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Abstract. We propose a sublinear-sized proof system for rank-one con-
straint satisfaction over polynomial rings (Ring-R1CS), particularly for
rings of the form ℤ𝑄 [𝑋 ]/(𝑋𝑁 +1). These rings are widely used in lattice-
based constructions, which underlie many modern post-quantum cryp-
tographic schemes. Constructing efficient proof systems for arithmetic
over these rings is challenged by two key obstacles: (1) Under practical
popular choices of 𝑄 and 𝑁 , the ring ℤ𝑄 [𝑋 ]/(𝑋𝑁 +1) is not field-like, and
thus tools like Schwartz–Zippel lemma cannot apply; (2) when 𝑁 is large,
which is common in implementations of lattice-based cryptosystems, the
ring is large, causing the proof size suboptimal.
In this paper, we address these two obstacles, enabling more efficient
proofs for arithmetics over ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1) when 𝑄 is a ‘lattice-friendly’
modulus, including moduli that support fast NTT computation or power-
of-two moduli. Our primary tool is a novel ring switching technique. The
core idea of ring switching is to convert the R1CS over ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1)
into another R1CS instance over Galois rings, which is field-like and small
(with size independent with 𝑁 ).
As (zero-knowledge) proofs have many applications in cryptography, we
expect that efficient proof systems for polynomial ring arithmetic could
lead to more efficient constructions of advanced primitives from lattice
assumptions, such as aggregate signatures, group signatures, verifiable
random function, or verifiable fully holomorphic encryption.

1 Introduction

The importance of post-quantum cryptography has grown as advances in quan-
tum computing pose a serious threat to classical cryptographic schemes. Intense
research has been focused on developing cryptosystems that can withstand quan-
tum attacks, with lattice-based constructions standing out as some of the most
promising candidates. Indeed, for basic primitives like public-key encryption and
signature, most NIST post-quantum candidates are based on assumptions re-
garding algebraic lattices over rings or modules. For example, three of the first
four NIST post-quantum standard protocols—Falcon, Dilithium, and Kyber—
are based on lattices.

However, the efficiency of latticed-based constructions of advanced function-
alities such as aggregate signature, group signature, threshold signature, and
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verifiable random functions is still not as competitive as group-based construc-
tions. Lattice-based constructions of these advanced functionalities are typi-
cally achieved by integrating (zero-knowledge) proof systems with other sim-
pler lattice-based building blocks. As a result, the languages to be proved often
involve arithmetic over rings. A large body of work has focused on improving
the efficiency of proof systems particularly for statements over polynomial rings
[LN17,DPLS18,BCOS20,EKS+21,GNSV23,BLNS23,BS23,AAB+24,HLMZ24].

Despite extensive research, significant challenges persist. Consider the poly-
nomial ring ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1) parameterized by 𝑄 and 𝑁 , which is widely used
in practical lattice-based cryptosystems. In what follows, we outline two key
challenges in constructing an efficient proof system with sublinear proof size.

Inflexibility on the modulus 𝑸. In implementations of lattice protocols, a
typical choice of the modulus 𝑄 is a prime number such that 𝑄 = 1 (mod 2𝑁 ).
For such a choice, the polynomial (𝑋𝑁 + 1) can be factored into 𝑁 linear
factors modulo 𝑄 (we call it the high-splitting regime), enabling efficient
Number Theoretic Transform (NTT) computation [LN17,AAB+24]. Notably,
NIST-standardized implementations such as Falcon, Kyber, and Dilithium have
adopted NTT-efficient (high-splitting) parameters. Another common choice of 𝑄
is power-of-two. This choice is especially popular in lattice-based constructions
requiring modulus switching. For example, TFHE [CGGI20], a well-known fully
homomorphic encryption scheme, adopts power-of-two moduli. [JW22].

However, proof systems with sublinear proof size heavily depend on the ‘field-
like’ properties of the ring. Roughly speaking, a ring R is field-like if there
is a large set 𝐸 ⊆ R such that for every 𝑎, 𝑏 ∈ 𝐸, 𝑎 − 𝑏 is invertible in R.
We call such a set 𝐸 an exceptional set. To ensure the existence of large ex-
ceptional sets in ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1), existing proof systems for lattice languages
[LN17,BS23,CMNW24,AAB+24] have to choose 𝑄 in the low-splitting regime ,
where (𝑋𝑁 + 1) factors into only a few components, prohibiting efficient NTT
computation. Consequently, if we stick to choosing 𝑄 for more efficient practical
implementations, we have to rethink our design of proof systems:

When the ring ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1) is lattice-efficient (hence not field-like),
can we design an effect proof with sublinear size?

Efficiency bottleneck in terms of 𝑵 . Even if we assume that the ring
ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1) is field-like, there is still a bottleneck in generating proofs effi-
ciently and achieving a small proof size. Specifically, we observe that in order to
prove R1CS over ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1) with 𝑚 constraints, all existing proof systems
either have prover time Ω(𝑚 · 𝑁 2), or have proof size Ω𝑚 (𝑁 ). To illustrate this,
we review two major approaches.

1. Simulating ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1) by ℤ𝑄 . We can use 𝑁 variables from ℤ𝑄 to simu-
late a ring element in ℤ𝑄 [𝑋 ]/(𝑋𝑁 +1). By choosing 𝑄 to be large, e.g,𝑄 ≥ 264,
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we essentially reduce the problem to studying R1CS over ℤ𝑄 . In this direc-
tion, Boschini et al. [BCOS20] adopted this approach to construct a lattice-
based group signature scheme. While this approach can achieve a small proof
size, simulating ring multiplication is highly costly. [BCOS20] used negative
wrapped convolution to simulate a ring multiplication, which incurs a time
complexity of Ω(𝑁 2). Consequently, the proof generation time for this ap-
proach is at least Ω(𝑚 · 𝑁 2).

2. Working directly on ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1). We can perform the proofs directly
over ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1). As shown by [LN17], for certain well-chosen values
of 𝑄, the ring ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1) itself contains a large number of invertible
elements. In this approach, we can use FFT/NTT for ring multiplication,
reducing the computation cost to 𝑂 (𝑁 log𝑁 ) per multiplication. However,
the proof size could be a bottleneck due to the large ring size. Specifically,
using this approach, the proof size would be at least Ω𝑚 (𝑁 ).

The parameter 𝑁 can be large in practical lattice-based cryptosystems. For ex-
ample, in order to achieve 256-bit security, Falcon [FHK+18] suggests choosing
𝑁 = 1, 024. For some advanced protocols, such as fully homomorphic encryption
(FHE), the ring dimension 𝑁 could be as large as 𝑁 = 32, 768 [CKKS17,ACC+21].
Such large values of 𝑁 can make proofs suboptimal, either in terms of proving
time or proof size. This poses our second question:

For languages defined by arithmetics over ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1),
can we design a proof system with prove time 𝑂 (𝑚 · 𝑁 ) and proof size 𝑜𝑚 (𝑁 )?

In this paper, we answer both questions affirmatively.

1.1 Our Results

In this paper, we represent ring arithmetic by Ring-R1CS . Rank-one constraint
system (R1CS) is a popular algebraic presentation used in many SNARK con-
structions. The only difference in Ring-R1CS is that the coefficients of each con-
straint are elements in the ring ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1). We formally define Ring-R1CS
in Section 2.

The main contribution of this paper is a non-interactive argument of knowl-
edge (NIAoK) with sublinear proof size for ring-R1CS over the ring ℤ𝑄 [𝑋 ]/(𝑋𝑁 +
1) for a wide choice of 𝑄: we only require 𝑄 is a prime power. The prover time
and verifier time is almost linear in the input size, while the proof size is sub-
linear. To construct such a NIAoK, we first design a polynomial commitment
scheme over Galois rings.

Theorem 1 (Polynomial Commitment over Ring, informal). Let 𝑅 be a
Galois ring and F𝐶𝑜𝑚𝑏 [𝑅, 𝜇, 𝑁 ] be the class of polynomials over (𝜇 + 1) variables
𝑋,𝑋1, . . . , 𝑋𝜇 where the degree of 𝑋 is less than 𝑁 and 𝑋1, . . . , 𝑋𝜇 are multilinear.
Assuming the existence of collision-resistant hash functions, there exists a poly-
nomial commitment scheme for F𝐶𝑜𝑚𝑏 [𝑅, 𝜇, 𝑁 ]. The commitment has size 𝑂 (𝜆),
and the evaluation protocol runs in 𝑂𝜆 (2𝜇𝑁 ) Galois ring operations for the prover
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and 𝑂𝜆 (
√
2𝜇𝑁 ) Galois ring operations for the verifier, with communication com-

plexity 𝑂𝜆 (
√
2𝜇𝑁 ) Galois ring elements.

Based on the polynomial commitment and a new technique we call ring
switching , we obtain a public-coin interactive argument of knowledge for Ring-
R1CS with sublinear proof size, which can be transformed into a NIAoK using
Fiat-Shamir transform.

Theorem 2 (Sublinear Proof for Ring-R1CS, informal). Let 𝜆 be the se-
curity parameter and R = ℤ𝑄 [𝑋 ]/(𝑋𝑁 +1) be a ring that depends on the security
parameter, where 𝑄 = 𝑝𝑠 is a power of prime. Let 𝑑 = log𝑝

(
2
√
𝑚𝑁

)
+ 𝜔 (log 𝜆)

and 𝑛 be the number of non-zero entries in the Ring-R1CS instance. Assuming
the existence of collision-resistant hash functions, there exists a public-coin in-
teractive argument of knowledge for R1CS over the ring R with the following
efficiency characteristics.

– Communication complexity: 𝑂 (
√︁
𝑚𝑁 log𝑄) elements in Gal(𝑝𝑠 , 𝑑).

– Prover time: The prover’s running time is 𝑂𝜆 (𝑛𝑁 +𝑚𝑁 log𝑄) operations in
Gal(𝑝𝑠 , 𝑑).

– Verifier time: The verifier’s running time is 𝑂𝜆 (𝑛𝑁 +
√︁
𝑚𝑁 log𝑄 + 𝑁 log𝑄)

operations in Gal(𝑝𝑠 , 𝑑).

We believe that our NIAoK construction can be further improved in the
following two aspects, which are left for future work.

– Further improving the proof size. The proof size in our main theorem is
Θ̃(
√
𝑚𝑁 ), which is not as optimal as polylog(𝑚 · 𝑁 ). We note the main bot-

tleneck comes from the proof size of polynomial commitment. In the field
setting, there are many advanced PCS achieving polylog(𝑚 · 𝑁 ) size. We
believe some of them can be generalized into Galois rings. However, in this
paper, we focus on discussing the idea of ring switching and generalizing the
PCS in [GLS+23] due to its simplicity.

– Zero-knowledge. It is well known that zero knowledge is an important prop-
erty in many applications. However, we do not cover it in this paper due
to two reasons. The first reason is that sublinear-size proof systems already
have interesting applications such as aggregate signatures [AAB+24]; Sec-
ondly, there are several standard techniques that can convert such interactive
proofs with zero-knowledge [Set20,BS23]. In order to adopt these techniques
in our protocol, we have to check whether these results can be applied to the
Galois ring. In the paper, we would like to focus on the ring switching.

