, “Design and Analysis of
Reconfigurable Cryptographic Primitives: TRNG and PUF,” J Hardw
Syst Secur, vol. 5, p. 247–259, 2021.

[15] T. Kroeger, W. Cheng, S. Guilley, J.-L. Danger, and N. Karimi,
“Enhancing the Resiliency of Multi-bit Parallel Arbiter-PUF and Its
Derivatives Against Power Attacks,” in Constructive Side-Channel
Analysis and Secure Design, S. Bhasin and F. De Santis, Eds. Cham:
Springer International Publishing, 2021, pp. 303–321.

[16] I. Baturone, R. Roman, and A. Corbacho, “A Unified Multibit PUF
and TRNG Based on Ring Oscillators for Secure IoT Devices,” IEEE
Internet of Things Journal, vol. 10, no. 7, pp. 6182–6192, 2023.

[17] C.-C. Lin and M.-S. Chen, “Learning from Output Transitions: A
Chosen Challenge Strategy for ML Attacks on PUFs,” in 2023
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, 2023, pp. 1–6.

[18] N. Wisiol, C. Mühl, N. Pirnay, P. H. Nguyen, M. Margraf, J.-P. Seifert,
M. van Dijk, and U. Rührmair, “Splitting the Interpose PUF: A Novel
Modeling Attack Strategy,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2020, no. 3, p. 97–120, Jun.
2020.

[19] A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, “Machine
Learning Resistant Strong PUF: Possible or a Pipe Dream?” in 2016
IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), 2016, pp. 19–24.

[20] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling Attacks on Physical Unclonable Functions,” in
Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, ser. CCS ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 237–249.

[21] F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, M. M. Tehranipoor, and
D. Forte, “Rock’N’Roll PUFs: Prafting Provably Secure PUFs from
Less Secure Ones (Extended Version),” Journal of Cryptographic
Engineering, vol. 11, pp. 105 – 118, 2020.

[22] S. Kumar and M. Niamat, “Machine Learning based Modeling At-
tacks on a Configurable PUF,” in NAECON 2018 - IEEE National
Aerospace and Electronics Conference, 2018, pp. 169–173.

[23] F. Ganji, S. Tajik, F. Fäßler, and J.-P. Seifert, “Strong Machine
Learning Attack Against PUFs with No Mathematical Model,” in
Cryptographic Hardware and Embedded Systems – CHES 2016,
B. Gierlichs and A. Y. Poschmann, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 391–411.

[24] D. Canaday, W. A. S. Barbosa, and A. Pomerance, “A novel attack
on machine-learning resistant physical unclonable functions,” in 2022
IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), 2022, pp. 25–28.

[25] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing Techniques
for Hardware Security,” in 2008 IEEE International Test Conference,
Oct 2008, pp. 1–10.

[26] P. Tuyls, B. Škorić, S. Stallinga, A. H. M. Akkermans, and W. Ophey,
“Information-Theoretic Security Analysis of Physical Uncloneable
Functions,” in Proceedings of the 9th International Conference on
Financial Cryptography and Data Security, ser. FC’05. Berlin,
Heidelberg: Springer-Verlag, 2005, p. 141–155.

[27] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, “Quantitative and
Statistical Performance Evaluation of Arbiter Physical Unclonable
Functions on FPGAs,” in 2010 International Conference on Recon-
figurable Computing and FPGAs, 2010, pp. 298–303.

[28] F. Armknecht, R. Maes, A. Sadeghi, F. Standaert, and C. Wachsmann,
“A Formalization of the Security Features of Physical Functions,” in
2011 IEEE Symposium on Security and Privacy, May 2011, pp. 397–
412.

[29] R. Nithyanand and J. Solis, “A Theoretical Analysis: Physical Un-
clonable Functions and the Software Protection Problem,” in 2012
IEEE Symposium on Security and Privacy Workshops, 2012, pp. 1–
11.

[30] A. Maiti, V. Gunreddy, and P. Schaumont, A Systematic Method
to Evaluate and Compare the Performance of Physical Unclonable
Functions. New York, NY: Springer New York, 2013, pp. 245–267.

[31] A. Schaub, O. Rioul, and J. J. Boutros, “Entropy Estimation of
Physically Unclonable Functions via Chow Parameters,” in 2019
57th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE Press, 2019, p. 698–704.

