
Committing AVID with Partial Retrieval and Optimal Storage
Nicolas Alhaddad

Boston University

USA

nhaddad@bu.edu

Leonid Reyzin

Boston University

USA

reyzin@bu.edu

Mayank Varia

Boston University

USA

varia@bu.edu

ABSTRACT
Asynchronous Verifiable Information Dispersal (AVID) allows a

dealer to disperse a message𝑀 across a collection of server replicas

consistently and efficiently, so that anyone can reliably retrieve the
message 𝑀 if some servers fail. AVID has direct applications to

long-term file outsourcing, and is also useful as a building block

in other distributed algorithms. Since AVID was introduced by

Cachin and Tessaro in 2005, several works improved the asymptotic

communication complexity of AVID protocols. However, recent

gains in communication complexity have come at the expense of

increased storage and the need to retrieve the entire message even

if only part of it is sought.

This work contributes a new AVID construction that achieves op-

timal storage, support for retrieving only parts of the message, and

guaranteed output delivery while maintaining optimal asymptotic

communication complexity during dispersal and retrieval. This is

accomplished by combining a few technical innovations. We ob-

tain optimal storage by separating the honest thresholds needed

for consensus and for retrieval. We support partial retrievals and

guaranteed delivery by using bi-dimensional erasure coding and a

novel committing technique that combines vector and polynomial

commitments to detect malicious behavior by the dealer at dispersal

time, whereas prior work deferred this detection to retrieval.

KEYWORDS
Distributed Systems, Consensus Protocols, Asynchronous Verifiable

Information Dispersal, Optimal Storage, Partial Retrieval, AVID

1 INTRODUCTION
How can one distribute a file across a collection of outsourced

servers such that anyone can retrieve the file at a later time, even if

some of the servers have lost or corrupted data by then? Reliable

methods for information dispersal are foundational to the design

of distributed, fault-tolerant systems. Introduced by Rabin [23],

verifiable information dispersal allows a dealing-client to disperse
a file among a set of server replicas. It provides availability in the

sense that the outsourced file can subsequently be retrieved by

anyone if enough server replicas are honest, and integrity in the

sense that everyone retrieves the same file even if some of the server

replicas are faulty.

While this work focuses on the use of information dispersal for

outsourced file storage, this primitive also lies at the heart of many

applications involving distributed storage and fault-tolerant state-

machine replication [12, 16]. For instance, verifiable information

dispersal can be used to construct Byzantine reliable broadcast and

agreement protocols [3, 12] in both synchronous and asynchronous

networks, as well as privacy-preserving primitives like verifiable

secret sharing [4, 26], distributed key generation [19], robust secure

multi-party computation [21], and more.

AVID. More specifically, the focus of this work is asynchronous veri-
fiable information dispersal, or AVID. This primitive was introduced

by Cachin and Tessaro in [8], and their target scenario was out-

sourcing of files to storage area networks. They consider server-side

storage devices (“replicas”) whose goal is to store data in an efficient

and fault-tolerant way. To this end, Cachin and Tessaro’s definition

of AVID explicitly allows for Byzantine failures of storage replicas

(in this work, we additionally consider fail-stop replicas). Because

their definition is meant to model storage devices that are decen-

tralized and possibly geographically distributed, all communication

is modeled as asynchronous.

Concretely, the goal of AVID is for a dealing-client to disperse a
message𝑀 such that each server in a collection of 𝑛 server replicas

stores something shorter than 𝑀 (called a “fragment”). At some

later time, any client (not necessarily the original dealing-client)

can retrieve a collection of fragments from 𝑘 honest replicas and

up to 𝑡 malicious replicas, and use this data to reconstruct𝑀 . The

requirements of an AVID protocol combine the correctness require-

ment of an error-correcting code (e.g., that 𝑘 fragments suffice to

reconstruct a message) with several consensus requirements (e.g.,

the replicas will agree on whether dispersal has been completed and

clients will agree on the retrieved message). The requirements also

protect against the possibility that the dealing-client is malicious,
meaning that they disperse fragments that are not consistent with

any message.

Prior constructions. Cachin and Tessaro’s AVID construction meets

their security definitions, but in an inefficient way: when dispers-

ing a message, each of the 𝑛 replicas eventually learns the entire

message𝑀 in order to verify consistency of all fragments, before

discarding most of it and only storing a smaller fragment of the

message for later retrieval. As a result, their protocol has total com-

munication complexity of at least 𝑛 · |𝑀 |. On the other hand, its

storage complexity is optimal, at |𝑀 |/𝑘 per replica.

Subsequently, a series of recent works [1, 2, 16, 25] improved the

communication complexity of AVID using a common high-level

design: encode the data into multiple fragments using an erasure-

correcting code; send a fragment to each replica; reliably broadcast a

commitment to the set of all fragments; and have each replica verify

that its own fragment is consistent with the commitment. This

design ensures that each replica receives data proportional to the

size of its own fragment, so the overall communication complexity

is 𝑂 (|𝑀 |) (plus the commitment overhead). However, all recent

works suffer from four common flaws:

(1) there is no modeling of replicas that go off-line or lose their

fragments between dispersal and retrieval—instead, a failed

replica is treated as malicious, and it is subject to the upper

bound of 𝑡 total faults;

Nicolas Alhaddad, Leonid Reyzin, and Mayank Varia

(2) the per-replica storage is worse than the optimal |𝑀 |/𝑘 of

Cachin-Tessaro [8];

(3) a retrieving-client must retrieve the entire message in order

to perform the consistency check, even if they only wanted

part of it; and

(4) the server replicas cannot detect if the dealing-client has

provided fragments that are not consistent with any mes-

sage (only a retrieving-client will learn this).

In this work, we provide new definitions and constructions of AVID
that overcome all of these limitations.

1.1 Our Contributions
This work contributes four types of enhancements and clarifications

to the definition of AVID, along with new AVID constructions that

are optimal along all of these dimensions (see Table 1 for details)

and desirable in the application of AVID to outsourced file storage.

AVID with fail-stop adversaries. The traditional definition of AVID

assumes that all 𝑛−𝑡 honest server replicas from the dispersal stage

will also participate in retrieval, i.e., that 𝑘 = 𝑛 − 𝑡 . However, this

assumption may not be realistic in the setting of outsourced file

storage, where retrieval can occur months or years later, during

which time some server replicas might go offline or their storage

devices can fail. To allow for this possibility, this work explicitly

introduces 𝑑 fail stop-adversaries into our network model in §3.

As shown in Figure 1, these 𝑑 replicas participate honestly in the

dispersal phase, but then they are disconnected from the network

so that only 𝑘 = 𝑛 − 𝑡 − 𝑑 honest replicas and 𝑡 malicious replicas

are available to participate in retrieval.

We contribute an AVID construction that only requires an honest

majority (𝑘 > 𝑡) during retrieval; by contrast, all AVID protocols (in-

cluding ours) require a 2/3 supermajority of honest server replicas

during dispersal. The high-level idea of our construction is as fol-

lows. Using an erasure code, the dealing-client encodes its message

𝑀 into a collection of 𝑛 fragments, and then encodes each fragment

into a collection of 𝑛 sub-fragments. The eventual goal of dispersal

is for each replica 𝑖 to learn fragment 𝑖 . But at the start, the dealing-

client instead disperses to each replica 𝑖 the 𝑖th sub-fragment of

everyone’s fragment (along with some commitments and proofs).

Using the honest supermajority during dispersal, all server replicas

learn their own fragment in just 3 rounds of communication. At

Figure 1: AnAVID construction has two parts: a dealing-client
disperses a message, and later another retrieving-client re-
trieves it. Among the 𝑛 replicas, up to 𝑡 replicas can be mali-
cious and another 𝑑 can fail in between disperse and retrieve.
The remaining 𝑘 = 𝑛 − 𝑡 − 𝑑 replicas honestly participate in
retrieve. In the figure, 𝑛 = 4, 𝑘 = 2, and 𝑡 = 𝑑 = 1.

retrieval time, an honest majority suffices to distinguish the com-

mitment to 𝑀 from the honest vs. malicious server replicas, and

the erasure code can reproduce𝑀 from the 𝑘 available fragments.

AVID with optimal storage. Next, in §4 we extend the above AVID

construction to achieve the optimal storage size of
|𝑀 |
𝑘

per frag-

ment (plus additive factors depending only on 𝑛 and the security

parameter 𝜆). In this way, the parameter 𝑘 allows for a tradeoff

between support for accidental failures versus the size of each frag-

ment; our fragments can be as small as size
|𝑀 |
𝑛−𝑡 if no fail-stops

are permitted, or up to size
|𝑀 |
𝑡+1 with the maximum tolerance for

fail-stop adversaries.

We emphasize that support for optimal storage is a challenge

to achieve even without fail-stops. Indeed, the recent prior works

described above achieve the worst combination of
|𝑀 |
𝑡+1 storage cost

and no fail-stop tolerance, as shown in Table 1. In §4.1, we explain

why the server replicas must hold data of size
|𝑀 |
𝑡+1 at some point

during dispersal, and therefore why the protocol design of all recent

AVID constructions inherently cannot provide optimal storage.

To achieve optimal storage, our construction initially disperses a

collection of sub-fragments of larger size
|𝑀 |
𝑡+1 , but then constructs

the fragments of smaller and optimal size
|𝑀 |
𝑘

by the end of dis-

persal. Our protocol also achieves optimal communication rounds,

communication complexity (up to log factors), and only uses hash

functions without the need for any trusted setup. The net result

is a significant reduction in costs in the application of AVID to

outsourced file storage, since the memory required during dispersal

will often only be needed for just a few seconds or minutes (and

anyway is no worse than prior constructions), and the long-term

cost saving of storing small fragments on the server’s hard drive

accrues for many months to years afterward.

AVID with partial retrieval. Next, we define and construct AVID that

allows for partial retrieval. Concretely in the setting of outsourced

file storage, a dealing-client might disperse a large message 𝑀

(e.g., a backup of an entire filesystem), but later might only need

to retrieve a few sub-blocks of 𝑀 at a time (e.g., just one file or

directory).

Partial retrieval introduce two challenges: efficiency and consis-

tency. Efficiency is straightforward: the network communication

during retrieval must be proportional only to the size of the par-

tial retrieval rather than the entire𝑀 . Our construction supports

the ability for an retrieving-client to retrieve just some of the sub-

fragments of𝑀 .

The much harder and more subtle issue with partial retrieval has

to do with retrieval consistency. AVID already requires consistency

across replicas: multiple retrieving-clients must receive the same

(full) message, even if the adversarial server replicas act differently

in each attempt at retrieval. But now we also require consistency

across fragments that were dispersed by the (potentially dishonest)

dealing-client. Concretely, if two clients retrieve different portions

of the message, then we require that the retrievals must be consis-

tent for all sub-blocks they have in common.

This requirement is incompatible with most recent AVID con-

structions, which allow a retrieving-client to output an “error” ⊥
if it detects an inconsistency in any part of the retrieved message.

Committing AVID with Partial Retrieval and Optimal Storage
Table 1: Comparison of asynchronous verifiable information dispersal (AVID) protocols for a message𝑀 of length |𝑀 | when the
reconstruction threshold 𝑘 = 𝑛 − 𝑡 . Cells in blue denote asymptotically optimal results, possibly up to polylog or additive factors
in the security parameter 𝜆 or number of replicas 𝑛. The following acronyms are used in the table; DL: Discrete Logarithm,
CRS: Common Reference String, q-SDH: q-Strong Diffie-Hellman, ROM: Random Oracle Model.

Scheme Robust

Dispersal

Cost (total)

Retrieval

Cost (total)

Storage

Cost (total)

Cryptographic

Assumption Setup

Cachin-Tessaro yes 𝑂 (𝑛 |𝑀 | + 𝜆𝑛2 log𝑛) 𝑂 (|𝑀 | + 𝜆𝑛 log𝑛) 𝑛
𝑛−𝑡 |𝑀 | + 𝜆𝑛 log𝑛 Hash None

Hendricks et al. no 𝑂 (|𝑀 | + 𝜆𝑛3) 𝑂 (|𝑀 | + 𝜆𝑛2) 𝑛
𝑡+1 |𝑀 | + 𝜆𝑛2

Hash +ROM None

Alhaddad et al. no 𝑂 (|𝑀 | + 𝜆𝑛2) 𝑂 (|𝑀 | + 𝜆𝑛 log𝑛) 2𝑛
𝑡+1 |𝑀 | + 𝜆𝑛 log𝑛 DL+ROM+Hash CRS

Alhaddad et al. no 𝑂 (|𝑀 | + 𝜆𝑛2) 𝑂 (|𝑀 | + 𝜆𝑛) 2𝑛
𝑡+1 |𝑀 | + 𝜆𝑛 q-SDH+Hash Trusted

DispersedLedger no 𝑂 (|𝑀 | + 𝜆𝑛2) 𝑂 (|𝑀 | + 𝜆𝑛 log𝑛) 𝑛
𝑡+1 |𝑀 | + 𝜆𝑛 log𝑛 Hash None

Alhaddad et al. no 𝑂 (|𝑀 | + 𝜆𝑛2) 𝑂 (|𝑀 | + 𝜆𝑛) 𝑛
𝑡+1 |𝑀 | + 𝜆𝑛 Hash None

This work (§4) no 𝑂 (|𝑀 | + 𝜆𝑛2 log𝑛) 𝑂 (|𝑀 | + 𝜆𝑛 log𝑛) 𝑛
𝑛−𝑡 |𝑀 | + 𝜆𝑛 log𝑛 Hash None

This work (§5 + Bulletproofs) yes 𝑂 (|𝑀 | + 𝜆𝑛2 log𝑛) 𝑂 (|𝑀 | + 𝜆𝑛 log𝑛) 𝑛
𝑛−𝑡 |𝑀 | + 𝜆𝑛 log𝑛 DL+ROM+Hash CRS

This work (§5 + KZG) yes 𝑂 (|𝑀 | + 𝜆𝑛2) 𝑂 (|𝑀 | + 𝜆𝑛) 𝑛
𝑛−𝑡 |𝑀 | + 2𝜆𝑛 q-SDH+Hash Trusted

Hence, a client who partially retrieves only one sub-block must

somehow return ⊥ even if there is an inconsistency in another

sub-block, which is inefficient. To resolve this issue, we introduce

the idea of robust AVID.

Robust and Committing AVID. Our robustness guarantee to AVID

states that successful completion of dispersal ensures that the frag-

ments are consistent with the encoding of some message that can

be subsequently retrieved. This requirement is similar to the ro-

bustness/guaranteed output delivery property of secure multi-party

computation [21, 26], which we formalize in Def. 2.

We contribute a robust AVID construction using a novel encod-

ing scheme based on bi-dimensional erasure coding. Concretely,

we construct a variant of Reed-Solomon codes where the codeword

corresponding to message 𝑀 is a bivariate polynomial 𝑃 (·, ·) of
degree 𝑛 − 2𝑡 − 1 in one dimension and 𝑘 − 1 in the other. In this

case, a “sub-fragment” is one point 𝑃 (𝑖, 𝑗) on the curve, and a “frag-

ment” is a univariate polynomial 𝑃 (·, 𝑗) formed by interpolating all

points received from other replicas. We show that this structure re-

sults in bi-dimensional Reed-Solomon erasure coding over bivariate

polynomials (as shown in Figure 3), which may be of independent

interest.

Lastly, we introduce the concept of committing AVID based on

the following observation: if the retrieving-client happens to know

the polynomial commitment to 𝑃 , then we can support a dishonest
majority of 𝑡 > 𝑘 during retrieval time. This assumption is already

common in outsourced file scenarios, where either the dispersing-

and retrieving-client are the same entity (e.g., in file backup), or

the two clients have a separate authenticated but low-bandwidth

communication channel (e.g., retrieving a checksum from a website

before torrenting a large file). The commitment provides a natural

“handle” or pointer that the retrieving-client can use to request

the correct file. In this way, robust and committing AVID is simi-

lar to the “provable retrievability” property in the recent work of

Nazirkhanova, Neu, and Tse [22], with the important difference that

they rely on the assistance of a blockchain to disperse the commit-

ment and achieve consensus between servers, whereas we merely

require that there exists some mechanism for the retrieving-client

to retrieve one succinct commitment.

