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Abstract. A systematic method to analyze divisibility properties is pro-
posed. In integral cryptanalysis, divisibility properties interpolate be-
tween bits that sum to zero (divisibility by two) and saturated bits (di-
visibility by 2n−1 for 2n inputs). From a theoretical point of view, we
construct a new cryptanalytic technique that is a non-Archimedean mul-
tiplicative analogue of linear cryptanalysis. It lifts integral cryptanalysis
to characteristic zero in the sense that, if all quantities are reduced mod-
ulo two, then one recovers the algebraic theory of integral cryptanalysis.
The new technique leads to a theory of trails. We develop a tool based
on off-the-shelf solvers that automates the analysis of these trails and
use it to show that many integral distinguishers on present and simon
are stronger than expected.
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1 Introduction

Integral cryptanalysis can be approached from two opposing directions. The
structural approach was formalized by Knudsen and Wagner [25] and stems from
the ‘Square attack’ [15]. It is based on propagating plaintexts with some con-
stant and some saturated parts through a cipher, ultimately resulting in a set
of ciphertexts with a saturated part, or some bits that sum to zero. A part of
the state is called saturated if all its possible values occur an equal number of
times. The algebraic approach was introduced by Knudsen [24], based on the
observation that the (d + 1)st derivative of a function of degree d is zero. This
yields zero sums, but not saturation properties.

Todo [30] partially consolidated the two approaches by introducing the divi-
sion property, which characterizes structured sets algebraically. More generally,
it was shown by Boura and Canteaut at Crypto 2016 [10] that every set has an
equivalent parity set representation. The parity set of a set X is the set of all
exponents of monomials that sum to one on X.

However, as the division property is based on arithmetic over F2, it can
describe zero sums but not saturation. The gap is significant: the probability
that a uniform random Boolean function sums to zero on a set of size 2n is 1/2,
but it is saturated with probability approximately1 2−n/2/

√
π. A saturation

property consequently corresponds to a stronger filter, which is beneficial for
the data and time requirements of key-recovery attacks. In spite of this, the
difference is sometimes overlooked.

1 The exact probability is equal to
(

2n

2n−1

)
/22

n

.



Thus, one might wonder if there can exist a theory of integral cryptanalysis
over a field of characteristic zero rather than over F2, so that both zero sums and
saturation properties can be described by it. In practice, zero sums are found
by automated analysis of trails – there are several variants including division
trails [34], monomial trails [21] and algebraic trails [4]. These concepts are more-
or-less similar to trails in linear cryptanalysis, but the analogy is leaky because
the ‘correlations’ are binary. Optimistically, a theory defined in characteristic
zero might strengthen the analogy by allowing correlations ‘in between’ zero
and one.

Contribution. We introduce the theory of ultrametric integral cryptanalysis, a
non-Archimedean multiplicative analogue of linear cryptanalysis. Inspired by the
idea that linear cryptanalysis simplifies additions (exclusive or), we construct an
analogous theory that simplifies multiplications (bitwise and). Like linear crypt-
analysis, it is defined in characteristic zero (over Q), but to obtain a useful
theory, we have to change the way distances are measured: we replace the regu-
lar (Archimedean) absolute value | · | on Q with the (non-Archimedean) 2-adic
absolute value | · |2. Ultrametric integral cryptanalysis lifts integral cryptanalysis
to characteristic zero, in the sense that if all quantities are reduced modulo two,
then one obtains the algebraic theory of integral cryptanalysis over F2 – more
precisely, its description using algebraic trails that was recently introduced in
ToSC 2023 [4]. Some consequences of the analogy between linear and ultrametric
integral cryptanalysis are illustrated in Table 1.

In practical terms, ultrametric integral cryptanalysis provides a systematic
way to analyze divisibility properties. For example, one can use it show that the
number of times a ciphertext bit equals one, is divisible by 2ν . In our theory,
this can be proven by showing that one or more correlations have 2-adic ab-
solute value at most 2−ν . Divisibility properties interpolate between zero sums
(divisibility by two) and saturation (divisibility by 2n−1 for an input space of
dimension n). We believe that these properties occur naturally in cryptanalysis,
as their existence is essentially an unexplained folklore observation. For example,
in Todo’s invited talk at FSE 2023, divisibility by four pops up at 43:302.

The construction of our theory follows the geometric approach [1], which was
introduced at Asiacrypt 2021 as a general description of linear cryptanalysis. In
particular, we express the ‘pushforward operators’ that describe the propagation
of states through functions as matrices relative to a carefully chosen basis. The
basis is constructed in Section 4, and is uniquely defined by the property that
it diagonalizes the matrices corresponding to multiplications x 7→ x ∧ k. This is
analogous to linear cryptanalysis, which diagonalizes the matrices corresponding
to additions x 7→ x+k. Our choice of basis leads to ultrametric integral transition
matrices, which are analogous to correlation matrices in linear cryptanalysis.
We show that these matrices are closely related to the numerical normal form
of Boolean functions. Like for correlation matrices, composition of functions
corresponds to multiplication of ultrametric integral transition matrices.

2 https://www.youtube.com/watch?v=hgHJu6Qr0Us&t=2610s
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Table 1: The analogy between linear and ultrametric integral cryptanalysis.

Linear cryptanalysis Ultrametric integral cryptanalysis

Field of
definition

Q or R Q or Q2

Archimedean non-Archimedean

ordinary absolute value | · | 2-adic absolute value | · |2

Geometric
theory

‘diagonalizes’ additions
x 7→ x+ k

‘diagonalizes’ multiplications
x 7→ x ∧ k

additive characters χu multiplicative characters µu

Fourier transformation F ultrametric integral change-of-basis U

CF = FT FF−1 AF = U T FU −1

Theory of
trails

masks u1, u2, . . . exponents u1, u2, . . .

correlation
∏r

i=1 C
Fi
ui+1,ui

correlation
∏r

i=1 A
Fi
ui+1,ui

linear functions multiplicative functions

linear diffusion, nonlinear confusion nonlinear diffusion, linear confusion

u u

u u v

u+ v u u

u u v

u ∨ v

Section 5 develops the theory of ultrametric integral trails. Properties can be
evaluated by summing the correlations of trails, and this can be made practical
using dominant trails (Theorem 5.1). Unlike in linear cryptanalysis, the domi-
nant trail approximation is not heuristic in the ultrametric setting because the
sum of many small numbers in a non-Archimedean field is always small.

Section 6 investigates the properties of ultrametric integral transition ma-
trices. The main result in this section is Theorem 6.1, which characterizes the
ultrametric integral transition matrices of low-degree functions. This result im-
plies the Ax-Katz theorem [23] (over F2), which states that the number of so-
lutions of a system of m equations of degree d in n variables is divisible by
2⌈n/d⌉−m. Interestingly, our proof is cryptanalytic: the result follows by analyz-
ing ultrametric integral trails in a generic function of degree d. We also show that
ultrametric integral transition matrices can be computed in time proportional
to their size (up to logarithmic factors), and propagation rules for copy and xor
operations are derived. Theorem 6.2 relates correlation matrices and ultrametric
integral transition matrices, explaining and strengthening a result that was used
by Canteaut and Videau [11] and Boura and Canteaut [9] to bound degrees.

Finally, in Sections 7 and 8, we develop an automated tool to analyze ul-
trametric integral trails using off-the-shelf solvers and apply it to present and
simon. Our analysis shows that the distinguishers for reduced-round present
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presented by Boura and Canteaut at Crypto 2016 [10] and by Wang et al. at
Asiacrypt 2019 [33] are stronger than previously believed. For many output bits,
we find divisibility by higher powers of two (ranging from 22 to 29). We also
demonstrate that ultrametric integral cryptanalysis can be used to find zero-
correlation linear approximations, and illustrate how divisibility properties are
useful to reduce the data-complexity of key-recovery attacks. For simon, we re-
consider the distinguishers found by Todo [30], Todo and Morii [31] and Xiang
et al. [34] and prove higher divisibility. In addition, we slightly improve the mod-
elling of simon based on the analogy between linear and multiplicative functions.
This observation is also applicable to ordinary integral cryptanalysis. The source
code of our tool can be found at https://github.com/MichielVerbauwhede/
ultrametric-integral-cryptanalysis.

Future work. Ultrametric integral cryptanalysis can be extended to all primes p
and all commutative inverse monoids, including Fn

q with multiplication. However,
this requires more technical background because the theory must be defined over
the p-adic numbers Qp when p ≥ 5. Nevertheless, our results generalize to this
setting. In the interest of simplicity, we focus on the case p = q = 2 in this paper.

2 Background

The theory of ultrametric integral cryptanalysis is based on the geometric ap-
proach, which we present (for the one-dimensional case) in Section 2.1 in slightly
modified form. Section 2.2 describes linear cryptanalysis from this point of view,
and integral cryptanalysis is discussed in Section 2.3.

2.1 Geometric approach

The geometric approach to symmetric-key cryptanalysis was introduced at Asi-
acrypt 2021 [1] as an alternative description of linear cryptanalysis. In a sub-
sequent paper at Crypto 2022 [3], the same approach was used to construct a
fixed-key theory of differential cryptanalysis. The role of the geometric approach
in this paper is similar to that in the latter work: it is used to construct a new
cryptanalytic theory, analogous to the theory of linear cryptanalysis.

Let k be a field – in [1,3], k is either R or C. The free k-vector space on
Fn
2 consists of all formal k-linear combinations of elements of Fn

2 , with addition
defined coordinate-wise. That is, every element a of k[Fn

2 ] is of the form

a =
∑
x∈Fn

2

ax δx ,

where the values ax are arbitrary elements of k and δx is the formal basis vector
corresponding to x. Cryptanalytically, a represents an assignment of weights
(elements of k) to the elements of Fn

2 . For example, a subset X ⊆ Fn
2 corresponds

to a vector δX =
∑

x∈X δx in k[Fn
2 ]. Applying a function F : Fn

2 → Fm
2 to the

state transforms the assignment of weights on Fn
2 to an assignment of weights

on Fm
2 . The relation is given by a linear operator.
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Definition 2.1. Let F : Fn
2 → Fm

2 be a function. The pushforward operator of F
is the linear map T F : k[Fn

2 ] → k[Fm
2 ] defined by T F δx = δF(x) for all x in Fn

2 .

The matrix representation of T F with respect to the standard basis will be
called the transition matrix of F. Its rows and columns are indexed by elements
of Fm

2 and Fn
2 respectively. Depending on the context, the notation T F either

refers to the pushforward operator of F or to its transition matrix.
Transition matrices satisfy several properties, two of which are summarized

in Theorem 2.1. In this theorem,
⊗

denotes the Kronecker product of matrices.
That is, (A⊗B)y1‖y2,x1‖x2

= Ay1,x1
By2,x2

, where ‖ denotes concatenation.

Theorem 2.1. For the transition matrix of a function F : Fn
2 → Fm

2 :

(1) If F(x1‖ · · · ‖xl) = F1(x1)‖ · · · ‖Fl(xl), then T F =
⊗l

i=1 T
Fi .

(2) If F = Fr ◦ · · · ◦ F2 ◦ F1, then T F = T Fr · · ·T F2T F1 .

A dual way to assign weights to the elements of Fn
2 is using functions. Let

kF
n
2 be the vector space of k-valued functions on Fn

2 . Every function in kF
n
2 can

be extended to a function on k[Fn
2 ] by linearity. Conversely, every linear function

on k[Fn
2 ] is uniquely determined by its image on the basis vectors δx with x in

Fn
2 . Hence, we identify kF

n
2 with the dual vector space3 of k[Fn

2 ]. The functions
δx with δx(δx) = δx(x) = 1 and δx(δy) = δx(y) = 0 for y ̸= x are a basis for kF

n
2 .

A cryptanalytic property of a function F : Fn
2 → Fm

2 is a pair (a, b) with a
in k[Fn

2 ] and b in kF
m
2 . The evaluation of a property (a, b) is defined as b(T Fa).

This is typically a combinatorial quantity of interest, such as the correlation of
a linear approximation.

Example 2.1. Let X and Y be subsets of Fn
2 and Fm

2 respectively. The evaluation
of (δX , δY ), with δY =

∑
y∈Y δy the indicator function of Y , is equal to

δY
(
T FδX

)
=

∑
x∈X

δY
(
δF(x)

)
= |{x ∈ X | F(x) ∈ Y }| .

If F is a permutation, then the property evaluates to |Y ∩ F(X)|. ▷

If we apply a function F : Fn
2 → Fm

2 , then functions on Fm
2 transform to

functions on Fn
2 . The relation is given by the pullback operator T F∨

, which is
the adjoint4 of the pushforward operator. That is, T F∨

f = f ◦ F. Its standard
basis matrix representation is the transpose of the transition matrix. Pullback
operators also satisfy the properties listed in Theorem 2.1, with the order of
multiplication reversed for property (2).

