
1

Lattice-based Broadcast Authenticated Searchable
Encryption for Cloud Storage

Yibo Cao, Shiyuan Xu, Xiu-Bo Chen, Gang Xu, Siu-Ming Yiu, and Zongpeng Li

Abstract—For security issue, data in cloud is encrypted.
Searching encrypted data (without decryption) is a practical and
important problem. Public key authenticated encryption with
keyword search (PAEKS) enables the retrieval of encrypted data,
while resisting the insider keyword guessing attacks (IKGAs).
Most PAEKS schemes only work with single-receiver model, ex-
hibiting very limited applicability. To address this concern, there
have been researches on broadcast authenticated encryption with
keyword search (BAEKS) to achieve multi-receiver ciphertext
search. But to our best knowledge, existing BAEKS schemes
are not quantum resistant. In this paper, we propose lattice-
based BAEKS, the first post-quantum broadcast authenticated
encryption with keyword search in multi-receiver model. In
particular, we leverage several lattice sampling algorithms and
rejection sampling technique to construct our BAEKS scheme.
We also incorporate the minimal cover set technique and lattice
basis extension algorithm to construct an enhanced version,
namely FS-BAEKS, which addresses the secret key leakage
problem. We give a rigorous security analysis of our schemes.
For the efficiency of BAEKS and Test algorithms in our BAEKS
scheme, the computational overheads are at least 2x and 89x
faster than the state-of-the-art schemes respectively, which is
practical for cloud storage systems.

Index Terms—Cloud storage, broadcast authenticated search-
able encryption, lattice, forward security.

I. INTRODUCTION

CLOUD storage provides users with searching and sharing
their data between data senders and receivers without

any geographical restrictions. It has numerous benefits, such as
reducing local data maintenance, boosting data circulation, and
improving service elasticity [1], [2]. Meanwhile, data privacy
leakage problem in cloud storage is commonplace. In order to
ensure data security as well as availability, a straightforward
idea is to encrypt the data before outsourcing to the cloud
server. Boneh et al. formalized the public key encryption with
keyword search (PEKS) scheme [3], where a data receiver
can search the keyword ciphertext uploaded by data sender,
as depicted in Fig. 1. To resist the insider keyword guessing

Y. Cao and X.-B. Chen are with the Information Security Center, State
Key Laboratory of Networking and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications, Beijing, China. (E-mail: caoy-
ibo@bupt.edu.cn, flyover100@163.com).

S. Xu and S.-M. Yiu are with the Department of Computer Sci-
ence, The University of Hong Kong, Pok Fu Lam, Hong Kong. (E-mail:
syxu2@cs.hku.hk, smyiu@cs.hku.hk).

G. Xu is with the School of Information Science and Technology, North
China University of Technology, Beijing, China, and also with the Information
Security Center, State Key Laboratory of Networking and Switching Tech-
nology, Beijing University of Posts and Telecommunications, Beijing, China.
(E-mail: gx@ncut.edu.cn).

Z. Li is with Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing, 100084, China. (E-mail: zongpeng@whu.edu.cn).

attacks (IKGAs), Huang et al. constructed public key authen-
ticated encryption with keyword search (PAEKS) schemes [4]
by involving the secret key of data sender in the encryption
algorithm, which has attracted widespread attention.

Most PAEKS primitives are primarily designed for single-
receiver model [4], [5], [6], [7], [8], [9]. However, multi-
receiver model are more common in real-world cloud storage
systems [10]. Specifically, in the cloud-assisted healthcare
scenarios, electronic medical records (EMR) are stored in
a cloud server [11], [12], and when different departments’
physicians need to access the same patient’s EMR, a PAEKS
scheme that supports multiple users will be more convenient.
To address this concern, braodcast authenticated encryption
with keyword search (BAEKS) was proposed [13], [14], [15],
supporting multiple receivers to search keyword ciphertext
uploaded by a data sender.

Unfortunately, existing BAEKS schemes still face two chal-
lenges. On the one hand, with the advancement of quantum
computing, the Shor quantum search algorithm [16] poses
a significant threat to classical cryptography. To resist the
quantum computing attacks, several researchers introduced
lattice-based hardness to construct cryptographic schemes [6],
[7], [8], [9], [17], [18], [19], [20]. However, to the best of
our knowledge, all existing BAEKS schemes are vulnerable to
quantum computing attacks. As such, how to design a BAEKS
scheme that enjoy quantum-safety has become the first crucial
challenge.

On the other hand, as for practical cloud applications, one
malicious adversary has the ability to calculate a trapdoor
corresponding to a specific keyword if it obtained the data
receivers’ secret key. Then, the adversary can send it to cloud
server in order to match the keyword ciphertext, thereby sig-
nificantly compromising the security of keywords. To address
this concern, numerous researchers introduced the notion of
forward security [19], [21], [8], [22], but there does not exist
an existing forward secure BAEKS scheme as so far. To avoid
the aforementioned secret key leakage issues, how to construct
a forward secure BAEKS becomes the second challenge.

In this paper, we propose lattice-based BAEKS, the first
broadcast authenticated encryption with keyword search over
lattice. It supports multi-receiver ciphertext search and with-
stand the threat from cloud server (refers to IKGAs), protecting
the data privacy in the cloud storage systems. Furthermore, we
extend our BAEKS scheme to propose the FS-BAEKS scheme,
which can solve the secret key leakage problems.

To solve the first challenge, we encrypt the keyword with
a data sender’s secret key and data receivers’ public keys to
support multi-receiver models. To calculate a search trapdoor,

2

Cloud server

(CS)

Trusted Authority

 (TA)

Data receiverData sender

Fig. 1. The ciphertext search model for cloud storage.

a straightforward idea is to use SamplePre or SampleLeft
algorithm, however, it is unable for each receiver in the
data receivers set to search the keyword ciphertext, which is
a difficult issue to be concerned. In our design, we come
with a non-trivial way, by utilizing the SampleBasis and
GenSamplePre algorithms with inputting a data receiver’s
secret key (lattice basis matrix) to generate an appropriate
search trapdoor. More specially, our scheme has efficient
computational overhead than current BAEKS schemes [13],
[14] in terms of BAEKS and Test algorithms. To address the
second challenge, inspired by Yu et al. [21], we introduce the
binary tree structure, minimal cover set technique and lattice
basis extension algorithm to update the receivers’ secret key.
Consequently, even if the secret key of a specific receiver is
compromised in current time period, the adversary is unable
to generate a valid search trapdoor in the past time periods
to search the ciphertext. In a nutshell, our contributions are
summarized as follows:

• We present a novel scheme namely lattice-based broad-
cast authenticated encryption with keyword search
(BAEKS) in a quantum setting, as well as defining system
models, formal definitions and two security models for it.
Then, in order to ensure the security of data receivers’ se-
cret key, we propose lattice-based forward secure broad-
cast authenticated encryption with keyword search (FS-
BAEKS) as the enhanced verison of BAEKS. As far as
we know, numerous existing PEKS primitives cannot sup-
port multi-receiver model, and are vulnerable to several
attacks, e.g. quantum computing attacks, IKGAs, secret
key leakage attacks. Our schemes have the ability to resist
all of aforementioned attacks simultaneously.

• We construct BAEKS scheme leveraged lattice algebra
structure, several lattice sampling algorithms and rejec-
tion sampling technique, which supports multi-receiver
ciphertext search to protect the data privacy in cloud
storage systems. Concretely, through the SampleBasis
and GenSamplePre algorithms, each receiver in the data
receivers set can generate a proper search trapdoor. More-
over, based on our BAEKS, the binary tree structure,
minimal cover set technique and lattice basis extension

algorithm [21] is introduced, achieving time periods
representation and data receivers’ secret key update to
construct FS-BAEKS scheme.

• Our BAEKS and FS-BAEKS schemes have been proven
to be secure in IND-CKA and UF-IKGA models, which
can be reduced to the LWE and SIS hardness in the
random oracle model, respectively. Performance evalua-
tion and comparison manifests that our BAEKS and FS-
BAEKS schemes are more computationally efficient in
terms of BAEKS and Test algorithms compared to the
prior arts [13], [14]. In particular, for the computational
overhead of our BAEKS scheme, the BAEKS algorithm
delivers at least 4× and 2×, and the Test algorithm brings
at least 62× and 89× faster over prior arts [13], [14],
respectively. Moreover, the communication overhead has
acceptable growth trend with the increment of receivers,
time periods or security parameter.

II. RELATED WORKS

Huang et al. introduced a public-key authenticated encryp-
tion with keyword search (PAEKS) scheme to implement
authentication through a data owner’s secret key, which can
ensure that the keyword encryption procedure can only be
performed by the data owner, and demonstrated a rigorous
prove for proposed scheme in the random oracle model (ROM)
[4]. Liu et al. put forward a generic construction for PAEKS
and an instantiation over lattice to achieve the anti-quantum
property [6], and enhanced its security [23]. Furthermore,
Cheng et al. pointed out some security issues [23], [15], and
constructed two PAEKS schemes over lattice [7]. Yao et al.
then constructed a CCA-secure PAEKS scheme over ideal
lattice, and demonstrated that the resistance of PAEKS scheme
to IKGAs is equivalent to the unforgeability of keyword
ciphertexts [9].

