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Abstract. Multi-scalar multiplication (MSM) is a fundamental compo-
nent in many zero-knowledge succinct non-interactive argument systems
(ZK-SNARKs), and a major performance bottleneck in proof generation
for these schemes. One key strategy to accelerate MSM is through pre-
computation. Several algorithms, such as Pippenger’s and BGMW, along
with their variations, have been proposed to address this.
In this paper, we revisit the recent precomputation-based MSM method
introduced by Luo, Fu, and Gong at CHES 2023 [11] and extend their
approach. Specifically, we present a generalized construction for optimal
buckets. Given a set of multipliers M , we propose an algorithm that
identifies the optimal bucket set B to minimize the computation time.
This new construction yields performance improvements over the origi-
nal Pippenger’s MSM method, as demonstrated through both theoretical
analysis and experimental results. Additionally, we correct Property 1 in
the MSM method from [11], providing the corresponding experimental
validations. To further enhance run-time efficiency and reduce storage re-
quirements, we propose the use of an efficient endomorphism, supported
by theoretical and experimental analysis.

1 Introduction

The concept of zero-knowledge proof (ZKP) was introduced by Goldwasser,
Micali, and Rackoff in 1985 [6]. Terms like ZKP or zero-knowledge arguments
(ZKA) satisfy the three security properties, such as correctness - meaning that
an honest prover will always convince a verifier of knowing a secret to a pub-
lic statement, soundness—ensuring that a dishonest prover cannot prove a false
statement—and zero-knowledge—indicating that the proof reveals no extra infor-
mation beyond the truthfulness of the statement the prover aims to prove. While
in ZKP systems the soundness property holds for provers with unbounded (sta-
tistical) capabilities, it is assumed that the prover is computationally bounded
in ZKA systems.

Author list in alphabetical order; see https://www.ams.org/about-us/governance/
committees/Statement_JointResearchanditsPublication.pdf



There has been a surge of interest in putting ZKPs and ZKAs into practice
in the past few years, which was first triggered by the demands for privacy
protection in the blockchain environment (e.g., Zerocash (zcash) [1]), and then
more general applications such as verifiable computation.

An advanced version of ZKAs with short proofs and efficient verification is
known as zkSNARKs (zero-knowledge Succinct Non-interactive ARguments of
Knowledge). They can be seen as a composition of the Non-Interactive Zero-
Knowledge proofs (NIZKs) and succinct Arguments of Knowledge. NIZKs were
introduced by Blum, Feldman and Micali [3] while Kilian [9] provided a definition
on efficient zero-knowledge arguments. In a proof system, the prover’s computa-
tional power may be unbounded, but in an argument system, it is assumed that
the prover is computationally bounded.

While many zkSNARK schemes have been proposed since then, pairing-based
zkSNARK is still one of the most attractive options in practice. While the ver-
ification in zkSNARKs is fast, the construction of such argument systems is
usually time-consuming and hinders their wide adoption. In pairing-based zk-
SNARK constructions (e.g., [5, 7, 8, 12]), the proof consists of several points in
an elliptic curve group which operate with each other within of this group.

One of the main computational bottlenecks of such zkSNARK constructions
lies in the used multiscalar multiplication (MSM) method. Let Sn,r be the fol-
lowing n-scalar multiplication over fixed points P1, . . . , Pn,

Sn,r “

n
ÿ

i“1

aiPi, (1)

where ai P r0, rq , i “ 1, . . . , n are integers. In the following, r will denote the
order of the (elliptic curve) group where all these computations take place.

In this paper, we conduct a comprehensive analysis of existing multi-scalar
multiplication (MSM) methods, focusing on their application in ZK-SNARK ver-
ification. Our objective is to enhance these methods by optimizing performance
specifically for ZK-SNARKs, without the need for constant-time countermea-
sures, thereby improving efficiency and security in cryptographic operations.

1.1 Existing MSM Computation Methods

In the last three decades, various methods have been proposed to accelerate
MSM computation, and most of them utilize precomputation.

Straus Method To compute Sn,r, the Straus method precomputes 2nc points

!

n
ÿ

i“1

biPi|@bi P r0, 2c ´ 1s, i P r1, ns

)



where c is a small integer. Next, the algorithm divides each ai from (1) into
segments of length c, i.e.

ai “ ai,h´1}ai,h´2} ¨ ¨ ¨ }ai,1}ai,0 “

h´1
ÿ

j“0

ai,j2
jc, i P r1, ns

where h “ rlog2prq{cs and 0 ď aij ă 2c for j P r1, h ´ 1s for 1 ď j ď h ´ 1. The
algorithm retrieves the point

Sn,2c “

n
ÿ

i“1

ai,h´1Pi

from the precomputation table, doubles it c times, adds the precomputed point
řn

i“1 ai,h´2Pi to obtain

Sn,22c “

n
ÿ

i“1

pai,h´1}ai,h´2qPi.

After h´ 1 repetitions, we obtain

Sn,2hc “

n
ÿ

i“1

pai,h´1}ai,h´2} . . . }ai,0qP0 (2)

Pippenger’s Bucket Method This method proceeds in the same way as in
the Straus method except for the computation of

Sn,2c “

n
ÿ

i“1

ai,jPi,

where j P r0, h´1s, h “ rlog2prq{cs. First, the method sorts all points into p2c´1q

buckets with respect to their scalars. Let Si denote the intermediate subsum of
points corresponding to scalar i. The algorithm computes all Si, for i P r1, 2c´1s

and finally it computes Sn,2c “
ř2c´1

i“1 i ¨ Si using at most 2p2c ´ 2q additions.

Luo-Fu-Gong (LFG) MSM Method [11] Let M be a set of integers and B
be a set of non-negative integers containing zero. Given scalars ai, 0 ď ai ă r,
the LFG method first computes [11, Algorithm 6] a radix q representation

ai “

h´1
ÿ

j“0

aijq
j

where h “ rlogq rs, and for every i P r1, ns, j P r0, h´ 1s,

aij “ ϵijmijbij , where ϵij P t˘1u,mij P M, bij P B .



Then, Sn,r can be computed as:

Sn,r “

n
ÿ

i“0

aiPi “

n
ÿ

i“1

`

h´1
ÿ

j“0

aijq
j
˘

Pi

“

n
ÿ

i“1

`

h´1
ÿ

j“0

ϵijmijbijq
j
˘

Pi “

n
ÿ

i“1

h´1
ÿ

j“0

bijϵijmijq
jPi

(3)

Let Pij “ ϵijmijq
jPi. Then Sn,r can be computed as follows.

Sn,r “

n
ÿ

i“1

h´1
ÿ

j“0

bijPij “

n
ÿ

i“1

h´1
ÿ

j“0

`

ÿ

kPB

k ¨
ÿ

i,j s.t. bij“k

Pij

˘

“
ÿ

kPB

k ¨
`

n
ÿ

i“1

h´1
ÿ

j“0

ÿ

i,j s.t. bij“k

Pij

˘

.

(4)

Assume that there are nh|M | such points which are defined as

tmqjPi|1 ď i ď n, 0 ď j ď h´ 1,m P Mu

These points are precomputed (we don’t need to precompute their opposites, see
below). Then define intermediate subsums

Sk “

n
ÿ

i“1

h´1
ÿ

j“0

ÿ

i,j s.t. bij“k

Pij , k P B .

All Sk’s can be computed with at most nh´p|B|´1q additions and the remainder
is computed by Algorithm 1 with at most 2p|B| ´1q `d´3 additions, where d is
the maximum difference between the two neighboring elements in B. The total
cost of computing Sn,r is therefore at most

nh` |B| ` d´ 4 (5)

elliptic curve additions.
LetM denote a set of multipliers, which are used to generate the precomputed

points. Furthermore, the set B is called a bucket set which contains sorted points.
In Algorithm 2 we recall the MSM algorithm of [11]. Note that Luo, Fu and Gong
merge the multiplier set with the units ˘1, so that their M is in fact what for
us will be M Y ´M .

1.2 Our contribution

Our contribution in this paper is threefold:

(1) We point out a problem with Property 1 in the MSM method in [11], which
proposes a new decomposition of scalars in base q “ 2c and states the follow-
ing: given a power of two integer q “ 2c (for 10 ď c ď 31), for all 0 ď t ď q



Algorithm 1 Subsum accumulation algorithm [11]

Input: 1 ď b1 ď b2 ď . . . ď b|B|, S1, S2, . . . , S|B|

Output: S “ b1S1 ` ¨ ¨ ¨ ` b|B|S|B|

1: Define a length-pd ` 1q array tmp “ r0s ˆ pd ` 1q

2: for i “ |B| to 1 by ´1 do
3: tmpr0s “ tmpr0s ` Si

4: k “ bi ´ bi´1

5: if k ě 1 then
6: tmprks “ tmprks ` tmpr0s

7: return 1 ¨ tmpr1s ` 2 ¨ tmpr2s ` ¨ ¨ ¨ ` d ¨ tmprds

there exists a value b P B and a multiplier m P t1, 2, 3u such that t “ mb or
q´ t “ mb. This decomposition is then used in a modified Pippenger bucket
algorithm. The main idea behind this property is to remove redundant points
from an initially defined set B0 to obtain a new set B1. This can be done for
the purpose of saving computational costs, since in an elliptic curve group,
´Pi “ pxi,´yiq can be determined on the fly from the computed points
Pi “ pxi, yiq. The algorithm provided by Luo, Fu, and Gong [11] for con-
structing B1 from B0 discards all elements of the form q ´ 2i and q ´ 3j
for all values i, j P B0 and q{4 ď i ă q{2 and q{6 ď j ă q{4. We provide a
counterexample that shows Property 1 of [11] (we will denote it the “LFG
Property 1”) does not always hold. Furthermore, we provide a general con-
struction of counterexamples and prove that the LFG Property 1 is false for
at least q{p216q ` Op1q integers. We also show that the LFG Property 1 is
correct for all odd t, where 0 ă t ă q.