1.2 Related Work
The concept of verifiable information dispersal was introduced

by Rabin in 1990 [23], and its asynchronous counterpart was in-

troduced by Cachin and Tessaro in 2005 [8]. We provide a direct

comparison between our work and prior AVID constructions in

Table 1. Beyond its value as a standalone primitive, AVID has ap-

plications to the design of distributed algorithms, blockchains and

state-machine replication, secure computation, and outsourced file

storage.

Distributed algorithms. Recent works have shown a two-way re-

lationship between AVID and other consensus-building protocols

like Byzantine reliable broadcast [6]: AVID and its generalizations

can be used in a black-box manner to construct Byzantine reliable

broadcast (e.g., [3, 12]), and most AVID constructions (including

ours) use reliable broadcast as an internal building block to reach

agreement on a short commitment to the message. AVID is also used

as a fundamental building block within asynchronous, Byzantine

fault-tolerant protocols like DispersedLedger [25]. Our construction

can be a drop-in replacement that withstands fail-stop adversaries,

reduces storage cost, and provides robustness (see Table 1).

Blockchains and state-machine replication. Recentwork byNazirkha-
nova, Neu, and Tse [22] introduces a robustness-style guarantee for

AVID based on a blockchain: each replica posts an attestation that

its fragment is consistent with the commitment 𝐶 , and if enough

attestations are posted then the message is known to be retrievable.

Our work provides the same guarantees and also reduces on-chain

storage by a factor of two. Our AVID construction can be a drop-in

replacement in their application to rollups.

Secure computation. Several works have used AVID and reliable

broadcast protocols in order to construct privacy-preserving proto-

cols. Both Cachin-Tessaro [8] and Alhaddad et al. [4] show how to

construct asynchronous verifiable secret sharing protocols through

the use of AVID-dispersal of an encrypted message combined with

secret-sharing of the corresponding cryptographic key. Addition-

ally, several works show how AVID and asynchronous verifiable

secret sharing can be combined in order to construct asynchronous,

robust protocols for key agreement or general-purpose secure multi-

party computation [13, 19, 21].

Nicolas Alhaddad, Leonid Reyzin, and Mayank Varia

Outsourced file storage. Related to our robustness notion, many

works study the problem of verification that outsourced servers are

storing uploaded files, for both single-server (e.g., [17]) and multi-

server (e.g., [10, 11, 14, 15]) cases. AVID offers an incomparable

guarantee: while it relies on the assumption that there is an upper

bound on the number of corrupted servers, it allows the dealing-

client and retrieving-client to be different, because no client needs

to maintain any local storage. Moreover, AVID offers protection

against a malicious dealing-client (and robust AVID offers even

stronger protection).

2 BUILDING BLOCKS
Crypto primitives. This work uses three primitives from cryptog-

raphy that we briefly describe. First, we use a hash function hash,
which we model as a random oracle [5].

Second, we use a Merkle tree as an instantiation of a determinis-

tic vector commitment scheme, which creates a short digest 𝑐 that

binds a list of data ®𝑣 and allows the committer to prove list member-

ship. Concretely, a vector commitment scheme has four methods:

setup of public parameters pp, producing a vector commitment

VCom(pp, ®𝑣) → 𝑐 , producing a proof VGen(pp, ®𝑣, 𝑖) → 𝜋𝑖 that 𝑣𝑖 is

in ®𝑣 at location 𝑖 , and verifying this proof of list membership via

VVerify(pp, 𝑐, 𝑣𝑖 , 𝜋) → True/False (cf. [9, 20] for details).

Third, we use polynomial commitment schemes to create a di-

gest of a polynomial Com(pp, 𝜙 (𝑥), 𝑑) → ˆ𝜙 in such a way that

the committer can generate a proof open(pp, 𝜙, 𝑖) → ⟨𝑖, 𝜙 (𝑖), 𝜋𝑖 ⟩
that a point lies on the polynomial, which can be publicly veri-

fied via Verify(pp, ˆ𝜙,𝑦, 𝑑). We use two instantiations of polynomial

commitment schemes in this work: bulletproofs with constant-size

commitments and log-size proofs [7], and KZG commitments with

constant-size proofs based on trusted setup [18].

In this section, we introduce the primitives that are required for

this construction: hash functions, vector and polynomial commit-

ments, and erasure codes.

Hash Function. A cryptographic collision-resistant hash function

𝐻 guarantees that a computationally bounded adversary cannot

come up with two inputs that hash to the same value, except with

negligible probability. In this work, we model a hash function as a

random oracle [5].

Following the convention in distributed algorithms papers, in

our security analysis we will actually assume that the probability

of breaking this or any other cryptographic building block is zero;

that said, it is straightforward to extend our analyses to a more

traditional reduction to the security of its fundamental primitives.

Vector Commitments. A deterministic vector commitment scheme
V = (VSetup,VCom,VGen,VVerify) comprises four algorithms

that operate as follows:

• VSetup(1𝜆,𝑈 , 𝑛) → pp is given a security parameter 𝜆, a

set𝑈 , and a maximum vector length 𝑛. It generates public

parameters pp.
• VCom(pp, ®𝑣) → 𝑐 is given a vector ®𝑣 ∈ 𝑈 ℓ

where ℓ ≤ 𝑛. It

outputs a commitment string 𝑐 .

• VGen(pp, ®𝑣, 𝑖) → 𝜋𝑖 is given a vector ®𝑣 and an index 𝑖 . It

outputs a proof string 𝜋𝑖 .

• VVerify(pp, 𝑐,𝑢𝑖 , 𝜋) → True/False takes as input a vector

commitment 𝑐 , an indexed element 𝑢𝑖 ∈ 𝑈 , and a proof

string 𝜋 . It outputs True if 𝑢𝑖 = ®𝑣 [𝑖] and 𝜋 is a witness to

this fact and False otherwise.

A well-known example of a vector commitment is a Merkle tree,

and several other constructions exist (e.g., [9, 20]).

Polynomial Commitments. A polynomial commitment scheme P
comprises several algorithms described below, the last three of

which are optional.

• Setup(1𝜆, F, 𝐷) → pp is given a security parameter 𝜆, a

finite field F, and an upper bound 𝐷 on the degree of any

polynomial to be committed. It generates public parameters

pp that are required for all subsequent operations.

• Com(pp, 𝜙 (𝑥), 𝑑) → ˆ𝜙 is given a polynomial 𝜙 (𝑥) ∈ F[𝑥]
of degree𝑑 ≤ 𝐷 . It outputs a commitment string

ˆ𝜙 (through-

out this work, we use the hat notation to denote a commit-

ment to a polynomial).

• open(pp, 𝜙, 𝑖) → ⟨𝑖, 𝜙 (𝑖), 𝜋𝑖 ⟩ is given a polynomial 𝜙 as

well as an index 𝑖 ∈ F. It outputs a 3-tuple containing 𝑖 , the
evaluation 𝜙 (𝑖), and a proof 𝜋𝑖 that attests that 𝜙 (𝑖) is an
evaluation of the polynomial 𝜙 at i .

• Verify(pp, ˆ𝜙,𝑦, 𝑑) → True/False takes as input a commit-

ment
ˆ𝜙 , a 3-tuple 𝑦 = ⟨𝑖, 𝑗,𝑤⟩, and a degree 𝑑 . It outputs a

Boolean.

• openbatch (pp, [𝜙1 . . . 𝜙𝑛], 𝑖) → ⟨𝑖, [𝜙1 (𝑖) . . . 𝜙𝑛 (𝑖)], 𝜋𝑖 ⟩
is given a list of n polynomials [𝜙1 . . . 𝜙𝑛, 𝑖] as well as an in-

dex 𝑖 ∈ F. It outputs a 3-tuple containing 𝑖 , the𝑛 evaluations

[𝜙1 (𝑖), . . . 𝜙𝑛 (𝑖)], and the batched proof 𝜋𝑖 .

• Verifybatch (pp, [ˆ𝜙1 . . . ˆ𝜙𝑛], ⟨𝑖, [𝜙1 (𝑖) . . . 𝜙𝑛 (𝑖)], 𝜋𝑖 ⟩, 𝑑) →
True/False takes as input a list of 𝑛 polynomial commit-

ments [ˆ𝜙1 . . . ˆ𝜙𝑛], a 3-tuple 𝑦 = ⟨𝑖, [𝜙1 (𝑖) . . . 𝜙𝑛 (𝑖)], 𝜋𝑖 ⟩,
consisting of an index, 𝑛 evaluations at 𝑖 (each at a different

polynomial), a batch proof 𝜋𝑖 and a degree 𝑑 . It outputs

True if the evaluations are on the polynomials and False

otherwise.

• openagg (pp, 𝜙, [𝑥1, . . . 𝑥𝑛]) → ⟨[𝑥1, . . . 𝑥𝑛], [𝜙 (𝑥1) . . . 𝜙 (𝑥𝑛)],
𝜋⟩ is given a list of indices [𝑥1, . . . 𝑥𝑛] where every index

𝑥𝑖 ∈ F and a polynomial 𝜙 . It outputs a 3-tuple containing

the indices [𝑥1, . . . 𝑥𝑛], the 𝑛 evaluations [𝜙 (𝑥1), . . . 𝜙 (𝑥𝑛)],
and the aggregate proof 𝜋 .

• Verifyagg (pp, ˆ𝜙, ⟨[𝑥1, . . . 𝑥𝑛], [𝜙 (𝑥1) . . . 𝜙 (𝑥𝑛)], 𝜋⟩) →
True/False takes as input a polynomial commitment

ˆ𝜙 and

a 3-tuple 𝑦 = ⟨[𝑥1, . . . 𝑥𝑛], [𝜙1 (𝑖) . . . 𝜙𝑛 (𝑖)], 𝜋𝑖 ⟩, consisting
of list of 𝑛 indices [𝑥1, . . . 𝑥𝑛] where every index 𝑥𝑖 ∈ F,
𝑛 evaluations at each index 𝑥𝑖 , an aggregate proof 𝜋 . It

outputs True if the evaluations are on the polynomial at

the right indices and False otherwise.

• Hom(pp, ˆ𝜙1, ˆ𝜙2, 𝑎) → �𝜙1 + 𝑎𝜙2 takes in commitments to

two polynomials 𝜙1 and 𝜙2 of degree at most 𝐷 , as well as a

field element 𝑎 ∈ F. It outputs the commitment Com(pp, 𝜙,
max{𝑑1, 𝑑2}) corresponding to the polynomial 𝜙 = 𝜙1+𝑎𝜙2.

In our constructions, we abuse notation and omit the use of Setup,

VSetup (assuming they have already been performed beforehand)

and public parameters pp and pp (considering them implicitly given

to each algorithm). Also: throughout this work, we do not require

Committing AVID with Partial Retrieval and Optimal Storage

that any commitments are hiding. Concretely, we consider two

instantiations of polynomial commitments throughout this work:

KZG commitments with constant-size proofs based on trusted setup

[18], and bulletproofs with log-sized proofs [7].

Erasure coding. An erasure code transforms a message into a larger

codeword that contains a total of 𝑛 fragments, such that the message

is retrievable even if only 𝑘 fragments remain available. Throughout

this work, we consider erasure codes that are systematic, meaning

that the concatenation of the first 𝑘 coded fragments equals the

original message.

Formally, a (𝑘, 𝑛)-systematic erasure coding scheme consists of

two algorithms, encode and decode, that are defined with respect to

an alphabet F . The encoding algorithm encode(𝑀,𝑘, 𝑛) takes a mes-

sage𝑀 and outputs 𝑛 fragments (𝑓1, . . . 𝑓𝑛), where each fragment is

in F and such that any 𝑘 of those fragments can be used to recon-

struct𝑀 via the decoding algorithm. The decoding algorithm takes

a list of 𝑘 fragments and their indices (𝑖1, 𝑓𝑖1), (𝑖2, 𝑓𝑖2), . . . (𝑖𝑘 , 𝑓𝑖𝑘)
(where all 𝑖 𝑗 values are distinct) and returns 𝑀 . To emphasize

the number of fragments needed to decode, we will use notation

decode(𝑘). Concretely, in this work we will use erasure codes based

on Reed-Solomon [24]. Its alphabet is a finite field F = GF(𝑞),
where 𝑞 is a prime power and 𝑞 ≥ 𝑛.

3 SYSTEM MODEL AND DEFINITIONS
This section formally defines our threat model with malicious and

fail-stop replicas, formally defines AVID, describe our metric for

storage blowup, and adds a new robustness guarantee on top of

AVID.

3.1 Network Assumptions and Threat Model
We consider a set of 𝑛 server replicas connected by a network,

such that there exists an authenticated channel between each pair

of (honest) replicas, and also between replicas and external par-

ticipants called clients. They communicate over an asynchronous

network as follows: a dealing-client only sends one message to each

server replica, a retrieving-client only sends and receives one mes-

sage with each server replica, and the server replicas can interact

with each other as many times as they wish.

In more detail, we define a (𝑡, 𝑑)-limited adversary as an actor

with three types of powers. First, the adversary can reorder and

arbitrarily delay communications transmitted through the asyn-

chronous network, but it cannot drop packets (i.e., messages sent

between honest replicas will eventually be delivered, but there is

no known upper bound on how long this may take). Second, as

with prior works in this space, we also assume that the adversary

can adaptively corrupt up to 𝑡 replicas during the avid-disperse
and avid-retrieve protocols; corrupted replicas can deviate from the

protocol arbitrarily, sending any message of the adversary’s choice

or refusing to send a message at all. A corrupted replica is called

malicious; all other replicas are called honest. Third, unlike prior
works in this space, we additionally give the adversary the power to

disconnect up to 𝑑 additional replicas during each invocation of the

avid-retrieve protocol. In other words, the adversary can induce 𝑑

so-called “fail-stop” failures during avid-retrieve. These replicas are
disconnected (but not malicious); the remaining ones are available.

Disconnected replicas will not participate in the instance of avid-
retrieve, and therefore the retrieving client will never hear from

them. Thus, while at least 𝑛 − 𝑡 replicas participate honestly in

avid-disperse, the retrieving client can expect to hear from at most

𝑘 = 𝑛 − 𝑡 − 𝑑 honest replicas along with the 𝑡 Byzantine corrupted

ones. Note that there may be multiple instances of avid-retrieve
executed after a single avid-disperse (e.g., to different clients), and,

in our model, the adversary can disconnect a different subset of 𝑑

replicas for each instance of avid-retrieve.
Fail-stop adversaries can model long-term failure or attrition of

server replicas that occur in the (possibly lengthy) time interval

between avid-disperse and avid-retrieve. They also model extreme

delays of the asynchronous network that prevent some of the 𝑑

server replicas from completing avid-disperse before a retrieving-
client starts avid-retrieve.

We note that the parameter 𝑘 of participants in avid-retrieve
appears in the original AVID definition by Cachin and Tessaro [8],

although they do not explicitly address fail-stop corruptions. The

parameter 𝑘 is not present in many subsequent works (see, e.g.,

[25]); adding this parameter back into the definition allows us to

have a more careful accounting of storage costs, as we discuss

below.

3.2 Defining AVID with Partial Retrieval
For any (𝑡, 𝑑)-limited adversary, an asynchronous verifiable infor-

mation dispersal (AVID) scheme consists of a pair of protocols

avid-disperse and avid-retrieve. The dispersal protocol is initiated
by a client (called a dealing-client) with a message𝑀 ; it disperses

𝑀 among 𝑛 replicas. We will denote this protocol avid-disperse(𝑀).
For syntactic convenience, when replica 𝑖 finishes the dispersal pro-

tocol, we will say that it calls a special instruction avid-deliver(𝑚𝑖),
where𝑚𝑖 is the information that replica 𝑖 saves in its long-term

storage, and subsequently uses as its input in avid-retrieve.
The retrieval protocol avid-retrieve allows any client to fetch a

portion of the message𝑀 . In more detail, we let𝑀 = [𝑀1, 𝑀2, . . . ,

𝑀𝛼] be the concatenation of 𝛼 sub-blocks, and we allow the client

to retrieve 𝑀𝑥 at any index 𝑥 . This client is called a retrieving-
client, and it communicates with a subset of replicas holding 𝑀 ,

with 𝑘 honest and up to 𝑡 malicious replicas. The retrieval protocol

initiates when a client calls avid-retrieve(𝑥) for an index 𝑥 , and

completes when the client reconstructs the message sub-block𝑀𝑥 ;

upon completion, we say that the retrieving-client calls a special

instruction avid-output(𝑀𝑥). We emphasize the following: (1) the

retrieving-client need not be the same entity as the dealing-client,

(2) multiple retrieving-clients can retrieve different sub-blocks of𝑀

after a single dispersal, and (3) while our definition only considers

retrieval of a single sub-block for simplicity, it is straightforward

also to consider efficient retrieval of many or all sub-blocks at once.