Different cryptanalytic theories are obtained by expressing cryptanalytic
properties with respect to different pairs of dual bases for k[Fn

2 ] and kF
m
2 . A

pair of bases for k[Fn
2 ] and kF

m
2 consisting of vectors βu and βu, labeled by u in

Fn
2 , is called dual if βu(βu) = 1 and βv(βu) = 0 for all u ̸= v.

3 The dual vector space of k[Fn
2 ] is the space of all linear functions from k[Fn

2 ] to k.
4 The adjoint of L : k[Fn

2 ] → k[Fm
2 ] is a map L∨ : kFm2 → kFn2 s.t.

(
L∨b

)
(a) = b

(
La

)
.
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If B : k[Fn
2 ] → k[Fn

2 ] is the change-of-basis transformation defined by B βu =
δu, then B−∨ βv = δv. That is, B−∨ is the change-of-basis transformation for
the dual basis. Let Bn and Bm be change-of-basis transformations on k[Fn

2 ]
and k[Fm

2 ] respectively. For a cryptanalytic property (a, b), set a∧ = Bn a and
b∧ = B−∨

m b. The evaluation of (a, b) can then be expressed as

b
(
T F a

)
= b∧

(
Bm T F B−1

n a∧
)
.

Hence, if properties are expressed in the new basis, their propagation is described
by the matrix Bm T F B−1

n . Since this matrix is similar to T F, it also satisfies the
properties listed in Theorem 2.1.

Example 2.2. The vectors (δ0+ δ1)/2 and (δ0− δ1)/2 form a basis for k[F2]. The
dual basis vectors are given by δ0 + δ1 and δ0 − δ1 and form a basis for kF2 .
Hence, the change-of-basis transformation B and its dual B−∨ are given by

B =

[
1 1
1 −1

]
and B−∨ =

1

2

[
1 1
1 −1

]
.

For the function F : x 7→ x+ 1, the matrix B T FB−∨ is equal to

B T FB−∨ =
1

2

[
1 1
1 −1

] [
0 1
1 0

] [
1 1
1 −1

]
=

[
1 0
0 −1

]
.

The matrix B−∨ T F∨ (
B−∨)−1

is the transpose of the above matrix, which hap-
pens to be the same in this example. ▷

2.2 Linear cryptanalysis

In linear cryptanalysis, the field k is chosen as R or C and one works in a basis
of group characters and its dual. The characters of the additive group Fn

2 are the
homomorphisms χu : Fn

2 → R with χu(x) = (−1)u
Tx. The dual basis consists of

the vectors χu in R[Fn
2 ] with δx(χu) = χu(x)/2n. The corresponding change-of-

basis transformation Fn : R[Fn
2 ] → R[Fn

2 ] is called the Fourier transformation.
The Fourier transformation simultaneously diagonalizes the transition ma-

trices T F of all translations F(x) = x + t. In fact, as shown in [1, §2.2], this is
by construction: the character basis is the only basis with this property. The
Fourier transformation of the transition matrix of a function F is its correla-
tion matrix CF = FmT FF−1

n . These matrices were introduced by Daemen [14],
motivated by the fact that the coordinates CF

v,u are the correlations of linear
approximations with input mask u and output mask v over F:

CF
v,u = χv

(
T F χu

)
= 2Pr

x

[
vTF(x) = uTx

]
− 1 ,

with x uniform random on Fn
2 .

The properties listed in Theorem 2.1 carry over to correlation matrices. In
particular, if F = Fr ◦ · · · ◦ F2 ◦ F1, then CF = CFr · · ·CF2CF1 . If one defines

6



a linear trail as a tuple of r + 1 masks, then Theorem 2.1 (2) implies that the
correlation of a linear approximation is equal to the sum of the correlations of
all linear trails with matching input and output masks:

CF
ur+1,u1

=
∑

u2,...,ur

r∏
i=1

CFi
ui+1,ui

,

where the product
∏r

i=1 C
Fi
ui+1,ui

is called the correlation of the trail (u1, . . . , ur+1).
This result is usually used in the form of the principle of dominant trails.

Theorem 2.2 (Dominant trails). Let F = Fr ◦ · · · ◦ F2 ◦ F1. For all subsets
Λ of the set Ω of all linear trails from u1 to ur+1,∣∣∣∣∣CF

ur+1,u1
−

∑
u∈Λ

r∏
i=1

CFi
ui+1,ui

∣∣∣∣∣ =
∣∣∣∣∣ ∑
u∈Ω\Λ

r∏
i=1

CFi
ui+1,ui

∣∣∣∣∣ ,
where u = (u1, u2, . . . , ur+1).

The idea of Theorem 2.2 is that the trails in Ω\Λ contribute little to CF
ur+1,u1

.
In practice, Theorem 2.2 is used heuristically: one assumes that if the absolute
values of the correlations of trails in Ω \ Λ are small, then so is the absolute
value of their sum. This approach is useful for linear approximations (u, v) with
large absolute correlation |CF

v,u|. Contrary to this, zero-correlation linear crypt-
analysis [8] relies on linear approximations with CF

v,u = 0. Such approximations
can be found using Theorem 2.2, but with Λ = ∅ and by showing that all trails
in Ω have correlation zero. Bogdanov et al. [7] have shown that zero-correlation
linear approximations and saturation properties are closely related. Following
Sun et al. [29, Corollary 4], if U is a vector space of masks such that CF

v,u = 0

for all u in U , then the restriction of vTF to a coset of U⊥ is a balanced Boolean
function. This means that the linear combination of output bits corresponding
to the mask v is saturated when the input set is a coset of U⊥.

2.3 Integral cryptanalysis

Traditionally, integral cryptanalysis is used to find affine subspaces X such that∑
x∈X f(x) = 0 for a coordinate function f of a cryptographic primitive. As

mentioned in the introduction, such properties can be approached in two different
ways. Wagner and Knudsen [25] describe the propagation of structured sets with
some constant and some saturated parts. In earlier work, Knudsen [24] proposed
a purely algebraic approach based on higher-order derivatives.

The algebraic point of view is best understood using the algebraic normal
form. This is the unique representation of a Boolean function as a polynomial
in F2[x1, . . . , xn]/(x

2
1 − x1, . . . , x

2
n − xn). If the algebraic normal form of f does

not contain any monomials xu =
∏n

i=1 x
ui
i such that

∑
x∈X xu = 1, then f sums

to zero on X. The relation with the properties of X and the structural point
of view of Wagner and Knudsen was poorly understood before the introduction
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of the division property by Todo [30]. The division property characterizes X by
the set of exponents u such that

∑
x∈X xu = 1. This set was called the parity

set of X by Boura and Canteaut [10].
A recent paper in ToSC 2023 [4] shows that it is possible to construct a theory

of integral cryptanalysis based on the geometric approach. It describes crypt-
analytic properties (a, b) over the field k = F2. If a = δX , then the evaluation
b(T Fa) of (a, b) is equal to the sum

∑
x∈X f(x) with f = b◦F. Since b is a Boolean

function, there exists a change-of-basis transformation Mm so that (Mmb)(u)
is the coefficient of xu in the algebraic normal form of b. The transformation
Mm is the binary Möbius transformation. Relative to this change-of-basis, (a, b)
evaluates to

b
(
T Fa

)
= b∧

(
PmT FP−1

n a∧
)
,

with a∧ = Pna and Pn = M−∨
n . It was shown in [4] that PnδX = δY with Y

the parity set of X.
The matrix AF = PmT FP−1

n is called the algebraic transition matrix of F
and it satisfies the usual properties from Theorem 2.1. It holds that AF

v,u = 1
if and only if xu occurs in the algebraic normal form of Fv. In particular, if
F = Fr ◦ · · · ◦ F1, then AF =

∏r
i=1 A

Fi . This leads to a theory of algebraic trails
(u1, . . . , ur+1) with correlation

∏r
i=1 A

Fi
ui+1,ui

such that

AF
ur+1,u1

=
∑

u2,...,ur

r∏
i=1

AFi
ui+1,ui

.

This yields an alternative explanation of division trails [34], monomial predic-
tion [21] and the three-subset division property without unknown subset [19].

However, the theory of algebraic trails is not completely satisfactory. The
motivation of the division property was to combine the best of the structural
and algebraic approaches to integral cryptanalysis, but this was only partially
achieved because saturation properties cannot be described over F2. For example,
if zero-correlation linear cryptanalysis shows that the restriction of f = vTF to
a coset X of U⊥ is a balanced Boolean function, then

∑
x∈X f(x) = 0. However,

one actually has the stronger property that f(x) = 1 has |X|/2 solutions for x
in X. Hence, useful information is lost by reducing |X|/2 modulo two.

3 Divisibility properties

Suppose that one of the coordinate functions f of a primitive is saturated for an
affine input space X of dimension d. This implies that the number of values x in
X such that f(x) = 1 is divisible by 2d−1. If f sums to zero, then the number of
such values is only divisible by two. This raises a natural question: can we find
zero sums so that the number of solutions to f(x) = 1 in X is actually divisible
by a larger power of two?

This turns out to be common. Section 3.1 describes one instance, to be used
as a running example. Section 3.2 explains how divisibility properties can be
described using the geometric approach.
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3.1 Example for present

In their work introducing parity sets, Boura and Canteaut [10] describe the
following integral property for four rounds of the block cipher present [6]. For
a set of 16 plaintexts obtained by saturating the input of the rightmost S-box,
every ciphertext bit sums to zero. Using zero-correlation linear cryptanalysis,
one can show that first ciphertext bit is saturated, so we focus on the second bit
instead.

Figure 1 shows a histogram of the number of times the second output bit is
equal to one for different choices of the key. This bit is clearly not saturated,
since for some keys the number of ones differs from 8 = 16/2. The feature of
interest to us are the gaps in the histogram. Indeed, the number of ones is always
a multiple of four. The analysis of Boura and Canteaut explains the divisibility
by two, but integral cryptanalysis cannot prove divisibility by four.

The second bit is not the only one exhibiting divisibility by four or more;
some experimental results for the other bits are summarized in Appendix F. In
the remainder of this work, we develop the necessary techniques to systematically
find and prove such properties. The observation in Figure 1 will be used as a
running example; a complete explanation is given in Section 5.2. Further results
on present are contained in Section 7.
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Fig. 1: Number of keys (log scale) so that the second output bit of four-round
present is equal to one N times. The experiment was performed for 216 keys.

3.2 Description using the geometric approach

To describe arbitrary divisibility properties, one should work over the integers
rather than over F2. Since the rational numbers are the smallest field containing
the integers, let us apply the geometric approach with k = Q for now.

Let X be an input set, and set a = δX in Q
[
Fn
2

]
. Furthermore, let b in

QFm
2 be a function that maps the relevant bit (the second, for Figure 1) to its

integer value. For a function F : Fn
2 → Fm

2 , divisibility by 2ν can be expressed as
b(T Fa) =

∑
x∈X b(F(x)) ≡ 0 (mod 2ν).

Alternatively, divisibility by 2ν is equivalent to |b(T F a)|2 ≤ 2−ν with | · |2
the 2-adic absolute value on Q. The 2-adic absolute value of a rational number
x = 2ν r

s , with r and s odd integers, is equal to 2−ν . One advantage of expressing
divisibility using the 2-adic absolute value is that we do not need to worry about
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whether or not the coordinates of a and b are integers. More importantly, it
suggests a strong analogy with linear cryptanalysis. Most of the time, it is not
possible to evaluate cryptanalytic properties exactly. Instead, we estimate its
evaluation as follows:

b
(
T Fa

)
= c+ ε ,

where c is the estimate and ε is an error. In linear cryptanalysis, the estimate is
accurate if |ε| is small. For divisibility properties, the accuracy of the estimate
is instead measured by |ε|2. Although the discussion above focused on the case
c = 0, there is no reason not to consider c ̸= 0. Indeed, integral cryptanalysis
can also be used to deduce constant sums modulo two and cube attacks.

Despite the analogy, the metric structure on Q defined by | · |2 is completely
different from that defined by | · |. This is because | · |2 satisfies the ultrametric
triangle inequality:

|x+ y|2 ≤ max
{
|x|2, |y|2

}
.

The fact that this inequality is stronger than the usual triangle inequality |x+
y| ≤ |x|+|y| plays an essential role in the theory of ultrametric integral cryptanal-
ysis that is developed in the next sections. However, this is only one aspect of
the theory. Another issue is the choice of basis, and this is addressed in Section 4.