1.2 Proof Overview

As we mentioned, there are two challenges in constructing NIAoK (with sublinear
proof size) over polynomial rings.

1. For popular choices of 𝑄 and 𝑁 , the ring R = ℤ𝑄 [𝑋 ]/(𝑋𝑁 +1) is not field-like.
2. The ring dimension 𝑁 can be large, resulting in suboptimal efficiency.
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Ring switching. To address these two challenges, we put forth a novel tech-
nique called ring switching. It consists of two steps; each step addresses one of
the challenges.

1. Ring embedding. Let R = ℤ𝑄 [𝑋 ]/(𝑋𝑁 +1) be a polynomial ring and let 𝕩 be
a ring-R1CS instance over R. Assuming that 𝑄 = 𝑝𝑠 for some prime number
𝑝 and 𝑠 ≥ 1. In ring embedding, we first transfer the instance 𝕩 into another
instance 𝕩′ over the ring Gal(𝑝𝑠 , 𝑑) [𝑋 ], where Gal(𝑝𝑠 , 𝑑) is a Galois ring with
an exceptional set of size 𝑝𝑑 , hence we can keep the soundness of proofs by
choosing a suitable 𝑑. Note that we have also removed the quotient (𝑋𝑁 + 1)
during the ring embedding. This ring embedding step eliminates the concern
that there is no large exceptional set.

2. Ring reduction. Though the ring Gal(𝑝𝑠 , 𝑑) [𝑋 ] has a large exceptional set,
however, the ring size could be very large, affecting the efficiency. Our solu-
tion to this issue is very simple. Roughly speaking, the idea is that we first
ask the prover to commit the witness via a polynomial commitment over
Gal(𝑝𝑠 , 𝑑), and then the verifier sends a random 𝛼 in Gal(𝑝𝑠 , 𝑑) to replace 𝑋 .
In such a step, we reduce the instance 𝕩′ over Gal(𝑝𝑠 , 𝑑) [𝑋 ] into a instance
𝕩′′ over Gal(𝑝𝑠 , 𝑑) without increasing the number of constraints in 𝕩′. This
replacement has a perfect complementness and an 𝑂 (𝑁 /𝑝𝑑 ) soundness error.

The ring reduction step is more straightforward, so we skip the discussion
here and direct the details to Section 4.2. Now, we briefly illustrate the ring
embedding step. In a ring-R1CS instance, both the prover and the verifier know
matrices 𝐴, 𝐵,𝐶 ∈ R𝑚×𝑚, and the goal of the prover is to convince the verifier
that they know a witness 𝑧 ∈ R𝑚 such that (𝐴 · 𝑧) ◦ (𝐵 · 𝑧) = (𝐶 · 𝑧), where (·)
is matrix-vector multiplication. (◦) is the entry-wise (Hadamard) product. Then
we have the following observation, for 𝐴, 𝐵,𝐶 ∈ R𝑚×𝑚 :

∃𝑧 ∈ ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1), s.t. (𝐴 · 𝑧) ◦ (𝐵 · 𝑧) = (𝐶 · 𝑧) over ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1)
⇐⇒ ∃𝑧, 𝐷 ∈ ℤ<3𝑁

𝑄 [𝑋 ], s.t. (𝐴 · 𝑧) ◦ (𝐵 · 𝑧) = (𝐶 · 𝑧) + (𝑋𝑁 + 1) ◦ 𝐷 over ℤ𝑄 [𝑋 ]

Here ∃𝑧, 𝐷 ∈ ℤ<3𝑁
𝑄
[𝑋 ] means that we restrict the degree of each entry of 𝑧, 𝐷 is

a polynomial in ℤ𝑄 [𝑋 ] with degree smaller than 3𝑁 . This is sufficient because
the degree (of 𝑋 ) of each entry of 𝐴, 𝐵,𝐶 is smaller than 𝑁 . This is the first step
of ring embedding, and in the next step, we shall replace ℤ𝑄 by Gal := Gal(𝑝𝑠 , 𝑑).
We note that there exists 𝑧, 𝐷 ∈ ℤ<3𝑁

𝑄
[𝑋 ], s.t. (𝐴 ·𝑧) ◦ (𝐵 ·𝑧) = (𝐶 ·𝑧) + (𝑋𝑁 +1) ◦𝐷

if and only if,

∃𝑧, 𝐷 ∈ Gal<3𝑁 [𝑋 ], s.t. (𝐴 · 𝑧) ◦ (𝐵 · 𝑧) = (𝐶 · 𝑧) + (𝑋𝑁 + 1) ◦ 𝐷 and 𝑧 ∈ ℤ<3𝑁
𝑄 [𝑋 ]

The point here is that if we transfer the proof system into Gal[𝑋 ], the verifier
has to make sure that the witness is actually from ℤ<3𝑁

𝑄
[𝑋 ]. In other words,

by adding more constraints, we can then embed the R1CS instances into the
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ring Gal[𝑋 ], which has a large exceptional set. To prove that 𝑧 ∈ ℤ<3𝑁
𝑄
[𝑋 ],

we adopt the bit decomposition approach used by [BCOS20,HLMZ24]. That is,
we require the prover to commit each bit 𝑏 of 𝑧, and then add the constraint
𝑏 (1−𝑏) = 0 to ensure 𝑏 is indeed a bit. To this end, we prove that the polynomial
𝑔(𝑊 ) =𝑊 (1 −𝑊 ) has only two roots (0 and 1) in Gal(𝑝𝑠 , 𝑑) [𝑋 ].

Polynomial commitment scheme over Galois ring. We generalize the
polynomial commitment scheme in [GLS+23] to polynomials over Galois rings.
We largely depend on the fact that Galois rings have a large exceptional set
and prove proximity gap results for linear code over Galois rings. Indeed, the
proximity gap for codes is central to many hash-based polynomial commitment
schemes. Readers familiar with polynomial commitment schemes could view it
as a natural generalization to Galois rings and skip this part.

Proving the witness has a small norm. With a slight modification to our
construction, besides proving the witness satisfies the ring-R1CS, we can prove
it also has a small norm, i.e., each entry of the witness is a short polynomial in
R with coefficients smaller than 𝛽 for some threshold 𝛽 ≤ 𝑄. Proving the witness
has a small norm is very useful for basing security on lattice assumptions.

Paper organization. Section 2 recalls notations and definitions. Section 3
presents a polynomial commitment scheme over Galois ring. Finally, section 4
presents our NIAoK construction featuring the ring switching technique.

2 Preliminary

Notations. We denote by ℕ the set of natural numbers and by ℤ the set
of integers. For a prime power 𝑄 = 𝑝𝑠 , we write ℤ𝑄 for the ring of integers
modulo 𝑄. The set of polynomials over ℤ𝑄 is denoted by ℤ𝑄 [𝑋 ], and we consider
quotient rings of the form R = ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1). For any set 𝑆, the notation← is
used to indicate sampling from a probability distribution or selecting an element
uniformly at random. A function 𝜈 : ℕ→ [0, 1] is considered negligible, denoted
as 𝜈 = negl(𝜆), if for every 𝑐 ∈ ℕ, there exists a sufficiently large 𝜆 such that
𝜈 (𝜆) ≤ 1

𝑐𝜆𝑐
. PPT stands for probabilistic polynomial time.

Definition 1 (Ring-R1CS). An instance of a Ring-R1CS is a tuple 𝕩 =

(𝑅,𝐴, 𝐵,𝐶, 𝑖𝑜,𝑚, 𝑛, 𝛽) consisting of:

– A commutative ring with unity R.
– Two integer parameters 𝑚,𝑛 ∈ ℕ and a norm parameter 𝛽.
– Matrices 𝐴, 𝐵,𝐶 ∈ R𝑚×𝑚, each containing at most 𝑛 nonzero entries.
– A public input-output vector 𝑖𝑜 ∈ R |𝑖𝑜 | , where 𝑚 ≥ |𝑖𝑜 | + 1.

The instance 𝕩 is satisfiable if there exists a witness vector 𝑤 ∈ R𝑚−|𝑖𝑜 |−1 such
that:
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– (𝐴 · 𝑧) ◦ (𝐵 · 𝑧) = (𝐶 · 𝑧);
– let 𝑤 = (𝑤1, . . . ,𝑤𝑚−|𝑖𝑜 |−1), then ∥𝑤𝑖 ∥∞ ≤ 𝛽 for each 𝑖.

Here 𝑧
def
= (𝑖𝑜, 1,𝑤) is the full assignment vector. (·) denotes matrix-vector multi-

plication. (◦) is the entry-wise (Hadamard) product. If 𝑤 is such an witness, we
write (𝕩,𝑤) ∈ SatR1CS.

Compared to the standard definition of R1CS, we have an additional norm
parameter 𝛽. We add this because in many latticed-based primitives, we have to
prove the norm of witness is small.

2.1 Ring Theory Background

All rings studied in this paper are assumed to be commutative and have identity.

Definition 2 (Exceptional set). Let 𝑅 be a ring and let 𝐸 = {𝑒1, . . . , 𝑒𝑛} ⊂ 𝑅.
We say that 𝐸 is an exceptional set if ∀𝑖 ≠ 𝑗, 𝑒𝑖 −𝑒 𝑗 ∈ 𝑅∗, where 𝑅∗ denotes the
group of units of 𝑅. The Lenstra’s constant of 𝑅, denoted by L(𝑅), is defined
to be the size of the largest exceptional set in 𝑅.

Definition 3. The order of the identity element 1 in the additive group of the
ring is called the characteristic of the ring.

Galois ring. Let 𝑝 be a prime and let 𝑠, 𝑑 be positive integers. Let 𝑓 (𝑋 ) ∈ ℤ𝑝𝑠 [𝑋 ]
be a monic polynomial of degree 𝑑 such that 𝑓 is irreducible in ℤ𝑝 [𝑋 ], where
(·) : ℤ𝑝𝑠 [𝑋 ] → ℤ𝑝 [𝑋 ] is the natural homomorphism defined via ‘modulo 𝑝’. The
structure of the quotient ring ℤ𝑝𝑠 [𝑋 ]/(𝑓 ) is independent of the choice of 𝑓 and is
determined up to isomorphic solely by 𝑝, 𝑠, 𝑑. This ring is referred to as Galois
ring of characteristic 𝑝𝑠 and degree 𝑑; we denote this ring by Gal(𝑝𝑠 , 𝑑).
Galois rings have many nice properties due to their special algebraic structure;
here, we list some useful properties.

Proposition 1 (Properties Galois rings [Wan11]). Let 𝑝 be a prime and
𝑠, 𝑑, 𝑑 ′ ∈ ℕ. Then the following statements hold true.

– If 𝑑 |𝑑 ′, then Gal(𝑝𝑠 , 𝑑 ′) contains (a unique) subring isomorphic to Gal(𝑝𝑠 , 𝑑).
– The Lenstra’s constant of Gal(𝑝𝑠 , 𝑑) is 𝑝𝑑 .
– Gal(𝑝𝑠 , 1) is isomorphic to ℤ𝑝𝑠 .
– Gal(𝑝,𝑑) is isomorphic to 𝔽𝑝𝑑 , the finite field with 𝑝𝑑 elements.