[32] R. Maes, V. van der Leest, E. van der Sluis, and F. Willems, “Secure
Key Generation from Biased PUFs: Extended Version,” Journal of
Cryptographic Engineering, vol. 6, pp. 121–137, 2016.

[33] F. Ganji, D. Forte, and J.-P. Seifert, “PUFmeter a Property Test-
ing Tool for Assessing the Robustness of Physically Unclonable
Functions to Machine Learning Attacks,” IEEE Access, vol. 7, pp.
122 513–122 521, 2019.

[34] S. Zhao, J. Lin, W. Li, and B. Qi, “Research on Root of Trust
for Embedded Devices based on On-Chip Memory,” in 2021 In-
ternational Conference on Computer Engineering and Application
(ICCEA), 2021, pp. 501–505.

[35] N. Karimian and F. Tehranipoor, “How to Generate Robust Keys
from Noisy DRAMs?” in Proceedings of the 2019 on Great Lakes
Symposium on VLSI, ser. GLSVLSI ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 465–469.

[36] J. Francq and G. Parlier, Secure Key Generator Using a Loop-PUF.
Cham: Springer International Publishing, 2015, pp. 143–173.

[37] G. Hospodar, R. Maes, and I. Verbauwhede, “Machine Learning At-
tacks on 65nm Arbiter PUFs: Accurate Modeling Poses Strict Bounds
on Usability,” in 2012 IEEE international workshop on Information
forensics and security (WIFS). IEEE, 2012, pp. 37–42.

[38] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.-R. Sadeghi, I. Ver-
bauwhede, and C. Wachsmann, “PUFs: Myth, Fact or Busted? A
Security Evaluation of Physically Unclonable Functions (PUFs) Cast
in Silicon,” in Cryptographic Hardware and Embedded Systems –
CHES 2012, E. Prouff and P. Schaumont, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 283–301.

[39] C. Gu, W. Liu, N. Hanley, R. Hesselbarth, and M. O’Neill, “A
Theoretical Model to Link Uniqueness and Min-Entropy for PUF
Evaluations,” IEEE Transactions on Computers, vol. 68, no. 2, pp.
287–293, Feb 2019.

[40] J. Delvaux, D. Gu, and I. Verbauwhede, “Upper Bounds on the Min-
Entropy of RO Sum, Arbiter, Feed-Forward Arbiter, and S-ArbRO
PUFs,” in 2016 IEEE Asian Hardware-Oriented Security and Trust
(AsianHOST), 2016, pp. 1–6.

[41] M. Shiozaki, Y. Hori, and T. Fujino, “Entropy Estimation of Phys-
ically Unclonable Functions with Offset Error,” Cryptology ePrint
Archive, Paper 2020/1284, 2020.

[42] Q. Wang and G. Qu, “A Silicon PUF Based Entropy Pump,” IEEE
Transactions on Dependable and Secure Computing, vol. 16, no. 3,
pp. 402–414, 2019.

[43] W. Che, V. K. Kajuluri, M. Martin, F. Saqib, and J. Plusquellic, “Anal-
ysis of Entropy in a Hardware-Embedded Delay PUF,” Cryptography,
vol. 1, no. 1, 2017.

[44] M. S. Turan, E. Barker, J. Kelsey, K. McKay, M. Baish, and M. Boyle,
“NIST, SP 800–90B: Recommendation for the Entropy Sources Used
for Random Bit Generation,” Tech. Rep, National Institute for Stan-
dards and Technology, Tech. Rep., 2018.

[45] J. Wang, Z. Chen, and J. Lu, “A Fault Propagation Model for FPGA
Netlist with Un-Reconvergence Paths,” in 2018 5th International Con-
ference on Information Science and Control Engineering (ICISCE),
2018, pp. 1015–1019.

[46] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, Inc., 2012.

[47] L. Feiten, M. Sauer, and B. Becker, “On Metrics to Quantify the
Inter-Device Uniqueness of PUFs,” IACR Cryptol. ePrint Arch., vol.
2016, p. 320, 2016.

[48] S. Verdú, “Empirical Estimation of Information Measures: A Litera-
ture Guide,” Entropy, vol. 21, no. 720, 2019.

[49] H. Liu, W. Liu, Z. Lu, Q. Tong, and Z. Liu, “Methods for Estimating
the Convergence of Inter-Chip Min-Entropy of SRAM PUFs,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 2, pp. 593–605, 2018.

[50] G. Miller, “Note on the Bias of Information Estimates,” Information
theory in psychology: Problems and methods, 1955.