(2) Our second contribution is to provide a method to fix the LFG Property
1. We present a new construction of the set B1 by first removing elements
of the form q ´ 2i and q ´ 3j from the initial set B0 and then adding all
elements of the form q´ 6k P B0 with k R B0. Next, we show how to modify
the LFG Property 1 to obtain a MSM algorithm with optimal runtime. The
modification involves an element ϵt P t˘1u such that t ” ϵtmtbt mod q for a
multiplier mt P M and a bucket element bt P B. While the achieved running
time of the MSM algorithm in [11] is pnh ` 0.21qq ¨ Add, for q “ 2c and
10 ď c ď 31 and Add denoting the number of point additions on an elliptic
curve, we stress out that the LFG Property 1 leaves out some values of t,
therefore the time complexity of the LFG bucket method cannot be taken as
a benchmark. In contrast to [11] the scalars decomposition property holds
for all 0 ă t ă q and achieves the same space and running time complexity
for q “ pc and 4 ď c ď 11 (see Table 1).

(3) In our third contribution we use efficient endomorphisms to achieve better
running time complexity and to save storage space. We use an endomorphism
ω such that ω3pP q “ P for all elliptic curve points P . Since it holds that
ωpx, yq “ pζ3x, yq for a complex cube root of unity ζ3 P Fp, i.e. ζ

3
3 “ 1, the

computation of ωpP q can be done on the fly leading to significant savings
of the storage cost of these points. The endomorphism ring of such elliptic



Algorithm 2 Multi-scalar multiplication over fixed points [11]

Input: Scalars a1, a2, . . . , an, fixed points P1, P2, . . . , Pn, radix q, scalar length h, mul-
tiplier set M “ tm0,m1, . . . ,m|M |´1u, bucket set B “ tb0, b1, . . . , b|B|´1u.

Output: Sn,r “
n
ř

i“1

aiPi

1: Precompute a length-nh|M | point array precomputation, s.t. precomputation
r|M |ppi ´ 1qh ` jq ` ks “ mkq

jPi.
2: Precompute a hash table mindex to record the index of every multiplier, s.t.

mindexrmks “ k. Precompute a hash table bindex to record the index of every
bucket, such that bindexrbks “ k.

3: Convert every ai to its standard q-ary form, then convert it to ai “
h´1
ř

j“0

mijbijq
j .

4: Create a length-nh scalar array scalars, s.t. scalarsrpi ´ 1qh ` js “ bij . Create a
length-nh array points recording the index of points, such that pointsrpi´1qh`js “

|M |ppi ´ 1qh ` jq ` mindexrmijs. n-scalar multiplication Sn,r is equivalent to the
following nh-scalar multiplication

nh´1
ÿ

i“0

scalarsris ¨ precomputationrpointsriss,

where every scalar in scalars is from bucket set B.
5: Create a length-|B| point array buckets to record the intermediate subsums, and ini-

tialize every point to infinity. For 0 ď i ď nh´1, add point precomputationrpointsriss
to bucket bucketsrbindexrscalarsrisss.

6: Invoke Algorithm 1 to compute
|B|´1
ř

i“0

bi ¨ bucketsris, return the result.

curves is isomorphic to Zrωs. With this in mind we update the scalar de-
composition property to adapt it to the new setting, where t P Zrws. We
implement our idea with p “ 2 ´ ω, the multiplier set M “ t1u and q “ pc,
where p | 7 in Zrωs. With this approach the storage cost of nph ` 1q curve
points is equivalent to Pippenger’s original method and the time complexity
is reduced from pnh` 0.5qq ¨ Add to pnph` 1q ` 0.2015 |q|2 ` 20q ¨ Add1.

Finally we confirm our result for the fixed LFG Property 1 and the new bucket
set constructions by implementing the MSM algorithm in C++. To enable a fair
comparison with the LFG approach we use the same elliptic curve BLS12-381.
We measure the space complexity in terms of the number of stored elliptic curve
points P . Therefore, the expression nh ¨ P indicates that a total of nh curve
points are stored.

1 In the endomorphism case, the norm |q|
2 plays the rôle of q in the original case.

They are both of the same size, with equal corresponding values of h
2 Notice that the time and space complexities in [11] are provided for their incomplete
bucket set B. Since the repaired bucket set B contains more points, the complexities
would be comparable to our results.

3 This row normally has h ` 1 instead of h. However, in all cases except when q “ p7,
we were able to prove the better figures. See the remark before Theorem 6.



Table 1. Comparison of Different MSM Algorithms, for q “ pc, 4 ď c ď 11.

Method Space Complexity Time Complexity (Worst Case)

Pippenger [2, 13] n ¨ P hpn ` 0.5qq ¨ Add

Pippenger variant [4] nh ¨ P pnh ` 0.5qq ¨ Add

LFG [11], p “ 22 3nh ¨ P pnh ` 0.21qq ¨ Add

Repaired LFG Method, p “ 2 ppp3nh `̀̀ nqqq ¨̈̈ P pppnppph `̀̀ 1qqq `̀̀ 0.21875qqqq ¨̈̈ Add

Our Method for a prime p ą 2 nppph `̀̀ 1qqq|||M ||| ¨̈̈ P pppnppph `̀̀ 1qqq `̀̀ q{{{ppp2|||M |||qqq `̀̀ p ´́́ 4qqq ¨̈̈ Add

Our Method with endomorphisms3 for |M | “ t1u nh ¨̈̈ P pppnh `̀̀ 0.2015 |||q|||
2

`̀̀ 20qqq ¨̈̈ Add

2 Analysis of the LGF MSM Algorithm

In this section, we first point out an issue with the MSMmethod of [11], especially
with their Property 1 on p. 369, and then propose a fix.

2.1 Background of Property 1 in [11]

For a prime p and a positive integer n, define ordppnq to be the integer e ě 0
such that n “ pek with p ∤ k. Luo, Fu and Gong define a new decomposition of
scalars in base q “ 2c for c P N to which they can apply a modified Pippenger
bucket algorithm.

They start by first defining the set B0 as follows:

B0 “ t0u Y tb P N : 1 ď b ď q{2, ord2pbq ` ord3pbq ” 0 pmod 2qu .

Note that for any integer 1 ď t ď q{2, there exists an m P t1, 2, 3u and b P B0

such that t “ mb. Indeed, if t R B0, then 2 | t, in which case b “ t{2 P B0 or
3 | t, in which case b “ t{3 P B0.

The authors want to take advantage of the fact that, in an elliptic curve
group, opposites of points can be computed on the fly at virtually no cost,
allowing for m to be chosen from t˘1,˘2,˘3u. This leads to the removal of
redundant representations from B0 as shown in Algorithm 3 by discarding from
B0 all elements of the form q´2i and q´3j for i, j P B0, with q{4 ď i ă q{2 and
q{6 ď j ă q{4. The resulting set carved out of B0 will be called Bold

1 (B1 in [11],
but we will reserve this notation to our later fix), and the following property is
claimed computationally for B “ Bold

1 .



Algorithm 3 Construction of auxiliary set Bold
1 in [11]

Input: B0, q
Output: Bold

1

1: Bold
1 “ B0

2: for i “
q
4
to q

2
´ 1 do

3: if i P B0 and q ´ 2i P B0 then
4: Bold

1 “ Bold
1 ´ tq ´ 2iu

5: for i “ t
q
6

u to q
4

´ 1 do
6: if i P B0 and q ´ 3i P B0 then
7: Bold

1 “ Bold
1 ´ tq ´ 3iu

8: return Bold
1

Property 1 (Property 1 in [11]). Given q “ 2c p10 ď c ď 31q, for all 0 ď t ď q,
there exist b P B and m P t1, 2, 3u such that

t “ mb or q ´ t “ mb . (6)

We now provide counterexamples to this property, when B “ Bold
1 . In fact,

large families of counterexamples can be constructed for all such q. For instance,
let q “ 210 “ 1024 and t “ 292. Note that

t “ 22 ¨ 73 P B0 and q ´ t “ 732 “ 3 ¨ 22 ¨ 61 “ 3j ,

with j “ 244 “ 22 ¨ 61 P B0, 170 “ tq{6u ă j ă q{4 “ 256. Hence t P B0, so that
m “ 1 in t “ mb in (6), but t R Bold

1 .
On the other hand,

j “ 22 ¨ 61 “ q ´ 22 ¨ 3 ¨ 5 ¨ 13 “ q ´ 2i ,

with i “ 390 “ 2 ¨ 3 ¨ 5 ¨ 13 P B0, 256 “ q{4 ď i ă q{2 “ 512, hence j R Bold
1 .

Similarly,
q ´ t “ 2i1 ,

where i1 “ 366 “ 2 ¨ 3 ¨ 61 P B0, and

i1 “ q ´ 2 ¨ 7 ¨ 47 “ q ´ 2 ¨ i2 ,

with i2 “ 329 “ 7 ¨ 47 P B0, 256 “ q{4 ď i2 ă q{2 “ 512, hence i1 R Bold
1 . Since

q ´ t “ mb in (6) implies that m “ 2 (resp. 3), and b “ i1 (resp. b “ j) is not in
Bold

1 , we conclude that t “ 292 doesn’t satisfy Property 1 for q “ 1024.

2.2 General Construction of Counterexamples

We show the general construction of counterexamples for Property 1 of [11].

Proposition 1. Property 1 is false for at least
q

216
`Op1q integers 0 ď t ď q.



Proof. As above, we let q “ 2c for an integer c ě 10. Pick any integer n that is
coprime to 6, with 4q

72 ă n ă
5q
72 . Note that among six consecutive integers, at

least two will be coprime to 6, i.e. the neighbors of a multiple of 6. Hence, there
are at least

q

216
`Op1q

such values of n. Define j “ 6n and θ “ 3pq{2 ´ jq. Note that

q

3
ă j ă

5q

12
and ord2pjq ” ord3pjq ” 1 pmod 2q ,

hence
q

4
ă θ ă

q

2
and ord2pθq ” ord3pθq ” 1 pmod 2q ,

so that j, θ P B0. Note that in particular, 3 | θ. Let t “ q ´ 2θ. We will show
0 ă t ă q{2 does not satisfy Property 1.