Since encrypted messages can be decrypted by a group
of specified data users, broadcast encryption (BE), initialized
by Fiat et al. [24], is more practical compared to one-to-one
encryption and is exclusively used in numerous scenarios (e.g.
content subscription and digital rights management). To miti-
gate the public key certificates storage overhead, Delerablèe et
al. put forward an identity-based broadcast encryption scheme
(IBBE), which keeps the ciphertext size constant and realized
the CCA security in the ROM [25]. After that, Boneh et al.
provided a broadcast hierarchical identity-based encryption
(HIBE) scheme with short ciphertext [26]. Gentry et al.
implemented the security of IBBE under the standard model
[27]. Ali et al. foresaw the combinability of BE and PEKS,
and constructed a broadcast searchable keyword encryption
scheme, which is a novel cryptographic primitive to search the
keyword ciphertext encrypted by the public key of a group of
specified data users [28]. Futhermore, an efficient broadcast
encryption with keyword search (BEKS) is introduced by
Kiayias et al., providing constant secret key and trapdoor size,
and the server’s storage overhead is independent of the number
of data receivers, but is not resistant to IKGAs [10]. Enlight-
ened by the concept of PAEKS, Liu et al. constructed a broad-
cast authenticated encryption with keyword search (BAEKS)

3

TABLE I
GLOSSARY

Acronym Definition

[d] the number set {1, · · · , d}
i = [d] the iteration of each element in set

{1, 2, · · · , d} with variable i
l the number of data receivers
k the length of a keyword
τ the level number of binary tree
T the number of time period, where T = 2τ

W the keyword set
ck the keyword owned by data sender
tk the keyword to be searched by data receiver
(pkS , skS) the public and secret keys of data sender
(pkR,i, skR,i) the public and secret keys of data receiver i,

where i ∈ [l]
(pkR,i, skR,i,t) the public key and secret key of data receiver i

with time period t
CT the keyword ciphertext
CTt the keyword ciphertext with time period t
TD the search trapdoor calculated by data receiver

i, where i ∈ [l]
TDt the search trapdoor calculated by data receiver

i with time period t, where i ∈ [l]

cryptographic primitive to resist to IKGAs, and the ciphertext
and trapdoor security was proved under the DBDH assumption
[13]. In 2023, Mukherjee introduced a more stronger security
model, and ensured the ciphertext and trapdoor security in
the standard model [14]. Emura et al. put forward a generic
construction of fully anonymous BAEKS, which provides the
anonymity and consistency of keyword ciphertext and supports
multi-receiver model [15]. However, none of aforementioned
schemes can resist to quantum computing attacks, and there
exists no post-quantum BAEKS scheme as so far.

In 2019, a lattice-based forward secure public key with
keyword search (FS-PEKS) scheme is proposed by Zhang
et al., which utilized lattice basis delegation to update the
secret key [29]. After that, Yu et al. introduced the binary
tree structure, minimal cover set technique and lattice basis
extension to construct an efficient FS-PEKS scheme over
lattice [21]. Then, Yang et al. presented a forward secure
identity-based PEKS, namely FS-IBEKS, which instantiated
two schemes over lattice to ensure security in the ROM
and standard model, respectively [30]. For PAEKS primitive,
Xu et al. constructed a forward secure PAEKS over lattice,
namely FS-PAEKS, to achieve the IND-CKA and IND-IKGA
secure [8]. However, there does not exist BAEKS scheme with
forward security till now.

To sum up, there exists a valuable requirement to construct a
BAEKS scheme and extend it to FS-BAEKS for achieving the
multi-receiver support, IKGAs-resilience, quantum-resistance,
and forward security.

III. PRELIMINARIES

We provide a concise summary of the notations. Table I
clarifies the acronyms and descriptions utilized in this paper.

Definition 1: [31] Suppose a matrix M =
(m1,m2, · · · ,mm) is composed of m linearly
independent vectors, the lattice Λ is defined as:

Λ = Λ(M) = {x1m1+x2m2+· · ·+xmmm|xi ∈ Z, i ∈ [m]},
where M is a lattice basis of Λ.

Definition 2: [32] Suppose three integers n, m, q, and a
matrix M ∈ Zn×m

q , a q-ary integer lattice is defined as:

Λq(M) := {v ∈ Zm|∃s ∈ Zn
q ,M

⊤s = v mod q}.

Λ⊥
q (M) := {v ∈ Zm|Mv = 0 mod q}.

Λu
q (M) := {v ∈ Zm|Mv = u mod q}.

Definition 3: Suppose a parameter σ ∈ R+, a center c ∈
Zm, and any vector v ∈ Zm, the discrete Gaussian distribution
over Λ is defined as: DΛ,σ,c(v) =

ρσ,c(v)
ρσ,c(Λ) , for ∀v ∈ Λ, where

ρσ,c(v) = exp(−π ∥v−c∥2

σ2) and ρσ,c(Λ) =
∑

v∈Λ ρσ,c(v).
Definition 4: [33] Suppose several positive integer n,m,q,

and an error distribution χ that is usually regarded as the
discrete Gaussian distribution, the LWEn,m,q,χ hardness is
defined as distinguishing two pairs (M,M⊤s+e) and (M,v),
where M← Zn×m

q , s← Zn
q , e← χm, and v← Zm

q .
Definition 5: [32] Suppose several positive integer n,m,q,

the SISn,m,q,β hardness is defined as finding a non-zero vector
v ∈ Zm \ {0} s.t. Av = 0 and ∥v∥ ≤ β, where A ∈ Zn×m

q ,
and β ≥

√
mqn/m.

Lemma 1: [34] Suppose a lattice Λ and its lattice basis TA,
we obtain: Pr[∥v∥ > σ

√
m : v ← DΛ,σ] ≤ negl(m), where

σ ≥ ∥T̃A∥ · ω(
√
logm), and negl(·) is a negligible function.

Lemma 2: [34] Suppose three positive integers n, m, q,
where q ≥ 2, and m ≥ 5n log q. After input several posi-
tive integers n,m, q, the probabilistic polynomial time (PPT)
algorithm TrapGen(n,m, q) will calculate a uniform matrix
A ∈ Zn×m

q together with a lattice basis TA ∈ Zm×m
q for

Λ⊥
q (A), where A is statistically close to uniform distribution

on Zn×m and ∥T̃A∥ ≤ mω(
√
logm).

Lemma 3: [34] Suppose three positive integers n, m, q,
where q ≥ 2, and m ≥ 2n log q. After input a matrix
A ∈ Zn×m

q , a lattice basis TA ∈ Zm×m
q for Λ⊥

q (A), and
a Gaussian parameter σ ≤ ∥T̃A∥ · ω(

√
logm), the PPT algo-

rithm SamplePre(A,TA,u, σ) will calculate a vector e ∈ Zm
q

statistically close to DΛu
q (A),σ , such that Ae = u mod q.

Suppose four positive integers n, m, q, k, a matrix A =
(A1 | · · · | Ak) ∈ Zn×km

q , and a set M = {i1, i2, · · · , ij} ⊂
[k], we set AM := (Ai1 | Ai2 | · · · | Aij) ∈ Zn×jm

q . Then,
we introduce the Lemma 4 and 5 as follows:

Lemma 4: [35] Suppose four positive integers n, m, q, k,
where q ≥ 2, and m ≥ 2n log q. After input a matrix A ∈
Zn×km
q , a lattice basis TAM for Λ⊥

q (AM), a setM⊂ [k], and

a Gaussian parameter L ≥ ∥T̃AM∥ ·
√
km · ω(

√
log km), the

PPT algorithm SampleBasis(A,TAM ,M, L) will calculate
a matrix T′

A, where T′
A is a lattice basis of Λ⊥

q (A) and
∥T̃′

A∥ ≤ L with overwhelming probability.
Lemma 5: [35] Suppose four positive integers n, m, q,

k, where q ≥ 2, and m ≥ 2n log q. After input a ma-
trix A ∈ Zn×km

q , a lattice basis TAM for Λ⊥
q (AM), a

set M ⊂ [k], a vector u ∈ Zn
q , and a Gaussian pa-

rameter σ ≥ ∥T̃AM∥ · ω(
√
log km), the PPT algorithm

GenSamplePre(A,TAM ,M,u, σ) will output a vector e ∈
Zkm statistically close in DΛu

q (A),σ , such that Ae = u mod q.

4

Cloud server

(CS)

Trusted authority (TA)

Data receivers

Keyword ciphertextData sender

 Extract and

encrypt keywords
 Upload keyword

ciphertext

 Generate and upload

a search trapdoor

 Test the keyword ciphertext

and search trapdoor

 Return the search result

 System initialization

 Generate public key and secret key

for data sender
 Generate public key and secret key

for each data receiver

Fig. 2. System models of our BAEKS scheme for cloud storage.

Lemma 6: [36] Suppose four positive integers n, m, m′,
q, two matrices A ∈ Zn×m, A′ ∈ Zn×m′

. After input
A′′ = (A | A′) ∈ Zn×(m+m′)

q , and a basis TA ∈ Zm×m
q

for Λ⊥
q (A), the deterministic polynomial time (DPT) algo-

rithm ExtBasis(A′′,S) will calculate a lattice basis TA′′ for
Λ⊥
q (A

′′) ⊆ Zm×m′′

q , where ∥T̃A∥ = ∥T̃A′′∥, m′′ = m+m′.
Lemma 7: [37] Suppose a vector space W = {w ∈ Zm :

∥w∥ ≤ T}, a mapping h : W → R, a constant M , and a
Gaussian parameter σ = ω(T

√
logm), where w ← h, the

following two distributions are defined as:
1) For w← h, u← Dm

σ , get (u,w) with probability 1
M .

2) For w ← h, u ← Dm
w,σ , get (u,w) with probability

min(
Dm

σ

M ·Dm
w,σ

, 1).

Moreover, the statistical distance between these two distri-
butions is within 2−ω(log m)

M .

IV. FRAMEWORK DESCRIPTION

The system models, formal definitions, and security models
of our BAEKS scheme are described in this section.

A. System Models

The system models of our BAEKS scheme are illustrated
in Fig. 2, which contains four participating entities: trusted
authority, data sender, data receivers, and cloud server.

1) Trusted authority (TA): TA is charged with executing
the Setup algorithm to obtain the public parameters and
calculate the public and secret keys for data sender and
data receivers.

2) Data sender: Data sender owns massive data from differ-
ent industries (e.g., medical data, logistics data, research
data, etc.), extracts and encrypts the keywords from these
data with its own secret key and a set of data receivers’
public keys to calculate keyword ciphertext, and sends
them to the cloud server.

