
Polynomial Inversion Algorithms in Constant
Time for Post-Quantum Cryptography

Abhraneel Dutta1, Emrah Karagoz1, Edoardo Persichetti1, and Pakize Sanal1

Florida Atlantic University, USA
{adutta2016, ekaragoz2017, epersichetti, psanal2018}@fau.edu

Abstract. The computation of the inverse of a polynomial over a quo-
tient ring or a finite field plays a very important role during the key gener-
ation of post-quantum cryptosystems like NTRU, BIKE, and LEDACrypt.
It is therefore important that there exist an efficient algorithm capable
of running in constant time, to prevent timing side-channel attacks. In
this article, we study both constant-time algorithms based on Fermat’s
Little Theorem and the Extended GCD Algorithm, and provide a de-
tailed comparison in terms of performance. According to our conclusion,
we see that the constant-time Extended GCD-based Bernstein-Yang’s al-
gorithm shows a better performance with 1.76x-3.76x on x86 platforms
compared to FLT-based methods. Although we report numbers from
a software implementation, we additionally provide a short glimpse of
some recent results when these two algorithms are implemented on var-
ious hardware platforms. Finally, we also explore other exponentiation
algorithms that work similarly to the Itoh-Tsuji inversion method. These
algorithms perform fewer polynomial multiplications and show a better
performance with 1.56x-1.96x on x86 platform compared to Itoh-Tsuji
inversion method.

Keywords: Post-Quantum, Polynomial Inversion, Constant Time, QC-MDPC

1 Introduction

In post-quantum cryptography, constant-time algorithms play a significant role
in ensuring the security of a cryptographic system. A constant-time algorithm
runs for the same time regardless of the input data size. This ensures that cryp-
tosystems resist timing attacks.

Polynomial inversion not only consumes most of the time and resources
among all finite field arithmetic operations, but also plays a crucial role in the key
generation of several cryptographic algorithms such as NTRU [9], LEDAcrypt [2],
and BIKE [1], which use polynomial inversion to calculate the private key from
the public key.

The two main types of polynomial inversion algorithms are derived from the
Extended GCD algorithm and Fermat’s Little Theorem, where in both cases
the inversion is performed by a sequence of multiplications and squarings over
a finite field or polynomial quotient ring. In the area of post-quantum cryptog-
raphy, since they play a very important role in the above-mentioned modern
cryptosystems, these two algorithms are usually modified to run in constant
time, to provide greater security against timing attacks. In [7], the inversion
based on Fermat’s Little Theorem [10] is made isochronous, while Bernstein and
Yang in [4] provided a constant-time polynomial inversion based on the Extended
GCD algorithm.

1.1 Literature, Our Contribution and Paper Organization

In this article, we analyze the performance of both the constant-time algorithms
mentioned above, specifically for the BIKE and LEDACrypt setups, based on
their mathematical foundations. In both of these cryptosystems, the polynomial
inversion is performed over F2[x]/⟨xp + 1⟩ where xp + 1 = (x + 1)q(x) where
q(x) is an irreducible polynomial and p is prime number such that 2 is primitive
modulo p. which is the most time consuming operation in the key generation.
We compared their performance in terms of the number of field operations, for
example, multiplication and squaring.

We focus on Bernstein and Yang’s polynomial inversion (BY) [4] and Itoh
and Tsujii (IT) [10] in Section 2. While BY inversion is based on Extended
GCD-algorithm, IT inversion is based on Fermat’s Little Theorem. We make a
comparison between these two algorithms based on how many field operations
occur during their runtime. We also have a very brief discussion on the recent
work on these two algorithms, where the authors have undergone different kinds
of hardware implementations. In Section 3, we explore other variants that com-
putationally perform with less number of polynomial multiplications compared
to IT inversion. A variant called CEA inversion and proposed by Chang et al. [5]
reduces the number of required multiplications by factorizing m− 1 where poly-
nomial inversion is performed in a finite field F2m for some positive integer m ≥ 2.
Another variant called TYT inversion, which was initially proposed by Takagi et
al. in [14] and later improved by Chen et al. in [6], significantly reduces the num-
ber of polynomial multiplications by breaking down (m−1) into multiple factors
along with a minor remainder as m − 1 =

∑k
i=1 ri + h. Short Addition Chain

(SAC) method proposed by [11] improves over other variants by breaking down
the value of (m − 1) into multiple components along with a remainder, while
ensuring that the remainder is a part of the Short Addition Chain (SAC) of any
component within the factors (ri’s) in the decomposition (m−1) =

∑k
i=1 ri+h.

In Section 4, we adapt these algorithms for the prime numbers p used in BIKE
and LEDACrypt, as referenced in [1,3]. We evaluate their computational cost and
compare the number of polynomial multiplications. Notably, these algorithms
can be executed in constant time, as the factoring and decomposition steps are
performed on the exponent p − 2 when computing α(x)−1 = ((α(x))2

p−2−1)2.

2

This remains consistent regardless of the degree of the polynomial. Based on our
analysis and the results from our software implementation1, as shown in Table
2, SAC and CEA inversions show a better performance with 1.56x-1.96x on x86
and 1.24x-1.49x on arm64 compared to the ITI and TYT methods. However, BY
inversion has a better performance with 1.76x-3.76x on x86 and 1.38x-2.56x on
arm64 compared to IT and its variants. Therefore, it becomes evident that IT
variants perform fewer polynomial multiplications while computing the inverse
with specific choice for the primes. This improvement can be achieved through an
optimized decomposition and factoring setup, especially as the Hamming weight
of p−2 increases for various primes presented in Table 1. On the other hand, IT
variants seem better than BY inversion in the hardware designs by only compar-
ing the number of polynomial multiplications; because of that, the polynomial
squaring can be implemented as nearly "cost-free" performance overhead in the
hardware designs through special methods. Finally, we provide a conclusion in
Section 5 to complete our analysis. Based on our comparison between Bernstein-
Yang and IT inversion (with its variants), we can observe that different inversion
algorithms have varying performances in terms of the number of multiplications
required to compute the inverse of an element α(x) in a ring like F2[x]/⟨xp +1⟩.

1.2 Notation

Since we focus on inversion in BIKE and LEDACrypt setup, the invertible poly-
nomials are chosen from the quotient ring R = F2[x]/⟨xp + 1⟩ where where
xp + 1 = (x + 1)q(x) where q(x) is an irreducible polynomial and p is prime
number such that 2 is primitive modulo p. The degree of a polynomial α(x) is
denoted as deg(α). Polynomials are stored as vectors such as, for a p− 1-degree
polynomial f(x) =

∑p−1
i=0 aix

i is stored as (a0, a1, . . . , ap−1) where ai ∈ F2 for
all 0 ≤ i ≤ p − 1. The i-th coefficient is represented as f [i]. We also use log(·)
as the base 2 logarithm log2(·). The binary representation of an integer a is
denoted by (1a(n−2) . . . a(0))2 with its bit-length n = |a|, and least and most
significant bits are a(0) and 1 respectively. The Hamming weight of an inte-
ger a is defined as the number of 1’s in its binary representation and denoted
by wt(a). For a polynomial α(x) =

∑p−1
i=0 aix

i in R the support of α(x) de-
noted supp(α) is the set of positions of non-zero coefficients. In other words
supp(α) = {i ∈ {0, 1, . . . , p− 1}| ai ̸= 0}.