First, 3 ∤ t and ord2ptq “ ord2pθq`1 ” 0 pmod 2q, therefore t P B0. However,
since θ P B0, t R Bold

1 . Any expression t “ mb with m P t1, 2, 3u and b P B1 must
therefore be excluded in Property 1. We now exclude that

q ´ t “ mb, for some b P Bold
1 and m P t1, 2, 3u .

Since q ´ t ą q{2, q ´ t R B0, hence q ´ t R Bold
1 .

We have q ´ t “ 2θ. Write θ “ q ´ 2i and note 3 ∤ i, ord2piq ” 0 pmod 2q.
Also 0 ă i ă q{2, therefore i P B0 and θ R Bold

1 .
Finally, define ψ “

q´t
3 “ 2θ{3. Then ord2pψq ” ord3pψq ” 0 pmod 2q, and

since trivially 0 ă ψ ă q{3, we get ψ P B0. On the other hand, by definition of
θ,

ψ “ q ´ 2j ,

where we saw j P B0. Therefore ψ R Bold
1 thus concluding our proof.

2.3 Property 1 Holds for Odd 0 ă t ă q

We can nevertheless show that the following is true.

Proposition 2. Property 1 in [11] with B “ Bold
1 holds whenever 0 ď t ď q is

odd.

Proof. Replacing t by q ´ t if necessary, we can suppose that t ă q{2. There are
several cases to consider.

3 ∤ t and 3 ∤ q ´ t: In this case, t P B0 and, since we can’t write t “ q ´ 2n or
q ´ 3n with n P N, it follows that t P Bold

1 .
3 ∤ t and 3 | q ´ t: Again, t P B0. If t R Bold

1 , then we could write

t “ q ´ 3i3 , i3 ă
q

4
, i3 P B0 .



Similarly, if q ´ t “ 3i3 and i3 R Bold
1 , then

i3 “ q ´ 3i13 , i13 ă
q

4
, i13 P B0 .

We reach a contradiction, since

q “ i3 ` 3i13 ă
q

4
`

3q

4
“ q .

3 | t and 3 ∤ q ´ t: This is the last possible case. Either t P B0 and then we can
reason as in the first case to deduce that t P Bold

1 ; or

t “ 3b , b P B0 .

If b R Bold
1 , then

b “ q ´ 3j3 , j3 ă
q

4
, j3 P B0 .

This is again impossible, since b “ t{3 ă q{6, resulting in

q “ b` 3j3 ă
q

6
`

3q

4
ă q .

3 Repairing Property 1 of [11]

We show in this section how to change the definition of Bold
1 so that Property 1

holds.
We construct the new set B1 in Algorithm 4, by first removing from B0 as

before all elements of the form q ´ 2i ą 0 and q ´ 3j, for i, j P B0, and j ă q{4.
We then add back all elements q ´ 6k P B0 with k R B0.

Proposition 3. Property 1 with B “ B1 holds for all 0 ď t ď q.

Proof. Because Property 1 is symmetric in t Ø q ´ t, we can suppose 3 ∤ t.
Also, in view of Proposition 2 we only need suppose that 0 ‰ t is even, since
Bold

1 Ď B1. We have two cases:

ord2ptq even: If t ď q{2, then t P B0. If t R Bold
1 , then either t “ q ´ 3j with

j P B0, j ă q{4, or t “ q ´ 2i with i P B0.
In the first case, we have 2 | j, hence

t “ q ´ 3j ùñ t “ q ´ 2i with i “
3j

2
P B0 .

We therefore only need focus on t “ q ´ 2i, where i P B0. Since ord2ptq “

ord2p2iq “ ord2piq ` 1 we deduce that ord3piq ” 1 pmod 2q, in particular
that 3 | i. Calling k “ i{3, we have k R B0 and t “ q ´ 6k, therefore t P B1.



On the other hand, if t ą q{2, then, since q´t ă q{2 and ord2pq´tq “ ord2ptq,
if ord3pq ´ tq is even, then, reasoning as above with q ´ t P B0 in place of t,
we find that q ´ t P B1.

If t ą q{2 and ord3pq ´ tq is odd, then q ´ t “ 3b with b P B0. If b R Bold
1 ,

then either b “ q ´ 3j with j P B0, j ă q{4, or b “ q ´ 2i with i P B0. The
former case is impossible, since we would get the contradiction

q “ b` 3j ă
q

6
`

3q

4
ă q .

In the latter case,

b “ q ´ 2i with i P B0 .

As above ord2piq ` 1 “ ord2pbq “ ord2pq ´ tq “ ord2ptq, therefore ord2piq is
odd and ord3piq is odd; in particular 3 | i. Writing k “ i{3, we have k R B0

and b “ q ´ 6k, therefore b P B1.

ord2ptq odd: Then t “ 2b, where b P B0. If b R Bold
1 , then either b “ q ´ 3j

with j P B0, j ă q{4, or b “ q ´ 2i with i P B0. In the latter case, as before,
ord2piq ” 1 pmod 2q and therefore 3 | i. Calling k “ i{3, we have k R B0 and
b “ q ´ 6k, therefore b P B1.

The former case is slightly more complicated, where we have

b “ q ´ 3j , j ă
q

4
, j P B0 . (7)

If 2 | j, then, calling k “ j{2 R B0, we find that b P B1 as before. It
may however be the case that 2 ∤ j, that is 2 ∤ b. By (7), b ” q pmod 3q,
hence q ı t “ 2b pmod 3q. In this case, ord2pq ´ tq “ ord2ptq “ 1, hence
b1 “ pq ´ tq{2 P B0. If b

1 R Bold
1 , then, noticing that 2 ∤ b1,

b1 “ q ´ 3j1 , j1 ă
q

4
, j1 P B0 . (8)

Putting (7) and (8) together,

q ´ 3j1 “ b1 “
q ´ t

2
“
q

2
´ b “ 3j ´

q

2
,

from which

3j ` 3j1 “
3q

2
ðñ j ` j1 “

q

2
,

which is impossible because j, j1 ă q{4.

We define the new B “ B1, which will allow us to prove a precise estimate
of its cardinality, as now B no longer depends on the elliptic curve. Table 2 in
the appendix lists our new bucket set constructions for q “ 2c, 10 ď c ď 31.



Algorithm 4 Construction of the new auxiliary set B1

Input: B0, q
Output: B1

1: B1 “ B0

2: for q
4

ď i ă
q
2
do

3: if i P B0 and q ´ 2i P B0 then
4: B1 “ B1.removepq ´ 2iq

5: for q
6

ď i ă
q
4
do

6: if i P B0 and q ´ 3i P B0 then
7: B1 “ B1removepq ´ 3iq

8: for q
12

ď i ă
q
6
do

9: if i R B0 and q ´ 6i P B0 then
10: B1 “ B1.appendpq ´ 6iq

11: return B1

3.1 Analysis of the Size of B

The set B “ B1 can also be constructed by removing the following two subsets
from B0:

1. B2 “ tt “ q ´ 2i P B0 : i P B0, i ă q{2, 3 ∤ iu, and
2. B3 “ tθ “ q ´ 3j P B0 : j P B0, j ă q{4, 2 ∤ ju.

The sets B2 and B3 are disjoint, since all elements of the former are even, while
all elements of the latter are odd.

Lemma 1. The cardinalities of the sets B2 and B3 (denoted as |B2| and |B3|)
satisfy

|B2| “

ˇ

ˇ

ˇ

!

1 ď t ď
q

2
: ord2ptq ” ord3ptq ” 1 pmod 2q

)
ˇ

ˇ

ˇ
,

and

|B3| “

ˇ

ˇ

ˇ

ˇ

"

q

2
ă u ď

3q

4
: 2 ∤ u, ord3puq ” 1 pmod 2q

*
ˇ

ˇ

ˇ

ˇ

.

Proof. If t P B2, ord2ptq ” ord2piq ` 1 ” 1 pmod 2q, hence ord3ptq ” 1 pmod 2q.
Vice-versa, if 0 ă t ď q{2 satisfies ord2ptq ” ord3ptq ” 1 pmod 2q, then t P B2.
This shows that B2 can in fact be described by the set on the right-hand side of
the first equation of the lemma.

Regarding B3, whenever θ “ q ´ 3j P B0 with j P B0, j ă q{4 and j odd,
then q{4 ă θ ď q{2, and therefore q{2 ď u “ q ´ θ ă 3q{4, ord2puq “ 0
and ord3puq ” 1 pmod 2q. Vice-versa, any odd q{2 ď u ă 3q{4 (note that u
cannot equal any of those end values) such that ord3puq is odd will correspond
to θ “ q ´ u P B3.

Lemma 2. Let Q P N, e, f be nonnegative integers. Define

Se,f
Q “ t1 ď t ď Q : ord2ptq “ e, ord3ptq “ fu,



then

|Se,f
Q | “

Q

2e3f`1
`Op1q .

Proof. By the inclusion-exclusion principle,

Se,f
Q “ t1 ď t ď Q : 2e3f | tu ´ t1 ď t ď Q : 2e`13f | tu

´ t1 ď t ď Q : 2e3f`1 | tu Y t1 ď t ď Q : 2e`13f`1 | tu .

Taking cardinalities,

|Se,f
Q | “

Z

Q

2e3f

^

´

Z

Q

2e`13f

^

´

Z

Q

2e3f`1

^

`

Z

Q

2e`13f`1

^

“

ˆ

1

2e3f
´

1

2e`13f
´

1

2e3f`1
`

1

2e`13f`1

˙

Q`Op1q

“
Q

2e3f

ˆ

1 ´
1

2

˙ˆ

1 ´
1

3

˙

`Op1q

“
Q

2e3f`1
`Op1q .