Proposition 2 (Generalized Schwartz-Zippel Lemma [BCPS18]). Let
𝑅 be a ring and let 𝐸 ⊆ 𝑅 be a finite exceptional set. Let 𝑓 ∈ 𝑅 [𝑋1, . . . , 𝑋𝑛] be a
non-zero polynomial in 𝑛 variables and denote by deg(𝑓 ) the degree of 𝑓 . Then
Pr

e←𝐸𝑛
[𝑓 (e) = 0] ≤ deg(𝑓 )

|𝐸 | .
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2.2 Linear Codes over Ring

Let 𝑅 be a commutative ring with identity. For 𝑢, 𝑣 ∈ 𝑅𝑛, its Hamming weight
of 𝑢 is defined as HW(𝑢) def

= | {𝑖 ∈ [𝑛] : 𝑢 [𝑖] ≠ 0} |, and the Hamming distance is
defined as HD(𝑢, 𝑣) def= HW(𝑢 − 𝑣).

Definition 4. A non-empty subset 𝐶 ⊆ 𝑅𝑛 is called a linear code (over 𝑅) if
it is an 𝑅-submodule of 𝑅𝑛. The minimum distance of 𝐶 is defined as 𝑑 (𝐶) =
min𝑐∈𝐶\{0} HW(𝑐). For 𝑣 ∈ 𝑅𝑛, the minimum distance from 𝑣 to 𝐶 is defined as

d(𝑣,𝐶) def= min
𝑐∈𝐶

HW(𝑣 − 𝑐) = min
𝑐∈𝐶
| {𝑖 ∈ [𝑛] : 𝑣 [𝑖] ≠ 𝑐 [𝑖]} |.

Definition 5. Let 𝐶 ⊆ 𝑅𝑛 be a linear code. The 𝑚-fold interleaved code of
𝐶, denoted by 𝐶𝑚, is defined as

𝐶𝑚 def
=

{
𝑈 ∈ 𝑅𝑚×𝑛 : ∀𝑖 ∈ [𝑚], 𝑢𝑖 ∈ 𝐶

}
,

where 𝑢𝑖 denotes the 𝑖-th row of 𝑈 .

Remark 1. 𝐶𝑚 is also an 𝑅-module.

Definition 6 (Generalized Reed-Solomon (RS) code). Let 𝑅 be a ring
and 𝑛, 𝑘 two positive integers such that 𝑘 < 𝑛. Let 𝐸 = {𝑥1, . . . , 𝑥𝑛} ⊆ 𝑅 be an
exceptional set of 𝑅. Consider the submodule of 𝑅𝑛 defined as

GRS[𝑅, 𝑛, 𝑘] def= {(𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)) : 𝑓 ∈ 𝑅 [𝑋 ] ∧ deg(𝑓 ) < 𝑘} .

GRS[𝑅, 𝑛, 𝑘] is called the generalized Reed-Solomon code over 𝑅.

Proposition 3 ([QBC13]). Let 𝐶 = GRS[Gal(𝑝𝑠 , 𝑑), 𝑛, 𝑘] be a generalized RS
code over Galois ring Gal(𝑝𝑠 , 𝑑). Then

– 𝐶 has minimum distance d(𝐶) = 𝑛 − 𝑘 + 1; and
– there exists a unique decoding algorithm that corrects up to

⌊
𝑛−𝑘
2

⌋
errors and

uses 𝑂 (𝑛𝑘 · 𝑑𝑠 log 𝑝) bit operations.

2.3 Commitment Scheme

Definition 7. A commitment scheme over message space M is a tuple of
PPT algorithms (Setup,Commit,Open) with the following syntax and properties.

– Setup(1𝜆, 𝑑) ↦→ pp : Sample public parameters given a security parameter 𝜆

and size parameter 𝑑. 1

– Commit(pp,𝔪) ↦→ (com, st): It takes as input public parameter pp and a
message 𝔪 ∈ M and outputs a commitment com and an auxiliary state st.

1 For example, if messages are encoded as binary bits, 𝑑 is typically the length of the
message.
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– Open(pp, com,𝔪, st) ↦→ 𝑏 ∈ {0, 1}: It takes as input public parameter pp, a
commitment com, a message 𝔪 ∈ M, and an auxiliary state st; it outputs a
bit 𝑏 indicating whether com is a valid commitment to 𝔪 under pp.

We require commitment schemes to satisfy the following completeness and bind-
ing properties.

– Completeness. For all 𝜆, 𝑑 ∈ ℕ,𝔪 ∈ M, we have

Pr
pp←Setup(1𝜆,𝑑 ),(com,st)←Commit(pp,𝔪)

[Open(pp, com,𝔪, st) = 1] ≥ 1 − negl(𝜆).

– Binding. For every PPT adversary A, it holds that

Pr
pp←Setup(1𝜆,𝑑 )

(com,(𝔪,st),(𝔪′,st′ ) )←A(pp)


𝔪 ≠ 𝔪′ ∧𝔪 ∈ M ∧𝔪′ ∈ M
∧Open(pp, com,𝔪′, st′) = 1
∧Open(pp, com,𝔪, st) = 1

 = negl(𝜆).

Definition 8. Given a (ternary) relation ℜ ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗, if
(pp, 𝕩,𝑤) ∈ ℜ, we call pp the public parameter, 𝕩 the statement or instance,
𝑤 the witness.

Definition 9 (Argument of knowledge). An argument of knowledge
(AoK) Π = (Setup,P,V) for relation ℜ consists of a PPT algorithm Setup and
an interactive protocol between a PPT prover P and verifier V, and it satisfies
the following properties.

– Completeness. For all adversary A,

Pr
pp←Setup(1𝜆 ),(𝕩,𝑤 )←A(pp)

[⟨P(pp, 𝕩,𝑤),V(pp, 𝕩)⟩ = 0 ∧ (pp, 𝕩,𝑤) ∈ ℜ] = 1.

– Knowledge soundness. There exists an expected PPT extactor E such that
for any stateful PPT adversary P∗,

Pr
pp←Setup(1𝜆 )
(𝕩,st)←P∗ (pp)
𝑤←EP∗ (pp,𝕩,𝑠𝑡 )

[⟨P∗ (pp, 𝕩, st),V(pp, 𝕩)⟩ = 1 ∧ (pp, 𝕩,𝑤) ∉ ℜ] = negl(𝜆),

where E has black-box oracle access to the (malicious) prover P∗ and can
rewind it to any point in the interaction.

Definition 10. A functional commitment scheme for function class F is
a tuple of algorithms (Setup,Commit,Open,Eval) with the following syntax and
properties.

– (SetupCM,Commit,Open) is a commitment scheme over message space F .
– Eval = (SetupEval,P,V) is an AoK for the relation ℜ defined as

(pp, (ppCM, com, 𝕩, 𝑣), (𝑓 , st)) ∈ ℜ ⇐⇒ Open(ppCM, com, 𝑓 , st) = 1 ∧ 𝑓 (𝕩) = 𝑣 .
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2.4 Low-Degree Polynomials and Polynomials Extentions

Definition 11 (Multivariate and Multilinear Polynomials). A polyno-
mial that involves more than one variable is called a multivariate polynomial. If
it only contains a single variable, we refer to it as a univariate polynomial. Fur-
thermore, when each variable in a multivariate polynomial appears with degree
at most one, we say that the polynomial is multilinear.

Definition 12 (Low-Degree Polynomial). Let 𝑅 be a ring with cardinality
|𝑅 |. A multivariate polynomial 𝐺 (𝑥1, . . . , 𝑥𝑚) ∈ 𝑅 [𝑥1, . . . , 𝑥𝑚] is called a low-
degree polynomial over 𝑅 if, for each variable 𝑥𝑖 , the degree of 𝐺 in 𝑥𝑖 is expo-
nentially smaller than |𝑅 |.

Definition 13 (Low-degree extension (LDE) over a ring). Let 𝐺 :
{0, 1}𝑚 → 𝑅 be a function that maps 𝑚-bit elements to elements of a ring 𝑅.
A polynomial extension of 𝐺 is a low-degree 𝑚-variate polynomial 𝑔(·) over 𝑅

such that 𝐺 (𝑥) = 𝐺 (𝑥) for all 𝑥 ∈ {0, 1}𝑚. Furthermore, a multivariate polyno-
mial is called a multilinear extension if the degree of each variable in 𝐺 is at
most 1 i.e., 𝐷𝑒𝑔(𝐺 (·)) ≤ 1. Given a function 𝑍 : {0, 1}𝑚 → 𝑅, the multilinear
extension of 𝑍 (·) is the unique multilinear polynomial 𝑍 : 𝑅𝑚 → 𝑅 computed as

𝑍 (𝑥1, . . . , 𝑥𝑚) =
∑︁

𝑒∈{0,1}𝑚
𝑍 (𝑒) ·

𝑚∏
𝑖=1

(𝑒𝑖 · 𝑥𝑖 + (1 − 𝑒𝑖 ) · (1 − 𝑥𝑖 )) =
∑︁

𝑒∈{0,1}𝑚
𝑍 (𝑒) · 𝑒𝑞(𝑥, 𝑒)

where

𝑒𝑞(𝑥, 𝑒) =
𝑚∏
𝑖=1

(𝑒𝑖 · 𝑥𝑖 + (1 − 𝑒𝑖 ) · (1 − 𝑥𝑖 )) .

which is the MLE of the function 𝑒𝑞(𝑥, 𝑒) = 1 if 𝑒 = 𝑥; otherwise, 𝑒𝑞(𝑥, 𝑒) = 0.
Moreover, for all 𝑟 ∈ 𝑅𝑚, 𝑍 (𝑟 ) can be computed in 𝑂 (2𝑚) operations in 𝑅.

3 Polynomial Commitment Scheme for Galois Rings

Polynomial commitment schemes are functional commitments where the func-
tion class is a class of polynomials. We consider several classes of polynomials
over (Galois) rings that are useful in our SNARK construction.

– Multilinear polynomial. Let F𝑀𝑢𝑙 [𝑅, 𝜇] denote the class of multi-linear poly-
nomials over 𝑅 with 𝜇 variables.

– Univariate polynomial. Let F𝑈𝑛𝑖 [𝑅, 𝑁 ] denote univariate polynomials over 𝑅

with degree less than 𝑛, namely, F𝑈𝑛𝑖 [𝑅, 𝑁 ]
def
= {𝑓 ∈ 𝑅 [𝑋 ] : deg(𝑓 ) < 𝑁 }.

– Combination. Let F𝐶𝑜𝑚𝑏 [𝑅, 𝜇, 𝑁 ] denote the class of polynomials over 𝑅

with (𝜇 + 1) variables 𝑋,𝑋1, . . . , 𝑋𝜇 , where the polynomials are multilinear
in 𝑋1, · · · , 𝑋𝜇 and have degree less than 𝑁 in 𝑋 .

Note that F𝑀𝑢𝑙 [𝑅, 𝜇] and F𝑈𝑛𝑖 [𝑅, 𝑁 ] are subclasses of F𝐶𝑜𝑚𝑏 [𝑅, 𝜇, 𝑁 ].
The main result of this section is summarized below.
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Theorem 3 (Polynomial commitment over Galois ring). Let 𝜇, 𝑁 , 𝑝, 𝑠, 𝑑

be integer functions of the security parameter 𝜆 such that 𝑝 is a prime and
𝑑 = log𝑝 (2 ·

√
2𝜇 · 𝑁 ) + 𝜔 (log 𝜆). Assuming the existence of collision-resistant

hash function, there exists a functional commitment scheme for the class
F𝐶𝑜𝑚𝑏 [Gal(𝑝𝑠 , 𝑑), 𝜇, 𝑁 ] with the following efficiency and security characteristics
where ℓ

def
=
√
2𝜇 · 𝑁 .