Remark 3.1. As mentioned in Section 2.2, linear cryptanalysis is typically de-
scribed over R. For most applications Q is actually sufficient, but the geometry
of R is nicer because it is metrically complete with respect to | · |. The metric
completion of Q with respect to | · |2 is the field of 2-adic numbers Q2. Hence,
working with properties defined over Q2 would be somewhat nicer. However, for
simplicity, we continue to work over Q throughout this paper. ▷

4 Lifting integral cryptanalysis

This section defines a suitable basis to analyze divisibility properties such as the
observation from Section 3. Section 4.1 motivates the choice of basis by anal-
ogy with linear cryptanalysis. Whereas linear cryptanalysis simplifies addition
in Fn

2 , the new basis simplifies multiplication i.e. bitwise and. The basis and its
dual are constructed in Section 4.2. In Section 4.3, we express the pushforward
operator of a function relative to the new basis. This leads to an analogue of
correlation matrices that we call ultrametric integral transition matrices. The
algebraic transition matrix of a function turns out to be the reduction of its ul-
trametric integral transition matrix modulo two. Hence, the theory we construct
lifts integral cryptanalysis from F2 to Q, or more generally Q2.

4.1 Motivation

From the viewpoint of the geometric approach, linear cryptanalysis is successful
because it diagonalizes the transition matrices of translations (including key
additions). This is achieved by working relative to the basis of characters of the
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additive group Fn
2 . However, Fn

2 also has multiplicative structure with the bitwise
and operation ∧.

Although ciphers rarely use bitwise and with constants, nonlinear layers can
often be expressed in terms of a small number of and gates. Hence, choosing
a basis that maximally simplifies bitwise and is still of interest. Note, though,
that (Fn

2 ,∧) is a monoid but not a group, because only 11 · · · 1 has an inverse.
Nevertheless, the definition of characters can be extended to monoids.

Definition 4.1. Let k be a field. A character of a monoid M is a homomorphism
of monoids χ : M → k. That is, χ(1) = 1 and χ(xy) = χ(x)χ(y) for all x and y
in M .

For convenience, form inM , denote the pushforward operator of the function
x 7→ m · x by Tm. Theorem 4.1 shows that, like in the case of groups, the
characters of M are eigenvectors of Tm∨

. Hence, diagonalizing Tm∨
amounts to

finding a basis of characters for the vector space of k-valued functions on M .

Theorem 4.1. Let χ be a character of a finite monoid M . For all m in M , χ
is an eigenvector of Tm∨

with eigenvalue χ(m).

Proof. For all x in M , we have (Tm∨
χ)(x) = χ(m · x) = χ(m)χ(x). That is,

Tm∨
χ = χ(m)χ. Hence, χ is an eigenvector with eigenvalue χ(m).

By a theorem of Dedekind [16, §44], characters are linearly independent.
The question of whether or not there are enough characters to obtain a basis
is answered by representation theory. This is possible for all finite commutative
inverse5 monoids, provided that k has characteristic zero and contains enough
roots of unity [28, §5.2]. The monoid (Fn

2 ,∧) is commutative and inverse.
Having found the basis of characters χ1, . . . , χ|M |, we can construct its dual

basis χ1, . . . , χ|M | in k[M ]. It is not difficult to see that χ1, . . . , χ|M | are eigen-
vectors of Tm. Indeed, we have that

Tmχj =

|M |∑
i=1

χi
(
Tmχj

)
χi =

|M |∑
i=1

(
Tm∨

χi
)
(χj)︸ ︷︷ ︸

χi(m)χi(χj)

χi = χj(m)χj .

In Section 4.2, we explicitly construct the basis of characters and its dual for the
monoid (Fn

2 ,∧) and the field Q.

4.2 Ultrametric integral basis

Theorem 4.2 below shows that the characters of the monoid (Fn
2 ,∧) are given

by the lifted monomial functions µv : Fn
2 → Q with µv(x) = τ

(
xv

)
for v in Fn

2 .
Here, τ : F2 → Q is the embedding6 defined by τ(0) = 0 and τ(1) = 1.

5 A monoid M is inverse if for all x in M , there exists a y such that xyx = x.
6 The symbol τ refers to the fact that τ : F2 → Q2 is a Teichmüller character of F2.
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Theorem 4.2. Every character of (Fn
2 ,∧) is equal to µv for some v in Fn

2 .

Proof. The unit of (Fn
2 ,∧) is equal to 11 · · · 1. From the definition of µv, it is

clear that µv(11 · · · 1) = 1 for all v. The multiplicativity of µv follows from the
multiplicativity of τ and of monomials over F2. There are no other characters,
because the functions µv are distinct, the dimension of QFn

2 is 2n, and characters
are linearly independent. Hence, the functions of the form µv form a complete
set of characters.

Like in the case of finite groups, the characters of a finite commutative inverse
monoid themselves form a monoid under pointwise multiplication [28, Exercise
9.1]. This is called the dual monoid. The dual monoid of (Fn

2 ,∧) is essentially
(Fn

2 ,∨), where ∨ denotes bitwise-or. Indeed, µuµv = µu∨v.
Following Section 4.1, to find the eigenvectors of the pushforward operators

Tm with m in Fn
2 , we construct the dual of the character basis. Theorem 4.3

shows that the dual basis consists of the vectors µv in Q
[
Fn
2

]
, with v in Fn

2 and

µv =
∑
x≼ v

(−1)wt(x+v) δx ,

where wt(x) is the Hamming weight of x and the sum is over x ≼ v (bitwise
order) in Fn

2 . The set of vectors µv will be called the ultrametric integral basis.

Theorem 4.3. The ultrametric integral basis {µv | v ∈ Fn
2} is dual to the char-

acter basis {µv | v ∈ Fn
2}, with in particular µv(µv) = 1.

Proof. If b =
∑

x∈Fn
2
bx δx is one of the dual basis vectors, then there exists a v

in Fn
2 such that µv(b) = 1 and µu(b) = 0 for all u ̸= v. By linearity,

µu(b) =
∑
x∈Fn

2

bx µ
u(x) =

∑
x∈Fn

2

bx τ(x
u) =

∑
x≽u

bx .

The sum on the right-hand side is over all elements greater than u in the par-
tially ordered set Fn

2 . Such sums can be inverted using the Möbius inversion
formula [27, Prop. 2], which is just the inclusion-exclusion principle for Fn

2 :

bx =
∑
u≽ x

(−1)wt(x+u)µu(b) =

{
(−1)wt(x+v) if v ≽ x ,

0 else .

It follows that b = µv.

Section 4.3 relies on the change-of-basis transformation Un from the standard
basis of Q

[
Fn
2

]
to the ultrametric integral basis. The subscript n will be dropped

when the context resolves the ambiguity. This transformation maps µv to δv for
all v in Fn

2 . That is, U : Q
[
Fn
2

]
→ Q

[
Fn
2

]
is defined by extending U µv = δv

linearly to all of Q
[
Fn
2

]
. From the definition of µv and µv, one can see that

Un =

[
1 1
0 1

]⊗n

and U −1
n =

[
1 −1
0 1

]⊗n

. (1)

12



A similar change-of-basis transformation can be defined on QFn
2 for the character

basis, mapping µv to δv. As explained in Section 2.1, this transformation is equal
to U −∨. Lemma 4.1 gives an analytic expression for U and its inverse.

Lemma 4.1. Let a in Q
[
Fn
2

]
be a vector and let a∧ = U a. It holds that

a∧v =
∑
x≽v

ax and ax =
∑
v≽x

(−1)wt(x+v) a∧v .

Proof. Immediate from (1). An alternative proof is given in Appendix A.2.

Similar formulas can be given for the change-of-basis transformation U −∨

from the standard basis to the basis of monoid characters. For every cryptana-
lytic property (a, b), we can express a in the ultrametric integral basis and b in
the basis of characters. A concrete example is worked out below.

Example 4.1. The indicator of the input set for the experimental property on
present from Section 3.2 is δu∧Fn

2
, with u∧Fn

2 = {u∧x | x ∈ Fn
2}. In particular,

u = 00 · · · 01111. Using Lemma 4.1, we can express δu∧Fn
2
as a linear combination

of the ultrametric integral basis vectors:

[
U δu∧Fn

2

]
v
=

∑
v≼x≼u

1 =

{
2wt(u)−wt(v) if v ≼ u ,

0 else .

Hence,

δu∧Fn
2
=

∑
v≼u

2wt(u)−wt(v) µv .

Note that δu∧Fn
2
≡ µu (mod 2). ▷

The change-of-basis transformation U is the multiplicative analogue of the
Fourier transformation F . However, because (Fn

2 ,∧) is not a group, there are
several important differences. Although the additive characters of Fn

2 are or-
thogonal, the multiplicative characters µv are not. If we identify R[Fn

2 ] and RFn
2

using the standard inner product, then orthogonality implies that F and F−∨

are the same up to multiplication by 2n. This fails in the multiplicative case.
Since U and U −∨ are quite different, identifying Q

[
Fn
2

]
and QFn

2 would lead
to confusion. Nevertheless, the fact that F preserves the Euclidean norm does
have an analogue in terms of the norm ∥a∥∞ = max

{
|ax|2 | x ∈ Fn

2

}
. The proof

is given in Appendix A.1.

Theorem 4.4. The ultrametric integral change-of-basis transformation U is an
isometry with respect to the 2-adic maximum norm ∥ · ∥∞. That is, for all a in
Q
[
Fn
2

]
, ∥U a∥∞ = ∥a∥∞.

The transformations U and U −∨ are closely related to integral cryptanalysis.
Indeed, the characters are monomials when reduced modulo two: µv(x) ≡ xv

(mod 2). Hence, applying U −∨ ≡ M (mod 2) to a Boolean function yields a
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vector containing the coefficients of its algebraic normal form. Furthermore, for
a set X, the support of U δX (mod 2) is the parity set of X. Indeed,[

U δX
]
v
≡

∑
x∈X
x≽v

1 ≡
∑
x∈X

xv (mod 2) .

Hence, U ≡ P (mod 2) and U δX generalizes the parity set of X.

Example 4.2. Let X be the set {00, 01, 11} ⊆ F2
2. The representation of the

indicator vector of X in the ultrametric integral basis can be computed as
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 ·


1
1
0
1

 =


3
2
1
1

 .

The support of this representation reduced modulo two is the parity set of X,
that is U(X) = {00, 10, 11}. ▷

4.3 Ultrametric integral transition matrices

The ultrametric integral transition matrix of a function is the matrix represen-
tation of the pushforward operator relative to the ultrametric integral basis.
Alternatively, one can represent the pullback operator relative to the character
basis. This results in the transpose of the ultrametric transition matrix.

Definition 4.2 (Ultrametric integral transition matrix). For a function
F : Fn

2 → Fm
2 , let AF = Um T F U −1

n . The ultrametric transition matrix of F is
the coordinate representation of AF with respect to the standard bases of Q

[
Fn
2

]
and Q

[
Fm
2

]
respectively.

Like for correlation matrices, we will use the notation AF for both the opera-
tor and its standard basis matrix representation. The notation AF collides with
the notation for algebraic transition matrices introduced in Section 2.3, but the
following expression shows that this is reasonable. The coordinates of AF are

AF
v,u = δv

(
AF δu

)
= µv

(
T Fµu

)
=

∑
x≼u

(−1)wt(x+u)τ(Fv(x)) . (2)

Row v of AF contains the coefficients of the numerical normal form of the Boolean
function Fv [13, §2.2.4]. This is the unique multivariate integer polynomial that
interpolates Fv on {0, 1}n ⊆ Zn, and reduces to the algebraic normal form mod-
ulo two. This implies that the reduction of AF modulo two is the algebraic
transition matrix of F. Indeed, [4, Theorem 6] shows that row v of the algebraic
transition matrix of F contains the coefficients of the algebraic normal form of
Fv. A more elegant proof is given in Theorem B.1 in Appendix B.1.

Two different extensions of the numerical normal form to vectorial Boolean
functions have been proposed in the Boolean functions literature. Carlet [13,
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§2.2.4] considers the numerical normal form of the indicator function of the graph
of F. This is not the right notion for cryptanalysis, as it is not based on a pair of
dual bases. Still motivated by interpolation, Dravie et al. [17] define polynomial
matrices by a formula similar to (2). Polynomial matrices are equal to ultrametric
integral transition matrices, but it is unclear if this was actually intended. Indeed,
[17, Proposition 7] relates the polynomial matrix to the adjacency matrix of the
graph of F when n = m. However, this result is incorrect and correcting it would
require changing the definition of polynomial matrices.

The relation between ultrametric integral transition matrices and the nu-
merical normal form could be of independent interest, as the motivation for the
ultrametric change-of-basis is quite different (diagonalization of bitwise and).
The interpretation in terms of interpolating polynomials over the integers does
not play a role in this paper.

Example 4.3 (Translation). Let F : F2 → F2 be defined by F(x) = x + k, for
some constant k in F2. The ultrametric integral transition matrix of F is

AF =

[
1 0

τ(k) (−1)k

]
If k = 0, then this is just the identity matrix. ▷

The following properties are immediate consequences of the properties of
transition matrices (Theorem 2.1, as they are invariant under change of basis.

Corollary 4.1. The ultrametric transition matrix AF of F : Fn
2 → Fm

2 has the
following properties:

(1) If F(x1‖ · · · ‖xl) = F1(x1)‖ · · · ‖Fl(xl), then AF =
⊗l

i=1 A
Fi .