The Size of B0zB2 Applying Lemma 2 with Q “ q{2, we compute

|B0zB2| “
ÿ

e ě 0 even
f ě 0 even

|Se,f
q{2 | “

q

2

ÿ

0ďeďlog2 q
e even

ÿ

0ďfďlog3 q
f even

1

2e3f`1
`Oplog2 qq

“
q

6

ÿ

ϵě0

1

4ϵ

ÿ

ϕě0

1

9ϕ
`Oplog2 qq “

q

4
`Oplog2 qq . (9)

The Size of B3 Similarly, by applying Lemma 2 with Q “ 3q{4, q{2, and we
have,

|B3| “
ÿ

f ě 0 odd

|S0,f
3q{4| ´ |S0,f

q{2 |

“

ˆ

3q

4
´
q

2

˙

ÿ

f ě 0 odd

1

3f`1
`Oplog qq

“
q

32
`Oplog qq . (10)

Computation of the Size of B Since B “ pB0zB2qzB3 and B2 X B3 “ H,
using (9) and (10), we compute

|B| “ |B0zB2| ´ |B3| “
q

4
´

q

32
`Oplog2 qq “

7q

32
`Oplog2 qq ,

where q “ 2c. Note that 7{32 “ 0.21875.



3.2 The Maximum Difference Between Neighbors of B

Proposition 4. Let b1 ă b2 ă ¨ ¨ ¨ ă b|B| denote the elements of B, sorted in
increasing order. Then for all 1 ď r ă |B|,

br`1 ´ br ď 6.

Proof. Consider the set

S “ tm ď q{2: m ” ˘1 pmod 6qu .

Then S Ď B0, since integers in S are coprime to 6. Let m P S. If m R B, then
m P B3 so that m ” q pmod 3q. The neighbors m´ ă m ă m` of m in S are
spaced in such a way that

tm´m´,m` ´mu “ t2, 4u .

But then m˘ ı q pmod 3q, hence m˘ R B3 and therefore m˘ P B. This shows
that consecutive elements of B are never more than 6 integers apart.

3.3 On the Length of the Recoding

The original LFG method called for an additional set (called B2 in [11]) to specif-
ically force the scalar recoding to be of the same length as its q-ary expansion,
see [11, Algorithm 6]. With our modification (Algorithm 5), the length can be
one digit longer, namely h ` 1. However, this last digit ah can only be 0 or 1,
therefore, only points mqjPi and q

hPi for m P M, 0 ď j ď h´ 1, 1 ď i ď n need
to be precomputed, for a total of 3nh` n points.

Algorithm 5 Adjusted scalar recoding

Input: taju0ďjďh´1, 0 ď aj ă q such that a “
řh´1

j“0 ajq
j .

Output: tpϵjmj , bjqu0ďjďh, ϵj P t˘1u, mj P M , bj P B such that a “
řh

j“0 ϵjmjbjq
j .

1: ah Ð 0
2: for j “ 0 to h ´ 1 do
3: Obtain ϵj P t˘1u,mj P M, bj P B,αj P t0, 1u such that aj “ ϵjmjbj ` αjq

in (1)
4: aj`1 “ αj ` aj`1 Ź Note that ah “ 0 or 1

5: return tpϵjmj , bjqu0ďjďh

4 Construction of Optimal Bucket Sets for Efficient
MSM Computation

In this section, we generalize the LFG construction of bucket sets B to provide
examples of optimal-sized sets. We start by generalizing Property 1.



Property 2. Let p be a prime. Given q “ pc, for all 0 ď t ď q, there exist b P B
and m P M such that

t “ mb or q ´ t “ mb .

We refer to B as the bucket set and M as the (unsigned) multiplier set. In
the previous sections, B “ B1,M “ t1, 2, 3u and p “ 2. In this context, a simple
cardinality argument shows the following.

Theorem 1 (Lower bound on the bucket set size). If Property 2 holds, then

2 ¨ |B| ¨ |M | ě q .

Proof. We remark that there are at most |B| ¨ |M | integers t of the form mb
for m P M, b P B, and similarly for the t’s of the form q ´ mb. The conclusion
follows: if Property 2 holds, all 0 ď t ď q must be representable in one of these
two ways.

The set M determines the number of precomputed points4, which, in the
notation of LFG is |M |nh. Hence, if |M | “ 2, then |B| ě q{4 and if |M | “ 3,
|B| ě q{6. The case |M | “ 1 is Pippenger’s variant, which is therefore op-
timal [11, Table 1]. We now describe an optimal bucket set B for |M | “ 2,
satisfying |B| “ q{4 `Op1q.

4.1 Optimal Bucket Set for |M | “ 2

Let p be an odd prime and q “ pc for c P N. Define M “ t1, 2u and let B
consist of 0 together with all integers 0 ă b ă q{2 of the form b “ pkβ, where
0 ď k ď c´ 1 is an integer and β is a quadratic residue mod q (in particular, it
is coprime to p). We show the following.

Theorem 2 (Optimal Bucket for 2-Multipliers). If p is an odd prime such that

ˆ

´1

p

˙

“ ´

ˆ

2

p

˙

“ 1 ,

then Property 2 holds for M “ t1, 2u and B as described above.

Remark. p “ 5 is the first such prime; the requirement of the theorem is equiv-
alent to p ” 5 pmod 8q.

Remark. Note that β P Z coprime to p is a quadratic residue mod pc if and only
if it is a quadratic residue mod p. This follows from Hensel’s lemma, as any root
of the equation x2 ” β pmod pq is simple, hence lifts to a unique root mod pc.

Proof. We divide the proof into several cases. We first deal with 0 ă t ă q
coprime to p.

4 Since precomputed points are of the form mqjPi, for m P M , 0 ď j ď h ´ 1 and
1 ď i ď n, it is not important to require that q be a power of 2.



t ă q{2 and p t
p q “ 1: t P B, so there’s nothing to show.

t ă q{2 even and p t
p q “ ´1: t{2 “ b P B, so t “ 2b.

t ă q{2 odd and p t
p q “ ´1: q´t is even and p

q´t
p q “ ´1. Therefore, pq´tq{2 “

b P B and q ´ t “ 2b.
t ą q{2 even and p t

p q “ 1: in this case q ´ t P B.

t ą q{2 even and p t
p q “ ´1: here, t{2 “ b P B, so t “ 2b.

t ą q{2 odd: q ´ t is even and either q ´ t P B or pq ´ tq{2 P B.

Now to the general case (we suppose t ‰ 0, q), when t “ pkτ (0 ď k ă c), where
p ∤ τ . The condition

t “ mb or q ´ t “ mb

is equivalent to
pkτ “ mb or pc ´ pkτ “ mb .

Choosing b ă q{2 of the form pkβ, with p ∤ β and β ă pc´k{2 quadratic residue
mod pc (equivalently, mod pc´k), the previous equation reads

τ “ mβ or pc´k ´ τ “ mβ .

By our initial work, this condition is satisfied for some β P B when p ” 5
pmod 8q.

We now show |B| “ q{4 `Op1q.

Theorem 3. The bucket set B in this section has cardinality

|B| “
q ´ 1

4
` 1 .

Proof. We begin with a lemma.

Lemma 3. Let p ” 1 pmod 4q be prime and k P N. The number of quadratic
residues mod pk less than pk{2 is pk´1pp´ 1q{4.

Proof. The number of quadratic residues mod pk is pk´1pp ´ 1q{2, since they
form a cyclic group of index 2 inside the group of invertible classes mod pk, of
order φppkq “ pk´1pp ´ 1q. Also, the subset of those quadratic residues ă pk{2
is in bijection with its complement, via the map t ÞÑ pk ´ t, using the fact that
´1 is a quadratic residue mod pk. This leads to the result.

Returning to the proof of the theorem, we partition B as

B “ t0u
ď

c´1
ď

k“0

tt “ pkβ : 0 ă β ă pc´k{2 is a quadratic residue mod pc´ku .

Taking cardinalities, and using the previous lemma, we find

|B| “ 1 `

c´1
ÿ

k“0

pc´k´1pp´ 1q

4
“ 1 `

p´ 1

4
¨
pc ´ 1

p´ 1
“ 1 `

pc ´ 1

4
.



Remark. Since b is a quadratic residue mod pc if and only if it is a quadratic
residue mod p, we deduce that elements of B are never more than p integers
apart, generalizing Proposition 4 to this context (where we can take p “ 5).

4.2 A General Construction of Optimal Buckets

Here we show the way to modify Property 1 (or 2) in order to obtain a scalar
multiplication algorithm with a runtime of essentially nph ` 1q `

q
2|M |

point

operations, by precomputing |M |nph` 1q points.
We propose the following modification. As usual, we let q “ pc, where p is

prime and c P N.

Property 3. For all t P Z, there exist ϵt P t˘1u, mt P M, bt P B, such that

t ” ϵtmtbt pmod qq .

We now let B Ď r0, q ´ 1s be a bucket set such that 0 P B and

M “ t1, 2, . . . , |M |u . (11)

Assuming Property 3 holds in this case, we rewrite [11, Algorithm 6] to accom-
modate a recoding without a priori restricting αj :

aj “ ϵjmjbj ` αjq , ϵj P t˘1u, mj P M, bj P B, αj P Z . (12)

The result is the following new scalar recoding Algorithm 6.

Algorithm 6 New scalar recoding

Input: taju0ďjďh´1, 0 ď aj ă q such that a “
řh´1

j“0 ajq
j .

Output: tpϵjmj , bjqu0ďjďh, ϵj P t˘1u, mj P M , bj P B such that a “
řh

j“0 ϵjmjbjq
j .

1: ah Ð 0
2: for j “ 0 to h ´ 1 do
3: Obtain ϵj ,mj , bj , αj as in (12) such that aj “ ϵjmjbj ` αjq Ź |αj | ď |M |

4: aj`1 “ αj ` aj`1 Ź Now |aj`1| ă q ` |M |

5: Obtain ϵh,mh, bh such that ah “ ϵhmhbh Ź |ah| ď |M |, bh “ 0, 1, αh “ 0
6: return tpϵjmj , bjqu0ďjďh

We need to show that Algorithm 6 terminates after Line 5. This is done by
addressing the statements found in the comments.

Proposition 5. In Algorithm 6, we have, for ´1 ď j ď h´ 1 (where we define
α´1 “ 0), after Line 4,

$

’

&

’

%

|αj | ď |M | ,

|aj`1| ă q ` |M | ,

|ah| ď |M | .



