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Abstract

We present a simple alternative exposition of the the recent result of Hirahara and Nanashima
(STOC’24) showing that one-way functions exist if (1) every language in NP has a zero-
knowledge proof/argument (i.e., NP ⊆ ZKA) and (2) ZKA contains non-trivial languages
(i.e., ZKA ̸⊆ ioP/poly). Our presentation does not rely on meta-complexity and we hope it
may be useful for didactic purposes. We also remark that the same result hold for (imperfect)
iO for 3CNF, or Witness Encryption for NP.
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1 Introduction

Zero-knowledge (ZK) proofs, introduced by Goldwasser, Micali and Rackoff [GMR89] are paradoxi-
cal constructs that enables a Prover to convince a Verfier that some instance x belongs to a language
L without revealing any additional information. In the case where the soundness condition only
holds against polynomial-size attacker, the proof systems is instead referred to as a zero-knowledge
argument [BCC88]; let ZKA denote the class of languages having ZK arguments. While classic
results in the early 1990’s established that, assuming the existence of one-way functions (OWFs),
every language in NP has a ZK proof [GMW91; HILL99; Nao91], it remains an open problem
whether the existence of non-trivial ZK proofs/arguments also imply the existence of OWFs.

Seminal results by Ostrovsky [Ost91], and Ostrovsky and Wigderson (OW) [OW93] from the
1990’s, however, show that non-trivial ZK “almost” implies OWFs. In particular, they show that
if ZKA /∈ ioP/poly, then a relaxation of OWFs, referred to as a auxiliary-input OWF (ai-OWF)
exist.1 Additionally OW shows that if ZKA contains a language that is average-case hard, then
(standard) OWFs exist.2

Thus, the only “gap” is between ai-OWFs and (standard) OWFs, or between worst-case and
average-case hardness for a language in ZKA. A recent elegant paper by Hirahara and Nanashima
(HN) [HN24] closes this gap under the assumption that all of NP (or even just a specific meta-
complexity language) has zero-knowledge arguments (i.e., NP ⊆ ZKA). In other words, they
show:

Theorem 1.1 (Main). Assume that NP ⊆ ZKA, and that ZKA ⊈ ioP/poly. Then one-way
functions exist.

In this note, we provide a somewhat alternative presentation of the proof of the HN result. The
proof elements are very similar, but our exposition is more direct and we dispense of the use of
meta-complexity. As such, we hope that their results becomes easier to appreciate (without any
background on meta-complexity).

Proof Overview The proof proceeds in two steps:

1. Errorless average-case hardness of ZKA implies OWFs. As mentioned, OW already
showed that average-case hardness of ZKA implies OWFs. We observe (following the approach
in [HN24]) that essentially a direct combination of a characterization of Vadhan [Vad06] together
with the results of Ostrovsky [Ost91] yields the stronger statement that errorless3 average-case
hardness suffices (i.e., that ZKA ̸⊆ ioAvgBPP/poly).4 In essence, the reason why errorless
average-case hardness suffices is that given a statement x, the reduction provided in these earlier
works either correctly decides x, or fails to invert some ai-OWF candidate fx; but since the latter
event is checkable, the reduction can easily be made errorless.

1Roughly speaking, an ai-OWF is family of functions fi such that no polynomial-size attacker A can invert every
function in the family. That is, there exists some i on which A fails to invert fi.

2In essence, when just assuming worst-case hardness of some language in ZKA, the index i is selected as an
instance in the language on which the attacker will fail to decide the language, whereas in the case of average-case
hardness, the index can be efficiently sampled so we get a standard OWF.

3That is, we consider hardness against algorithms that either give the right answer or ⊥, and that only output ⊥
with small probability.