2 Constant-Time Polynomial Inversion Algorithms in
PQC

We focus on Bernstein and Yang’s [4] polynomial inversion (BY) based on Ex-
tended GCD-algorithm, and Itoh and Tsujii’s [10] polynomial inversion (IT)
based on Fermat’s Little Theorem. We then compare these two algorithms based
on how many field operations occur during their runtime, and different kinds of
their hardware implementations.
1 Our software is available at https://github.com/ekaragoz77/polyinv

3

https://github.com/ekaragoz77/polyinv

2.1 Bernstein-Yang’s Constant-Time Polynomial Inversion

Bernstein and Yang proposed a constant-time extended GCD algorithm for poly-
nomials in [4]. The algorithm takes as input two polynomials f and g and outputs
the polynomials GCD(f, g), u and v such that GCD(f, g) = u · f + v · g. Since,
during the inversion in BIKE and LEDACrypt setup, an invertible polynomial
α(x) is chosen from R, it is evident that GCD(xp +1, α(x)) = 1 and the inverse
can be obtained as follows:

1 = (xp + 1) · u(x) + α(x) · v(x)
=⇒ 1 ≡ α(x) · v(x) mod xp + 1

=⇒ α(x)−1 = v(x) mod xp + 1

Bernstein and Yang introduced a function called divstep that performs a
polynomial division as a sequence of division steps.

Definition 1. The divstep function over a field of characteristic 2 is defined as

divstep : Z× F2[x]× F2[x]→ Z× F2[x]× F2[x]

divstep(δ, f, g) =

{
(1− δ, g, (g(0)f − f(0)g)/x) if δ > 0 and g(0) ̸= 0
(1 + δ, f, (f(0)g − g(0)f)/x) otherwise

Here δ represents the degree of difference between f and g. The output of
this function is two polynomials, the first of which is the higher degree of the
two input polynomials, and the second of which is derived by subtracting the
two input polynomials to remove the constant term. The elimination part, over
the finite field of characteristic 2 can be performed by a simple right shift oper-
ation after the subtraction is done. In the main inversion algorithm, the divstep
function is called multiple times to the input (δ, f, g) that can be expressed as :

(δn, fn, gn) = divstepn(δ, f, g)

where δn, fn, gn are the degree difference and the two polynomials obtained after
n-th division steps. The n-th such transition or n number of divstep calls for
the input polynomials is derived by matrix multiplication. Consider the input
polynomials as a vector (f, g)T and upon one divstep call it gives the transition
(f, g)T → (f1, g1)

T by performing the following matrix multiplication:

(
f1
g1

)
= T (δ, f, g)

(
f
g

)
, where T (δ, f, g) =

(

0 1
g(0)
x

−f(0)
x

)
if δ > 0 & g(0) ̸= 1(

1 0
−g(0)

x
f(0)
x

)
otherwise.

The i-the step transition matrix is represented as Ti = T (δi, fi, gi). The n-the
degree of iterations of divstep function gives

4

(
fn
gn

)
= Tn−1 · · ·T0 ·

(
f
g

)
=

(
un vn
qn rn

)(
f
g

)
where

(
un vn
qn rn

)
= Tn−1 · · ·T0 is the n-th transition matrix for f and g.

From Theorem C.1 of [4], we infer that for two polynomials R0 and R1 over
F2, where d0 = deg(R0) and d1 = deg(R1) with d0 > d1 ≥ 0, it takes 2d0 −
2d1 many divsteps to complete the division of R0 by R1. The divstep function
plays the key role in computing the input polynomial’s inverse. According to [4,
Thm 6.2], the inversion algorithm makes 2d0 − 1 divstep calls to compute R−1

1

mod R0.

Algorithm Analysis. Bernstein and Yang, in [4], utilized the divstep function
to handle division steps during the implementation of the Extended Euclidean
Algorithm in constant time.

Bernstein and Yang have also introduced a recursive algorithm jumpdivstep
(Algorithm 2) that reduces the cost of performing n divteps where n is large.
The algorithm uses a divide-and-conquer rule to calculate δn and the n-step
transition matrix Tn−1 · · ·T0. It divides the operands into smaller segments up
to a point based on the designer’s preference for efficiency. Theorem 4.5 of [4]
says that the first t coefficients of fn and gn for some non-negative integers
n, t determine the transition matrices Tn, Tn+1, . . . , Tn+t−1; δn+1, δn+2, . . . , δn+t,
the first t coefficients of fn+1, first t − 1 coefficients of (fn+2, gn+1); first t − 2
coefficients of (fn+3, gn+2) and so on through first coefficient of (fn+t, gn+t−1).
The divstep algorithm, upon n calls, outputs δn the polynomial fn, gn with degree
m,m−1 respectively if n = 0 or m− (n−1), m−n respectively if n ≥ 1 and the
transition matrix Tn−1, · · · , T0 where m = deg(f). The jumpdivstep algorithm
jumps j steps and computes δj and the jth step transition matrix

P = Tj−1 · · ·T0 =

(
uj vj
qj rj

)
.

Next, the algorithm obtains(
fj
gj

)
=

(
uj vj
qj rj

)(
f
g

)
.

It then takes the first n − j coefficients of (fj , gj) according to [4, Thm. 4.5]
and performs the remaining n − j divsteps by another "jump" obtaining the
transition matrix Q = Tn−1 · · ·Tj . Finally, it outputs δn and n-th transition
matrix P ×Q = Tn−1 · · ·T0.

According to [4, Thm. 6.2], the main algorithm has to run 2m − 1 divsteps
to find α−1(x) for input polynomials f(x) and α(x) with deg(f) = m and
GCD(f, α) = 1. The main algorithm converts the coefficients of these poly-
nomials by reversing them and storing the results as f(x) = xmf(1/x) and
g(x) = xm−1α(1/x). Bernstein and Yang use jumpdivstep function and choose

5

the splitting point to be j = ⌊n/2⌋ as it gives the optimal result according to
their observation. After successfully implementing n division steps, the inverse
of a(x) is obtained by reversing the coefficients of v2m−1(x).