Proof. The first two statements are proved together by induction on j ě ´1.
The base step is clear, since α´1 “ 0 and a0 is not modified in Line 4. Supposing
|αj | ď |M | and |aj`1| ă q ` |M |, from Line 3 we deduce

|αj`1| ď
mj`1bj`1

q
`

|aj`1|

q
ď |M |

ˆ

1 ´
1

q

˙

` 1 ´
1

q
`

|M |

q
“ |M | ` 1 ´

1

q
,

and therefore, since αj`1 is an integer, |αj`1| ď |M |. In addition, in Line 4, the
new value of aj`2 is aj`2 ` αj`1, therefore we can bound the updated value as

|aj`2| ă |M | ` q .

This completes the inductive step. Finally, note that, as the initial value ah “ 0
is updated in Line 4 to ah ` αh´1 “ αh´1, we have the stricter bound |ah| “

|αh´1| ď |M |.

The new scalar recoding allows us to run Pippenger’s algorithm as before
[11, Algorithms 4 and 3] with at most

`

nph` 1q ` |B| ` d´ 4
˘

curve additions – where d is the maximal distance between consecutive elements
of B – and the help of

nph` 1q|M |

precomputed points. The main advantage of the recoding given by Algorithm 6
is that it allows us to use a bucket set B of optimal size q

2|M |
`Op1q.

Theorem 4. Let µ be a positive integer, p ą 2 be prime with p ” 1 pmod 2µq.
Assume t˘1, ¨ ¨ ¨ ,˘µu form a complete set of representatives of pZ{pq˚ modulo
2µ-th powers. Then, for any c P N, Property 3 holds for q “ pc, the multiplier
set M “ t1, 2, . . . , µu and the bucket set

B “ t0u

c´1
ď

k“0

!

0 ă b ă q : b “ pkβ,where 0 ă β ă pc´k is a 2µ-th power modulo pc´k
)

.

Moreover, the maximal distance between consecutive integers in B is p and

|B| “
q

2µ
`Op1q “

q

2 |M |
`Op1q .

Proof. We claim that, for any κ P N, the set S “ t˘1, ¨ ¨ ¨ ,˘µu constitutes a
complete set of representatives of pZ{pκqˆ (the invertible classes modulo pκ)
modulo 2µ-th powers. Indeed, since 2µ | pκ´1pp ´ 1q, knowing that pZ{pκqˆ is
cyclic, the group

pZ{pκqˆ{
`

pZ{pκqˆ
˘2µ



has order 2µ. Moreover, for r, s P S, by Hensel’s lemma, the equation

r ” sx2µ pmod pκq is solvable in Z ðñ r ” sx2µ pmod pq is solvable in Z .

By assumption, this shows that if r ‰ s, they represent different classes and thus
proving our claim. In other words, we have a partition

pZ{pκqˆ “
ď

1ďmďµ

´

m
`

pZ{pκqˆ
˘2µď

´m
`

pZ{pκqˆ
˘2µ

¯

.

Let t P Z. As seen in the proof of Theorem 2, write t “ pkτ where p ∤ τ . If k ě c,
then t ” 0 ” 1 ¨ 1 ¨ 0 pmod qq. Otherwise, let κ “ c ´ k P N. From our claim,
solving in β (a 2µ-th power modulo pκ) the equation

τ ” ϵmβ pmod pκq

for some 1 ď m ď µ and ϵ P t˘1u will yield, for b “ pkβ P B, an expression

t ” pkτ ” ϵmpkβ ” ϵmb pmod qq ,

thus showing Property 3.
To count the elements of B, as in Theorem 3 note that B is already defined

as a disjoint union. Therefore

|B| “ 1 `

c
ÿ

κ“1

pκ´1pp´ 1q

2µ
“ 1 `

pc ´ 1

p´ 1
¨
p´ 1

2µ
“ 1 `

pc ´ 1

2µ
“

q

2µ
`Op1q .

Finally,
`

pZ{pcqˆ
˘2µ

Ď B ,

where on the left we consider representatives in r1, q ´ 1s, and we have seen via
Hensel’s lemma that the condition that b be a 2µ-th power mod q is equivalent
to b being a 2µ-th power mod p. This proves the claim on the maximal distance
of elements of B.

Remark. A simple cardinality argument similar to Theorem 1 shows that any
bucket set B satisfying Property 3 is such that |B| ě q{p2 |M |q. Therefore The-
orem 4 is optimal.

We want to provide a criterion for finding primes p satisfying the hypotheses
of Theorem 4.

Proposition 6. Let µ P N and suppose that p “ 2µ ` 1 is prime. Then the set
t˘1, ¨ ¨ ¨ ,˘µu form a complete set of representatives of pZ{pqˆ{ ppZ{pqˆq

2µ
.

Proof. We have, by Fermat’s little theorem,
`

pZ{pqˆ
˘2µ

“ t1u ,

and µ “
p´1
2 , so

t˘1, ¨ ¨ ¨ ,˘µu “

"

˘1, ¨ ¨ ¨ ,˘
p´ 1

2

*

“ pZ{pqˆ .



Remark. The first few values of µ, namely 1, 2, 3, 5, 6, 8, 9, 11, provide via Propo-
sition 6 optimal bucket sets of cardinality q{p2µq `Op1q in Theorem 4. Table 3
in the appendix lists our new bucket set constructions for q “ 7c, 4 ď c ď 11.

We will now show that, on a j “ 0 elliptic curve (with equation y2 “ x3 ` b),
our new property ideally allows to divide the storage requirement by 3 when using
units of the endomorphism ring. For instance, with nph`1q stored points (similar
to Pippenger’s variant), one can execute a variant of Pippenger’s algorithm in
essentially nph`1q`q{5 point operations. This is not yet optimal (we would like
to reach nh ` q{6), but constitutes an improvement over the Pippenger variant
runtime of nh` q{2.

5 Combining Efficient Endomorphisms with Optimal
Buckets for Efficient MSM Computation

Many families of pairing-friendly curves over Fp have j-invariant equal to zero.
They have an equation y2 “ x3 ` b for some b P Fp. Therefore, they are endowed
with an endomorphism ω such that ω3pP q “ P for all P on the elliptic curve. We
can write ωpx, yq “ pζ3x, yq, where ζ3 P Fp such that ζ33 “ 1. The computation
of ω can therefore be done on the fly, and corresponding points do not need to
be stored, which is now what we want to take advantage of.

The endomorphism ring of these curves is isomorphic to Zrωs, where ω “
´1`i

?
3

2 is a complex cube root of unity (using the same letter as for the fast
endomorphism). We will modify Property 3 to allow ϵt to be an endomorphism
unit in Zrωs, resulting in the following property:

Property 4. For all t P Zrωs, there exist ϵt P U “ t˘1,˘ω,˘ω2u, mt P M, bt P

B, such that
t ” ϵtmtbt pmod qq .

Let’s consider the first implementation of this idea. LetM “ t1u, q “ pc with
c ě 2, where p “ 2´ω. Note that p | 7 in Zrωs. Also, Zrωs is a (norm-)Euclidean
ring, and hence any t P Zrωs has a representative in Zrωs{q of modulus less than
|q| “ 7c{2. Finally, |Zrωs{q| “ 7c. We now show that any t P Zrωs has a base

q expansion of length bounded by h ` 1 “ r
log |t|
log |q|

s ` 1, where each q-digit of

bounded by |q|{
?
3 ` 1.

Lemma 4. Let α, β P Zrωs and β ‰ 0. There exist δ, ρ P Zrωs such that

α “ βδ ` ρ , (13)

where |ρ| ď |β|{
?
3. Additionally, for β “ q, given any base-q expansion of

a P Zrωs

a “ a0 ` a1q ` ¨ ¨ ¨ ` amq
m , (14)

with |ak| ď |q|{
?
3 ` 1 for 0 ď k ď h ´ 1, there exists an equivalent base-q

expansion
a “ a1

0 ` a1
1q ` ¨ ¨ ¨ ` a1

hq
h ,



with a1
k “ ak 0 ď k ď h´ 1 and |a1

h| ă 2, having length h` 1 “ r
log |a|

log |q|
s ` 1.

Proof. Rewrite (13) as

τ “ δ ` ε , δ P Zrωs , |ε| ď
1

?
3
,

where τ “ α{β and ε “ ρ{β. Since τ belongs to an equilateral triangle of side
length one with vertices in Zrωs, we can select δ to be the closest vertex to τ ,
which will therefore be at distance at most 1{

?
3 (if τ is located at the center

of the equilateral triangle). An implementation of this choice is described in
Algorithm 7.

Regarding the length of the expansion, let δ0 “ a and, for 0 ď n ď h´ 1,

δn “ qδn`1 ` an

with an selected in some way (i.e. Euclidean division) as in (14) and |an| ď

|q|{
?
3 ` 1. In particular,

|δn`1| ď
|δn|

|q|
`

1
?
3

`
1

|q|
,

so that, by induction,

|δk| ď
|a|

|q|k
`

ˆ

1 `
1

|q|
` ¨ ¨ ¨ `

1

|q|k´1

˙

1
?
3

`

ˆ

1

|q|
` ¨ ¨ ¨ `

1

|q|k

˙

ă
|a|

|q|k
`

|q|

p|q| ´ 1q
?
3

`
1

|q| ´ 1
. (15)

Since |a|{|q|h ď 1 and |q| ě 5, we deduce |δh| ă 2 ă |q|. If δh ‰ 0, an integer
division gives

δh “ q ˆ 0 ` ah

with |ah| ă 2 and δh`1 “ 0.

Let

∆ “

"

z P C : |z| ď
|q|
?
3

*

.

We have just shown that every class in Zrωs{q has a representative in ∆. The
next lemma shows that the same can be said about ∆` “ ∆ ` 1, the translate
of ∆ by one unit to the right.

Lemma 5. Every class in Zrωs{q has a representative in ∆`.

