
Wiretapping LLMs: Network Side-Channel Attacks on Interactive LLM Services

Mahdi Soleimani
Yale University

mahdi.soleimani@yale.edu

Grace Jia
Yale University

grace.jia@yale.edu

In Gim
Yale University

in.gim@yale.edu

Seung-seob Lee
Yale University

seung-seob.lee@yale.edu

Anurag Khandelwal
Yale University

anurag.khandelwal@yale.edu

Abstract
Recent server-side optimizations like speculative decod-

ing significantly enhance the interactivity and resource effi-
ciency of Large Language Model (LLM) services. However,
we show that these optimizations inadvertently introduce new
side-channel vulnerabilities through network packet timing
and size variations that tend to be input-dependent. Network
adversaries can leverage these side channels to learn sensi-
tive information contained in encrypted user prompts to and
responses from public LLM services.

This paper formalizes the security implications using a
novel indistinguishability framework and introduces a novel
attack that establishes the insecurity of real-world LLM ser-
vices with streaming APIs under our security framework.

Our proposed attack effectively deconstructs encrypted net-
work packet traces to reveal the sizes of underlying LLM-
generated tokens and whether the tokens were generated with
or without certain server-side optimizations. Our attack can
accurately predict private attributes in real-world privacy-
sensitive LLM applications in medicine and finance with 71–
92% accuracy on an open-source vLLM service and 50–90%
accuracy on the commercial ChatGPT service. Finally, we
show that solutions that hide these side channels to different
degrees expose a tradeoff between security and performance
— specifically, interactivity and network bandwidth overheads.

1 Introduction
Recent advances in Large Language Models (LLMs) [1–4]
allow them to provide personalized responses to user prompts
based on user-provided context and documents. Such con-
text can often include privacy-sensitive data such as medical
records [5, 6] and proprietary financial insights [7]. Conse-
quently, many recent studies have focused on identifying and
mitigating vulnerabilities that may allow adversaries with di-
rect or indirect access to the LLM from learning such sensitive
information under diverse threat models, including member-
ship inference [8–10] and attribute inference [11, 12]. Our
work instead focuses on previously unexplored network side-
channel vulnerabilities of LLM serving systems.

Our key finding is that recent performance optimizations
in LLM serving systems expose new network side-channel
vulnerabilities. The driving factor for such optimizations is
responsiveness — popular LLM services provide streaming
APIs [13, 14] where the LLM responses are streamed back
in small batches to allow users to see responses as the LLM
generates them. These public serving systems also employ
several optimizations [15–18] to improve the latency of these
response streams further while also reducing the cost of op-
eration for serving systems by as much as 5–10×. Unfortu-
nately, these optimizations also have an unintended side effect:
optimization-driven variations in streaming response times
and batch sizes are inadvertently embedded within the com-
munication traffic between users and the LLM service, even
when encrypted. We demonstrate this effect on real-world
public LLM services [13, 14] in §6.

We focus on speculative decoding optimizations [15,16,19]
used by many modern LLM serving systems as a represen-
tative and pervasive example of such optimizations1. They
speed up response generation for semantically easier-to-
predict words2 using smaller but faster models while delegat-
ing harder-to-predict words to larger but slower ones (§2.1).
When the responses are streamed to a user, either word-by-
word or in small batches over encrypted packets, the inter-
packet timings and packet sizes can be used to learn which
words were generated with speculation and which were not.
Even more concerning is our observation that this information
can be tied to specific private information within the encrypted
user prompts and LLM responses with high accuracy.

Our study is the first to formalize, deconstruct, and explore
possible mitigation techniques for such network side-channel
leakages. Our security model assumes a practical network
adversary that only observes a timestamped sequence of en-
crypted packets between the target user-LLM service pair

1Gemini uses speculative decoding to improve responsiveness across
many products [20]. Several other public services also use speculative decod-
ing [21], as unofficially confirmed by their developers [22].

2We refer the unit of LLM generated data here as ‘word’ for simplicity;
§2 establishes more precise terminology.

1

and knows publicly available information about the LLM
service and user prompts. This is a reasonably practical ad-
versarial model since such information is readily available by
eavesdropping on the encrypted TLS sessions [23–26]. We
introduce a novel security definition to capture the security of
LLM servers against such an adversary. Intuitively, the defini-
tion, named Indistinguishability under Chosen Prompt Attack
(or IND-CPrA, §3), requires that the transcript of network
communications between the LLM service and the user is
independent of user prompts and LLM responses. Our defini-
tion adapts to a wide range of streaming models (§4) possible
for LLM services, capturing the granularities at which they
leak information (e.g., per word, for batches of words, or the
entire response) as well as the amount of information they
leak (e.g., sizes and timing of generated words, etc.).

We develop a novel attack that demonstrates existing pub-
lic and private LLM services are indeed insecure under
IND-CPrA (§5). The critical step in the attack is deconstruct-
ing the transcript of network communications — comprising
packet timestamps and sizes — to identify which of the gen-
erated words in the LLM response leveraged optimizations
and which ones did not. The attack leverages this information
to (i) learn the mapping between optimization patterns and
potentially sensitive elements within typical prompts to/re-
sponses from the LLM and (ii) use the mapping to predict user
private information within actual user prompts/responses. Our
evaluation (§6) studies the impact of the attack on both pro-
prietary systems like ChatGPT [13] and open-source systems
like vLLM [27], demonstrating prediction accuracy as high
as 50–92%, compared to 1–8% accuracy of random guesses.

We also study the impact of different streaming models
(§4) on attack accuracy. We show that the granularity and
amount of leaked information expose the expected tradeoff
between security and performance, i.e., protocols that leak
less information at coarser granularities reduce the attack’s
prediction accuracy but also incur higher network overheads
and worse responsiveness. We empirically characterize this
tradeoff for real-world use cases and LLM deployment modes
in §7 to help practitioners pick appropriate design points
based on their security and performance needs. While this
work focuses on network side channels stemming from specu-
lative decoding, this is only a first step in characterizing such
leakages due to the plethora of similar optimizations in LLM
serving. To that end, we close the paper by outlining several
avenues of future research (§9).

2 Background and Motivation
We provide a brief overview of interactive LLM serving sys-
tems in §2.1, followed by an overview of how network side
channels in such systems can reveal sensitive information
about the user requests and system responses in §2.3.

2.1 Interactive LLM Serving Systems
Our work focuses on causal LLMs, the most common kind
across both commercial and open-source use cases (e.g.,

GPT [28], Llama [1], Phi [29], etc.). These models are trained
to predict the most probable next token given an input se-
quence of tokens, referred to as a prompt. A token is the
smallest unit of text the model processes, such as a word,
subword, or character. Causal LLMs generate output by iter-
atively predicting and appending the next token autoregres-
sively: they compute the distribution of probable next tokens,
sample one (e.g., with the highest probability), append it to the
prompt, and repeat until a termination token is encountered.
This phase of token generation is also referred to as decoding.

Streaming for interactivity. With large-scale LLMs using
over a thousand billion parameters [1–4], they tend to be
hosted in the cloud with public-facing APIs. These APIs
permit users to issue prompts to these models and receive
responses from them over the Internet. To enhance interactiv-
ity and responsiveness, commercial LLM services and open-
source LLM serving frameworks typically expose streaming
APIs over HTTPS, where generated tokens are streamed back
to the user as soon as they are produced [13, 14].

Speculative decoding. Optimizing LLM inference is crucial
to both reduce operational costs stemming from high compu-
tational demands and improve response latency to meet user
interactivity requirements [20]. Speculative decoding [15–17]
is a common technique to accelerate the inference of causal
LLMs by using a smaller, faster approximation model to gen-
erate token sequences that the original model then verifies.
The benefits of speculative decoding are twofold: (i) a smaller
language model can quickly generate a draft sequence that
likely overlaps with the output of the original LLM, and (ii)
the original model can verify all the tokens in the draft in
parallel which is faster than sequential generation.

Speculative decoding employs a draft-and-verify mecha-
nism. At each generation step, the input — which includes
the original prompt and the tokens generated so far — is
fed into an approximation model. This approximation model
is a computationally efficient version of the original LLM,
typically created through methods like distillation [16, 30],
early-exiting [31], or adding auxiliary prediction heads [32].
It produces a sequence of µ tokens, where µ is a predefined
parameter. The original model then computes the next token
distributions for each token in the draft sequence. A draft
token is considered verified if the most probable next token
from the original model matches the draft token, indicating
successful speculation. If a draft token fails verification, that
token and all subsequent tokens are discarded. Verified tokens
are appended to the prompt, and the process repeats.

Figure 1 (bottom) demonstrates speculative decoding for a
diagnostic text completion example (similar to current med-
ical LLMs use-cases [5, 6], §2.2), with µ = 5, where a user
queries the LLM with the prompt, “What is a probable cause
for a severe headache?” and specifies the output prefix, “A
severe headache may”. With speculative decoding, the draft
model generates the next µ = 5 tokens as “occur after brain

2

Fig. 1: Speculative (µ = 5) vs. baseline decoding. The origi-
nal model verifies the approximation model-suggested tokens
every round and accepts a subset (green checkmarks).

surgery.” The original model accepts the first three tokens, re-
jects the rest (i.e., “surgery” and “.”), and inserts the token “in-
jury” into the sequence to complete the response. Compared
to the execution without speculative decoding (Figure 1 (top))
— where the slower original model sequentially generates
all four tokens — speculative decoding generates the first
three tokens much faster than the original model decoding
round via the approximation model, using the slower original
model to verify these token in parallel and generate the last
token. In practice, this reduces the average time-per-token by
∼ 5× [16, 17, 20], significantly improving responsiveness for
streaming APIs with high accuracy, and speed up response
generation by up to 3× [20].

2.2 Privacy-Sensitive LLM Use Cases
Our work focuses on domain-specific LLM-based services
with privacy-sensitive use cases. These applications employ
predefined input prompt templates [33] that are engineered
to augment the user’s input with domain-specific knowledge
and restrict the response to generate a reliable and valid re-
sult. Throughout this paper, we focus on a medical use case,
ChatCAD [5, 6], and a financial use case, AWS stock price
forecasting [34], as target applications since they communi-
cate private information in both input prompts and responses.
While these applications require input prompts to follow a
specified template, they do not restrict LLM outputs.