Algorithm 1: divstep
Input: Two polynomials f(x)

and g(x), precision
value t, δ, and the
number of steps n

Output: δ, a matrix
H = Tn−1 · · ·T0, as
the product of n
transition matrices,
so that(
fn
gn

)
= H ·

(
f
g

)
1 (u, v, q, r)← (1, 0, 0, 1)
2 f ← f.truncate(t) and

g ← g.truncate(t)
3 for j = 1 to n do
4 f ← f.truncate(t)
5 if δ > 0 and g(0) ̸= 0 then
6 δ ← −δ
7 Swap(f, g), Swap(u, q),

Swap(v, r)

8 f0 ← f(0) and g0 ← g(0)
9 δ ← δ + 1

10 g ← (f0 · g − g0 · f)/x
11 q ← (f0 · q − g0 · u)/x
12 r ← (f0 · r − g0 · v)/x
13 g ← g.truncate(t)
14 n← n− 1 and t← t− 1

15 H ←
(
u v
q r

)
16 return δ, H

Algorithm 2: jumpdivstep
Input: Two polynomials f(x)

and g(x), precision
value t, δ, and the
number of steps n

Output: δ, a matrix
H = Tn−1 · · ·T0, as
the product of n
transition matrices,
so that(
fn
gn

)
= H ·

(
f
g

)
1 if n ≤ w then
2 return divstep(n, t, δ, f, g)

3 j ←
⌊
n
2

⌋
4 δ, f1, g1, P1 ←

jumpdivstep(j, j, δ, f, g)

5 f ′, g′ ← P1 ·
(
f
g

)
6 δ, f2, g2, P2 ← jumpdivstep(n−

j, n− j, δ, f ′, g′)
7 return δ, P2 × P1

Application to BIKE. A crucial aspect of the Bernstein-Yang polynomial
inversion algorithm is its ability to be executed in constant time for the BIKE
and LEDACrypt configuration. The polynomials to be inverted are picked from
the polynomial ring R = F2[x]/⟨xp + 1⟩ where p is prime such that 2p ≡ 1
mod p and xp + 1 = (x+ 1)(xp−1 + · · ·+ 1). The algorithm finds the inverse of
α(x) mod xp +1 by using 2p− 1 division steps through the input polynomials
α(x) and xp + 1 as input for the jumpdivstep algorithm.

6

Complexity Analysis. Let us first discuss the complexity of the main divstep
function in terms of the number of field operations.The divstep function, in
each of its iterations, performs a conditional swap and elimination. While the
swapping cost can be considered negligible, we will focus on the elimination
phase’s cost derived in each iteration. To determine the complexity of divstep
we rely on Theorem 4.3 and 4.5 in [4].

We know that the divstep function computes the n-th transition matrix(
un vn
qn rn

)
= Tn = Tn−1 · · ·T0

for the n-th divstep call. During its i-th iteration, while updating (qi, ri) it derives
f(0)qi−1(x) − g(0)ui−1(x) and f(0)ri−1(x) − g(0)vi−1(x). From theorem 4.3 in
[4] we can determine that, at the i-th iteration of divstep, as it produces the

transition matrix
(
ui vi
qi ri

)
= Ti = Ti−1 · · ·T0 it has to compute i number of

coefficients for both (qi, ri). Therefore, for n divstep calls it takes 2(1+2+. . .+n)
many field operations to produce all the coefficients for both (qn, rn). Let us
denote this by Nqr.

While updating g(x) it performs f(0)gi−1(x)−g(0)fi−1(x) at i-th divstep call
i.e. it eliminates the head coefficients and rescales the polynomial by giving it a
simple right shift. Eventually, during its i-th iteration it computes (f(0)gi−1[1]−
g(0)ui−1[1]), (f(0)gi−1[2]−g(0)ui−1[2]), (f(0)gi−1[3]−g(0)ui−1[3]), ... until (m−
i)-th coefficient according to Theorem 4.5 in [4]. Therefore, the number of field
multiplications and subtractions is (m+(m−1)+· · ·+(m−n)) = (n+1)m−n(n+
1)/2. Let us denote this as Ng. Therefore, the total number of field operations
for n divstep calls, is O(n(m+ kn)) where k is a constant.

Bernstein and Yang reduced the number of operations in computing n num-
ber of divsteps by using a divide-and-conquer strategy called "jumps". The algo-
rithm is divided into two halves using jumpdivstep, where half of the n divsteps
is done using half of the coefficients of the input polynomials, followed by updat-
ing (f, g) using advanced multiplication (FFT), and then doing the remaining
half of steps. The jumpdivstep algorithm takes n,m, f(x), g(x) as inputs. So the
complexity can be expressed along with the base results as:

T (n,m) = 2T (n/2, n/2) + (n+m) log(n+m)

T (1,m) = m, T (n, 1) = 1, T (1, 1) = c for some constant c

Next, we show that the complexity to compute n divsteps using jumpdi-
vstep along with FFT multiplication takes approximately (n+m) log(n+m) +
c′n(log(n))2 many operations for sufficiently large n. The result can derived by
the following:

T (n,m) = 2T (n/2, n/2) + (n+m) log(n+m)

≈ cn+ n((log(n))2 + log(n)− 2) + (n+m) log(n+m)

≤ (n+m) log(n+m) + c′n(log(n))2 for sufficiently large n

7

Algorithm 3: PolyInvIT: Polynomial Inverse by using IT Method
Input: An invertible polynomial α ∈ R = F2[x]/⟨xp + 1⟩
Output: α−1 = α2p−1−2

1 Precomputation: the binary representation of p− 2 = (e(s−1)e(s−2) . . . e(1)1)2
2 δ ← α and γ ← α
3 for i = 1 to s− 1 do
4 d← 2i−1

5 δ ← δ · δ2
d

6 if e(i) = 1 then
7 d← 2i

8 γ ← δ · γ2d

9 δ ← γ2

10 return δ

Therefore, for regular divstep it takes O(n(n+m)) operations while using jump-
divteps reduces the number of operations to O(n(log n)2).

2.2 Itoh-Tsuji’s Polynomial Inversion

The Itoh Tsuji Inversion Algorithm [10], more frequently known as the ITI algo-
rithm, is based on Fermat’s Little theorem that is used for polynomial inversion
over a finite field F2m for some integer m ≥ 1. In this section, we will discuss
the details of a variant of the ITI algorithm presented in [7] which is generalized
to be used for the set of polynomial rings that are used in BIKE and in other
QC-MDPC-based schemes.

Algorithm Analysis. The constant-time version of ITI algorithm derives the
inverse of α(x) ∈ R∗ with the help of Fermat’s Little Theorem as follows:

α(x)−1 ≡ α(x)2
p−1−2 ≡ (α(x)(2

p−2−1))2 mod xp + 1 (1)

Both the ITI and its constant-time version calculate the inverse of the input
polynomial using the square-and-multiply strategy in a more efficient way. In
the ITI inversion algorithm in [10] the exponent is a power of 2 while for the
constant-time algorithm in [7] p − 2 might not be. Therefore, Drucker, Gueron
and Kostic gave a decomposition of 2p−2 − 1 for an efficient computation in [7]
as follows.
Let p− 2 =

∑
kj∈supp(p−2)

1≤j≤t

2kj where t = |supp(p− 2)|.