– The commitment is the Merkle commitment of 𝑂 (ℓ2) elements of Gal(𝑝𝑠 , 𝑑),
which is of size 𝑂 (𝜆).

– In an execution of the evaluation protocol,
• the prover’s running time is 𝑂𝜆 (ℓ2) operations in Gal(𝑝𝑠 , 𝑑);
• the verifier runs in time is 𝑂𝜆 (ℓ) operations in Gal(𝑝𝑠 , 𝑑);
• the communication complexity is 𝑂𝜆 (ℓ) elements in Gal(𝑝𝑠 , 𝑑);
• the soundness error is 𝜀 (𝜆) = 2ℓ

𝑝𝑑
+ 2 · 0.9𝜆 + 𝜀Merkle (𝜆) = negl(𝜆), where

𝜀Merkle (𝜆) is the soundness error of Merkle commitment.

Roadmap. Section 3.1 recalls a commonly used technique that reduces polyno-
mial commitment scheme to vector commitment with special evaluation queries.
Section 3.2 presents a vector commitment construction. Section 3.3 analyzes the
efficiency of our scheme and instantiates the scheme using Galois ring.

3.1 From Vector Commitment to Polynomial Commitment

Tensor-query vector commitment over fields is introduced in [BCG20], and is
used to construct a polynomial commitment scheme in Brakedown [GLS+23].
We naturally generalize the definition to rings.

Definition 14. A 𝑡-fold tensor-query vector commitment scheme over
ring 𝑅 is a functional commitment scheme for the function class F𝑅 defined as
follows.

F𝑅
def
=

⋃
ℓ∈ℕ

{
𝑓𝑢 |𝑢 ∈ 𝑅ℓ𝑡

}
,

where 𝑓𝑢 : (𝑅ℓ )𝑡 → 𝑅, (𝑞1, 𝑞2, . . . , 𝑞𝑡 ) ↦→ ⟨𝑞1 ⊗ 𝑞2 ⊗ · · · ⊗ 𝑞𝑡 , 𝑢⟩.

Polynomial evaluation as a tensor query on coefficient vector. This is
a commonly used technique (e.g., [BCG20,CMNW24]) that easily generalizes to
rings.

– A polynomial 𝑓 (𝑋1, . . . , 𝑋𝜇) ∈ F𝑀𝑢𝑙 [𝑅, 𝜇] can be uniquely expressed as 𝑓 =∑
𝑆⊆[𝜇 ] 𝑐𝑆 𝜒𝑆 , where 𝜒𝑆 (𝑋1, . . . , 𝑋𝜇)

def
=

∏
𝑖∈𝑆 𝑋𝑖 , 𝑐𝑆 ∈ 𝑅. Let f be the vector

(𝑐𝑆 )𝑆⊆[𝜇 ] ∈ 𝑅2𝜇 . Then we have for all 𝑥1, . . . , 𝑥𝜇 ∈ 𝑅,

𝑓 (𝑥1, . . . , 𝑥𝜇) =
〈
(1, 𝑥1) ⊗ · · · ⊗ (1, 𝑥𝜇), f

〉
=

〈
𝑞1 ⊗ · · · ⊗ 𝑞𝜇, f

〉
where 𝑞𝑖

def
= (1, 𝑥𝑖 ) for 𝑖 ∈ [𝜇].
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– Let 𝑓 ∈ F𝑈𝑛𝑖 [𝑅, 𝑁 ], say, 𝑓 (𝑋 ) = ∑𝑁−1
𝑖=0 𝑎𝑖𝑋

𝑖 . Let f = (𝑎0, . . . , 𝑎𝑁−1) ∈ 𝑅𝑁 .
WLOG, assume 𝑁 is a power of 2. Then for all 𝑥 ∈ 𝑅,

𝑓 (𝑥) =
〈
(1, 1) ⊗ (1, 𝑥) ⊗ · · · ⊗ (1, 𝑥 log𝑁−1), f

〉
=

〈
𝑞′1 ⊗ · · · ⊗ 𝑞′log𝑁 , f

〉
,

where 𝑞′𝑖
def
= (1, 𝑥𝑖−1) for 𝑖 ∈ [log𝑁 ].

– A polynomial 𝑓 (𝑋,𝑋1, . . . , 𝑋𝜇) ∈ F𝐶𝑜𝑚𝑏 [𝑅, 𝜇, 𝑁 ] can be uniquely expressed
as 𝑓 (𝑋,𝑋1, . . . , 𝑋𝜇) =

∑𝑁−1
𝑖=0

∑
𝑆⊆[𝜇 ] 𝑐𝑖,𝑆 𝜒𝑆 (𝑋1, . . . 𝑋𝜇) · 𝑋 𝑖 . Let f be the vector

(𝑐𝑖,𝑠 )0≤𝑖<𝑁,𝑆⊆[𝜇 ] ∈ 𝑅𝑁2𝜇 . Then for all 𝑥, 𝑥1, . . . , 𝑥𝜇 ∈ 𝑅, it holds that

𝑓 (𝑥, 𝑥1, . . . , 𝑥𝜇) =
〈
log𝑁−1⊗

𝑖=0

(1, 𝑥𝑖 )
𝜇⊗
𝑗=1

(1, 𝑥𝜇), f
〉
.

3.2 Two-Fold Tensor Query Vector Commitment over Ring

We give an explicit construction for the case where 𝑡 = 2, i.e., vector commitment
that supports two-fold tensor queries. Generalization to the case where 𝑡 > 2 is
analogous to [GLS+23], assuming we have linear codes over the ring with good
rates and encoding/decoding efficiency.

Definition 15. For 𝑤,𝑤 ′ ∈ 𝑅ℓ×𝑀 , define

DiffCol(𝑤,𝑤 ′) def=
{
𝑗 ∈ [𝑀] : ∃𝑖 ∈ [ℓ] 𝑤𝑖 [ 𝑗] ≠ 𝑤 ′𝑖 [ 𝑗]

}
,

where 𝑤𝑖 and 𝑤 ′𝑖 denote the 𝑖-th row of 𝑤 and 𝑤 ′ respectively.

Construction 1 (Tensor-query vector commitment over ring 𝑅)
Let 𝑀 = 𝑀 (ℓ), 𝑆 = 𝑆 (𝜆) be parameters and let 𝐶 ⊆ 𝑅𝑀 be a linear code that
encodes elements in 𝑅ℓ and d(𝐶) ≥ 𝛾𝑀 for some constant 𝛾 .

– SetupCM (1𝜆, ℓ) ↦→ ppCM : sample a public parameter for Merkle commit-
ment of length ℓ𝑀 and alphabet 𝑅.

– Commit(𝑢 ∈ 𝑅ℓ×ℓ ) ↦→ (com, st): Compute 𝑢 := (Enc𝐶 (𝑢1), . . . ,Enc𝐶 (𝑢ℓ ))
and Merkle commitment of 𝑢 (using public parameter ppCM), denoted by
com; output com and st := 𝑢.

– Open(pp, com, 𝑢, st ∈ 𝑅ℓ×𝑀 ) ↦→ {0, 1}: Output 1 if and only if st is an
opening of the Merkle commitment com and |DiffCol(Enc𝐶 (𝑢), st) | ≤
𝛾𝑀/4.

– Eval: This is an AoK for the relation ℜ defined as follows:

(pp = 𝜆, (ppCM, com, (𝑞1, 𝑞2), 𝑣), (𝑢, st)) ∈ ℜ
⇐⇒ Open(ppCM, com, 𝑢, st) = 1 ∧ ⟨𝑞1 ⊗ 𝑞2, 𝑢⟩ = 𝑣 .
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Here, the setup algorithm of Eval outputs 𝜆 as public parameter. Using
standard transformations [BSCS16], it suffices to construct an AoK Eval′

for the relation ℜ′ defined as

(pp = 𝜆, (𝑢, 𝑞1, 𝑞2, 𝑣), 𝑢) ∈ ℜ′

⇐⇒ |DiffCol(Enc𝐶ℓ (𝑢), 𝑢) | ≤ 𝛾𝑀/4 ∧ ⟨𝑞1 ⊗ 𝑞2, 𝑢⟩ = 𝑣 .
(1)

where the verifier V𝑢 (pp, 𝑞1, 𝑞2, 𝑣) in Eval′ only has oracle access to 𝑢.
1. V → P : a uniformly random vector 𝑟 ← 𝑅ℓ .
2. P → V : a vector 𝑢′ ∈ 𝑅ℓ . P claims that 𝑢′ =

∑ℓ
𝑖=1 𝑟 [𝑖]𝑢𝑖 .

3. V: Sample a random set Q ⊆ [𝑀] of size 𝑆. For each 𝑗 ∈ Q:
• V queries the oracle to retrieve the 𝑗-th column 𝑢1 [ 𝑗], . . . , 𝑢ℓ [ 𝑗].
• V rejects if Enc𝐶 (𝑢′) [ 𝑗] ≠

∑ℓ
𝑖=1 𝑟 [𝑖]𝑢𝑖 [ 𝑗].

4. P → V : a vector 𝑢′′ ∈ 𝑅ℓ . P claims that 𝑢′′ =
∑ℓ

𝑖=1 𝑞1 [𝑖]𝑢𝑖 .
5. V → P: a random set Q′ ⊆ [𝑀] of size 𝑆. For each 𝑗 ∈ Q′:
• V queries the oracle to retrieve the 𝑗-th column 𝑢1 [ 𝑗], . . . , 𝑢ℓ [ 𝑗].
• V rejects if Enc𝐶 (𝑢′′) [ 𝑗] ≠

∑ℓ
𝑖=1 𝑞1 [𝑖]𝑢𝑖 [ 𝑗].

6. V accepts if 𝑣 = ⟨𝑢′′, 𝑞2⟩; otherwise, reject.

Completeness and binding of the commitment. Completeness of commit-
ment holds by construction. Binding property follows from the binding property
of Merkle commitment and the fact that for all 𝑢, there exists at most one 𝑢

such that |DiffCol(Enc𝐶 (𝑢), 𝑢) | ≤ 𝛾𝑀/4 ≤ d(𝐶)/4.

Argument of knowledge for evaluation.

Lemma 1. Suppose that there exists an efficient decoding algorithm Dec𝐶 for 𝐶
that corrects up to 𝛾𝑀/4 errors. Then, the interactive protocol Eval′ defined in
construction 1 is an AoK for the relation ℜ′ defined in eq. (1) with soundness
error

𝜀 =
𝑀

L(𝑅) + (1 − 𝛾/4)
𝑆 + (1 − (3/4)𝛾)𝑆 .

In particular, 𝜀 is negligible in 𝜆 if L(𝑅) = 𝑀 · 𝜆𝜔 (1) , 𝑆 = 𝜔 (log 𝜆).

Following [GLS+23], it is convenient to divide Eval′ into two phases.

– Codeword testing phase. Via Step 1 –Step 3 of Eval′, V verifies that 𝑢 is
close to some codeword of 𝐶ℓ .