Throughout this work, we will assume that avid-disperse and
avid-retrieve are deterministic algorithms. Additionally, we model

all replicas as interactive Turing machines that connect to each

other and optionally also have access to a structured common

reference string. We do not consider any per-replica initialization

such as a PKI within this work.

Definition 1. An (𝑛, 𝑡, 𝑘) AVID protocol for a message spaceM =

𝐵𝛼 (where 𝐵 = {0, 1}𝛽 is the collection of sub-block strings) satisfies

Nicolas Alhaddad, Leonid Reyzin, and Mayank Varia

the following properties with overwhelming probability for every

𝑀 ∈ M against a (𝑡, 𝑑)-limited adversary, where 𝑑 = 𝑛 − 𝑡 − 𝑘 :

• Termination: If an honest dealing-client initiates avid-
disperse on a message 𝑀 , then avid-deliver is eventually
completed by all honest replicas.

• Dispersal Agreement: If an honest replica completes avid-
deliver , then all honest replicas eventually complete avid-
deliver . (This property holds whether the dealing-client is

honest or malicious.)

• Availability: Any honest retrieving-client who initiates

avid-retrieve(𝑥) eventually reconstructs some message sub-

block𝑀𝑥 , as long as 𝑘 replicas who have completed avid-
deliver remain honest and available throughout avid-retrieve.

• Correctness: If an honest dealing-client initiates avid-disperse(𝑀)
with𝑀 = [𝑀𝑗] 𝑗 ∈{1,2,...,𝛼 } , then an honest retrieving-client

who initiates avid-retrieve(𝑥) for any index 𝑥 eventually

completes avid-output(𝑀𝑥).
• Retrieval Consistency: If at least one honest replica com-

pletes avid-deliver , then all honest retrieving-clients who

initiate avid-retrieve(𝑥) at any index 𝑥 will eventually call

avid-output(𝑀𝑥) for the same 𝑀𝑥 . (This property holds

whether the dealing-client is honest or malicious, and re-

gardless of which 𝑑 replicas are disconnected in between

avid-disperse and avid-retrieve(𝑥).)

We note that in prior work, correctness and retrieval consistency are

often written together as a single property (e.g., [8]). We separate

them in order to distinguish more clearly between the cases of an

honest and malicious dealing-client.

We remark that this definition is deceptively powerful; indeed,

the writing in Def. 1 nearly matches the original definition of

Cachin-Tessaro [8], and it is instead the change in the adversary

model that gives these properties new meaning. We highlight sev-

eral implications of Definition 1 that go beyond prior definitions

of AVID. First, note that the concept of availability stands alone

and does not depend on the definition of agreement; in particular,

avid-retrieve may start even before all honest replicas complete

avid-deliver . Second, retrieval consistency must hold even in the

presence of fail-stop adversaries, so information theoretically any

𝑘 replicas must hold |𝑀 | bits of data between them after dispersal.

Third, fail-stop adversaries and optimal storage together require

moving away from the structure of previous AVID constructions

(see §4.1 for details) and necessitates a more “balanced” construc-

tion where each honest replica completes dispersal with a
|𝑀 |
𝑘

-sized

fragment of the data. Fourth, this definition can only be achieved

when 𝑘 ∈ [𝑡 + 1, 𝑛 − 𝑡] due to the lack of a PKI; the upper bound

follows directly from the fact that 𝑘 is a count of honest replicas,

and the lower bound is shown below.

Theorem 1. For any 𝑛, if 𝑘 ≤ 𝑡 , then there does not exist an (𝑛, 𝑡, 𝑘)
AVID construction that meets Definition 1.

The key idea here is that because the retrieving client did not

participate in dispersal and may not even know who the dispersing

client is, so it is relying on a majority vote to distinguish fragments

from honest vs. malicious replicas. See Appendix B for a full proof.

3.3 Storage Complexity
Wewill adopt the same definitions and model for measuring storage

complexity as with the original work of Cachin and Tessaro [8]. We

will re-formulate them in the following paragraph for clarity. We

distinguish between two types of memory: 1) short term working

memory that is used during avid-disperse but freed when avid-
disperse finishes, and 2) long term storage that the replicas must

maintain after the completion of avid-disperse, to enable useful par-
ticipation in avid-retrieve. We make this distinction because work-

ing memory can be reused once avid-disperse is finished, whereas
long term storage needs to be occupied for as long as the data may

be needed. In this work, as in Cachin-Tessaro [8], we focus on long

term storage as our metric of storage complexity. Formally:

• The storage complexity for replica 𝑖 is the bit length of𝑚𝑖

when avid-deliver(𝑚𝑖) is called. The overall storage com-

plexity of an information dispersal scheme is the maximum

(over the choice of𝑀 ∈ M and adversarial behavior) of the

sum of storage storage complexities of all honest replicas.

• The storage blow-up is the ratio of the storage complexity

and |𝑀 |, in the limit as |𝑀 | → ∞.

Asmentioned in Cachin-Tessaro [8], the smallest possible storage

blow-up of an (𝑛, 𝑡, 𝑘) AVID is
𝑛
𝑘
, because any set of 𝑘 replicas needs

to store the entire message𝑀 among them, and there are 𝑛 replicas

total.

3.4 Defining Robust and Committing AVID
The retrieval consistency property of AVID guarantees that the

retrievedmessagewill be the same regardless of which𝑑 replicas fail

to participate in the retrieval and how 𝑡 malicious replicas behave,

even if the dealing-client is malicious. This property is designed to

ensure that a malicious dealing-client cannot cause different output

messages. However, it does not say that the output message is

correct—the corectness property only applies to an honest dealing-

client, and the meaning of “correct retrieval” is unclear when the

dealing-client is malicious, because the correct message may not

even be well-defined. In fact, the𝑚𝑖 values in avid-deliver(𝑚𝑖) may

not even be consistent with any𝑀 .

Some past work has dealt with this issue by having avid-retrieve
output a special character (like ⊥) when inconsistency is detected

(e.g., [1, 2]). This ensured consistency for full message retrieval, but

this strategy is not conducive to partial retrieval. We take a different

approach and insist that an inconsistent dealing-client is rejected

early, at the avid-disperse stage, rather than during avid-retrieve.
This sidesteps the need for any fallback error messages. Formalizing

this property is somewhat nontrivial: after all, a malicious dealing-

client has limitless options, some of which appear very close to

honest.

In Def. 2, we provide a formalization that is well-defined as long

as avid-disperse is deterministic. It says that if the honest replicas

complete avid-disperse and subsequently use these fragments in

avid-retrieve to reconstruct some message𝑀 , then their fragments

must all be what an honest dealing-client would have produced
when invoked on message𝑀 .

Committing AVID with Partial Retrieval and Optimal Storage

Definition 2. A (𝑛, 𝑡, 𝑘)-AVID protocol is robust against a (𝑡, 𝑑)-
limited adversary 𝐴 if retrieval consistency is strengthened as fol-

lows. If an honest retrieving-client initiates avid-retrieve on all

indices 𝑥 to recover some message 𝑀 = [𝑀𝑥], and then subse-

quently acts as an honest dealing-client and runs avid-disperse(𝑀),
then each replica 𝑖 must complete it with avid-deliver(𝑚𝑖)—that is,
with the same output𝑚𝑖 as in the initial dispersal of𝑀—regardless

of the behavior of malicious replicas.

Next, we extend this definition to give the adversary the power

to corrupt an additional 𝑑 replicas during the avid-retrieve protocol.
In other words, we now consider the 𝑑 replicas to be Byzantine

failures rather than fail-stop failures, and therefore it is possible

that a dishonest majority of server replicas participate in retrieval

(i.e., 𝑡 + 𝑑 > 𝑘).

This begs the question: can an AVID protocol exist if the recon-

struction threshold 𝑘 is less than 𝑡? Here there is good news and

bad news. Unfortunately, we have showed in Theorem 1 that it’s

not possible to support a dishonest majority with the traditional

AVID definition (whether robust or not). The good news is that a

minor change to the definition suffices to support retrieval with

dishonest majority.

The fundamental challenge is that without an honest majority

in retrieval, there cannot be consensus over what message has

been dispersed. Therefore, a natural course of action is to relax

the requirement for avid-retrieve, so that no consensus has to be

solved. We assume that the retrieving-client has a priori received
one small piece of information from the dealing-client— namely,

a succinct binding commitment to the message being dispersed.

This way, even if more malicious replicas show up to the retrieval

phase, they would not be able to convince the fetching client of

a different message as it would require the malicious replicas to

break the binding property of the commitment.

Hence, we introduce a new definition for AVID called robust com-
mitting AVID. The new definition makes changes to both dispersal

and the retrieval. In the dispersal, we require every replica to de-

liver a succinct binding commitment 𝑐 alongside its fragment. In the

retrieval phase, the client now starts with 𝑐 as an input; we presume

that this commitment has already been transmitted accurately out-

of-band. We present our formal definition below: To achieve such

a strong guarantee, we must assume that the retrieving-client has

a priori received one small piece of information from the dealing-

client: a succinct, binding commitment 𝑐 to the message being

dispersed. We note that the out-of-band exchange of 𝑐 is a plau-

sible requirement to impose. For instance, in the outsourced file

storage setting, the fetching client must have some identifier to

reference the message that it wants to retrieve, and one can think

of the succinct commitment as that identifier.

Definition 3. A (𝑛, 𝑡, 𝑘)-robust AVID protocol is committing if

retrieval consistency is changed to the following statement: if at

least one honest replica completes avid-deliver with commitment

𝑐 , then all honest retrieving-clients who initiate avid-retrieve(𝑥, 𝑐)
at every index 𝑥 will eventually retrieve the same message 𝑀 =

[𝑀𝑥], and 𝐶𝑜𝑚(𝑀) = 𝑐 . (This property holds whether the dealing-

client is honest or malicious, and regardless of which 𝑑 replicas are

disconnected in between avid-disperse and avid-retrieve(𝑥).)

Moreover, having a succinct commitment allows for AVID to

support additional use cases. Consider the realm of blockchains, in

which blocks can be dispersed among different nodes and stored

for the long term, which cuts down on storage costs. Specific blocks

could be retrieved from the storage nodes, with the retrieving client

having the ability to verify the correctness of any block, even

though an honest majority might not be present. As a result, a

committing AVID can support the application to rollups described

by Nazirkhanova, Neu, and Tse [22].

4 CONSTRUCTING AVID WITH OPTIMAL
STORAGE

In this section, we construct an AVID protocol with optimal storage

against fail-stop adversaries. While the construction does use a

commitment scheme, it does not guarantee that a retrieving-client

receives a message corresponding to this commitment (i.e., it allows

for a failure output ⊥).

4.1 The Challenge of Achieving Optimal Storage
To motivate our construction, we first explain why having the

optimal storage blowup of
𝑛
𝑘
is difficult to achieve, even for a fixed

𝑘 = 𝑛 − 𝑡 (i.e., without additional fail-stops).

Recent AVID protocols with 𝑂 (|𝑀 |) communication complexity

for 𝑡 ≤ 𝑛−1
3

all have storage blow-ups of at least 𝑛
𝑛−2𝑡 even though

𝑘 = 𝑛 − 𝑡 ; this not by accident, and in fact it is required for their

constructions. In all recent work the dispersal phase has the same

basic structure:

(1) Commit to the data with a commitment,

(2) Reliably broadcast the commitment, and

(3) Send erasure coded fragments of the data to all replicas and

show how they link to the commitment.

Replicas agree among themselves whether the erasure coded frag-

ments they received are consistent with the commitment. To this

goal, sometimes Steps 2 and 3 are intertwined so that all replicas

finish the broadcast once enough erasure coded fragments are

received.

If a protocol follows the above structure using an erasure code

whose fragments are of size
|𝑀 |
𝑛−𝑡 (if 𝑛 = 3𝑡 + 1, which is known

to be most failures for which consensus is still achievable, that

would roughly double their storage efficiency relative to the size

|𝑀 |
𝑡+1 that they actually use), then we claim that the protocols would

run into trouble. The issue is that a malicious dispersing client can

send valid shares to 𝑛 − 2𝑡 honest replicas, but nothing at all to the

remaining 𝑡 honest-but-clueless replicas. The 𝑡 malicious replicas

can also behave correctly in all interactions with the honest replicas,

causing them to complete the dispersal phase (since from their

perspective, the 𝑡 clueless replicas appear to be the malicious ones).

Information theoretically, the honest replicas have
𝑛−2𝑡
𝑛−𝑡 |𝑀 | bits of

data and therefore cannot reconstruct𝑀 on their own; additionally,

the clueless replicas never complete dispersal and cannot help them.

This leaves the honest replicas at the mercy of the malicious replicas

to provide the remaining data in ways that could lead to retrieval

of multiple possible messages, which breaks retrieval consistency

in Def. 1.

Nicolas Alhaddad, Leonid Reyzin, and Mayank Varia

In order to have optimal storage blow up, each replica must store

𝑂 (|𝑀 |
𝑛−𝑡) bits. However, as we have seen, naively letting the dealing-

client send each replica
|𝑀 |
𝑛−𝑡 size fragments would not work in an

asynchronous system. One way around this problem is to reliably

broadcast the whole message and then let each replica save its own

|𝑀 |
𝑛−𝑡 share of the message. This approach was taken by the work of

Cachin-Tessaro [8], but it leads to a communication complexity of

at least𝑂 (𝑛 · |𝑀 |) because each replica has to have the full message.

In summary, any AVID protocol that achieves a communication

complexity of 𝑂 (|𝑀 |) and per-node storage of
|𝑀 |
𝑛−𝑡 must have all

of the following properties.

• Since dispersal can complete if only 𝑛 − 2𝑡 honest replicas

receive valid data from a malicious dealing-client, these

replicas must send enough information for the other 𝑡 hon-

est replicas to finish dispersal.

• Hence, it follows that at some point during dispersal the

message𝑀 must be held solely by 𝑛 − 2𝑡 honest replicas—

meaning that they each hold
|𝑀 |
𝑛−2𝑡 bits.

• But they cannot complete dispersal with this much data, or

else we won’t have optimal storage blowup. After assisting

the honest-but-clueless replicas, they must delete data to

reduce storage down to
|𝑀 |
𝑛−𝑡 bits.

4.2 Our Initial Construction
In this section, we construct an AVID protocol that provides optimal

storage against both malicious and fail-stop adversaries. That is: the

construction has an optimal storage blow-up of
𝑛
𝑘
for any choice

of 𝑘 ∈ [𝑡 + 1, 𝑛 − 𝑡]. It is not robust; nevertheless, we will use

it as a stepping stone toward the robust construction in §5. The

construction itself is detailed in Algorithm 1, and we describe it

below.

Main idea. Our construction mostly follows the three-step structure

of prior work stated in §4.1: we will commit to the data, reliably

broadcast the commitment, and send erasure-coded fragments of

the data. Additionally, we intertwine these steps carefully in order

to complete dispersal in just three rounds of communication, which

is known to be optimal [6]. However, our key difference is in the

way that the dealing-client encodes the message and how it’s being

dispersed. The main message is split into erasure coded fragments

of optimal size
|𝑀 |
𝑘

; each fragment 𝑚𝑖 is then split into erasure

coded fragments of size
|𝑚𝑖 |
𝑛−2𝑡 , which we call sub-fragments and de-

note as𝑚𝑖,1,𝑚𝑖,2, . . . ,𝑚𝑖,𝑛 . Each replica 𝑗 receives 𝑛 sub-fragments

from the dealing-client, one from each fragment𝑚𝑖 ; hence, at the

moment each replica holds
|𝑀 |
𝑛−2𝑡 bits of data. Then, each honest

replica can redistribute one sub-fragment to every other replica.

