
Probabilistic Attacks and Enhanced Security for “Private Set
Intersection in the Internet Setting from Lightweight Oblivious

PRF”
Zhuang Shan

arcsec30@163.com
Xidian University

Xi’an, Shaanxi, China

Leyou Zhang*

lyzhang@mail.xidian.edu.cn
Xidian University

Xi’an, Shaanxi, China

Qiqi Lai
lyzhang@mail.xidian.edu.cn
Shaanxi Normal University

Xi’an, Shaanxi, China

Abstract

Privacy Set Intersection (PSI) has been an important research
topic within privacy computation. Its main function is to allow
two parties to compute the intersection of their private sets
without revealing any other private information. Therefore,
PSI can be applied to various real-world scenarios.

Chase and Miao presented an impressive construction “Pri-
vate set intersection in the Internet setting from lightweight
oblivious prf” (CM20 for short) at Crypto 2020, highlighting
its convenient structure and optimal communication cost.
However, it does have some security vulnerabilities. Let 𝑋
be the privacy set of user 𝑃1, 𝑌 be the privacy set of user 𝑃2.
The CM20 protocol uses a pseudorandom function (PRF)
to encrypt the privacy 𝑥 ∈ 𝑋 of 𝑃1 into 𝐷1 and the privacy
𝑦 ∈ 𝑌 of 𝑃2 into 𝐷2, 𝐷1 = 𝐷2 as 𝑥 = 𝑦. It then sends random
data 𝐹1 to user 𝑃1 and random data 𝐹2 to user 𝑃2 using
a random oblivious transfer technique. User 𝑃2 computes
𝛿 = 𝐷2 ⊕ 𝐹2 and sends 𝛿 to user 𝑃1, and user 𝑃1 uses 𝛿
and 𝐹1 to re-encrypt 𝐷1. Repeat this until 𝑃1 re-encrypts all
the privacy in all the privacy sets 𝑋, packages them up and
sends them to 𝑃2, who completes the privacy set intersection.
However, if an adversary obtains 𝛿 and 𝐹2 by any means, they
can recover the PRF’s encryption of the user’s privacy, and
the recovery process is non-trivial. This significantly weakens
the security of the CM20 protocol.

In this paper, we make three main contributions. First,
based on the above analysis, we present a method for attack-
ing CM20, called probabilistic attacks. This attack is based on
estimating and analysing the frequency distribution of the en-
crypted data from the PRF and the probability distribution
of the original private data, and determining the relationship
between the two. Although not 100% effective, this method
of attack poses a significant threat to the security of user
data.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

© 2024 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Secondly, we introduce a new tool called the perturbed
pseudorandom generator (PPRG). We show that the PPRG
can overcome probabilistic attacks by replacing the random
oblivious transfer and one of the hash functions (originally
there were two) in CM20.

Finally, we provide a dedicated indistinguishability against
chosen-plaintext attack (IND-CPA) security model for this
PSI protocol. The efficiency analysis shows that the proposed
PSI is comparable to CM20’s PSI, whether on a PC, MAC,
pad or mobile phone.

CCS Concepts

• Security and privacy → Security protocols.

Keywords

PSI, Probabilistic attacks, Pseudorandom generator

ACM Reference Format:
Zhuang Shan, Leyou Zhang, and Qiqi Lai. 2024. Probabilistic
Attacks and Enhanced Security for “Private Set Intersection in the
Internet Setting from Lightweight Oblivious PRF”. In Proceedings
of Make sure to enter the correct conference title from your rights

confirmation email (Conference acronym ’XX). ACM, New York,
NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Private Set Intersection (PSI) allows two parties, Alice (with a
private input set 𝑋) and Bob (with a private input set 𝑌), to
learn the intersection 𝑋 ∩𝑌 of their sets, while ensuring that
neither party learns anything beyond the intersection. All
standard PSI protocols have communication and computation
complexity proportional to the cardinality of the input sets.
[15, 16, 20, 25, 35, 38, 45].

At Crypto 2020, a lightweight PSI was presented by Chase
and Miao, entitled as ”Private Set Intersection in the Internet
Setting of Lightweight Oblivious PRF”, referred to as CM20
in this paper [20]. CM20 is a very classic PSI article, the
main structure is the use of hash functions and pseudorandom
functions to encrypt all the private data of Alice (the user),
and then send the encrypted data to Bob (another user)
through the oblivious transfer (OT [7, 40, 41]), Bob will
also encrypt his own private data using hash functions and
pseudorandom functions, and then with the encrypt data
that Alice sends. Bob also encrypts his private data with
a hash function and a pseudorandom function, and then
compares it with the encrypted data sent by Alice, and the
successful match (the encryption result is the same) is the

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Shan Zhuang, Zhang Leyou and Lai Qiqi

intersection of the two parties’ privacy sets. CM20 achieves
a better balance between computation and communication
compared to the previous results.

However, CM20 pursues the balance between computation
and communication too much and neglects the security issue.
When an adversary intercepts the data during the oblivious
transfer phase, it is possible to recover the pseudo-random
encrypted value of the protocol for the user’s privacy. The
pseudorandom function is a weak encryption [20, 23], and
gets the same output (i.e., pseudorandom function value) for
the same input. Based on this property, we give an attack
with the name probabilistic attacks. The meaning of the
probabilistic attacks is that, if the adversary has access to the
private portion of the data in some way, then the adversary
can statistically intercept the pseudorandom portion of the
function values. If the difference between the two proportions
is not large, the adversary can think that these pseudorandom
function values are the result of encrypting the private data
by pseudorandom function in CM20 protocol, although this
attack means is not 100% effective, but this has threatened
the user’s data security.

There are three main contributions in this paper. First, we
present the attack method for CM20, namely the probabilistic
attacks, and simulate the attack on CM20. This attack is not
only applicable to CM20, but can also be used against other
protocols with weak encryption.

Second, we introduce the definition of a perturbed pseudo-
random generator (PPRG). We replace the random oblivious
and one of the hash functions (originally there were two) in
the original CM20 scheme with a perturbed pseudorandom
generator. The PPRG strengthens the security of the CM20
protocol, making it strongly secure, i.e. achieving randomised
encryption. Randomised encryption means that for the same
private data, the encryption results are different, effectively
resisting probabilistic attacks.

Finally, we define a new security model, the indistinguisha-
bility against chosen-plaintext attack (IND-CPA) security
model for PSI, and prove that our PSI protocol is IND-CPA
security model. This model gives the adversary the ability to
intercept the encrypted data of others, which allows him to
perform probabilistic attacks.

1.1 Our Contributions

1.1.1 Probabilistic Attacks. The core idea of probabilistic
attacks is to guess and attack the data by analysing the
frequency distribution of the pseudorandomly encrypted data
in CM20 (encrypted data for short) and the probability
distribution of the original private data. First, we assume
that there is an encrypted data set 𝑌 , where each data
item 𝑦 ∈ 𝑌 is obtained by encrypting a private data item 𝑥
using the CM20 protocol. We then count the frequency of
these encrypted items within the dataset, thus obtaining the
probability of occurrence for each encrypted item.

For each piece of encrypted data 𝑦, we need to guess the
corresponding original private data 𝑥, and this guess depends

on the probability distribution Pr(𝑥) of the original private
data and the probability of occurrence of the encrypted data.

The specific guessing method is to compute the difference
in probability distributions between the encrypted data 𝑦
and each possible original private data item 𝑥. Common ways
to compute this difference include Euclidean distance or KL
divergence. The 𝑥 with the smallest difference is chosen as the
corresponding original private data, assuming that it is the
most likely original private data for the encrypted data 𝑦. We
then encrypt the guessed original private data and compare
it with the actual encrypted data. If the encrypted guess
matches the actual encrypted data, the attack is considered
successful.

Figure 1: Probabilistic attacks

The effectiveness of the probabilistic attacks is evaluated
by the accuracy, which is calculated as the ratio of the number
of successful guesses to 𝑛. If the guessed original private data
𝑥 matches the actual encrypted data 𝑦, it indicates that the
attack method is effective or the guess is successful. In this
case, the number of successful guesses is increased by 1.

Algorithm 1 Probabilistic Attacks

1: Input: Known probabilities Pr(𝑥) for 𝑛 private data
items 𝑥 and 𝑙 data sets 𝑦 (where 𝑛 and 𝑙 are variables,
we adjust 𝑛 and 𝑘 to observe the effect of probabilistic
attacks, with 𝑦 = PRF(𝑥))

2: Output: The original private data 𝑥 of encrypted data
𝑦

3: Step 1: Count the probability of occurrence of each
encrypted item 𝑦.

4: Calculate the frequency of each 𝑦, denoted as 𝑓(𝑦)

5: Estimate the probability of 𝑦 as Pr(𝑦) = 𝑓(𝑦)
𝑘

6: Step 2: Guess the original private data 𝑥 corresponding
to encrypted data 𝑦, i.e., 𝑦 = PRF(𝑥)

7: For each Pr(𝑦), find the closest Pr(𝑥) such that
Pr(𝑥) ≈ Pr(𝑦)

8: Use the distance minimization method to find original
private data 𝑥 corresponding to encrypted data 𝑦

Remark 1. The table 1 shows that the success rate of the
probabilistic attacks depends on to both 𝑛 and 𝑙. Although it
may seem low, it is still non-negligible, which does not meet
the security requirements of cryptographic protocol.