– Evaluation phase. Via Step 4 – Step 6, V evaluates and verifies 𝑢′′
?
=∑ℓ

𝑖=1 𝑞1 [𝑖]𝑢𝑖 and 𝑣
?
= ⟨𝑢′′, 𝑞2⟩ = ⟨𝑢, 𝑞1 ⊗ 𝑞2⟩.

We first analyze the codeword testing phase.
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Lemma 2 (Soundness of the codeword testing phase). Consider the
predicate isClose : 𝑅ℓ×𝑀 → {0, 1} defined as

isClose(𝑢) = 1 ⇐⇒ ∃𝑐1, . . . , 𝑐𝑚 ∈ 𝐶 |{ 𝑗 ∈ [𝑀] : ∃𝑖 ∈ [𝑚], 𝑢𝑖 [ 𝑗] ≠ 𝑐𝑖 [ 𝑗]}| ≤ 𝛾𝑀/4. (2)

For every PPT P∗ and 𝑢 ∈ 𝑅ℓ×𝑀 , if isClose(𝑢) = 0, then

Pr
[
V𝑢 (· · · ) rejects in Steps 1–3 when interacting with P∗

]
≥ 1 −

(
𝑀

L(𝑅) + (1 − 𝛾/4)
𝑆

)
.

(Recall that L(𝑅) is the Lenstra’s constant of 𝑅, i.e., the size of the largest ex-
ceptional set in 𝑅.)

The technical tool for proving lemma 2 is a new proximity gap result in the
ring setting. The proximity gap for linear codes is a crucial property in IOP-
based polynomial commitment schemes. We generalize proximity gap results
[AHIV17,BSCI+20] for interleaved linear codes to the ring setting:

Lemma 3 (Proximity gap for interleaved linear code). Let 𝐶 ⊆ 𝑅𝑀 be
linear code over ring 𝑅 with minimum distance 𝑑, and let 𝐶𝑚 ⊆ 𝑅𝑚×𝑀 be the
𝑚-fold interleaved code of 𝐶. Then the following holds for all 𝑢 ∈ 𝑅𝑚×𝑀 . Define

𝐻
def
= { 𝑗 ∈ [𝑀] : ∃𝑖 ∈ [𝑚] s.t. 𝑢𝑖 [ 𝑗] ≠ 𝑐𝑖 [ 𝑗]} ,

where 𝑢𝑖 denotes the 𝑖-th row of 𝑢 and 𝑐𝑖 ∈ 𝐶 is the codeword closest to 𝑢𝑖 . For
every ℎ ∈ ℕ such that 𝑑 ≥ 4ℎ and |𝐻 | ≥ ℎ, it holds that

Pr
𝛼1,...,𝛼𝑚←𝑅

[d(𝛼1𝑢1 + · · ·𝛼𝑚𝑢𝑚,𝐶) < ℎ] ≤ ℎ

L(𝑅) .

We defer the proof of lemma 3 to appendix A and first use it to prove lemma 2.

Proof (Proof of lemma 2). Let 𝑤 def
=

∑ℓ
𝑖=1 𝑟𝑖𝑢𝑖 where 𝑟 ← 𝑅ℓ is the first message

of V. Applying lemma 3 with ℎ = 𝛾𝑀/4 ≤ d(𝐶)/4, we have

Pr
𝑟←𝑅ℓ

[d(𝑤,𝐶) < 𝛾𝑀/4] ≤ 𝑀

L(𝑅) .

In Step 3, V chooses 𝑆 coordinates uniformly at random and verifies that for
every chosen coordinates 𝑗 , Enc𝐶 (𝑢′) [ 𝑗] = 𝑤 [ 𝑗]. Note that d(𝑤,𝐶) ≥ 𝛾𝑀/4 implies
HD(𝑤,Enc𝐶 (𝑢′)) ≥ 𝛾𝑀/4. Therefore, for every fixed 𝑟 such that d(𝑤,𝐶) ≥ 𝛾𝑀/4,
V rejects in Step 3 with probability at least 1 − (1 − 𝛾/4)𝑆 . This finishes the
proof.

Now we prove lemma 1, showing that Eval′ is indeed an AoK.

Proof (Proof of lemma 1). Completeness of Eval′ readily follows from the linear-
ity of Enc𝐶 . To see this, suppose ((𝑢, 𝑞1, 𝑞2), 𝑢) ∈ ℜ′ and P acts honestly. Then,
in Step 3,

Enc𝐶 (𝑢′) [ 𝑗] =
ℓ∑︁

𝑖=1

𝑟 [𝑖] · Enc𝐶 (𝑢𝑖 ) [ 𝑗] =
ℓ∑︁

𝑖=1

𝑟 [𝑖] · 𝑢𝑖 [ 𝑗] .
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Hence, V would not reject in Step 3. Step 4 – Step 5 is identical to Step 2 –
Step 3 except that 𝑟 is replaced by 𝑞1, and thus the same argument goes. Finally,
when computing ⟨𝑞1 ⊗ 𝑞2, 𝑢⟩, 𝑢 is interpreted as a vector of length ℓ2. Hence,

⟨𝑞1 ⊗ 𝑞2, 𝑢⟩ =
∑︁

𝑖, 𝑗∈[ℓ ]
𝑞𝑖 [𝑖] · 𝑞2 [ 𝑗] · 𝑢𝑖 [ 𝑗] =

〈
𝑞2,

ℓ∑︁
𝑖=1

𝑞𝑖 [𝑖] · 𝑢𝑖

〉
= ⟨𝑞2, 𝑢′′⟩ ,

meaning that V accepts.
Next, we prove the knowledge soundness. Consider the extractor E(pp, 𝑢)

that runs Dec𝐶 on every row of 𝑢. That is, E(pp, 𝑢) outputs 𝑢 ∈ 𝑅ℓ×ℓ where the
𝑖-th row 𝑢𝑖 := Dec𝐶 (𝑢𝑖 ) for each 𝑖 ∈ [ℓ]. We shall prove that for all (malicious)
prover P∗, it holds that

advP∗ (𝜆)
def
= Pr

pp←Setup(1𝜆 )
(𝑥=(𝑢,𝑞1,𝑞2,𝑣),st)←P∗ (pp)

𝑢←E(pp,𝑢 )

[
⟨P∗ (𝑥, st),V𝑢 (pp, (𝑞1, 𝑞2, 𝑣))⟩ = 1 ∧ (pp, 𝑥,𝑢) ∉ ℜ′

]
≤ negl(𝜆),

where the setup algorithm simply outputs pp := 𝜆. Note that

advP∗ (𝜆) ≤

def
= 𝑝 (𝜆)︷                                                                                                                                        ︸︸                                                                                                                                        ︷

Pr
pp←Setup(1𝜆 )

(𝑥=(𝑢,𝑞1,𝑞2,𝑣),st)←P∗ (pp)
𝑢←E(pp,𝑢)

[
isClose(𝑢 ) = 1 ∧ ⟨P∗ (pp, 𝑥, st),V𝑢 (pp, (𝑞1, 𝑞2, 𝑣) ) ⟩ = 1 ∧ (pp, 𝑥,𝑢 ) ∉ ℜ′

]

+ Pr
pp←Setup(1𝜆 )

(𝑥=(𝑢,𝑞1,𝑞2,𝑣),st)←P∗ (pp)
𝑢←E(pp,𝑢)

[
isClose(𝑢 ) = 0 ∧ ⟨P∗ (pp, 𝑥, st),V𝑢 (pp, (𝑞1, 𝑞2, 𝑣) ) ⟩ = 1

]
,

where the second term is at most
(

𝑀
L(𝑅) + (1 − 𝛾/4)

𝑆
)

according to lemma 2.
Therefore, it suffices to bound the second term from above:

Claim. 𝑝 (𝜆) ≤ (1 − 3/4𝛾)𝑆 .

Proof. We shall prove that for every fixed pp = 𝜆, 𝑥 = (𝑢, 𝑞1, 𝑞2, 𝑣) with
isClose(𝑢) = 1, and malicious prover P∗, it holds that

Pr
𝑢←E(pp,𝑢 )

[
⟨P∗ (pp, 𝑥),V𝑢 (pp, (𝑞1, 𝑞2, 𝑣))⟩ = 1 ∧ (pp, 𝑥,𝑢) ∉ ℜ′

]
≤ (1 − 3/4𝛾)𝑆 . (3)

This would imply the claim. To this end, we show that

Pr
𝑢←E(pp,𝑢 )

[
⟨P∗ (pp, 𝑥),V𝑢 (pp, (𝑞1, 𝑞2, 𝑣))⟩ = 1 ∧ 𝑢′′ ≠ 𝑡

]
≤ (1 − 3/4𝛾)𝑆 . (4)

where 𝑡
def
=

∑
𝑖∈[ℓ ] 𝑞1 [𝑖] · 𝑢𝑖 and 𝑢′′ is the message sent by P∗ in Step 4.

We first show that eq. (4) indeed implies eq. (3). Recall that 𝑢𝑖 =

Dec𝐶 (𝑢𝑖 ). Whenever isClose(𝑢) = 1, by the correctness of Dec𝐶 , we have
|DiffCol(Enc𝐶ℓ (𝑢), 𝑢) | ≤ 𝛾𝑀/3. Consequently, if (pp, 𝑥,𝑢) ∉ ℜ′, it must be that
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𝑣 ≠ ⟨𝑞1 ⊗ 𝑞2, 𝑢⟩ = ⟨𝑞2, 𝑡⟩ =
∑

𝑖∈[ℓ ] 𝑞2 [𝑖] · 𝑡 [𝑖]. Moreover, if V accepts in the last
step, we have 𝑣 = ⟨𝑞2, 𝑢′′⟩ =

∑
𝑖∈ℓ 𝑞2 [𝑖]𝑢′′ [𝑖]. That is,

⟨P∗ (pp, 𝑥),V𝑢 (pp, (𝑞1, 𝑞2, 𝑣))⟩ = 1 ∧ (pp, 𝑥,𝑢) ∉ ℜ′

=⇒ ⟨P∗ (pp, 𝑥),V𝑢 (pp, (𝑞1, 𝑞2, 𝑣))⟩ = 1 ∧ ⟨𝑞2, 𝑢′′⟩ ≠ ⟨𝑞2, 𝑡⟩
=⇒ ⟨P∗ (pp, 𝑥),V𝑢 (pp, (𝑞1, 𝑞2, 𝑣))⟩ = 1 ∧ 𝑢′′ ≠ 𝑡 .