4Coincidentally, OV actually stated their result assuming that ZKA ̸⊆ ioAvgBPP/poly, but while the notation
Avg typically denotes errorless average-case hardness in the literature, they defined it as two-sided error average-case
hardness, so this is a strict strengthening of their result.
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2. Auxiliary-input OWFs imply average-case hardness of NP. We observe that the PRG
construction of HILL [HILL99] yields an average-case hardness language in NP even when
instantiated with an ai-OWF: The language consists of all strings in the range of the PRG,
and average-case hardness holds over the uniform distribution. The argument (which can be
traced back to [Hir18], and made explicit for general PRGs in [LP21b]), is simple: an errorless
algorithm for the uniform distribution needs to output 1 with high probability when given a
uniform sample (since with high probability those strings are not in the range of the PRG), and
output either 0 or ⊥ when given a sample in the range of the PRG, so simply interpret ⊥ as
a 0 and we have a PRG distinguisher that works with high probability, which using the HILL
reduction can be turned into an inverter for the (ai)-OWFs.5

So, by OW, non-trivial ZK implies ai-OWF, which by step (2), and the assumption that NP ⊆
ZKA implies that ZKA ̸⊆ ioAvgBPP/poly which by step (1) implies OWFs. (Note that this
results also hold just for honest-verifier zero-knowledge; in any case, by [OV07], a language has
zero-knowledge argument if and only if it has honest-verifier zero-knowledge argument.)

1.1 Corollaries to iO and WE

We note an interesting new corollary of Theorem 1.1 (i.e., the main result of [HN24]) with respect
to indistinguishability obfuscation (iO) [Bar+12] and witness encryption for NP (WE) [GGSW13].
[Kom+14] showed that (imperfect) iO for polynomial-size circuits and the assumption that NP
is worst-case hard yield the existence of one-way functions. They further showed that iO for just
the class of 3CNF formulas, or even WE for NP (which is implied by iO for 3CNFs) together
with average-case harness of NP yield one-way functions, but left open the problem of whether
worst-case hardness of NP suffices. We observe that Theorem 1.1 can be used to solve this (in the
non-uniform setting).

In particular, [Kom+14] show that these primitives can be used to construct statistical zero-
knowledge arguments for NP (see Theorem 5.2 and the following remark in [Kom+14]); next,
by relying on Theorem 1.1, we can conclude the existence of one-way functions assuming just
(non-uniform) worst-case hardness of NP.6

Corollary 1.2. Assume that NP ⊈ ioP/poly. If there exists an (imperfect) iO for 3CNF formu-
las, or WE for NP, then one-way functions exist.

In fact, it suffices to assume WE for MCSP (using [HN24]) or MKtP (by Corollary A.3.)

2 Preliminaries and Definitions

Let ZKA denote set of languages having zero-knowledge arguments [GMR89; BCC88], and let
SZKP denote the set of languages having statistical zero-knowledge proofs (see e.g., [SV97]). We
proceed to defining the notion of errorless average-case hardness.

5In fact, essentially the same argument shows errorless average-case hardness of the Minimum time-bounded
Kolmogorov complexity problem [Ko86], see Appendix A. We note that HN used a similar but more complicated
argument to show average-case hardness of the Minimum Circuit Size problem [KC00] relying on the construction of
a PRF [GGM84] from OWFs.

6In contrast, whereas [Kom+14] required average-case hardness, their result also applied in the uniform setting.

3



Definition 2.1 (ioAvgBPP/poly). A pair (L,D) of a language L and a samplable distribution
D = {Dn}n∈N is in ioAvgBPP/poly if there exists a non-uniform PPT A such that the following
holds for infinitely many n ∈ N:

• For every x ∈ Supp(Dn) , Pr[A(x) ∈ {⊥,L(x)}] ≥ 0.9

• Prx←Dn [A(x) = ⊥] ≤ 1/4.