Probabilistic Attacks and Enhanced Security for CM20 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 1: Accuracy of Probabilistic Attacks

𝑙 = 104 𝑙 = 105 𝑙 = 106 𝑙 = 107

𝑛 = 100 0.11 0.35 0.6 0.79
𝑛 = 500 0.006 0.032 0.124 0.306
𝑛 = 1000 0.003 0.007 0.036 0.113
𝑛 = 2000 0.002 0.0055 0.0115 0.04

1.1.2 Perturbed Pseudorandom Generator. The term ”per-
turbed pseudorandom generator” refers to perturbing the
output of a pseudorandom generator. A pseudorandom gen-
erator helps to hide private information, but it is still a weak
form of encryption. By adding a perturbation, it can be
shown to resist probabilistic attacks.

Setup. Let 𝐴 ∈ Z𝑚×𝑛
{0,1}, 𝑥 ∈ Z𝑛

{0,1}, 𝑒 ∈ Z𝑚
{0,1}.

Enc. Compute

𝐺𝛾(𝑥) = (𝐴𝑥) mod 3 + 𝑒.

Figure 2: Perturbed pseudorandom generator

We replace the second hash function in the CM20 protocol
with a perturbed pseudorandom generator. The purpose of
this modification is to ensure that our protocol (the modified
CM20 protocol) produces different encryption results for
the same input, while also ensuring that both parties can
correctly match their privacy intersections. As a result, the
matching mechanism in our protocol differs from the one in
CM20. CM20 performs exact matching, while our protocol
relies on the ℓ2-norm and a threshold for matching, due to
the perturbation introduced by the pseudorandom generator.

Regarding the security or pseudorandomness of the per-
turbed pseudorandom generator, we reduce it to the dihedral
coset problem, which is a known problem resistant to quan-
tum attacks. A detailed proof will be given shortly.

1.1.3 IND-CPA Security Model for Our Protocol. The current
security models for Private Set Intersection (PSI) are the
semi-honest user model and the malicious user model. In
the semi-honest model, all participants are assumed to be
either semi-honest or honest. A semi-honest participant fully
complies with the protocol, but collects all records during
protocol execution and attempts to infer the inputs of other
participants. Attackers in the semi-honest model are passive,
i.e. they do not actively interfere with the protocol, but
instead try to learn additional information from the protocol
execution. In contrast, the malicious model assumes the
presence of at least one malicious attacker who may attempt
to disrupt protocol execution or steal private information
from other participants. Our proposal is for a new model of
security, one that is

Definition 1 (IND-CPA security model of the our protocol).
Assume there exists a perturbed pseudorandom oracle 𝑃𝑟𝒪𝑀𝛾

(where 𝛾 is the upper bound on the norm of the perturbation
in 𝑃𝑟𝒪𝑀𝛾), such that for an input 𝑥, it outputs two values:
one is a random value 𝑦0, and the other is a pseudorandom
value 𝑦1 with 𝑥 as its input.

∙ Setup The simulator ℬ generates the necessary param-
eters for the algorithms. The adversary 𝒜 chooses 𝑠
and sends it to the simulator 𝒮 using OT.
∙ PRF Queries The adversary 𝒜 performs pseudoran-
dom function queries.
∙ Challenge The adversary 𝒜 selects a private mes-
sage 𝑚 and sends it to the simulator ℬ. The simulator
queries the hash function, pseudorandom function, and
oblivious transfer values of the real scheme, inputs these
results into the pseudorandom oracle machine 𝑃𝑟𝒪𝑀𝛾 ,
obtains two ciphertexts 𝑐0 and 𝑐1, and sends them to
the adversary 𝒜.
∙ Guessing After receiving the two ciphertexts 𝑐0 and
𝑐1, 𝒜 guesses which ciphertext corresponds to the en-
cryption of 𝑚 and sends the guess back to the simulator
ℬ.

The advantage of the adversary 𝒜 is defined as the ad-
vantage of the simulator ℬ in distinguishing the outputs of
𝑃𝑟𝒪𝑀𝛾 .

This model gives the adversary the ability to intercept the
encrypted data of others, which allows him to perform prob-
abilistic attacks. Our IND-CPA security model ultimately
reduces to 𝑃𝑟𝒪𝑀𝛾 , which means that the perturbed pseu-
dorandom generator is the core security component of our
protocol. For 𝑃𝑟𝒪𝑀𝛾 we give the following definition.

Definition 2 (Perturbed pseudorandom oracle). For the
query on 𝑥, two values are output, i.e.,

Pr𝒪𝑀𝛾(𝑥)→ (𝑦0, 𝑦1)

𝑦0 = 𝐺black-box
𝛾 (𝑥) ∈ Zℓ2

4 ,

↗
↘

𝑦1 ∈𝑅 Zℓ2
4 .

Here, 𝐺black-box
𝛾 (𝑥) ∈ Zℓ2

4 is a black-box construction of a
PPRG, 𝑦0 and 𝑦1 are indistinguishable. When the inputs 𝑥1
and 𝑥2 are equal, i.e., 𝑥1 = 𝑥2, we have

Pr𝒪𝑀𝛾(𝑥1) = (𝑦𝑥1
0 , 𝑦𝑥1

1),

Pr𝒪𝑀𝛾(𝑥2) = (𝑦𝑥2
0 , 𝑦𝑥2

1),

and it holds that ‖𝑦𝑥1
0 − 𝑦

𝑥2
0 ‖ < 𝛾, ‖𝑦𝑥1

1 − 𝑦
𝑥2
1 ‖ < 𝛾.

Note 1. The 𝑃𝑟𝒪𝑀 mentioned in this paper is different
from [28]. In [28], 𝑃𝑟𝒪𝑀 refers to a pseudorandom oracle
that outputs random values when the adversary does not know
the pseudorandom function key, and outputs pseudorandom
function values based on the key known to the adversary when
the key is known. This is a single-value output. However, the
𝑃𝑟𝒪𝑀 required in this paper outputs both of these values
simultaneously, making it a multi-value output.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Shan Zhuang, Zhang Leyou and Lai Qiqi

1.2 Related Work

Early solutions for 2-party PSI [25, 33] were primarily based
on Diffie-Hellman and were secure against semi-honest adver-
saries. In recent years, a variety of new protocol paradigms
have emerged, leveraging techniques such as key agreement
[12, 26, 29], Bloom filters [13, 43], oblivious polynomial e-
valuation via additively homomorphic encryption [10, 30],
circuit-based approaches [15, 24, 37, 38], and vector oblivious
linear function evaluation [45], among others.

However, the OT paradigm is the primary basis for truly
practical and scalable solutions for PSI. Their efficiency comes
from OT extension [27], which minimises each OT instance’s
marginal cost to low-cost symmetric operations like AES
calls. These OT instances facilitate the comparisons required
for PSI. Pinkas, Schneider and Zohner [39] were the first
to propose PSI based directly on OT. This approach has
subsequently been the subject of a number of refinements
and extensions [16, 20, 31, 34–36, 44, 45].

Structure-Aware PSI. Recently, Garimella et al. [17] in-
troduced the concept of structure-aware PSI, where Alice
holds a structured input, and Bob has an unstructured set of
points. In this approach, the communication cost of the pro-
tocol scales with the size of the description of the structured
set, rather than its cardinality. It’s important to note that
silent OT [2–4, 8, 47], which enables parties to generate an
essentially unlimited number of oblivious transfer instances
without communication, does not address the challenge of
structure-aware PSI. This is because silent OT only generates
random OT correlations, which still require conversion into
chosen-input OT instances via communication [1], and this
communication cost is proportional to the cardinality of the
sets involved.

Malicious Model. To the best of our knowledge, the first spe-
cialised protocol for PSI in the malicious setting with less than
quadratic complexity was introduced in [14]. Other approach-
es to malicious 2-party PSI have used techniques such as
Diffie-Hellman key agreement, oblivious linear function eval-
uation and homomorphic encryption (e.g., [9, 11, 19, 22, 29]).
More recent works [16, 18, 35, 43–46] have incorporated OT
extension to achieve security in the malicious model.

1.3 Organizations

The structure of this paper is as follows. Section 2 provides
the necessary definitions and lemmas as a basis for the read-
er’s understanding. Section 3 describes in detail the execution
process of the CM20 protocol, the recovery of pseudorandom
function values using random oblivious transfer data, and
discusses probabilistic attacks. Section 4 introduces the def-
inition, construction, and security and correctness proof of
the perturbed pseudorandom generator. Section 5 gives our
PSI protocol, i.e. private set intersection from the perturbed
pseudorandom generator, and the corresponding proof of the
chosen security model for plaintext attacks. Section 6 shows
the performance evaluation of our PSI protocol. Section 7
concludes the paper with a summary and future directions.

2 Preliminary

Definition 3 ([21]). 𝜀(𝑛) is negligible associated with 𝑛 if
𝜀(𝑛) can be expressed as

𝜀(𝑛) =
1

𝑂(2𝑛)
,

and the notation 𝑂(𝑛) represents a quantity that grows at
most as fast as 𝑛 approaches infinity.

Definition 4 ([6]). Let ℋ be a Hilbert space, and let 𝑇 :
ℋ → ℋ be an operator. If 𝑇 (·) satisfies

‖𝑇𝑥− 𝑇𝑦‖ < ‖𝑥− 𝑦‖, ∀𝑥, 𝑦 ∈ ℋ,
then 𝑇 (·) is called a contraction operator.