[51] E. W. Archer, I. M. Park, and J. W. Pillow, “Bayesian Entropy Estima-
tion for Binary Spike Train Data Using Parametric Prior Knowledge,”
in Advances in Neural Information Processing Systems 26, C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
Eds. Curran Associates, Inc., 2013, pp. 1700–1708.

[52] J. Jiao, K. Venkat, Y. Han, and T. Weissman, “Minimax Estimation
of Functionals of Discrete Distributions,” IEEE Transactions on In-
formation Theory, vol. 61, no. 5, pp. 2835–2885, 2015.

[53] Y. Wu and P. Yang, “Minimax Rates of Entropy Estimation on Large
Alphabets via Best Polynomial Approximation,” IEEE Transactions
on Information Theory, vol. 62, no. 6, pp. 3702–3720, 2016.

[54] D. S. Pavlichin, J. Jiao, and T. Weissman, “Approximate Profile
Maximum Likelihood,” J. Mach. Learn. Res., vol. 20, pp. 122:1–
122:55, 2019.

[55] M. Khalafalla and C. Gebotys, “PUFs Deep Attacks: Enhanced
Modeling Attacks Using Deep Learning Techniques to Break the
Security of Double Arbiter PUFs,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
204–209.

[56] A. Maiti and P. Schaumont, “Improved Ring Oscillator PUF: An
FPGA-Friendly Secure Primitive,” J Cryptol, vol. 24, p. 375–397,
2011.

[57] R. D.P., “(2015) Summary and Outlook. In: Dynamics of Complex
Autonomous Boolean Networks,” in Springer Theses (Recognizing
Outstanding Ph.D. Research). Springer, Cham, Jan. 2015.

[58] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654,
1976.

[59] L. A. Levin, “The Tale of One-Way Functions,” Problems of Infor-
mation Transmission, vol. 39, no. 1, pp. 92–103, 2003.

[60] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

Appendix A.
State-of-the-Art Strong PUFs

In the following, we illustrate the definition of the PUF
class and the different parameters that affect a PUF class by
providing examples from state-of-the-art strong PUFs.

A.1. Arbiter PUF

Arbiter
0

1

𝑐1 𝑐2 𝑐3 𝑐𝑁−1 𝑐𝑁

Switch 1 Switch N

Figure 16. The arbiter PUF circuit [1].

The arbiter PUF in Figure 16 is the first silicon-based
PUF. It consists of N switches, each has two paths with
delays τmn,1 and τmn,2, respectively, 1 ≤ n ≤ N . The
challenge is applied to the switches and creates two different
paths with delays:

τm1 =

N∑
n=1

ck,n × τmn,1 +

N∑
n=1

ck,n × τmn,2, (21)

and

τm2 =

N∑
n=1

ck,n × τmn,1 +

N∑
n=1

ck,n × τmn,2. (22)

where ck,n is the bit complement of ck,n.

RO1

RO2

RON

MPX1

MPX2

𝑓1

𝑓2

𝑓N

Enable

Challenge

Challenge

Counter1

Counter2

>?
0

1

Figure 17. The ring oscillator PUF circuit [56].

An input signal x(t) is applied to both paths and an
arbiter (a latch) is placed at the end of the two paths and
decides which signal, x(t − τm1) or x(t − τm2), reaches it
first as follows:

f (ck,vm,W (t)) =

{
1, y(t− τm1) ≥ y(t− τm2),

0, otherwise,
(23)

where y(t − τmi) = x(t − τmi) + wi(t), i ∈ {1, 2},
vm =

[
τm1,1 . . . τmi,j . . . τmN,2

]
∈ V ⊂ R2N , i.e., Nv =

2N , is a vector of paths’ delays that represents a real-
ization of the random variations due to the manufacturing
process, which affects the response of the mth chip, and
τmi,1 ∼ log-normal(µτ , σ

2
τ). Thermal noise is represented

by W (t) = [wi(t)] ∈ W ⊂ R2, that is, Nw = 2.

Remark 4. The thermal noise, w1(t) and w2(t), changes
the actual path delay, and therefore, y(t− τmi) in (23) can
be rewritten equivalently as x(t−τmi −τwi (t)), where τwi (t)
is the corresponding change in path delay due to thermal
noise.