Medical use case. ChatCAD [5] and ChatCAD+ [6] leverage
public LLM services for reliable computer-aided diagnosis
(CAD). They employ LLMs for interactive multi-modal med-
ical diagnosis and temporal time-series forecasting, involving
multi-modal private information such as patient descriptions
and medical images. ChatCAD uses a prompt template that
compiles disease descriptions and patient reports from mul-
tiple sources. The LLM’s response template is designed to
produce a detailed diagnostic report with a disease predic-
tion. While many privacy-sensitive elements exist in both the
prompts and responses, we focus primarily on unveiling the

LLM-generated disease prediction, which contains critical
medical information that must remain confidential.

Financial use case. AWS stock forecasting [34] utilizes
prompt templates that instruct the LLM to forecast the next
week’s stock return for a given stock symbol based on the com-
pany profile, historical weekly news summaries, keywords,
stock returns, and optionally examples from similar compa-
nies. The predicted trend is categorized using bins like “D3”
and “U5+”, where each represents a specific range of price
change (e.g., “D3“ means a drop of ∼ 3%). The LLM’s re-
sponse templates include placeholders for the predicted sum-
mary, keywords, and predicted trend, explaining the reasoning
behind the forecast. We focus on unveiling the queried stock
symbols and the LLM-predicted trends, as these tend to be
proprietary, necessitating confidentiality.

Appendix A describes the input prompt templates and po-
tential responses for both use cases in detail.

2.3 Network Side Channels in LLM Serving
While streaming APIs and server-side LLM optimizations,
such as speculative decoding, improve interactivity and re-
sponsiveness for user-facing applications, they also inadver-
tently introduce new network side channels. As an example,
consider an LLM service that streams each token back to the
user as soon as it becomes available; if the system employs
speculative decoding, the inter-token arrival times (tinter) will
vary depending on whether the approximation model (shorter
tinter) or the original model (longer tinter) generated the token.
Such a timing channel is easily visible to a network adver-
sary that snoops on traffic between a target user and the LLM
service, even if the traffic itself is encrypted.

As a more concrete hypothetical example, in a medical
use case, the approximation model may be able to diagnose
common diseases like flu, enabling low-latency responses.
In contrast, rare and complex diseases (e.g., glioblastoma)
may be delegated to target model under speculative decod-
ing, requiring more time to generate tokens. This allows an
adversary to correlate lower token generation times with the
more probable diseases like flu and use such correlations to
make high-accuracy predictions about sensitive information
(e.g., potential diagnoses) contained in actual user prompts
and corresponding LLM responses.

One way to hide the timing channel is to stream tokens
in batches; however, if not done carefully, batching may still
reveal just as much information. For instance, to preserve the
latency benefits of speculative decoding, the LLM serving
system may batch together tokens generated in the same de-
coding round — i.e., a sequence of tokens generated by the
approximation model, followed by a token generated by the
original model. However, the sizes of these batches would
be correlated to the number of tokens generated in the corre-
sponding round, which a network adversary can observe to
deduce the same information as before.

While these are just two points in the design space, both

3

LLM

Fig. 2: Threat model. The adversary observes a transcript of
encrypted packets between the LLM service and a client.

streaming models described above are used in real-world
LLM serving systems [27, 35]. Our work formalizes the secu-
rity model under which such network side channels may be
exploited (§3) and explores a diverse set of streaming models
(including the two above) that may reveal these side channels
(§4). Moreover, we find that these side channels have strong
correlations with privacy-sensitive fields in corresponding
user prompts and LLM responses; we leverage this obser-
vation to develop a practical attack (§5) that can predict the
identity of such fields in real-world medical and financial use
cases with high accuracy, both for real-world LLM services
(§6) and in our own evaluation setup (§7).

3 Security Model
This section defines the security model for network side-
channel attacks on interactive LLM serving systems. We
begin by describing our threat model (§3.1) and conclude
with a formal definition of security (§3.2). Our system model
follows those for interactive LLM services described in §2.1:
users send input prompts (following the application-specific
template) over the network to the system, which runs LLM in-
ference on each prompt and streams the output response. The
communication channels between the system and its users are
encrypted, e.g., using TLS, so no entity in the network can
observe the prompts or LLM responses in plaintext.

3.1 Threat Model
Our threat model assumes a network adversary (Figure 2) that
can view encrypted communications between the user and the
LLM service, but not any computations or communications
within the service provider’s infrastructure. Moreover, the
adversary is passive persistent, i.e., it neither injects any traffic
of its own nor tampers with the user traffic. Practical examples
of such network adversaries include compromised browsers
on clients, Wi-Fi access points, routers, ISPs, tapped network
cables [36, 37], and TLS-session eavesdropping [23–26].

Adversarial knowledge. The adversary aims to infer the pri-
vate fields within the user’s prompt or the LLM’s response.
We assume that it knows the application of the LLM, specifi-
cally the format of the input prompts used and the set of poten-
tial classes of the private attributes in the LLM responses (as
outlined in §2.1) — e.g., predicted disease or stock symbol
in our medical and financial use cases, respectively (§2.2).
We also assume that the adversary has black-box access to
the LLM service, i.e., it can send prompts to the LLM ser-

IND-CPrAA
b :

M← Init()

P0,P1← A1

R,τ′← Inference(Pb,M)

τ← Stream(τ′)

b′← A2(R,τ)
Return b′

Fig. 3: IND-CPrA with adversary A and random bit b.

vice and receive responses but cannot view the LLM’s archi-
tecture or parameters. This is often the case for user-facing
services [13,14,38,39], where the adversary can pose as a reg-
ular user to extract information about how specific sensitive
attribute values affect the network traces (§5). The adver-
sary can also leverage prior knowledge of domain-specific
data distributions, e.g., for the medical use case, it may know
the distribution of common diseases. This is a practical as-
sumption for real-world cases where distributional informa-
tion about the population or application domain is common
knowledge [40–42]. We also consider how the adversary fares
without these distributions in §7.

Finally, the adversary can collect traces of the precise sizes
and receive times of the encrypted packets transmitted be-
tween the LLM server and clients. These traces capture side-
channel leakage from the system and reveal information about
the execution of the LLM inference and, consequently, private
information within the prompts and responses.

3.2 Security Definition
We formalize our notion of privacy for an LLM serving sys-
tem using a game-based definition called ‘Indistinguishability
under Chosen Prompt Attack’ (IND-CPrA). IND-CPrA fol-
lows the concrete security approach [43] to analyze whether
an interactive LLM serving scheme is secure under the net-
work adversary outlined in §3.1. At a high level, in the IND-
CPrA game, the adversary generates two user prompts, and
the LLM service randomly picks one to perform inference on
it. The adversary observes the encrypted network traffic sent
back by the LLM service and uses this information (along
with prior knowledge outlined in §3.1) to “guess” which of
the two prompts the LLM service ran the inference on. The
scheme is secure if the adversary’s guess is no better than a
random coin toss and insecure otherwise.

Security game (Figure 3). We formalize an LLM serving
scheme as a tuple of algorithms (Init, Inference, Stream). Init
initializes the LLM model and system parameters, includ-
ing optimizations (specifically, speculative decoding); Init’s
output M encapsulates the post-initialization system state.
Inference takes as input a user prompt (P, represented as a
sequence of m tokens) and Init’s output (M) to generate an
encrypted response (R). Inference also generates a transcript
τ′ of the tokens in R and the timestamps at which they are gen-
erated by the LLM. While this intermediate transcript is not
visible to the adversary, it serves as input to Stream, which

4

captures LLM serving scheme’s response streaming model
(§4), i.e., how it places the generated tokens in packets and
sends them to the user. The adversary can observe the output
of Stream — a network transcript that captures the scheme’s
outgoing traffic, modeled as a sequence of n encrypted pack-
ets, where τ[i].time denotes the timestamp at which the ith

packet was captured and τ[i].size denotes its size.
The game is parameterized by an adversary A — formal-

ized as a pair of algorithms A1 and A2 — and a bit b ∈ {0,1}
(kept secret from A). In the game, the adversary generates
two prompts P0 and P1 using algorithm A1. The scheme runs
LLM inference on Pb (determined by the random bit b) and
produces the encrypted inference result R and the transcript τ

corresponding to the observed network traffic. The adversary
A uses these two outputs to run algorithm A2 to guess the bit
b, i.e., which prompt was chosen, and outputs this guess as b′.
We express adversary A’s ability to distinguish between the
scheme’s executions on P0 compared to P1 as its IND-CPrA
advantage. More formally, the advantage is the absolute dif-
ference in probabilities that the adversary guesses b′= 1 when
the game is initialized with b = 0 and b = 1, i.e.,

AdvIND-CPrA(A) =|Pr[IND-CPrAA
0 ⇒ 1]

−Pr[IND-CPrAA
1 ⇒ 1]|

A scheme where the adversarial advantage is non-zero is
insecure under IND-CPrA; this definition can thus serve as a
framework for evaluating the security of mitigations against
any attacks that exploit the network packet timings of an LLM
service. In §5, we will present a practical realization of the
adversary to guess the chosen prompt and show in §5.4 that
when applied to a wide range of real-world and hypothetical
streaming models for interactive LLM serving systems, it
provides a non-zero adversarial advantage.

4 LLM Response Streaming Models
We consider a range of real and hypothetical streaming models
for interactive LLM services that differ in how they stream
responses from the LLM service back to the user. For each
model, we show how the network adversary (§3) can extract
low-level information embedded within the network traffic
typically correlated with LLM optimizations. We will discuss
how this information can be used to learn sensitive fields in
user prompts and LLM responses in §5. Although many more
design points are possible, we consider six representative
streaming models to demonstrate the different granularities
of information they leak to the network adversary.

4.1 Token-by-token Streaming
Our first considered category of streaming models streams
one token back to the user at a time, with each token sent
back in a separate packet as soon as it is available at the LLM
service. We consider three models:

PacketPerToken describes a streaming model where the gen-
erated tokens are converted into strings (i.e., detokenized)

before they are packetized, encrypted, and sent to the user. It
encompasses real-world open-source LLM serving systems
like vLLM [27] and represents one extreme of the design
space, where the network adversary can extract the most in-
formation via network timing and size channels.

TokenPadding is a variant where each detokenized string is
padded to the maximum string encoding size before it is sent
in a packet to the user to hide the sizes of individual tokens
from a network observer.

NoSpecDecoding builds atop TokenPadding (i.e., employs
per-token padding), and in addition, also disables speculative
decoding. This is an extreme where no information about
token optimizations or sizes is leaked to an adversary, but the
responses are still streamed to the user for responsiveness.