Lemma 1 ([6]). If ℋ is a closed set (every Cauchy sequence
in ℋ converges to a point within ℋ), and 𝑇 (·) is a contrac-
tion operator, and 𝐹𝑖𝑥(𝑇) is a closed convex set, then the
algorithm 𝑥𝑛+1 = 𝑇𝑥𝑛 converges to some 𝑥 ∈ 𝐹𝑖𝑥(𝑇), where
𝐹𝑖𝑥(𝑇) denotes the set of fixed points of the operator 𝑇 (·).

Remark 2. The convergence mentioned in Lemma 2 should
be considered as strong convergence. However, this paper does
not discuss the difference between strong and weak conver-
gence, because in finite dimensions strong and weak conver-
gence are equivalent.

Lemma 2 ([6]). If ℋ is a closed set (every Cauchy sequence
in ℋ converges to a point within ℋ), and 𝑇 (·) is a contrac-
tion operator, and 𝐹𝑖𝑥(𝑇) is a closed convex set, then the
algorithm 𝑥𝑛+1 = 𝑇𝑥𝑛 converges to some 𝑥 ∈ 𝐹𝑖𝑥(𝑇), where
𝐹𝑖𝑥(𝑇) denotes the set of fixed points of the operator 𝑇 (·).

Remark 3. The convergence mentioned in Lemma 2 should
be considered as strong convergence. However, this paper does
not discuss the difference between strong and weak conver-
gence, because in finite dimensions strong and weak conver-
gence are equivalent.

Definition 5 (Dihedral Coset Problem). Given a security
parameter 𝜅, an instance 𝐷𝐶𝑃 ℓ

𝑞 is defined with 𝑁 as the mod-
ulus and ℓ as the number of states. Each state is represented
as

|0⟩|𝑥𝑖⟩+ |1⟩|(𝑥𝑖 + 𝑠) mod 𝑞⟩, for 𝑖 ≤ ℓ,
where 𝑠 and 𝑥 are chosen randomly from Z𝑞, and 𝑠 needs
to be determined with probability at least poly(1/ log 𝑞) in
poly(log 𝑞) time. If 𝑠 can be efficiently computed under these
conditions, then the 𝐷𝐶𝑃 ℓ

𝑞 problem is considered broken.

Definition 6 (Learning with error, [42]). Let 𝜆 be the se-
curity parameter, 𝑛, 𝑚, 𝑞 be integers. The LWE problem
states that for 𝐴 ∈ Z𝑚×𝑛

𝑞 , 𝑠 ∈ Z𝑛
𝑞 , 𝑢 ∈ Z𝑚

𝑞 , 𝑒 ∈ 𝜒 ⊂ Z𝑚
𝑞 the

following distributions are computationally indistinguishable:
(𝐴,𝐴𝑠+ 𝑒) ≈𝐶 (𝐴, 𝑢).

3 Probabilistic Attacks of CM20

This section will introduce the operational details of the
CM20 and explain the principles of the probabilistic attacks.
The CM20 Protocol, which involves two participants, 𝑃1 and
𝑃2, who use security parameters 𝜆, 𝜎, protocol parameter-
s 𝑚,𝜔, ℓ1, ℓ2, two hash functions 𝐻1 : {0, 1}* → {0, 1}ℓ1 ,

Probabilistic Attacks and Enhanced Security for CM20 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

𝐻2 : {0, 1}𝜔 → {0, 1}ℓ2 , and a pseudorandom function
𝐹 : {0, 1}𝜆 × {0, 1}ℓ1 → [𝑚]𝜔. The protocol is divided into
three main steps: precomputation, oblivious transfer, and
OPRF evaluation. That is

1. Precomputation
∙ 𝑃1 generates a random string 𝑠← {0, 1}𝑤.
∙ 𝑃2 performs the following steps:
– Initialize an𝑚×𝑤 binary matrix𝐷, with all entries

set to 1. Let the column vectors of 𝐷 be denoted
as 𝐷1, 𝐷2, . . . , 𝐷𝑤, and initialize them as 𝐷1 =
𝐷2 = · · · = 𝐷𝑤 = 1𝑚.

– Sample a random key for a pseudorandom function
𝑘 ← {0, 1}𝜆.

– For each 𝑦 ∈ 𝑌 , compute 𝑣 = 𝐹𝑘(𝐻1(𝑦)). Then,
for each 𝑖 ∈ [𝑤], set 𝐷𝑖[𝑣[𝑖]] = 0.

2. Oblivious Transfer
∙ 𝑃1 and 𝑃2 perform 𝑤 random OTs with message
length 𝑚, where 𝑃1 is the receiver with inputs choice
bits 𝑠[1], . . . , 𝑠[𝑤]. As a result, 𝑃2 gets w pairs of

random messages {𝑟(0)𝑖 , 𝑟
(1)
𝑖 }𝑖∈[𝑤] and 𝑃1 gets 𝑤 mes-

sages {𝑟𝑖}𝑖∈[𝑤] where 𝑟𝑖 = 𝑟(𝑠[𝑖]).
∙ 𝑃2 does the following:
– Let {𝑟(0)}𝑖∈[𝑤] form the column vectors of the ma-

trix 𝐴 and compute the matrix 𝐵 = 𝐴⊕𝐷.

– Compute 𝛿𝑖 = 𝐵𝑖 ⊕ 𝑟(1)𝑖 for all 𝑖 ∈ [𝑤] and send to
𝑃1.

3. OPRF Evaluation
(a) 𝑃2 sends the PRF key 𝑘 to 𝑃1.
(b) ∀𝑥 ∈ 𝒳 , 𝑃1 computes the matrix 𝐶 as follows: if

𝑠[𝑖] = 0 then set 𝐶𝑖 = 𝑟𝑖; otherwise set 𝐶𝑖 = 𝑟𝑖 ⊕
𝛿𝑖 and 𝑣 = 𝐹𝑘(𝐻1(𝑥)) and its OPRF value 𝜓 =
𝐻2(𝐶1[𝑣[1]]‖ · · · ‖𝐶𝜔[𝑣[𝜔]]) and sends 𝜓 to 𝑃2.

(c) Let Ψ be the set of OPRF values received from 𝑃1.
∀𝑦 ∈ 𝒴, 𝑃2 computes 𝑣 = 𝐹𝑘(𝑦) and its OPRF value
𝜓 = 𝐻2(𝐴1[𝑣[1]]‖ · · · ‖𝐴𝜔[𝑣[𝜔]]) and outputs 𝑦 iff
𝜓 ∈ Ψ.

Definition 7. The notation P𝑋 = {Pr(𝑥1), . . . ,Pr(𝑥𝑛)} rep-
resents the probability of the occurrence of element 𝑥𝑖 in the
set 𝑋, where 𝑖 = 1, . . . , 𝑛 and 𝑋 = {𝑥1, . . . , 𝑥𝑛}.

Theorem 1. Suppose that the adversary 𝒜 can intercept the

transmission channel information {𝑟(0)𝑖 , 𝑟
(1)
𝑖 }𝑖∈[𝑤] and {𝑟𝑖 =

𝑟(𝑠[𝑖]), 𝛿𝑖}𝑖∈[𝑤], and by some means obtains the probability
distribution P𝑋 corresponding to the private data 𝑋. Suppose
further that the matching party 𝑃2 with user 𝑃1 does not
update the pseudorandom function key 𝑘 for a short period of
time. In this case, the advantage of adversary 𝒜 in performing
a probabilistic attack on CM20 is non-negligible.

Proof. First, 𝒜 intercepts the data {𝑟(0)𝑖 , 𝑟
(1)
𝑖 }𝑖∈[𝑤] from

the OT channel of user 𝑃2 and the data {𝛿𝑖}𝑖∈[𝑤] sent to

another user 𝑃1, and checks whether 𝐷′
𝑖 = 𝛿𝑖 ⊕ 𝑟(0)𝑖 ⊕ 𝑟(1)𝑖

belongs to {0, 1}𝑚×𝑤. If it does, then 𝒜 builds a list, Table D,
and stores the data 𝐷′ = 𝐷′

1‖ · · · ‖𝐷′
𝑤 in the table for statis-

tical purposes; otherwise, it continues to intercept new data

{𝑟(0)𝑖 , 𝑟
(1)
𝑖 }𝑖∈[𝑤]. Then 𝒜 performs statistics on the collected

data in Table D, and performs the operations of Algorithm
1.

Probabilistic Attacks Feasibility Analysis Currently,
the adversary can obtain transmission data from the channel
using some mature techniques, such as eavesdropping attack1.
This is because the CM20 encrypts the private data 𝑥 during
the unintentional transmission phase using a pseudorandom
function, as shown below.

𝛿𝑖 = 𝐵𝑖 ⊕ 𝑟(1)𝑖 = 𝐷𝑖 ⊕ 𝑟(0)𝑖 ⊕ 𝑟
(1)
𝑖 .