Now we prove eq. (4) by showing that if 𝑢′′ ≠ 𝑡 , then V rejects with over-
whelming probability in Step 5. Suppose that 𝑢′′ ≠ 𝑡 . Since Enc𝐶 (𝑢′′) and 𝑤

def
=

Enc𝐶 (𝑡) are two distinct codewords, they agree on at most (1−𝛾)𝑀 coordinates,
i.e., letting 𝐴

def
= {𝑖 ∈ [𝑀] : Enc𝐶 (𝑢′′) [𝑖] = 𝑤 [𝑖]}, we have |𝐴| ≤ (1−𝛾)𝑀. Observe

that isClose(𝑢) = 1 implies that 𝑤 ′ def=
∑

𝑖∈[ℓ ] 𝑞1 [𝑖]𝑢𝑖 and 𝑤 =
∑

𝑖∈[ℓ ] 𝑞1 [𝑖]Enc𝐶 (𝑢𝑖 )
differ on at most 𝛾𝑀/4 coordinates. That is, letting 𝐵

def
= {𝑖 ∈ [𝑀] : 𝑤 ′ [𝑖] ≠ 𝑤 [𝑖]},

we have |𝐵 | ≤ 𝛾𝑀/4. Hence, Enc𝐶 (𝑢′′) and 𝑤 ′ agree on at most

|𝐴 ∪ 𝐵 | ≤ |𝐴| + |𝐵 | ≤ (1 − (3/4)𝛾)𝑀

coordinates. In Step 5,V chooses 𝑆 coordinates uniformly at random and verifies
that for every chosen coordinates 𝑗 , Enc𝐶 (𝑢′′) [ 𝑗] = 𝑤 ′ [ 𝑗]. Therefore, if 𝑢′′ ≠ 𝑡 ,
V rejects in Step 5 with probability at least 1 − (1 − (3/4)𝛾)𝑆 , and thus eq. (4)
holds.

3.3 Efficiency and Instantiation by Galois Ring

By inspection of construction 1, we have the following theorem describes its
efficiency.

Theorem 4. Construction 1 has the following efficiency and security charac-
teristics when running on security parameter 𝜆 and size parameter ℓ (i.e., the
committed vector is in 𝑅ℓ2):

– Commitment. The commitment is the Merkle hash of 𝑂 (ℓ𝑀) elements of 𝑅,
which is of size 𝑂 (𝜆).

– Evaluation. In an execution of Eval,
• the prove’s running time is 𝑂𝜆 (ℓ2) operations over 𝑅;
• the verifier’s running time is 𝑂𝜆 (ℓ) operations over 𝑅;
• the communication complexity is 𝑂𝜆 (ℓ) elements over 𝑅.

Instantiation by Galois ring. Let 𝑑 = 𝑑 (𝜆) be a parameter and 𝑄 = 𝑝𝑠 be a
modulus, where 𝑝 = 𝑝 (𝜆) is a prime and 𝑠 = 𝑠 (𝜆) ∈ ℕ. The ring 𝑅 is set to be
Gal(𝑄,𝑑). We require the size parameter ℓ = ℓ (𝜆) to satisfy

𝑑 ≥ log𝑝 (2ℓ) + 𝜔 (log 𝜆).

For linear code, we use generalized Reed-Solomon code 𝐶 = GRS[Gal(𝑄,𝑑), 2ℓ, ℓ]
described in definition 6. Consequently, letting 𝑀 := 2ℓ, 𝛾 := 1

2 , we have (1)
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d(𝐶) = ℓ +1 ≥ 𝛾𝑀; (2) the decoding algorithm given by proposition 3 can correct
up to ⌊ℓ/2⌋ ≥ 𝛾𝑀/4 errors; and (3) by proposition 1, 𝑀/L(𝑅) = 2ℓ/𝑝𝑑 = negl(𝜆).
Finally, by lemma 1, we set 𝑆 = 𝑆 (𝜆) = 𝜆 so that the soundness error is

2ℓ

𝑝𝑑
+ 0.875𝜆 + 0.125𝜆 + 𝜀Merkle (𝜆) <

2ℓ

𝑝𝑑
+ 2 · 0.9𝜆 + 𝜀Merkle (𝜆) = negl(𝜆),

Here, 𝜀Merkle (𝜆) is the soundness error of Merkle commitment, which is incurred
due to the standard transform from Eval′ to Eval. Combined with the reduction
from polynomial commitment to vector commitment with tensor queries (in
section 3.1), we get a polynomial commitment scheme over the Galois ring, as
stated in theorem 3.

4 Sublinear proofs for Ring-R1CS via Ring Switching

In this section, we first recap the sumcheck protocol for ring polynomials. Then,
we design an interactive argument with sublinear communication cost via the
aforementioned sumcheck protocol and our ring switching technique and then
compile it into a family of NIAoKs in the Random Oracle Model (ROM). In
what follows, we assume the norm parameter 𝛽 = 𝑄; then, in section 4.3, we
generalize this to the case where 𝛽 is an arbitrary power of two.

4.1 Sumcheck Protocol for Ring Polynomials

We first review the sumcheck protocol for rings. Consider a polynomial 𝐺 ∈
𝑅 [𝑋1, . . . , 𝑋𝑛] be a degree-𝑑 polynomial whose coefficients in a ring 𝑅. Let 𝐸 be
an exceptional set of 𝑅. A (potentially malicious) prover 𝑃𝑆𝐶 want to convince
the a verifier 𝑉𝑆𝐶 the following claim:

𝑇 =
∑︁

𝑏1∈{0,1}
· · ·

∑︁
𝑏𝑛∈{0,1}

𝐺 (𝑏1, . . . , 𝑏𝑛). (5)

We denote the sumcheck protocol as 𝑒 ← ⟨𝑃𝑆𝐶 (𝐺),𝑉𝑆𝐶 (𝑟 )⟩(𝑛, ℓ,𝑇 ), where 𝑟 =

(𝑟1, . . . , 𝑟𝑛) is the randomness of the verifier used throughout the interaction (it
can sample different random elements in each round) and the prover 𝑃𝑆𝐶 the
polynomial 𝐺 as the input.

[HLMZ24] proved the completeness and soundness of the above sumcheck
protocol for rings with a large exceptional set.

Lemma 4 ([HLMZ24], Theorem 5.1). The protocol in fig. 1 for the state-
ment in eq. (5) satisfies the following properties.

– Completeness. If 𝐺 has degree 𝑑 and 𝑇 =
∑

𝑏1,...,𝑏𝑛∈{0,1} 𝐺 (𝑏1, . . . , 𝑏𝑛), then

Pr [𝑒 = 𝐺 (𝑟 ) | 𝑟 ← 𝐸𝑛, 𝑒 ← ⟨𝑃𝑆𝐶 (𝐺),𝑉𝑆𝐶 (𝑟 )⟩(𝑛, ℓ,𝑇 )] = 1.

– Soundness. If 𝐺 has degree 𝑑 and 𝑇 ≠
∑

𝑏1,...,𝑏𝑛∈{0,1} 𝐺 (𝑏1, . . . , 𝑏𝑛), then for
every malicious prover 𝑃∗

𝑆𝐶
,

Pr
[
𝑒 = 𝐺 (𝑟 ) | 𝑟 ← 𝐸𝑛, 𝑒 ← ⟨𝑃∗𝑆𝐶 ,𝑉𝑆𝐶 (𝑟 )⟩(𝑛, ℓ,𝑇 )

]
≤ 𝑛𝑑

|𝐸 | .
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⟨𝑃𝑆𝐶 (𝐺),𝑉𝑆𝐶 (𝑟 )⟩(𝑛, ℓ,𝑇 )

1. P’s round. Send some degree-ℓ polynomial 𝑝𝑛. The honest prover shall send
ℎ𝑛 ∈ 𝑅 [𝑋 ] defined as follows.

ℎ𝑛 (𝑋𝑛)
def
=

∑︁
𝑏1∈{0,1}

· · ·
∑︁

𝑏𝑛−1∈{0,1}
𝐺 (𝑏1, . . . , 𝑏𝑛−1, 𝑋𝑛) .

2. V’s round.
(a) On receiving a degree-ℓ polynomial 𝑝𝑛, output ⊥ (reject symbol) if 𝑝𝑛 (0) +

𝑝𝑛 (1) ≠ 𝑇 .
(b) Parse 𝑟 = (𝑟 [1:𝑛−1] , 𝑟𝑛) where 𝑟 [1:𝑛−1] ∈ 𝐸𝑛−1 and 𝑟𝑛 ∈ 𝐸.
(c) If 𝑛 = 1, output 𝑒 := 𝑝1 (𝑟1). Otherwise, send 𝑟𝑛 to P, and then recursively

run the protocol ⟨𝑃𝑆𝐶 (𝐺 |𝑋𝑛=𝑟𝑛 ),𝑉𝑆𝐶 (𝑟 [1:𝑛−1] )⟩(𝑛 − 1, ℓ, 𝑝𝑛 (𝑟𝑛)) to check

𝑝𝑛 (𝑟𝑛) =
∑︁

𝑏2∈{0,1}
· · ·

∑︁
𝑏𝑛∈{0,1}

𝐺 (𝑏1, . . . , 𝑏𝑛−1, 𝑟𝑛) .

Fig. 1. Sumcheck protocol for ring.

4.2 Sublinear Proofs over Ring

Let R def
= ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1). Let 𝑠 = log𝑚. We regard 𝐴, 𝐵,𝐶 as functions from

{0, 1}𝑠 × {0, 1}𝑠 to R. Given a witness 𝑤 ∈ R𝑚/2. Define 𝐹𝑤 : {0, 1}𝑠 → R by,

𝐹𝑤 (𝑥)
def
=

©«
∑︁

𝑦∈{0,1}𝑠
𝐴(𝑥,𝑦)𝑍 (𝑦)ª®¬ ©«

∑︁
𝑦∈{0,1}𝑠

𝐵(𝑥,𝑦)𝑍 (𝑦)ª®¬ − ©«
∑︁

𝑦∈{0,1}𝑠
𝐶 (𝑥,𝑦)𝑍 (𝑦)ª®¬

here we also use a function 𝑍 : {0, 1}𝑠 → R to encode (𝑤, 1, 𝑖𝑜) ∈ R𝑚.
Let 𝜙 : R → ℤ𝑄 [𝑋 ]<𝑁 be a natural bijection from R to ℤ𝑄 [𝑋 ]<𝑁 where

the addition and multiplication in ℤ𝑄 [𝑋 ]<𝑁 are carried out in ℤ𝑄 [𝑋 ].2 Let 𝐴′ :

{0, 1}2𝑠 → ℤ𝑄 [𝑋 ]<𝑁 be the composition of 𝜙 and 𝐴, i.e., 𝐴′ (𝑥,𝑦) def
= 𝜙 (𝐴(𝑥,𝑦));

and 𝐵′,𝐶′,𝑤 ′, 𝑍 ′ are defined in the same way.
Consider the function 𝐹𝑤′ : {0, 1}𝑠 → ℤ𝑄 [𝑋 ] that computes 𝐹𝑤 (𝑥) on ℤ𝑄 [𝑋 ]

instead of R, i.e.,

𝐹𝑤′ (𝑥)
def
=

©«
∑︁

𝑦∈{0,1}𝑠
𝐴′ (𝑥,𝑦)𝑍 ′ (𝑦)ª®¬ ©«

∑︁
𝑦∈{0,1}𝑠

𝐵′ (𝑥,𝑦)𝑍 ′ (𝑦)ª®¬ − ©«
∑︁

𝑦∈{0,1}𝑠
𝐶′ (𝑥,𝑦)𝑍 ′ (𝑦)ª®¬

2 We sometimes abuse the notation of 𝜙 to act on a vector 𝑣 ∈ R𝑛, which applies 𝜙 to
𝑣 entry-wise.

18



where the addition and multiplication are carried out in ℤ𝑄 [𝑋 ] without reducing
modulo (𝑋𝑁 + 1). Observe that,

(𝕩,𝑤) ∈ SatR1CS
⇐⇒ ∀𝑥 ∈ {0, 1}𝑠 , 𝐹𝑤 (𝑥) = 0R

⇐⇒ ∀𝑥 ∈ {0, 1}𝑠 , ∃𝐷𝑥 ∈ ℤ𝑄 [𝑋 ]<3𝑁 , 𝐹𝑤′ (𝑥) = 𝐷𝑥 · (𝑋𝑁 + 1)
⇐⇒ ∃𝐷 ∈ (ℤ𝑄 [𝑋 ]<3𝑁 ) {0,1}

𝑠

,∀𝑥 ∈ {0, 1}𝑠 , 𝐹𝑤′ (𝑥) = 𝐷 (𝑥) · (𝑋𝑁 + 1).