(2) If F = Fr ◦ · · · ◦ F2 ◦ F1, then AF = AFr · · ·AF2AF1 .

Proof. Both of these properties follow from Theorem 2.1. For the proof of prop-
erty (1), we use the fact that Un = U ⊗n

1 . Indeed,

AF =
(⊗l

i=1 U
)(⊗l

i=1 T
Fi

)(⊗l
i=1 U −1

)
=

⊗l
i=1 U T Fi U −1 =

⊗l
i=1 A

Fi .

For the proof of property (2), we use Theorem 2.1: T F = T Fr · · ·T F2T F1 . Hence,

U T FU −1 =
(
U T FrU −1

)
· · ·

(
U T F2U −1

)(
U T F1U −1

)
.

The result follows by substituting AFi = U T FiU −1.

Example 4.4 (Translation). Let F : Fn
2 → Fn

2 with F(x) = x + k, for some
constant k in Fn

2 . If ki denotes the ith bit of k, then F can be expressed as

F(x1‖ · · · ‖xn) = F1(x1)‖ · · · ‖Fn(xn) ,
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where Fi(xi) = xi+ki is the function that was discussed in Example 4.3. Hence,
by Corollary 4.1 (1),

AF =

n⊗
i=1

AFi =

n⊗
i=1

[
1 0

τ(ki) (−1)ki

]
.

More explicitly, AF is a lower-triangular 2n × 2n matrix with coordinate in row

v and column u ≼ v equal to (−1)u
Tk τ(ku+v), and zero elsewhere. ▷

The following properties are specific to ultrametric transition matrices.

Theorem 4.5. The ultrametric transition matrix AF of F : Fn
2 → Fm

2 has the
following properties:

(1) If F is a bijection, then AF is an isometry.

(2) If F is a monoid homomorphism, then AF
v,u = 1 if µv ◦F = µu and 0 else.

(3) If F(x) = m ∧ x with m in Fn
2 , then AF is diagonal with AF

u,u = µu(m).

Proof. For the first property, note that if F is a bijection, then T F is an isometry.
By Lemma 4.1, the ultrametric change-of-basis transformation is an isometry.
Since a composition of isometries is again an isometry, AF is an isometry.

If F is a monoid homomorphism, then µv ◦ F is a character of (Fn
2 ,∧). If

µw = µv ◦ F, then AF
v,u = µv(T Fµu) = µw(µu). The result follows from the

duality between µu and µw.

The third property is true by construction of the ultrametric change-of-basis
transformation, Indeed, AF

v,u = µv(T Fµu) = µu(m)µv(µu) since µu is an eigen-

vector of T F. The result follows from the duality between µu and µv.

Example 4.5. The function and : F2n
2 → Fn

2 defined by and(x‖y) = x ∧ y is a
monoid homomorphism. It follows from Theorem 4.5 (2) that

Aand
w,u‖v =

{
1 if w = u = v ,

0 else .

The fact that only 2n coordinates of this matrix are non-zero is no coincidence.
The expression above is identical to that for the correlation matrix of the xor
function. That is, Aand = Cxor. This is by construction, since ultrametric integral
cryptanalysis is the multiplicative analogue of linear cryptanalysis. ▷

By the results of [4], algebraic transition matrices lead to a theory of trails
for integral cryptanalysis (algebraic, division or monomial trails). In Section 5,
we show how ultrametric integral transition matrices lead to a similar theory
that reduces to ordinary integral cryptanalysis modulo two.
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5 Ultrametric integral trails

Let F : Fn
2 → Fm

2 be a function. A pair of exponents (u, v) ∈ Fn
2×Fm

2 will be called
an ultrametric integral approximation for F. The correlation of an ultrametric
integral approximation is defined as

AF
v,u = µv

(
T F µu

)
.

In other words, there is a one-to-one correspondence between ultrametric integral
approximations (u, v) and properties (µu, µ

v) defined by basis vectors. As shown
in Section 4.2, the evaluation of every property can in principle be expressed as
a linear combination of the evaluations of these properties. Hence, it is sufficient
to compute the correlations of ultrametric integral approximations. If F is a
composition of functions F1, . . . ,Fr with enough structure so that the coordinates
of the matrices AF1 , . . . , AFr can be determined efficiently, then correlations can
be estimated (in the 2-adic sense) using ultrametric integral trails.

Definition 5.1. An ultrametric integral trail for a function F = Fr ◦ · · · ◦F2 ◦F1

is a sequence u1, . . . , ur+1 of exponents. The correlation of this trail is defined
as

∏r
i=1 A

Fi
ui+1,ui

.

5.1 Dominant trail approximation

In Corollary 4.1 (2), it was shown that AF = AFr · · ·AF2AF1 . Writing out this
matrix product in terms of coordinates leads to the expression

AF
ur+1,u1

=
∑

u2,...,ur

r∏
i=1

AFi
ui+1,ui

.

That is, the correlation of the ultrametric integral approximation (u1, ur+1) is
equal to the sum of the correlations of all trails with input and output exponent
u1 and ur+1 respectively. However, this result will not be used in practice because
the number of trails is generally too large. Instead, similar to Theorem 2.2 in
the case of linear cryptanalysis, we rely on a set of dominant trails to estimate
the correlation.

Theorem 5.1 (Dominant trails, cf. Theorem 2.2). Let F = Fr◦· · ·◦F2◦F1.
For all subsets Λ of the set Ω of all trails from u1 to ur+1,∣∣∣∣∣AF

ur+1,u1
−

∑
u∈Λ

r∏
i=1

AFi
ui+1,ui

∣∣∣∣∣
2

=

∣∣∣∣∣ ∑
u∈Ω\Λ

r∏
i=1

AFi
ui+1,ui

∣∣∣∣∣
2

≤ max
u∈Ω\Λ

∣∣∣∣∣
r∏

i=1

AFi
ui+1,ui

∣∣∣∣∣
2

,

where u = (u1, u2, . . . , ur+1).

Proof. The result follows from the following decomposition:

AF
ur+1,u1

=
∑

u2,...,ur

r∏
i=1

AFi
ui+1,ui

=
∑
u∈Λ

r∏
i=1

AFi
ui+1,ui

+
∑

u∈Ω\Λ

r∏
i=1

AFi
ui+1,ui

.
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In particular, the equality follows by rearranging the terms and taking the ab-
solute value of both sides of the equality. The inequality follows from the ultra-
metric triangle inequality.

Theorems 2.2 and 5.1 are conceptually the same, but Theorem 5.1 is based
on the 2-adic rather than the ordinary absolute value function. This difference
has far-reaching implications. In particular, to upper bound the error term in
Theorem 5.1, it is sufficient to bound the 2-adic absolute value of the correlation
of every trails in Ω \Λ. This reflects the fact that, in Q2, the sum of many small
numbers is always small. In contrast, Theorem 2.2 is used heuristically in linear
cryptanalysis, because it is difficult to upper bound the error term. Indeed, in
R, the sum of many small numbers may be large.

In practice, we will use Theorem 5.1 as follows. If the 2-adic absolute value
of the correlations of all trails in Ω \ Λ is at most 2−t, then

AF
ur+1,u1

≡
∑
u∈Λ

r∏
i=1

AFi
ui+1,ui

(mod 2t) .

If Λ = ∅, then this shows that AF
ur+1,u1

is divisible by 2t. This corresponds to an
approximate zero-correlation approximation.

5.2 Example

As a first example of ultrametric integral trails, we explain and prove the prop-
erty that we observed in Section 3.1. Throughout the analysis, we ignore the first
S-box layer. Indeed, up to constant additions that can be combined with the key
addition of the next round, the input set is invariant under the S-box layer.
Hence, let F denote three rounds of present without the final bit-permutation,
as shown in Figure 2. As explained in Section 3.2, the observation corresponds to
µv

(
T F δX

)
≡ 0 (mod 4), where the input set X consists of all values 00 · · · 0‖x

with x in F4
2, and the output exponent v is equal to 0000 0000 0001 0000 in

hexadecimal notation. Equivalently,
∣∣µv

(
T F δX

)∣∣
2
≤ 1/4.

The vector δX is not equal to one of the basis vectors µu. Nevertheless, the
property can be analyzed using ultrametric integral trails by writing δX as a
linear combination of the ultrametric integral basis vectors. In particular, it was
shown in Example 4.1 that

δX =
∑
u∈F4

2

24−wt(u) µ00···0‖u .

Hence, the evaluation µv(T FδX) of the property (δX , µv) is equal to

µv
(
T F δX

)
=

∑
u∈F4

2

24−wt(u) µv
(
T Fµ00···0‖u

)
=

∑
u∈F4

2

24−wt(u) AF
v,00···0‖u .

In particular, the 2-adic absolute value is bounded by∣∣µv
(
T F δX

)∣∣
2
≤ max

u∈F4
2

2wt(u)−4
∣∣AF

v,00···0‖u
∣∣
2
.
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Fig. 2: Miss-in-the-middle using ultrametric integral trails for present.

Hence, it suffices to show that AF
v,0···0‖u is divisible by two if wt(u) = 3 and by

four if wt(u) = 4. To prove this, we use Theorem 5.1 with Λ = ∅.

Figure 2 illustrates the structure of ultrametric integral trails with nonzero
correlation. As explained below, the colors correspond to conditions on exponent
bits.

The blue lines in Figure 2 correspond to exponent bits that are equal to zero.
The orange lines correspond to a group of four bits that must have weight equal
to wt(u). The analysis is based on a variant of the miss-in-the-middle principle:
we propagate the orange set forward and the blue set backwards, in order to rule
out trails with high absolute correlation.

The propagation of exponents through a bit-permutation P is straightfor-
ward. Since bit-permutations are monoid homomorphisms, Theorem 4.5 (2)
shows that AP

v,u ̸= 0 if and only if v = P(u). For K(x) = x + k, it was shown

in Example 4.4 that AK
v,u ̸= 0 for at least one key k if and only if u ≼ v. For

the S-box layer, we need Theorem 4.5 (2) and the ultrametric integral transition
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matrix of the present S-box:

AS =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 −2 −1 2 1 −2 0 0 −2 4 2 −4
0 0 1 0 0 0 0 −1 1 0 −1 −1 −1 1 0 2
0 0 0 1 0 0 0 −1 1 −1 0 −1 −1 2 0 0
1 0 0 −1 −1 0 0 2 −1 1 1 −1 2 −1 −2 0
0 1 0 −1 0 −1 0 2 0 −1 1 0 0 2 −1 −2
0 0 1 −1 0 0 −1 1 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 1 −1 0
1 −1 −1 2 0 0 1 −1 −1 2 2 −3 0 −1 −2 2
0 0 0 1 1 −1 −1 1 0 0 1 −2 −1 1 0 0
0 0 0 1 0 0 1 −2 0 1 1 −3 0 −1 −2 4
0 0 0 1 0 0 0 −1 0 0 1 −2 0 0 −1 2
1 −1 −1 1 −1 1 1 0 −1 2 2 −3 1 −2 −2 2
0 0 0 0 0 0 0 1 0 0 1 −1 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 1 −2 0 −1 −1 2
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1


.

The row that we use in the analysis is indicated in red.

Backward propagation. Since AS
0,w ̸= 0 if and only if w = 0, the bits of the expo-

nent before the last S-box layer are zero except for bits 16 up to 19. Nevertheless,
bits 16-19 are not arbitrary. In particular, |AS

1,f|2 = 1/4 and |AS
1,w|2 ≤ 1/2 if

wt(w) = 3. In Figure 2, these four bits are indicated in green.
If a bit of the output exponent for the key addition operation is zero, then

the corresponding bit of the input exponent must be zero as well. Propagation
through the bit-permutation layer is straightforward. Hence, at the input of the
third S-box layer, all exponent bits except 16-19 must be zero. Propagating this
information through the middle bit-permutation, we find that every nibble of
the exponent at the output of the second S-box layer must be 0 or 2.

Forward propagation. Like in the backward direction, propagation through the
first bit-permutation is straightforward. For the key-addition layer, for every bit
of the input exponent equal to one, the corresponding bit of the output exponent
is also equal to one. It was shown above that the output exponents on the S-
boxes are either 0 or 2. Hence, since the output exponent must be nonzero if
the input exponent is nonzero, the four nonzero output bits of the rightmost
superbox must have weight wt(u). Propagating this information through the
bit-permutation is straightforward.

Conclusion. To upper bound the correlation, we focus on the framed superbox
in Figure 2. Since the weight of the set of orange-colored exponent bits is wt(u),
at least three of the first layer of four S-boxes are active. If all four S-boxes are
active, then the absolute correlation is at most 1/4. If only three S-boxes are
active, then the absolute correlation is at most 1/2. That is, the correlation is
divisible by two if wt(u) = 3 and divisible by four if wt(u) = 4. This is what we
set out to prove.