2p−2 − 1 =
∑

i∈supp(p−2)

(22
i

− 1)2(p−2) mod 2i

8

From the above decomposition the inversion is computed as:

α(x)−1 = (α(x)2
p−2−1)2 =

(∏
i∈supp(p−2)

(α(x)2
2i−1)(p−2) mod 2i

)2

=
(t∏

j=1

(α(x)2
2
kj −1)(p−2) mod 2kj

)2

=
(t∏

j=1

(α(x)2
2
kj −1)2

∑1
r=j−1 2kr)2

.

The authors in [7] presented an intelligent approach for calculating the 2k-th
power of the polynomial. First, let us observe the following derivation for a given
polynomial α(x) =

∑p−1
j=0 ajx

j ∈ R with aj ∈ F2

α(x)2
k

= (

p−1∑
j=0

ajx
j)2

k

= (
∑

j∈supp(α)

xj)2
k

=
∑

j∈supp(α)

(xj)2
k

=
∑

j∈supp(α)

xj·2k mod p.

Here, we observe that the j-th coefficient of α(x) becomes (j · 2k mod p)-th
coefficient of the polynomial α(x)2

k

. Therefore, for the positive integer k the
sequence of coefficients of α(x) is given a permutation to obtain the sequence of
coefficients of α(x)2

k

represented by βi’s for 0 ≤ i ≤ p− 1 as follows:

(ai)
p−1
i=0 = (bi)

p−1
i=0 where bi = a(i·2k) mod p

Complexity Analysis. In each iteration, the inversion algorithm carries out a
required polynomial multiplication and exponentiation, and if (p− 2)2[i] = 1, it
also performs an additional polynomial multiplication and exponentiation. After
all the iterations are implemented it outputs the inverse of the input polynomial
multiplication with a final squaring. Therefore the inversion algorithm requires
⌊log(p−2)⌋+wt(p−2)−1 polynomial multiplications and ⌊log(p−2)⌋+wt(p−
2)− 1 exponentiation in R. Clearly, the efficiency is determined by both |p− 2|
and wt(p − 2), selecting values of p that have a smaller |p − 2| and wt(p − 2)
result in improved performance.

We observed in the last section squaring can be performed by simple permu-
tations as shown in [7,8,13]. To compute a(x)2

k

i.e the 2k-th power of a(x) ∈ R
namely a k-squaring we only have to perform the following permutation:

πk(j) : j → j · 2k(mod p)

for i ∈ {0, 1, . . . , p − 1}. The authors in [7] observed that these permutations
of the coefficients can be precomputed and stored in a look-up table that can
be used for all the relevant values of k that also depend on the public value
p. The required storage is ⌊log(p − 2)⌋ + wt(p − 2) + 1 tables, each of which
has |p| values. In total, it needs to store p · (⌊log(p − 2)⌋ + wt(p − 2) + 1) ·
⌈log(p)⌉ bits. This makes the implementation significantly faster as the cost of
exponentiation becomes linear. Although this storage requirement is not suitable
for microcontrollers as mentioned in [8] but the authors in [3] have optimized

9

it with smaller look-up tables containing (⌈log(p − 2)⌉ − 1) values obtained as
2k(mod p) k ∈ {1, 2, . . . , ⌈log(p−2)⌉}. At runtime, the j-th coefficient’s position
in a(x)2

k

with 0 ≤ j ≤ p − 1 is determined by performing a multiplication and
modulus operation, specifically (j · (2k(mod p)))mod p.

2.3 Algorithm Comparison for BIKE

Comparison From Mathematical Perspectives As we compare these two
algorithms it can be observed that in Algorithm 1 where the most significant
part of the calculations take place during the inversion in [4] the division by x
for (f(0)Q− g(0)U)/x, (f(0)R− g(0)V)/x, (f(0)g − g(0)f)/x can be done by a
simple shift operation since all the polynomials are in binary. So there are no
costly operations like polynomial multiplications taking place during the divtep
calls. The main algorithm, when it uses the jumpdivtep function 2 performs
only four polynomial multiplications. While on the other side, the ITI variant
of polynomial inversion 3 that uses Fermat’s Little theorem performs at least
⌊log(p− 2)⌋+wt(p− 2)+ 1 many polynomial multiplications in R and if it does
not use the lookup table as suggested in [7] it has to perform ⌊log(p − 2)⌋ +
wt(p− 2) + 1 many exponentiations on the top of that. Therefore, constructing
the algorithm with the Extended Euclidean algorithm in constant time seems to
be more efficient in terms of time complexity or the number of field operations.

Inversions in Recent BIKE Implementations Richter-Brockmann, Mono,
and Güneysu in [13] efficiently implemented the BIKE algorithm on FPGAs.
They proposed new strategies to compute the polynomial inversion based on
Itoh-Tsujii’s algorithm [10] that uses Fermat’s Little Theorem. They introduced
a scaling parameter b and divide the polynomials into chunks of b bits that are
processed through different levels of parallelization for inversion. They did not
follow the proposed algorithm in [7] as its hardware performance is not remark-
able. Although their number of polynomial multiplications is the same as in [7]
but the number of squaring is different. For polynomial multiplications, they
have used schoolbook based multiplication. For an arbitrary t, the exponenti-
ation of the input polynomial in algorithm 5 in [13] to a power of 2t can be
performed using a squaring chain consisting of ⌊t/k⌋ k-squaring and t mod k
single squaring where k < t. For a 2k exponentiation the authors use the co-
efficient permutation πk : i → i · 2k (mod p). For a fixed k this process, after
its initial phase, accomplishes the squaring in ⌈p/b⌉ clock cycles. While with
an arbitrary k value, more significantly used, for a larger value of t finishes the
squaring within p clock cycles with their squaring module given in Fig. 3 in [13].

Richter-Brockmann, Chen, Ghosh, and Güneysu in [12], in their FPGA im-
plementation of BIKE, optimized the polynomial inversion based on constant-
time polynomial inversion in [4] achieving 5.5 times faster key generation com-
pared to previous implementations based on Fermat’s Little Theorem. They

10

present a polynomial multiplier that is optimized to take advantage of the spar-
sity of QC-MDPC codes. This multiplier is capable of performing all the nec-
essary multiplications in the BIKE algorithm within constant time. They also
introduce a constant-time polynomial inversion algorithm based on EEA adapt-
ing it from [4]. They split the divstep function into two different operations and
provide the respective algorithms (Algorithm 5 and 6 in [12]). One calculates the
control bits based on δ and the coefficients of f, g while the other one uses these
control bits to update the polynomials in Algorithm 4 in [12]. Furthermore, the
primary inversion algorithm, namely Algorithm 4 in [12], includes an additional
input parameter denoted by s, which regulates the step size and enables the
algorithm to execute s divsteps during each iteration.