3) Data receivers: Data receivers consist of users from
different industries (e.g., doctor, manufacturer, researcher,
etc.). To facilitate our BAEKS implementation, we as-
sume that there are at most l data receivers. When a data
receiver has a search requirement (e.g., the doctor in Fig.
2), it generates a search trapdoor by calling the Trapdoor

algorithm, and uploads it to the cloud server. If there
exists a matching ciphertext, it receives the search result
from the cloud server.

4) Cloud server (CS): After receiving the keyword cipher-
text from a data sender and the search trapdoor from a
specific data receiver, CS executes the Test algorithm to
match the keyword ciphertext and the search trapdoor. If
the match is successful, CS sends the search result to the
data receiver. Otherwise, CS sends Null to it.

B. Formal Definitions

Our BAEKS scheme contains six algorithms ΠBAEKS =
(Setup,KeyGenS ,KeyGenR,BAEKS,Trapdoor,Test), the
formal definitions of these algorithms are described as:

• pp← Setup(1λ): After inputting a security parameter λ,
this algorithm publishes a public parameter pp.

• (pkS , skS) ← KeyGenS(pp,TA): After inputting the
public parameter pp and a basis TA, this PPT algorithm
publishes the public and secret keys (pkS , skS) of a data
sender.

• (pkR,i, skR,i) ← KeyGenR(pp): For i = [l], after
inputting the public parameter pp, this PPT algorithm
publishes the public and secret keys (pkR,i, skR,i) of
the data receiver i.

• CT← BAEKS(pp, ck, skS , {pkR,1,pkR,2, · · · ,pkR,l}):
After inputting the public parameter pp, a keyword
ck ∈ W , a secret key skS of data sender, a set of
data receivers’ public keys {pkR,1,pkR,2, · · · ,pkR,l},
the data sender invokes this PPT algorithm to get the
ciphertext CT corresponding to ck.

• TD← Trapdoor(pp, tk,pkS , {pkR,1,pkR,2, · · · ,pkR,l},
skR,γ): After inputting the public parameter
pp, a keyword tk ∈ W , a public key pkS of
data sender, a set of data receivers’ public keys
{pkR,1,pkR,2, · · · ,pkR,l}, and a secret key skR,γ of
data receiver γ, the data receiver γ invokes this PPT
algorithm to get the trapdoor TD corresponding to tk.

• 1 or 0← Test(CT,TD): The server processes this DPT
algorithm to test if CT and TD correspond to the same
keyword. If yes, it outputs 1. Otherwise, it outputs 0.

5

C. Security Models

In this section, we define two security models of BAEKS
scheme, namely ciphertext indistinguiability against chosen
keyword attacks (IND-CKA), and ciphertext unforgability
against insider keyword guessing attacks (UF-IKGA).

1) IND-CKA security: For the first part, we define the IND-
CKA security model ExpIND-CKA

BAEKS,A(λ) as follows:

1) Setup: Given a security parameter λ and many LWE
instances, a challenger C invokes the Setup(1λ) algorithm
to calculate pp. Then, C processes the KeyGenS(pp,TA)
and KeyGenR(pp) algorithms to obtain a challenge
sender’s public and secret keys (pk∗

S , sk
∗
S) and the chal-

lenger receivers’ public and secret keys (pk∗
R,i, sk

∗
R,i),

where i = [l], respectively. Then, C returns pp, pk∗
S ,

{pk∗
R,1,pk

∗
R,2, · · · ,pk

∗
R,l} to the adversary A.

2) Phase 1: A can adaptively perform three oracles in
polynomial times.

a) Hash Queries OH1
: Given a keyword ck ∈ W from

A, C maintains a list LH1
and searches ck in it, and

then returns the answer to A.
b) Ciphertext Queries OCT: Given a keyword ck ∈
W and a set of data receivers’ public keys
{pkR,1,pkR,2, · · · ,pkR,l} from A, C invokes the
BAEKS(pp, ck, sk∗

S , {pkR,1,pkR,2, · · · ,pkR,l}) al-
gorithm to calculate the ciphertext CT and sends it
to A.

c) Trapdoor Queries OTD: Given a keyword tk ∈ W ,
a public key pkS of data sender, a set of data
receivers’ public keys {pk∗

R,1,pk
∗
R,2, · · · ,pk

∗
R,l}

and γ ∈ [l] from A, C invokes the
Trapdoor(pp, tk,pkS , {pk

∗
R,1,pk

∗
R,2, · · · ,pk

∗
R,l},

sk∗
R,γ) to calculate the trapdoor TD and returns to A.

3) Challenge: A chooses two challenge keywords
ck∗

0, ck
∗
1 ∈ W which have not been queried in Phase 1

as two challenge keywords, and sends them to C. After
that, C selects a random bit ξ ∈ {0, 1} and invokes
the BAEKS(ck∗

ξ , sk
∗
S , {pk

∗
R,1,pk

∗
R,2, · · · ,pk

∗
R,l})

algorithm to obtain a challenge ciphertext CT∗
ξ . Finally,

C returns CT∗
ξ to A.

4) Phase 2: A executes these queries as above, neither ck∗
0

nor ck∗
1 can be queried.

5) Guess: A guess bit ξ′ ∈ {0, 1} is outputted by A. If
ξ′ = ξ, we say that A wins this game.

We define the advantage of A to win the above game
ExpIND-CKA

BAEKS,A(λ) as: AdvIND-CKA
BAEKS,A(λ) = |Pr[ξ′ = ξ]− 1

2 |.
Definition 6: Our BAEKS primitive satisfies IND-CKA

security, if any PPT malicious adversary wins the above game
ExpIND-CKA

BAEKS,A(λ) with a negligible advantage.
2) UF-IKGA security: For the second part, we define the

UF-IKGA security model ExpUF-IKGA
BAEKS,A(λ) as follows:

1) Setup: This part is same as the corresponding part in
ExpIND-CKA

BAEKS,A(λ).
2) Phase 1: A can adaptively perform three oracles in

polynomial times.
a) Hash Queries OH2 : Given a tuple (c1, b) corresponding

to the keyword ciphertext CT from A, C maintains a

list LH2
and searches (c1, b) in it, and then returns the

answer to A.
b) Ciphertext Queries OCT: This part is same as the

corresponding part in ExpIND-CKA
BAEKS,A(λ).

c) Trapdoor Queries OTD: This part is same as the
corresponding part in ExpIND-CKA

BAEKS,A(λ).
3) Forgery: A chooses a challenge keyword ck∗ ∈ W and a

number γ ∈ [l], and then sends them to C. Subsequently,
C invokes the Trapdoor(ck∗,pk∗

S , {pk
∗
R,1,pk

∗
R,2,

· · · ,pk∗
R,l}, sk

∗
R,γ) algorithm to obtain TD∗, and

returns it to A. After that, A forges a ciphertext CT∗

corresponding to the challenge keyword ck∗, and wins
this game if the Test(CT∗,TD∗) algorithm publishes 1.

We define the advantage of A to win the
above game ExpUF-IKGA

BAEKS,A(λ) as: AdvUF-IKGA
BAEKS,A(λ) =

|Pr[Test(CT∗,TD∗) = 1]|.
Definition 7: Our BAEKS primitive satisfies UF-IKGA

security, if any PPT adversary wins the above game
ExpUF-IKGA

BAEKS,A(λ) with a negligible advantage.

V. OUR PROPOSED BAEKS SCHEME

We describe our proposed BAEKS scheme in detail.
A. Concrete Construction

• Setup(1λ): A security parameter 1λ is inputted by the
TA, and then the public parameter pp is outputted.

1) Let the system parameters n, m, q, L, σ, k, and l.
2) Invoke (A,TA) ← TrapGen(n,m, q) to generate a

uniformly matrix A ∈ Zn×m
q and a basis TA ∈ Zm×m

for Λ⊥
q (A).

3) Choose a vector u $← Zn
q uniformly.

4) Define two hash functions H1 : {0, 1}k → Zn×m
q , and

H2 : Zn
q × Z(l+1)m

q × {0, 1} → {−1, 0, 1}m.
5) Output pp := (n,m, q, L, σ, k, l,A,u, H1, H2) as the

public parameter.
• KeyGenS(pp,TA): The TA inputs a public parameter pp

and a basis TA and then returns the public and secret keys
(pkS , skS) to a data sender according to the following
procedures.

1) Invoke (AS ,TAS
)← TrapGen(n,m, q) to generate a

uniformly matrix AS ∈ Zn×m
q and a basis TAS

∈
Zm×m for Λ⊥

q (AS).
2) Parse the matrix AS = (aS,1,aS,2, · · · ,aS,m), which

each vector aS,i ∈ Zn for i = [m].
3) For i = [m], sample a vector si ∈ Zm

q as
si ← SamplePre(A,TA,aS,i, σ), where si s.t.
Asi = aS,i mod q and si is statistically distributed
in Dm

Λ
aS,i
q (A),σ

.

4) Let a matrix S = (s1, s2, · · · , sm) ∈ Zm×m, where
AS = As mod q.

5) Output pkS := AS and skS := (TAS
,S) as the public

and secret keys of data sender.
• KeyGenR(pp): For i = [l], the TA inputs a public

parameter pp and then returns the public and secret keys
(pkR,i, skR,i) to the data receiver i according to the
following procedures.

6

1) Invoke (AR,i,TAR,i
)← TrapGen(n,m, q) to generate

a uniformly matrix AR,i ∈ Zn×m
q and a basis TAR,i

∈
Zm×m for Λ⊥

q (AR,i).
2) Output pkR,i := AR,i and skR,i := TAR,i

as the
public and secret keys of data receiver.

• BAEKS(pp, ck, skS , {pkR,1,pkR,2, · · · ,pkR,l}): A
data sender inputs a public parameter pp, a keyword
ck ∈ W , a sender’s secret key skS , a set of receivers’
public keys {pkR,1,pkR,2, · · · ,pkR,l}, and then
performs the following procedures.