5.3 Trail enumeration

A manual analysis of trails like in Section 5.2 is instructive, but it becomes
tedious for larger problems. Hence, like in linear and ordinary integral crypt-
analysis, we will use automated methods to find trails. This will be discussed in
more detail in Sections 7 and 8.
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Theorem 5.1 shows that it is sufficient to upper bound the absolute correla-
tion of every non-dominant trail, but this does not necessarily result in the best
possible bound. Indeed, the absolute value of the sum of two correlations can be
strictly less than the sum of their absolute values. To take into account these
‘cancellations’, one can try to enumerate all trails and compute∣∣∣∣∣ ∑

u∈Ω\Λ

r∏
i=1

AFi
ui+1,ui

∣∣∣∣∣
2

.

In practice, this is often infeasible. Nevertheless, in Section 7, we will encounter
several properties that we can only explain using trail enumeration.

The distinction between bounding correlations of individual trails and trail
enumeration also exists in ordinary integral cryptanalysis. This can be made
precise using algebraic trails. As explained in Section 4.3, the algebraic transition
matrix of F is the reduction of AF modulo two. Hence, every ultrametric integral
trail reduces to an algebraic trail with correlation in F2. The method of bounding
trail correlations then amounts to showing that all algebraic trails in Ω \ Λ
have correlation zero. Bit-based division property and parity sets both follow
this approach. The three-subset division property without unknown subset and
monomial prediction additionally take into account the parity of the number
of trails with nonzero correlation. This corresponds to trail enumeration. An
overview of different methods can be found in [4, §4.1] and in the survey [20].

6 Properties of ultrametric integral transition matrices

The purpose of this section is to introduce additional properties of ultrametric
integral transition matrices. Some of these properties are mainly of theoretical
interest, others will play an important role in Sections 7 and 8.

6.1 Computation

The ultrametric integral transition matrix of a function F : Fn
2 → Fm

2 can be
computed in O((n + m)2n+m) time. This is the same time-complexity as for
computing the correlation matrix of F, and the underlying algorithm is analo-
gous. In particular, it exploits the fact that Un = U ⊗n

1 – see (1) on page 12.
This tensor product structure leads to an O(n2n) time algorithm for computing
Un a and U −1

n a, for a in Q
[
Fn
2

]
. Since AF = Un T

FU −1
n , applying this algorithm

to the rows and columns of T F leads to an O((n+m)2n+m) time algorithm for
computing AF. A reference implementation is provided in the example in our
code repository.

6.2 Linear functions

Since the nonlinear functions used in most primitives only depend on a small
number of state bits, it is often the linear functions that pose most difficulties
in (ultrametric) integral cryptanalysis.
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If the linear layer is a bit-permutation, its ultrametric integral transition
matrix is easy to compute. Indeed, bit-permutations are monoid isomorphisms,
so Theorem 4.5 (2) can be used. For most other linear functions, there is no
simple formula. However, every linear function can be decomposed as a network
of forking (or ‘copy’) and addition (or ‘xor’) operations. For these two operations,
simple exponent propagation rules can be obtained – they are illustrated in
Figure 3 and discussed below.

u v

u ∨ v

1

(a) Copy.

u v

u ∨ v

(−2)wt(u∧v)

(b) Xor.

Fig. 3: Propagation rules for copy and xor operations.

Since copy and xor operations are bitwise operations, their ultrametric inte-
gral transition matrix can be computed using Corollary 4.1 (1). As the derivation
is essentially just a calculation, it is given in Appendix B.2. The copy operation
is the function copy : Fn

2 → F2n
2 with copy(x) = x‖x. The coordinates of its

ultrametric integral transition matrix are

Acopy
u‖v,w =

{
1 if w = u ∨ v ,

0 otherwise .

This result implies the following propagation rule: if the output exponent is u‖v,
then the input exponent must be u∨ v. In this case, the correlation is one. This
rule is illustrated in Figure 3a.

The xor operation is the function xorn : F2n
2 → F2 defined by xor(x‖y) = x+y.

The coordinates of its ultrametric integral transition matrix are

Axor
w,u‖v =

{
(−2)wt(u∧v) if w = u ∨ v ,

0 otherwise .

This result can be summarized as the propagation rule that an input exponent
u‖v goes to output exponent u∨v with correlation (−2)wt(u∧v). This is illustrated
in Figure 3b.

It is worth mentioning that there are downsides to decomposing linear func-
tions into copy and xor operations. Copy operations often introduce many high-
correlation trails, reducing the accuracy of the principle of dominant trails and
making trail enumeration more difficult. Hence, whenever dedicated formulas
are available, they are usually preferable.

Finally, the propagation rules in Figure 3 imply an interesting theoretical
result: if L : Fn

2 → Fm
2 is a linear function, then |AL

v,u|2 ≤ 2wt(v)−wt(u). Every
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output bit of L can be written as a network of copy and xor operations. For a
copy operation, the weight of the output exponent is always greater than the
weight of the input exponent. For an xor operation, the output exponent weight
can be lower than the input exponent weight, but if the weight decreases by ∆
then the correlation is (−2)∆. Hence, the correlation of an approximation (u, v)
over L must be divisible by 2wt(u)−wt(v). In Section 6.3, we generalize this result
to nonlinear functions.

6.3 Low-degree functions

Recall from Example 4.5 that the propagation rule for the and : F2n
2 → Fn

2

function is identical to that of xor in linear cryptanalysis. This extends to the
bitwise and of more than two variables, which is still a monoid homomorphism.
Based on this property, the following result shows that the ultrametric integral
transition matrix of a function with low algebraic degree is sparse.

Theorem 6.1. If F : Fn
2 → Fm

2 is a function with algebraic degree d, then

− log2
∣∣AF

v,u

∣∣
2
≥

⌈
wt(u)

d

⌉
− wt(v) .

Equivalently,
∣∣AF

v,u

∣∣
2
≥ 2−ν only if wt(v) ≥ ⌈wt(u)/d⌉ − ν.

Proof. The result can be proven by a somewhat technical calculation, for ex-
ample using Equation (2) and splitting up the sum according to the monomials
that occur in Fv by using the additive characters of F2. Instead, we give a more
insightful ‘cryptanalytic’ proof based on ultrametric integral trails.

Every degree d function can be represented as a three-layer circuit, consisting
of a layer of copy operations, a layer of and gates with d or fewer inputs each,
and a layer of xor operations. This is illustrated in Figure 4. Although it is not
shown in Figure 4, we allow for an exclusive-or with a constant at the output.

· · ·

...

wt(v)

wt(v) + ν

d(wt(v) + ν)

wt(u) ≤ d(wt(v) + ν)

· · · · · · · · ·

Fig. 4: One of the coordinates of a function of degree d.

Figure 4 only depicts one coordinate of F, but in general we have to take into
account the coordinate functions corresponding to all wt(v) nonzero bits in the
output exponent v.
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If |AF
v,u|2 ≥ 2−ν , then there must exist an ultrametric integral trail with cor-

relation divisible by a power of two less than or equal to 2ν . By the propagation
rules for xor operations from Section 6.2, this implies that the weight of the
exponent at the output of the and-layer is at most wt(v) + ν. An and operation
with d inputs is a monoid homomorphism from Fd

2 to F2. By Theorem 4.5 (2),
the input exponent is 00 · · · 0 if the output exponent is zero and 11 · · · 1 if it is
one. Hence, using the properties of bricklayer maps, the weight of the exponent
at the input of the and-layer is at most d(wt(v) + ν). As shown in Section 2.2,
the weight of the output exponent for a copy is always greater than the weight
of its input exponent. Hence,

wt(u) ≤ d(wt(v) + ν) .

It follows that wt(v) ≥ ⌈wt(u)/d⌉ − ν.

The main propagation rule for the word-based division property [30, Propo-
sition 1] is a special case of Theorem 6.1. This rule states that if a multiset X has
the division property of order k, then F(X) has the division property of order
⌈k/d⌉. Indeed, by Theorem 6.1, |AF

v,u|2 = 1 only if wt(v) ≥ ⌈wt(u)/d⌉. Recall
that X has the division property of order k if and only if [U δX ]u is divisible by
two for all u with wt(u) < k.

Theorem 6.1 is mostly of theoretical interest. To obtain our results in Sec-
tions 7 and 8, more fine-grained models of nonlinear functions are necessary.
Nevertheless, Theorem 6.1 has some interesting theoretical applications. For ex-
ample, it implies the Ax-Katz theorem over F2.

Corollary 6.1 (Ax-Katz [23]). The number of solutions of a system of m
equations of degree d in n variables is divisible by 2⌈n/d⌉−m.

Proof. The system of equations can be written as F(x) = 11 · · · 1, where F :
Fn
2 → Fm

2 is a function of degree d. That is,

µ11···1(T FδFn
2

)
= δ11···1

(
AF U δFn

2

)
=

∑
u∈Fn

2

2n−wt(u)AF
11···1,u .

By Theorem 6.1, the right-hand side is divisible by 2ν , where

ν ≥ min
u∈Fn

2

n− wt(u) +

⌈
wt(u)

d

⌉
− wt(11 · · · 1) ≥

⌈n
d

⌉
−m.

For the second inequality, we use that the minimum is reached for wt(u) = n.

There is a variant of Corollary 6.1 that takes into account the degrees of the
individual equations. This result is given in Corollary B.1 of Appendix B. The
proof uses a variant of Theorem 6.1.

Finally, it is worth mentioning that Corollary 6.1 implies a well-known weight
divisibility property of Reed-Muller codes. McWilliams and Sloane deduce this
result from McEliece’s theorem [26, Corollary 13].
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Corollary 6.2. The weights of codewords in the Reed-Muller code R(d, n) are
divisible by 2⌈n/d⌉−1.

Proof. The codewords in R(d, n) are truth-tables of Boolean functions of degree
d. Hence, the weight of a codeword is the number of solutions of an equation of
degree d in n variables. By Corollary 6.1, this is divisible by 2⌈n/d⌉−1 .

6.4 Relation with correlation matrices

A number of results in the Boolean functions literature relate the algebraic
degree of a function to the divisibility of the coordinates of its correlation matrix
(equivalently, Walsh-Hadamard transformation). Theorem 6.2 generalizes these
results in terms of the ultrametric integral transition matrix. In doing so, we
hope to clarify why such results are to be expected.

The correlation matrix CF and the ultrametric integral transition matrix AF

of a function are both matrix representations of the pushforward operator T F.
In particular, CF can be expressed in terms of AF (and conversely):

CF = F T FF−1 =
(
F U −1

)
AF

(
F U −1

)−1
.

Since the reduction of AF modulo two is the algebraic transition matrix of F,
it is not surprising that the divisibility of coordinates of CF can be related
to the algebraic degree. However, in general, looking at the divisibility of the
coordinates of AF provides finer results. The following results make this precise.

Lemma 6.1. For the matrix T = FU −1 and its inverse T −1, we have

Tv,u =

{
(−2)wt(u) if u ≼ v ,

0 else ,
and T −1

v,u =

{
(−1)wt(u) 2−wt(v) if u ≼ v ,

0 else .

Proof. The matrix T = FU −1 and its inverse are given by:

T =

[
1 1
1 −1

]⊗n [
1 −1
0 1

]⊗n

=

[
1 0
1 −2

]⊗n

and T −1 =

[
1 0
1
2 − 1

2

]⊗n

.

That is, Tv,u is equal to (−2)wt(u) if u ≼ v and zero otherwise. For the inverse,
note that T −1

v,u is equal to (−1)wt(u) 2−wt(v) if u ≼ v and zero otherwise.

Together with the relation between AF and CF, Lemma 6.1 implies the fol-
lowing two bounds. As shown below, these bounds refine existing results about
the divisibility of correlations. A comparable but different result is given for the
numerical normal form of the graph indicator of a function by Carlet [13, §2.3].

Theorem 6.2. Let F : Fn
2 → Fm

2 be a function with correlation matrix CF and
ultrametric integral transition matrix AF. For all u in Fn

2 and v in Fm
2 ,∣∣CF

v,u

∣∣
2
≤ max

s≽u
t≼v

2wt(s)−wt(t)
∣∣AF

t,s

∣∣
2

and
∣∣AF

v,u

∣∣
2
≤ max

s≽u
t≼v

2wt(v)−wt(u)
∣∣CF

t,s

∣∣
2
.
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Proof. For brevity, let T = FU −1. By the ultrametric triangle inequality,∣∣CF
v,u

∣∣
2
=

∣∣(T AF T −1
)
v,u

∣∣
2
≤ max

s,t

∣∣Tv,t

∣∣
2

∣∣AF
t,s

∣∣
2

∣∣T −1
s,u

∣∣
2
.

The result then follows from Lemma 6.1. Similarly, we have∣∣AF
v,u

∣∣
2
=

∣∣(T −1 CF T
)
v,u

∣∣
2
≤ max

s,t

∣∣T −1
v,t

∣∣
2

∣∣CF
t,s

∣∣
2

∣∣Ts,u

∣∣
2
.

Again, the result follows from Lemma 6.1.