Therefore, 𝒜 can recover 𝐷𝑖, which is an encrypted value
related to the pseudorandom function value 𝑣𝑥 = 𝐹𝑘(𝐻1(𝑥)).
Furthermore, for the same private data 𝑥1, 𝑥2 ∈ 𝑋, if 𝑥1 = 𝑥2,
then 𝐷𝑥1

𝑖 = 𝐷𝑥2
𝑖 , where 𝐷𝑥1

𝑖 is the encrypted value related
to the pseudorandom function value 𝑣𝑥1 = 𝐹𝑘(𝐻1(𝑥1)). �

4 Perturbed Pseudorandom Generator

4.1 Definition of PPRG

Definition 8 (Perturbed PRG). A perturbed pseudorandom
generator, denoted as 𝐺𝛾(·), is defined such that for 𝑥1, 𝑥2 ∈
𝒳 , there exists 𝛾 satisfying the following conditions:

(1) When 𝑥1 = 𝑥2, Pr(𝐺𝛾(𝑥1) = 𝐺𝛾(𝑥2)) ≤ 𝜀(𝑛),
(2) When 𝑥1 = 𝑥2, such that ‖𝐺𝛾(𝑥1) − 𝐺𝛾(𝑥2)‖ < 𝛾,

there exists 𝑁 such that ‖𝐺𝛾(𝑥1)−𝐺𝛾(𝑥2)‖ ≥ 𝛾 ·𝑁 as
𝑥1 ̸= 𝑥2, where clearly 𝑁 = 1 is optimal.

Algorithm 2 Perturbed Pseudorandom Generator 𝐺𝛾(·)
1: Input: 𝑥 ∈ Z𝑛

{0,1}
2: Output: 𝐺𝛾(𝑥)
3: Setup: Initialize 𝐴 ∈ Z𝑚×𝑛

{0,1}, 𝑒 ∈ Z𝑚
{0,1}

4: Enc: Compute

𝐺𝛾(𝑥) = (𝐴𝑥) mod 3 + 𝑒

4.2 Pseudorandomness proof of PPRG

Theorem 2 (Main theorem). Assume the construction of
the 𝐺𝛾(·) as depicted in Algorithm 2, then 𝐺𝛾(·) is indistin-
guishable from 𝑢 ∈ Z𝑚

{0,1,2,3}(Z𝑚
{0,1,2,3} = Z𝑚

3).

Proof. To prove this theorem, we divide it into two parts:
The first part proves that the indistinguishability probability
between (𝐴𝑠) mod 3+ 𝑒 and 𝑢 is bounded by 1√

3

(︀
1
2
− 3

2𝜔2

)︀𝑛
from Corollary 2.

The second part, Corollary 4, reduces the difficulty of
solving the 𝐺𝛾(·) as depicted in Algorithm 2 to the Extrap-
olated Dihedral Coset Problem. Lemma 4 and Lemma 5
further reduce the Extrapolated Dihedral Coset Problem to
the Dihedral Coset Problem, thereby proving the difficulty
of solving the 𝐺𝛾(·). �

Part 1: The first part demonstrates that the indistin-
guishability probability between (𝐴𝑠) mod 3 + 𝑒 and 𝑢 is
upper-bounded by 1√

3

(︀
1
2
− 3

2𝜔2

)︀𝑛
.

1https://www.fortinet.com/resources/cyberglossary/eavesdropping

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Shan Zhuang, Zhang Leyou and Lai Qiqi

Fact 1. Suppose that P{0,1} = {Pr(0),Pr(1)}, P(1)

{0,1} =

{ 1
2
, 1
2
}, P(2)

{0,1} = { 1
𝜔
, 𝜔−1

𝜔
}, then

P(1)

{0,1} ⊙ P(2)

{0,1} = P(3)

{0,1}

=

{︂
1

2
· 1
𝜔

+
1

2
· 1
𝜔

+
1

2
· 𝜔 − 1

𝜔
,
1

2
· 𝜔 − 1

𝜔

}︂
=

{︂
1

2
+

1

2𝜔
,
1

2
− 1

2𝜔

}︂
.

Fact 2. Suppose that P(3)

{0,1} = { 1
2
+ 1

2𝜔
, 1
2
− 1

2𝜔
} = {Pr(0),Pr(1)},

then

P{0,1,2} = {
′
Pr(0),

′
Pr(1),

′
Pr(2)} = P(3)

{0,1} ⊎ P(3)

{0,1}. Here,

′
Pr(0) = Pr(0)Pr(0) =

(︂
1

2
+

1

2𝜔

)︂2

=
1

3
+

1

2𝜔
+

1

4𝜔2
− 1

12
,

′
Pr(1) = Pr(0)Pr(1) + Pr(1)Pr(0) = 2

(︂
1

2
+

1

2𝜔

)︂(︂
1

2
− 1

2𝜔

)︂
=

1

3
+

1

6
− 1

2𝜔2
,

′
Pr(2) = Pr(1)Pr(1) =

(︂
1

2
− 1

2𝜔

)︂2

=
1

3
− 1

2𝜔
+

1

4𝜔2
− 1

12
.

Furthermore, there is also

P′
{0,1,2} = {

′′
Pr(0),

′′
Pr(1),

′′
Pr(2)}

= P{0,1,2} ⊎ P{0,1,2} mod 3. Here,

′′
Pr(0) =

′
Pr(0)

′
Pr(0) +

′
Pr(1)

′
Pr(2) +

′
Pr(2)

′
Pr(1),

′′
Pr(1) =

′
Pr(0)

′
Pr(1) +

′
Pr(1)

′
Pr(0) +

′
Pr(2)

′
Pr(2),

′′
Pr(2) =

′
Pr(0)

′
Pr(2) +

′
Pr(1)

′
Pr(1) +

′
Pr(2)

′
Pr(0).

(1)

The equation (1) can be rewritten as

P′
{0,1,2} =

⎛⎝ Pr′(0) Pr′(2) Pr′(1)
Pr′(1) Pr′(0) Pr′(2)
Pr′(2) Pr′(1) Pr′(0)

⎞⎠⎛⎝ Pr′(0)
Pr′(1)
Pr′(2)

⎞⎠
=𝑀P{0,1,2}P{0,1,2}.

Fact 3. For the sequence

P(𝑛)

{0,1,2} =𝑀P(𝑛−1)
{0,1,2}

P(𝑛−1)

{0,1,2},

define

P(𝑛)

{0,1,2} = (𝑎(0)𝑛 , 𝑎(1)𝑛 , 𝑎(2)𝑛) =

(︂
1

3
+ ∆(0)

𝑛 ,
1

3
+ ∆(1)

𝑛 ,
1

3
+ ∆(2)

𝑛

)︂
.

Claim 1. The sequence

P(𝑛)

{0,1,2} =𝑀P(𝑛−1)
{0,1,2}

P(𝑛−1)

{0,1,2}

is a Cauchy sequence.

Proof. To prove that

P(𝑛)

{0,1,2} =𝑀P(𝑛−1)
{0,1,2}

P(𝑛−1)

{0,1,2}

forms a Cauchy sequence, it suffices to show that for any
𝛿 > 0, there exists an𝑁 > 0 such that for any 𝑛 > 𝑁 ,⃦⃦⃦

P(𝑛)

{0,1,2} − P(𝑛−1)

{0,1,2}

⃦⃦⃦
≤ 𝛿.

Because

P(𝑛)

{0,1,2} − P(𝑛−1)

{0,1,2} =

⎛⎜⎝ (∆
(𝑛−1)
0)2 + 2∆

(𝑛−1)
1 ∆

(𝑛−1)
2

(∆
(𝑛−1)
2)2 + 2∆

(𝑛−1)
0 ∆

(𝑛−1)
1

(∆
(𝑛−1)
0)2 + 2∆

(𝑛−1)
0 ∆

(𝑛−1)
2

⎞⎟⎠
=

⎛⎜⎝ ∆
(𝑛−1)
0 ∆

(𝑛−1)
2 ∆

(𝑛−1)
1

∆
(𝑛−1)
1 ∆

(𝑛−1)
0 ∆

(𝑛−1)
2

∆
(𝑛−1)
2 ∆

(𝑛−1)
1 ∆

(𝑛−1)
0

⎞⎟⎠
⎛⎜⎝ ∆

(𝑛−1)
0

∆
(𝑛−1)
1

∆
(𝑛−1)
2

⎞⎟⎠ .

And ⃦⃦⃦⃦
⃦⃦⃦
⎛⎜⎝ ∆

(𝑛−1)
0 ∆

(𝑛−1)
2 ∆

(𝑛−1)
1

∆
(𝑛−1)
1 ∆

(𝑛−1)
0 ∆

(𝑛−1)
2

∆
(𝑛−1)
2 ∆

(𝑛−1)
1 ∆

(𝑛−1)
0

⎞⎟⎠
⃦⃦⃦⃦
⃦⃦⃦

≤

⃦⃦⃦⃦
⃦⃦
⎛⎝ 1

6
− 1

2𝜔2
1
6
− 1

2𝜔2
1
6
− 1

2𝜔2
1
6
− 1

2𝜔2
1
6
− 1

2𝜔2
1
6
− 1

2𝜔2
1
6
− 1

2𝜔2
1
6
− 1

2𝜔2
1
6
− 1

2𝜔2

⎞⎠⃦⃦⃦⃦⃦⃦
=

1

2
− 3

2𝜔2
.

So, it is obtained that⃦⃦⃦
P(𝑛)

{0,1,2} − P(𝑛−1)

{0,1,2}

⃦⃦⃦
≤
(︂
1

2
− 3

2𝜔2

)︂𝑛−1 ⃦⃦⃦
P(1)

{0,1,2} − P(0)

{0,1,2}

⃦⃦⃦
≤ 1√

3

(︂
1

2
− 3

2𝜔2

)︂𝑛

.