1) Let a matrix AR = (AR,1 | AR,2 | · · · | AR,l) ∈
Zn×lm
q .

2) Calculate a matrix Ack = (AR | H1(ck)) ∈
Zn×(l+1)m.

3) Select a random vector v
$← Zn

q uniformly, a random

number b ∈ {0, 1}, two noise vectors x0
$← χlm, x1

$←
χm, and a noise number x $← χ.

4) Calculate a vector c1 = A⊤
ckv + (x⊤

0 | x⊤
1)

⊤ ∈
Z(l+1)m
q , and a number c2 = u⊤v+ x+ b · ⌊ q2⌋ ∈ Zq .

5) Select a vector y $← Zm
q in Dm

σ uniformly.
6) Calculate a vector η1 = H2(Ay mod q, c1, b) ∈
{−1, 0, 1}m and another vector η2 = Sη1 + y ∈ Zm

q

with the probability min(
Dm

σ

M ·Dm
Sη1,σ

, 1).
7) Output CT := (c1, c2,η1,η2) as the ciphertext corre-

sponding to the keyword ck.
• Trapdoor(pp, tk,pkS , {pkR,1,pkR,2, · · · ,pkR,l}, skR,γ):

A data receiver γ ∈ [l] inputs a public parameter pp, a
keyword tk ∈ W , a sender’s public key pkS , a set of
receivers’ public keys {pkR,1,pkR,2, · · · ,pkR,l}, and
secret keys skR,γ with receiver γ, and then performs the
following procedures.

1) Calculate Atk,γ = (AR,γ | H1(tk)) ∈ Zn×2m
q and

Atk = (AR,1 | · · · | AR,l | H1(tk)).
2) Invoke TAtk,γ

← SampleBasis(Atk,γ ,TAR,γ
, {1}, L)

to obtain a basis TAtk,γ
∈ Z2m×2m for Λ⊥

q (Atk,γ).
3) Sample a vector εi ∈ Z(l+1)m as ε ←

GenSamplePre(Atk,TAtk,γ
, {γ, l+1},u, σ), where ε

s.t. Atk ·ε = u mod q and ε is statistically distributed
in D(l+1)m

Λu
q (Atk)

.
4) Output TD := (ε,pkS) as the trapdoor corresponding

to the keyword tk.
• Test(CT,TD): The cloud server inputs the ciphertext CT

together with the trapdoor TD, and then processes the
following procedures.

1) Parse CT = (c1, c2,η1,η2) and TD = (ε,pkS =
AS).

2) Calculate a number d = c2 − ε⊤c1 ∈ Zq . If∣∣d− ⌊ q2⌋∣∣ < ⌊ q4⌋, set b′ = 1. Otherwise, set b′ = 0.

3) Check ∥η2∥
?
≤ 2σ

√
m and η1

?
= H2(Aη2 −

ASη1, c1, b
′). If these two conditions are satisfied,

output 1. Otherwise, output 0.

B. Parameters Setting and Correctness Analysis

• m ≥ ⌈5n log q⌉ for the TrapGen lemma.

• σ ≥ km · ω(log km) for SamplePre and GenSamplePre
lemmas.

• L ≥ O(m1.5) · ω(log km) for SampleBasis lemma.
• αq > 2

√
n for LWE hardness.

• qασ(l+1)mω(
√

log[(l + 1)m])+O(σ(l+1)m) < q
5 for

the correctness.
Based on the above parameter settings, we analyze the

correctness of our BAEKS. We set that the data sender owns its
the public and secret keys (pkS := AS , skS := (TAS

,S)), a
keyword ck ∈ W , and its ciphertext CT = (c1, c2, η1, η2).
Moreover, the data receiver γ owns its public keys and
secret keys (pkR,γ := AR,γ , skR,γ := TAR,γ

), and the
searched keyword tk ∈ W , and corresponding search trapdoor
TD = (ε,pkS).

On the one hand, for the condition
∣∣d− ⌊ q2⌋∣∣ < ⌊ q4⌋ in Test

algorithm.
• If ck = tk, we have:

d = c2 − ε⊤c1

= u⊤v + x+ b · ⌊q
2
⌋ − ε⊤(A⊤

ckv + (x⊤
0 | x⊤

1)
⊤)

= u⊤v + x+ b · ⌊q
2
⌋ − ε⊤(A⊤

tkv + (x⊤
0 | x⊤

1)
⊤)

= u⊤v + x+ b · ⌊q
2
⌋ − u⊤v − ((x⊤

0 | x⊤
1)εi)

⊤

= b · ⌊q
2
⌋+ x− ε⊤i (x

⊤
0 | x⊤

1)
⊤,

where x − ε⊤i (x
⊤
0 | x⊤

1)
⊤ is an error term, and it is

bounded by:

|x− ε⊤i (x
⊤
0 | x⊤

1)
⊤| ≤ |x|+ |(x⊤

0 | x⊤
1)

⊤|
≤ qασ(l + 1)mω(

√
log[(l + 1)m]) +O(σ(l + 1)m).

To recover b correctly, |x − ε⊤i (x
⊤
0 | x⊤

1)
⊤| < q

5 needs
to be fulfilled [38]. Then, we can obtain b′ = 1.

• If ck ̸= tk, we can obtain b′ = 1 with negligible
probability.

On the other hand, for the condition η1
?
= H2(Aη2 −

ASη1, c1, b
′), we have:

Aη2 −ASη1 = A(Sη1 + y)−ASη1

= ASη1 +Ay −ASη1 = Ay mod q.

Then, when b′ = 1, we can obtain:

η1 = H2(Ay mod q, c1, b
′) = H2(Aη2 −ASη1, c1, b

′).

To sum up, our BAEKS scheme satisfies correctness, where
Test algorithm has the ability to match the keyword ciphertext
CT with the search trapdoor TD successfully. Then, the cloud
server sends the data ciphertext corresponding to CT to the
data receiver γ as the search result. After receiving it, the
data receiver decrypts it, and generates the data plaintext
corresponding to the keyword tk.

C. Security Analysis

We demonstrate that BAEKS scheme is secure in the
aforementioned security model, i.e. IND-CKA and UF-IKGA.

Theorem 1: Assume that the LWEn,m,q,χ hardness holds,
our proposed lattice-based BAEKS scheme satisfies IND-CKA

7

security in the random oracle model. For any PPT adversary
A, if A can compromise our scheme with a non-negligible
advantage ϵ1, then we can construct a PPT challenger C
to solve the LWEn,m,q,χ hardness with a non-negligible
probability.
Proof If a PPT adversary A who has the ability to break the
IND-CKA security with a non-negligible advantage, we can
construct a challenger C who can solve the LWEn,m,q,χ hard-
ness. The following procedures show the interaction between
A and C.

Setup: To begin with, the challenger C obtains several LWE
instances (bj ,aj) ∈ Zq × Zn

q for j = 0, 1, · · · , (l + 1)m,
such that all bj are chosen randomly or equal to a⊤j v +

xj , where v ∈ Zn and xj
$← χ. Then, C invokes the

Setup(1λ) algorithm to obtain a public parameter pp =
(A,u, H1, H2), where A ∈ Zn×m

q , H1 : {0, 1}k → Zn×m
q ,

H2 : Zn
q × Zlm

q × {0, 1} → {−1, 0, 1}m and u = a0.
In addition, C executes (A∗

S ,T
∗
AS

) ← TrapGen(n,m, q) to
obtain the challenge public key pk∗

S = A∗
S of data sender.

For A∗
S = (a∗S,1,a

∗
S,2, · · · ,a∗S,m) and i = [m], C invokes

s∗i ← SamplePre(A,TA,aS,i, σ) to obtain s∗i . After that,
C obtains S∗ = (s∗1, s

∗
2, · · · , s∗m) ∈ Zm×m. Moreover, for

i = [l], C sets the challenge receivers’ public key pk∗
R,i =

A∗
R,i = (a1+(i−1)m,a2+(i−1)m, · · · ,am+(i−1)m). Finally, C

returns pp, pk∗
S , {pk∗

R,1,pk
∗
R,2, · · · ,pk

∗
R,l} to A.

Phase 1: A executes these following queries adaptively:

• Hash Queries OH1
: In this phase, A issues H1 queries

at most qH1
. Firstly, the challenger C creates a empty

list LH1
, and selects j∗ ∈ [qH1

] as a challenge query.
For the j-th query, if ckj has been queried, C re-
turns H1(ckj) in LH1 to A. Otherwise, if j∗ ̸=
j, C invokes TrapGen(n,m, q) to generate a matrix
AH ∈ Zn×m

q and a basis TAH
∈ Zm×m, lets

H1(ckj) = AH and TH1(ckj) = TAH
, and calculates

LH1
= LH1

∪ {ckj , H1(ckj),TH1(ckj)}. Otherwise, C
sets H1(ckj∗) = (alm+1,alm+2, · · · ,a(l+1)m), selects
TH1(ckj∗) ∈ Zm×m randomly, and calculates LH1 =
LH1 ∪ {ctj∗ , H1(ckj∗),TH1(ckj∗)}.

• Ciphertext Queries OCT: A inputs the keyword
ck ∈ W and {pkR,1,pkR,2, · · · ,pkR,l} =
{AR,1,AR,2, · · · ,AR,l}. The challenger C
calculates Ack = (AR | H1(ck)) where
AR = (AR,1 | AR,2 | · · · | AR,l). Then, C selects a
random vector v

$← Zn
q , a random number b ∈ {0, 1},

two noise vectors x0
$← χlm, x1

$← χm, and a noise
number x

$← χ, computes c1 = A⊤
ckv + (x⊤

0 | x⊤
1)

⊤

and c2 = u⊤v + x + b · ⌊ q2⌋. Furthermore, C
selects a vector y

$← Zm
q in Dm

σ , and computes
η1 = H2(Ay mod q, c1, b) and η2 = S∗η1 + y with
the probability min(

Dm
σ

M ·Dm
Sη1,σ

, 1). Finally, C returns the
ciphertext CT = (c1, c2,η1,η2) to A.