This redistribution achieves the goals that (i) only 𝑛 − 2𝑡 replicas

need to redistribute data for everybody to complete dispersal with

a valid fragment, and (ii) after redistribution, each replica stores

only the optimal
|𝑀 |
𝑛−𝑡 bits of data.

This construction uses vector commitments, without any addi-

tional features. They can be instantiated using Merkle trees. Note

that there do exist other choices of vector commitments, some of

which achieve constant-size proofs based on trusted setup, which

can lower the additive overhead on the storage complexity. Two

benefits of Merkle trees are that they require no setup and we

can use, which do not require any setup and are amenable to a

form of aggregation (based on subtree structure) to reduce storage

complexity, as shown in §4.4 and Fig. 2.

Algorithmic details. Our protocol in Alg. 1 initial construction fol-

lows the structure of Bracha’s reliable broadcast [6]. Our avid-
disperse protocol has three main steps:

(1) Broadcast Phase: A dealing-client starts the dispersal phase

when it wants to disperse a new message𝑀 . The dealing-

client encodes the message 𝑀 into fragments using era-

sure coding, so that any 𝑘 fragments can reconstruct 𝑀 .

Each fragment𝑚𝑖 is then split into 𝑛 erasure-coded sub-

fragments𝑚𝑖, 𝑗 such that any 𝑛−2𝑡 of them can reconstruct

𝑚𝑖 . All 𝑛
2
sub-fragments are then hashed and committed

to (in a well-specified order) using a vector commitment;

denote the result as 𝑐 . The dealing-client then sends each

replica 𝑗 the following: a list 𝑚′
𝑗
= {𝑚1, 𝑗 , . . . ,𝑚𝑛,𝑗 } that

contains the 𝑗 th sub-fragment of every fragment, the vector

commitment 𝑐 , and a list 𝜋 𝑗 that contains 𝑛 opening proofs

corresponding to the 𝑛 sub-fragments contained in𝑚′
𝑗
.

(2) Echo Phase: Each replica 𝑗 verifies using VVerify that all

sub-fragments in𝑚′
𝑗
are consistent with the same vector

commitment commit using the opening proofs in 𝜋 𝑗 . If the

check is valid, the honest replica sends an echo message to

every replica 𝑖 with its corresponding sub-fragment𝑚𝑖, 𝑗 ,

its proof 𝜋𝑖, 𝑗 and commitment 𝑐 .

(3) Ready Phase: This is nearly identical to the third step of

Bracha’s reliable broadcast [6]. A replica sends a READY
in two cases: (1) if it has received 𝑛 − 𝑡 ECHO with valid

sub-fragments and proofs for the same vector commitment

𝑐 , or (2) if it received 𝑡 + 1 READY with the same vector

commitment 𝑐 .

A replica completes avid-deliver and stores 𝑛 − 2𝑡 sub-fragments in

long term storage if: it has received 𝑛 − 𝑡 ready messages with the

same 𝑐 , and it has received 𝑛−2𝑡 echo messages with sub-fragments

and proofs that are consistent with the same vector commitment 𝑐 .

In case the replica received more than valid 𝑛 − 2𝑡 sub-fragments,

it can safely delete any extra ones and only store 𝑛 − 2𝑡 of them

along with their opening proofs.

Subsequently, avid-retrieve works as follows. The client invokes
RETRIEVE, after which each replica sends back the list 𝑆 of 𝑛 − 2𝑡

tuples acquired from the echo. The client verifies that the list 𝑆 has

length 𝑛 − 2𝑡 , contains the same 𝑐 , and that each sub-fragment is

part of the same vector commitment 𝑐 . If so, the client decodes the

fragment from the sub-fragments, and stores it in the dictionary 𝐷

with key 𝑐 . If 𝐷 [𝑐] has 𝑘 fragments, the client decodes the original

message from the fragments to reconstruct𝑀 ′
. To check that𝑀 ′

is

valid, the client re-encodes𝑀 ′
into fragments and sub-fragments

in the same way the dealing-client did it, and commits to all frag-

ments in a vector commitment 𝑐 ′. If 𝑐 ′ is equal to 𝑐 then the client

terminates with𝑀 ′
. Otherwise, the client terminates with ⊥.

4.3 Communication Complexity
Dispersal. Using any erasure code of optimal size, a sub-fragment

size is
|𝑀 |

𝑘 · (𝑛−2𝑡) = 𝑂 (|𝑀 |
𝑛2

), assuming that 𝑘 is proportional to

Committing AVID with Partial Retrieval and Optimal Storage

Algorithm 1 Pseudocode for Our Initial AVID Construction

� dispersal
// the dealing-client invokes DISPERSE (M)

1: input𝑀
2: let𝑚1,𝑚2, . . . ,𝑚𝑛 := RSEnc(𝑀,𝑛,𝑘)
3: let𝑚𝑖,1,𝑚𝑖,2, . . .𝑚𝑖,𝑛 := RSEnc(𝑚𝑖 , 𝑛, 𝑛 − 2𝑡)] for each 𝑖
4: let 𝑐 = VCom([(hash(𝑚1,1), hash(𝑚1,2), . . . hash(𝑚𝑛,𝑛))])
5: Send (𝑚′

𝑗
, 𝜋 𝑗 , 𝑐) to every server replica 𝑗 , where𝑚′

𝑗
= [𝑚1, 𝑗 ,𝑚2, 𝑗 , . . .𝑚𝑛,𝑗] and 𝜋 𝑗 = [VGen(𝑐, (𝑖 · 𝑛) + 1 for 𝑖 ∈ (0, 𝑛 − 1) , (𝑖 · 𝑛) + 1] along with 𝑐

// code for server replica 𝑖 , upon receiving a message that satisfies any of the conditions below
// condition 1: whether replica 𝑖’s message from the dealing-client is sufficient to send an echo message

6: upon receiving the broadcast message (𝑚′
𝑖
, 𝜋𝑖 , 𝑐) from the dealing-client where the 𝑗𝑡ℎ sub-fragment𝑚 𝑗,𝑖 verifies VVerify(hash(𝑚 𝑗,𝑖), 𝜋 𝑗,𝑖 , 𝑐) do

7: if replica 𝑖 hasn’t sent echo before, Send (echo,𝑚 𝑗,𝑖𝜋 𝑗,𝑖 , 𝑐) to every replica 𝑗

// condition 2: whether replica 𝑖 has received enough echo messages to send a ready message
8: upon receiving (𝑛 − 𝑡) echo messages with the same 𝑐 from other replicas, where each message verifies the predicate VVerify(𝑚𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝑐) do
9: if replica 𝑖 hasn’t sent ready before, send (ready, 𝑐) to every replica 𝑗

// condition 3: whether replica 𝑖 has received enough ready messages to send a ready message
10: upon receiving 𝑡 + 1 ready messages with the same 𝑐 from other replicas do
11: if replica 𝑖 hasn’t sent ready before, Send (ready, 𝑐) to every replica 𝑗

// condition 4: whether replica 𝑖 has received enough ready messages to complete avid-disperse
12: upon receiving 𝑛 − 𝑡 ready messages with the same 𝑐 from other replicas do
13: wait until 𝑛 − 2𝑡 echo messages where each sub-fragment𝑚𝑖,𝑗 verifies the predicate VVerify(hash(𝑚𝑖,𝑗), 𝜋𝑖,𝑗 , 𝑐) and have the same 𝑐 // will receive

at least 𝑛 − 2𝑡 echo messages eventually
14: store the tuple (𝑚𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝑐) from an arbitrary valid 𝑛 − 2𝑡 echo in a list 𝑆

15: avid-deliver 𝑆
� retrieval
// the retrieving-client invokes RETRIEVE

1: send ⟨RETRIEVE⟩ to all replicas

2: initialize an empty dictionary 𝐷 := {}
// code for server replica 𝑖

3: upon receiving ⟨RETRIEVE⟩ for the first time do
4: send 𝑆 to the retrieving client

5: upon receiving 𝑆 for the first time from replica 𝑗 where (length(𝑆) = 𝑛 − 2𝑡) and (all tuples in 𝑆 contain the same 𝑐) do
6: if VVerify(𝑚 𝑗,𝑖 , 𝜋 𝑗,𝑖 , 𝑐) is true for all (𝑚 𝑗,𝑖 , 𝜋 𝑗,𝑖 , 𝑐) in 𝑆 then:
7: 𝐷 [𝑐] .𝑎𝑑𝑑 (RSDec({𝑚 𝑗,𝑖 }∀𝑚 𝑗,𝑖 ∈𝑆))
8: if length(𝐷 [𝑐]) == 𝑘 then:
9: 𝑀′ = RSDec(𝐷 [𝑐])
10: let𝑚′

1
,𝑚′

2
, . . . ,𝑚′

𝑛 := RSEnc(𝑀′, 𝑛, 𝑘)
11: let𝑚′

𝑖,1
,𝑚′

𝑖,2
, . . .𝑚′

𝑖,𝑛
:= RSEnc(𝑚′

𝑖
, 𝑛, 𝑡 + 1)] for each 𝑖

12: let 𝑐′ = VCom([(hash(𝑚′
1,1
), hash(𝑚′

1,2
), . . . hash(𝑚′

𝑛,𝑛)]
13: if 𝑐′ == 𝑐 then avid-output (𝑀′)
14: else avid-output (⊥)

𝑛. Additionally, an inclusion proof is of size log(𝑛) if Merkle

trees are used, and a vector commitment’s size is 𝜆. The broad-

cast phase costs𝑂 (|𝑀 | +𝜆𝑛2 log(𝑛)). The dealing-client has to send
each replica 𝑛 sub-fragments with 𝑛 proofs. The echo stage costs

𝑂 (|𝑀 | + 𝜆𝑛2 log(𝑛)). Each replica has to send one sub-fragment

to every other replica along side an inclusion proof. The ready

stage costs 𝑂 (𝜆𝑛2). Every replica has to send the vector commit-

ment to the sub-fragments hashes. Thus the total communication

complexity of the dispersal phase is 𝑂 (|𝑀 | + 𝜆𝑛2 log(𝑛)).

Retrieval. The retrieval cost is 𝑂 (|𝑀 | + 𝜆𝑛2 log𝑛). (This is for the
scheme as presented above without batching; if we add the batching

technique described below in §4.4, then the cost is𝑂 (|𝑀 |+𝜆𝑛 log𝑛).)
Each replica has to send to the retrieving client 𝑛 sub-fragments,

their proofs and the vector commitment.

4.4 Storage Blowup
At the end of the dispersal, each replica 𝑖 has 𝑛 − 2𝑡 sub-fragments

of optimal size
|𝑀 |
𝑘

, because each sub-fragment is of size
|𝑀 |

𝑘 · (𝑛−2𝑡) .
Moreover, if we instantiate our construction with Merkle trees, the

opening proofs of each sub-fragment is of size 𝑂 (𝜆 log(𝑛)) which
means that the total size stored per replica is

|𝑀 |
𝑘

+𝑂 (𝜆𝑛 log𝑛). Thus,
the total storage blow-up is

𝑛
𝑘
, and with the additive overhead of the

reliable broadcast of the commitment, the total storage complexity

is
𝑛
𝑘
|𝑀 | +𝑂 (𝜆𝑛2 log𝑛).

Reducing the storage overhead. At To reduce the storage overhead:

observe that at the end of the dispersal phase, each replica has to

store 𝑛 − 2𝑡 proofs alongside the 𝑛 − 2𝑡 sub-fragments. Depending

on the vector commitment being used, this This adds an extra

linear factor in the size of the witness of the vector commitment.

Nicolas Alhaddad, Leonid Reyzin, and Mayank Varia

Figure 2: Batched Merkle proofs for 𝑛 sub-fragments of
replica number 1. Instead of having 𝑛 separate Merkle proofs
for each of the sub-fragments𝑚1,1,𝑚1,2,𝑚1,3,𝑚1,4, one proof
of size 𝑂 (𝜆 · log(𝑛)) is enough for all 𝑛 of them.

By using vector aggregatable commitments, those 𝑛 − 2𝑡 proofs

can be compressed into just one proof. Thus, in the retrieval, each

replica can send its 𝑛 − 2𝑡 sub-fragments and only one proof to

the receiver instead of 𝑛 − 2𝑡 proofs. In the case of Merkle trees,

aggregating multiple contiguous proofs if 𝑛 is a power of 2 is easy:

For brevity, we describe the the idea in the case that 𝑛 is a power

of 2: one can send one proof for the sub-tree root, as shown in

Fig. 2. Using aggregation reduces the total storage complexity to

𝑛
𝑘
|𝑀 | +𝑂 (𝜆𝑛 log𝑛).
It only remains to reason about security, as shown below.

Theorem 2. The AVID construction in Algorithm 1 construction in
this section is an (𝑛, 𝑡, 𝑘) asynchronous verifiable information disper-
sal AVID scheme for 𝑡 ≤ 𝑛−1

3
and 𝑡 + 1 ≤ 𝑘 ≤ 𝑛 − 𝑡 .

We defer the proof to Appendix C.

Partial retrieval. To enable partial retrieval of a message block

𝑀 = 𝑀1, . . . , 𝑀𝑙 at any index 𝑖 ≤ 𝑙 , a client could run 𝑙 parallel

instances of the avid-disperse protocol for each sub-block. However,

this approach would multiply both communication and storage

complexities by a factor of 𝑙 . In the forthcoming construction, we

aim to mitigate this issue by substituting the multiplicative increase

in overhead with an additive one.

5 COMMITTING AVID WITH PARTIAL
RETRIEVAL

In this section, we tweak the above construction to provide ro-

bustness and partial retrieval while still achieving optimal storage

blow-up. Our main idea is to instantiate the erasure code with a

concrete, novel bi-dimensional erasure coding scheme, which might

have independent interest.

5.1 Bi-dimensional erasure coding
A bi-dimensional erasure coding scheme is a generalized form of

erasure coding (cf. §2) that simultaneously encodes a message𝑀

under two different linear erasure codes. The encode algorithm

denoted encode(𝑀, 𝑟, 𝑘, 𝑛) takes a message𝑀 and outputs a matrix

of 𝑛2 fragments as depicted in Figure 3. Any set 𝑠 of those fragments

(and their corresponding indices within the matrix) that contains

at least 𝑟 rows with at least 𝑘 fragments each, or at least 𝑘 columns

with at least 𝑟 fragments each, can be used to recover 𝑀 using

either row-wise-decode or column-wise-decode. A (𝑟, 𝑘, 𝑛) erasure
coding scheme is a tuple of algorithms (encode, row-wise-decode,

Figure 3: Overview of the bi-dimensional encoding. Message
𝑀 is broken down into 𝑛2 sub-fragments using a (𝑟, 𝑘, 𝑛) bi-
dimensional erasure coding. Any 𝑘 sub-fragments on each
row 𝑖, is encoding a fragment 𝑓 ′

𝑖
of a (𝑟, 𝑛) uni-dimensional

erasure coding for a message𝑀 . While at the same time, any
𝑟 sub-fragments on each column 𝑗 , is encoding a fragment
𝑓 ′′
𝑗

of a (𝑘, 𝑛) uni-dimensional erasure coding of the same
message𝑀 .

column-wise-decode). Here, row-wise-decode(𝑟, 𝑘, 𝑠) consists of call-
ing the uni-dimensional decode(𝑘) over 𝑘 fragments in 𝑟 rows, fol-

lowed by a decode(𝑟) over the 𝑟 outputs. Analogously, the algorithm
column-wise-decode(𝑟, 𝑘, 𝑠) consists of calling the uni-dimensional

decode(𝑟) over 𝑟 fragments in 𝑘 columns, followed by a decode(𝑘)
over the 𝑘 outputs.

Correctness guarantee. Let 𝑠 = encode(𝑀, 𝑟, 𝑘, 𝑛). Let 𝑠 ′
1
and 𝑠 ′

2
be

two subsets of fragments in 𝑠 (and their corresponding indices) such

that 𝑠 ′
1
contains at least 𝑟 rows of 𝑠 with at least 𝑘 fragments each,

and 𝑠 ′
2
contains at least 𝑘 columns in 𝑠 with at least 𝑟 fragments each.