�

Lemma 3. For any initial vector 𝑎0 = (𝑎
(0)
0 , 𝑎

(1)
0 , 𝑎

(2)
0),

where 𝑎
(0)
0 , 𝑎

(1)
0 , 𝑎

(2)
0 ∈ [(1

2
− 1

2𝜔
)2, (1

2
+ 1

2𝜔
)2] and

∑︀2
𝑖=0 𝑎

(𝑖)
0 =

1, and 𝜔 > 2, the matrix 𝑀𝑎0 is generated as follows:

𝑀𝑎0 =

⎛⎜⎝ 𝑎
(0)
0 𝑎

(2)
0 𝑎

(1)
0

𝑎
(1)
0 𝑎

(0)
0 𝑎

(2)
0

𝑎
(2)
0 𝑎

(1)
0 𝑎

(0)
0

⎞⎟⎠ .

Then, let 𝑎𝑛+1 =𝑀𝑎𝑛𝑎𝑛 = 𝑇𝑎𝑛, then {𝑎𝑛}∞𝑛=0 is a Cauchy
sequence and converges to (1

3
, 1
3
, 1
3
).

Proof. According to Claim 1, we know that⎛⎜⎝ ∆
(𝑛−1)
0 ∆

(𝑛−1)
2 ∆

(𝑛−1)
1

∆
(𝑛−1)
1 ∆

(𝑛−1)
0 ∆

(𝑛−1)
2

∆
(𝑛−1)
2 ∆

(𝑛−1)
1 ∆

(𝑛−1)
0

⎞⎟⎠
is a contraction operator, and⃦⃦⃦⃦

⃦⃦⃦
⎛⎜⎝ ∆

(𝑛−1)
0 ∆

(𝑛−1)
2 ∆

(𝑛−1)
1

∆
(𝑛−1)
1 ∆

(𝑛−1)
0 ∆

(𝑛−1)
2

∆
(𝑛−1)
2 ∆

(𝑛−1)
1 ∆

(𝑛−1)
0

⎞⎟⎠
⃦⃦⃦⃦
⃦⃦⃦ ≤ 1

2
− 3

2𝜔2
.

Probabilistic Attacks and Enhanced Security for CM20 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Therefore, the matrix⎛⎜⎝ ∆
(𝑛−1)
0 ∆

(𝑛−1)
2 ∆

(𝑛−1)
1

∆
(𝑛−1)
1 ∆

(𝑛−1)
0 ∆

(𝑛−1)
2

∆
(𝑛−1)
2 ∆

(𝑛−1)
1 ∆

(𝑛−1)
0

⎞⎟⎠
is contractive, with (0, 0, 0) being both a convergent point
and a fixed point of this matrix sequence. Moreover, since
𝑎𝑛+1 = 𝑀𝑎𝑛𝑎𝑛 has been proven to be a Cauchy sequence,
the sequence {𝑎𝑛}∞𝑛=0 converges, and it converges to the fixed
point of 𝑇 (·). �

Theorem 3. Given {𝑎𝑗}2𝑗=0 and {𝑠𝑗}2𝑗=1 such that 𝑎𝑗 ∈𝑅

Z{0,1}, 𝑠 ∈ Z{0,1}, and the probability that the components of

𝑠 equal 0 is 1
𝜔
, while the probability that they equal 1 is 𝜔−1

𝜔
,

where 𝜔 > 2. Then for any 𝑖 = 0, 1, 2, we have

max
𝑖=0,1,2

⃒⃒⃒⃒
⃒Pr
(︃

2∑︁
𝑗=0

(𝑎𝑗𝑠𝑗) = 𝑖

)︃
− Pr(𝑢 = 𝑖)

⃒⃒⃒⃒
⃒ ≤ 1√

3

(︂
1

2
− 3

2𝜔2

)︂𝑛

.

Corollary 1. For any 𝐴 ∈ Z𝑚×𝑛
{0,1}, 𝑠 ∈ Z𝑛

{0,1} where the prob-

ability that the components of 𝑠 equal 0 is 1
𝜔

and the probabili-

ty that they equal 1 is 𝜔−1
𝜔

, with 𝜔 > 2, and 𝑢 ∈ Z𝑚
{0,1,2}, then

the indistinguishability probability between 𝐴𝑠 mod 3 and 𝑢
is bounded by 1√

3

(︀
1
2
− 3

2𝜔2

)︀𝑛
.

Corollary 2. For any 𝐴 ∈ Z𝑚×𝑛
{0,1}, 𝑠 ∈ Z𝑛

{0,1} where the

probability that the components of 𝑠 equal 0 is 1
𝜔

and the

probability that they equal 1 is 𝜔−1
𝜔

, 𝑒 ∈𝑅 Z𝑛
{0,1}, 𝜔 > 2, and

𝑢 ∈ Z𝑚
{0,1,2,3}, then the indistinguishability probability between

(𝐴𝑠) mod 3 + 𝑒 and 𝑢 is bounded by 1√
3

(︀
1
2
− 3

2𝜔2

)︀𝑛
.

Part 2: The second part mainly reduces the difficulty of
solving the 𝐺𝛾(·) as depicted in Algorithm 2 to the Dihedral
Coset Problem, thereby proving the difficulty of solving the
𝐺𝛾(·).

Fact 4. The Dihedral Coset Problem is a challenging problem
in quantum computing, hence the time complexity for solving
it is 𝑂(𝑒𝑛) or 𝑂(𝑛!).

Lemma 4. Currently, there is no efficient algorithm that
can solve 𝐷𝐶𝑃 ℓ

3 in polynomial time.

Proof. By way of contradiction, assume 𝑞 = 2𝑛 and there
exists an efficient algorithm 𝒲 that can solve 𝐷𝐶𝑃 ℓ

3 in
polynomial time. Then for an instance of 𝐷𝐶𝑃 ℓ

9, we have

|0⟩|𝑥𝑖⟩+ |1⟩|(𝑥𝑖 + 𝑠) mod 9⟩ = |0⟩|𝑥′𝑖⟩+ |1⟩|(𝑥′𝑖 + 𝑠′) mod 3⟩
+ 3(|0⟩|𝑥′′𝑖 ⟩+ |1⟩|(𝑥′′𝑖 + 𝑠′′) mod 3⟩), 𝑖 ≤ ℓ,

which implies running 𝒲 twice can solve 𝐷𝐶𝑃 ℓ
9=32 . Sim-

ilarly, running 𝒲 four times can solve 𝐷𝐶𝑃 ℓ
81=34 , and so

forth, requiring 𝑛
2
executions of𝒲 to solve 𝐷𝐶𝑃 ℓ

𝑞. Let 𝑂(𝒲)
denote the time complexity of 𝒲. Thus, we have

𝑛

2
𝑂(𝒲) ≥ 𝑂(𝑒𝑛)⇒ 𝑂(𝒲) ≥ 2𝑂(𝑒𝑛)

𝑛
,

or
𝑛

2
𝑂(𝒲) ≥ 𝑂(𝑛!)⇒ 𝑂(𝒲) ≥ 2𝑂(𝑛!)

𝑛
.

This contradicts the hypothesis that 𝒲 can solve 𝐷𝐶𝑃 ℓ
3 in

polynomial time, thus proving the theorem. �

Definition 9 (Extrapolated Dihedral Coset Problem with
model 3, [5]). Given security parameter 𝜅, input instance
𝐸𝐷𝐶𝑃 ℓ

𝑛,3,𝜌 where 3 denotes the modulus, 𝜌 denotes the prob-
ability density function, and ℓ denotes the number of states,
each state is represented as∑︁

𝑗∈supp(𝜌)

𝜌(𝑗)|𝑗⟩|(𝑥𝑖 + 𝑗𝑠) mod 3⟩, 𝑖 ≤ ℓ,

with 3 bits stored, where 𝑥𝑖 ∈𝑅 Z𝑛
3 , 𝑠 ∈ Z𝑛

4 . The problem
𝐸𝐷𝐶𝑃 ℓ

𝑛,3,𝜌 is considered broken if 𝑠 can be computed with
probability poly(1/(𝑛 log 3)) within poly(𝑛 log 3) time.

Lemma 5. If there exists an algorithm to solve 𝐸𝐷𝐶𝑃 ℓ
𝑛,3,𝜌,

then there exists an algorithm to solve 𝐷𝐶𝑃 ℓ
3.

Proof. Let

|𝑏⟩ = 1√
2
|0⟩|𝑥𝑖⟩+

1√
2
|1⟩|(𝑥𝑖 + 𝑠) mod 3⟩.

Thus, 𝜌(0)|0⟩ = 1√
2
|0⟩, 𝜌(1)|1⟩ = 1√

2
|1⟩, implying 𝐷𝐶𝑃 ℓ

3 is

a special case of 𝐸𝐷𝐶𝑃 ℓ
𝑛,3,𝜌. Therefore, if there exists an

algorithm to solve 𝐸𝐷𝐶𝑃 ℓ
𝑛,3,𝜌, then there exists an algorithm

to solve 𝐷𝐶𝑃 ℓ
3. �

Lemma 6 ([5]). Let (𝑛, 𝑞, 𝑟 = Ω(
√
𝜅)) be an instance of

G-EDCP, and (𝑛, 𝑞, 𝛼) an instance of LWE. If there exists an
algorithm to solve 𝐿𝑊𝐸𝑛,𝑞,𝛼, then there exists an algorithm
to solve 𝐺-𝐸𝐷𝐶𝑃 ℓ

𝑛,𝑞,𝜌𝑟 .