Theorem 6.2 implies the well-known result that
∣∣CF

v,u

∣∣
2
≤ 2n−⌈n/d⌉ if F is

of degree d. The details are worked out in Appendix B.4. More interestingly,
Theorem 6.2 also yields the following converse result. A weaker version of Corol-
lary 6.3 (without the condition wt(u) ≥ d+1) was proven by Carlet [12, Lemma
3] and used by Canteaut and Videau [11, Proposition 2] at Eurocrypt 2002 and
by Boura and Canteaut in 2013 [9] to upper bound the degree of a composition
of two functions7.

Corollary 6.3. If F : Fn
2 → Fm

2 is a function with
∣∣CF

v,u

∣∣
2
≤ 2d−1 for all u and

v with wt(u) ≥ d+ 1 and wt(v) = 1, then F has algebraic degree at most d.

Proof. To show that F has degree at most d, it suffices to prove that |AF
v,u|2 ≤ 1/2

for all u and v with wt(u) ≥ d+ 1 and wt(v) = 1. This readily follows from the
second inequality of Theorem 6.2:∣∣AF

v,u

∣∣
2
≤ 2wt(v)−wt(u) 2d−1 ≤ 2d 2d−1 = 1/2 ,

where we have used
∣∣CF

t,s

∣∣
2
≤ 2d−1 for all t and s with wt(t) ≤ wt(v) = 1 and

wt(s) ≥ wt(u) ≥ d+ 1

Another application of Theorem 6.2 is discussed in Section 7.3.

7 Application to present

In this section, we apply ultrametric integral cryptanalysis to present. The
analysis is automated using off-the-shelf SAT solvers. The choice of present is
didactical. Indeed, integral attacks on present cover a small number of rounds
compared to other methods such as linear cryptanalysis. Nevertheless, present
has often served as a test-case for new ideas in integral cryptanalysis such as the
division property [30, §5.3] and parity sets [10, §6].

Section 7.1 briefly describes how to automate the analysis of ultrametric
integral trails. The distinguishers found by Boura and Canteaut [10] are revis-
ited in Section 7.2. Section 7.3 takes a closer look at the zero-correlation linear
cryptanalysis of present. Finally, Section 7.4 shows that ultrametric integral
cryptanalysis can reduce the time- and data-complexity of key-recovery attacks.

7 It is now understood that these bounds can be proven using integral cryptanalysis.
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7.1 Modelling

To automate the analysis of ultrametric trails, we construct a formula in con-
junctive normal form so that each satisfying assignment corresponds to a trail
with absolute correlation 2−ν . The variables in this formula are the exponents
of the ultrametric integral trail, and some bookkeeping variables to keep track
of the correlation. Given this formula, a SAT solver can be used to check for the
existence of trails, or to enumerate them.

The construction of the conjunctive normal form formula follows from the
discussion in Sections 5 and 6. For the S-boxes, a minimal conjunctive normal
form representation of the constraints is computed using the implementation
from [4], which follows the method proposed by Udovenko [32]. Additional details
can be found in Appendix C.1.

The analysis of trails is based on the dominant trail approximation in Theo-
rem 5.1. Initially, an upper bound on the absolute correlation of all trails in Ω\Λ
is determined. If additional accuracy (i.e. higher divisibility when Λ = ∅) is de-
sired, then trails in Ω\Λ with lower absolute correlation are enumerated as well.
However, the properties of interest are often of the form (δu0∧Fn

2
, µur+1) rather

than (µu1
, µur+1). One can deal with this discrepancy by expanding δur+1∧Fn

2

in the ultrametric integral basis as in Example 4.1. This leads to the following
variant of the error term in Theorem 5.1:∣∣∣∣∣∣

∑
u1≼u0

∑
u∈Ω\Λ

2wt(u0)−wt(u1)
r∏

i=1

AFi
ui+1,ui

∣∣∣∣∣∣
2

.

In principle, this can be modelled directly, but doing so introduces spurious
trails. For example, if the input of an S-box S in the first round is saturated,
then T S δF4

2
= δF4

2
. The above approach models this correctly, but it introduces up

to 16 redundant trails. A more detailed example is worked out in Appendix C.2.
To reduce the number of spurious trails introduced by handling the input,

we automatically propagate the input set through the first few rounds by par-
tial matrix-vector multiplication. The multiplication is done in the ultrametric
integral basis, but not using trails. To do this efficiently, the rank-one structure
of U δu0∧Fn

2
in Q

[
Fn
2

]
=

⊗n
i=1 Q

[
F2

]
is exploited. Hence, this optimization is

inspired by some of the more general principles of the geometric approach [1].
Additional details and an example are given in Appendix C.2.

Our implementation extends the toolbox for integral cryptanalysis developed
in [4]. This makes it easy to construct models for other ciphers. The cardinality
constraints we rely on are generated using PySAT [22], and kissat [5] was used
as the SAT solver.

7.2 Revisiting the distinguishers of Boura and Canteaut

In this section we revisit the integral distinguishers on present proposed by
Boura and Canteaut [10] at Crypto 2016. They showed that, for the input sets
u ∧ F64

2 listed in Table 2 and 4 - 8 rounds of present, every bit of the state
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sums to zero in F2. For the second output bit of four-round present, we already
observed divisibility by four in Section 3.1 and this was proven in Section 5.2.

To validate the efficacy of the model, we compare our results for four and five
rounds with experimental results in Appendix F. In most cases, the divisibility
predicted by our model without trail enumeration is tight. For a few bits, an
additional factor of two or four was gained by enumerating trails. For this reason,
trail enumeration was not used to evaluate the 6 - 9 round properties.

Table 2 lists our results for the first 16 output bits for the input sets chosen
by Boura and Canteaut. The results for the remaining 48 bits can be found
in Appendix D. The first 16 bits give the most interesting results, though the
remaining bits are not far off for six rounds and more.

For six rounds, we show that for 48 bits the absolute correlation is at most
1/4, which is stronger than the bound of 1/2 implied by ordinary integral crypt-
analysis. The first bit exhibits divisibility by 128. For seven rounds, we improve
over divisibility by two for 55 bits and the absolute correlation for the first bit is
at most 1/512. For eight rounds, all bits have divisibility by four or more, rang-
ing from 4 to 256. We also consider the eight round input set for nine rounds of
present. It was shown by Wang et al. [33] that this results in 28 bits that sum
to zero in F2. Our results show that four of these bits exhibit divisibility by four.

Table 2: Divisibility for the distinguishers of Boura and Canteaut [10] and
Wang et al. [33], with input set u ∧ F64

2 . The ith output bit exhibits divisi-
bility by 2νi . Red numbers were obtained using trail enumeration.

rounds u log2(data)
νi for bit i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 000000000000000f 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 000000000000fff0 12 5 5 5 5 3 2 2 2 3 3 3 3 3 2 2 2
6 00000000ffffffff 32 7 4 4 4 4 1 1 1 4 2 2 2 4 1 1 1
7 fffffffffffff000 52 9 5 5 5 4 2 2 2 5 2 2 2 4 2 2 2
8 fffffffffffffffe 63 8 5 5 5 5 2 2 2 5 3 3 3 5 2 2 2
9 fffffffffffffffe 63 2 1 1 1 2 0 0 0 2 0 0 0 2 0 0 0

7.3 Finding zero-correlation distinguishers

Traditionally, zero-correlation linear approximations are found by showing that
all linear trails have correlation zero. Due to the theoretical links from Sec-
tion 6.4, the same properties can be analyzed from the point of view of ultra-
metric integral cryptanalysis. However, the non-existence of linear trails with
nonzero correlation does not automatically imply the non-existence of ultramet-
ric integral trails with nonzero correlation (and conversely).

To demonstrate that ultrametric integral cryptanalysis provides an alter-
native way to find zero-correlation linear approximations, we analyze the zero-
correlation distinguishers for five and six rounds of present given by Hadipour et
al. [18]. These zero-correlation linear approximations depend on the details of
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the S-box, so propagating the ‘all’ property as described by Knudsen and Wag-
ner [25] is not sufficient to explain them. However, they can be obtained by
propagating the ‘all’ property at the level of individual bits. Hence, these are
properties that one would expect integral cryptanalysis to be able to detect, but
most of the result is lost when working over F2.

Recall from Section 6.4 that CF = T AFT −1, with T = FU −1. Using
Lemma 6.1, the following variant of Theorem 6.2 is obtained:∣∣CF

v,u

∣∣
2
≤ max

t≼v
2−wt(t)

∣∣δt(AFT −1δu
)∣∣

2
.

As explained in Section 7.1, the vector T −1δu can be propagated using partial
matrix-vector multiplication to avoid spurious trails. For the zero-correlation
approximations from [18], the input mask u is fixed. Since the bound on the
right-hand side also holds for any output mask s ≼ v, multiple output masks
can be tested using a single SAT instance.

Using this approach, all 248−1 output masks with correlation zero for 5-round
present (corresponding to three active superboxes) reported by Hadipour et
al. can be found. There is another set of three superboxes leading to 248 − 232

additional zero-correlation approximations with the same input mask, which
would reduce the data-complexity8 by a factor of

√
2.

The zero-correlation approximation (u, v) on six rounds of present in [18,
Figure 49d] follows from the five round property. Indeed, the support of the
product AF∨

T ∨ δv with F the last round function lies in the set of output expo-
nents that were analyzed for the 5 round property. The same argument can be
made using linear cryptanalysis.

7.4 Improving key recovery attacks

Integral distinguishers can be turned into key-recovery attacks using the last-
round trick. An important parameter is then the number of incorrect candidate
keys that can be filtered out based on a single input set. A single zero-sum bit
filters out half of the incorrect candidate keys, but a bit with divisibility by 2ν

provides a filter of (approximately) 2−ν . To illustrate this, a key-recovery attack
on eight round present-80 using 212 data and time equivalent to 260 encryptions
is worked out below. The time-complexity is not fully optimized and can easily
be reduced.

Integral distinguishers on six round present require at least 28 data, for
example when the input set is a coset of 0 · · · 0ff0 ∧ F64

2 . Since this only gives
a 1-bit filter, 20 sets would be necessary to append two rounds. However, using
ultrametric integral cryptanalysis, we find that every coset of 0 · · · 0eff0∧F64

2 –
eight sets of the minimum-data property – leads to divisibility by four on the first
bit. By combining both properties, every set of 211 data provides a 9-bit filter.
Using two such sets, one can evaluate the cipher on a coset of 0 · · · 0fff0 ∧ F64

2 .

8 Unlike divisibility by small powers of two, a set of N zero-correlation approximations
can be tested statistically using 2n/

√
N samples.
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In this case, one has divisibility by 16, 2, 4 and 2 on the first four ciphertext
bits. This results in a 2−18−(4−2)−1−2−1 = 2−24 filter. Hence, a single set of 212

data suffices. Without using ultrametric integral cryptanalysis, one would only
have a 19-bit filter. Hence, one would need 28 additional plaintexts.

The gain is relatively small in this example, but this is in part because only
20 key bits are guessed. If a stronger filter is required, divisibility properties
become more useful.

8 Application to simon

Section 7 demonstrates that the ultrametric integral cryptanalysis of substitution-
permutation networks such as present can be automated. The purpose of this
section is to show that this also applies to ciphers with a different structure.
We use the block cipher family simon as an example because, like present, it
has been important in the development of integral cryptanalysis [30,31,34]. As
a side result, we propose a small but interesting improvement to the modelling
of simon’s round function. It also applies to ordinary integral cryptanalysis.

8.1 Modelling

The round function of simon consists of and, copy and exclusive-or operations.
The propagation of ultrametric integral trails though each of these operations
was already described in Sections 6.2 and 6.3. The resulting constraints can be
converted to conjunctive normal form by hand.

It is worthwhile to take a closer look at the part of the simon round function
shown in Figure 5, corresponding to F(x) = (x ≪ 1) ∧ (x ≪ 8) with ≪ a
rotation to the left. In previous work on simon [30,31,34], propagation through
this function has been modeled by decomposing it into a copy and a bitwise and
operation. The rotations can be handled by rewiring. The same strategy can be
used for ultrametric integral cryptanalysis.

≪ 1

≪ 8

(u ≫ 1) ∨ (u ≫ 8) u

u ≫ 1

u ≫ 8

u

u

Fig. 5: A part of the round function of simon-32.

However, F is actually a monoid homomorphism. Hence, from the point of
view of ultrametric integral cryptanalysis, it is no more difficult to handle than
linear functions are in linear cryptanalysis. By Theorem 4.5 (2), the input ex-
ponent is uniquely determined by the output exponent. More precisely, if the
output exponent is u, then the input exponent is F∗(u) = (u ≫ 1) ∨ (u ≫ 8).
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The same is clear from Figure 5, which depicts the unique trail with output
exponent u. This reduces the number of variables in the model. The function F∗

is dual to F in the sense that ∧ is replaced by ∨. This is analogous to how, in
linear cryptanalysis, the output mask for a linear function x 7→ Mx propagates
to the input mask by u 7→ MTu.