• Trapdoor Queries OTD: For a chosen data receiver
γ ∈ [l], A inputs the keyword tk ∈ W , pk∗

R,γ =
A∗

R,γ , pkS = AS . If tk ̸= ckj∗ , the challenger
C gets the {tk, H1(tk),TH1(tk)} in LH1 , calculates
Atk,γ = (A∗

R,γ | H1(tk)) and Atk = (A∗
R,1 | · · · |

A∗
R,l | H1(tk)) ∈ Zn×(l+1)m

q , and obtains TAtk,γ
←

SampleBasis(Atk,γ ,TH1(tk), {2}, L). Then, C samples
ε ← GenSamplePre(Atk,TAtk,γ

, {γ, l + 1},u, σ), such
that Atkε = u mod q. Otherwise, C aborts this process.
Finally, C returns the trapdoor TD = (ε,pkS) to A.

Challenge: A chooses ck∗
0, ck

∗
1 ∈ W which have not

been queried in Phase 1, and transmits it to the challenger
C. Then, C selects ξ ∈ {0, 1}, and calculates a challenge
ciphertext (c∗1,ξ, c

∗
2,ξ) ∈ Z(l+1)m × Zq , where: c∗1,ξ =

(b1, · · · , bm, · · · , blm+1, · · · , b(l+1)m)⊤, and c∗2,ξ = b0 +
b⌊ q2⌋, b ∈ {0, 1}. After that, C calculates η∗

1 = H2(Ay mod
q, c∗1, b) ∈ {−1, 0, 1}m and η∗

2 = S∗η1 + y ∈ Zm
q with

the probability min(
Dm

σ

M ·Dm
Sη1,σ

, 1), and then returns CT∗
ξ =

(c∗1, c
∗
2,η

∗
1 ,η

∗
2) to A.

Phase 2: A executes these queries as above, and promises
neither ck∗

0 nor ck∗
1 can be queried.

Guess: A outputs a random bit ξ
′ ∈ {0, 1} after receiving

CTξ. If ξ
′
= ξ, A wins this game, and the challenger C

outputs 1 meaning (bj ,aj) is sampled from the LWE oracle.
Otherwise, C outputs 0 meaning (bj ,aj) is sampled from the
uniform distribution Zq × Zn

q .
Analysis: If ξ

′
= ξ, for j = [(l+1)m], the challenger C out-

puts 1 meaning (bj ,aj) is sampled from the LWE oracle, then
CTξ is valid. Let x = (x1, · · · , xm, xm+1, · · · , x(l+1)m)⊤,
we have:

c∗1,ξ = (b1, · · · , bm, bm+1, · · · , b2m, · · · , blm+1, · · · , b(l+1)m)⊤

= (a1, · · · ,am | am+1, · · · ,a2m | · · · | alm+1,

· · · ,a(l+1)m)⊤v + (x1, · · · , xm, · · · , x(l+1)m)⊤

= (AR,1 | AR,2 | · · · | AR,l | H1(ckξ))
⊤v + x

= (AR | H1(ckξ))
⊤v + x

= A⊤
ckv + x.

c∗2,ξ = b0 + b⌊q
2
⌋ = a⊤0 v + x0 + b⌊q

2
⌋ = u⊤v + x0 + b⌊q

2
⌋.

In this case, A has the advantage ϵ1 to solve LWE hardness,
thus Pr[ξ

′
= ξ] = 1

2 + ϵ1. Otherwise, C outputs 0 meaning
(bj ,aj) is obtained from the uniform distribution over Zq ×
Zn
q , we can get Pr[ξ

′
= ξ] = 1

2 . To execute this process
successfully, the challenger C has advantage (1 − 1

qH1
) ϵ12 to

solve the LWEn,m,q,χ hardness. □
Theorem 2: Assume that the SISn,m,q,β hardness holds, our

proposed lattice-based BAEKS primitive satisfies UF-IKGA
security in the random oracle model. For any PPT adversary
A, if A can compromise our scheme, then we can construct
a PPT challenger C to solve the SISn,m,q,β hardness.
Proof If there exists A who can break the UF-IKGA
security, then we has the ability to construct C who can find
a solution of SISn,m,q,β hardness. The following procedures
show the interaction between A and C.

Setup: To begin with, the challenger C invokes Setup(1λ)
to calculate the public parameter pp = (H1, H2,u), where
H1 : {0, 1}k → Zn×m

q , H2 : Zlm
q × {0, 1} → Zm

q , and u
$←

Zn
q . In addition, C executes (A∗

S ,T
∗
AS

) ← TrapGen(n,m, q)
to set the challenge public key pk∗

S = A∗
S of data sender.

For A∗
S = (a∗S,1,a

∗
S,2, · · · ,a∗S,m) and i = [m], C invokes

8

s∗i ← SamplePre(A,TA,aS,i, σ) to obtain s∗i . Moreover, for
i = [l], C executes (A∗

R,i,T
∗
AR,i

) ← TrapGen(n,m, q) to
calculate the challenge receivers’ public key pk∗

R,i = A∗
R,i.

Finally, C returns pp, pk∗
S , {pk∗

R,1,pk
∗
R,2, · · · ,pk

∗
R,l} to A.

Phase 1: A executes these following queries adaptively:

• Hash Queries OH2
: In this phase, A issues H2 queries

at most qH2
. Firstly, the challenger C creates an empty

list LH2
, and selects j∗ ∈ [qH2

] as challenge query.
For the j-th query, if (c1,j , bj) has been queried, C
returns H2(Ayj mod q, c1,j , bj) in LH2 to A. Otherwise,
if j∗ ̸= j, C selects yj ∈ Zm from a uniform distribution
on Zm, and sends H2(Ayj mod q, c1,j , bj) to A and
lets LH2

= LH2
∪ {c1,j , bj , H2(Ayj mod q, c1,j , bj)}.

Otherwise, C selects y∗ ∈ Zm, and sets c∗1 = c1,
b∗ = b, which is a part of the forged ciphertext. Fi-
nally, C returns H2(Ay∗ mod q, c∗1, b

∗) to A, and lets
LH2

= LH2
∪ {c∗1, b∗, H2(Ay∗ mod q, c∗1, b

∗)}.
• Ciphertext Queries OCT: A inputs the keyword
ck ∈ W and {pkR,1,pkR,2, · · · ,pkR,l} =
{AR,1,AR,2, · · · ,AR,l}. C calculates Ack = (AR |
H1(ck)), where AR = (AR,1 | AR,2 | · · · | AR,l).
Then, C selects a random vector v

$← Zn
q , a

random number b ∈ {0, 1}, two noise vectors
x0

$← χlm, x1
$← χm, and a noise number x

$← χ,
and computes c1 = A⊤

ckv + (x⊤
0 | x⊤

1)
⊤ and

c2 = u⊤v + x + b · ⌊ q2⌋, and checks whether (c1, b)
has been queried in list LH2 . If not, C selects y ∈ Zm

randomly, and calculates H2(Ay mod q, c1, b) and
sets LH2

= LH2
∪ {c1, b,H2(Ay mod q, c1, b)}. After

that, C sets η1 = H2(Ay mod q, c1, b), and calculates
η2 = S∗η1 + y with the probability min(

Dm
σ

M ·Dm
Sη1,σ

, 1).
Finally, C returns the ciphertext CT = (c1, c2,η1,η2) to
A.

• Trapdoor Queries OTD: For a chosen data receiver
γ ∈ [l], A inputs the keyword tk ∈ W , pk∗

R,γ =
A∗

R,γ , pkS = AS . C calculates Atk,γ = (AR,γ∗ |
H1(tk)) and Atk = (A∗

R,1 | · · · | A∗
R,l |

H1(tk)) ∈ Zn×(l+1)m, and obtains TAtk,γ
←

SampleBasis(Atk,γ ,T
∗
AR,γ

, {1}, L). Then, C samples
ε ← GenSamplePre(Atk,TAtk,γ

, {γ, l + 1},u, σ), such
that Atkε = u mod q. Finally, C returns the trapdoor
TD = (ε,pkS) to A.

Forgery: A selects a challenge keyword ck∗ and a
number γ ∈ [l], and transmits it to C. C invokes the
Trapdoor(pp, ck∗,pk∗

S , {pk
∗
R,1,pk

∗
R,2, · · · , pk∗

R,l}, sk
∗
R,γ)

algorithm to obtain TD∗, and sends it to A. Then, A calculates
CT∗ = (c∗1, c

∗
2,η

∗
1 ,η

′
2) as a forged ciphertext corresponding

to ck∗, and wins if Test(CT∗,TD∗) algorithm outputs 1.
Analysis: Since CT∗ = (c∗1, c

∗
2,η

∗
1 ,η

′
2) is a valid ciphertext,

we can obtain (c∗1, b
∗, H2(Ay∗ mod q, c∗1, b

∗)) in LH2
such

that η∗
1 = H2(Ay∗ mod q, c∗1, b

∗), η∗
2 = S∗η∗

1 + y. In
this way, we have H2(Aη∗

2 − ASη
∗
1 , c

∗
1, b

∗) = H2(Aη′
2 −

ASη
∗
1 , c

∗
1, b

∗). If Aη∗
2 − ASη

∗
1 ̸= Aη′

2 − ASη
∗
1 , it reflects

that A obtains a pre-image of hash function H2. Otherwise, we
get Aη∗

2 −ASη
∗
1 = Aη′

2−ASη
∗
1 , thereby: A(η′

2−η∗
2) = 0.

In addition, we notice that η′
2 − η∗

2 ̸= 0 and ∥η′
2∥ ≤ 2σ

√
m,

∥η∗
2∥ ≤ 2σ

√
m, we can calculate: ∥η′

2 − η∗
2∥ ≤ 4σ

√
m., and

η′
2 − η∗

2 is a solution of SISq,n,m,β hardness. □

VI. OUR PROPOSED FS-BAEKS SCHEME

In this section, our FS-BAEKS scheme is proposed as an
enhanced version of our BAEKS described in Section V.
A. Concrete Construction

Root

1

2

3

4

Bin(t) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Level

Leaf

Node

Root

Node

Fig. 3. The binary tree utilized to secret key update for data receivers, and
the number of level τ = 4.