Corollary 3. Let (𝑛, 3, 𝑟 = Ω(
√
𝜅)) be an instance of G-

EDCP, and (𝑛, 3, 𝛼) an instance of LWE. If there exists an
algorithm to solve 𝐿𝑊𝐸𝑛,3,𝛼, then there exists an algorithm
to solve 𝐺-𝐸𝐷𝐶𝑃 ℓ

𝑛,3,𝜌𝑟 .

Corollary 4. Let (𝑛, 3, 𝑟 = Ω(
√
𝜅)) be an instance of G-

EDCP, and 𝐺(𝑥) = 𝐴𝑠 mod 3 + 𝑒, where 𝐴 ∈ Z𝑚×𝑛
{0,1}, 𝑥 ∈

Z𝑛
{0,1}, 𝑒 ∈ Z𝑚

{0,1}. If there exists an algorithm to recov-

er 𝑥 from 𝐺(𝑥), then there exists an algorithm to solve
𝐺-𝐸𝐷𝐶𝑃 ℓ

𝑛,3,𝜌𝑟 .

4.3 Correctness proof of PPRG

Theorem 4. Assume the construction of the PRG 𝐺𝛾(·) as
depicted in Figure 2, then 𝐺𝛾(·) satisfies Definition 8.

Proof. Prove each statement separately. First, when 𝑥1 =
𝑥2, it be known that

Pr(𝐺𝛾(𝑥1) = 𝐺𝛾(𝑥2)) = Pr(𝑒1 = 𝑒2) =
1

2𝑛
.

Additionally, set 𝛾 =
√
𝑛+ 1, so

‖(𝐴𝑥1 + 𝑒1)− (𝐴𝑥2 + 𝑒2)‖ = ‖𝑒1 − 𝑒2‖ < 𝛾.

When 𝑥1 ̸= 𝑥2, set 𝑣1 = 𝐺𝛾(𝑥1), 𝑣2 = 𝐺𝛾(𝑥2), and know that

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Shan Zhuang, Zhang Leyou and Lai Qiqi

0. 𝑃1 and 𝑃2 agree on security parameters 𝜆, 𝜎,
protocol parameters 𝑚,𝜔, ℓ1, ℓ2, a hash func-
tion 𝐻1 : Z*

3 → {0, 1}ℓ1 and a 𝐺𝛾 : {0, 1}𝜔 →
Zℓ2
3 , a pseudorandom function 𝐹 : {0, 1}𝜆 ×
{0, 1}ℓ1 → [𝑚]𝜔.

1. Precomputation
∙ 𝑃2 performs the following steps:
– Initialize an 𝑚×𝑤 binary matrix 𝐷, with

all entries set to 1. Let the column vectors
of 𝐷 be denoted as 𝐷1, 𝐷2, . . . , 𝐷𝑤, and
initialize them as 𝐷1 = 𝐷2 = · · · = 𝐷𝑤 =
1𝑚.

– Sample a random key for a pseudorandom
function 𝑘 ← {0, 1}𝜆.

– For each 𝑦 ∈ 𝑌 , compute 𝑣 = 𝐹𝑘(𝐻1(𝑦)).
Then, for each 𝑖 ∈ [𝑤], set 𝐷𝑖[𝑣[𝑖]] = 0.

2. PPRG Evaluation
(a) 𝑃2 sends the PRF key 𝑘 to 𝑃1.
(b) ∀𝑥 ∈ 𝒳 , 𝑃1 computes 𝑣 = 𝐹𝑘(𝐻1(𝑥)) and its

PRF value 𝜓 = 𝐺𝛾(𝐷) and sends 𝜓 to 𝑃2.
(c) Let Ψ be the set of PRF values received from

𝑃1. ∀𝑦 ∈ 𝒴, 𝑃2 computes 𝑣 = 𝐹𝑘(𝑦) and
its PPRG value ‖𝜓 − 𝐺𝛾(𝐷)‖ <

√
𝜔𝛾 and

outputs 𝑦 iff 𝜓 ∈ Ψ.

Figure 3: Private Set Intersection from Perturbed
Pseudorandom Generator

Pr(‖𝑣1 − 𝑣2‖ ≤
√
𝑛) =

𝑛∑︁
𝑘=0

𝐶𝑘
𝑛

(︂
1

3

)︂𝑘 (︂
1

2

)︂𝑛−𝑘

+

𝑛/2∑︁
𝑘=0

𝐶𝑘
𝑛

(︂
1

3

)︂𝑘 (︂
1

6

)︂𝑘 (︂
1

2

)︂𝑛−2𝑘

.

Because
𝑛∑︁

𝑘=0

𝐶𝑘
𝑛

(︂
1

3

)︂𝑘 (︂
1

2

)︂𝑛−𝑘

=
1

2𝑛

(︃
2

3
+

(︂
2

3

)︂2

+ · · ·+
(︂
2

3

)︂𝑛
)︃

=
3

2𝑛

(︂
1−

(︂
2

3

)︂𝑛)︂
,

and
𝑛/2∑︁
𝑘=0

𝐶𝑘
𝑛

(︂
1

3

)︂𝑘 (︂
1

6

)︂𝑘 (︂
1

2

)︂𝑛−2𝑘

≤ 3 · 6
17

1

2𝑛−𝑛
2

(︃
1−

(︂
1

3 · 6

)︂𝑛
2

)︃
.

Therefore

Pr(‖𝑣1 − 𝑣2‖ ≤
√
𝑛 <
√
𝑛+ 1) ≤ 1

2𝑛
.

Thus, there is a very high probability that ‖𝑣1−𝑣2‖ ≥
√
𝑛+ 1,

and 𝑁 = 1. �

5 Our PSI Protocol from PPRG

Theorem 5. Suppose the PRF 𝐹 is a random oracle. If it is
hard to distinguish between the two outputs of the perturbed

pseudorandom oracle 𝑃𝑟𝒪𝑀𝛾 , then our protocol is provably
secure in the definition 1 with reduction loss 𝐿 = 𝑞𝐻 , where
𝑞𝐻 is the number of PRF queries to the random oracle.

Proof. Suppose the adversary 𝒜 can (𝑡, 𝜀)-break the
scheme with non-negligible advantage. Now, the simulator 𝒮
simulates the scheme. Suppose there exists a 𝑃𝑟𝒪𝑀𝛾 such
that

𝑃𝑃𝑟𝒪𝑀𝛾(𝑥)→ (𝑦0, 𝑦1)

𝑦0 = 𝐺𝑏𝑙𝑎𝑐𝑘−𝑏𝑜𝑥
𝛾 (𝑥) ∈ Zℓ2

4 ,

↗
↘

𝑦1 ∈𝑅 Zℓ2
4 .

𝒮 controls the random oracle, runs 𝒜, and works as follows.

∙ Setup The simulator 𝒮 generates some necessary pa-
rameters for the algorithms and selects a PRF 𝐹 :
{0, 1}𝜆 × {0, 1}ℓ1 → [𝑚]𝜔 with key 𝑘 ∈ {0, 1}𝜆.
∙ PRF-Query The adversary 𝒜 makes query about the
PRF. The simulator 𝒮 pre-establishes lists for handling
PRF-Query. That is, for the 𝑖𝑡ℎ queries 𝑥𝑖 ∈ {0, 1}ℓ1
corresponding to the value of PRF, the simulator 𝒮
selects from the PRF 𝐷𝑖 ∈ {0, 1}𝑚×𝑤 list if available,
otherwise selects a random 𝑣𝑖 ∈ [𝑚]𝜔, let 𝐷1 = · · · =
𝐷𝜔 = 1𝑚, and set 𝐷𝑖[𝑣[𝑖]] = 0 for all 𝑖 ∈ [𝜔] and adds
(𝑥𝑖, 𝐷𝑖) to the PRF list.
∙ Challenge 𝒜 selects 𝑥* ∈ 𝒳 and sends it to 𝒮. 𝒮 us-
ing the corresponding pseudorandom function queries,
inputs the queried values into the 𝑃𝑟𝒪𝑀𝛾 , obtaining
𝜓0 and 𝜓1, and then sends 𝜓0, 𝜓1 to 𝒜.
∙ Guess Based on the received 𝜓0 and 𝜓1, 𝒜 guesses
whether 𝜓0 or 𝜓1 is the ciphertext of the encrypted
message 𝑚.

The simulator randomly selects one value 𝑥 from the PRF
list (𝑥1, 𝐷1), (𝑥2, 𝐷2), . . . , (𝑥𝑞𝐻 , 𝐷𝑞𝐻) as the challenge PRF
query. The simulator can immediately use the adversary’s
guess result to distinguish between the two outputs of the
𝑃𝑟𝒪𝑀𝛾 . This completes the simulation and the solution.
The correctness is analyzed as follows.

Indistinguishable simulation. The correctness of the
simulation has been explained above. The randomness of the
simulation includes all random numbers in the responses to
PRF queries. They are

𝐷1, 𝐷2, . . . , 𝐷𝑞𝐻 .

According to the setting of the simulation, where 𝐷𝑖 are ran-
domly chosen, it is easy to see that the randomness property
holds, and thus the simulation is indistinguishable from the
real attack.

Probability of successful simulation. There is no abort
in the simulation, and thus the probability of successful sim-
ulation is 1.

Advantage of breaking the challenge ciphertext. If
the adversary guesses with a non-negligible advantage that 𝜓𝑏

is the encryption of 𝑥*, where 𝑏 = 0 or 1, then the simulator
can use the adversary’s guess to distinguish between the two
outputs of the 𝑃𝑟𝒪𝑀𝛾 with a non-negligible advantage.