We recall that notion of an ai-OWF:

Definition 2.2 (ai-OWF). A function family
{
fa : {0, 1}m(n) → {0, 1}m(n)

}
a∈{0,1}n

is an auxiliary-

input one-way function (ai-OWF) if for every non-uniform ppt A there exists a negligible function
µ such that for every n ∈ N, there exists some a ∈ {0, 1}n such that

Pr
x←{0,1}m(n)

[
A(a, fa(x)) ∈ f−1a (fa(x))

]
≤ µ(n) (1)

If a is simply 0n, we refer to the family as simply a one-way function (OWF). We say that {fa} is
almost-everywhere hard on a set I ⊂ {0, 1}∗ if Equation (1) holds for every a ∈ I ∩ {0, 1}n.

Finally, let us recall the classic result by Ostrovksy and Wigderson [OW93]:

Theorem 2.3 (ZK to ai-OWF, [OW93]). Assume that ZKA ⊈ ioP/poly. Then ai-OWF exists.

3 Proof of Main Theorem

3.1 Step 1: ZKA ̸⊆ ioAvgBPP/poly ⇒ OWFs

Recall that OV showed that two-sided error average-case hardness of ZKA implies OWF; we here
show the same by starting with just errorless average-case hardness of ZKA.7

Lemma 3.1 (Errorless Avg-Hardness of ZK to OWFs). Assume that there exists a language
L ∈ ZKA and samplable distribution D such that (L,D) /∈ ioAvgBPP/poly. Then OWFs exist.

Towards proving this, we will rely on the following characterization of ZKA of Vadhan [Vad06].

Definition 3.2 (SZK/OWF [Vad06]). A promise problem Π = (ΠY ,ΠN ) satisfies the SZKP/OWF
Condition if there is I ⊆ ΠY ∪ΠN such that:

• The promise problem (ΠY \ I,ΠN \ I) is in SZKP.

• There exists an auxiliary-input one-way function which is almost everywhere hard on I.

Theorem 3.3 ([OV07]). If (Y,N ) ∈ ZKA then (Y,N ) satisfies the SZKP/OWF Condition.

We will also rely on the following version of the results by Ostrovsky (as explicitly stated in
[Vad06].)

Theorem 3.4 ([Ost91] (c.f. [Vad06, Theorem 7.5])). Let Π = (ΠY ,ΠN ) ∈ SZKP. Then there
exists a function family {fx}x∈{0,1}∗ and an oracle-aided PPT R, such that for every x ∈ ΠY ∪ΠN

and any algorithm A that inverts fx with probability at least 0.01, Pr
[
RA(x) = Π(x)

]
≥ 0.99.

7This result also easily follows from two theorem statements in [HN24], but was not explicit stated as far as we
can tell.

4



We now turn to the proof of Lemma 3.1.

Proof of Lemma 3.1. Let (Π = (L,L),D) ∈ (ZKA) \ (ioAvgBPP/poly). Let I and {hx}x∈{0,1}∗
be the set and the auxiliary-input one-way function promised by Theorem 3.3 and the SZK/OWF
condition for Π. Let {gx}x∈{0,1}∗ and R be the auxiliary-input one-way function and reduction

promised by Theorem 3.4 for Π′ = (ΠY \ I,ΠN \ I).
Let f(r, y1, y2) = D(r)||hD(r)(y1)||gD(r)(y2). We claim that f is a weak one-way function.

Indeed, assume towards a contradiction that an efficient algorithm A inverts f with probability
0.99 for infinitely many input lengths n, and fix such large enough n. Let A′ be the algorithm that
uses A to invert gx: given an input x, gx(y), A

′ samples y1 and executes A(x||hx(y1)||gx(y)) to get
a pre-image of gx(y). Let B be the algorithm that given input x, samples random y1, y2, and runs
A on z = x||hx(y1)||gx(y2). If A failed in inverting f on z, B outputs ⊥. Otherwise, B outputs
RA′

(x). We next show that B contradicts the assumption that Π /∈ ioAvgBPP/poly.
Observe that for every r such that D(r) ∈ I, A′ can only invert gD(r) with negligible probability

and consequently, A inverts f(r, ·) only with negligible probability. Thus B outputs ⊥ on every
(sufficiently large) such input with probability 0.99. On the other hand, for every r such that
D(r) /∈ I, B outputs either ⊥ or the right answer with probability at least 0.99. Thus B outputs the
wrong answer with probability at most 0.01 for any x. This implies the first item in Definition 2.1.