The authors of [12] have contrasted their inversion module with the method
in [13] that relies on Fermat’s Little Theorem. The design of the multiplier in [13]
takes into account the use of a schoolbook-based multiplication and requires a
total of Lschool = ⌈p/b⌉ · (⌈p/b⌉ · +3) + 1 clock cycles to complete. The total
number of clock cycles achieved in [13] is the following:

log(p) · (p+ Lschool) + |p| · (
⌈p
b

⌉
+ Lschool)

In contrast, the latency resulting from the hardware design presented in [12] is
determined by the following

λ · (3 +
⌈ s
d

⌉
+
⌈ s
u

⌉
+
⌈p
b

⌉
) + ρ+

⌈ s
d

⌉
+
⌈p
b

⌉
+ 3 ·

⌈p
b

⌉
+ 13

where the parameters are as follows:

– s : Step size i.e proceed s divsteps in a single iteration
– d : Algorithm 5 in [12] that generates control bits for conditional steps of

divstep function executes d iterations in one clock cycle.
– u : The submodule consisting of shifts, addition, and multiplexing oper-

ations of the hardware design presented in Figure 6 in [12] completes its
computation with s consecutive basic blocks.

– (λ, ρ) : ρ =
⌈
2p−1−λs

u

⌉
where λ =

⌈
2p−1

s

⌉
Table 4 in [12] displays the results of the author’s implementation, which

achieved a better runtime in terms of clock cycles when compared to the inversion
technique introduced in [13].

Recently, an efficient and scalable hardware design for binary polynomial
inversion, which has been validated for BIKE implementation, was proposed
by Galimberti, Montanaro, and Zoni in [8]. Their inversion design is based on
Fermat’s Little Theorem. The efficiency of their design is achieved by provid-
ing a parallel architecture for exponentiation and multiplication and optimal
hardware scheduling. In their design, most significantly, they have introduced
modules termed "Mul" and "Exp" that can be used as the resources for multi-
plication and exponentiation respectively. Their proposed architecture aims to
optimize the scheduling of exponentiation and multiplication by utilizing the

11

"Exp" and "Mul" modules concurrently, whenever feasible. This scheduling op-
timization reduces the number of operations performed when (p− 2)2[i] = 1. To
perform an iteration, in their design, the execution time needed is twice that
of the longest operation between exponentiation and multiplication, rather than
the combined execution time of two exponentiations and two multiplications.
The time complexity Tinv that they have presented in terms of the number of
multiplications and exponentiations is the following

Tinv =((2 · (wt(p− 2)− 1))− 1) ·max{Texp, Tmul}
+ (zeroes(p− 2) + 1) · (Texp + Tmul) + Texp

where zeroes(p − 2) represents number of zeros in the binary representation of
(p− 2). The authors in [8] have adopted a multiplication architecture from [15],
which is both efficient and scalable while they proposed a new exponentiation
architecture illustrated in Fig 5 in [8]. The time complexity of multiplication and
exponentiation design is represented as Tmul and Texp respectively.

3 ITI Variants

In this section, we will be exploring some exponentiation algorithms that are
capable to perform fewer number of polynomial multiplications towards the cal-
culation of the inverse of the input polynomial. More importantly, since these
algorithms involve factoring and decomposing of the exponents, they can be
implemented irrespective of the degree of the input polynomials giving it a
constant-time structure. We will be discussing these algorithms in chronolog-
ical order to observe the improvements over the IT inversion algorithm analyzed
in Section 2.2.

3.1 CEA Algorithm (Factoring Method)

The CEA algorithm given by Chang et. al. in [5] involves factoring of the ex-
ponent m − 1 while computing α(x)−1 = ((α(x))2

m−1−1)2 in F2m . We have
adapted their method and claim that it can potentially improve the performance
of contant-time IT inversion algorithm in BIKE/LEDACrypt setup.

Let p − 2 = a · b. Note that both a, b are odd. Now we can factor 2p−2 − 1
followed by the exponentiation as

2p−2 − 1 = 2a·b − 1 = (2a − 1)((2a)b−1 + (2a)b−2 + . . .+ 2a + 1)

⇒ α2p−2−1 = (α2a−1)(2
a)b−1+(2a)b−2+...+2a+1

Computing β = α2a−1 needs ⌊log(a)⌋ + wt(a) − 1 many polynomial mul-
tiplications and ⌊log(a)⌋ + wt(a) − 1 squaring in R that can be performed by
coefficient permutations. Computing βt where t = 1+2a+ . . .+(2a)b−2+(2a)b−1

needs (⌊log2(b)⌋+wt(b)−1) many polynomial multiplications (Lemma 2.1 in [6]).
Therefore, the total number of polynomial multiplications is (⌊log2(b)⌋+wt(b)−
1) + (⌊log2(a)⌋+wt(a)− 1).

12

Algorithm 4: PolyInvCEA: Polynomial Inverse by using CEA Method
Input: An invertible polynomial α ∈ R = F2[x]/⟨xp + 1⟩
Output: α−1 = α2p−1−2

1 Precomputation of integers a and b such that p− 2 = a · b
2 Precomputation of the binary representation of a = (1a(s−2) . . . a(0))2

3 Precomputation of the binary representation of b = (1b(t−2) . . . b(0))2
4 γ ← α
5 for i = s− 2 to 0 do
6 d← 2i

7 γ ← γ · γ2d

8 if a(i) = 1 then
9 γ ← α · γ2d

10 δ ← γ2

11 for i = t− 2 to 0 do
12 d← a · 2i

13 δ ← δ · δ2
d

14 if b(i) = 1 then
15 δ ← γ · δ2

d

16 return δ

3.2 TYT Algorithm (Decomposition Method)

Takagi, Yoshiki, and Takagi proposed an algorithm in that enhances the efficiency
of computing multiplicative inverses in F2m , which is pivotal in cryptographic
and error-correcting code applications. This algorithm builds on previous meth-
ods, such as those by Itoh and Tsujii [14] and Chang et al. [5], by reducing the
number of required multiplications through a strategic decomposition of m − 1
into multiple factors and a small remainder. It offers improved performance for
certain values of m − 1, demonstrating significant reductions in computational
complexity and making the process of multiplicative inversion more efficient and
practical for real-world applications.

We can adapt their algorithm and decompose the exponent p − 2, which
potentially can help us reduce the number of polynomial multiplications for some
specific values of p. Let p − 2 =

∏k
i=1 ri + h and we can deduce the following

equation:

2p−1 − 2 = 2p−2 + 2p−2 + · · ·+ 2p−h−1 + 2p−h−1 − 2

α−1 = α2p−2 = α2p−2

· α2p−2

· · ·α2p−h−1

· α2p−h−1︸ ︷︷ ︸
h mults

·(α2p−h−2−1·)2

The number of multiplications to compute α2p−h−2−1 = α2
∏k

i=1 ri can be de-
duced by the methods discussed in the Section3.1. Therefore, it needs

∑k
i=1(⌊log(ri)⌋+

13

wt(r1)− 1 many multiplications and the total number of polynomial multiplica-
tions is

∑k
i=1(⌊log(ri)⌋+wt(r1)− 1) + h.