Leaked information. As outlined in §2.3, optimizations like
speculative decoding introduce noticeable variations in token
generation times. Intuitively, tokens generated via the approx-
imation model in speculative decoding have observably lower
latency in this steaming model category than those generated
by the original model. Specifically, the transcript τ reveals this
latency gap through its timing channel since the inter-token
arrival times tinter are strongly correlated with inter-packet
arrival times, i.e., t i

inter ≈ τ[i].time− τ[i−1].time. The differ-
ences in inter-token arrival times can then be used to identify
which tokens are generated by the approximation vs original
models, as shown in Figure 4(a).

The adversary can use statistical methods like
HDBSCAN3 [44] to group tokens into different classes
based on their arrival times. HDBSCAN extracts clusters
in inter-packet delays, which is always two for speculative
decoding. While Figure 5 shows that the two categories of
tokens are distinguishable with high confidence for real-world
medical and financial use cases, we evaluate the precision of
HDBSCAN in grouping them into different classes in §7.2.

If no padding is used, in addition to the timing channel,
the adversary can also learn token sizes, i.e., the length of
the detokenized string, by subtracting various header sizes
from each packet size τ[i].size. All in all, this gives us two
key pieces of information:

• Optimization vector. A bit vector where ith bit is 1 if the ap-
proximation model generates the ith token, and 0 otherwise.

• Token sizes. The size of each detokenized string (typically
UTF8-encoded) in the LLM response.

In TokenPadding the adversary cannot learn the token
sizes, but it can still infer the optimization vector from the
timing channel. In contrast, NoSpecDecoding prevents the
adversary from learning optimization vector as well, only
revealing the total number of tokens in the response.

3Hierarchical Density-Based Spatial Clustering of Applications w/ Noise

5

(a) Token-by-token streaming models (b) Round-by-round streaming models

Fig. 4: Reconstructing the optimization vector via (a) the timing channel in token-by-token streaming models (§4.1), and (b)
the size channel in round-by-round streaming models (§4.2).

.07 .14 .21 .28 .35
0

3

6

43 45 47 49 51 53 55
0

3

6

Inter-Packet Delay (millisecond)

P
er

ce
n

ta
ge

of
p

ac
ke

ts

(a) Medical use case

.07 .14 .21 .28 .35
0

3

6

43 45 47 49 51
0

3

6

Inter-Packet Delay (millisecond)

P
er

ce
n

ta
ge

of
p

ac
ke

ts

(b) Financial use case

Fig. 5: Histogram of inter-packet delays. The streaming delays of PacketPerToken are distributed along two different clusters,
corresponding to tokens generated by the original model (Phi3-14B, which yields the higher inter-packet delay cluster) and those
generated by the approximation model (Phi3-3.8B, which yields the lower inter-packet delay cluster). The x-axis scale breaks in
(a) and (b) demarcate regions with different scales (sub-millisecond vs hundreds of milliseconds) and shows that these clusters
are clearly separable for a network observer. See §7 for details on the experimental setup.

740 750 760 770 780

Size (bytes)

1

3

5

7

D
en

si
ty

(%
)

TLS packet sizes

Token sizes

3 4 5 6 7 8 9 10
Tokens

0

1

2

3

E
rr

or
ra

te
(%

)

ChatGPT

250 500 750

Inter-Packet Delay (millisecond)

16

32

48

64

#
T

ok
en

s Gemini

16 32 48
Token Count

-2
0

0
E

rr
or

(a
bs

)

Min-Max

Median

Fig. 6: Error rates in estimating token counts per packet
across packets containing varying numbers of tokens in
ChatGPT. The estimation errors remain < 3% for TLS re-
sponse traffic from ChatGPT. The x-axis is limited to < 10
tokens since not enough packets have over 10 tokens to yield
statistically significant results.

4.2 Round-by-round Streaming
In this streaming model category, tokens generated in a single
speculative decoding round are aggregated into a single packet
before being sent back to the user. We consider two models:

PacketPerRound concatenates all tokens generated in a de-
coding round and sends them to the user in a single response
packet. This model is used in real-world offerings, e.g., Chat-
GPT [13], vLLM [45], and Gemini [14, 46] (evaluated in §6).

PacketPadding pads each token to the maximum string en-
coding size and injects fake tokens into the response packet,
ensuring that the same number of tokens (µ+1) are sent to
the user for each decoding round.

Leaked information. In the round-by-round streaming
model, the adversary can no longer extract the optimization

vector via inter-packet delays. However, it can still leverage
the size in PacketPerRound to reconstruct the optimization
vector. To do so, it uses the observation that with speculative
decoding, all tokens except the last generated in a decoding
round come from the approximation model. By correctly es-
timating the number of tokens ni generated for every round
i, the adversary can reconstruct the optimization vector as
shown in Figure 4(b).

To estimate the number of tokens in each round, the ad-
versary exploits the positive correlation between the number
of tokens generated in a decoding round and the size of the
packet containing those tokens. Specifically, knowing the
average size of token encodings (tavg) across packets, the ad-
versary can estimate the number of tokens ni for round i from
the packet size τ[i].size as ni ≈ ⌊ τ[i].size

tavg
⌋. We note, however,

that this estimation is subject to estimation errors stemming
from high variations in token sizes, i.e., if the token sizes vary
significantly, an observer may not get an accurate account of
the number of packets per round. Interestingly, in real-world
systems, we find that the token encoding schemes employed
in LLM responses end up ensuring that encoded token sizes
have a very small variance, i.e., the average encoded token
size permits accurate estimation of ni per packet (§6.2). Fig-
ure 6 shows that this approach achieves very low token count
estimation errors for packets containing varying numbers of
tokens in OpenAI’s ChatGPT [13] service. While we omit re-
sults for vLLM [45] and Gemini [46] for brevity, they observe
similarly low estimation errors using a similar approach.

6

PacketPadding ensures that the adversary observes a con-
stant number of padded tokens sent per round, so packet size
τ[i].size is the same constant for every round i. The only ad-
ditional information the adversary can learn is the number
of decoding rounds the LLM takes to generate its response,
equal to the number of packets recorded in τ.

4.3 Non-Streaming Model
Finally, we consider the model that sends only one packet per
response, NonStreaming: it waits until the LLM has gener-
ated all the tokens in the response and then sends them back
to the user in a single packet. This model represents another
extreme in the design space: preventing the network adversary
from extracting useful information by forgoing interactivity.

Leaked information. In NonStreaming, τ contains a single
entry, where the timestamp corresponds to the end-to-end
latency of the LLM response and packet size corresponds
to the sum of encoded token sizes in the response. As a re-
sult, only the total number of tokens in the response is re-
vealed, estimated using the average encoded token size (as
in PacketPerRound). As with the estimation techniques de-
scribed in §4.2, this estimation is also subject to errors de-
pending on the variance in token sizes.

5 A Novel Network Side-Channel Attack
We now present a novel attack that leverages information
available to the network adversary (defined in §3) for a wide
range of LLM service streaming models (outlined in §4) to
learn privacy-sensitive fields within encrypted user prompts
and LLM responses with high accuracy. This attack analyti-
cally establishes the lack of security under IND-CPrA (§5.4)
for LLM services that use any of the streaming models in §4.

5.1 Attack Design

Goals. As noted in §2, in the privacy-sensitive use-cases of
LLMs, the user prompts and LLM responses contain sensi-
tive user attributes, such as preferred stock ticker symbols or
predicted trends in the financial use cases, or symptoms and
diagnoses in medical use cases [5,6,34]. Our attack aims to ex-
tract these private attributes by leveraging LLM optimization
information leaked in the network communications between
the LLM service and the user (§4). As discussed in §3.1, our
attack assumes that the adversary has black-box access to the
LLM service and knows the target privacy-sensitive use-case
(i.e., their prompt templates, §2.2).

Overview. Our attack operates in two phases: exploration
phase and exploitation phase. In the exploration phase, the
adversary tries to learn a mapping between the side-channel
information embedded in network side channels (discussed
in §4) and the private fields in user prompts/LLM responses;
it does so with black-box access to the LLM service, i.e., by
pretending to be an ordinary user. In the exploitation phase,
the adversary captures the encrypted network traffic from the

Fig. 7: The adversary generates a set of prompts for the ex-
ploration phase by (i) selecting the desired value of a private
attribute (e.g., diagnosis=NSTEMI/STEMI) drawn from a
known distribution and (ii) then crafting an input prompt that
would generate a response containing that attribute.

LLM service and predicts the private attribute values using
the mapping learned in the exploration phase.

5.2 Exploration phase
This phase learns how to map information embedded within
the network traces to privacy-sensitive attributes and com-
prises two steps. In the first step, the adversary issues a cu-
rated set of prompts to the LLM service, capturing both LLM
responses and network side channels. In the second step, it
trains a neural network over the captured data to learn the
mapping between side channel information and the privacy-
sensitive attributes.

Step 1: Collecting side channel information and private fields
for a curated set of prompts. The adversary first curates a set
of input prompts that follow the prompt template and attribute
distribution of the targeted privacy-sensitive use case (§2.1).
Figure 7 (top) shows an example of a prompt for the medical
use case. To generate this prompt, the adversary first selects
the diagnosis (a privacy-sensitive attribute) it wants to see
in the LLM response (NSTEMI / STEMI in the figure) and
then creates a patient description in the input prompt based
on the selected diagnosis. The way these prompts are curated
can be critical for the effectiveness of the attack. In particu-
lar, in many cases, privacy-sensitive attributes (e.g., medical
diagnoses) follow well-known distributions. As such, creat-
ing a set of prompts that follow this distribution improves
the accuracy with which the attack can predict the attribute
value for real user prompts in exploitation phase. However, if
such information is unavailable to an adversary (e.g., a propri-
etary distribution of preferred stock symbols for a financial
use case), it can always sample the values for these attributes
following a uniform random distribution over the attribute
domain. We study the impact of this information’s availability
on the attack’s efficacy in §7.3.

The adversary then issues its curated prompts to the LLM
service, recording the corresponding responses and packet
traces. For each prompt, it extracts (i) the privacy-sensitive

7

Fig. 8: User prompts for different privacy-sensitive attributes
(e.g., anemia vs. influenza) result in responses with separable
‘clusters’ of optimization vectors, which our classifier model
learns in the exploration phase.

fields in user prompts and LLM responses and (ii) information
leaked in the packet traces (e.g., token sizes, optimization
vector, etc.) as described in §4. This information serves as
input features for training a classifier in the next step.