Next, to see that the second item holds, observe that for any r such that

Pry
[
A(f(r, y) ∈ f−1(f(r, y)))

]
≥ 0.9,

B outputs a (non-⊥) right answer with probability at least 0.9 (probability of running B) - 0.01
(probability that B outputs an incorrect answer) = 0.89. Moreover, by an averaging argument,

Prr
[
Pry

[
A(f(r, y) ∈ f−1(f(r, y)))

]
≥ 0.9

]
≥ 0.9.

(since otherwise, it cannot be that A inverts f with probability 0.99). Thus, B outputs the right
answer with probability at least 0.89 · 0.9 ≥ 3/4. □

3.2 Step 2: io-OWF ⇒ NP ̸⊆ ioAvgBPP/poly

We turn to observing that io-OWFs imply (errorless) average-case hardness of NP; this observation
may be folklore in the community but, as far as we can tell, was first explicitly stated in [HN24]
using a somewhat more complicated proof for a stronger statement (in particular, they proved not
only that NP is average-case hard but also that the particular MCSP problem [KC00] is so).8

Lemma 3.5 (ai-OWF to AvgBPP hardness). Assume that ai-OWF exists. Then there exists a
language L ∈ NP such that (L,

{
Um(n)

}
n∈N) /∈ ioAvgBPP/poly for some m ∈ poly.

Proof. Let {fx}x∈{0,1}∗ be an ai-OWF. For every x ∈ {0, 1}∗, let Gx : {0, 1}m(|x|) → {0, 1}2m(|x|)

be the PRG construction of HILL from fx with m ∈ poly such that m(|x|) > 2|x|. [HILL99]. By
[HILL99] it holds that (1) Gx(s) can be efficiently computed given x, s, and (2) there is a reduction
from distinguishing the output of Gx from uniform and inverting fx. Let

LHILL =
{
y : ∃x ∈ {0, 1}∗, s ∈ {0, 1}m(|x|) s.t. Gx(s) = y

}
,

8As mentioned, our proof directly extends also to showing that the MKtP problem [Ko86] also is average-case
hard—see Appendix A for more details—but this is not of relevance for proving the main result.
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and let D =
{
Dn = U2m(n)

}
n∈N. We claim that (LHILL,D) ∈ ioAvgBPP/poly. To see this,

assume toward contradiction that (LHILL,D) ∈ ioAvgBPP/poly, and let A be the algorithm that
decides LHILL with good probability over the Dn for infinite many n’s. We show that A can be
used to invert {fx} for every x ∈ {0, 1}n and for infinitely many n’s.

Indeed, fix n such that A succeed on Dn, and fix x ∈ {0, 1}n. Observe that Gx(s) ∈ LHILL for

any s ∈ {0, 1}m(n). Thus, A outputs 1 or ⊥ on x with probability at least 0.9 on every output of
Gx. On the other hand, ∣∣∣LHILL ∩ {0, 1}2m(n)

∣∣∣ ≤ 2n · 2m(n) ≤ 22m(n)−n.

Therefore, it holds that Pry←U2m(n)
[y ∈ LHILL] ≤ 2−n, and thus

Pry←U2m(n)
[A(y) ̸= 0] ≤ 2−n + 0.1 + 1/4 ≤ 1/2.