Y. Li, G. Chen, Y. Chen and J. Li proposed an algorithm that minimizes the
number of necessary multiplications by breaking down into multiple factors along
with a remainder and reusing intermediate computational results in F2m [6],
further reducing the number of required multiplications by decomposing m− 1
into several factors plus a small remainder. We can again use their method in
BIKE/LEDACrypt setup to achieve fewer polynomial multiplications with an
optimized choice of decomposition of p− 2. The decomposition of the exponent
as per it is in [6] as follows

2p−1 − 2 = 2p−h−1(2h − 1) + 2(2p−h−2 − 1) with p− 2 =

k∑
i=1

ri + h

α−1 = (α2h−1)2
m−h︸ ︷︷ ︸

w(h) mults

· (· · · ((α2r1−1))sr2)sr3 · · ·)srk︸ ︷︷ ︸∑k
i=1(⌊log2(ri)⌋+wt(ri)−1) mults

with sri = (2ai−1)ri−1 + (2ai−1)ri−2 · · · + (2ai−1) + 1 with 2 ≤ i ≤ k. The
decomposition is deduced with h < r1 w.l.o.g. Based on this decomposition,
α2r1−1 and α2h−1 can be computed with log(r1) + wt(r1)− 1 +wt(h)− 1 many
multiplications. While the number of multiplications corresponding to the rest
of the factors is

∑k
i=1(⌊log2(ri)⌋+wt(ri)− 1) followed by a final multiplication.

Therefore, the total number of multiplications is
∑k

i=1(⌊log2(ri)⌋+wt(ri)−1)+
w(h).

Algorithm 6: Factorize
Input: An integer t
Output: A list B as factors of

t with minimal
multiplication cost m

1 B ← [t]
2 if wt(t) ≤ 2 or t is prime

then
3 return B

4 m← ⌊log2(t)⌋+wt(t− 1)

5 for i = 3 to ⌊
√
t⌋+ 1 do

6 if t mod i = 0 then
7 q ← ⌊t/i⌋
8 c← ⌊log2(i)⌋+wt(i) +

⌊log2(q)⌋+wt(q − 2)
9 if c < m then

10 m← c
11 B ← Factorize(i) +

Factorize(q)

12 return B

Algorithm 7: OptDecomp
Input: An integer n
Output: A list B of integers

as a decomposition
of n with minimal
cost m

1 B ← [n]
2 if wt(n) ≤ 2 then
3 return B

4 m← ⌊log2(n)⌋+wt(n− 1)
5 for i = 0 to ⌈n4 ⌉ do
6 if wt(i) < wt(n− 2) then
7 D ← Factorize(n− i)
8 c← wt(i) +∑

d∈D (⌊log2(d)⌋+wt(d− 1))

9 if c < m then
10 m← c
11 B ← D + [i]

12 return B

14

Algorithm 5: PolyInvTYT: Polynomial Inverse by using TYT Method
Input: An invertible polynomial α ∈ R = F2[x]/⟨xp + 1⟩
Output: α−1 = α2p−1−2

1 Precomputation of integers r1, . . . , rk and h s.t. p− 2 =
∏k

i=1 ri + h
2 Precomputation of binary representations of r1, . . . , rk and h with bit-lengths

q1 = |r1|, . . . , qk = |rk| and ℓ = |h|
3 q ← max(q1, . . . , qk)

/* A list F of polynomials */
4 F ← [f0 = α, f1 = 0, . . . , fq−1 = 0] of

length q
5 for i = 1 to q1 − 1 do
6 d← 2i−1

7 fi ← fi−1 · (fi−1)
2d

8 δ ← fq1−1

9 for i = q1 − 2 to 0 do
10 d← 2i

11 if r
(i)
1 = 1 then

12 δ ← fi · δ2
d

/* Compute γ from h */
13 γ ← fℓ−1

14 for i = l − 2 to 0 do
15 d← 2i

16 if h(i) = 1 then
17 γ ← fi · γ2d

/* Update δ and F with r2, . . . , rk */
18 n← r1 and f0 ← δ
19 for j = 1 to k do
20 for i = 1 to qj − 1 do
21 d← n · 2i−1

22 fi ← fi−1 · (fi−1)
2d

23 δ ← fqj−1

24 for i = qj − 2 to 0 do
25 d← n · 2i

26 if r
(i)
j = 1 then

27 δ ← fi · δ2
d

28 n← n · rj
29 d← 2r−2−h

30 δ ←
(
δ · γd

)2
31 return δ

3.3 Addition Chain Method

A proposed inversion algorithm in [11] by Mahmoud includes the use of Fermat’s
Little Theorem and normal basis representation to optimize finite field inversion
in F2m . It also involves decomposing m−1 into several factors and a remainder h,
where h is chosen from the shortest addition chain (SAC) of one of these factors,
effectively minimizing the required multiplications. We can adopt their method
to perform better for polynomial inversion than IT inversion in F2[x]/⟨xp + 1⟩.
We find the optimized decomposition of p− 2 =

∑k
j=1 rj + h where h is within

the short addition chain of one of the carefully chosen factors ri. To discuss this
further, we begin with the definition of an addition chain.

Definition 2. The Short Addition Chain of a positive integer r, denoted as Cr,
is a short chain (sequence) of elements (integers) of length n, with the property
that r (the last chain element) is obtained by the gradual addition of the previous
elements within the chain(or the gradual addition of previous chain elements).

15

Algorithm 8: PolyInvSAC: Polynomial Inverse by using SAC Method
Input: A polynomial α ∈ R = F2[x]/⟨xp + 1⟩
Output: α−1 = α2p−1−2

/* Precomputations from SAC Decomposition of p− 2 */
1 Integers r, n and h from the SAC Decomposition of p− 2 = r · n+ h
2 Addition Chain C = {c0 = 1, c1, . . . , ct−1 = r}
3 A list of index pairs A = {(i1, i2) : ci1 + ci2 = ci for all i = 1, . . . , t− 1}
4 Binary representation of n = (1n(k−2) . . . n(0))
5 Index ih such that h = cih

/* Compute δr = α(2r−1) and */

/* δh = α(2h−1) */
6 L = [α]
7 for i = 1 to t− 1 do
8 ci ← C[i] and i1, i2 ← A[i] and

ci2 ← C[i2]
9 d← 2ci2

10 Append L[i2] · (L[i1])d to L

11 δr ← L[t− 1]
12 δh ← L[ih]

/* Compute γ = δ2
(r·n)−1

r */
13 γ ← δr
14 for i = k − 2 to 0 do

15 γ ← γ · γ2r·2
i

16 if n(i) = 1 then

17 γ ← δr · γ2r·2
i

18 if h = 0 then
19 return γ
20 else
21 δ ← δh · γ2h

22 δ ← δ2

23 return δ

The decomposition of 2p−1 − 2 can be done as:

2p−1 − 2 = 2(2h · (2
∑k

i=1 ri − 1) + (2h − 1)) = 2((2r1 − 1) · e · 2h · (2h − 1))

α−1 = ((α2r1−1)(e)2
h

· (α2h−1))2 (2)

where e = (((2r1)r2−1 + · · ·+ 1) · · · ((2r1·r2···rk−1)rk−1 + · · ·+ 1)).