Step 2: Mapping leaked information to privacy-sensitive at-
tributes. In the second step, the adversary trains a classi-
fier model using the extracted information (leaked in packet
traces) as input and the privacy-sensitive attributes as the clas-
sification labels. The success of this classifier hinges on its
ability to classify prompt-response pairs into distinct classes
with the same privacy-sensitive attribute based on the leaked
information. Figure 8 shows an example of this clustering
across different prompts in the medical use case, using only
the optimization vector as the sole source of leakage. We
use a simple Multilayer Perceptron (MLP) [47] to capture
the relationship between these input vectors and private at-
tributes with high accuracy across various domains (§7.1).
We note that our attack is modular and can employ a wide
variety of other models like random forests [48] and ensemble
methods [49, 50] to determine the final label. We analyze the
impact of model selection on training accuracy in §7.3.

5.3 Exploitation phase
In this phase, the adversary uses the trained classification
model to predict privacy-sensitive attributes for victim user-
LLM service interactions based on the captured encrypted
communications between them. In particular, for each victim
user prompt, the encrypted packet traces for the LLM response
are analyzed to extract the leaked information (as outlined
in §4). This information is used to construct an input feature
vector and fed to the trained classifier model, which yields
a classification label, i.e., a value for the privacy-sensitive
attribute. The accuracy of this prediction is the basis for show-
ing the lack of security of existing interactive LLM services
under IND-CPrA, as we show next.

5.4 Security Impact
Our IND-CPrA adversary A is defined as follows: A1 runs
the exploration phase using its black-box access to the LLM
and generates P0 and P1 based on its prompt curation strat-
egy. After the LLM serving scheme executes inference on

Pb, A2 runs the exploitation phase on the generated transcript
τb. A guesses b′ = 0 if the classifier’s output matches the
label of P0, and b′ = 1 if the classifier outputs the label of
P1. If the classifier’s output does not match either prompt, A
guesses randomly. Our evaluation (§7, §6) confirms that the
classifier achieves (often significantly) better accuracy than
random, i.e., A’s advantage under IND-CPrA is non-zero
(AdvIND-CPrA(A) > 0) for existing LLM serving systems,
confirming their lack of security.

6 Attacking Real-world LLM Services
We study the feasibility of our attack (§5) on three real-world
LLM services. We seek to answer the following questions:

• Is the attack effective on black-box LLM services where
the adversary lacks knowledge of their internal operation
and optimization techniques? (§6.1)

• What information do real-world LLM services leak in
their network side channels? (§6.2)

Targeted services. We target (i) ChatGPT’s GPT-4 mod-
els [13, 35] (gpt-4o, gpt-4o-mini) (ii) Google’s Gemini
model 1.5-pro [14], and (iii) vLLM framework [27, 45, 51]
from [52] using Phi3 14B and 3.8B models as original and
approximation models, respectively.

While ChatGPT and Gemini internals are not public, an
analysis of captured packet traces for their streaming APIs
suggests the use of round-by-round streaming (§4.2). For
instance, in ChatGPT, each token is encoded as a JSON object
(adding 244B metadata to 3–15B tokens), and several of these
tokens (presumably for the same decoding round) are batched
into a response packet.

Since vLLM’s infrastructure code is open sourced, we
have better insight into its internal operation. Specifically,
it uses speculative decoding and follows the token-by-token
streaming model (§4.1), a variant of PacketPerToken. How-
ever, each packet includes not only the newly generated token
but also all the previously generated tokens for that prompt,
e.g., successive response packets for a medical prompt might
contain “A,” “A severe,” “A severe headache,” and so on.

The adversary observes the encrypted packet traces be-
tween the user and the LLM service for all systems, including
the TLS handshake, cipher exchange packets, and data packets.
During the exploration phase, the attack filters out non-data
packets and extracts the leaked information from the packet
transcript based on each service’s closest streaming model
(as discussed in §4). We discuss the implications of JSON
wrapping and cumulative encoding of tokens in packets on
extracting the leaked information in §6.2.

Curating prompts for targeted use cases. Due to budget lim-
itations, we restrict the size of the adversary’s curated prompts
for large models (gpt-4, gpt-4o and gemini). Specifically,
we use 10k prompts for the financial use case, restricting
focus to the 10 largest NASDAQ [53] companies for stock
symbols. For each symbol, we focus on trends for 350 days,

8

Diagnosis (Medical)

A
cc

u
ra

cy
(%

)

50

71 69 71

18

Diagnosis (Medical)
T

o
p

-3
ac

cu
ra

cy
(%

)

62

90 87 88

42

Symbol (Financial)

A
cc

u
ra

cy
(%

)

40

82 77 81

10

Symbol (Financial)

T
o

p
-3

ac
cu

ra
cy

(%
)

61

90 88 92

30

Trend (Financial)

A
cc

u
ra

cy
(%

)

44
59 54

82

42

Trend (Financial)

25

50

75

A
d

ja
ce

n
t

ac
cu

ra
cy

(%
)

59

82 79
88

61

GPT-4o-mini GPT-4o Gemini vLLM Random GuessGPT-4o-mini GPT-4o Gemini vLLM Random Guess

Fig. 9: Attack accuracy for real-world LLM services on medical and financial use cases. The adversary achieves high accuracy
by extracting payload sizes and optimization vector from the PacketPerRound streaming model used by ChatGPT [13, 35] and
Gemini [46]. vLLM demonstrates accuracy comparable to the results presented in §7.1.

GPT-4o GPT-4o-mini Gemini-2-flash

T
ok

en
S

iz
es

P
ac

ke
t

S
iz

es

#
T

ok
en

s/
P

ac
ke

t

0

1

A
ve

ra
ge

L
2

di
st

an
ce

T
ok

en
S

iz
es

P
ac

ke
t

S
iz

es

#
T

ok
en

s/
P

ac
ke

t

T
ok

en
S

iz
es

P
ac

ke
t

S
iz

es

#
T

ok
en

s/
P

ac
ke

t

Intra-attribute distance Inter-attribute distanceIntra-attribute distance Inter-attribute distanceIntra-attribute distance Inter-attribute distance

(a) Classification using complete network transcript

GPT-4o GPT-4o-mini Gemini-2-flash

T
ok

en
S

iz
es

P
ac

ke
t

S
iz

es

#
T

ok
en

s/
P

ac
ke

t

0

1

A
ve

ra
ge

L
2

di
st

an
ce

T
ok

en
S

iz
es

P
ac

ke
t

S
iz

es

#
T

ok
en

s/
P

ac
ke

t

T
ok

en
S

iz
es

P
ac

ke
t

S
iz

es

#
T

ok
en

s/
P

ac
ke

t

Intra-attribute distance Inter-attribute distanceIntra-attribute distance Inter-attribute distanceIntra-attribute distance Inter-attribute distance

(b) Classification with network transcript truncated to first 20 packets

Fig. 10: Intra- and inter-attribute distances in GPT-4o models for different leakages. Each box marks 25th and 75th percentile,
while the horizontal line in it marks median and whiskers mark minimum and maximum values. See §6.2 for details.

with three possible news events affecting the outcome of the
LLM’s stock predictions. For the medical use case, we focus
on the 10 most common diseases and use 10k prompts.

6.1 Attack Efficacy
Our attack experiments follow the same structure as those in
§7.1; we now summarize our key takeaways for Figure 9.

The attack is effective on real-world LLM services. Our
attack achieves between 54–92% prediction accuracy for
privacy-sensitive attributes on the evaluated financial and
medical use cases, which is much higher than that for random
guesses (e.g., 0.96% for stock symbols, 8.5% for diseases).
This establishes adversarial advantage under IND-CPrA.

GPT-4o observes higher attack accuracy than 4o-mini. In-
terestingly, the attack observes higher accuracy against the
gpt-4o model than the gpt-4o-mini model. As we will
show in §6.2, this is because the leaked information (e.g.,
optimization vector and packet sizes) for gpt-4o-mini have
a weaker correlation with the privacy-sensitive attribute class
that the prompt-response pair corresponds to, when compared
to gpt-4o. While we do not know to what extent either of
these models employs speculative decoding (or similar) op-
timizations, the difference in correlations suggests a more
aggressive use of optimizations in gpt-4o than in 4o-mini.

Gemini observes lower accuracy than GPT. On average,
gemini observes 3–5% lower accuracy than gpt-4o. We
attribute this to the slightly higher error rate in extracting the
optimization vector from network traces in Gemini.

Mounting the attack is relatively inexpensive (≤ $100).
Since the exploration phase requires the adversary to issue
prompts to the LLM service, the cost of this phase of the attack
is measured as the cumulative cost of API calls to the respec-
tive models. Our measurements indicate that it costs $94 and
$3.4 for the gpt-4o, and gpt-4o-mini models, respectively.
This shows that a careful curation of prompts can lead to sig-
nificant accuracy at a relatively low cost, even when targeting
the most expensive and powerful LLM models. Additionally,
the adversary needs to train the MLP as its classifier, which
takes around 8 mins on an Nvidia L4 GPU, which costs < $1
even by conservative estimates.

6.2 Information Leaked in Network Traces
We now analyze the accuracy and impact of the information
extracted from network traces for real-world LLM services.

Extracting leaked features from packet traces. The
PacketPerRound streaming model (§4.2) in ChatGPT and
Gemini exposes two side channels: the token count per packet
and the size of each packet. Interestingly, per-token JSON
encoding in the responses enables a more accurate estima-
tion of the number of tokens per packet. This is because such
JSON encoding reduces variance in the size of each encoded
token (from 3–15B in PacketPerRound to 248–260B in Chat-
GPT responses), reducing the error in estimating token counts
based on the average encoded token size.

On the other hand, each of vLLM’s response packets con-
tains both the new and all previous tokens; as such, every
subsequent packet is larger than the last. This can introduce
noise in the timing channel due to variability in packet sizes

9

and, therefore, transmission delays. However, the measured er-
ror of the optimization vector generation is negligible (0.12%)
since the additional transmission delay introduced by a longer
response string (< 300µs) is at least two orders of magnitude
smaller than the difference in token generation times between
the original and approximation models (> 50ms).

Mapping leaked features to private attributes. As dis-
cussed in §5.1, the accuracy of our attack’s classifier model
depends on the correlation of leaked features to the private
attributes: for high accuracy, prompt-response pairs with the
same attribute value should have similar leaked features, and
vice versa. We quantify this similarity using the normalized
L2 distance between leaked features represented as integer
vectors. Specifically, intra-attribute distance corresponds to
the average L2 distance between two feature vectors for the
same attribute. In contrast, inter-attribute distance represents
the same for feature vectors for different attributes. A good
candidate for leaked features would ensure that the gap be-
tween intra- and inter-attribute distance for the corresponding
feature vectors remains high for high clustering accuracy.