Then row-wise-decode(𝑟, 𝑘, 𝑠 ′
1
) = column-wise-decode(𝑟, 𝑘, 𝑠 ′

2
) = 𝑀 .

Reed-Solomon bi-dimensional erasure coding. In this paper, we will

instantiate our bi-dimensional erasure coding using systematic

Reed-Solomon erasure encoding. For a prime power 𝑞 and any

𝑛 ≤ 𝑞, a (𝑟, 𝑘, 𝑛) bi-dimensional systematic Reed-Solomon erasure

code works onmessages𝑀 that are 𝑘×𝑟 matrices of symbols, where

each symbol is an element of the finite field GF(𝑞). The symbols are

then treated as evaluations of a bi-variate polynomial 𝑃 of degree

(𝑘 − 1) in one variable and (𝑟 − 1) in the other variable over GF(𝑞).
The encoding function, denoted RSEnc for this code, computes each

fragment 𝑓𝑖 𝑗 by evaluating 𝑃 at different elements 𝑖 and 𝑗 of the

GF(𝑞) (we will assume some canonical injection of {1, . . . , 𝑛} into
GF(𝑞) and, slightly abusing notation, will write 𝑃 (𝑖, 𝑗) for integers
𝑖, 𝑗 ∈ [1, 𝑛] assuming that 𝑖 and 𝑗 will get mapped to GF(𝑞) before
𝑃 is evaluated).

We will also use a partial encoding and decoding algorithms

column-RSEnc and column-RSDec. column-RSEnc evaluates 𝑃 on

1 . . . 𝑛 to produce 𝑛 uni-variate polynomials 𝜙1, . . . , 𝜙𝑛 each of de-

gree 𝑟 − 1 (with 𝜙𝑖 (·) = 𝑃 (·, 𝑖)). While column-RSDec takes any 𝑘

univariate polynomials produced by column-RSEnc to reconstructs

𝑃 .

Committing AVID with Partial Retrieval and Optimal Storage

Figure 4: Overview of the dispersal and retrieval phase of our Robust AVID protocol when 𝑛 = 3𝑡 + 1. Dispersal is done for a
message𝑀 of size 𝜆(𝑡 + 1) · 𝑘 .

Figure 5: Overview of the root commitment when a message 𝑀 is of size 𝑙 · 𝑘 · (𝑡 + 1) · 𝜆 for any positive integer 𝑙 (when
𝑛 = 3𝑡 + 1). Each message is broken into 𝑙 chunks. Each chunk is then encoded into 𝑛 polynomials. The polynomials are then
committed to using polynomial commitments before being sorted and vector committed into 𝑛 vector commitments. The 𝑛
vector commitments are then committed to using a vector commitment to produce the Root vector commitment.
5.2 Our construction
Main idea. The previous construction has an optimal storage AVID

that is not robust. This is due to the fact that we don’t check the

consistency of the fragments until the reconstruction phase. In this

section, we build the first robust AVID with optimal storage blowup

and communication complexity of 𝑂 (|𝑀 |). Starting from the ideas

in §4, our main requirement is to guarantee successful retrieval

even for malicious dealers.

We achieve this using bi-dimensional erasure coding based on

Reed-Solomonwith 𝑟 = 𝑛−2𝑡 rows and𝑘 columns. This lets the hon-

est replicas check the validity of the fragments in a decentralized

way before the end of the dispersal phase. We describe our construc-

tion below using KZG polynomial commitments [18], although the

technique generalizes to any linear erasure coding scheme using

inner product arguments including Bulletproofs [7]. We present

a detailed construction in Algs. 2-3 for robust AVID with a fixed

message block𝑀 of size 𝑘 · (𝑛 − 2𝑡) · 𝜆. Then, we explain how it can

be extended to arbitrarily large messages of size 𝑙 · 𝑘 · (𝑛 − 2𝑡) · 𝜆
for any integer 𝑙 .

Algorithmic details. Our robust AVID protocol is shown in Algo-

rithm 2. Just like our non-robust construction from §4, it follows

the 3-round structure of Bracha reliable broadcast.

Nicolas Alhaddad, Leonid Reyzin, and Mayank Varia

Figure 6: Overview of the broadcast phase with batching,
when 𝑛 = 3𝑡 + 1 and a message𝑀 is of size 𝑙 · 𝑘 · (𝑡 + 1)) · 𝜆 for
any positive integer 𝑙 .

Algorithm 2 Dispersal stage of our robust AVID, for a message𝑀

of size 𝑘 · (𝑛 − 2𝑡) · 𝜆
� performed by the dealing-client

1: input𝑀
2: let 𝜙1 . . . 𝜙𝑛 = column-RSEnc(𝑀,𝑛 − 2𝑡, 𝑘, 𝑛) // each 𝜙𝑖 is a univariate

polynomial of degree 𝑡
3: Send ([𝜙1 (𝑖) , . . . , 𝜙𝑛 (𝑖)], [𝜋1 = open(pp, 𝜙1, 𝑖) , . . . , 𝜋𝑛 =

open(pp, 𝜙𝑛, 𝑖)], [ˆ𝜙1 = Com(pp, 𝜙1, 𝑡) , . . . , ˆ𝜙𝑛 = Com(pp, 𝜙𝑛, 𝑡)])
to every replica 𝑖

� performed by every server replica 𝑖
4: upon receiving the broadcast message ([𝜙1 (𝑖) , . . . , 𝜙𝑛 (𝑖)], [𝜋1, . . . ,

𝜋𝑛], [ˆ𝜙1, . . . , ˆ𝜙𝑛]) from the dealing-client where for every 𝑗 ∈ [1 . . . 𝑛],
Verify(pp, ˆ𝜙 𝑗 , ⟨𝑖, 𝜙 𝑗 (𝑖), 𝜋 𝑗 ⟩, 𝑡) = 𝑇𝑟𝑢𝑒 do

5: check that [𝜙1 (𝑖) , . . . , 𝜙𝑛 (𝑖)] lie on the same polynomial of degree

𝑘

6: let 𝐻 = [(hash(ˆ𝜙1), . . . hash(ˆ𝜙𝑛)]
7: if replica 𝑖 hasn’t sent echo before, send (echo,𝜙 𝑗 (𝑖) , 𝜋 𝑗 ,

ˆ𝜙 𝑗 ,𝐻𝜋 𝑗
=

VGen(𝐻, 𝑗) , �̂� = VCom(𝐻)) to every replica 𝑗

8: upon receiving (𝑛−𝑡) echomessages with the same �̂� from other repli-

cas, where each message satisfies the two predicates VVerify(hash(ˆ𝜙𝑖) ,
𝐻𝜋𝑖 , �̂�) and Verify(pp, ˆ𝜙𝑖 , ⟨𝑗, 𝜙𝑖 (𝑗), 𝜋 𝑗 ⟩, 𝑡) do

9: if replica 𝑖 hasn’t sent ready before, send (ready, �̂�) to every replica

𝑗

10: upon receiving (𝑡 + 1) ready messages with the same �̂� from other

replicas do
11: if replica 𝑖 hasn’t sent ready before, send (ready, �̂�) to every replica

𝑗

12: upon receiving 𝑛 − 𝑡 ready messages with the same �̂� from other

replicas do
13: wait until 𝑛 − 2𝑡 echo messages with the same �̂� where each

message satisfies the two predicates VVerify(hash(ˆ𝜙𝑖) , 𝐻𝜋𝑖 , �̂�) and

Verify(pp, ˆ𝜙𝑖 , ⟨𝑗, 𝜙𝑖 (𝑗), 𝜋 𝑗 ⟩, 𝑡) // will receive at least𝑛−2𝑡 echomessages
eventually

14: interpolate the polynomial 𝜙𝑖

15: avid-deliver the tuple (�̂� , 𝐻𝜋𝑖 , 𝜙𝑖)

Algorithm 3 Partial retrieval stage for our robust AVID protocol,

for a message𝑀 of size 𝑘 · (𝑛 − 2𝑡) · 𝜆
// the retrieving client invokes RETRIEVE on the indices of the rows it
wants to fetch

1: send ⟨RETRIEVE, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ⟩ to all replicas

2: let 𝑑𝑖𝑐𝑡 = {}
// code for replica i

3: upon receiving ⟨RETRIEVE⟩ for the first time do
4: send (�̂� , 𝐻𝜋𝑖 ,

ˆ𝜙𝑖 , 𝜋𝑖 = openagg (pp, 𝜙𝑖 , 𝑖𝑛𝑑𝑖𝑐𝑒𝑠) to the retrieving

client

5: upon receiving (�̂� , 𝐻𝜋 𝑗
,
ˆ𝜙 𝑗 , 𝜋 𝑗) for the first time from replica 𝑗 do

6: if VVerify(hash(ˆ𝜙 𝑗) , 𝐻𝜋 𝑗
, �̂�) and Verifyagg (pp, ˆ𝜙 𝑗 , 𝜋 𝑗) and

𝜋 𝑗 [0] == 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

𝑟𝑜𝑤𝑠 = []
7: for i in range(len(indices)) do
8: 𝑑𝑖𝑐𝑡 [�̂�] [𝜋 𝑗 [0] [𝑖]] .𝑎𝑑𝑑 ((𝑗, 𝜋 𝑗 [1] [𝑖]))
9: if 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑𝑖𝑐𝑡 [�̂�] [𝜋 𝑗 [0] [𝑖]]) == 𝑘

10: 𝑟𝑜𝑤𝑠.𝑎𝑑𝑑 (decode(𝑑𝑖𝑐𝑡 [�̂�] [𝜋 𝑗 [0] [𝑖]]))
11: avid-output 𝑟𝑜𝑤𝑠

(1) Broadcast Phase: A dealing-client starts the dispersal phase

when it wants to disperse a new message𝑀 . The dealing-

client uses a partial encoding algorithm column-RSEncwith
𝑞 = 2

𝜆
(where 𝜆 is the security parameter) to produce 𝑛

uni-variate polynomials 𝜙1, . . . , 𝜙𝑛 each of degree 𝑡 ; any 𝑘

of those polynomials can be used to generate all 𝑛 polyno-

mials by using interpolation. The dealing-client commits

to each polynomial using a polynomial commitment. The

dealing-client then sends each replica 𝑖 , all 𝑛 polynomial

commitments
ˆ𝜙1 . . . ˆ𝜙𝑛 together with an evaluation of each

polynomial 𝜙 𝑗 at 𝑖 with the proper opening proof 𝜋 𝑗 .

(2) Echo Phase: Each replica 𝑖 checks using Verify that every

claimed evaluation 𝜙 𝑗 (𝑖) is consistent with the polynomial

commitment
ˆ𝜙 𝑗 at 𝑖 using 𝜋 𝑗 . Replica 𝑖 then checks that all

points (1, 𝜙1 (𝑖)), . . . , (𝑛, 𝜙𝑛 (𝑖)) form a polynomial of degree

𝑘 . If all checks are successful, the replica commits to all 𝑛

polynomial commitments using a vector commitment �̂�

by calling VCom on the list of every hash of every polyno-

mial commitment called 𝐻 . The honest replica sends one

echo message to every replica 𝑗 containing the vector com-

mitment �̂� , a polynomial commitment
ˆ𝜙 𝑗 with its proper

inclusion proof 𝐻𝜋 𝑗
, and the point 𝜙 𝑗 (𝑖) with its opening

proof 𝜋 𝑗 .

(3) Ready Phase: A replica sends a READY to every other replica
in two cases: 1) if it has received 𝑛 − 𝑡 ECHO messages (each

from a different replica) with the same vector commitment

�̂� that have passed the checks on line 8 of Alg. 2) if it

received 𝑡 + 1 READY with the same vector commitment �̂� .

Finally, if replica 𝑖 receives 𝑛 − 𝑡 ready messages from different

replicas with the same �̂� , then replica 𝑖 terminates and stores the

polynomial 𝜙𝑖 , the vector commitment �̂� , and the inclusion proof

𝐻𝜋𝑖 in long term storage. Replica 𝑖 would be able to do so because

it has, or will eventually receive at least 𝑛 − 2𝑡 echo messages with

the same �̂� and that each has passed the two validity checks on

line 13. The first validity check will ensure that
ˆ𝜙𝑖 is part of the

Committing AVID with Partial Retrieval and Optimal Storage

vector commitment �̂� and the second validity check will insure

that a new point on 𝜙𝑖 is present.

Subsequently, avid-retrieve works as follows: the client invokes
RETRIEVE while specifying which rows they wish to reconstruct.

To ensure the query’s relevance, we limit the focus to rows between

1 and 𝑡 + 1 because of the use of systematic erasure codes. This

range is critical because, in systematic erasure codes, the first 𝑡 + 1

rows map directly to the the original data block.

Each replica 𝑖 sends back the polynomial commitment
ˆ𝜙𝑖 and the

evaluation of 𝜙 at the required indices together with an aggregated

proof 𝜋 proving that all evaluations are correctly on the polynomial,

the vector commitment �̂� , and the inclusion proof 𝐻𝜋𝑖 . The client

checks 1) that the polynomial commitment is part of the vector

commitment �̂� using the inclusion proof 𝐻𝜋𝑖 , 2) checks that the

evaluations are correct using the proof 𝜋 . If all checks are valid then

each point is stored in the dictionary at �̂� at the right row index.

Once a row has 𝑘 elements that row is decoded using standard

reed-solomon decoding.

Extending Algorithms 2-3 to support larger messages of size 𝑙 ·𝑘 · (𝑛−
2𝑡) · 𝜆 for any 𝑙 > 1. One can extend this AVID protocol to larger

messages by running 𝑙 multiple instances of the protocol in parallel

on smaller chunks of the data. However, doing so naively would

multiply the additive overhead for communication and storage by a

factor of 𝑙 , because the replicas would construct and send separate

proofs and commitments for each chunk of the data.

Instead, wemake use of batching (see Fig. 6) to reduce the number

of proofs that need to be sent and slightly change the way we

commit to the polynomial commitments (depicted in Figure 5). We

adopt a recursive approach: the 𝑙 polynomial commitments for a

single replica are committed using one vector commitment, and 𝐻

(cf. line 6 of Algorithm 2) becomes a vector commitment of the 𝑛

per-replica vector commitments. This way each replica only needs

to store one proof of inclusion for the 𝑙 polynomials it has stored.

We discuss the full details in Appendix D.

5.3 Communication Complexity
Dispersal. Consider a message 𝑀 of size |𝑀 | = 𝑙 · 𝑘 · (𝑛 − 2𝑡) · 𝜆
and for any 𝑘 ≥ 1. During dispersal: the dealing-client broadcasts

𝑙 ·𝑛 polynomial commitments and evaluations along with the corre-

sponding opening proofs, and then each server replica sends every

other replica 𝑙 polynomial commitments and evaluations in the

echo stage and one vector commitment in the ready stage. Table 1

shows the communication complexity when these primitives are

instantiated with Bulletproofs or KZG commitments. We measure

the communication for each stage of dispersal.

• Broadcast: the dealing-client sends each replica 𝑙 · 𝑛 poly-

nomial commitments and 𝑙 · 𝑛 evaluations along with the

corresponding (batched, if 𝑙 > 1) opening proofs. Note that

the 𝑙 · 𝑛 evaluations have a cumulative size of 𝑂 (|𝑀 |
𝑛), if 𝑡

is proportional to 𝑛.

• Echo: each replica sends every replica 𝑙 polynomial com-

mitments, 𝑙 evaluations with its proper one batched proof,

a vector commitment, and one vector commitment open-

ing proof. Note that the 𝑙 evaluations cost 𝑂 (|𝑀 |
𝑛2

) if 𝑘 is

proportional to 𝑛.

• Ready: each replica sends every other replica a vector com-

mitment of size 𝜆, for a total of 𝑂 (𝜆𝑛2) communication.

If KZG commitments [18] are used to instantiate both the poly-

nomial and vector commitment schemes, then this would result in

a polynomial and vector commitment size of 𝑂 (𝜆), a batch proof

size of 𝑂 (𝜆) [2] and a vector commitment opening proof of also

𝑂 (𝜆). As a result, the total total communication complexity would

be𝑂 (|𝑀 | +𝜆𝑛2). If instead one instantiates the polynomial commit-

ment with Bulletproofs [7] and the vector commitment with Merkle

trees, the resulting scheme no longer needs trusted setup but the

(batched) proofs are each of size 𝑂 (𝜆 log𝑛) so the communication

complexity would be 𝑂 (|𝑀 | + 𝜆𝑛2 log𝑛).