The output of the arbiter PUF is only one bit per
challenge, i.e., Nr = 1. Therefore, a maximum of 2N

bits can be extracted from the arbiter PUF. Besides, the
simple mapping of the arbiter PUF, as in (21)-(23), makes it
vulnerable to modeling attacks (e.g., [18], [55]). To enhance
the unpredictability of the arbiter PUF, multiple PUFs can
be XORed together as follows:

Xk,m′ =

M⊕
m=1

Xk,m, (24)

where Xk,m′ is the response of the m′ chip and the kth

challenge results from XORing M PUFs on the chip.

A.2. Ring Oscillator PUF

The ring oscillator (RO) Figure 17 PUF consists of N
ring oscillators, each oscillates at a different frequency due
to the variations in the manufacturing process. The challenge
is applied to two multiplexers to choose a pair of oscillators
and compare their frequencies via a counter. Equivalently,
the mapping can be expressed in terms of the total delay

of each oscillator [56]. Thus, the RO PUF mapping can be
given as follows:

f (ck,vm,W (t)) =

{
1, τmj + τwj (t) ≤ τmj′ + τwj′ (t),

0, otherwise,
(25)

where

τmj =

Ng∑
n=1

τmn,j , (26)

the pair of oscillators j and j′ are chosen by the chal-
lenge ck, Ng is the number of gates in each oscillator,
vm =

[
τm1,1 . . . τmn,j . . . τmNg,N

]
∈ V ⊂ RNNg , i.e.,

Nv = NNg, is a vector of paths’ delays that represents
a realization of the random variations due to the manu-
facturing process, which affects the response of the mth

chip, and τmn,j ∼ log-normal(µτ , σ
2
τ). The thermal noise is

represented by W (t) = [wj(t)] ∈ W ⊂ R2, i.e., Nw = 2,
and τwj (t) is the corresponding change in the path delay due
to the thermal noise wj(t). Similar to the Arbiter PUF, the
output of the RO PUF is only one bit per challenge, i.e.,
Nr = 1.

A.3. Hybrid Boolean Network PUF

The HBN-PUF consists of N nodes and the output of
each node is fed back autonomously, i.e., without a clock,
with the output from two randomly selected nodes. The
initial states of the nodes are set by the input challenge, and
the transient response is captured using the global clock.
The HBN-PUF mapping can be given as follows:

f (ck(t),vm,n,W n(t)) =

{
1, xn

k,m(t) ≥ 0.5,

0, otherwise,
(27)

where xn
k,m(t) is the continuous-time version of the nth

bit response of the mth chip and can be represented using
differential equations as follows [57]:

τk,nLP

d

dt
xn
k,m(t) = −ck,n(t) + amk,n(t) + wn(t), (28)

where

amk,i(t) = g
(
cwk,i′(t− τm,i

i′), cwk,i(t− τm,i
i), cwk,i′′(t− τm,i

i′′)
)
,

(29)
cwk,i(t− τm,n

i) = ck,i(t− τm,n
i) + wn

i (t), i ∈ {i′, n, i′′},
(30)

and g(·) is the continuous-time version of the Boolean XOR
function, i′, i′′ are randomly selected nodes, the low-pass
delay is related to the rise time of the nth bit of the kth

challenge as τk,nLP = τk,nr / ln 2, vm,n = [τm,n
i] ⊂ R3×1, is

a vector of paths’ delays that represents a realization of the
random variations due to the manufacturing process, which
affects the nth response bit of the mth chip, and τm,n

i ∼
log-normal(µτ , σ

2
τ). The vector vm = [vm,n] ⊂ V is a

vector of all delays on the mth chip, and here Nv = 3N . The
thermal noise that affects the nth bit response is represented

TABLE 3. COMPARING THE DIMENSIONS OF THE RANDOM
PARAMETERS THAT AFFECT EACH CLASS.

Arbiter RO HBN
Nv 2N NNg 3N
Ev 2N 2Ng 3
Nw 2 2 4NNst

Ew 2 2 4Nst

Nr 1 1 N

by W n(t) = [wn
1 (t) . . . wn

3 (t) wn(t)] ⊂ R1×4. The vector
W(t) = [Wn(t)] ⊂ W has a dimension of 4N , i.e., Nw =
4N . The output of the HBN-PUF is N bits per challenge,
i.e., Nr = N and a maximum of N2N bits can be extracted
from the HBN-PUF.