Given a polynomial 𝑤 ′ ∈ (ℤ𝑄 [𝑋 ]<𝑁 )
𝑚
2 and a function 𝐷 : {0, 1}𝑠 → ℤ𝑄 [𝑋 ]<3𝑁 ,

define a function 𝐺𝑤′,𝐷 : {0, 1}𝑠 → ℤ𝑄 [𝑋 ]<3𝑁 via

𝐺𝑤′,𝐷 (𝑥)
def
= 𝐹𝑤′ (𝑥) − 𝐷 (𝑥) · (𝑋𝑁 + 1).

We summarize the above observation as the following lemma.

Lemma 5. Let 𝑤 ′ ∈ (ℤ𝑄 [𝑋 ]<𝑁 )
𝑚
2 . Then 𝜙−1 (𝑤 ′) is a witness of 𝕩 if and only

if there exists a function 𝐷 : {0, 1}𝑠 → ℤ𝑄 [𝑋 ]<3𝑁 such that

∀𝑥 ∈ {0, 1}𝑠 ,𝐺𝑤′,𝐷 (𝑥) = 0.

Note that 𝐺𝑤′,𝐷 is a function, not a polynomial. Let 𝐴′, 𝐵′,𝐶′, 𝑍 ′, 𝐷, ẽq be
multilinear extensions of 𝐴′, 𝐵′,𝐶′, 𝑍 ′, 𝐷, eq respectively. We define the polynomial
extensions of 𝐹𝑤′ and 𝐺𝑤′,𝐷 as follows.

𝐹𝑤′ (𝑥)
def
=

©«
∑︁

𝑦∈{0,1}𝑠
𝐴′ (𝑥,𝑦)𝑍 ′ (𝑦)ª®¬ ©«

∑︁
𝑦∈{0,1}𝑠

𝐵′ (𝑥,𝑦)𝑍 ′ (𝑦)ª®¬− ©«
∑︁

𝑦∈{0,1}𝑠
𝐶′ (𝑥,𝑦)𝑍 ′ (𝑥,𝑦)ª®¬�𝐺𝑤′,𝐷 (𝑥)

def
= 𝐹𝑤′ (𝑥) − 𝐷 (𝑥) · (𝑋𝑁 + 1).

Similar to Spartan [Set20], we consider the polynomial𝑄𝑤′,𝐷 ∈ ℤ𝑄 [𝑋 ] [𝑋1, . . . , 𝑋𝑠 ]

𝑄𝑤′,𝐷 (𝑡)
def
=

∑︁
𝑥∈{0,1}𝑠

ẽq(𝑡, 𝑥) · �𝐺𝑤′,𝐷 (𝑥).

Lemma 6. Let 𝑤 ′ ∈ (ℤ𝑄 [𝑋 ]<𝑁 )
𝑚
2 . Then 𝜙−1 (𝑤 ′) is a witness of 𝕩 if and only

if there exists a function 𝐷 : {0, 1}𝑠 → ℤ𝑄 [𝑋 ]<3𝑁 such that 𝑄𝑤′,𝐷 is identical to
zero.

Proof. By lemma 5, it suffices to prove the equivalence between the following
two statements:

– ∀𝑥 ∈ {0, 1}𝑠 ,𝐺𝑤′,𝐷 (𝑥) = 0.
– 𝑄𝑤′,𝐷 is zero polynomial.

The first statement implies ∀𝑥 ∈ {0, 1}𝑠 , �𝐺𝑤′,𝐷 (𝑥) = 𝐺𝑤′,𝐷 (𝑥) = 0. Then by def-
inition, 𝑄𝑤′,𝐷 (𝑡) ≡ 0. Now suppose the second statement holds. Recall that
ẽq(𝑥, 𝑥 ′) = eq(𝑥, 𝑥 ′) = 1𝑥=𝑥 ′ when 𝑥, 𝑥 ′ ∈ {0, 1}𝑠 . Hence, for every 𝑥 ∈ {0, 1}𝑠 ,

0 = 𝑄𝑤′,𝐷 (𝑥) = �𝐺𝑤′,𝐷 (𝑥) = 𝐺𝑤′,𝐷 (𝑥).
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Building upon lemma 6, one would hope to perform a probabilistic check on
the polynomial 𝑄𝑤′,𝐷 ∈ ℤ𝑄 [𝑋 ]. However, probabilistically checking over ℤ𝑄 [𝑋 ]
is less favorable as ℤ𝑄 does not have a large exceptional set. To get around this
problem, we develop the following ring embedding technique.

Ring Embedding. Our idea is to embed ℤ𝑄 [𝑋 ] into Gal(𝑄,𝑑) [𝑋 ] using a
Galois ring Gal(𝑄,𝑑) that admits a large exceptional set 𝐸. After the embed-
ding, our goal is to check the relation 𝑄𝑤′,𝐷 ≡ 0 in ℤ𝑄 [𝑋 ] probabilistically over
Gal(𝑄,𝑑) [𝑋 ]. Like Spartan, the prover first commits the multilinear extension of
the witness 𝑤 ′. However, when we move into the ring Gal(𝑄,𝑑) [𝑋 ], the verifier
has to additionally check whether the committed polynomial 𝑤 ′ is from ℤ𝑄 [𝑋 ],
but not from Gal(𝑄,𝑑) [𝑋 ] . To check this, we require the prover to also commit
the multilinear extension of the bit representation (denoted by bits) of 𝑤 ′. Once
the prover has committed the multilinear extension of bits, the verifier checks
two things via sumcheck protocols:

1. The outputs of bits are 0, 1.
2. bits is a bit representation of 𝑤 ′.

Given a function bits : {0, 1}𝑠−1×{0, 1 . . . , 𝑁 − 1}×{0, 1, . . . , log𝑄 − 1} → Gal(𝑄,𝑑),
we first explain how to check the outputs of bits are {0, 1}. We identify its
domain with {0, 1}𝑠+𝑠′−1 by naive binary coding, where 𝑠′

def
= ⌈log(𝑁 log𝑄)⌉.

Let b̃its(·) be the multilinear extension of bits(·). We define the polynomial
𝑄 ′bits ∈ Gal(𝑄,𝑑) [𝑋1, . . . , 𝑋𝑠+𝑠′−1]

𝑄 ′bits (𝑡)
def
=

∑︁
𝜎∈{0,1}𝑠+𝑠′−1

ẽq(𝑡, 𝜎) · [b̃its(𝜎)2 − b̃its(𝜎)] .

Lemma 7. bits takes value in {0, 1} if and only of 𝑄 ′bits is zero polynomial.

Proof. First, if bits takes values in {0, 1}, then b̃its(𝜎)2 − b̃its(𝜎) = bits(𝜎)2 −
bits(𝜎) = 0 for every 𝜎 ∈ {0, 1}𝑠+𝑠′−1. Then by definition, 𝑄 ′bits (𝑡) ≡ 0. Second,
suppose that 𝑄 ′bits is the zero polynomial. Recall that ẽq(𝜎, 𝜎 ′) = eq(𝜎, 𝜎 ′) = 1𝜎=𝜎 ′

when 𝜎, 𝜎 ′ ∈ {0, 1}𝑠+𝑠′−1. Hence, for every 𝜎 ∈ {0, 1}𝑠+𝑠′−1,

0 = 𝑄 ′bits (𝜎) = b̃its(𝜎)2 − b̃its(𝜎) = bits(𝜎)2 − bits(𝜎),

meaning that bits(𝜎) is a solution to the equation 𝑦2 − 𝑦 = 0 in Gal(𝑄,𝑑).

Claim. 𝑔(𝑦) = 𝑦2 − 𝑦 has only roots {0, 1} in any Galois ring Gal(𝑄,𝑑).

Proof. Every Galois ring is a local ring i.e., a commutative ring with a unique
maximal ideal. A local ring admits no nontrivial idempotents. That is, if 𝑦 is
not an idempotent which is not 0, 1, then 𝑦2 − 𝑦 = 𝑦 (𝑦 − 1) shows that both 𝑦

and 𝑦 − 1 are zero divisors and, in particular, not invertible, so must be in the
maximal ideal, but then 1 = 𝑦 − (𝑦 − 1) is also in the maximal ideal, which leads
to a contradiction.
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With the above claim, we know that bits(𝜎) ∈ {0, 1}. Therefore, bits takes values
in {0, 1}. We conclude the proof of lemma 7.

Next, we show how to prove that bits is a bit representation of 𝑤 ′. Given a
polynomial 𝑤 ′ ∈ (Gal(𝑄,𝑑) [𝑋 ]<𝑁 )𝑚/2, we define the following function 𝐻𝑤′,bits :
{0, 1}𝑠−1 → Gal(𝑄,𝑑) [𝑋 ]<𝑁

𝐻𝑤′,bits (𝑥)
def
= 𝑤 ′ (𝑥) −

𝑁−1∑︁
𝑖=0

log𝑄−1∑︁
𝑗=0

bits(𝑥, 𝑖, 𝑗) · 2𝑗 · 𝑋 𝑖 ,

Let �𝐻𝑤′,bits ∈ F𝐶𝑜𝑚𝑏 [Gal(𝑄,𝑑), 𝑠 − 1, 𝑁 ] ⊆ Gal(𝑄,𝑑) [𝑋,𝑋1, . . . , 𝑋𝑠−1] denote the
polynomial extension

�𝐻𝑤′,bits (𝑥)
def
= 𝑤 ′ (𝑥) −

𝑁−1∑︁
𝑖=0

log𝑄−1∑︁
𝑗=0

b̃its(𝑥, 𝑖, 𝑗) · 2𝑗 · 𝑋 𝑖 .

and consider the polynomial 𝑄 ′′
𝑤′,bit ∈ F𝐶𝑜𝑚𝑏 [Gal(𝑄,𝑑), 𝑠 − 1, 𝑁 ] ⊆

Gal(𝑄,𝑑) [𝑋,𝑋1, . . . , 𝑋𝑠−1]

𝑄 ′′𝑤′,bits (𝑡)
def
=

∑︁
𝑥∈{0,1}𝑠−1

ẽq(𝑡, 𝑥) · �𝐻𝑤′,bits (𝑥).

Lemma 8. Let 𝑤 ′ ∈ (Gal(𝑄,𝑑) [𝑋 ]<𝑁 )𝑚/2. Then 𝑤 ′ ∈ (ℤ𝑄 [𝑋 ]<𝑁 )𝑚/2 if and only
if there exists a function bits : {0, 1}𝑠−1 × {0, 1 . . . , 𝑁 − 1} × {0, 1, . . . , log𝑄 − 1} →
Gal(𝑄,𝑑) such that both 𝑄 ′bits and 𝑄 ′′

𝑤′,bits are zero polynomials.