• Setup(1λ): A security parameter 1λ is inputted by the TA,
and then the public parameter pp is outputted according
to the following procedures.

1) Set the system parameters n, m, q, L, σ, k, and l.
2) Initialize all nodes in the binary tree, set τ as the depth

of binary tree, and T = 2τ , as in Fig. 3 (A example at
τ = 4).

3) For the root node, invoke (A,TA) ←
TrapGen(n,m, q) to generate a uniformly matrix
A ∈ Zn×m

q and a basis TA ∈ Zm×m for Λ⊥
q (A).

4) Choose a vector u $← Zn
q uniformly.

5) Choose several matrices A
(0)
R,i,1, A(1)

R,i,1, · · · , A(0)
R,i,τ ,

A
(1)
R,i,τ ∈ Zn×m

q .
6) Define two hash functions H1 : {0, 1}k → Zn×m

q and
H2 : Zn

q × Z(l+τ+1)m
q × {0, 1} → {−1, 0, 1}m.

7) Output pp := (n,m, q, L, σ, k, l, τ,A,A
(0)
R,i,1,A

(1)
R,i,1, · · · ,

A
(0)
R,i,τ ,A

(1)
R,i,τ ,u, H1, H2) as the public parameter.

• KeyGenS(pp,TA): The TA inputs a public parameter pp
and a basis TA and then returns the public and secret keys
(pkS , skS) to a data sender according to the following
procedures.

1) Invoke (AS ,TAS
) ← TrapGen(n,m, q) to obtain a

uniformly matrix AS ∈ Zn×m
q and a basis TAS

∈
Zm×m for Λ⊥

q (AS).
2) Parse the matrix AS = (aS,1,aS,2, · · · ,aS,m), which

each vector aS,i ∈ Zn for i = [m].
3) For i = [m], sample a vector si ∈ Zm

q as
si ← SamplePre(A,TA,aS,i, σ), where si s.t.
Asi = aS,i mod q and si is statistically distributed
in Dm

Λ
aS,i
q (A),σ

.

4) Let a matrix S = (s1, s2, · · · , sm) ∈ Zm×m, where
AS = As mod q.

5) Output pkS := AS and skS := (TAS
,S) as the public

and secret keys of the data sender.
• KeyGenR(pp): For i = [l], the TA inputs a public

parameter pp and then returns the public and initial secret

9

key (pkR,i, skR,i) to data receivers i according to the
following procedures.

1) Invoke (AR,i,0,TAR,i,0
)← TrapGen(n,m, q) to gen-

erate a uniformly matrix AR,i,0 ∈ Zn×m
q and a basis

TAR,i,0
∈ Zm×m for Λ⊥

q (AR,i,0).
2) Output pkR,i := AR,i,0 and skR,i,0 := TAR,i,0

as a
public and initial secret key of the data receiver.

• KeyUpdateR(pp,pkR,i, skR,i,t): For i = [l], the TA
inputs a public parameter pp, a public key pkR,i and
secret key skR,i,t of data receiver with time period t,
then returns its secret key skR,i,t+1 with time period
t + 1 to this data receiver according to the following
procedures, where t ∈ {0, 1, · · · , T − 1}. We set bin(t)
as the τ bits binary representation of t, Node(bin(t)) as
the minimal cover set of leaf node bin(t), which denotes
the smallest set that includes an common ancestor node of
each leaf node in {bin(t),bin(t+1), · · · ,bin(T − 1)},
and does not include any ancestor nodes of each leaf
node in {bin(0),bin(1), · · · ,bin(t− 1)}. For example,
in Fig. 3, Node(0010) = {001, 01, 1}.

1) Parse bin(t) = (t1, t2, · · · , tτ) ∈ {0, 1}τ .
2) Set the secret key skR,i,0 = TAR,i,0

with time period 0, and skR,i,1 =
{TAR,i,0001

,TAR,i,001
,TAR,i,01

,TAR,i,1
} with

time period 1, due to Node(bin(1)) = Node(0001) =
{0001, 001, 01, 1}.

3) Update the secret key skR,i,t to skR,i,t+1 according to
the following procedures:
a) Calculate the minimal cover set with time period

Node(bin(t)) and Node(bin(t+ 1)),
b) Obtain the basis of the node in set Node(bin(t +

1)) \ Node(bin(t)), and remove the basis of the
node in set Node(bin(t)) \ Node(bin(t+ 1)).

4) Invoke TAR,i,Θj
← ExtBasis(AR,i,Θj ,TAR,i,0

) or
TAR,i,Θj

← ExtBasis(AR,i,Θj ,TAR,i,Θζ
) to gen-

erate the aforementioned basis TAR,i,Θj
, where

Θj = (θ1, · · · , θζ , · · · , θj) ∈ {0, 1}j as the nodes
at j-th level, j ∈ [τ], ζ < j, AR,i,Θj

=

(AR,i,0|A(θ1)
1 | · · · |A(θj)

j) ∈ Zn×(j+1)m
q and Θζ =

(θ1, · · · , θζ) ∈ {0, 1}ζ .
5) Return skR,i,t+1 as the secret key of data receiver i

with time period t+ 1.
• FS-BAEKS(pp, ck, skS , {pkR,1,pkR,2, · · · ,pkR,l}, t):

A data sender inputs a public parameter pp, a keyword
ck ∈ W , a sender’s secret key skS , a set of receivers’
public keys {pkR,1,pkR,2, · · · ,pkR,l}, a time period t,
and then performs the following procedures.

1) Parse bin(t) = (t1, t2, · · · , tτ) ∈ {0, 1}τ .
2) Let a matrix AR = (AR,1 | AR,2 | · · · | AR,l) ∈

Zn×lm
q , and At = (A

(t1)
1 | A(t2)

2 | · · · | A(tτ)
τ) ∈

Zn×τm
q .

3) Calculate a matrix Ack,t = (AR | At | H1(ck)) ∈
Zn×(l+τ+1)m.

4) Select a random vector v
$← Zn

q uniformly, a random

number b ∈ {0, 1}, two noise vectors x0
$← χlm, x1

$←

χτm, x2
$← χm, and a noise number x $← χ.

5) Calculate a vector c1 = A⊤
ck,tv + (x⊤

0 | x⊤
1 | x⊤

2)
⊤ ∈

Z(l+τ+1)m
q , and a number c2 = u⊤v+x+b·⌊ q2⌋ ∈ Zq .

6) Select a vector y $← Zm
q in Dm

σ uniformly.
7) Calculate a vector η1 = H2(Ay mod q, c1, b) ∈
{−1, 0, 1}m and another vector η2 = Sη1 + y ∈ Zm

q

with the probability min(
Dm

σ

M ·Dm
Sη1,σ

, 1).
8) Output CTt := (c1, c2,η1,η2) as the ciphertext corre-

sponding to the keyword ck with time period t.
• Trapdoor(pp, tk,pkS , {pkR,1,pkR,2, · · · ,pkR,l}, skR,γ,t):

A data receiver γ ∈ [l] inputs a public parameter pp, a
keyword tk ∈ W , a public key pkS of data sender, a set
of receivers’ public keys {pkR,1,pkR,2, · · · ,pkR,l},
and secret keys skR,γ,t with receiver γ and time period
t, and then performs the following procedures.

1) Let a matrix At = (A
(t1)
1 | A(t2)

2 | · · · | A(tτ)
τ) ∈

Zn×τm
q .

2) Calculate two matrices Atk,γ,t = (AR,γ | At |
H1(tk)) ∈ Zn×(τ+2)m

q and Atk,t = (AR,1 | · · · |
AR,l | At | H1(tk)) ∈ Zn×(l+τ+1)m.

3) If skR,γ,t does not contain TAR,γ,t
, invoke TAR,γ,t

←
ExtBasis(AR,γ | At,TAR,γ,Θj

) to obtain a basis
TAR,γ,t

in Z(τ+2)m×(τ+2)m for Λ⊥
q (AR,γ | At),

where Θj is an ancestor node of bin(t) and j < τ .
4) Invoke TAtk,γ,t

← SampleBasis
(Atk,γ,t,TAR,γ,t

, {1}, L) to obtain a basis
TAtk,γ,t

∈ Z(τ+2)m×(τ+2)m for Λ⊥
q (Atk,γ,t).

5) Sample a vector εt ∈ Z(l+τ+1)m as εt ←
GenSamplePre(Atk,t,TAtk,γ,t

, {i, l+1, · · · , l+ τ, l+
τ +1},u, σ), where εt s.t. Atk,tεt = u mod q and εt
is statistically distributed in D(l+τ+1)m

Λu
q (Atk,t)

.
6) Output TDt := (εt,pkS) as the trapdoor correspond-

ing to the keyword tk.
• Test(CTt,TDi,t): The cloud server inputs the ciphertext
CTt together with the trapdoor TDt, and then processes
the following procedures.

1) Parse CTt = (c1, c2,η1,η2) and TDt = (εt,pkS =
AS).

2) Calculate a number d = c2 − ε⊤t c1 ∈ Zq . If∣∣d− ⌊ q2⌋∣∣ < ⌊ q4⌋, set b′ = 1. Otherwise, set b′ = 0.