Partial retrieval. Consider a retrieving client with index 𝑖 and a

message 𝑀 , where |𝑀 | = 𝑘 · (𝑛 − 2𝑡) · 𝜆 and for any 𝑘 = 𝑂 (𝑛).
Each replica 𝑗 sends its own polynomial evaluation at 𝑖 , the cor-

responding polynomial commitment, and the inclusion proof of

the polynomial in the vector commitment. Hence, the complex-

ity to retrieve one row is 𝑂 (𝜆𝑛) with KZG commitments [18], or

𝑂 (𝜆𝑛 log𝑛) with Bulletproofs [7].

5.4 Storage Blowup
For a message of size |𝑀 | = 𝑘 · (𝑛−2𝑡) ·𝜆, each server replica 𝑖 must

store its univariate column polynomial 𝜙𝑖 with 𝑛 − 2𝑡 coefficients

(which requires
|𝑀 |
𝑘

storage), along with the vector commitment 𝐻

(cf. line 6 of Algorithm 2) and proof that its polynomial commitment

ˆ𝜙𝑖 is contained in 𝐻 . This vector commitment and proof are 𝑂 (𝜆)-
sized if KZG commitments are used, and the proof is 𝑂 (𝜆 log𝑛) if
bulletproofs are used. Across all 𝑛 replicas, the storage blowup is

𝑛
𝑘

and the total storage cost is shown in Table 1.

For larger messages of size |𝑀 | = 𝑙 · 𝑘 · (𝑛 − 2𝑡) · 𝜆: the storage
blowup is still

𝑛
𝑘
, but if done naively with a separate commitment

and proof for each chunk then the replicas would need 𝑙 times as

much storage to hold all the proofs. By using the recursive approach

described in §5.2, we can improve the storage costs to again match

Table 1.

Theorem 3. The construction in Algorithms 2-3 is an (𝑛, 𝑡, 𝑘) robust
and committing AVID for 𝑡 + 1 ≤ 𝑘 ≤ 𝑛 − 𝑡 and 𝑡 ≤ 𝑛−1

3
with both

optimal storage blowup and communication complexity.

We prove this theorem in Appendix E.

ACKNOWLEDGMENTS
This material is based on work supported by DARPA under Agree-

ment No. HR00112020021 and HR00112020023 and by the National

Science Foundation under Grants No. 1801564, 1915763, 2209194,

2217770, and 2228610. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the au-

thor(s) and do not necessarily reflect the views of the United States

Government or DARPA.

REFERENCES
[1] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun

Xiang, and Haibin Zhang. 2022. Brief Announcement: Asynchronous Verifiable

Information Dispersal with Near-Optimal Communication. In Proceedings of
the 2022 ACM Symposium on Principles of Distributed Computing (Salerno, Italy)

(PODC’22). Association for Computing Machinery, New York, NY, USA, 418–420.

https://doi.org/10.1145/3519270.3538476

https://doi.org/10.1145/3519270.3538476

Nicolas Alhaddad, Leonid Reyzin, and Mayank Varia

[2] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. 2021. Succinct

Erasure Coding Proof Systems. Cryptology ePrint Archive, Report 2021/1500.

https://eprint.iacr.org/2021/1500.

[3] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. 2022. Practi-

cal and Improved Byzantine Reliable Broadcast and Asynchronous Verifiable

Information Dispersal from Hash Functions. Cryptology ePrint Archive, Report

2022/171. https://eprint.iacr.org/2022/171.

[4] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. 2021. High-Threshold AVSS

with Optimal Communication Complexity. In FC 2021, Part II (LNCS, Vol. 12675),
Nikita Borisov and Claudia Díaz (Eds.). Springer, Heidelberg, 479–498. https:

//doi.org/10.1007/978-3-662-64331-0_25

[5] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A

Paradigm for Designing Efficient Protocols. In ACM CCS 93, Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby (Eds.). ACM

Press, 62–73. https://doi.org/10.1145/168588.168596

[6] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information
and Computation 75, 2 (1987), 130–143.

[7] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and

More. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 315–334. https://doi.org/10.1109/SP.2018.00020

[8] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information

dispersal. In SRDS. IEEE, 191–201.
[9] Dario Catalano and Dario Fiore. 2013. Vector Commitments and Their Appli-

cations. In PKC 2013 (LNCS, Vol. 7778), Kaoru Kurosawa and Goichiro Hanaoka

(Eds.). Springer, Heidelberg, 55–72. https://doi.org/10.1007/978-3-642-36362-7_5

[10] Ethan Cecchetti, Ben Fisch, Ian Miers, and Ari Juels. 2019. PIEs: Public In-

compressible Encodings for Decentralized Storage. In ACM CCS 2019, Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM

Press, 1351–1367. https://doi.org/10.1145/3319535.3354231

[11] Ivan Damgård, Chaya Ganesh, and Claudio Orlandi. 2019. Proofs of Replicated

Storage Without Timing Assumptions. In CRYPTO 2019, Part I (LNCS, Vol. 11692),
Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, 355–

380. https://doi.org/10.1007/978-3-030-26948-7_13

[12] Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous Data Dissemi-

nation and its Applications. In ACM CCS 2021, Giovanni Vigna and Elaine Shi

(Eds.). ACM Press, 2705–2721. https://doi.org/10.1145/3460120.3484808

[13] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-

Kogias, and Ling Ren. 2022. Practical Asynchronous Distributed Key Generation.

In 2022 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,

2518–2534. https://doi.org/10.1109/SP46214.2022.9833584

[14] Ben Fisch. 2018. PoReps: Proofs of Space on Useful Data. Cryptology ePrint

Archive, Report 2018/678. https://eprint.iacr.org/2018/678.

[15] Ben Fisch. 2018. Tight Proofs of Space and Replication. Cryptology ePrint

Archive, Report 2018/702. https://eprint.iacr.org/2018/702.

[16] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. 2007. Verifying

distributed erasure-coded data. In 26th ACM PODC, Indranil Gupta and Roger

Wattenhofer (Eds.). ACM, 139–146. https://doi.org/10.1145/1281100.1281122

[17] Ari Juels and Burton S. Kaliski Jr. 2007. Pors: proofs of retrievability for large

files. In ACM CCS 2007, Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.

Syverson (Eds.). ACM Press, 584–597. https://doi.org/10.1145/1315245.1315317

[18] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size

Commitments to Polynomials and Their Applications. In ASIACRYPT 2010 (LNCS,
Vol. 6477), Masayuki Abe (Ed.). Springer, Heidelberg, 177–194. https://doi.org/

10.1007/978-3-642-17373-8_11

[19] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Asynchronous Distributed Key Generation for Computationally-Secure Ran-

domness, Consensus, and Threshold Signatures. In ACM CCS 2020, Jay Ligatti,

Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, 1751–1767.

https://doi.org/10.1145/3372297.3423364

[20] Benoît Libert and Moti Yung. 2010. Concise Mercurial Vector Commitments

and Independent Zero-Knowledge Sets with Short Proofs. In TCC 2010 (LNCS,
Vol. 5978), Daniele Micciancio (Ed.). Springer, Heidelberg, 499–517. https://doi.

org/10.1007/978-3-642-11799-2_30

[21] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,

and Andrew K. Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical

Asynchronous MPC and its Application to Anonymous Communication. In ACM
CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan

Katz (Eds.). ACM Press, 887–903. https://doi.org/10.1145/3319535.3354238

[22] Kamilla Nazirkhanova, Joachim Neu, and David Tse. 2021. Information Dispersal

with Provable Retrievability for Rollups. In Advances in Financial Technologies
(AFT). ACM.

[23] Michael O Rabin. 1990. The information dispersal algorithm and its applications.

In Sequences. Springer, 406–419.
[24] Irving S. Reed and Gustave Solomon. 1960. Polynomial Codes Over Certain

Finite Fields. Journal of The Society for Industrial and Applied Mathematics 8
(1960), 300–304.

[25] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse.

2022. DispersedLedger: High-Throughput Byzantine Consensus on Variable

Bandwidth Networks. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

[26] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.

2022. hbACSS: How to Robustly Share Many Secrets. In NDSS. The Internet
Society.

A COMMUNICATION LOWER BOUND
To define a lower bound on communication, we define a communi-
cation blow-up in similar spirit to the storage blow-up. This is done

so that we consider the case where a partial message is “big enough”

to reconstruct the original message. Given a constant size com-

mitment, a replica with enough time can compute a full message.

Therefore, we restrict the replicas to a run time that is bounded

by a polynomial time machine that is polynomial in the security

parameter 𝜆. The key point is that 𝜆 is independent from the mes-

sage size. We think that this is a good enough model, because if

the replicas can compute “big enough” messages from a commit-

ment, then there is no point in sending the original message. The

commitment itself should be the message.

Definition 4. The communication blow-up of a message𝑀 is

the ratio of the communication complexity of the dispersal protocol

and |𝑀 |. The overall communication blowup of an information

dispersal scheme is the maximum (over the choice of𝑀 ∈ M and

adversarial behavior) of the communication complexity of honest

replicas, in the limit as |𝑀 | → ∞.

In this section, we prove the following theorem.

Theorem 4. Every (𝑛, 𝑡, 𝑘) AVID protocol that satisfies Def. 1 must
have a communication blow-up of at least max{𝑛

𝑘
, 𝑛
𝑛−2𝑡 } (or equiva-

lently, 𝑛
min{𝑘,𝑛−2𝑡 }).

We split the proof of this theorem into Lemmas 1 and 2.

Lemma 1. Every (𝑛, 𝑡, 𝑘) AVID protocol 𝐴 that satisfies Def. 1 must
have a communication blow-up of at least 𝑛

𝑘
.

This lemma is an immediate consequence of the fact that every

(𝑛, 𝑡, 𝑘) AVID protocol has storage blowup of at least
𝑛
𝑘
, as stated

by Cachin and Tessaro [8] without proof. We provide a rigorous

proof, both for completeness and because the same ideas will also

be used in our proof of Lemma 2.

Proof. Assume that the adversary never corrupts any protocol

participant (i.e., the dealing-client, retrieving-client, and all replicas

behave honestly), and the adversary permits the network to deliver

all protocol messages in some fixed order. Fix a replica 𝑖 . Imagine

executing the AVID protocol 𝐴 for all messages 𝑀 ∈ {0, 1}ℓ and
observing the view of replica 𝑖 (defined as the messages that the

replica received from others, together with message origin infor-

mation and sequence number per originator). Let 𝑝𝑖 be the number

of distinct views observed. Without loss of generality, order the

replicas by 𝑝𝑖 , lowest to highest, so that 𝑝1 ≤ · · · ≤ 𝑝𝑛 . Note that

the expected number (over all messages) of bits sent to replica 𝑖

is at least log
2
𝑝𝑖 , and thus the total expected communication (by

linearity of expectation) is at least

∑𝑛
𝑖=1 log2 𝑝𝑖 .

By availability and correctness of the AVID protocol 𝐴, all𝑀 ∈
{0, 1}ℓ will be reconstructed correctly from the joint views of any 𝑘

replicas—in particular, from the first 𝑘 replicas. Since the number of

https://eprint.iacr.org/2021/1500
https://eprint.iacr.org/2022/171
https://doi.org/10.1007/978-3-662-64331-0_25
https://doi.org/10.1007/978-3-662-64331-0_25
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1145/3319535.3354231
https://doi.org/10.1007/978-3-030-26948-7_13
https://doi.org/10.1145/3460120.3484808
https://doi.org/10.1109/SP46214.2022.9833584
https://eprint.iacr.org/2018/678
https://eprint.iacr.org/2018/702
https://doi.org/10.1145/1281100.1281122
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/3372297.3423364
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1145/3319535.3354238

Committing AVID with Partial Retrieval and Optimal Storage

distinct joint views of the first𝑘 replicas is at most

∏𝑘
𝑖=1 𝑝𝑖 , and each

joint view reconstructs only one message, we have

∏𝑘
𝑖=1 𝑝𝑖 ≥ 2

ℓ
.

Therefore, taking the logarithm of both sides,

∑𝑘
𝑖=1 log2 𝑝𝑖 ≥ ℓ , and

thus log
2
𝑝𝑘 ≥ ℓ/𝑘 . Thus, for each replica 𝑖 from the remaining𝑛−𝑘

replicas, log
2
𝑝𝑖 ≥ log

2
𝑝𝑘 ≥ ℓ/𝑘 . Thus, the total communication is

𝑛∑︁
𝑖=1

log
2
𝑝𝑖 =

𝑘∑︁
𝑖=1

log
2
𝑝𝑖 +

𝑛∑︁
𝑖=𝑘+1

log
2
𝑝𝑖

≥ ℓ + (𝑛 − 𝑘) · ℓ/𝑘
= 𝑛ℓ/𝑘.

Since the message length is ℓ , it follows that the communication

blowup is 𝑛/𝑘 . □

Lemma 2. Every (𝑛, 𝑡, 𝑘) AVID protocol 𝐴 that satisfies Def. 1 must
have a communication blow-up of at least 𝑛

𝑛−2𝑡 .

Proof. Define 𝑝𝑖 and the ordering 𝑖 of replicas in the same way

as in the proof of Lemma 1. Concretely, 𝑝𝑖 equals the number of

distinct views observed by replica 𝑖 when the AVID protocol 𝐴 is

executed over all messages 𝑀 ∈ {0, 1}ℓ and all replicas behave

honestly, and the replicas are ordered from smallest to largest 𝑝𝑖 .

Now, consider the execution of AVID protocol𝐴 (on any message

𝑀 ∈ {0, 1}ℓ) in two not-fully-honest worlds that we describe below.

In World 1 the dealing-client is honest, and in World 2 the dealing-

client is dishonest. In both worlds, we partition the replicas into

three groups:

• Replicas 1 through𝑛−2𝑡 are honest throughout the protocol.
We call them the “informed” replicas. Looking ahead, much

of our analysis of avid-disperse will be from the perspective

of these replicas.

• The next 𝑡 replicas will communicate with the informed

replicas, and for this reason we refer to this set as the “as-

sisting” replicas.

• The final 𝑡 replicas will be constructed in such a way that

they don’t communicate with the informed replicas; hence,

we call them the “isolated” replicas.

In World 1 the dealing-client is honest and follows the protocol

honestly. However, the adversary lets the 𝑡 corrupted replicas fail,

and as a result they will not interact with any other replicas or

clients throughout avid-disperse and avid-retrieve.
InWorld 2 the adversary controls the dealing-client, the assisting

replicas, and the network. In more detail:

• The adversary corrupts the dealing-client and assisting

replicas. They behave honestly in all communications with

the informed replicas and (other) assisting replicas, but

they do not send any messages to the isolated replicas.

Additionally, the assisting replicas do not participate in

avid-retrieve.
• Using its control of the network, the adversary delays any

messages sent from the isolated replicas to the informed

replicas until after the informed replicas complete avid-
disperse (but messages sent by the informed or assisting

replicas are never delayed).

We argue that the AVID protocol terminates in both worlds. In

World 1, termination is guaranteed by Def. 1 since the dealing-client

is honest. In World 2, we cannot directly call upon the termination

property from Def. 1 since the dealing-client is malicious. Never-

theless, we observe that the informed replicas must also complete

avid-deliver in World 2, since they cannot distinguish between the

two worlds (specifically, their views consist of honest messages

from a set of 𝑛 − 𝑡 replicas in both worlds). As a result, World 2

should also meet all the properties of AVID (including retrieval con-

sistency and availability) even though the dealing-client is acting in

a malicious way by withholding shares from the isolated replicas.

We now analyzeWorld 2 inmore detail. As in the proof of Lemma

1, we focus on the view of the (honest and) informed replicas across

2
ℓ
invocations of the AVID protocol𝐴 for all possible messages𝑀 ∈

{0, 1}ℓ . We define 𝑝∗
𝑖
as the number of distinct views observed by

replica 𝑖 during protocol𝐴 in World 2 with this malicious adversary,

up to the point that all informed replicas complete avid-disperse.
Note that 𝑝∗

𝑖
may be different from 𝑝𝑖 (the number of views in the

honest execution of AVID protocol 𝐴). We make two observations.