To compute α−1 as an exponentiation in Equation 2 the algorithm needs at
most

∑k
j=1⌊(log2(rj)⌋+ wt(rj)− 1) + 1 many multiplications according to [11,

Thm. 5]. Given the decomposition of p−2 =
∑k

i=1 ri+h, a short addition chain
of r1, namely Cr1 , can be constructed with h ∈ Cr1 . This guarantees the com-
putation of α2h−1 while calculating α2r1−1. For a given addition chain of Cr1 =
{c0, c1, . . . , cn−1}, a set of pairs Ar1 = {(c11, c21), (c12, c22), . . . , (c1n−1, c

2
n−1)| c1i +

c2i = ci and cji ∈ Cr1∀ i = 1, 2, . . . , n− 1 and j = 1, 2} is constructed that helps
computing α2r1−1 with n− 1 multiplications as follows:

(α2c
1
1−1)2

c21 · (α2c
2
1−1) = (α2c

1
1+c21−1) = (α2c1−1) 1 mult

(α2c
1
2−1)2

c22 · (α2c
2
2−1) = (α2c

1
2+c22−1) = (α2c2−1) 1 mult

...
...

...
...

(α2
c1n−1−1)2

c2n−1 · (α2
c2n−1−1) = (α2

c1n−1+c2n−1−1) = (α2r1−1) 1 mult

16

Table 1. Comparison of the number of multiplications with different inversion algo-
rithms discussed in this article using primes corresponding to different levels of BIKE
implementation from [7].

p wt(p− 2)
CEA

Factorization
TYT

Decomposition
SAC

Decomposition
Mults

(ITI)
Mults
(CEA)

Mults
(TYT)

Mults
(SAC)

10499 4 3× 3499 41× 256 + 1 41× 28 + 1 16 20 16 16
12323 4 32 × 372 12289 + 32 48× 28 + 33 16 19 16 16
24781 7 71× 349 3× 8257 + 8 193× 27 + 75 20 22 18 19
27067 9 5× 5413 67× 403 + 64 211× 27 + 57 22 20 21 20
24659 5 3× 8219 5× 4112 + 4097 385× 26 + 17 18 19 18 18
27581 11 3× 9193 163× 169 + 32 215× 27 + 59 24 22 21 20
40973 5 3× 13657 10× 4097 + 1 20× 211 + 11 19 22 18 18

4 Experimental Evaluation

The polynomial inversion algorithms are implemented in C and benchmarked on
x86 (AMD Ryzen 5800 @ 3.4 GHz) and arm64 (Apple Mac Pro M2 @ 2.4 GHz)
architectures. The code is compiled using GCC 9.4.0 with the march=native and
-O3 optimization flags. The benchmarking results, shown in Table 2, present the
median clock cycles (in millions) in both architectures for different prime num-
bers, as well as the number of function calls for high-level modular polynomial
multiplication (gf2x_mod_mul) and squaring (gf2x_mod_sqr)) functions. Based
on that the polynomials are represented in 64-bit blocks, the block multiplica-
tions (mul64) and squaring (sqr64) are performed through carry-less multipli-
cation instructions (CLMUL) in both architectures.

Although the polynomial squaring can be implemented as nearly "cost-free"
performance overhead in the hardware designs through special bit operations
and permutations for the specific target prime, it is better to use block squaring
through carry-less multiplication instructions (CLMUL) in the software imple-
mentations for any target prime rather than using permutations with costly
look-up tables. In addition, while a polynomial multiplication operation takes
O(n2) block multiplications (or O(n1+ϵ) with special methods like Karatsuba
or Toom-Cook) with many XOR operations, a polynomial squaring takes only
O(n) block squarings with fewer XOR operations for modular reduction only.

In Table 2, the SAC and CEA methods show a better performance with
1.56x-1.96x on x86 and 1.24x-1.49x on arm64 compared to the ITI and TYT
methods. However, the BYI method has a better performance with 1.76x-3.76x
on x86 and 1.38x-2.56x on arm64 compared to all FLT-based methods. The main
advantage of the BYI method over FLT-based methods is the lower number of
block multiplications, especially on the low levels of "jumpdivstep", while the
number of block multiplications is higher (and fixed) in each polynomial modular
multiplication and squaring. On the other hand, for a possible hardware design,
FLT-based methods seem better than BY method by only comparing the number
of block multiplications.

17

Table 2. Benchmarking of inversion algorithms, in millions of clock cycles for x86 and
arm64 architectures (the first two rows for each prime), in the number of function calls
for modular polynomial multiplication and squaring (the third and fourth rows for each
prime), and in the number of block multiplication and squaring (last two rows for each
prime).

p BYI ITI CEA TYT SAC
(size64)

10499
(165)

x86- med (Mcc) 4.35 12.85 8.38 15.02 7.66
arm64- med (Mcc) 7.37 16.32 13.78 17.35 12.02
gf2x_mod_mul N/A 16 20 16 16
gf2x_mod_sqr N/A 18,688 10,497 20,992 10,538
mul64 ≈ 1.10M ≈ 0.44M ≈ 0.54M ≈ 0.44M ≈ 0.44M
sqr64 - ≈ 3.10M ≈ 1.74M ≈ 3.48M ≈ 1.75M

12323
(193)

x86- med (Mcc) 5.79 17.02 10.89 20.07 10.93
arm64- med (Mcc) 12.23 21.91 18.74 25.25 16.92
gf2x_mod_mul N/A 16 19 16 16
gf2x_mod_sqr N/A 20,152 12,321 24,578 12,369
mul64 ≈ 1.51M ≈ 0.60M ≈ 0.71M ≈ 0.60M ≈ 0.60M
sqr64 - ≈ 3.98M ≈ 2.39M ≈ 4.77M ≈ 2.40M

24659
(386)

x86- med (Mcc) 21.03 66.25 42.51 64.32 42.61
arm64- med (Mcc) 45.73 95.18 77.74 96.50 77.88
gf2x_mod_mul N/A 18 19 18 19
gf2x_mod_sqr N/A 41,040 24,657 41,121 24,739
mul64 ≈ 6.05M ≈ 2.68M ≈ 2.83M ≈ 2.68M ≈ 2.83M
sqr64 - ≈ 15.88M ≈ 9.54M ≈ 15.91M ≈ 9.57M

24781
(388)

x86- med (Mcc) 22.11 65.64 44.13 76.33 42.18
arm64- med (Mcc) 46.30 101.52 86.50 107.21 80.28
gf2x_mod_mul N/A 20 22 18 19
gf2x_mod_sqr N/A 41,162 24,779 49,542 25,091
mul64 ≈ 6.10M ≈ 3.01M ≈ 3.31M ≈ 2.71M ≈ 2.86M
sqr64 - ≈ 16.01M ≈ 9.64M ≈ 19.27M ≈ 9.76M