3) Check ∥η2∥
?
≤ 2σ

√
m and η1

?
= H2(Aη2 −

ASη1, c1, b
′). If two conditions are satisfied, output

1. Otherwise, output 0.
B. Security Analysis

Theorem 3: Assume that the LWEn,m,q,χ hardness holds,
our proposed lattice-based FS-BAEKS primitive satisfies IND-
CKA security in the random oracle model. For any PPT
adversary A, if A can compromise our scheme with a non-
negligible advantage ϵ2, then we can construct a PPT chal-
lenger C to solve the LWEn,m,q,χ hardness with a non-
negligible probability.
Proof The constructions between our BAEKS and FS-
BAEKS are high symmetric, which only additionally intro-
duced the time period t. Thus, this proof is omitted by us
since it is similar to Theorem 1. □

10

2 4 6 8 10 12 14 16 18 20
Number of data receivers

0

125

250

375

500

625

750

875

1000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

Liu et al.
Mukherjee
Our BAEKS
Our FS-BAEKS

(a) BAEKS algorithm

2 4 6 8 10 12 14 16 18 20
Number of data receivers

0

125

250

375

500

625

750

875

1000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

Liu et al.
Mukherjee
Our BAEKS
Our FS-BAEKS

(b) Trapdoor algorithm

2 4 6 8 10 12 14 16 18 20
Number of data receivers

0

125

250

375

500

625

750

875

1000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

Liu et al.
Mukherjee
Our BAEKS
Our FS-BAEKS

(c) Test algorithm

Fig. 4. Computational overhead comparison between our BAEKS and FS-BAEKS schemes and other BAEKS schemes [13], [14].

2 4 6 8 10 12 14 16 18 20
Number of data receivers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

Our BAEKS, n=128
Our BAEKS, n=256
Our FS-BAEKS, n=128
Our FS-BAEKS, n=256

(a) BAEKS algorithm

2 4 6 8 10 12 14 16 18 20
Number of data receivers

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

Our BAEKS, n=128
Our BAEKS, n=256
Our FS-BAEKS, n=128
Our FS-BAEKS, n=256

(b) Trapdoor algorithm

2 4 6 8 10 12 14 16 18 20
Number of data receivers

0

10

20

30

40

50

60

70

80

90

100

C
om

pu
ta

tio
n

ov
er

he
ad

 (m
s)

Our BAEKS, n=128
Our BAEKS, n=256
Our FS-BAEKS, n=128
Our FS-BAEKS, n=256

(c) Test algorithm

Fig. 5. Computational overhead evaluation of our BAEKS and FS-BAEKS schemes with the number of data receivers l and security parameter n.

TABLE II
COMPUTATIONAL OVERHEAD EVALUATION

Schemes BAEKS (s) Trapdoor (s) Test (ms)

n = 128 n = 256 n = 128 n = 256 n = 128 n = 256

Our BAEKS 0.091 2.921 0.248 1.568 2.68 43.51
Our FS-BAEKS 0.122 3.027 0.324 1.140 4.12 42.27

Theorem 4: Assume that the SISn,m,q,β hardness holds,
our proposed lattice-based FS-BAEKS primitive satisfies UF-
IKGA security in the random oracle model. For any PPT
adversary A, if A can compromise our scheme, then we can
construct a PPT challenger C to solve the SISn,m,q,β hardness.
Proof The constructions between our BAEKS and FS-
BAEKS are high symmetric which only additionally intro-
duced the time period t. Thus, this proof is omitted by us
since it is similar to Theorem 2. □

VII. PERFORMANCE EVALUATION AND COMPARISON

We conduct a comparative analysis of the proposed BAEKS
and FS-BAEKS schemes with other state-of-the-art BAEKS
primitives in terms of computational and communication
overhead. Our BAEKS and FS-BAEKS schemes were im-
plemented in Python language with Numpy library, and all
simulation experiments are accomplished on a laptop with
12-th Gen Intel(R) Core(TM) i7-12800HX CPU with 16 GB
RAM under Windows 10. We set the parameters of our
schemes as described in Section V.B, respectively, where
q = 4096, k = 1000. When n = 128, we set m = 7680;
when n = 256, we set m = 15360. Moreover, for schemes
[13] and [14], the bilinear pairing is initialized by Type A
elliptic curves: y2 = x3 + x, and the parameter p = 512.

A. Computational overhead

As depicted in Fig. 4, we evaluate the computational over-
head of our BAEKS and FS-BAEKS schemes when n = 128
compared to the current state-of-the-art BAEKS schemes [13],
[14] at BAEKS, Trapdoor and Test algorithms. In Fig. 4(a),
the computational overhead of our BAEKS algorithm is more
efficient than prior arts [13], [14]. In detail, when l = 20,
our BAEKS scheme requires only 91.75ms to encrypt the
keywords, while the others require 6782ms and 7614ms,
respectively. Therefore, our BAEKS scheme is approximately
74× and 83× faster than [13] and [14]. Additionally, as the
number of data receivers increases, our advantage will be
further extended. Furthermore, the computational overhead of
BAEKS algorithm in both our schemes is directly proportional
to the number of data receivers and has a very moderate
growth rate. This growth rate is sufficient to support search
operations with a large number of data receivers in cloud
storage systems. As for Fig. 4(b), the computational overhead
of Trapdoor algorithm in both our schemes is slightly higher
than that of [13] due to the sampling algorithm in lattice.
However, our schemes offers a significant advantage over
[14] as the number of data receivers increases. For instance,
when l = 20, our BAEKS scheme only requires 248.99ms
to generate a search trapdoor, which is approximately 3×

11

TABLE III
COMMUNICATION OVERHEAD COMPARISON

Schemes BAEKS Trapdoor

Liu et al. [13] |Zp|+ (t+ 2)|G1| |Zp|
Mukherjee [14] (l + 1)(k + 1)|G1|+ l|GT | 2(k + 1)|G2|
Our BAEKS [(l + 2)m+ 1]|Zq |+ 2m (l + n+ 1)m|Zq |
Our FS-BAEKS [(l + τ + 2)m+ 1]|Zq |+ 2m (l + τ + n+ 1)m|Zq |

quicker than [14]. In Fig. 4(c), the computational overhead
of Test algorithm in both our schemes remains relatively
constant as the number of data receivers l increases. To
be more specific, when l = 20, the execution time in our
BAEKS/FS-BAEKS scheme is only 2.68ms/4.12ms, which
is approximately 706×/459× and 3435×/2234× quicker than
prior arts [13], [14], respectively. It is evident that our solutions
significantly increases performance for the search operations
with large amounts of cloud data.

Subsequently, we evaluate the computational overhead of
our BAEKS and FS-BAEKS schemes with different security
parameters n in Fig. 5. It can be found that the computational
overhead of BAEKS, Trapdoor, and Test algorithms reason-
ably increases as n changes from 128 to 256. Specifically,
the computational overhead at l = 20 is presented in Table II,
which remains in the magnitude of milliseconds. Although the
increase in the security parameter n may lead to a decrease
in the efficiency, our BAEKS and FS-BAEKS schemes still
maintain a significant advantage over [13] and [14] in terms of
the BAEKS and Test algorithms. Moreover, the post-quantum
security strength of our schemes is further enhanced, which is
crucial for protecting the data privacy in cloud storage systems.

Notably, since the Setup, KeyGenS , and KeyGenR al-
gorithms are executed less frequently than the BAEKS,
Trapdoor, and Test algorithms in real-world applications,
which have little relevance to the search efficiency in cloud
storage systems. Consequently, we only consider the BAEKS,
Trapdoor, and Test algorithms for evaluation and comparison.

B. Communication overhead

For a BAEKS scheme, the transmission of keyword ci-
phertexts and search trapdoors among data senders, data
receivers, and cloud server contributes to the communication
overhead. This overhead relies on the size of the ciphertexts
and trapdoors. In this way, we provide a theoretical comparison
analysis of the communication overhead between our BAEKS
and FS-BAEKS schemes and other state-of-the-art schemes
[13] and [14] in Table III, where |G1|, |G2|, |GT |, |Zp|, and
|Zq| represent the bit length of elements in G1, G2, GT , Zp,
and Zq , respectively.

Our scheme is based on lattice hardness, involving sampling
operations on high-dimensional matrices, which is different
from the underlying constructions based on DL hardness. In
this way, the size of our ciphertexts and trapdoors is larger
than that of traditional DL-based schemes, which is a common
issue. Therefore, as an acceptable trade-off for enhancing
the security level to resist quantum computing attacks and
secret key leakage attacks, the communication overhead of our
BAEKS and FS-BAEKS schemes is higher compared to [13]

TABLE IV
COMMUNICATION OVERHEAD EVALUATION

Schemes BAEKS (MB) Trapdoor (MB)
n = 128 n = 256 n = 128 n = 256

Our BAEKS 0.24 0.49 1.64 6.09
Our FS-BAEKS 0.27 0.53 1.66 6.13

and [14]. However, in cloud storage systems, BAEKS entities
typically prioritize two aspects. Firstly, BAEKS scheme en-
joys quantum-safety. Secondly, the computational operations
involved in ciphertext generation, trapdoor generation, and
search processes are efficient. Accordingly, our schemes in-
troduce an acceptable communication overhead while ensuring
post-quantum security and computational efficiency.

2 4 6 8 10 12 14 16 18 20
Number of data receivers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (M
B

)

Our BAEKS, n=128
Our BAEKS, n=256
Our FS-BAEKS, n=128
Our FS-BAEKS, n=256

(a) BAEKS algorithm

2 4 6 8 10 12 14 16 18 20
Number of data receivers

0

1

2

3

4

5

6

7

8

9

10

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (M
B

)

Our BAEKS, n=128
Our BAEKS, n=256
Our FS-BAEKS, n=128
Our FS-BAEKS, n=256

(b) Trapdoor algorithm

Fig. 6. Communication overhead evaluation of our BAEKS and FS-BAEKS
schemes with the number of data receivers l and security parameter n.

2 4 8 16 32 64
Time periods

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (M
B

)

n = 128
n = 256

(a) BAEKS algorithm

2 4 8 16 32 64
Time periods

0

1

2

3

4

5

6

7

8

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (M
B

)

n = 128
n = 256

(b) Trapdoor algorithm

Fig. 7. Communication overhead evaluation of our FS-BAEKS with the time
period t and security parameter n.