In Figure 10(a), we compare the inter- and intra-attribute
distances for the two leaked features in OpenAI’s streaming
model: packet sizes (i.e., sum of token sizes per packet) and
the number of tokens per packet. While individual token sizes
for ChatGPT and raw packet sizes for Gemini are not leaked
for these models, we still include the attribute distances based
on token sizes to serve as an upper bound on the achievable
gap between the intra- and inter-attribute distances. The figure
shows that packet sizes and (to a lesser extent) the number
of tokens per packet serve as reliable features for classifying
prompt-response pairs based on their private attribute value,
for both gpt-4o and gemini, albeit less so than token sizes
(which are not leaked). In our evaluations, the combination of
packet sizes and number of tokens permit sufficiently accurate
clustering, resulting in high prediction accuracy (§6.1).

For ChatGPT, we also observed that, despite configuring
the LLM to minimize randomness in its outputs (via its tem-
perature parameter), responses to the same prompt begin to di-
verge when they grow beyond a certain number of tokens [54].
This reduces prediction accuracy in the attack for longer re-
sponses. One approach to address this is to truncate the net-
work transcript to a fixed number of tokens to remove the
randomness introduced by the latter tokens during the attack’s
exploration and exploitation phases. Figure 10(b) shows the
accuracy with the transcript truncated to the first 20 packets,
demonstrating a larger gap between intra- and inter-attribute
distance. We leave investigating the ‘optimal’ number of to-
kens for maximizing attack accuracy to future work.

7 Attacking Controlled LLM Serving Systems
with Speculative Decoding

We evaluate our proposed attack (§5) atop various LLM
streaming models (§4) in a controlled setup to understand:

Table 1: Summary of Curated Prompts

Use case # Possible Attribute Values #Prompts References
Medical 35 (diagnosis) 949,854 [5, 6, 59]
Financial 104 (symbols), 12 (trends) 1,545,648 [34, 53]

• accuracy of the proposed attack for various privacy-
sensitive use cases and streaming models (§7.1),

• impact of noise (§7.2) and adversarial knowledge (§7.3).

Targeted LLM serving setup. We implemented a reference
LLM service that processes user prompts sequentially. The
service employs Microsoft’s Phi3 model [55] as a represen-
tative of open-source LLMs, sharing its architecture with
widely used models like Llama [1] and Gemini [14]. We use
the 14B [29] and 3.8B [56] models as the original and ap-
proximation models, respectively. We run the models on an
NVIDIA RTX 4090 GPU with 24GB memory using int 8-bit
quantization [57] for the approximation model via the bitsand-
bytes library [58]. We use deterministic sampling (top-1) for
token generation and limit the number of output tokens to 128.
Our service supports all streaming models introduced in §4.

Curating prompts for targeted use scenarios (Table 1). We
evaluate the medical and financial use scenarios introduced
in §2.2. We extract diseases and patient descriptions from
the DDXPlus [59] dataset and format them in a ChatCAD
prompt template [5, 6]. For the financial service, we generate
a dataset following the template used in a recent LLM stock
prediction system [34]. Specifically, we extract stock trends
from Nasdaq-100, create stock symbol descriptions using
gpt-4o [13], and for each symbol, select 1 of 12 gpt-4o-
generated news articles ranging from “very unfavorable” to
“very favorable” to consider the potential effect of the news
on stock prices. For both use cases, we reserve 10% of the
prompts as real user prompts that are not made available to the
adversary. We assume that the disease distribution is known
to the adversary while prompts for the financial use case are
uniformly distributed over stock symbols.

7.1 Feasibility of the Proposed Attack
We use three metrics to evaluate the attack accuracy: accu-
racy, top-3 accuracy, and adjacent accuracy. Accuracy is the
percentage of cases where the adversary correctly identifies
the LLM-assigned attribute. Top-3 accuracy is the percentage
of cases where the correct attribute value is among the top
three predictions from the attack’s classifier. Finally, adjacent
accuracy, measured only in the financial use case, is the per-
centage of cases where the correct trend is either equal to or a
neighbor of the predicted trend (e.g., U3 predicted for U2; see
§2.2 for a description of trend classes). These more ‘relaxed’
accuracy metrics correspond to practical threat models where
the adversary may be satisfied with approximately correct
predictions. We now present our key takeaways.

The attack achieves high accuracy for streaming mod-

10

Diagnosis (Medical)

A
cc

ur
ac

y
(%

)

79
63

43

9 9 9 8

Diagnosis (Medical)T
op

-3
ac

cu
ra

cy
(%

)

94
82

65

23 22 22 22

Symbol (Financial)

A
cc

ur
ac

y
(%

)

95
77

54

2 1 0 1

Symbol (Financial)T
op

-3
ac

cu
ra

cy
(%

)

98 90
73

5 3 1 3

Trend (Financial)

A
cc

ur
ac

y
(%

)

84 81 79
60 60 60 60

Trend (Financial)

0

25

80
100

T
op

-3
ac

cu
ra

cy
(%

)

99 99 99 96 96 96 96

PacketPerToken TokenPadding PacketPerRound PacketPadding NonStreaming NoSpecDecoding RandomGuessPacketPerToken TokenPadding PacketPerRound PacketPadding NonStreaming NoSpecDecoding RandomGuess

Fig. 11: End-to-end prediction accuracy for the attack across different streaming models. As information in the size and
timing side channels decreases, attack accuracy approaches random guesses (8.5% for medical diagnoses, 0.9% for stock symbols,
and 60% for stock price trends). PacketPerToken and TokenPadding represent real-world systems (§6) where speculative
decoding optimization vectors are visible, resulting in high attack accuracy (43%–98%) across attributes.

Average token receiving time

1

10

R
el

at
iv

e
ov

er
he

ad
to

P
ac

ke
tP

er
T

ok
en

1.0 1.0 1.0 1.1

10.7
5.8

Time to last token

1.0 1.0 1.0 1.0

5.8 5.8

(a) Time per token (Interactivity)

Financial Attack

1

10

100

R
el

at
iv

e
ov

er
he

ad
to

P
ac

ke
tP

er
R

ou
nd

1.0
7.1

1.0

111.6

7.1 7.1

Medical Attack

1.0
7.8

1.0

128.7

7.8 7.9

PacketPerToken

TokenPadding

PacketPerRound

PacketPadding

NonStreaming

NoSpecDecoding

(b) Network overheads

Fig. 12: End-to-end (a) network overheads and (b) time per token (i.e., interactivity overhead) for different streaming
models. All metrics are normalized to those for the PacketPerToken model. Note that the additional latency introduced by
batching tokens from a round into a packet (§4.2) is negligible since the original model verifies these tokens in parallel; only
NonStreaming incurs large interactivity penalties since it sends tokens only after all are generated.

els used in the real-world (Figure 11). In particular, for
the streaming models that real-world services are based on
(PacketPerToken and PacketPerRound; §6), the accuracy is
much higher (63–95%) than random guesses (8.5%, 0.9%, and
60% for medical diagnoses, stock symbols, and stock price
trends, respectively). The prediction accuracy is even higher
(82–98%) for the more relaxed top-3 and adjacent metrics.

Streaming models expose a tradeoff between security and
performance (Figure 12). While streaming models that em-
ploy batching and padding achieve better security (shown
as reduced accuracy in Figure 11), they do so by incurring
higher performance penalties. We quantify performance over-
heads using (i) network bandwidth used for padding and (ii)
time per token, which captures interactivity. Figure 12 shows
overheads for each streaming model normalized by those for
PacketPerRound (which are nominal). We make several in-
teresting observations:

• TokenPadding incurs a 7.5× network overhead to hide
token sizes but is ineffective at reducing attack accuracy.
This is because the adversary can still use inter-token
delays to construct the optimization vector.

• PacketPerRound groups tokens into packets, incurring
no interactivity or bandwidth overhead while reducing
the attack accuracy relative to TokenPadding. Batching
tokens from a decoding round into a packet does not incur
additional delays because these tokens are verified by the
original in parallel and finalized simultaneously (§2.1).

• PacketPadding is secure in our evaluated use cases since
the prediction accuracy is comparable to random guesses,

i.e., the number of decoding rounds does not leak much
information. However, it also incurs the highest network
bandwidth overhead (119×) by injecting fake tokens with
additional padding in each decoding round. Our measure-
ments show that the increased transmission delays due to
the larger payloads are negligible relative to LLM over-
heads and do not affect interactivity.

• Unsurprisingly, NonStreaming is also secure, as it only
leaks the sum of all token sizes and the estimated total
number of tokens. However, it exhibits significantly higher
network overheads and lower interactivity, with the aver-
age time per token 11.6× and 9.7× higher for the medical
and financial use cases, respectively.

• Similarly, NoSpecDecoding is secure. However, com-
pared to TokenPadding, disabling speculative decoding
significantly degrades interactivity (by ∼ 5.8×).

Issuing curated prompts to the LLM service dominates
the attack’s overheads. Our attack’s overheads stem from
three key factors: (i) issuing curated prompts to the LLM
service and (ii) training the classifier in the exploration phase,
and (iii) communication overheads in the exploitation phase.
In our evaluation setup, issuing prompts to the LLM service
took 43 hours for the medical use case and 56 hours for the
financial use case, primarily due to the time the LLM takes
to generate responses. Training the MLP took a mere 16
minutes for 100 epochs, while the communication cost in
the exploitation phase is negligible; this is because capturing
LLM response packets using tcpdump does not incur much
overhead given their low data rate.

11

NVIDIA GPU
Token Delay Clustering

AccuracyOriginal
Model

Approximation
Model

A100 480±8 ms 0.3±7 ms 100%
A100 ×4 470±5 ms 0.4±8 ms 100%
RTX 4090 ×2 398±8 ms 0.3±6 ms 100%

(a) Token delays & clustering accuracy across GPUs

0 50 100 150

Network jitter (ms)

90

95

100

C
lu

st
er

in
g

ac
c.

(%
)

Misclassification Rate

Wired Jitter

Wireless Jitter

Inter-continental Jitter

(b) Clustering accuracy vs. N/W jitter

0 2 4 6 8 10

Noise level (%)

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

Diagnosis (Medical)

0 2 4 6 8 10

Noise level (%)

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

Symbol (Financial)

Accuracy Top-3 Accuracy Random guess accuracy

(c) Attack accuracy vs. noise in the optimization vector

Fig. 13: Impact of noise. See §7.2 for details.