We get that A distinguishes the output of Gx from random with advantage at least 0.9− 0.5 = 0.4.
□

3.3 Concluding the Proof of Theorem 1.1

Proof of Theorem 1.1. Assume that ZKA ⊈ ioP/poly. By Theorem 2.3 ai-OWF exist. By
Lemma 3.5, there exists L ∈ NP and samplable distributionD such that (L,D) /∈ ioAvgBPP/poly.
Finally, since by assumption NP ⊆ ZKA, we get by Lemma 3.1 that OWFs exist. □
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A On Average-case Hardness of MKtP

We here briefly observe that ai-OWF imply average-case hardness of the Minimum Kolmogorov
complexity problem, MKtP [Kol68; Ko86]; this result may be folklore in the community but as far
as we know has not been explicitly stated (although a close variant of it can be found in [LP21a],
following the approach in [Hir18]).

Recall that for a threshold s = s(n), MKtP[s] is the language of all strings x ∈ {0, 1}∗ with
Kt(x) ≤ s(|x|). Similarly, MKtP[s0, s1] is the promise problem in which the Yes instances are the
strings with Kt(x) ≤ s0(|x|), and the No instances are the strings with Kt(x) > s1(|x|). We prove
the following theorem.

Theorem A.1. Let ϵ > 0 be a constant. Assuming that ai-OWF exist, (MKtP[ϵn, (1−ϵ)n], Um(n)) /∈
ioAvgBPP/poly for any t(n) ≥ n1+ϵ and some m ∈ poly.

Proof. Assume toward contradiction that (MKtP[ϵn, (1− ϵ)n], Um(n)) ∈ ioAvgBPP/poly for any
m ∈ poly. We claim that there is no ai-OWF. Indeed, we can use the MKtP solver to invert any
function family {fx}x∈{0,1}∗ on every x of length n, for infinite many n’s.

To see that, we use each function fx to construct a PRG Gx : {0, 1}ϵ·m(n)/2 → {0, 1}m(n) for
some polynomial m(n), such that (1) ϵ ·m(n)/2 ≥ 2n, (2) Gx(z) can be computed in time at most
(m(n))1+ϵ given x and an input z, and (3) there is a reduction from distinguishing the output of
Gx from uniform and inverting fx.

Let A be the zero-error algorithm that for (MKtP[ϵn, (1− ϵ)n], Um(n)). Using the family {Gx}
and the algorithm A we can invert {fx} almost everywhere by the observation that A distinguish
between the output of Gx and uniform m(n) bit string for every choice of x of length n. Indeed,
by the correctness of A, A must output No with probability at least 3/4− neg(n) over the uniform
distribution. On the other hand, Kt(Gx(z)) ≤ |z|+|x|+O(log n) ≤ ϵ·m(n)/2+n+(log n) ≤ ϵ·m(n)
for any z, x. Thus, A must output ⊥ or Yes on any output of Gx.

Finally, to construct Gx we use the PRG construction of HILL from the one-way function
fx to get a function G′ : {0, 1}ϵ·m

′(n)/2 → {0, 1}m
′(n). Let p′ be a polynomial that bound the

running time of G′, and let Gx(z1, . . . , zq(n)) = G′x(z1)|| . . . ||G′x(zq(n)). Then G′ can be computed
in time roughly q(n) · p′(n), and the output length of G′ is m(n) := q(n) · m′(n). By taking
q(n) ≥ max

{
(p′(n))1/ϵ, 2n/ϵ

}
we get that Gx can be computed in time at most (m(n))1+ϵ. □

We directly get the following corollaries; the second one using the proof of Theorem 1.1.

Corollary A.2. Let ϵ > 0 be a constant. Assuming that ai-OWF exist, (MKtP[(1− ϵ)n], Um(n)) /∈
ioAvgBPP/poly for any t(n) ≥ n1+ϵ and some m ∈ poly.

Corollary A.3. Assume that MKtP[ϵn, (1 − ϵ)n] ∈ ZKA for some constant ϵ, and that ZKA /∈
ioP/poly. Then one-way functions exist.
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