Probabilistic Attacks and Enhanced Security for CM20 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Advantage and time cost. Let 𝑇𝑠 denote the time cost
of the simulation. We have 𝑇𝑠 = 𝑂(1). Therefore, the simula-
tor ℬ will distinguish between the two outputs of the 𝑃𝑟𝒪𝑀𝛾

with (𝑡+ 𝑇𝑠,
𝜀

𝑞𝐻
).

This completes the proof of the theorem. �

6 Performance Evaluation

6.1 Analysis of Efficiency on PC

The tools used in this subsection are Python 3.8, the programs
run on a Vostro Dell PC Desktop 10th Gen Intel(R)Core(TM)
i5-11400@2.60GHz 2.59GHz, RAM 8.00GB. CM20’s hash
function 𝐻2 is the built-in hash function in Python.

Figure 4: Parallel comparison of encryption on PC,
where 𝑛 represents the security parameter, unit is
104 microseconds

6.2 Analysis of Efficiency on MAC

The tools used in the subsection are Python 3.12, the pro-
grams are performed on MacBook Air MAC Desktop Apple
M1, RAM 8.00GB. The hash function 𝐻2 of CM20 is the
built-in hash function in Python.

Figure 5: Parallel comparison of decryption on MAC,
where 𝑛 represents the number of elements in 𝑃2’s
private set, with time measured in microseconds

6.3 Analysis of Efficiency on Mobile Pads

The tools used in the subsection are Pydriod 3, the pro-
grams are performed on Xiaomi Pad 6 Pro File Explorer 1th
Qualcomm(R)AI Engine(TM) Xiaolong 8+ mobile platfor-
m@3.2GHz, RAM 8.00+3.00GB.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Shan Zhuang, Zhang Leyou and Lai Qiqi

0 50 100 150 200 250 300
n

0

20

40

60

80

100
CP

U
Ti

m
e

CM20
Ours

0 50 100 150 200 250 300
n

0

20

40

60

80

100

CP
U

Ti
m

e

CM20
Ours

0 50 100 150 200 250 300
n

0

20

40

60

80

100

CP
U

Ti
m

e

CM20
Ours

Figure 6: Parallel comparison of encryption on mo-
bile pads, where 𝑛 represents the security parameter,
unit is 104 microseconds

20 30 40 50 60 70 80 90 100
n

3000

4000

5000

6000

7000

8000

CP
U

Ti
m

e

CM20
Ours

20 30 40 50 60 70 80 90 100
n

3000

4000

5000

6000

7000

8000

CP
U

Ti
m

e

CM20
Ours

20 30 40 50 60 70 80 90 100
n

3000

4000

5000

6000

7000

8000

CP
U

Ti
m

e

CM20
Ours

Figure 7: Parallel comparison of decryption on mo-
bile pads, where 𝑛 represents the number of elements
in 𝑃2’s private set, with time measured in microsec-
onds

6.4 Analysis of Efficiency on Mobile
Phones

The tools used in the subsection are Pydriod 3, the programs
are performed on Redmi K30 File Explorer 4th Qualcom-
m(R)AI Engine(TM) Qualcomm Xiaolong 730G 8+ mobile
platform@2.2GHz, RAM 6.00GB.

0 50 100 150 200
n

0

20

40

60

80

100

CP
U

Ti
m

e

CM20
Ours

0 50 100 150 200
n

0

20

40

60

80

100

CP
U

Ti
m

e

CM20
Ours

0 50 100 150 200
n

0

20

40

60

80

100

CP
U

Ti
m

e

CM20
Ours

Figure 8: Parallel comparison of encryption on mo-
bile phones, where 𝑛 represents the security param-
eter, unit is 104 microseconds

Probabilistic Attacks and Enhanced Security for CM20 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

20 40 60 80 100
n

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

CP
U

Ti
m

e

CM20
Ours

20 40 60 80 100
n

10.0

12.5

15.0

17.5

20.0

22.5

25.0

CP
U

Ti
m

e

CM20
Ours

20 40 60 80 100
n

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

CP
U

Ti
m

e

CM20
Ours

Figure 9: Parallel comparison of decryption on mo-
bile phones, where 𝑛 represents the number of ele-
ments in 𝑃2’s private set, with time measured in 103

microseconds

6.5 Summary of Data Comparison

Enc The encryption algorithm used in this paper shows
similar efficiency to CM20, whether on PC or mobile devices.
Among them, the CPU Times frequency of mobile device
phone is significantly faster than that of PC and mobile
device pad. The CPU times frequency of PC is slightly faster
than that of mobile device pad. However, whether it is PC,
mobile pad, or mobile phone, it seems that they have an
upper limit of 100× 104 milliseconds.

Dec The decryption algorithm used in this paper is sig-
nificantly higher than CM20. The computational overhead
on MAC shows a step-like pattern, while on mobile pad and
phone, it roughly follows a linear trend. In comparison, the
CPU times of CM20 can be almost disregarded.

7 Conclusion

7.1 Advantages

The main work of this paper is to analyse and improve the
work of Miao and Chase, we find that the pseudorandom
function values can be recovered by collecting data in the
OT phase, and assuming that the user does not update the
pseudorandom function key for a period of time, the strong
encryption of the CM20 protocol degrades to weak encryp-
tion. The longer the pseudorandom function key update time,
the less secure the user’s privacy is, and we call this attack
method a probabilistic attack. To resist this attack, we intro-
duce the concept of PPRG and construct the PSI protocol
based on PPRG. Compared with CM20, our protocol has less
OT phase and second hash computation phase instead of P-
PRG phase, which reduces the interaction between users and
also maintains the strong encryption of the protocol, which
effectively resists probabilistic attacks. Finally, we define the
CPA security model of the new PSI protocol and prove that
the new PSI protocol satisfies the CPA security model.

7.2 Disadvantages and Future Work

Although the protocol constructed in this paper is resistant
to probabilistic attacks, it also increases the computational
burden on the user. Therefore, a non-interactive OT tech-
nique is needed, or to improve the results of PPRG, such as
constructing PPRG using ring LPN in combination with fast
fourier transform. But even then, the theoretical computa-
tional complexity is still 𝑂(𝑛 log𝑛).

Moreover, although the PPRG in this paper is reduced
to the dihedral coset problem, this does not mean that our
protocol is post-quantum secure. Lai, Liu and others have
introduced the concept of a quantum adversary who can
query an exponential number of quantum random oracle
[32]. To resist such an adversary, a quantum PRF [48, 49] is
needed instead of the random oracle of theorem 5.

References
[1] Donald Beaver. 1995. Precomputing Oblivious Transfer. In Ad-

vances in Cryptology — CRYPT0’ 95, Don Coppersmith (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 97–109.

[2] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai.
2018. Compressing Vector OLE. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communica-
tions Security (Toronto, Canada) (CCS ’18). Association for
Computing Machinery, New York, NY, USA, 896912. https:
//doi.org/10.1145/3243734.3243868

[3] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, Peter Rindal, and Peter Scholl. 2019. Efficient Two-Round
OT Extension and Silent Non-Interactive Secure Computation. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA,
291308. https://doi.org/10.1145/3319535.3354255

[4] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, and Peter Scholl. 2019. Efficient Pseudorandom Correla-
tion Generators: Silent OT Extension and More. In Advances in
Cryptology – CRYPTO 2019, Alexandra Boldyreva and Daniele
Micciancio (Eds.). Springer International Publishing, Cham, 489–
518.

[5] Zvika Brakerski, Elena Kirshanova, Damien Stehlé, and Weiqiang
Wen. 2018. Learning with Errors and Extrapolated Dihedral
Cosets. In Public-Key Cryptography – PKC 2018. Springer In-
ternational Publishing, 702–727.

[6] Andrzej Cegielski. 2012. Iterative Methods for Fixed Point Prob-
lems in Hilbert Spaces. Springer Berlin, Heidelberg.

[7] Melissa Chase and Peihan Miao. 2020. Private Set Intersection
in the Internet Setting from Lightweight Oblivious PRF. In Ad-
vances in Cryptology – CRYPTO 2020. Springer International
Publishing, 34–63.

[8] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman.
2021. Silver: Silent VOLE and Oblivious Transfer from Hardness
of Decoding Structured LDPC Codes. In Advances in Cryptology
– CRYPTO 2021, Tal Malkin and Chris Peikert (Eds.). Springer
International Publishing, Cham, 502–534.

[9] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti
Yung. 2009. Efficient Robust Private Set Intersection. In Ap-
plied Cryptography and Network Security, Michel Abdalla, David
Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 125–142.

[10] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti
Yung. 2011. Secure Efficient Multiparty Computing of Multivari-
ate Polynomials and Applications. In Applied Cryptography and
Network Security, Javier Lopez and Gene Tsudik (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 130–146.

[11] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. 2010. Linear-
Complexity Private Set Intersection Protocols Secure in Malicious
Model. In Advances in Cryptology - ASIACRYPT 2010, Masayu-
ki Abe (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
213–231.

[12] Emiliano De Cristofaro and Gene Tsudik. 2010. Practical Private
Set Intersection Protocols with Linear Complexity. In Financial

https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Shan Zhuang, Zhang Leyou and Lai Qiqi

Cryptography and Data Security. Springer Berlin Heidelberg,
143–159.