Proof. Let r “ |q|{
?
3. Let z P ∆z∆`. Then |z ´ 1| ď r ` 1. Trace a circle

centered at z with radius r
?
3. It will intersect the boundary of ∆` at points

A,B. Call θ “ zAzB (see Fig. 1). We claim that θ ą π{3 when r ě 4. To see this,



Fig. 1. Circle from Lemma 5

consider the triangle with vertices 1, z, A. Let t “ |z ´ 1|{r ď 1 ` 1{r. By the
law of cosines we have

r2 “ 3r2 ` r2t2 ´ 2
?
3 r2t cospθ{2q ðñ cospθ{2q “

1
?
3

ˆ

1

t
`
t

2

˙

ă

?
3

2
,

since the function fptq “ t´1 ` t{2 is decreasing in r1,
?
2s and when r ě 4 we

have 1 ă t ă
?
2.

Since θ ą π{3, there exists u P U such that z ` uq lies on the circular arc
ŊAB, and therefore in ∆`.

The next theorem is the analog of Theorem 4 with µ “ 3, with one important
difference that we will bring out in the remark after its proof.

Theorem 5. We have

pZrωs{pq
ˆ

“
␣

˘1,˘ω,˘ω2
(

.

For any c P N, Property 4 holds for q “ pc, the multiplier set M “ t1u and the
bucket set

B “ t0u Y

c´1
ď

k“0

Bk ,

where
Bk “

␣

b P ∆` X Zrωs : b “ pkβ, where β ” 1 pmod pq
(

.

Moreover,

|B| “
7cπ

9
?
3

` op7cq «
7c

5
.

Proof. Note initially that,

pZrωs{pq
ˆ

“
␣

˘1,˘ω,˘ω2
(

.



Indeed, by the considerations after the statement of Property 4, the cardinalities
of the left- and right-hand sides of the previous equality match. Moreover, any
two distinct elements of t˘1,˘ω,˘ω2u are not congruent modulo p, because
their difference has algebraic norm either 1, 3 or 4, coprime to 7. Consider a
base-q expansion (14). A digit an can be written uniquely as

an “ pkα where k ě 0, α P Zrωs and p ∤ α .

Therefore, there exists a unique ϵ P U such that α ” ϵ pmod pq. Posing β1 “

αϵ´1, we have β1 ” 1 pmod pq and

an “ ϵpkβ1 “ ϵb where b P Bk ,

where we have used Lemma 5 to justify that pkβ1 ” pkβ pmod qq with b “ pkβ P

Bk. Finally, note that, as in Theorem 4, the sets Bk together with t0u partition
B. We have

Bk “
␣

z P Zrωs : pkp1 ` pzq P ∆` 1
(

is in bijection with

B1
k “

Bk

pk`1
“

"

z P Zrωs : z P
∆

pk`1
`

1

pk`1
´

1

p

*

(16)

Precisely estimating the cardinality of lattice points inside a disk is a well-known
and difficult problem, related to Dirichlet’s divisor problem and the ideal the-
orem. For our purposes, suffice it to say that this number is asymptotic to the
area of the disk divided by the area of a fundamental parallelogram of the lattice
(see [10, VI.3 Theorem 3 p.132]). Hence

|Bk| “
π7c´k´1{3

?
3{2

` o
`

7c´k´1
˘

“
2π7c´k´1

3
?
3

` o
`

7c´k´1
˘

.

Finally, a calculation similar to the proof of Theorem 4 shows that (using fpxq „

gpxq to denote limxÑ8 fpxq{gpxq “ 1)

|B| „

c´1
ÿ

κ“0

2π7κ

3
?
3

“
7cπ

9
?
3

` op7cq .

Remark. The actual magnitude of the error term is still unknown. It is conjec-
tured that it is Op7c{4`ϵq (best possible), but current results are for an exponent
a bit lower than Op7c{3q. We would have liked to get a clean estimate of „ 7c{6,
as in Theorem 4, but that would have led us to an irregularly shaped set B,
where the existence of a Hamiltonian path would prove too daunting. Instead,
we opted to allow some redundancy in B (about 20%) to pay for the benefit of
working in a symmetric set.



Algorithm 7 Euclidean division

Input: κ “ k1 ` k2ω, q “ q1 ` q2ω with k1, k2, q1, q2 P Z.
Output: CEApκ, qq “ pδ, ρq, where δ, ρ P Zrωs with κ “ qδ ` ρ and |ρ|

2
ď |q|

2
{3.

1: U ` V ω Ð κ{q
2: δ Ð tU u ` tV uω
3: N Ð |U ` V ω ´ δ|

2

4: δ1
Ð δ ` 1

5: N 1
Ð |U ` V ω ´ δ1

|
2

6: if N 1
ă N then

7: δ Ð δ1

8: N Ð N 1

9: δ1
Ð δ1

` ω
10: N 1

Ð |U ` V ω ´ δ1
|
2

11: if N 1
ă N then

12: δ Ð δ1

13: N Ð N 1

14: δ1
Ð δ1

´ 1
15: N 1

Ð |U ` V ω ´ δ1
|
2

16: if N 1
ă N then

17: δ Ð δ1

18: return δ, ρ “ κ ´ qδ

Algorithm 8 now replaces Algorithm 6 in computing a recoding amenable
to the bucket algorithm, without any additional precomputation than the Pip-
penger variant.

Theorem 5 can be seen as a version of Theorem 4 when µ “ 3, with nh
precomputed points instead of 3nh. However, there is one fundamental difference,
and we show how to deal with it.

Elliptic curve computations take place in a cyclic group G of prime order N .
The parameter h is then defined – when the prime p is chosen in Z (for instance
p “ 7 when µ “ 3) – as the exponent of the smallest power of q exceeding N , in
other terms,

h “

R

logN

log q

V

.

This is because we must be able to represent any scalar multiplier (ď N) in a
base q expansion of length at most h. If we now let p “ 2 ´ ω, and let as before
q “ pc, then, since |q| “ 7c{2, the corresponding h would double, necessitating
twice as many precomputed points (2nh, instead of nh). Although this is below
the 3nh provided by our refinement of the LFG method, we can do better.

Note that since N is large, there is no other copy isomorphic to G in the
elliptic curve (over the field of definition of G). Consequently, the endomorphism
ω must act as an isomorphism of G. Therefore, given a point P P G, ωP “ λP
for some λ P Z{N with λ3 ” 1 pmod Nq. This implies that N ” 1 pmod 3q splits
in Zrωs, so N “ ν1ν2, with ν1, ν2 primes in Zrωs. Since, denoting 0 the point at
infinity,

0 “ NP “ ν1ν2P ,



Algorithm 8 Complex scalar recoding

Input: a P Zrωs, q “ pc “ p2 ´ ωq
c with c P N. Ź h “ r

log |a|

log |q|
s

Output: tpϵj , bjqu0ďjďh, ϵj P U , bj P B such that a “
řh

j“0 ϵjbjq
j .

1: κ Ð a
2: h Ð r

log |a|

log |q|
s

3: List Ð tu

4: for j “ 0 to h do
5: pρ, δq Ð CEApκ, qq

6: if ρ “ 0 then
7: ϵj “ 1, bj “ 0
8: else
9: r Ð ρ
10: k Ð 0
11: while p | r do
12: r Ð r{p
13: k Ð k ` 1

14: Define ϵj P U so that ϵj ” r pmod pq

15: bj “ ρϵ´1
j Ź bj ” 1 pmod pq and |bj | ď |p|

c´k
{
?
3

16: b Ð bj
17: while |pkb ´ 1|

2
ą 7c{3 do

18: b Ð bj ` pc´ku , (u P U) Ź modify bj to make pkbj P ∆`

bj Ð b

19: List Ð List.appendppϵj , bjqq

20: κ Ð δ
21: return: List

we deduce that either ν1P “ 0 or ν2P “ 0. Let ν represent the corresponding
prime. Then, |ν| “

?
N and, if ρ ” a pmod νq, then aP “ ρP . Using Lemma 4,

we can ensure that |ρ| ď |ν|{
?
3. The bottom line is that we can represent

any scalar a ď N , having an expansion of length h in base 7c, by an equivalent
expansion (of ρ) in base q “ p2´ωqc of the same length h, or h`1. In particular,
it is sufficient to precompute h` 1 powers of q.

Remark. In almost all cases, one can actually show that h powers suffice, and
the recoding will have exactly the same length h. This can be done as follows:
in (15), use the following upper bound

|δh| ď
|a|

|q|h
`

|q|

p|q| ´ 1q
?
3

`
1

|q| ´ 1
ď

?
N

|q|h
?
3

`
|q|

p|q| ´ 1q
?
3

`
1

|q| ´ 1
.

Since h may in some cases be bigger than log
?
N{ log |q| by as much as 1, and

|q| gets large, this will result in a bound |δh| ă 1, which will force δh “ 0 and
the expansion to be one digit shorter.

Theorem 6. In Theorem 5, it is possible to label the elements of B as B “

tb0 “ 0, b1 “ 1, . . . b|B|´1u Ď Zrωs, in such a way that

|bk`1 ´ bk|2 ď 7 , for all 1 ď k ď |B| ´ 2 .



Moreover, if |bk`1´bk|2 “ 7, then bk`1´bk “ ϵp, where ϵ P U “ t˘1,˘ω,˘ω2u.

Proof. We first focus on the subset B0 Ď B, as defined in Theorem 5. Using (16),
we describe a Hamiltonian path with edges of length 1 in B1

0. Note that

B1
0 “

!

z P Zrωs : |z| ď r “ |p|c´1{
?
3
)

.

In particular, B1
0 is symmetric about the real and imaginary axes (hence about

the origin), as well under rotations by π{3 centered at the origin. We introduce
some additional notation. The set B1

0 is a union of horizontal intervals

Lpa, bq “ tz P Zrωs : ´ a ď ℜz ď a and ℑz “ ℑbu

called layers. The left endpoint of Lpa, bq is ´a` iℑb, its right endpoint a` iℑb.
A neighbor of z P Zrωs is one of the points z ` ϵ where ϵ P U . For S Ď Zrωs

symmetric about both coordinate axes and under rotations by π{3 centered at
the origin, a point on the boundary BS of S is a point of S which doesn’t have
all its neighbors in S.