Finally, two specific technical points should be mentioned. Due to the copy
operations, the partial matrix-multiplication method mentioned in Section 7.1
does not work for simon. Instead, we decompose the input state as a sum of
ultrametric basis vectors. A second point is that the model of simon’s round
function introduce key-independent trails that sum to zero in the end. To deal
with this, we enumerate key-independent trails as described in Appendix C.1.

8.2 Results

Our results for simon-32 and simon-48 are summarized in Table 3, more details
and additional results for larger variants are given in Appendix E. The input
sets are those proposed by Todo [30] and Todo and Morii [31], as well as Xiang et
al. [34]. We find divisibility by four and higher for many of the output bits, but
not for the maximum number of rounds. This is not unexpected, as previous work
has focused on distinguishing a maximal number of rounds with minimal data.
This is a natural goal from the point of view of ordinary integral cryptanalysis,
but it does not necessarily result in the most useful properties in any given
situation (such as for a key-recovery attack).

An interesting conclusion from our results is that using the same input set
on a smaller number of rounds, as in Table 3 for 10-13 and 12-15 rounds, does
not just yield properties that are universally worse. Indeed, as one would expect,
reducing the number of rounds does lead to higher divisibility.

Table 3: Divisibility for simon-{32, 48} distinguishers with input set R−1(u ∧
F{32,48}
2 ), where R is the round function of simon-{32, 48} without key-addition.

simon-32
rounds u log2(data) maxi νi

7 0001ffff 17 7
8 01ffffff 25 7
9 1fffffff 29 5
10 7fffffff 31 4
11 7fffffff 31 3
12 7fffffff 31 2
13 7fffffff 31 1
14 7fffffff 31 1
15 7fffffff 31 1

simon-48
rounds u log2(data) maxi νi

7 00000001ffff 17 10
8 00001fffffff 29 10
9 007fffffffff 39 8
10 0fffffffffff 44 6
11 3fffffffffff 46 5
12 7fffffffffff 47 4
13 7fffffffffff 47 3
14 7fffffffffff 47 2
15 7fffffffffff 47 1
16 7fffffffffff 47 1
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17. Brandon Dravie, Jérémy Parriaux, Philippe Guillot, and Gilles Millérioux. Matrix
representations of vectorial boolean functions and eigenanalysis. Cryptography and
Communications, 8:555–577, 2016.

18. Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi, and Maria Eichlseder. Im-
proved search for integral, impossible-differential and zero-correlation attacks: Ap-
plication to Ascon, ForkSKINNY, SKINNY, MANTIS, PRESENT and QAR-
MAv2. Cryptology ePrint Archive, Paper 2023/1701, 2023. https://eprint.

iacr.org/2023/1701.
19. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Model-

ing for three-subset division property without unknown subset - improved cube at-
tacks against Trivium and Grain-128AEAD. In Anne Canteaut and Yuval Ishai, ed-
itors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 466–495. Springer,
Cham, May 2020.

20. Phil Hebborn, Gregor Leander, and Aleksei Udovenko. Mathematical aspects of
division property. Cryptography and Communications, pages 1–44, 2023.

21. Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formula-
tion of the division property: Revisiting degree evaluations, cube attacks, and
key-independent sums. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part I, volume 12491 of LNCS, pages 446–476. Springer, Cham,
December 2020.

22. Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python
toolkit for prototyping with SAT oracles. In SAT, pages 428–437, 2018.

23. Nicholas M. Katz. On a theorem of Ax. American Journal of Mathematics,
93(2):485–499, 1971.

24. Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE’94, volume 1008 of LNCS, pages 196–211. Springer, Berlin, Heidelberg,
December 1995.

25. Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127.
Springer, Berlin, Heidelberg, February 2002.

26. Florence J. MacWilliams and Neil J. A. Sloane. The theory of error-correcting
codes, volume 16. Elsevier, 1977.

27. Gian Carlo Rota. On the foundations of combinatorial theory I. Theory of
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A Ultrametric integral basis

A.1 Proof of Theorem 4.4

The result follows from Lemma 4.1 and the ultrametric triangle inequality. In
particular, if a∧ = U a, then

∥a∧∥∞ = max
v∈Fn

2

∣∣a∧v ∣∣2 ≤ max
x∈Fn

2

|ax|2 = ∥a∥∞

Furthermore,
∥a∥∞ = max

v∈Fn
2

|av|2 ≤ max
x∈Fn

2

∣∣a∧x ∣∣2 = ∥a∧∥∞

Since ∥a∧∥∞ ≤ ∥a∥∞ and ∥a∥∞ ≤ ∥a∧∥∞, we must have ∥a∧∥∞ = ∥a∥∞.

A.2 Alternative proof of Lemma 4.1

The first formula follows from the fact that a =
∑

v∈Fn
2
a∧v µv. Indeed, by the

definition of dual bases, a∧v = µv(a). Hence,

a∧v = µv(a) =
∑
x∈Fn

2

ax µ
v
(
δx
)
=

∑
x∈Fn

2

ax τ(x
v) =

∑
x≽v

ax .

The inverse formula follows by Möbius inversion.
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B Ultrametric integral transition matrices

B.1 Relation to the algebraic normal form

The following result provides an alternative proof of the fact that algebraic tran-
sition matrices are the modulo two reductions of ultrametric integral transition
matrices.

Theorem B.1. Let F : Fn
2 → Fm

2 be a function. The coordinate AF
v,u is congru-

ent modulo two to the coefficient of xu in the algebraic normal form of Fv.

Proof. By the definition of AF, the linear functional µv ◦ F is equal to

µv ◦ F =
∑
u∈Fn

2

AF
v,u µ

u .

Evaluating at δx and reducing modulo two yields

Fv(x) ≡
∑
u∈Fn

2

AF
v,u x

u (mod 2) .

Hence, AF
v,u mod 2 is the coefficient of xu in the algebraic normal form of Fv.

B.2 Copy and xor operations

The n-bit copy operation is described by a function copyn : Fn
2 → F2n

2 with
copyn(x) = x‖x. For n = 1 one finds that

Acopy1 =


1 0
0 1
0 1
0 1

 .

Up to postcomposition with a bit-permutation, Acopyn is equal to (Acopy1)⊗n.
Furthermore, A

copy1
u‖v,w = 1 whenever w = u‖v and zero otherwise. Hence,

A
copyn
u‖v,w =

{
1 if w = u ∨ v ,

0 otherwise .

The n-bit xor operation corresponds to the function xorn : F2n
2 → F2 defined

by xorn(x‖y) = x+ y. Direct computation shows that for n = 1,

Axor1 =

[
1 0 0 0
0 1 1 −2

]
.

Up to precomposition with a bit-permutation, Axorn is equal to (Axor1)⊗n. Hence,
because Axor1

w,u‖v = (−2)uv if w = u ∨ v and zero elsewhere, it follows that

Axorn
w,u‖v =

{
(−2)wt(u∧v) if w = u ∨ v ,

0 otherwise .
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B.3 Refinement of Theorem 6.1 and Corollary 6.1

The following two theorems are refinements of Theorem 6.1 and Corollary 6.1.
Let F : Fn

2 → Fm
2 be a function. Theorem B.2 uses the following refinement of

the algebraic degree:

degv F =

m∑
i=1
vi=1

deg Fi .

Theorem B.2. For every function F : Fn
2 → Fm

2 ,

− log2
∣∣AF

v,u

∣∣
2
≥

⌈
wt(u)− degv F

deg F

⌉
.

Equivalently,
∣∣AF

v,u

∣∣
2
≥ 2−ν only if degv F ≥ wt(u)− ν deg F.

Proof. The proof follows that of Theorem 6.1. Assume that
∣∣AF

v,u

∣∣
2
≥ 2−ν . For

every nonzero bit of the output exponent v, there exists an integer νi such that
the weight at the output of the and-layer for the coordinate function Fi is at
most νi + 1. By assumption, we have

∑m
i=1 νi ≤ ν with νi = 0 if vi = 0. Hence,

for the overall function F, the weight at the input of the and-layer is at most

m∑
i=1
vi=1

(νi + 1) deg Fi ≤ ν deg F+

m∑
i=1
vi=1

deg Fi = ν deg F+ degv F.

Since the weight of the input exponent is wt(u), we have wt(u) ≤ ν + degv F or
equivalently degv F ≥ wt(u)− ν deg F.

Corollary B.1 (Ax-Katz [23]). The number of solutions of a system of m
equations of degrees d1, . . . , dm in n variables is divisible by 2ν , where

ν ≥
⌈
n−

∑m
i=1 di

max1≤i≤m di

⌉
.

Proof. The idea of the proof is the same as for Corollary 6.1, but using The-
orem B.2 instead of Theorem 6.1. The system of equations can be written as
F(x) = 11 · · · 1, so that the number of solutions equals

µ11···1(T FδFn
2

)
=

∑
u∈Fn

2

2n−wt(u)AF
11···1,u .

Using Theorem B.2, one finds that the right-hand side is divisible by

ν ≥ min
u∈Fn

2

n− wt(u) +

⌈
wt(u)− deg11···1 F

deg F

⌉
.

The minimum is reached for wt(u) = n. Hence,

ν ≥
⌈
n− deg11···1 F

deg F

⌉
.

The result follows from deg F = d and deg11···1 F =
∑n

i=1 di.
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B.4 Correlation matrices of low-degree functions

The following result is well-known in the Boolean functions literature as a conse-
quence of the weight divisibility of Reed-Muller codes (Corollary 6.2). Deducing
it from Theorem 6.2 provides some additional insight, as it shows that the re-
sult follows from the sparsity of the ultrametric integral transition matrix for
low-degree functions.

Corollary B.2. If F : Fn
2 → Fm

2 is a function with algebraic degree d, then∣∣CF
v,u

∣∣
2
≤ 2n−⌈n/d⌉ for all u and v.

Proof. By Theorems 6.1 and 6.2, the coordinates of the correlation matrix can
be upper bounded as∣∣CF

v,u

∣∣
2
≤ max

s≽u
t≼v

2wt(s)−wt(t) 2wt(t)−⌈wt(s)/d⌉ ≤ max
s≽u

2wt(s)−⌈wt(s)/d⌉ .

The maximum is achieved for wt(s) = n.

C Automating ultrametric integral cryptanalysis

This appendix provides additional details on how to automate the analysis of
ultrametric integral trails using off-the-shelf solvers.

C.1 Modelling

Modelling S-boxes. Let S : Fn
2 → Fm

2 be an S-box. The CNF-formula for the
propagation through S is a minimal CNF representation of the Boolean function
f(u, v, c), where u in Fn

2 and v in Fm
2 are input and output exponents and c is

an additional bitvector used to keep track of the 2-adic absolute value of the
correlation.

The function f is one if and only if AS
v,u ̸= 0, and c is the binary represen-

tation of the integer 1
/∣∣AS

v,u

∣∣
2
− 1. This ensures that the Hamming weight of c

equals

wt(c) = wt
(
1
/∣∣AS

v,u

∣∣
2
− 1

)
= − log2

∣∣AS
v,u

∣∣
2
.

This makes it possible to model conditions on the 2-adic absolute value of the
correlation with simple cardinality constraints. That is, if r S-boxes are active
with corresponding values c1, . . . , cr, then the correlation is greater than 2−ν if
and only if

r∑
i=1

wt(ci) ≤ ν .
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Modelling key addition. The CNF-formula for the key addition can be de-
rived from Example 4.4. Due to the structure of the ultrametric integral tran-
sition matrix, it suffices to add the constraint (¬ui) ∨ vi for every bit of u and
v and no additional variables are necessary to track the 2-adic absolute value of
the trail correlation.

However, in our implementation, we opted to model keys as additional input
variables and key additions as xor operations. Although this is not relevant for
present, it is used in the analysis of simon to separate key-dependent from
key-independent trails.

C.2 Optimized trail enumeration

To enumerate all trails with correlation greater than 2−ν through r rounds of
present with input exponent u and output exponent v, we generate the CNF-
formula for these r rounds and add constraints to fix u and v as well as the
cardinality constraints to bound the absolute trail correlation.

As discussed in Section 7.1, if the input is of the form δu0∧Fn
2
rather than

µu1
, then a direct decomposition of δu0∧Fn

2
in terms of the ultrametric basis can

introduce spurious trails. The following example illustrates this in more detail.

Example C.1 (Spurious trails). Consider the property (δF4
2
, µ1) for the present

S-box. Since the S-box is a permutation and the input set corresponds to its
whole input space, this property evaluates to 8 – which has 2-adic absolute
value 2−3. However, the highest correlation trail has 2-adic absolute value 2−2.
In total there are four trails with this absolute correlation:∣∣4AS

1,6

∣∣
2
=

∣∣2AS
1,7

∣∣
2
=

∣∣2AS
1,e

∣∣
2
=

∣∣AS
1,f

∣∣
2
= 2−2 .