(1) For an informed replica 𝑖 , its view during the execution of

avid-disperse in World 2 is a subset of its view during a fully

honest execution of avid-disperse; that is, 𝑝∗
𝑖
≤ 𝑝𝑖 . This is

because an informed replica 𝑖 (in World 2) can only expect

to receive messages from 𝑛 − 𝑡 replicas, and the other 𝑡

replicas either never send a message or have their messages

indefinitely delayed.

(2) Let 𝑉 denote the joint view of all informed replicas. For

any isolated replica, its view is a deterministic function of

𝑉 , since the isolated replicas only receive messages from

the informed replicas, and (since 𝐴 is deterministic) these

messages must be a function of the informed replicas’ own

views. As a consequence, the joint view of all informed and

isolated replicas is also a function of 𝑉 .

Finally, by availability and correctness of the AVID protocol 𝐴, all

𝑀 ∈ {0, 1}ℓ will be reconstructed correctly from the joint views of

any 𝑘 of the honest 𝑛 − 𝑡 replicas during avid-disperse, which itself

can be reconstructed from the joint view 𝑉 of the informed 𝑛 − 2𝑡

replicas.

It follows by a counting argument that 2
ℓ ≤ ∏𝑘

𝑖=1 𝑝
∗
𝑖
≤ ∏𝑘

𝑖=1 𝑝𝑖 .

Taking the logarithm of both sides yields

∑𝑛−2𝑡
𝑖=1 log

2
𝑝𝑖 ≥ ℓ . From

the ordering of replicas 𝑖 , it follows that for any 𝑖 ≥ 𝑛 − 2𝑡 that

log
2
𝑝𝑖 ≥ log

2
𝑝𝑛−2𝑡 ≥ ℓ

𝑛−2𝑡 . Thus, the total communication is

𝑛∑︁
𝑖=1

log
2
𝑝𝑖 =

𝑛−2𝑡∑︁
𝑖=1

log
2
𝑝𝑖 +

𝑛∑︁
𝑖=𝑛−2𝑡+1

log
2
𝑝𝑖

≥ ℓ + 2𝑡 · ℓ

𝑛 − 2𝑡

=
𝑛ℓ

𝑛 − 2𝑡
.

Hence, the communication blowup is
𝑛

𝑛−2𝑡 . □

B PROOF OF THEOREM 1
In this section, we prove Theorem 1 stating that any AVID con-

struction without a PKI must have 𝑘 ≥ 𝑡 + 1.

Proof. Our proof proceeds by contradiction. Let 𝑃 be an arbi-

trary AVID protocol with 𝑘 ≤ 𝑡 that meets Definition 1. Let 𝑝1
be an honest dispersing client who called avid-disperse(𝑀) and
dispersed𝑀 correctly to all 𝑛 replicas. From the assumption that

Nicolas Alhaddad, Leonid Reyzin, and Mayank Varia

𝑘 ≤ 𝑡 , the honest replicas do not have a majority of the replicas

who are online and participating in the retrieval phase. Even in this

scenario, the availability property would still allow any client to

fetch a message because at least 𝑘 replicas are present. However,

the protocol 𝑃 wouldn’t be able to meet the correctness property

because no honest majority is present.

To see why this is the case, let 𝑐 be a new fetching client that

is trying to reconstruct𝑀 and let 𝐴 be an attacker that controls 𝑡

byzantine replicas and𝑑 fail stop replicas. At the end of the dispersal

phase, the attacker does the following steps: 1) turns off 𝑑 honest

replicas 2) deletes the state of 𝑘 online malicious replicas (which

is possible because 𝑘 ≤ 𝑡) 3) runs avid-disperse(𝑀 ′) (using the

same avid protocol 𝑃) among these 𝑘 malicious replicas it controls

and 𝑛 − 𝑘 simulated replicas. (Note that this simulation is possible

because replicas have no secrets; on the other hand, if we had a

PKI or some other set up, then the replicas would have secret keys

corresponding to the public keys that would be known to clients,

and the adversary would be unable to simulate them.)

Once 𝑐 initiates avid-retrieve, by the correctness property as ap-

plied to avid-disperse(𝑀), 𝑐 will eventually output𝑀 . On the other

hand, by the correctness property as applied to avid-disperse(𝑀 ′),
if 𝑐 talks only to the 𝑘 malicious replicas who participated in

avid-disperse(𝑀 ′) (since availability requires only 𝑘 honest replicas,

the attacker honestly ran avid-disperse(𝑀 ′), and the 𝑘 malicious

replicas act honestly with respect to avid-disperse(𝑀 ′), correctness
still applies in this case), 𝑐 will eventually output 𝑀 ′

. This is a

contradiction. □

C PROOF OF THEOREM 2
Termination and Correctness. If an honest replica initiates avid-
disperse message 𝑀 then all honest replicas will pass the check

VVerify(𝑚′
𝑖, 𝑗
, 𝜋𝑖, 𝑗 , �̂�) because of the correctness property of the

vector commitments and the encoding algorithm. Hence, 𝑛 − 𝑡

honest replicas will send correct ECHO messages with the same �̂�

and with valid erasure coded fragments and proofs. Hence, every

honest replica will eventually receive at least 𝑛 − 𝑡 correct ECHO
from the honest replicas and will send a READY message with the

same �̂� . Therefore, every honest replica will eventually receive at

least 𝑛 − 𝑡 READY messages with the same �̂� and have enough good

ECHO messages to decode their own share.

Dispersal Agreement. For a replica to finish dispersal it needs to (1)

receive 𝑛− 𝑡 READYmessages with the same �̂� and (2) receive 𝑛− 2𝑡

ECHO messages with valid sub-fragments that are consistent with

�̂� . If one honest replica finish the dispersal with �̂� , it is easy to

see that condition 1) is met (because we are doing Bracha reliable

broadcast over �̂�). We show here why condition 2 is met as well: If

an honest replica completes avid-deliver then this means that the

replica received 𝑛 − 𝑡 READY messages where at least 𝑛 − 2𝑡 must

have come from honest replicas. This implies that that there exist

at least one honest replica that has sent a READY message with �̂�

because it received𝑛−𝑡 ECHOmessages with the same �̂� , this means

that 𝑛−2𝑡 honest replicas has sent �̂� with consistent sub-fragments

to all honest replicas. Therefore every honest replica will at least

receive 𝑛− 2𝑡 sub-fragments that are linked with �̂� that are coming

from those honest replicas.

Availability. If 𝑘 honest replicas have finished dispersal this means

that each replica has at least𝑛−2𝑡 sub-fragments that are consistent

with �̂� along with the corresponding proof. Each honest replica

can send the 𝑛 − 2𝑡 sub-fragments along side �̂� and the proper

corresponding opening proof. The retrieving client can then decode

the message𝑀 from the sub-fragments.

Retrieval Consistency. Retrieving consistency is guaranteed because
every retrieving client can detect an inconsistent sharing and re-

vert the same default sharing (the message ⊥). The detection is

possible because (1) all honest replicas have consensus over the

vector commitment �̂� of all sub-fragments, (2) the reconstruction

threshold is greater than the number of malicious replicas, and (3)

the correctness of the decoding algorithm and the binding property

of the vector commitment.

D BATCHED PROOFS FOR LONGER
MESSAGES

In this section, we describe the changes needed to make Algorithm

2 support larger messages.

• In the broadcast phase on line 2, instead of running the

encoding on the whole message, the message is first split

into 𝑙 pieces each of size 𝑘 · (𝑛 − 2𝑡) · 𝜆 as depicted in Figure

5, followed by 𝑙 executions of column-RSEnc(𝑀𝑖 , 𝑛−2𝑡, 𝑘, 𝑛)
on every smaller message𝑀𝑖 . This would generate in total

a matrix of polynomials

Φ =

𝜙1,1 . . . 𝜙1,𝑛

. . .

𝜙𝑙,1 . . . 𝜙𝑙,𝑛

 .
Each row 𝑖 of the matrix would be filled by the output of

column-RSEnc(𝑀𝑖 , 𝑛 − 2𝑡, 𝑘, 𝑛). Just like before, the dealing-
client commits to each polynomial using a polynomial com-

mitment. The dealing-client sends each replica 𝑖 , all poly-

nomial commitments together with an evaluation of every

polynomial at 𝑖 . However, instead of sending one proof for

every evaluation, the dealing-client batches every 𝑙 eval-

uations on every column into one proof as depicted in

Figure 6. More formally, all evaluations at 𝑖 of every poly-

nomial on column 𝑗 are batched together into one proof

𝜋 𝑗 = 𝑜𝑝𝑒𝑛𝑏𝑎𝑡𝑐ℎ (pp, [𝜙1, 𝑗 , . . . , 𝜙𝑙, 𝑗], 𝑖).
• In the echo phase, just like before, every replica 𝑖 checks

that the evaluation that it received on every polynomial

is consistent. However, 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑏𝑎𝑡𝑐ℎ has to be used instead

of Verify. For every column 𝑗 of polynomial commitments

ˆ𝜙1, 𝑗 , . . . , ˆ𝜙𝑙, 𝑗 , it is the case that 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑏𝑎𝑡𝑐ℎ (pp, [ˆ𝜙1, 𝑗 , . . . ,
ˆ𝜙𝑙, 𝑗], ⟨𝑖, [𝜙1, 𝑗 (𝑖) . . . 𝜙𝑙, 𝑗 (𝑖), 𝜋 𝑗 ⟩, 𝑡) should be True. Also, ev-

ery row 𝑟 of evaluations, 𝜙𝑟,1 (𝑖) . . . 𝜙𝑟,𝑛 (𝑖) must form a

polynomial of degree 𝑘 . If all checks are successful, every

column 𝑗 (there are 𝑛 columns) consisting of 𝑙 polynomial

commitments
ˆ𝜙1, 𝑗 . . . ˆ𝜙𝑙, 𝑗 are committed to using a vector

commitment to produce 𝑉𝑗). The replica commits to all 𝑛

vector commitments using a vector commitment �̂� by call-

ing VCom on the list 𝐻 = 𝑉1 . . .𝑉𝑛 as depicted in figure 5.

The honest replica sends one ECHOmessage to every replica

Committing AVID with Partial Retrieval and Optimal Storage

𝑗 containing the vector commitment �̂� , 𝑙 polynomial com-

mitments
ˆ𝜙1, 𝑗 . . . ˆ𝜙𝑙, 𝑗 with its proper inclusion proof 𝐻𝜋 𝑗

,

and 𝑙 points 𝜙1, 𝑗 (𝑖) . . . 𝜙𝑙, 𝑗 (𝑖) with its batch opening proof

𝜋 𝑗 as depicted in Figure 6.

• In the ready stage, Replica 𝑖 behaves as before except that

it needs to extend the checks to cater for 𝑙 polynomials and

save 𝑙 polynomials. This is done by replacing VVerify(hash
(ˆ𝜙𝑖),𝐻𝜋𝑖 , �̂�) withVVerify(VCom([(hash(ˆ𝜙1,𝑖), . . . hash(ˆ𝜙𝑙,𝑖))]),
𝐻𝜋𝑖 , �̂�) and by replacingVerify(pp, ˆ𝜙𝑖 , ⟨ 𝑗, 𝜙𝑖 (𝑗), 𝜋 𝑗 ⟩, 𝑡) with
𝑣𝑒𝑟𝑖 𝑓 𝑦𝑏𝑎𝑡𝑐ℎ (pp, [ˆ𝜙1,𝑖 , . . . ˆ𝜙𝑛,𝑖], ⟨ 𝑗, [𝜙1,𝑖 (𝑗) . . . 𝜙𝑛,𝑖 (𝑗)], 𝜋 𝑗 ⟩, 𝑡).
Also, instead of interpolating one polynomial 𝜙𝑖 it has to

interpolate 𝑙 of them: 𝜙1,𝑖 , . . . , 𝜙𝑙,𝑖).
• In the retrieval, each replica 𝑗 has the vector commitment

�̂� , the vector commitment opening proof 𝐻𝜋 𝑗
(the proof

is for 𝑙 polynomial commitments, instead of one) and 𝑙

polynomials (𝜙1,𝑖 , . . . , 𝜙𝑙,𝑖)) instead of one polynomial.

• For full retrieval, a fetching client, whenever they receive a

message from a replica, the client has to generate 𝑙 polyno-

mial commitments from the 𝑙 polynomials received, commit

to them using a vector commitment and check whether

they are consistent with the root vector commitment �̂� . If

the check is successful, the 𝑙 polynomials are added into

the dictionary. After the dictionary has 𝑘 values, the client

can decode the original message using column-RSDec to
recover every chunk of the message. For partial retrieval,

a fetching client can specify to open a set of specific rows

in any specific set of bivariate polynomials. In particular

for a specific row 𝑧 of a bivariate polynomial 𝑖 , the fetching

client can ask for 𝑘 openings on 𝑘 different polynomials at

𝑧 with their proper polynomial commitment and proof and

interpolate row 𝑧. The fetching client can verify that each

polynomial commitment and corresponding polynomial

evaluation at 𝑧 is coming from replica 𝑗 correctly. This is

because each polynomial commitment must be opened at 𝑖

in its corresponding vector commitment from 𝑗 .

E PROOF OF THEOREM 3
In this appendix, we prove Theorem 3 that the construction in

Algorithms 2-3 is a robust and committing AVID. We do so via a

series of lemmas.

Lemma 3. For any message𝑀 of size 𝑘 · (𝑛−2𝑡)𝜆, if an honest client
initiates avid-disperse(𝑀), then every honest replica 𝑝𝑖 will eventu-
ally avid-deliver(�̂�, 𝐻𝜋𝑖 , 𝜙𝑖) where𝜙1 . . . 𝜙𝑛 = column-RSEnc(𝑀,𝑛−
2𝑡, 𝑘, 𝑛) and �̂� = VCom([(hash(ˆ𝜙1), . . . hash(ˆ𝜙𝑛)]). As a result, the
AVID construction in Algorithm 2 satisfies the termination property
in Definition 1.

Proof. If an honest replica initiates avid-disperse (M) then it

will create the univariate polynomials 𝜙1 . . . 𝜙𝑛 each of degree 𝑡

correctly, by calling column-RSEnc(𝑀,𝑛−2𝑡, 𝑘, 𝑛) and it will send to
every replica 𝑖 the same polynomial commitments

ˆ𝜙1 . . . ˆ𝜙𝑛 along

side correct evaluations 𝜙1 (𝑖) . . . 𝜙𝑛 (𝑖) and valid corresponding

opening proofs 𝜋1 . . . 𝜋𝑛 . The honest replicas will eventually pass

the two checks on line 4 and line 5. Check 1 will pass because of the

correctness property of the polynomial commitment. Check 2 will

pass because of the correctness of the bi-dimensional Reed-Solomon

encoding. Hence, every honest replica 𝑝𝑖 will generate for every

replica 𝑗 the same �̂� = VCom([(hash(ˆ𝜙1), . . . hash(ˆ𝜙𝑛)]), the same

polynomial commitment
ˆ𝜙 𝑗 and the same inclusion proof 𝐻𝜋 𝑗

for

ˆ𝜙 𝑗 . This is because both the vector and polynomial commitments

being used are deterministic. 𝑝𝑖 will send a valid ECHO message to

every replica 𝑗 containing𝜙 𝑗 (𝑖), 𝜋 𝑗 , ˆ𝜙 𝑗 ,𝐻𝜋 𝑗
, �̂� . Therefore, all honest

replicas will receive at least 𝑛 − 𝑡 ECHO messages with the same �̂� ,

and will pass the two checks on line 8. Thus, every honest replica 𝑝𝑖

will eventually send a READYmessagewith the same �̂� . Hence, every

honest replica 𝑝𝑖 will eventually receive at least𝑛−𝑡 READYmessages

with the same �̂� . Given the binding and correctness property of

both the vector commitment and the polynomial commitment and

the fact that that 𝑛 − 𝑡 honest replicas sent correct ECHO messages

to everyone. Replica 𝑝𝑖 can reconstruct the polynomial 𝜙𝑖 of degree

𝑛 − 2𝑡 − 1 using 𝑛 − 2𝑡 different evaluations contained in 𝑛 − 2𝑡

different ECHO messages. Hence, 𝑝𝑖 will eventually terminate and

call avid-deliver(�̂�, 𝐻𝜋𝑖 , 𝜙𝑖). □

Lemma 4. Let 𝜙1 . . . 𝜙𝑛 be a list of column polynomials of degree 𝑡 .
Suppose there exists a set 𝑆 ⊂ {1, . . . , 𝑛} of size 𝑡+1 such that for all 𝑖 ∈
𝑆 , the row polynomial formed by interpolating 𝜙1 (𝑖), 𝜙2 (𝑖), . . . , 𝜙𝑛 (𝑖)
is of degree 𝑘 − 1. Then, there exists a unique bivariate polynomial
𝑓 (𝑥,𝑦) of degree 𝑘 − 1 in one dimension and 𝑡 in the other dimension
where 𝜙𝑖 (.) = 𝑓 (., 𝑖).