0k 48k 95k 143k 190k

Input prompts

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

Diagnosis (Medical)

0k 77k 154k 232k 309k

Input prompts

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

Symbol (Financial)

Accuracy Top-3 Accuracy Random guess accuracy

(a) Attack accuracy vs. #input prompts

0 32 64 96 128
Input tokens

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

Diagnosis (Medical)

0 32 64 96 128
Input tokens

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

Symbol (Financial)

Accuracy Top-3 Accuracy Random guess accuracy

(b) Classification accuracy vs. optimization vector length

Diagnosis

A
cc

u
ra

cy
(%

)

54
63

Symbol

A
cc

u
ra

cy
(%

)

68
77

Trend

0

25

50

75

100

A
cc

u
ra

cy
(%

) 74
81

Decision Tree MLPDecision Tree MLP

(c) Accuracy across ML models

Fig. 14: Attack’s sensitivity to adversarial knowledge. See §7.3 for details.

7.2 Impact of Noise

Choice of GPU does not affect the estimation accuracy
for the optimization vector (Figure 13(a)). While the exact
token generation time varies with the computational power
of the GPU, the latency gap between tokens generated by the
original and prophet models remains consistently high across
different GPU models, i.e., the approximation model is sig-
nificantly faster than the original model. This permits perfect
clustering of tokens using HDBSCAN based on delays.

Network jitter can affect the optimization vector estima-
tion accuracy (Figure 13(b)). We measure the token cluster-
ing accuracy via HDBSCAN as a function of network jitter
(measured as the standard deviation of network RTTs) to as-
sess its impact on optimization vector estimation. Even with a
high network jitter of 100 ms, the clustering accuracy remains
around 95%. Although token clustering accuracy decreases
noticeably as network jitter increases further, we expect this
degradation to be minimal in networks without heavy con-
gestion. To calibrate our findings, we measured the actual
network jitter for connections to OpenAI servers, which were
∼ 0.10ms over wired and 2.98ms over wireless channels. We
also measured the jitter for a user in Germany accessing the
US server over a wireless channel as 26.9. Shown as vertical
lines in Figure 13(b), these measurements show that real-
world jitters (including effects from cross-traffic) remain well
below the threshold that would degrade accuracy.

Attack accuracy decreases as the noise (errors) in the
optimization vector increases (Figure 13(c)). We analyze
the impact of noise on the end-to-end attack accuracy by di-
rectly injecting errors into the optimization vector (by flipping
random bits) for the TokenPadding model. The attack accu-

racy remains above random guesses (red horizontal lines),
although it does drop down to 35% at 10% noise. Although
the accuracy reduction appears significant, we note that direct
noise injection into the optimization vector demonstrates the
worst-case scenario, e.g., 10% noise corresponds to a network
jitter of over 130 ms!

7.3 Sensitivity Analysis

High attack accuracy is achievable with few prompts (Fig-
ure 14(a)). We find that attack accuracy decreases sub-linearly
with a decrease in the number of prompts that the adversary
can train its classifier on — even 10% of the prompts used
in Figure 11 can yield comparable attack accuracy. This is
notable as the adversary must send each prompt to the LLM
service, which typically charges a fixed cost per token. In
§6.1 we show that our attack can achieve high accuracy for
real-world LLM services with a < $100 budget.

Attack accuracy remains high without knowledge of the
distribution of private attributes. In §7.1, the adversary
leverages the distribution of diseases in the medical use case
to generate prompts and train the classifier. To assess the
impact of this knowledge, we repeated the experiment with
uniformly distributed diseases. Although the prediction and
top-3 accuracy decreased by a small amount — from 63% to
58% and from 82% to 79%, respectively — the result shows
the attack can remain effective without this information.

Larger input to the classifier increases the attack accuracy
(Figure 14(b)). For both medical and financial use cases, the
first 48 tokens contain the most information in the optimiza-
tion vector; beyond this point, increasing the input size does
not improve attack accuracy. Interestingly, in the financial
use case, the first 16 tokens emitted by the LLM are nearly

12

identical (corresponding to a common preamble), containing
no valuable information for the attack.

Simpler ML models can achieve comparable accuracy
with lower computational cost (Figure 14(c)). While MLPs
excel at learning complex patterns in data, simpler ML meth-
ods may trade off accuracy for computational cost. We eval-
uated our attack’s accuracy using a decision tree [60] with
a maximum depth of 32 as the classifier. The decision tree
reduces accuracy by ∼ 7–9% compared to the MLP but of-
fers significant computational efficiency; its training takes
less than 30 seconds, which is 35× faster than the MLP. This
efficiency makes decision trees appealing for adversaries who
aim to balance accuracy with the cost of mounting the attack.

8 Related Work

Network side-channel attacks. A long line of network side-
channel research has shown that a passive persistent network
adversary can learn private user activities [36, 61] and sen-
sitive user information simply by analyzing network traces
at various layers, e.g., the application layer [37, 62, 63], IP
layer [64] and the physical layer [65,66]. Our work is the first
to formalize the network side channels of interactive LLM
services and formulate an attack on them.

Attacks using ML. Machine learning (ML) has become
a powerful tool in extracting secrets from noisy or sparse
side channels. ML techniques have been successfully ap-
plied to side-channel attacks in various settings, including net-
works [37,67–69], operating systems [70], and even low-level
hardware [71, 72]. The closest to our work are attribute infer-
ence attacks that leverage ML models to infer private infor-
mation about individuals from publicly available data [12,73].
Our attack builds on this approach to design a high-accuracy
attribute inference attack on LLM services, leveraging side-
channel vulnerabilities unique to such systems.

Attacks on ML. ML models have been subject to various at-
tacks with different adversarial assumptions and goals. Mem-
bership inference attacks [8–10, 74] focus on sensitive in-
formation leaked by ML models about their training data.
Instead, we focus on extracting private user attributes from
the model’s output during inference.Prompt attacks against
interactive LLM services use engineered prompts to elicit
harmful responses from the LLM [75–77]. In contrast, our
work does not aim to change the LLM’s behavior and only
queries the LLM service to collect network side-channel infor-
mation. Closest to our work is recent work on side channels in
ML systems [78], although they ignore network side channels.
Our work is the first to show that interactivity optimizations
inadvertently expose network side channels in LLM services.

9 Discussion
Despite our focus on speculative decoding, side-channel vul-
nerabilities exist for other optimizations in LLM serving. We

highlight these optimizations below as avenues for future
work.

Prompt caching. Prompt caching [18, 79, 80] allows fre-
quently reused prompt segments to be precomputed on the
LLM-serving infrastructure and then reused whenever they
appear again in a user request. This strategy significantly
reduces time-to-first-token (TTFT) latency, enhancing user-
perceived responsiveness. However, by precisely measuring
TTFT across different requests, an adversary could infer
whether a particular prompt segment was served from the
cache. Such inferences may leak details about the prompt’s
content or reuse patterns — potentially revealing sensitive
data if repeated context is detected, as pioneered in [81, 82].

Early-exit LLMs. Early-exit mechanisms for LLMs [83–85]
terminate inference once the model becomes sufficiently con-
fident in the next token. This approach parallels speculative
decoding: “easier” tokens are generated quickly, while more
“difficult” tokens require additional Transformer layers. Con-
sequently, these models exhibit nonuniform token-generation
times, exposing yet another timing side channel. By mon-
itoring inter-token delays, an attacker might deduce which
tokens are considered easy or difficult, obtaining hints about
the underlying text’s structure or content.

Tool-augmented LLMs. Many modern LLM applications in-
tegrate external APIs or databases, often through a mechanism
called LLM function calling [86–88]. Here, the model emits a
function call whenever it needs to access external information
or tools. These calls are then interpreted and executed outside
the LLM server, with results returned to the LLM in a separate
step. A potential side-channel risk emerges because popular
LLM services such as ChatGPT and Claude treat function
calls as indivisible blocks in streamed responses rather than as
standard token-by-token outputs [89, 90]. Developers benefit
from this for clarity, but it can leak the length of function call
signatures. An adversary monitoring network traffic might
detect a sudden increase in payload size correlated with these
calls, allowing them to identify whether (and which) external
tools are being invoked—a particularly troubling outcome if
these calls pertain to sensitive user data or private analytics.

10 Conclusion
Performance optimizations in interactive LLM services, par-
ticularly speculative decoding, expose new network-side chan-
nels, specifically optimization-dependent packet timings and
sizes. Our novel attack on real-world LLM services demon-
strates that this leakage is closely tied to private user attributes,
presenting an acute privacy concern. We show that defenses
against such attacks expose a security-performance tradeoff
that may be useful to practitioners designing such systems.

13

References
[1] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier

Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[3] Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. Galactica:
A large language model for science. arXiv preprint
arXiv:2211.09085, 2022.

[4] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl,
Aidan Clark, et al. Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556,
2022.

[5] Sheng Wang, Zihao Zhao, Xi Ouyang, Qian Wang, and
Dinggang Shen. Chatcad: Interactive computer-aided di-
agnosis on medical image using large language models.
arXiv preprint arXiv:2302.07257, 2023.

[6] Zihao Zhao, Sheng Wang, Jinchen Gu, Yitao Zhu,
Lanzhuju Mei, Zixu Zhuang, Zhiming Cui, Qian Wang,
and Dinggang Shen. Chatcad+: Towards a universal and
reliable interactive cad using llms. IEEE Transactions
on Medical Imaging, 2024.

[7] Allen H Huang, Hui Wang, and Yi Yang. Finbert: A
large language model for extracting information from
financial text. Contemporary Accounting Research,
40(2):806–841, 2023.

[8] Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao
Wang, David Evans, and Taylor Berg-Kirkpatrick. An
empirical analysis of memorization in fine-tuned autore-
gressive language models. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang, editors, Proceedings of the
2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1816–1826, Abu Dhabi, United
Arab Emirates, December 2022. Association for Com-
putational Linguistics.

[9] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew
Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam
Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson,
Alina Oprea, and Colin Raffel. Extracting training data
from large language models. In USENIX Security, 2021.

[10] Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-
Alexandre de Montjoye. Did the neurons read your
book? document-level membership inference for large
language models. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 2369–2385, Philadelphia,
PA, August 2024. USENIX Association.

[11] Shagufta Mehnaz, Sayanton V. Dibbo, Ehsanul Kabir,
Ninghui Li, and Elisa Bertino. Are your sensitive at-
tributes private? novel model inversion attribute infer-
ence attacks on classification models. In 31st USENIX
Security Symposium (USENIX Security 22), pages 4579–
4596, Boston, MA, August 2022. USENIX Association.