All of these trails have to be enumerated to compute the correct 2-adic absolute
value. As the input sets become larger, the discrepancy between the correct cor-
relation and highest trail correlation – as well as the number of high correlation
trails – will only increase further. ▷

To reduce the number of spurious trails introduced by the input set, we prop-
agate δu0∧Fn

2
through the first few rounds by partial matrix-vector multiplication

in the ultrametric integral basis.
If the input of one of the S-boxes is saturated, then T S δF4

2
= δF4

2
, so also

ASU δF4
2
= U δF4

2
. In this case, the matrix-vector product is nothing more than

the propagation rule for the ‘all’ property in the original description of inte-
gral cryptanalysis by Knudsen and Wagner [25]. This idea was already used in
Section 5.2.

More generally, the optimization leads to replacing the model of every par-
tially saturated component with a model that already takes into account the
sum over its saturated inputs. Consider a function F : Fn

2 → Fm
2 for which the

last b input bits are saturated. To model the property (µu ⊗ δFb
2
, µv) for all u in

Fn−b
2 and v in Fm

2 , the model for AF is replaced by a model for ÃF with

ÃF
v,u =

∑
w∈Fb

2

2b−wt(w)AF
v,u∥w .
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Example C.2. In the analysis of Section 5.2, the rightmost bit of some of the S-
boxes in the second round is saturated. The optimized model uses the following
matrix:

ÃS =



2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 2 0 −1 2 −3 −1 2
0 1 0 −1 1 −1 0 0
2 −1 −2 2 −1 1 3 −4
1 −1 −1 2 −1 2 2 −4
0 1 0 −1 1 −1 0 0
0 0 0 0 0 1 1 −2
1 0 0 1 0 1 −1 −2
0 1 1 −1 0 0 −1 0
0 1 0 0 1 −1 −1 0
0 1 0 −1 0 0 0 0
1 −1 −1 2 0 1 0 −2
0 0 0 1 0 1 0 −2
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1


.

▷

D Additional results on present

This appendix provides additional results from the analysis in Section 7.2. Ta-
ble 4 and Table 5 compare the experimental results on 4- and 5-round present
with the results obtained from modelling without trail enumeration. Table 6 con-
tains the divisibility bounds for every output bit of the 6- to 9-round properties
of Boura and Canteaut, and Wang et al. [10,33].

Table 4: Divisibility for the integral distinguisher of Boura and Canteaut [10]
on 4-round present, with input set 0 · · · 0f ∧ F64

2 . The number of times the ith

output bit equals one is divisible by 2νi .

νi for bit i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

experiment 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 · · ·
theoretical 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 · · ·

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 · · ·
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 · · ·
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 5: Divisibility for the integral distinguisher of Boura and Canteaut [10] on
5-round present, with input set 0 · · · 0fff0∧ F64

2 . The number of times the ith

output bit equals one is divisible by 2νi .

νi for bit i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

experiment 5 5 5 5 3 2 2 2 3 3 3 3 3 2 2 2 · · ·
theoretical 5 5 5 5 2 2 2 2 3 3 3 3 2 2 2 2 · · ·

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 · · ·
4 4 4 4 2 1 1 1 2 2 2 2 2 1 1 1 · · ·
4 4 4 4 1 1 1 1 2 2 2 2 1 1 1 1 · · ·

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 · · ·
4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 · · ·
4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 · · ·

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

4 4 4 4 2 1 1 1 2 2 2 2 2 1 1 1
4 4 4 4 1 1 1 1 2 2 2 2 1 1 1 1
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Table 6: Divisibility for the integral distinguishers on present of Boura and
Canteaut [10], and Wang et al. [33], with input set u∧F64

2 . The number of times
the ith output bit is equal to one is divisible by 2νi .

rounds u
νi for bit i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
6 00000000ffffffff 7 4 4 4 4 1 1 1 4 2 2 2 4 1 1 1 · · ·
7 fffffffffffff000 9 5 5 5 4 2 2 2 5 2 2 2 4 2 2 2 · · ·
8 fffffffffffffffe 8 5 5 5 5 2 2 2 5 3 3 3 5 2 2 2 · · ·
9 fffffffffffffffe 2 1 1 1 2 0 0 0 2 0 0 0 2 0 0 0 · · ·

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 · · ·
7 4 4 4 4 1 1 1 4 2 2 2 4 1 1 1 · · ·
8 4 4 4 3 1 1 1 4 1 1 1 3 1 1 1 · · ·
7 4 5 4 4 2 2 2 5 2 2 2 4 2 2 2 · · ·
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 · · ·

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 · · ·
7 4 4 4 4 1 1 1 4 2 2 2 4 1 1 1 · · ·
8 4 4 4 5 1 1 1 5 2 2 2 5 1 1 1 · · ·
7 4 5 4 5 2 2 2 5 3 3 3 5 2 2 2 · · ·
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 · · ·

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

7 4 4 4 4 1 1 1 4 2 2 2 4 1 1 1
8 4 4 4 3 1 1 1 4 1 1 1 3 1 1 1
7 4 5 4 4 2 2 2 5 2 2 2 4 2 2 2
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
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E Additional results on simon

This appendix contains additional results from the analysis of Section 8.2. The
bit-wise divisibility for the properties on simon-{32, 48, 64, 96, 128} can be found
in Tables 7 to 11 respectively. The results in Tables 9 to 11 are not complete,
because some of these models took too long to evaluate in reasonable time.

Table 7: Divisibility for the integral distinguishers on simon-32 of Todo [30],
Todo and Morii [31], and Xiang et al. [34], with input set R−1(u ∧ F32

2 ), where
R is the round function of simon-32 without key addition. The number of times
the ith output bit is equal to one is divisible by 2νi .

rounds u
νi for bit i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
7 0001ffff 7 6 7 6 6 6 7 7 7 7 6 6 6 7 7 7 · · ·
8 01ffffff 6 6 6 7 7 7 6 6 6 6 7 7 7 7 6 5 · · ·
9 1fffffff 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 · · ·
10 7fffffff 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 · · ·
11 7fffffff 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 · · ·
12 7fffffff 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 · · ·
13 7fffffff 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
14 7fffffff 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
15 7fffffff 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 · · ·

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

3 3 2 2 3 3 3 3 3 2 3 3 2 2 3 3
3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 8: Divisibility for the integral distinguishers on simon-48 of Todo [30], and
Xiang et al. [34], with input set R−1(u ∧ F48

2 ), where R is the round function of
simon-48 without key addition. The number of times the ith output bit is equal
to one is divisible by 2νi .

rounds u
νi for bit i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
7 00000001ffff 10 9 9 8 9 9 9 10 9 9 8 8 8 8 7 7 · · ·
8 00001fffffff 10 9 9 8 8 8 9 9 9 8 8 7 6 6 7 7 · · ·
9 007fffffffff 8 8 8 8 7 7 8 8 8 8 8 7 7 7 7 6 · · ·
10 0fffffffffff 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 · · ·
11 3fffffffffff 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 · · ·
12 7fffffffffff 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 · · ·
13 7fffffffffff 3 2 3 3 3 3 3 3 2 3 3 3 2 2 2 2 · · ·
14 7fffffffffff 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 · · ·
15 7fffffffffff 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
16 7fffffffffff 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 · · ·
7 7 7 6 6 7 8 9 4 4 4 4 4 4 4 5 · · ·
8 9 9 8 8 8 8 9 4 4 4 4 3 3 3 4 · · ·
7 7 7 7 7 7 7 7 4 4 4 4 4 4 4 4 · · ·
6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 · · ·
5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 · · ·
4 4 4 4 4 4 4 4 3 2 3 3 3 3 3 3 · · ·
3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 · · ·
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 · · ·

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 3
4 4 3 3 2 2 2 2 3 3 3 3 3 3 3 4
4 4 4 4 4 3 3 3 3 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 3 3 3 2 2 2 2 3 2 2 2 2 2 3 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 9: Divisibility for some of the integral distinguishers on simon-64 of
Todo [30], and Xiang et al. [34], with input set R−1(u ∧ F64

2 ), where R is the
round function of simon-64 without key addition. The number of times the ith

output bit is equal to one is divisible by 2νi .

rounds u
νi for bit i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
7 000000000001ffff 13 13 12 12 13 13 13 13 13 12 12 12 11 10 9 9 · · ·
8 00000001ffffffff 12 13 13 13 13 13 13 12 13 12 12 12 12 12 12 13 · · ·
17 7fffffffffffffff 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
18 7fffffffffffffff 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 · · ·

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 · · ·
8 9 8 7 6 7 8 9 10 9 10 10 11 12 13 13 · · ·
12 13 12 12 12 13 13 13 13 12 12 13 13 13 13 13 · · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 · · ·

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 · · ·
10 9 10 9 9 9 9 10 9 10 9 9 9 9 8 7 · · ·
7 6 7 7 7 7 7 7 7 7 6 6 6 6 6 6 · · ·
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

6 5 5 5 4 3 3 4 4 5 5 5 6 7 8 9
7 6 7 6 6 6 7 7 7 7 6 6 7 7 7 7
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 10: Divisibility for some of the integral distinguishers on simon-96 of
Todo [30], and Xiang et al. [34], with input set R−1(u ∧ F96

2 ), where R is the
round function of simon-96 without key addition. The number of times the ith

output bit is equal to one is divisible by 2νi .

rounds u
νi for bit i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
7 00000000000000000001ffff 16 16 16 16 16 16 16 16 16 15 14 13 12 11 10 10 · · ·
8 0000000000000001ffffffff 25 24 25 24 24 24 25 25 24 25 24 24 24 24 23 22 · · ·
21 7fffffffffffffffffffffff 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 · · ·
22 7fffffffffffffffffffffff 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 · · ·

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 · · ·
9 9 8 7 6 7 8 9 10 9 10 10 11 12 13 13 · · ·
21 20 20 20 19 18 17 17 16 17 16 15 14 14 14 14 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 · · ·
13 13 13 14 15 15 15 15 15 15 16 16 16 16 16 16 · · ·
14 13 13 13 13 14 15 16 17 18 19 20 21 22 23 24 · · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 · · ·

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 · · ·
15 14 15 15 15 15 15 15 14 15 14 13 12 11 10 9 · · ·
17 18 18 18 18 18 18 18 19 18 18 18 18 18 18 18 · · ·
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 · · ·
8 7 6 5 4 3 3 4 4 5 5 5 6 7 8 9 · · ·
17 17 16 16 16 16 15 14 13 12 12 12 11 10 9 9 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

10 9 10 10 11 12 13 13 13 13 13 14 15 15 15 15
8 9 8 7 7 7 8 9 10 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 11: Divisibility for some of the integral distinguishers on simon-96 of
Todo [30], and Xiang et al. [34], with input set R−1(u ∧ F128

2 ), where R is the
round function of simon-128 without key addition. The number of times the ith

output bit is equal to one is divisible by 2νi .

rounds u
νi for bit i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
7 0000000000000000000000000001ffff 16 16 16 16 16 16 16 16 16 15 14 13 12 11 10 10 · · ·
8 000000000000000000000001ffffffff 31 30 31 31 31 31 31 31 30 31 30 29 28 27 26 25 · · ·
24 7fffffffffffffffffffffffffffffff 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 · · ·
25 7fffffffffffffffffffffffffffffff 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 · · ·
9 9 8 7 6 7 8 9 10 9 10 10 11 12 13 13 · · ·
24 23 22 21 20 19 18 18 17 17 16 15 14 14 14 14 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 · · ·
13 13 13 14 15 15 15 15 15 15 16 16 16 16 16 16 · · ·
14 13 13 13 13 14 15 16 17 18 19 20 21 22 23 24 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 · · ·
16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 · · ·
25 25 26 26 27 28 29 29 29 29 29 30 31 31 31 31 · · ·
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 · · ·

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 · · ·
17 16 16 16 16 16 16 16 15 15 14 13 12 11 10 9 · · ·
29 29 28 28 29 29 29 29 29 28 28 28 27 26 25 24 · · ·
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 · · ·
8 7 6 5 4 3 3 4 4 5 5 5 6 7 8 9 · · ·
23 23 22 21 20 19 18 17 16 15 14 13 12 11 10 10 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 · · ·
10 9 10 10 11 12 13 13 13 13 13 14 15 15 15 15 · · ·
9 9 8 7 7 7 8 9 10 10 11 12 13 14 15 16 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

15 15 16 16 16 16 16 16 16 17 17 17 17 17 17 17
17 18 19 20 21 22 23 24 25 25 26 26 27 28 29 29
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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F Experimental results

All experimental results on 4- and 5-round present are given in Figures 6 and 7
respectively. Blue indicates the measurement results and red the expected distri-
bution for a random function with the same divisibility as in the measurements.
Note that in both experiments, present behaves significantly different from a
random permutation with the same divisibility properties.
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Fig. 6: Results of the experiments of Appendix F for every output bit (blue).
The divisibility and the expected number of keys based on that divisibility are
given in red.
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