[13] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private
set intersection meets big data: an efficient and scalable proto-
col. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (CCS ’13). Association
for Computing Machinery, 789–800. https://doi.org/10.1145/
2508859.2516701

[14] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. 2004.
Efficient Private Matching and Set Intersection. In Advances in
Cryptology - EUROCRYPT 2004. Springer Berlin Heidelberg,
1–19.

[15] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed
Sadeghian, and Jaspal Singh. 2021. Private Set Operations from
Oblivious Switching. In Public-Key Cryptography – PKC 2021,
Juan A. Garay (Ed.). Springer International Publishing, Cham,
591–617.

[16] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and
Avishay Yanai. 2021. Oblivious Key-Value Stores and Amplifi-
cation for Private Set Intersection. In Advances in Cryptology –
CRYPTO 2021, Tal Malkin and Chris Peikert (Eds.). Springer
International Publishing, Cham, 395–425.

[17] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. 2022.
Structure-Aware Private Set Intersection, withApplications to-
Fuzzy Matching. In Advances in Cryptology – CRYPTO 2022,
Yevgeniy Dodis and Thomas Shrimpton (Eds.). Springer Nature
Switzerland, Cham, 323–352.

[18] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. 2023. Ma-
licious Secure, Structure-Aware Private Set Intersection. In Ad-
vances in Cryptology – CRYPTO 2023, Helena Handschuh and
Anna Lysyanskaya (Eds.). Springer Nature Switzerland, Cham,
577–610.

[19] Satrajit Ghosh and Tobias Nilges. 2019. An Algebraic Approach to
Maliciously Secure Private Set Intersection. In Advances in Cryp-
tology – EUROCRYPT 2019. Springer International Publishing,
154–185.

[20] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How
to construct random functions. Journal of ACM 33, 4 (1986),
792–807. https://doi.org/10.1145/6490.6503

[21] Fuchun Guo, Willy Susilo, and Yi Mu. 2018. Foundations of Secu-
rity Reduction. In Introduction to Security Reduction. Springer,
32–33.

[22] Carmit Hazay and Yehuda Lindell. 2008. Efficient Protocols for
Set Intersection and Pattern Matching with Security Against
Malicious and Covert Adversaries. In Theory of Cryptography,
Ran Canetti (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
155–175.

[23] Yupu Hu, Siyue Dong, Baocang Wang, and Xingting Dong. 2023.
On the Invalidity of LV16/Lin17 Obfuscation Schemes Revisited.
Cryptology ePrint Archive, Paper 2023/1291.

[24] Yan Huang, David Evans, and Jonathan Katz. 2012. Private set
intersection: are garbled circuits better than custom protocols?.
In NDSS 2012. The Internet Society.

[25] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. 1999.
Enhancing privacy and trust in electronic communities. In Pro-
ceedings of the 1st ACM Conference on Electronic Commerce
(Denver, Colorado, USA) (EC ’99). Association for Computing
Machinery, New York, NY, USA, 7886. https://doi.org/10.1145/
336992.337012

[26] Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg.
1999. Enhancing privacy and trust in electronic communities. In
ACM Conference on Economics and Computation.

[27] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003.
Extending Oblivious Transfers Efficiently. In Advances in Cryp-
tology - CRYPTO 2003. Springer Berlin Heidelberg, 145–161.

[28] Aayush Jain, Huijia Lin, Ji Luo, and Daniel Wichs. 2023. The
Pseudorandom Oracle Model and Ideal Obfuscation. In Advances
in Cryptology – CRYPTO 2023. Springer Nature Switzerland,
233–262.

[29] Stanis law Jarecki and Xiaomin Liu. 2010. Fast Secure Com-
putation of Set Intersection. In Security and Cryptography for
Networks, Juan A. Garay and Roberto De Prisco (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 418–435.

[30] Lea Kissner and Dawn Song. 2005. Privacy-Preserving Set Opera-
tions. In Advances in Cryptology – CRYPTO 2005, Victor Shoup
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 241–257.

[31] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni
Trieu. 2016. Efficient Batched Oblivious PRF with Applications

to Private Set Intersection. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Secu-
rity (CCS ’16). Association for Computing Machinery, 818–829.
https://doi.org/10.1145/2976749.2978381

[32] Qiqi Lai, Feng-Hao Liu, Yang Lu, Haiyang Xue, and Yong Yu.
2024. Scalable Two-Round 𝑛-out-of-𝑛 and Multi-Signatures from
Lattices in the Quantum Random Oracle Model. Cryptology
ePrint Archive, Paper 2024/1574. https://eprint.iacr.org/2024/
1574

[33] Catherine Meadows. 1986. A More Efficient Cryptographic Match-
making Protocol for Use in the Absence of a Continuously Avail-
able Third Party. In 1986 IEEE Symposium on Security and
Privacy. 134–134. https://doi.org/10.1109/SP.1986.10022

[34] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2019.
SpOT-Light: Lightweight Private Set Intersection from Sparse
OT Extension. In Advances in Cryptology – CRYPTO 2019,
Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer
International Publishing, Cham, 401–431.

[35] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020.
PSI from PaXoS: Fast, Malicious Private Set Intersection. In
Advances in Cryptology – EUROCRYPT 2020. Springer Inter-
national Publishing, 739–767.

[36] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.
2015. Phasing: private set intersection using permutation-based
hashing. In USENIX Security 2015, J. Jung and T. Holz (Eds.).
USENIX Association, 515–530.

[37] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and
Avishay Yanai. 2019. Efficient Circuit-Based PSI with Linear
Communication. In Advances in Cryptology – EUROCRYPT
2019. Springer International Publishing, 122–153.

[38] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. 2018. Efficient Circuit-Based PSI via Cuckoo Hashing.
In Advances in Cryptology – EUROCRYPT 2018. Springer In-
ternational Publishing, 125–157.

[39] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014.
Faster private set intersection based on OT extension. In 23rd
USENIX Security Symposium (USENIX Security 2014). 797–
812.

[40] Michael O. Rabin. 1981. How to Exchange Secrets with Oblivious
Transfer. Technical Report TR-81. Aiken Computation Lab,
Harvard University. Technical Report.

[41] Srinivasan Raghuraman and Peter Rindal. 2022. Blazing Fast PSI
from Improved OKVS and Subfield VOLE. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’22). Association for Computing Machinery,
2505–2517. https://doi.org/10.1145/3548606.3560658

[42] Oded Regev. 2005. On lattices, learning with errors, random
linear codes, and cryptography. In Proceedings of the Thirty-
Seventh Annual ACM Symposium on Theory of Computing
(STOC ’05). Association for Computing Machinery, 84–93. https:
//doi.org/10.1145/1060590.1060603

[43] Peter Rindal and Mike Rosulek. 2017. Improved Private Set Inter-
section Against Malicious Adversaries. In Advances in Cryptology
– EUROCRYPT 2017, Jean-Sébastien Coron and Jesper Buus
Nielsen (Eds.). Springer International Publishing, Cham, 235–259.

[44] Peter Rindal and Mike Rosulek. 2017. Malicious-Secure Pri-
vate Set Intersection via Dual Execution. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Commu-
nications Security (Dallas, Texas, USA) (CCS ’17). Associa-
tion for Computing Machinery, New York, NY, USA, 12291242.
https://doi.org/10.1145/3133956.3134044

[45] Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: Fast
OPRF and Circuit-PSI from Vector-OLE. In Advances in Cryptol-
ogy – EUROCRYPT 2021, Anne Canteaut and François-Xavier
Standaert (Eds.). Springer International Publishing, Cham, 901–
930.

[46] Mike Rosulek and Ni Trieu. 2021. Compact and Malicious Pri-
vate Set Intersection for Small Sets. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Associa-
tion for Computing Machinery, New York, NY, USA, 11661181.
https://doi.org/10.1145/3460120.3484778

[47] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mar-
iana Raykova. 2019. Distributed Vector-OLE: Improved Con-
structions and Implementation. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Se-
curity (London, United Kingdom) (CCS ’19). Association for
Computing Machinery, New York, NY, USA, 10551072. https:

https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/2976749.2978381
https://eprint.iacr.org/2024/1574
https://eprint.iacr.org/2024/1574
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1145/3548606.3560658
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/3133956.3134044
https://doi.org/10.1145/3460120.3484778
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228

Probabilistic Attacks and Enhanced Security for CM20 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

//doi.org/10.1145/3319535.3363228
[48] Mark Zhandry. 2012. How to Construct Quantum Random Func-

tions. In 2012 IEEE 53rd Annual Symposium on Foundations
of Computer Science. 679–687. https://doi.org/10.1109/FOCS.
2012.37

[49] Mark Zhandry. 2021. How to Construct Quantum Random Func-
tions. Journal of ACM 68, 5, Article 33 (Aug. 2021), 43 pages.
https://doi.org/10.1145/3450745

Received 20 February 2024; revised 12 March 2024; accepted 5
June 2024

https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1145/3450745

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organizations

	2 Preliminary
	3 Probabilistic Attacks of CM20
	4 Perturbed Pseudorandom Generator
	4.1 Definition of PPRG
	4.2 Pseudorandomness proof of PPRG
	4.3 Correctness proof of PPRG

	5 Our PSI Protocol from PPRG
	6 Performance Evaluation
	6.1 Analysis of Efficiency on PC
	6.2 Analysis of Efficiency on MAC
	6.3 Analysis of Efficiency on Mobile Pads
	6.4 Analysis of Efficiency on Mobile Phones
	6.5 Summary of Data Comparison

	7 Conclusion
	7.1 Advantages
	7.2 Disadvantages and Future Work

	References