[12] Robin Staab, Mark Vero, Mislav Balunović, and Martin
Vechev. Beyond memorization: Violating privacy via
inference with large language models. arXiv preprint
arXiv:2310.07298, 2023.

[13] OpenAI. GPT-4 technical report, 2024.

[14] Gemini Team. Gemini: A family of highly capable
multimodal models, 2024.

[15] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast
inference from transformers via speculative decoding,
2023.

[16] Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. Speculative decoding: Exploiting
speculative execution for accelerating seq2seq genera-
tion, 2023.

[17] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuoming
Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao
Jia. Specinfer: Accelerating generative llm serving with
speculative inference and token tree verification. arXiv
preprint arXiv:2305.09781, 1(2):4, 2023.

[18] In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda,
Anurag Khandelwal, and Lin Zhong. Prompt cache:
Modular attention reuse for low-latency inference. Pro-
ceedings of Machine Learning and Systems, 6:325–338,
2024.

[19] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating large language model decoding with spec-
ulative sampling, 2023.

[20] Google Research. Looking back at speculative decoding.
https://research.google/blog/looking-back-at-s

peculative-decoding/, 2025. Accessed: 2025-01-09.

[21] OpenAI. Predicted outputs. https://platform.opena
i.com/docs/guides/predicted-outputs.

14

https://research.google/blog/looking-back-at-speculative-decoding/
https://research.google/blog/looking-back-at-speculative-decoding/
https://platform.openai.com/docs/guides/predicted-outputs
https://platform.openai.com/docs/guides/predicted-outputs

[22] Openai uses speculative decoding during inference. ht
tps://x.com/stevendcoffey/status/1853582548225

683814.

[23] Bogdan Cebere and Christian Rossow. Understanding
web fingerprinting with a protocol-centric approach. In
Proceedings of the 27th International Symposium on
Research in Attacks, Intrusions and Defenses, pages 17–
34, 2024.

[24] Wanshuang Lin, Chunhe Xia, Tianbo Wang, Chen Chen,
Yuan Zhao, and Weidong Zhou. Reda: Malicious traffic
detection based on record length and frequency domain
analysis. In 2023 IEEE 22nd International Conference
on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pages 668–675, 2023.

[25] Martin Laštovička, Stanislav Špaček, Petr Velan, and
Pavel Čeleda. Using tls fingerprints for os identification
in encrypted traffic. In NOMS 2020 - 2020 IEEE/I-
FIP Network Operations and Management Symposium,
pages 1–6, 2020.

[26] Mathew Hogan, Yan Michalevsky, and Saba Eskandar-
ian. Dbreach: Stealing from databases using compres-
sion side channels. In 2023 IEEE Symposium on Secu-
rity and Privacy (SP), pages 182–198, 2023.

[27] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory manage-
ment for large language model serving with pagedatten-
tion. In SOSP, pages 611–626, 2023.

[28] Tom B Brown. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[29] Microsoft. Phi-3-medium-4k-instruct. https://hugg
ingface.co/microsoft/Phi-3-medium-4k-instruct.
Accessed: 2024-08-30.

[30] Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica,
Zhijie Deng, Alvin Cheung, and Hao Zhang. Online
speculative decoding. arXiv preprint arXiv:2310.07177,
2023.

[31] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas Mah-
moud, Bilge Acun, Saurabh Agarwal, Ahmed Roman,
et al. Layer skip: Enabling early exit inference and self-
speculative decoding. arXiv preprint arXiv:2404.16710,
2024.

[32] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. Medusa: Sim-
ple llm inference acceleration framework with multi-
ple decoding heads. arXiv preprint arXiv:2401.10774,
2024.

[33] Bertalan Meskó. Prompt engineering as an important
emerging skill for medical professionals: tutorial. Jour-
nal of medical Internet research, 25:e50638, 2023.

[34] Xinli Yu, Zheng Chen, Yuan Ling, Shujing Dong,
Zongyi Liu, and Yanbin Lu. Temporal data meets llm–
explainable financial time series forecasting. arXiv
preprint arXiv:2306.11025, 2023.

[35] OpenAI API, 2020. https://openai.com/index/openai-
api/.

[36] Andriy Panchenko, Fabian Lanze, Jan Pennekamp,
Thomas Engel, Andreas Zinnen, Martin Henze, and
Klaus Wehrle. Website fingerprinting at internet scale.
In 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016. The Internet Society, 2016.

[37] Roei Schuster, Vitaly Shmatikov, and Eran Tromer.
Beauty and the burst: Remote identification of encrypted
video streams. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1357–1374, Vancouver,
BC, August 2017. USENIX Association.

[38] Microsoft. Copilot. https://copilot.microsoft.com.

[39] Meta AI. https://www.meta.ai.

[40] Mohammad Saiful Islam, Mehmet Kuzu, and Murat
Kantarcioglu. Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In Ndss,
volume 20, page 12, 2012.

[41] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security,
pages 668–679, 2015.

[42] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Chris-
tos Gkantsidis, Markulf Kohlweiss, and Divya Sharma.
Observing and preventing leakage in mapreduce. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 1570–
1581, 2015.

[43] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
concrete security treatment of symmetric encryption. In
Proceedings 38th Annual Symposium on Foundations of
Computer Science, pages 394–403, 1997.

[44] Leland McInnes, John Healy, Steve Astels, et al. hdb-
scan: Hierarchical density based clustering. J. Open
Source Softw., 2(11):205, 2017.

15

https://x.com/stevendcoffey/status/1853582548225683814
https://x.com/stevendcoffey/status/1853582548225683814
https://x.com/stevendcoffey/status/1853582548225683814
https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
https://copilot.microsoft.com
https://www.meta.ai

[45] vLLM Team. vllm: Easy, fast, and cheap llm serving
with pagedattention, 2024. https://blog.vllm.ai/2
023/06/20/vllm.html.

[46] Google AI. Gemini api documentation. https://ai.g
oogle.dev/gemini-api/docs/openai, 2025. Accessed:
2025-01-20.

[47] Marius-Constantin Popescu, Valentina E Balas, Liliana
Perescu-Popescu, and Nikos Mastorakis. Multilayer
perceptron and neural networks. WSEAS Transactions
on Circuits and Systems, 8(7):579–588, 2009.

[48] Steven J Rigatti. Random forest. Journal of Insurance
Medicine, 47(1):31–39, 2017.

[49] Thomas G Dietterich et al. Ensemble learning. The
handbook of brain theory and neural networks, 2(1):110–
125, 2002.

[50] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and
Qianli Ma. A survey on ensemble learning. Frontiers of
Computer Science, 14:241–258, 2020.

[51] Facebook. vllm, 2024. https://github.com/vllm-p
roject/vllm.git.

[52] Facebook. vllm-v0.6.1, 2024. https://pypi.org/pro
ject/vllm/0.6.1.post1/.

[53] Kaggle. Nasdaq 100 data. https://www.kaggle.com/d
atasets/kalilurrahman/nasdaq100-stock-price-d

ata. Accessed: 2024-08-30.

[54] OpenAI developer forum. Why is gpt-4 giving different
answers with same prompt & temperature=0?, 2023.
https://community.openai.com/t/why-is-gpt-4-g

iving-different-answers-with-same-prompt-tem

perature-0/143513/6.

[55] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al.
Phi-3 technical report: A highly capable language model
locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

[56] Microsoft. Phi-3-mini-4k-instruct. https://huggin
gface.co/microsoft/Phi-3-mini-4k-instruct. Ac-
cessed: 2024-08-30.

[57] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. arXiv preprint arXiv:2208.07339,
2022.

[58] Facebook. Bitsandbytes. https://github.com/bitsa
ndbytes-foundation/bitsandbytes?tab=readme-o

v-file.

[59] Arsene Fansi Tchango, Rishab Goel, Zhi Wen, Julien
Martel, and Joumana Ghosn. Ddxplus: A new dataset
for automatic medical diagnosis, 2022.

[60] scikit learn. DecisionTreeClassifier, 2024. https://sc
ikit-learn.org/stable/modules/generated/sklear

n.tree.DecisionTreeClassifier.html.

[61] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson,
and Ian Goldberg. Effective attacks and provable de-
fenses for website fingerprinting. In 23rd USENIX Secu-
rity Symposium (USENIX Security 14), pages 143–157,
San Diego, CA, August 2014. USENIX Association.

[62] Amir Sabzi, Rut Vora, Swati Goswami, Margo Seltzer,
Mathias Lécuyer, and Aastha Mehta. NetShaper: A
differentially private network Side-Channel mitigation
system. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 3385–3402, Philadelphia, PA, Au-
gust 2024. USENIX Association.

[63] David Brumley and Dan Boneh. Remote timing attacks
are practical. Computer Networks, 48(5):701–716, 2005.

[64] Andrew M. White, Austin R. Matthews, Kevin Z. Snow,
and Fabian Monrose. Phonotactic reconstruction of
encrypted voip conversations: Hookt on fon-iks. In
2011 IEEE Symposium on Security and Privacy, pages
3–18, 2011.

[65] Ki Suh Lee, Han Wang, and Hakim Weatherspoon. PHY
covert channels: Can you see the idles? In NSDI ’14,
pages 173–185, 2014.

[66] Steven Gianvecchio and Haining Wang. Detecting
covert timing channels: an entropy-based approach. In
Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS ’07, page 307–316,
2007.

[67] Jamie Hayes and George Danezis. k-fingerprinting: A
robust scalable website fingerprinting technique. In 25th
USENIX Security Symposium (USENIX Security 16),
pages 1187–1203, Austin, TX, August 2016. USENIX
Association.

[68] Payap Sirinam, Mohsen Imani, Marc Juarez, and
Matthew Wright. Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, page
1928–1943, New York, NY, USA, 2018. Association for
Computing Machinery.

[69] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. Var-cnn: A data-efficient website fingerprinting
attack based on deep learning. Proceedings on Privacy
Enhancing Technologies, 2019(4):292–310, July 2019.