Note that the power level of the noise is negligible
compared to the digital signal level. For example, the noise
power spectral density is −174 dBm/Hz at room temperature
290◦K. However, when the sampling time is within the
rise/fall time of the digital signal, the output is sensitive
to thermal noise. This is the case for ring oscillators and
autonomous Boolean networks in general.

The feedback in each node can be decomposed and
viewed as cascaded Nst stages. In particular, the input to
the nth node in the ith stage is fed from the output of the
nodes i′, n, i′′ of stage (i− 1). The number of stages is
given by the measurement time divided by the circuit delay
(0.5 ns as in [7]). For cascaded identical and independent
binary symmetric channels (BSC), each with a probability
of error p, the equivalent single BSC has an error probability
1
2 (1−(1−2p)i) and limi→∞

1
2 (1−(1−2p)i) = 1

2 , p ̸= 0, 1.
This may explain why the error dominates after a long
measurement time. Furthermore, the error 1

2 (1−(1−2p)Nst)
is equivalent to integrating the noise in the differential
equation in (28). Thus, the dimensions of W(t) can be
modified to be Nw = 4NNst.

The unpredictability of a PUF class depends on the
size of the random variations, in terms of Nv and the
structure/mapping of the class. The larger the size of the
variations and the more complex the structure of the PUF
class, the higher the unpredictability of the PUF class.
Similarly, the reliability of the PUF class is affected by
the thermal noise in terms of Nw. Although introducing
more elements in the PUF structure may increase the un-
predictability, it may also increase the delay and the cost,
and more importantly decrease the reliability. In Table 3, the
effective dimensions of the random parameter vector and the
noise vector that affect one bit of the output response are
denoted as Ev and Ew, respectively.

Appendix B.
On the Relation to One-Way Functions

In the early literature, PUFs were referred to as physical
OWFs. A OWF is a function that is “easy” to compute in
the forward direction, but very “hard” to invert, even on
average.

TABLE 4. ONE-WAY FUNCTION VS. PHYSICALLY UNCLONABLE
FUNCTION.

Well-defined mapping Random parameters Input Output
OWF Yes Public Secret Public
PUF Not necessarily Unknown Public Secret

Definition 5 (One-way function [58]). A function f :
{0, 1}N → {0, 1}N is a one-way function (OWF) if:

1) f is computable in time poly(N).
2) For some s(N) = Nω(1) and ϵ(N) = 1

Nω(1) , and
all nonuniform algorithms A running in time s(N),
we have

Pr
[
A (f(X)) ∈ f−1 (f(X))

]
≤ ϵ(N), (31)

where the probability is taken over X and the
randomness of A.

A candidate for OWFs is universal hashing, though
OWFs have not been proven to exist yet [59]. An example
of a universal class of hash functions is given as follows
[60]:

Hp,m = {ha,b : a ∈ {1, . . . , p− 1} and b ∈ {0, . . . , p− 1}} ,
(32)

where

ha,b (k) = ((ak + b) mod p) mod m, (33)

i.e., ha,b maps a given key k ∈ {0, . . . , p−1} into the range
{0, . . . ,m− 1}, and p > m is a prime number.

Although PUFs are preferred to be “hard” to invert
on average, as in (31), there are fundamental differences
between PUFs and OWFs. While the input to a OWF is
secret, the mapping (which is well defined), the used random
parameters, and the output are public. However, an attacker
should not be able to obtain the secret input in a polynomial
time of n. Unlike OWFs, only the challenge to a PUF is sent
in public, while the mapping is not necessarily well defined,
the random parameters are unknown, and the response is
secret in many use cases. Thus, an attacker has to accurately
model the PUF class mapping (e.g., with the aid of a
sufficient number of implemented PUF chips) and estimate
the random parameters of each PUF chip (using previously
seen CRPs from that chip). The main differences between
OWFs and PUFs are summarized in Table 4.

	Introduction
	Related Work
	Contributions

	PUF Model and Preliminary
	The Attack Model
	Generalized Attack Model
	Unpredictability Measure for the Generalized Model

	Finite-Order Entropy Rate Estimation
	Entropy for Other PUF Measures
	Uniqueness: Entropy or Hamming Distance?
	Testing a PUF chip: Intra-PUF Unpredictability

	Experimental Results
	Conclusion
	References
	Appendix A: State-of-the-Art Strong PUFs
	Arbiter PUF
	Ring Oscillator PUF
	Hybrid Boolean Network PUF

	Appendix B: On the Relation to One-Way Functions