Ziggurat property: For S, possibly empty as above and symmetric about
both coordinate axes and under rotations by π{3 centered at the origin, we say
S satisfies the ziggurat property if

(ZP1) for any two layers Lpa, bq,Lpc, dq with 0 ď ℑb ă ℑd we have c ď a` 1{2,
(ZP2) if Lpa, ωq is the first layer above the layer on the real axis Lpx, 0q, then its

right endpoint a` i
?
3{2 is a neighbor of the right endpoint x of Lpx, 0q.

A simplified visual representation of the ziggurat satisfying ZP1 is shown on
the left side of Fig. 5, while the right side depicts the ziggurat after the points
along the boundary BS have been counted and subsequently removed.

Fig. 2. Simplified representation of a ziggurat S

Informally, this means that the layers above the real axis don’t jut out from
layers below them. The following result is at the heart of our construction.

Proposition 7. If S satisfies the ziggurat property, then BS has a Hamiltonian
circuit with edges of length one. Additionally, SzBS also satisfies the ziggurat
property.



Proof. Note that the definition of BS implies it’s symmetric with respect to both
coordinate axes as well as under rotations by π{3 about the origin, hence the
same is true for SzBS. We will describe how to choose the vertices z1, . . . , zm
of the Hamiltonian circuit BS. By ZP2, a “ x ˘ 1{2. If a “ x ´ 1{2, define
z1 “ x, otherwise, let z1 “ x` ω ` 1, the right endpoint of Lpa, ωq. Then move
counterclockwise. At each step n, until reaching the top layer,

1. if possible, jump up to the right endpoint of the next layer: zn`1 “ zn ` ω
or zn`1 “ zn ` ω ` 1, otherwise

2. move left on the layer: zn`1 “ zn ´ 1.

Fig. 5 illustrates the various scenarios that arise when counting points along
the border. After reaching the top layer, when ℜzn becomes negative, proceed

Fig. 3. Different types of border

symmetrically down until reaching ´z1. Then use symmetry about the origin to
complete the circuit. A moment of thought will convince the reader that we are
capturing all points of BS in this fashion.

Regarding ZP1 for SzBS: we argue by contradiction. Let Lpa, bq,Lpc, dq be
two layers of SzBS with 0 ď ℑb ă ℑd we have c ě a` 1. Let ea (resp. ec) be the
right endpoints of Lpa, bq (resp. Lpc, dq). We have ℜea “ a and ℜec “ c. Any
point z P BpSzBSq has a neighbor z˚ R SzBS. Since z˚ P S (otherwise z P BS,
impossible), we conclude that z˚ P BS. In particular, ea has a neighbor e˚

a P BS.
By symmetry, one can always choose ℑe˚

a ě 0. Also, all neighbors of eb are in
S, in particular, eb ` 1 and eb ` ω ` 1. But one of these two will have real part
ě ℜe˚

a ` 1 and lie on a layer above e˚
a , thus violating ZP1 for S.

Finally, ZP2 is also true for SzBS. In fact, the right endpoints of both Lpa, ωq

and Lpx, 0q are the only points in BS, as long as they are different from a unit.
Indeed, by symmetry, if the Hamiltonian path on BS went from z to z ´ 1 on
one of these layers, then by symmetry it would have to travel from pω ` 1qz to
pω ` 1qpz ´ 1q. But ℑpω ` 1qz ą ℑpω ` 1qpz ´ 1q, contrary to the construction
of the Hamiltonian path. This concludes the proof of Proposition 7.



Proposition 7 can be repeated by induction. Start from S0 “ B1
0 and note

that S0 satisfies the ziggurat property since in a disk, the layers above a diameter
naturally satisfy ZP1 and ZP2 (look at the slopes of tangents to the circle at
those layers). Then, defining Sn`1 “ SnzBSn, we can recursively construct a
Hamiltonian circuit for BSn. Our selection of the starting point for each circuit
implies that the last point of BSn is always a neighbor of the first point of BSn`1,
thus allowing us to construct a path spiraling inwards, as a spider spins its web.
By symmetry, the last point of the path will be the origin. An implementation
of this idea appears as Algorithm 10, where we have rescaled the set B1

0 back to
B0 “ pB1

0 ` 1.

Regarding the sparser sets Bk for k ě 1, each point z P
Ťc´1

k“1Bk will lie in an
equilateral triangle with at least two vertices in B0 (and at most one such point
z per equilateral triangle). By construction, one of the edges of the Hamiltonian
path for B0 will be a side znzn`1 of this equilateral triangle. It suffices then to
modify the path to one including z, for instance znzzn`1, without increasing the
edge length.

Finally, since we want our set to start from b0 “ 0, b1 “ 1, we relabel bk “

z|B|´k for 1 ď k ď |B| ´ 1. This concludes the proof of Theorem 6.

Thanks to the previous theorem, using this relabeling on the bucket set B,
one can replace Algorithm 1 in the LFG method with Algorithm 9.

Algorithm 9 Subsum accumulation algorithm (with endomorphisms)

Input: B “ t0u Y tb1, b2, . . . , b|B|´1u as in Prop. 6, S1, S2, . . . , S|B|´1

Output: S “ b1S1 ` ¨ ¨ ¨ ` b|B|´1S|B|´1

1: Define a length 25 array tmp “ r0s ˆ 25
2: for i “ |B| ´ 1 to 1 by ´1 do
3: tmpr0s “ tmpr0s ` Si

4: k “ bi ´ bi´1

5: if |k|
2

ě 1 then
6: tmprks “ tmprks ` tmpr0s

7: return
ř

|k|2ď7
p3`ωq∤k

k ¨ tmprks

Remark. Since the only primes (up to units) of Zrωs with norm at most 7 are
ω´ 1 (above 3) and 2´ω, (above 7, excluding the other prime 3`ω), there are
at most d “ 24 nonzero integers k P Zrωs such that |k|2 ď 7, which explains the
first step in Algorithm 9.

Sorting Algorithm in B0: Here we provide an algorithm (Algorithm 10) to
reorder the points in B0. The idea behind it is to start with the point z1 closest
to the disk ∆ and move on to the next point closest to z1 that lies within the



Fig. 4. Hamiltonian path for B0

disk and whose distance from the border of the disk is minimal. A simplified
visualization of the Hamiltonian path is shown in Fig. 4.

6 Performance Analysis and Implementation

In this section, we first provide more details on the optimal bucket construction,
and then analyze the performance of the proposed approaches and present our
implementation results. We provide the code in the Github repository5.

To conduct evaluation and compare with LFG methd [11] in a fair way, we
choose the BLS12-381 curve and the group order is

r “ 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001,

which determines the upper bound of scalars involved in Sn,r. BLS12-381 is a
pairing-friendly curve with embedded degree 12 and defined by the equation

EpFpq : y2 “ x3 ` 4,

where p is the 381-bit field characteristic. Two additive rational point groups
G1 Ă EpFpq and G2 Ă EpFp2q over which bilinear pairings are defined have the
same prime order r.

5 https://github.com/xinxin-crypto/MSM_blst_ext



Algorithm 10 Sorting Algorithm for B0

Input: S “ ∆ X pZrωs “ tpz1, . . . , pzmu unsorted, r “ |q|{
?
3

Output: B0 “
␣

b1, . . . , bm
(

, s.t. b1 “ 1 and |bj`1 ´ bj | ď
?
7 for 1 ď j ď m ´ 1

1: for 1 ď k ď m do
2: if |zk| ą |z1| then
3: Interchange zk Ø z1

4: Set b̂1 :“ pz1.

5: for 1 ď i ď m ´ 1 do
6: Take puν P t˘p,˘ωp,˘ω2pu, ν P t1, . . . , 6u.
7: Compute b̂i ` puν P S with |b̂i ` puν | ď r and |b̂i ` puν | “ max

µPt1,...,6u
|b̂i ` puµ|

8: Set b̂i`1 :“ b̂i ` puν

9: S “ Sztb̂iu

10: for 1 ď i ď m do
11: bi “ b̂m`1´i ` 1

12: return: B0 “ tb1, . . . , bmu.

6.1 New Bucket Construction for the Repaired LFG Method

The New Bucket Set Constructions for q “ 2c, 10 ď c ď 31. Table 2 lists
our new bucket set constructions for q “ 2c, 10 ď c ď 31, where the maximum
difference d between neighbors of |B| is always equal to 6. When compared to the
bucket sets constructed in [11], our bucket sets do not rely on a specific elliptic
curve. Since the time complexity for computing Sn,r is approximately nh` |B|,
a smaller |B| results in lower time complexity given the same h. Hence, radices
2c for c P t21, 23, 25, 27, 28, 30, 31u are abandoned in the table.

The New Bucket Set Constructions for q “ 7c, 4 ď c ď 11. Table 3 lists
our new bucket set constructions for q “ 7c, 4 ď c ď 11, where the maximum
difference d between neighbors of |B| is always equal to 7.

6.2 Bucket Constructions for the Endomorphism Method

This paper considers bucket constructions for q “ p2 ´ ωqc. We start with an
example with c “ 2 and then provide general results with more values for c.