Proof. Let 𝑆 = {𝑥1, . . . , 𝑥𝑡+1}. Let𝜓𝑥1 . . .𝜓𝑥𝑡+1 be the row poly-

nomials of degree 𝑘−1 given by the statement of the lemma. Define

𝑓 (𝑥,𝑦) = ∑𝑡+1
𝑖=1 𝜓𝑥𝑖 (𝑦)𝐿𝑖 (𝑥), where 𝐿𝑖 (𝑥) the appropriate Lagrange

coefficient (namely, the unique degree-𝑡 univariate polynomial that

vanishes at 𝑥 𝑗 for 𝑖 ≠ 𝑗 and is 1 at 𝑥𝑖).

Observe that 𝑓 is of degree 𝑘 in one variable and 𝑡 in the other.

Now we need to prove 𝑓 (𝑥,𝑦) = 𝜙𝑦 (𝑥). If 𝑥 ∈ 𝑆 , then this is true

by construction, because 𝑓 (𝑥,𝑦) = 𝜓𝑥 (𝑦) (because there is only

one Lagrange coefficient that doesn’t vanish at 𝑥), which is equal

to 𝜙𝑦 (𝑥) by definition of 𝜓 . Since 𝑓 (·, 𝑦) and 𝜙𝑦 (·) are degree-𝑡

polynomials that agree on 𝑡 + 1 points (namely, all points in 𝑆), they

must be equal as polynomials, and thus the statement is true for all

𝑥 , not just 𝑥 ∈ 𝑆 .

We now need to prove uniqueness. Observe that for every 𝑖 , it

is the case that 𝑓 (𝑥, 𝑖) (as a polynomial of degree less than 𝑛 in 𝑥)

is unique if it agrees with 𝜙𝑖 (𝑥) in 𝑛 points (because two different

univariate polynomials of degree less than 𝑛 cannot agree on 𝑛

points). Thus, viewing 𝑓 (𝑥,𝑦) as a univariate polynomial in𝑦 whose

coefficients are polynomials in 𝑥 , we know that its 𝑛 evaluations are

unique. Since it has degree less than 𝑛 in 𝑦, it must also be unique.

□

Lemma 5. If an honest replica 𝑝𝑖 calls avid-deliver(�̂�, 𝐻𝜋𝑖 , 𝜙𝑖), then
every honest replica 𝑝 𝑗 will eventually receive at least 𝑛 − 2𝑡 ECHO
messages from 𝑛 − 2𝑡 different replicas with the following properties:

(1) All ECHOmessages contain the same �̂� , ˆ𝜙 𝑗 and 𝐻𝜋 𝑗
such that

VVerify(hash(ˆ𝜙 𝑗), 𝐻𝜋 𝑗
, �̂�) is 𝑇𝑟𝑢𝑒 .

(2) If 𝑝𝑠 is the sender of the ECHOmessage, then the ECHOmessage
also contains 𝜙 𝑗 (𝑠) such that Verify(pp, ˆ𝜙 𝑗 , ⟨𝑠, 𝜙 𝑗 (𝑠), 𝜋𝑠 ⟩, 𝑡)
is 𝑇𝑟𝑢𝑒 .

Nicolas Alhaddad, Leonid Reyzin, and Mayank Varia

Proof. If an honest replica calls avid-deliver(�̂�, 𝐻𝜋𝑖 , 𝜙𝑖), then it

must have received 𝑛−𝑡 READYmessages with the same �̂� , where at

least 𝑡 + 1 of those READY messages must have been sent by honest

replicas. Hence, there is at least one honest replica 𝑝𝑖 that received

𝑛 − 𝑡 ECHO messages with the same �̂� ,
ˆ𝜙𝑖 and 𝐻𝜋𝑖 . Since 𝑡 is the

total number of malicious replicas, at least 𝑛 − 2𝑡 replicas have

each received a valid broadcast message from the dealing-client

with the same 𝑛 univariate polynomials 𝜙1 . . . 𝜙𝑛 such that �̂� =

VCom([(hash(ˆ𝜙1), . . . hash(ˆ𝜙𝑛)]) (due to the binding property of

the vector commitment). Also, those broadcast messages must have

passed the two checks at line 4 and 5 respectively. The first check

insures that each replica 𝑝 𝑗 as a one evaluation at 𝑗 from every

univariate polynomial of degree 𝑡 . The second check insures that

those points lie on the a degree 𝑘 polynomial. Looking at Figure 4,

this corresponds to every replica verifying that it’s row lies on a

polynomial of degree 𝑘 . Taking those two checks together and the

fact that 𝑛 − 2𝑡 replicas are doing it for all 𝑛 univariate polynomials

then by Lemma 4 we can conclude that �̂� is actually a commitment

to a bivariate polynomial and that any 𝑘 of those polynomials is

enough to generate all other 𝑛 polynomials. Since every replica 𝑝𝑠
of those 𝑛 − 2𝑡 replicas have each received a valid 𝐵𝑅𝑂𝐴𝐷𝐶𝐴𝑆𝑇

and passed the two checks this means that they will send every

replica 𝑝 𝑗 a valid ECHOmessage that contains 1) the same �̂� ,
ˆ𝜙 𝑗 and

𝐻𝜋 𝑗
such that VVerify(hash(ˆ𝜙 𝑗), 𝐻𝜋 𝑗

, �̂�) is 𝑇𝑟𝑢𝑒 and 𝜙 𝑗 (𝑠) such
that Verify(pp, ˆ𝜙 𝑗 , ⟨𝑠, 𝜙 𝑗 (𝑠), 𝜋𝑠 ⟩, 𝑡) is 𝑇𝑟𝑢𝑒 . □

Lemma 6. No two honest replicas will receive 𝑡 + 1 READY messages
with different �̂� .

Proof. Assume two honest replicas 𝑝1 and 𝑝2 received two

READYmessages with different commitments �̂�1 and �̂�2. This means

that 𝑝1 either heard 𝑛−𝑡 ECHOmessages containing �̂�1 or heard 𝑡 +1
READYmessages containing �̂�1 where at least one honest replica has

heard 𝑛− 𝑡 ECHOmessages containing �̂�1. Similarly, 𝑝2 either heard

𝑛 − 𝑡 ECHO messages containing �̂�2 or heard 𝑡 + 1 READY messages

containing �̂�2 where at least one honest replica has heard 𝑛 − 𝑡

ECHO messages containing �̂�2. This means that there is at least two

sets of replicas 𝐴 and 𝐵, each of size 𝑛 − 𝑡 where 𝐴 sent an ECHO
message containing �̂�1 and 𝐵 sent an ECHO message containing �̂�2.

Since𝐴∩𝐵 ≥ 𝑡 +1, this means that there is at least 𝑡 +1 replicas that
sent ECHO messages with different commitments. since 𝑡 is the total

number of bad replicas then there is at least one honest replica that

sent two different ECHO messages, one containing �̂�1 and another

containing �̂�2. This is a contradiction. □

Lemma 7. If an honest replica 𝑝𝑖 calls avid-deliver(�̂�, 𝐻𝜋𝑖 , 𝜙𝑖), then
every honest replica will eventually receive at least 𝑛 − 𝑡 READY mes-
sages from 𝑛 − 𝑡 different replicas with the same �̂� .

Proof. If an honest replica 𝑝𝑖 calls avid-deliver(�̂�, 𝐻𝜋𝑖 , 𝜙𝑖) then
this means that the replica heard 𝑛 − 𝑡 READY messages coming

from 𝑛 − 𝑡 different replicas with the same �̂� . Since 𝑡 is the total

number of malicious replicas then 𝑡 + 1 READY messages must have

came from 𝑡 + 1 different honest replicas. Since those 𝑡 + 1 will

send a READY with �̂� to everyone, then every other honest replica

that didn’t send a READY yet with �̂� , will also send a READY with

�̂� because of the amplification step at 9. Because there is at least

𝑛 − 𝑡 honest replicas and because of lemma 6, all honest replicas

will eventually receive at least 𝑛 − 𝑡 READY messages from 𝑛 − 𝑡

different replicas with the same �̂� . □

Lemma 8. If an honest replica 𝑝𝑖 calls avid-deliver(�̂�, 𝐻𝜋𝑖 , 𝜙𝑖), then
every honest replica 𝑝 𝑗 eventually calls avid-deliver(�̂�, 𝐻𝜋 𝑗

, 𝜙 𝑗) such
that VVerify(hash(ˆ𝜙 𝑗), 𝐻𝜋 𝑗

, �̂�) is 𝑇𝑟𝑢𝑒 . As a result, the AVID con-
struction in Algorithm 2 satisfies the dispersal agreement property in
Definition 1.

Proof. This property follows directly from Lemmas 5 and 7. □

Lemma 9. For any message 𝑀 , and any thresholds 𝑡 , 𝑘 and 𝑛, if
𝜙1 . . . 𝜙𝑛 = column-RSEnc(𝑀,𝑛−2𝑡, 𝑘, 𝑛), then �̂� = VCom([(hash(
ˆ𝜙1), . . . hash(ˆ𝜙𝑛)]) is a binding commitment to𝑀 .

Proof. The proof follows from the correctness of the erasure

coding scheme, and the binding properties of the hash, vector

commitment and the deterministic polynomial commitment be-

ing used. □

Lemma 10. The AVID construction in Algorithm 2 satisfies the
availability property in Definition 1.

If 𝑘 honest replicas have finished the dispersal phase then this

means that each replica 𝑖 has a tuple (�̂�, 𝐻𝜋𝑖 , 𝜙𝑖) such that VVerify

(hash(Com(pp, 𝜙𝑖 , 𝑡)), 𝐻𝜋𝑖 , �̂�) is True. If an honest client initiates

avid-retrieve then it will at least receive those 𝑘 valid tuples and

would be able to reconstruct some message𝑀 .

Lemma 11. The AVID construction in Algorithm 2 satisfies the
correctness property in Definition 1.

Proof. By the termination property (shown in Lemma 3 above),

we know that for any message𝑀 of size 𝑘 · (𝑛 − 2𝑡)𝜆, if an honest

client initiates avid-disperse(𝑀), then every honest replica 𝑝𝑖 will

eventually avid-deliver(�̂�, 𝐻𝜋𝑖 , 𝜙𝑖) where here we let 𝜙1 . . . 𝜙𝑛 =

column-RSEnc(𝑀,𝑛−2𝑡, 𝑘, 𝑛) and �̂� = VCom([(hash(ˆ𝜙1), . . . hash(ˆ𝜙𝑛)]).
If an honest client initiates avid-retrieve with 𝑟𝑜𝑤

indices
, then

every online honest replica 𝑝𝑖 will eventually send (�̂�, 𝐻𝜋𝑖 ,
ˆ𝜙𝑖 , 𝜋𝑖)

such that VVerify(hash(ˆ𝜙), 𝐻𝜋𝑖 , �̂�) returns True. Here, 𝜋𝑖 includes
the evaluation of 𝜙𝑖 at each specified index, accompanied by an ag-

gregate proof confirming that all evaluations are consistent with the

same polynomial 𝜙𝑖 . Specifically, 𝜋𝑖 = openagg (pp, 𝜙𝑖 , 𝑟𝑜𝑤indices
).

Notice that no inconsistent polynomial can pass the checkVVerify

against �̂� due to the binding property of the vector commitment,

polynomial commitment and hash function. Since at least 𝑘 honest

replicas are guaranteed to be online in avid-retrieve and 𝑘 ≥ 𝑡 , then

the honest client will eventually have at least 𝑘 elements in the

dictionary with �̂� as it’s key for each row polynomial. Therefore,

the honest client will eventually be able to decode for each row and

avid-output 𝑟𝑜𝑤𝑠 . □

Lemma 12. The AVID construction in Algorithm 2 satisfies the
Retrieval Consistency property in Definition 1.

Proof. Due to lemma 9, and the binding property of the polyno-

mial commitment and vector commitment for each message block

𝑀 , the only way two retrieving clients could output two different

message sub-blocks 𝑀𝑥 and 𝑀′𝑥 for the same set of indices 𝑥 , is

Committing AVID with Partial Retrieval and Optimal Storage

if each message had a different vector commitment. Assume two

honest clients 𝑝1 and 𝑝2, where 𝑝1 called avid-output(𝑀) consistent
with a commitment �̂� , and 𝑝2 called avid-output(𝑀 ′) consistent
with a commitment

ˆ𝐻 ′
. This means that 𝑝1 received at least 𝑘 ≥ 𝑡+1

fragments consistent with a commitment �̂� . Similarly, 𝑝2 received

at least 𝑘 ≥ 𝑡 + 1 fragments consistent with a commitment
ˆ𝐻 ′
.

However, since 𝑘 ≥ 𝑡 + 1 this implies that there exist one or more

honest replicas that avid-deliver different vector commitments and

as such sent different vector commitments one with �̂� and another

with
ˆ𝐻 ′
with contradicts lemma 7 that states (among other things)

that all honest replicas should deliver the same vector commitment

�̂� . □

Lemma 13. The AVID construction in Algorithm 2 is robust.

Proof. Assume that an arbitrary honest replica 𝑖 finished disper-

sal with a fragment𝑚𝑖 = �̂�, 𝜋𝑖 , 𝜙𝑖 . Due to lemma .8, every other hon-

est replica 𝑗 also finishedwith a valid𝑚 𝑗 with the same �̂� . Moreover,

due to lemma .4, there exists a unique bivariate polynomial 𝑓 (𝑥,𝑦)
of degree 𝑘−1 in one dimension and𝑛−2𝑡−1 in the other dimension

where 𝜙𝑖 (.) = 𝑓 (., 𝑖) and as such there is exist a unique message𝑀

(due to the correctness of the bi-dimensional Reed-Solomon encod-

ing). If a client retrieved 𝑀 = column-RSDec(𝜙𝑥1 , . . . 𝜙𝑥𝑘) where
𝜙𝑥1 , . . . 𝜙𝑥𝑘) is the set of 𝑘 polynomials that are consistent with �̂�

then it follows that column-RSEnc(𝑀) = 𝜙1 . . . 𝜙𝑛 . Since the vector

commitment, polynomial commitment, and hash functions are all

deterministic, then if the client avid-disperse(𝑀) then every honest

replica 𝑖 will also avid-output (𝑚𝑖 = �̂�, 𝜋𝑖 , 𝜙𝑖). □

Lemma 14. The AVID construction described in Algorithm 2 is com-

mitting.

Proof. The committing property follows from Lemma 9 and

Lemma 12. □

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Building Blocks
	3 System Model and Definitions
	3.1 Network Assumptions and Threat Model
	3.2 Defining AVID with Partial Retrieval
	3.3 Storage Complexity
	3.4 Defining Robust and Committing AVID

	4 Constructing AVID with Optimal Storage
	4.1 The Challenge of Achieving Optimal Storage
	4.2 Our Initial Construction
	4.3 Communication Complexity
	4.4 Storage Blowup

	5 Committing AVID with Partial Retrieval
	5.1 Bi-dimensional erasure coding
	5.2 Our construction
	5.3 Communication Complexity
	5.4 Storage Blowup

	References
	A Communication Lower Bound
	B Proof of Theorem 1
	C Proof of Theorem 2
	D Batched Proofs for Longer Messages
	E Proof of Theorem 3