27067
(423)

x86- med (Mcc) 24.43 76.65 50.19 91.81 51.94
arm64- med (Mcc) 54.42 125.42 98.09 137.71 101.62
gf2x_mod_mul N/A 22 20 21 20
gf2x_mod_sqr N/A 43,448 27,065 54,002 27,337
mul64 ≈ 7.09M ≈ 3.94M ≈ 3.58M ≈ 3.76M ≈ 3.58M
sqr64 - ≈ 18.42M ≈ 11.48M ≈ 22.90M ≈ 11.59M

27581
(431)

x86- med (Mcc) 25.34 81.5 53.4 94.94 53.4
arm64- med (Mcc) 57.34 139.49 111.14 146.93 103.03
gf2x_mod_sqr N/A 43,962 27,579 55,094 27,850
gf2x_mod_mul N/A 24 22 21 20
mul64 ≈ 7.34M ≈ 4.46M ≈ 4.09M ≈ 3.90M ≈ 3.72M
sqr64 - ≈ 18.99M ≈ 11.91M ≈ 23.80M ≈ 12.03M

40973
(641)

x86- med (Mcc) 58.14 191.2 116.62 208.12 113.43
arm64- med (Mcc) 127.29 284.38 246.86 300.02 217.01
gf2x_mod_mul N/A 19 22 18 18
gf2x_mod_sqr N/A 73,738 40,971 81,940 40,983
mul64 ≈ 17.02M ≈ 7.81M ≈ 9.04M ≈ 7.40M ≈ 7.40M
sqr64 - ≈ 47.34M ≈ 26.30M ≈ 52.61M ≈ 26.31M

18

5 Conclusions and Future Work

In this work, from Section 2.1 through Section 2.3, we compared both the
constant-time algorithms, and based on their mathematical foundations, we ob-
serve that the polynomial inversion by using the Bernstein-Yang algorithm per-
forms fewer number of polynomial multiplications. Although during the hard-
ware implementations of these two algorithms in BIKE and LEDAcrypt setup,
the choice depends on specific requirements, and thus they perform accordingly.
In [3] the authors claimed to get the best result with the optimized version of
Fermat’s Little Theorem method using look-up tables on platforms providing
AVX2 ISA extensions. On the other hand, the Bernstein-Yang modular inver-
sion over F2 performs better when both of them were implemented over FPGA
for BIKE [12, 13]. Therefore, as a conclusive remark, we can say in general i.e
without a particular ring structure like F2[x]/⟨xp+1⟩ the Bernstein Yang modu-
lar inversion using the Extended GCD Algorithm is more efficiently performing
constant-time algorithm compared to the ITI variant inversion based on Fermat’s
Little Theorem.

On the other hand, we show that applying ITI variant algorithms in Section
3 to the primes used in BIKE can potentially perform less number of polyno-
mial multiplications as shown in Section 4 during the key generation phase of
BIKE. Table 1 suggests that some of the primes perform better compared to
the constant-time IT inversion algorithm discussed in Section 2.2. As shown in
Table 2, we see that SAC and CEA methods show a better performance with
1.56x-1.96x on x86 compared to ITI and TYT methods, while BY method show
a better performance with 1.76x-3.76x on x86 compared to all FLT-based meth-
ods.

As of now, the hardware implementations indicate that Bernstein-Yang poly-
nomial inversion performs better on FPGA platforms. However, with the results
in this article, we believe that ITI variant polynomial inversion algorithms can
potentially perform better in hardware implementations with less number of mul-
tiplications. Consequently, in the future, a comprehensive hardware implemen-
tation of these algorithms will serve as an intriguing next step as a performance
improvement in the key generation phase of BIKE and LEDAcrypt.

19

References

1. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay Gueron, Tim
Güneysu, et al. "BIKE: bit flipping key encapsulation", 2022.

2. Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo
Santini. "LEDAcrypt: QC-LDPC Code-Based Cryptosystems with Bounded De-
cryption Failure Rate". International Workshop on Code-Based Cryptography,
2019.

3. A. Barenghi and G. Pelosi. "A comprehensive analysis of constant-time polynomial
inversion for post-quantum cryptosystems.". In Proceedings of the 17th ACM In-
ternational Conference on Computing Frontiers, pages (pp. 269–276)., 2020, May.

4. Daniel J. Bernstein and Bo-Yin Yang. "Fast constant-time gcd computation and
modular inversion.". IACR transactions on cryptographic hardware and embedded
systems, pages 340–398, 2019.

5. T. Chang, E. Lu, Y. Lee, Y. Leu, and H. Shyu. "Two Algorithms for Computing
Multiplicative Inverses in GF (2m) Using Normal Basis". Information Processing
Letters, 1998.

6. Gong-Liang Chen, Yi-Yang Chen, Jian-Hua Li, and Yin Li. "An improvement
of the TYT algorithm for GF (2m) based on reusing intermediate computation
results". Communications in Mathematical Sciences, 9(1):277–287, 2011.

7. Nir Drucker, Shay Gueron, and Dusan Kostic. "Fast polynomial inversion for post
quantum QC-MDPC cryptography". Cyber Security Cryptography and Machine
Learning: Fourth International Symposium, CSCML 2020, Be’er Sheva, Israel,
Cham: Springer International Publishing:340–398, July 2-3, 2020.

8. Andrea Galimberti, Gabriele Montanaro, and Davide Zoni. "Efficient and Scalable
FPGA Design of GF (2m) Inversion for Post-Quantum Cryptosystems". IEEE
Transactions on Computers, 71.12:3295–3307, 2022.

9. J. Hoffstein, D. Lieman, J. Pipher, and J. H. Silverman. "NTRU: A public key
cryptosystem. NTRU Cryptosystems" . Inc.(www.ntru.com), 1999.

10. Toshiya Itoh and Shigeo Tsujii. "A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases". Information and Computation, 78(3):171–
177, 1988.

11. Walid Mustafa Mahmoud. Speeding Up Finite Field Inversion for Cryptographic
Applications. University of Windsor (Canada), 2012.

12. J. Richter-Brockmann, M. S. Chen, S. Ghosh, and T. Güneysu. "Racing BIKE: Im-
proved Polynomial Multiplication and Inversion in Hardware". IACR Transactions
on Cryptographic Hardware and Embedded Systems, page 557–588, 2021.

13. J. Richter-Brockmann, J. Mono, and T. Güneysu. "Folding BIKE: Scalable Hard-
ware Implementation for Reconfigurable Devices". IEEE Transactions on Com-
puters, 71, no. 5: 1204–1215, 1 May 2022.

14. N. Takagi, J. I. Yoshiki, and K. Takagi. "A fast algorithm for multiplicative in-
version in GF (2m) using normal basis". IEEE Transactions on Computers, 50(5):
pp. 394–398, 2001.

15. D. Zoni, A. Galimberti, and W. Fornaciari. "Flexible and scalable FPGA-oriented
design of multipliers for large binary polynomials". IEEE Access, 8,75809-75821,
2020.

20

	Polynomial Inversion Algorithms in Constant Time for Post-Quantum Cryptography