Bucket Set Construction Example for c “ 2. Given a “ a0 ` a1ω P Zrωs,
an element in B0 can be represented as

b “ 1 ` p2 ´ ωqpa0 ` a1ωq

“ p1 ` 2a0 ` a1q ` p3a1 ´ a0qω

The norm of b can be computed as

|b|2 “ p1 ` 2a0 ` a1q2 ` p3a1 ´ a0q2 ´ p1 ` 2a0 ` a1qp3a1 ´ a0q

“ 7pa20 ` a21 ´ a0a1q ` 5a0 ´ a1 ` 1

The concrete construction procedure of B is described as follows:



Table 2. New Bucket Sets Constructions for q “ 2c, 10 ď c ď 31.

q h |B| |B|{q

210 26 226 0.22070
211 24 448 0.21875
212 22 897 0.21899
213 20 1791 0.21863
214 19 3587 0.21893
215 17 7167 0.21872
216 16 14340 0.21881
217 15 28672 0.21875
218 15 57346 0.21876
219 14 114686 0.21875
220 13 229380 0.21875
221 13 458750 0.21875
222 12 917508 0.21875
223 12 1835005 0.21875
224 11 3670018 0.21875
225 11 7340030 0.21875
226 10 14680067 0.21875
227 10 29360126 0.21875
228 10 58720261 0.21875
229 9 117440511 0.21875
230 9 234881027 0.21875
231 9 469762045 0.21875

Table 3. New Bucket Sets Constructions for q “ 7c, 4 ď c ď 11

q h |B| |B|{q

74 23 401 0.167
75 19 2802 0.167
76 16 19609 0.167
77 13 137258 0.167
78 12 960801 0.167
79 11 6725602 0.167
710 10 47079209 0.167
711 9 329554458 0.167

1. Searching B0. For searching B0, we need to find all elements β “ 1` pz, z P

Zrωs with |pz|2 ď t 7
2

3 u. The search results are summarized in Table 4.
2. Searching B1. For searching B1, we need to find all elements pβ, where

β ” 1 mod p and |pβ ´ 1|2 ď t 7
2

3 u. We obtain B1 “ t2 ´ ωu.
3. Obtaining B. To summarize, the bucket set B for c “ 2 is shown below:

B “ t0, 1,´1 ` ω,´2 ´ 2ω, 2 ´ ω, 2 ` 3ω,´3ω, 4 ` 2ω, 3 ´ ωu.

The size of B is 9.
4. Sorting B. For sorting B, we need to construct a Hamiltonian path as shown

in Fig. 6.2. After traversing the Hamiltonian path in the reverse order, we



can obtain the sorted bucket set B “ t0, 1,´2 ´ 2ω,´3ω, 2 ´ ω, 3 ´ ω, 4 `

2ω, 2 ` 3ω,´1 ` ωu.

Table 4. Searching B0 when c “ 2

pz0, z1q β |β|
2

1 p0, 0q 1 1
2 p´1, 0q ´1 ` ω 3
3 p´1,´1q ´2 ´ 2ω 4
4 p0, 1q 2 ` 3ω 7
5 p0,´1q ´3ω 9
6 p1, 1q 4 ` 2ω 12
7 p1, 0q 3 ´ ω 13

General Bucket Construction Results for the Endomorphism Method.
Table 5 lists our new bucket set constructions for q “ p2 ´ ωqc, 2 ď c ď 10. We
also visualize the bucket construction for c “ 2 and c “ 3 in Fig. 6.2 and Fig. 6.2,
respectively.

Table 5. New Bucket Sets Constructions for q “ p2 ´ ωq
c, 2 ď c ď 10

q |q|
2 h |B| |B|{7c

p2 ´ ωq
2 72 46 9 0.184

p2 ´ ωq
3 73 31 71 0.207

p2 ´ ωq
4 74 23 470 0.196

p2 ´ ωq
5 75 19 3237 0.196

p2 ´ ωq
6 76 16 22565 0.192

p2 ´ ωq
7 77 13 157951 0.192

p2 ´ ωq
8 78 12 1104420 0.192

p2 ´ ωq
9 79 11 7731415 0.192

p2´ωq
10 710 10 54117148 0.192

6.3 Theoretical Analysis

The storage cost of precomputation results and the computation complexity of
computing MSM with precomputation of different algorithms are summarized
in Table 6. From the summary given in Table 1, it is easy to see that the choice
of h will affect the overall performance. To evaluate the MSM schemes, we first
search for the optimal value of h to minimize the computation cost, and then
calculate the corresponding storage6 and computation cost. The repaired LFG

6 Using compression techniques, we need to store one coordinate and one bit.



Fig. 5. The construction of the Hamiltonian Path for B when c “ 2

Fig. 6. The construction of the Hamiltonian Path for B when c “ 3



algorithm (p “ 2) and our algorithm (p “ 7) have similar storage costs while
our algorithm gains margin computation performance improvements in several
cases. With efficient endomorphism, our algorithm (p “ 2´ω) achieves significant
storage savings without sacrificing the computation efficiency.

Table 6. Theoretical Comparison of Storage and Computation Cost of Computing
Sn,r over G1 with Different Methods

Repaired LFG Ours p “ 7 Ours p “ 2 ´ ω

n q h S C q h S C q h S C

210 213 20 2.98 MB 2.33 ˆ 104 75 19 2.93 MB 2.33 ˆ 104 p2 ´ ωq
5 19 0.98 MB 2.39 ˆ 104

211 214 19 5.67 MB 4.45 ˆ 104 75 19 5.87 MB 4.38 ˆ 104 p2 ´ ωq
5 19 1.96 MB 4.44 ˆ 104

212 214 19 11.34 MB 8.55 ˆ 104 75 19 11.74 MB 8.47 ˆ 104 p2 ´ ωq
5 19 3.91 MB 8.53 ˆ 104

213 216 16 19.17 MB 1.54 ˆ 105 76 16 19.95 MB 1.59 ˆ 105 p2 ´ ωq
6 16 6.65 MB 1.63 ˆ 105

214 216 16 38.33 MB 2.93 ˆ 105 76 16 39.9 MB 2.98 ˆ 105 p2 ´ ωq
6 16 13.3 MB 3.02 ˆ 105

215 216 16 76.67 MB 5.71 ˆ 105 76 16 79.8 MB 5.77 ˆ 105 p2 ´ ωq
6 16 26.6 MB 5.81 ˆ 105

216 219 14 134.56 MB 1.10 ˆ 106 77 13 131.43 MB 1.05 ˆ 106 p2 ´ ωq
7 13 43.81 MB 1.08 ˆ 106

217 220 13 250.35 MB 2.06 ˆ 106 77 13 262.86 MB 1.97 ˆ 106 p2 ´ ωq
7 13 87.62 MB 2.01 ˆ 106

218 220 13 500.7 MB 3.90 ˆ 106 77 13 525.73 MB 3.81 ˆ 106 p2 ´ ωq
7 13 175.24 MB 3.83 ˆ 106

219 220 13 1 GB 7.56 ˆ 106 77 13 1.05 GB 7.47 ˆ 106 p2 ´ ωq
7 13 358.4 MB 7.51 ˆ 106

220 222 12 1.85 GB 1.45 ˆ 107 78 12 1.95 GB 1.46 ˆ 107 p2 ´ ωq
8 12 665.6 MB 1.48 ˆ 107

221 222 12 3.71 GB 2.82 ˆ 107 78 12 3.91 GB 2.82 ˆ 107 p2 ´ ωq
8 12 1.31 GB 2.84 ˆ 107

S: storage cost C: computation cost in the number Add operations

6.4 Implementation and Experimental Evaluation Results

We only consider the computation of Sn,r over G1 in our implementation, which
can be easily extended to G2. Specifically, we implement the repaired LFG
method, our general optimal bucket construction with p “ 7 and M “ t1, 2, 3u,
and endomorphism with the efficient bucket construction. We use the code base7

of [11] as much as possible to make a fair evaluation.
All experiments are done on an Apple MacBook Pro with 3.2 GHz M1 Max

chip and 64GB memory, and we summarize the results in Table 7. As shown
in Table 7, the repaired LFG implementation with p “ 2 and M “ t1, 2, 3u

is about 15.8% to 40.6% faster than the Pippenger one in the blst library. In
addition, the general optimal bucket construction with p “ 7 can achieve the
similar performance with the repaired LFG method with p “ 2 and the same
multiplier set M “ t1, 2, 3u. For certain values of n our method with p “ 7 can
achieve a modest improvement of up to 4.4% such as for n “ 217, when compared
to the repaired LFG approach. For the endomorphism case with p “ 2 ´ ω and
the multiplier set M “ t1u, we conducted a proof-of-concept implementation
for the case of q “ p2 ´ ωqc, c “ 2. For larger n’s considered in this paper,
c “ 5, 6, 7 or 8 leads to the best performance based on theoretical complexity
analysis in Table 6. While the endomorphism can be leveraged to save storage

7 https://github.com/LuoGuiwen/MSM_blst/tree/master



cost effectively, the complex scalar recording process is much more involved than
their integer counterpart. Moreover, the bucket needs to be pre-constructed and
sorted for a selected base q “ p2 ´ ωqc.

Table 7. Experimental Results for Computing Sn,r over G1 with Different Methods

n Pippenger Repaired LFG Our Method Our Method
Implementation p “ 2 p “ 7 p “ 2 ´ ω, c “ 2
in blst8 M “ t1, 2, 3u M “ t1, 2, 3u M “ t1u

210 15.28 ms 9.08 ms 9.07 ms 18.87 ms
211 27.40 ms 17.70 ms 17.13 ms 38.94 ms
212 49.15 ms 32.93 ms 32.78 ms 74.47 ms
213 90.50 ms 61.34 ms 62.17 ms 153.84 ms
214 166.07 ms 113.27 ms 116.27 ms 297.96 ms
215 305.24 ms 217.49 ms 217.49 ms 586.75 ms
216 556.75 ms 440.38 ms 423.15 ms 1.24 s
217 1.05 s 849.76 ms 809.67 ms 2.63 s
218 1.95 s 1.54 s 1.51 s 4.93 s
219 3.57 s 2.94 s 2.91 s 9.62 s
220 6.91 s 5.85 s 5.86 s 19.83 s
221 13.3 s 11.2 s 11.2 s 39.48 s

7 Conclusion

MSM is the major computation bottleneck for the proof generation of many
pairing-based zkSNARK schemes. A major direction for MSM acceleration is
making trade-offs between storage and computation. Both the popular Pippenger
algorithm and the recent LFG algorithm follow this direction.

In this paper, we revised an important property proposed in the LGF algo-
rithm and designed a more efficient MSM algorithm. The performance of the
new algorithm is verified by both theoretical analysis and experiment. Further-
more, we proposed a method to find the optimal bucket size under the LGF
framework.

We also introduced a bucket-amenable recoding using fast endomorphisms
on j “ 0 elliptic curves to ideally divide the storage requirement by 3, at almost
no performance penalty, compared to our LFG already optimized algorithm. We
showed how this method can be used to speed up Pippenger’s algorithm. Future
investigations will be devoted to optimizing the construction of bucket sets in
the endomorphism case and to deal with larger multiplier sets.

8 https://github.com/supranational/blst
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