Fig. 6 illustrates the communication overhead of BAEKS
and Trapdoor algorithms regarding to the security parameters
n = 128 and n = 256, corresponding to the ciphertext
and trapdoor size, respectively. The communication overhead
of these two algorithms rises linearly as l is augmented.
Moreover, the increment of the security parameter n does not
produce an order-of-magnitude increase in the communication
overhead, indicating that our BAEKS and FS-BAEKS schemes
are scalable. As for Table IV, we give a specific communi-
cation overhead of our BAEKS and FS-BAEKS schemes at
l = 20 and τ = 2, e.g., when n = 256, the communication
overhead of BAEKS algorithm in our FS-BAEKS scheme is
[(20 + 2 + 2)× 15360 + 1]× 12 + 2× 15360 ≈ 0.53MB.

For our FS-BAEKS scheme, the communication overhead
of BAEKS and Trapdoor algorithms with τ is shown in Fig. 7
with setting the number of data receivers l = 20. Although the
communication overhead is raised as t is increased, our FS-
BAEKS scheme achieves forward security, has the ability to

12

solve the secret key leakage attacks in cloud storage systems,
and is more oriented to practicality. On the other hand, more
larger security parameter n leads to a more pronounced trend
in the communication overhead with time period t. It is
acceptable for boosting the post-quantum security strength of
our FS-BAEKS scheme.

VIII. CONCLUSION

In this paper, we propose a lattice-based BAEKS scheme,
which provides secure and efficient ciphertext search in multi-
receiver model for cloud storage systems. Furthermore, we
propose a forward-secure version of BAEKS called FS-
BAEKS, successfully mitigating secret key leakage problems.
Rigorous security analysis demonstrates that both scheme
achieve IND-CKA and UF-IKGA security in the ROM. Com-
prehensive experimental evaluations also indicate that our
schemes offer significant advantages at computational effi-
ciency of BAEKS and Test algorithms. We acknowledge that
further work is required to enhance the security level from the
ROM to the standard model.

REFERENCES

[1] Y. Yang, Y. Chen, F. Chen, and J. Chen, “An efficient identity-based
provable data possession protocol with compressed cloud storage,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 1359–
1371, 2022.

[2] K. Zhang, Z. Jiang, J. Ning, and X. Huang, “Subversion-resistant and
consistent attribute-based keyword search for secure cloud storage,”
IEEE Transactions on Information Forensics and Security, vol. 17, pp.
1771–1784, 2022.

[3] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Advances in Cryptology-
EUROCRYPT 2004: International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Interlaken, Switzerland, May
2-6, 2004. Proceedings 23. Springer, 2004, pp. 506–522.

[4] Q. Huang and H. Li, “An efficient public-key searchable encryption
scheme secure against inside keyword guessing attacks,” Information
Sciences, vol. 403, pp. 1–14, 2017.

[5] L. Cheng and F. Meng, “Server-aided public key authenticated search-
able encryption with constant ciphertext and constant trapdoor,” IEEE
Transactions on Information Forensics and Security, vol. 19, pp. 1388–
1400, 2023.

[6] Z.-Y. Liu, Y.-F. Tseng, R. Tso, M. Mambo, and Y.-C. Chen, “Public-key
authenticated encryption with keyword search: A generic construction
and its quantum-resistant instantiation,” The Computer Journal, vol. 65,
no. 10, pp. 2828–2844, 2022.

[7] L. Cheng and F. Meng, “Public key authenticated encryption with
keyword search from lwe,” in European Symposium on Research in
Computer Security. Springer, 2022, pp. 303–324.

[8] S. Xu, Y. Cao, X. Chen, Y. Zhao, and S.-M. Yiu, “Post-quantum
public-key authenticated searchable encryption with forward security:
General construction, and applications,” in International Conference on
Information Security and Cryptology. Springer, 2023, pp. 274–298.

[9] L. Yao, J. Weng, A. Yang, X. Liang, Z. Wu, Z. Jiang, and L. Hou,
“Scalable cca-secure public-key authenticated encryption with keyword
search from ideal lattices in cloud computing,” Information Sciences,
vol. 624, pp. 777–795, 2023.

[10] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, “Efficient
encrypted keyword search for multi-user data sharing,” in Computer
Security–ESORICS 2016: 21st European Symposium on Research in
Computer Security, Heraklion, Greece, September 26-30, 2016, Proceed-
ings, Part I 21. Springer, 2016, pp. 173–195.

[11] X. Chen, S. Xu, T. Qin, Y. Cui, S. Gao, and W. Kong, “Aq–abs: Anti-
quantum attribute-based signature for emrs sharing with blockchain,”
in 2022 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2022, pp. 1176–1181.

[12] X. Chen, S. Xu, Y. He, Y. Cui, J. He, and S. Gao, “Lfs-as: lightweight
forward secure aggregate signature for e-health scenarios,” in ICC 2022-
IEEE International Conference on Communications. IEEE, 2022, pp.
1239–1244.

[13] X. Liu, K. He, G. Yang, W. Susilo, J. Tonien, and Q. Huang, “Broadcast
authenticated encryption with keyword search,” in Australasian Confer-
ence on Information Security and Privacy. Springer, 2021, pp. 193–213.

[14] S. Mukherjee, “Statistically consistent broadcast authenticated encryp-
tion with keyword search: Adaptive security from standard assump-
tions,” in Australasian Conference on Information Security and Privacy.
Springer, 2023, pp. 523–552.

[15] K. Emura et al., “Generic construction of fully anonymous broadcast au-
thenticated encryption with keyword search with adaptive corruptions,”
IET Information Security, vol. 2023, 2023.

[16] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[17] J. Jiang and D. Wang, “Qpase: Quantum-resistant password-
authenticated searchable encryption for cloud storage,” IEEE Transac-
tions on Information Forensics and Security, 2024.

[18] S. Xu, Y. Cao, X. Chen, Y. Guo, Y. Yang, F. Guo, and S.-M. Yiu,
“Post-quantum searchable encryption supporting user-authorization for
outsourced data management,” in Proceedings of the 33rd ACM Interna-
tional Conference on Information and Knowledge Management (CIKM
’24). ACM, 2024, pp. 2702–2711.

[19] Y. Cao, S. Xu, X. Chen, Y. He, and S. Jiang, “A forward-secure and
efficient authentication protocol through lattice-based group signature in
vanets scenarios,” Computer Networks, vol. 214, p. 109149, 2022.

[20] X. Chen, S. Xu, Y. Cao, Y. He, and K. Xiao, “Aqrs: Anti-quantum
ring signature scheme for secure epidemic control with blockchain,”
Computer Networks, vol. 224, p. 109595, 2023.

[21] X. Yu, L. Xu, X. Huang, and C. Xu, “An efficient lattice-based encrypted
search scheme with forward security,” in International Conference on
Network and System Security. Springer, 2022, pp. 712–726.

[22] X. Chen, S. Xu, S. Gao, Y. Guo, S.-M. Yiu, and B. Xiao, “Fs-llrs:
Lattice-based linkable ring signature with forward security for cloud-
assisted electronic medical records,” IEEE Transactions on Information
Forensics and Security, 2024.

[23] Z.-Y. Liu, Y.-F. Tseng, R. Tso, M. Mambo, and Y.-C. Chen, “Public-key
authenticated encryption with keyword search: Cryptanalysis, enhanced
security, and quantum-resistant instantiation,” in Proceedings of the 2022
ACM on Asia conference on computer and communications security,
2022, pp. 423–436.

[24] A. Fiat and M. Naor, “Broadcast encryption,” in Advances in Cryp-
tology—CRYPTO’93: 13th Annual International Cryptology Conference
Santa Barbara, California, USA August 22–26, 1993 Proceedings 13.
Springer, 1994, pp. 480–491.

[25] C. Delerablée, “Identity-based broadcast encryption with constant size
ciphertexts and private keys,” in International Conference on the Theory
and Application of Cryptology and Information Security. Springer,
2007, pp. 200–215.

[26] D. Boneh and M. Hamburg, “Generalized identity based and broadcast
encryption schemes,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2008,
pp. 455–470.

[27] C. Gentry and B. Waters, “Adaptive security in broadcast encryption
systems (with short ciphertexts),” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
2009, pp. 171–188.

[28] M. Ali, H. Ali, T. Zhong, F. Li, Z. Qin, and A. A. Abdelrahaman,
“Broadcast searchable keyword encryption,” in 2014 IEEE 17th Inter-
national Conference on Computational Science and Engineering. IEEE,
2014, pp. 1010–1016.

[29] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “Fs-peks: Lattice-
based forward secure public-key encryption with keyword search for
cloud-assisted industrial internet of things,” IEEE Transactions on
dependable and secure computing, vol. 18, no. 3, pp. 1019–1032, 2019.

[30] X. Yang, X. Chen, J. Huang, H. Li, and Q. Huang, “Fs-ibeks: Forward
secure identity-based encryption with keyword search from lattice,”
Computer Standards & Interfaces, vol. 86, p. 103732, 2023.

[31] M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing,
1996, pp. 99–108.

[32] C. Peikert, “An efficient and parallel gaussian sampler for lattices,” in
Annual Cryptology Conference. Springer, 2010, pp. 80–97.

[33] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40,
2009.

[34] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the

13

fortieth annual ACM symposium on Theory of computing, 2008, pp.
197–206.

[35] D. Cash, D. Hofheinz, and E. Kiltz, “How to delegate a lattice basis,”
Cryptology ePrint Archive, 2009.

[36] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, “Bonsai trees, or how
to delegate a lattice basis,” Journal of cryptology, vol. 25, pp. 601–639,
2012.

[37] V. Lyubashevsky, “Lattice signatures without trapdoors,” in Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2012, pp. 738–755.

[38] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (h) ibe in
the standard model,” in Advances in Cryptology–EUROCRYPT 2010:
29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, French Riviera, May 30–June 3, 2010.
Proceedings 29. Springer, 2010, pp. 553–572.