16

https://blog.vllm.ai/2023/06/20/vllm.html
https://blog.vllm.ai/2023/06/20/vllm.html
https://ai.google.dev/gemini-api/docs/openai
https://ai.google.dev/gemini-api/docs/openai
https://github.com/vllm-project/vllm.git
https://github.com/vllm-project/vllm.git
https://pypi.org/project/vllm/0.6.1.post1/
https://pypi.org/project/vllm/0.6.1.post1/
https://www.kaggle.com/datasets/kalilurrahman/nasdaq100-stock-price-data
https://www.kaggle.com/datasets/kalilurrahman/nasdaq100-stock-price-data
https://www.kaggle.com/datasets/kalilurrahman/nasdaq100-stock-price-data
https://community.openai.com/t/why-is-gpt-4-giving-different-answers-with-same-prompt-temperature-0/143513/6
https://community.openai.com/t/why-is-gpt-4-giving-different-answers-with-same-prompt-temperature-0/143513/6
https://community.openai.com/t/why-is-gpt-4-giving-different-answers-with-same-prompt-temperature-0/143513/6
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://github.com/bitsandbytes-foundation/bitsandbytes?tab=readme-ov-file
https://github.com/bitsandbytes-foundation/bitsandbytes?tab=readme-ov-file
https://github.com/bitsandbytes-foundation/bitsandbytes?tab=readme-ov-file
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

[70] Xiaokuan Zhang, Xueqiang Wang, Xiaolong Bai, Yin-
qian Zhang, and XiaoFeng Wang. OS-level side chan-
nels without procfs: Exploring cross-app information
leakage on iOS. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet
Society, 2018.

[71] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam
Bhasin, and Alan Hanjalic. Make some noise. unleash-
ing the power of convolutional neural networks for pro-
filed side-channel analysis. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pages 148–
179, 2019.

[72] Annelie Heuser and Michael Zohner. Intelligent ma-
chine homicide - breaking cryptographic devices us-
ing support vector machines. In Werner Schindler and
Sorin A. Huss, editors, Constructive Side-Channel Anal-
ysis and Secure Design - Third International Workshop,
COSADE 2012, Darmstadt, Germany, May 3-4, 2012.
Proceedings, volume 7275 of Lecture Notes in Com-
puter Science, pages 249–264. Springer, 2012.

[73] Neil Zhenqiang Gong and Bin Liu. You are who you
know and how you behave: Attribute inference attacks
via users’ social friends and behaviors. In 25th USENIX
Security Symposium (USENIX Security 16), pages 979–
995, Austin, TX, August 2016. USENIX Association.

[74] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18, 2017.

[75] Shuyu Jiang, Xingshu Chen, and Rui Tang. Prompt
packer: Deceiving llms through compositional in-
struction with hidden attacks. arXiv preprint
arXiv:2310.10077, 2023.

[76] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.
Jailbroken: How does llm safety training fail? Advances
in Neural Information Processing Systems, 36, 2024.

[77] Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang,
Fanpu Meng, and Yangqiu Song. Multi-step jail-
breaking privacy attacks on chatgpt. arXiv preprint
arXiv:2304.05197, 2023.

[78] Edoardo Debenedetti, Giorgio Severi, Nicholas Carlini,
Christopher A. Choquette-Choo, Matthew Jagielski, Mi-
lad Nasr, Eric Wallace, and Florian Tramèr. Privacy side
channels in machine learning systems. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 6861–
6848, Philadelphia, PA, August 2024. USENIX Associ-
ation.

[79] OpenAI. Prompt caching guide. https://platform.o
penai.com/docs/guides/prompt-caching. Accessed:
2025-01-16.

[80] Anthropic. Prompt caching with claude. https://ww
w.anthropic.com/news/prompt-caching. Accessed:
2025-01-16.

[81] Xinyao Zheng, Husheng Han, Shangyi Shi, Qiyan Fang,
Zidong Du, Qi Guo, and Xing Hu. Inputsnatch: Stealing
input in llm services via timing side-channel attacks.
arXiv preprint arXiv:2411.18191, 2024.

[82] Dawn Xiaoding Song, David Wagner, and Adrian Per-
rig. Practical techniques for searches on encrypted data.
In Proceeding 2000 IEEE symposium on security and
privacy. S&P 2000, pages 44–55. IEEE, 2000.

[83] Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and
Chitta Baral. Accelerating llm inference by en-
abling intermediate layer decoding. arXiv preprint
arXiv:2310.18581, 2023.

[84] Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-
Young Yun. Fast and robust early-exiting framework
for autoregressive language models with synchronized
parallel decoding. In EMNLP, pages 5910–5924. Asso-
ciation for Computational Linguistics, 2023.

[85] Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and
Jingren Zhou. EE-LLM: large-scale training and in-
ference of early-exit large language models with 3d
parallelism. In ICML. OpenReview.net, 2024.

[86] In Gim, Seung-seob Lee, and Lin Zhong. Asynchronous
llm function calling. arXiv preprint arXiv:2412.07017,
2024.

[87] Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E.
Gonzalez. Gorilla: Large language model connected
with massive APIs. 2024.

[88] Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, Zhengy-
ing Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang,
Wu Ning, Yutai Hou, Bin Wang, Chuhan Wu, Xinzhi
Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan
Tu, Lifeng Shang, Xin Jiang, Ruiming Tang, Defu Lian,
Qun Liu, and Enhong Chen. Toolace: Winning the
points of LLM function calling. CoRR, abs/2409.00920,
2024.

[89] OpenAI. Function calling guide, 2025.

[90] Model Context Protocol. Introduction to the model
context protocol, 2025.

17

https://platform.openai.com/docs/guides/prompt-caching
https://platform.openai.com/docs/guides/prompt-caching
https://www.anthropic.com/news/prompt-caching
https://www.anthropic.com/news/prompt-caching

Appendix
A Prompt Syntax for Evaluated Use Cases
In §2, we introduced ChatCAD [5, 6] and AWS stock fore-
casting [34] as privacy-sensitive use cases of interactive LLM
services. This section details the exact structure of the prompts
for these use cases, which the adversary uses to curate prompts
in §7 and §6.

Medical prompts. Each medical prompt describes a patient
randomly sampled (without replacement) from the DDx-
Plus [59] dataset. The input prompt begins by describing
the patient’s age and gender (e.g., “Patient is a 21-year-old
Male”) and continues with a list of the patient’s initial survey
based on the disease-related questionnaire they filled out. The
survey is formatted as a concatenation of questions and an-
swers (e.g., “Characterize your pain: a cramp.”). At the end
of the survey section, we include the universe of all possible
diagnoses in the DDxPlus dataset (“Given the list of possible
pathologies: URTI, HIV, . . .”), and ask the LLM to predict the
diagnosis from the provided list (“what is the one most likely
differential diagnosis?”). We do not control the syntax of the
LLM’s medical output and extract the predicted diagnosis
using text processing techniques.

An example of the medical attack prompt

• User prompt: Patient is a 21-year-old M. Initial
evidence: Have you recently had stools that were
black (like coal)?. Additional symptoms: Charac-
terize your pain: a cramp; Do you feel pain some-
where? . . . Given the list of possible pathologies:
URTI, HIV (initial infection), . . ., Ebola, Bron-
chiolitis, what is the one most likely differential
diagnosis?

• Output of LLM: The most likely differential di-
agnosis for this patient is anemia. The patient’s
symptoms of fatigue, dizziness, and black stools
(indicative of gastrointestinal bleeding) align with
this condition. The absence of fever, cough, or
recent travel reduces the likelihood of infections
like URTI, pneumonia, or tuberculosis. The lack
of chest pain or shortness of breath makes cardiac
issues like atrial fibrillation, unstable angina, or
myocarditis less likely.

Financial prompts. We sample symbol, date, and
stock history without replacement from the Nasdaq-100
dataset [53]. Each financial prompt begins with the field

“Date of prediction: {date}” to provide the LLM with time
context for the prediction. The prompt continues with an In-
struction field, specifying the task for the LLM: predicting
the next day’s stock return for a specific symbol by analyzing

the company’s profile, a list of positive and negative factors
affecting the stock price, recent returns, and a piece of news
about the company. This section also describes the trend cate-
gorization scheme across bins ranging from D5+ to U5+ for
the LLM. Each trend category indicates an increase (U) or de-
crease (D) in the stock price by a range between x and x+1%,
while D5+ and U5+ indicate more than 5% decrease and more
than 5% increase in the price, respectively.

The next field in the input prompt is the symbol’s pro-
file, detailing the company and its positive and negative fac-
tors. These descriptions are generated using the GPT-4o API.
A list of 15 days of stock return history is then provided
as a comma-separated list under the “Recent Returns” field.
The prompt concludes with a news item formatted as “Re-
cent {news-quality} News: {news}”. Each news is sam-
pled from a set of 144 news items collected for each symbol,
categorized into 12 different news-quality categories. A
sample of our curated prompts follows.

An example of the financial attack prompt.

• User prompt: Date of prediction: 2016-11-02
Instruction: Forecast next day stock return (price
change) for ALXN, given the company profile,
and the company’s stock returns for the last 15
days. The trend is represented by bins "D5+",
"D5", "D4", "D3", "D2", "D1", "U1", "U2", "U3",
"U4", "U5", "U5+", where "D5+" means price
dropping more than 0.5%, . . .
Company Profile: Description: ALXN is a bio-
pharmaceutical company specializing in devel-
oping and commercializing treatments for rare
diseases.
Positive Factors: . . .
Negative factors: . . .
Recent Returns: D1, D1, D2, D2, U3, U1, D2,
D1, U1, D1, D2, U4, U1, U2, D3
Recent Neutral news: ALXN receives condi-
tional approval for its new product, pending fur-
ther medical data.

• Output of LLM: Stock return: U2
Rationale: ALXN’s recent returns show a pattern
of minor fluctuations with a slight upward trend,
indicating resilience in the face of negative factors.
The company’s strong R&D pipeline and success-
ful medical trials suggest potential for positive
developments. Although there are concerns about
competition and regulatory hurdles, the growing
demand for rare disease treatments and potential
M&A activity could drive the stock up. The recent
neutral news about Adobe is unlikely to impact
ALXN’s performance directly.

18

	Introduction
	Background and Motivation
	Interactive LLM Serving Systems
	Privacy-Sensitive LLM Use Cases
	Network Side Channels in LLM Serving

	Security Model
	Threat Model
	Security Definition

	LLM Response Streaming Models
	Token-by-token Streaming
	Round-by-round Streaming
	Non-Streaming Model

	A Novel Network Side-Channel Attack
	Attack Design
	Exploration phase
	Exploitation phase
	Security Impact

	Attacking Real-world LLM Services
	Attack Efficacy
	Information Leaked in Network Traces

	Attacking Controlled LLM Serving Systems with Speculative Decoding
	Feasibility of the Proposed Attack
	Impact of Noise
	Sensitivity Analysis

	Related Work
	Discussion
	Conclusion
	Prompt Syntax for Evaluated Use Cases