Proof. Suppose 𝑤 ′ ∈ (ℤ𝑄 [𝑋 ]<𝑁 )𝑚/2. Then for every 𝑥 ∈ {0, 1}𝑠−1, 𝑤 ′ (𝑥) ∈
ℤ𝑄 [𝑋 ]<𝑁 , so there exists 𝑐𝑥,𝑖 ∈ ℤ𝑄 such that𝑤 ′ (𝑥) = ∑𝑁−1

𝑖=0 𝑐𝑥,𝑖 ·𝑋 𝑖 . Moreover, each
𝑐𝑥,𝑖 has a binary representation 𝑐𝑥,𝑖 =

∑log𝑄−1
𝑗=0 𝑏𝑥,𝑖, 𝑗 · 2𝑗 where each 𝑏𝑥,𝑖, 𝑗 ∈ {0, 1}.

Consider the function bits(𝑥, 𝑖, 𝑗) := 𝑏𝑥,𝑖, 𝑗 . Then for every 𝑥 ∈ {0, 1}𝑠−1,

�𝐻𝑤′,bits (𝑥) = 𝐻𝑤′,bits (𝑥) = 𝑤 ′ (𝑥) −
𝑁−1∑︁
𝑖=0

log𝑄−1∑︁
𝑗=0

bits(𝑥, 𝑖, 𝑗) · 2𝑗 · 𝑋 𝑖 = 0.

Hence 𝑄 ′′
𝑤′,bits ≡ 0 by definition. Since bits takes values in {0, 1}, we have 𝑄 ′bits ≡ 0

by lemma 7. Now we prove the converse. Suppose 𝑄 ′bits and 𝑄 ′′
𝑤′,bits are both zero

polynomials. By lemma 7, bits must take values in {0, 1}. Recall that ẽq(𝑥, 𝑥 ′) =
eq(𝑥, 𝑥 ′) = 1𝑥=𝑥 ′ when 𝑥, 𝑥 ′ ∈ {0, 1}𝑠 . Thus, for every 𝑥 ∈ {0, 1}𝑠−1,

0 = 𝑄 ′′𝑤′,bits (𝑥) = �𝐻𝑤′,bits (𝑥) = 𝐻𝑤′,bits (𝑥).

Plugging in the definition of 𝐻𝑤′,bits (𝑥) and using the property that bits takes
values in {0, 1}, we get

𝑤 ′ (𝑥) =
𝑁−1∑︁
𝑖=0

log𝑄−1∑︁
𝑗=0

bits(𝑥, 𝑖, 𝑗) · 2𝑗 · 𝑋 𝑖 ∈ ℤ𝑄 [𝑋 ]<𝑁 .
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Lemma 9. Let 𝑤 ′ ∈ (Gal(𝑄,𝑑) [𝑋 ]<𝑁 )𝑚2 . Then 𝑤 ′ ∈ (ℤ𝑄 [𝑋 ]<𝑁 )
𝑚
2 and 𝜙−1 (𝑤 ′)

is a witness of 𝕩 if and only if there exists a function 𝐷 : {0, 1}𝑠 → Gal(𝑄,𝑑) [𝑋 ]
and a function bits : {0, 1}𝑠−1 × {0, 1 . . . , 𝑁 − 1} × {0, 1, . . . , log𝑄 − 1} → Gal(𝑄,𝑑)
such that 𝑄𝑤′,𝐷 , 𝑄

′
bits and 𝑄 ′′

𝑤′,bits are zero polynomials.

Proof. Following lemma 6 and lemma 8, we have almost everything, except that
𝐷 now takes values in Gal(𝑄,𝑑) [𝑋 ] rather than ℤ𝑄 [𝑋 ]. Fortunately, by lemma 6,
we have that 𝐺𝑤′,𝐷 and 𝑄𝑤′,𝐷 are equivalent, with 𝑄𝑤′,𝐷 = 0. Combining this
with lemma 5, we obtain 𝐺𝑤′,𝐷 (𝑥) = 𝐹𝑤′ (𝑥) − 𝐷 (𝑥) · (𝑋𝑁 + 1) = 0, which implies
𝐷 (𝑥) = 𝐹𝑤′ (𝑥 )

𝑋𝑁 +1 . Since 𝑤 ′ and 𝐹𝑤′ (𝑥) take values in ℤ𝑄 [𝑋 ], it follows that 𝐷 (𝑥)
also takes values in ℤ𝑄 [𝑋 ].

For the convenience of describing the interactive argument, we additionally
define the following functions and polynomials. For a polynomial 𝑓 in variable
𝑋 , which might have other variables, we sometimes use 𝑓 |𝑋=𝛼 or simply 𝑓 |𝛼 to
denote the result obtained by letting 𝑋 take value 𝛼 ; the result 𝑓 |𝛼 is a polynomial
in other variables or a value when 𝑋 is the only variable.

– For 𝑟 ∈ (Gal(𝑄,𝑑))𝑠 , we define 𝐴′, 𝐵′,𝐶′, three 𝑠-variate polynomials in
Gal(𝑄,𝑑) [𝑋 ], as

𝐴′ (𝑟 ) def=
∑︁

𝑦∈{0,1}𝑠
𝐴′ (𝑟,𝑦)𝑍 ′ (𝑦),

𝐵′ (𝑟 ) def=
∑︁

𝑦∈{0,1}𝑠
𝐵′ (𝑟,𝑦)𝑍 ′ (𝑦),

𝐶′ (𝑟 ) def=
∑︁

𝑦∈{0,1}𝑠
𝐶′ (𝑟,𝑦)𝑍 ′ (𝑦).

– For 𝑟 ∈ (Gal(𝑄,𝑑))𝑠−1 and 𝛼 ∈ Gal(𝑄,𝑑), define

bits(𝑟 ) def=
𝑁−1∑︁
𝑖=0

log𝑄−1∑︁
𝑗=0

b̃its(𝑟, 𝑖, 𝑗) · 2𝑗 · 𝑋 𝑖 ∈ Gal(𝑄,𝑑) [𝑋 ] .

and
bits𝑟 : {0, 1}𝑠 ↦→ Gal(𝑄,𝑑), (𝑖, 𝑗) ↦→ bits(𝑟, 𝑖, 𝑗),

where we interpret the 𝑠′-bit input string as a pair (𝑖, 𝑗) ∈ {0, . . . , 𝑁 − 1} ×
{0, . . . , log𝑄 − 1}. We use this notation henceforth. Define�bits𝑟,𝛼 (𝜎) def= b̃its𝑟 (𝜎)𝑊𝛼 (𝜎)

where 𝑊𝛼 is the MLE of function 𝑊𝛼 defined below

𝑊𝛼 : {0, 1}𝑠′ → Gal(𝑄,𝑑), (𝑖, 𝑗) ↦→ 2𝑗 · 𝛼𝑖 .

– For 𝜏 ∈ (Gal(𝑄,𝑑))𝑠 and 𝛼 ∈ Gal(𝑄,𝑑), we define the polynomial G1,𝜏,𝛼 ∈
Gal(𝑄,𝑑) [𝑋1, . . . , 𝑋𝑠 ] as

G1,𝜏,𝛼 (𝑥)
def
= ẽq(𝜏, 𝑥) · �𝐺𝑤′,𝐷 (𝑥) |𝑋=𝛼 .
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– For 𝜏 ∈ (Gal(𝑄,𝑑))𝑠−1 and 𝛼 ∈ Gal(𝑄,𝑑), we define the polynomial G2,𝜏,𝛼 ∈
Gal(𝑄,𝑑) [𝑋1, . . . , 𝑋𝑠−1] as

G2,𝜏,𝛼 (𝑥)
def
= ẽq(𝜏, 𝑥) · �𝐻𝑤′,bits (𝑥) |𝑋=𝛼 .

– For 𝜏 ∈ (Gal(𝑄,𝑑))𝑠 , define polynomial G3,𝜏 ∈ Gal(𝑄,𝑑) [𝑋1, . . . , 𝑋𝑠−1] as

G3,𝜏 (𝑥)
def
= ẽq(𝜏, 𝑥) · [b̃its(𝑥)2 − b̃its(𝑥)] .

– For 𝑟 ∈ (Gal(𝑄,𝑑))𝑠 and 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 , 𝛼 ∈ Gal(𝑄,𝑑), define an 𝑠-variate polynomial
over Gal(𝑄,𝑑) as

𝑀𝑟,𝑟𝐴,𝑟𝐵 ,𝑟𝐶 ,𝛼 (𝑦)
def
= 𝑟𝐴𝐴

′ (𝑟,𝑦) |𝛼 ·𝑍 ′ (𝑦) |𝛼+𝑟𝐵𝐵′ (𝑟,𝑦) |𝛼 ·𝑍 ′ (𝑦) |𝛼+𝑟𝐶𝐶′ (𝑟,𝑦) |𝛼 ·𝑍 ′ (𝑦) |𝛼 .

Now, we summarize the whole interactive protocol below.

Interactive argument of knowledge for RICS over ring R

Ingredients:

– Set 𝑑 = 𝜔 (log 𝜆) log𝑁 .
– PC: an extractable polynomial commitment for F𝐶𝑜𝑚𝑏 [Gal(𝑄,𝑑), 𝑠−1, 𝑁 ].
– PC′: an extractable polynomial commitment for F𝐶𝑜𝑚𝑏 [Gal(𝑄,𝑑), 𝑠, 3𝑁 ].
– PC′′: an extractable polynomial commitment for F𝑀𝑈𝐿 [Gal(𝑄,𝑑), 𝑠 + 𝑠′].

Procedures:

– Setup(1𝜆): sample ppPC ← PC.Setup(1𝜆), pp′PC ← PC′ .Setup(1𝜆), pp′′PC ←
PC′′ .Setup(1𝜆), and output pp := (ppPC, pp′PC, pp

′′
PC).

– ⟨P(pp, 𝕩,𝑤),V(pp, 𝕩)⟩ where 𝕩 = (R, 𝐴, 𝐵,𝐶,𝑚).
1. Both parties parse pp = (ppPC, pp′PC, pp

′′
PC).

2. P : Compute 𝑤 ′, 𝐷, bits from (𝕩,𝑤) and
• (com𝑤′ , st𝑤′ ) ← PC.Commit(ppPC,𝑤 ′);
• (com𝐷 , st𝐷 ) ← PC′ .Commit(pp′PC, 𝐷);
• (combits, stbits) ← PC′′ .Commit(pp′′PC, b̃its).

Send (com1, com2, com3) to V.
3. V : Sample 𝜏1 ← 𝐸𝑠 , 𝜏2 ← 𝐸𝑠−1, 𝜏3 ← 𝐸𝑠 , 𝛼1 ← 𝐸, 𝛼2 ← 𝐸 and send

them all to P. Additionally sample 𝑟1 ← 𝐸𝑠 , 𝑟2 ← 𝐸𝑠−1, 𝑟3 ← 𝐸𝑠 .
4. sumcheck #1. Run sumcheck protocols.
• 𝑒1 ← SumCheck⟨𝑃𝑆𝐶 (G1,𝜏1,𝛼1

),𝑉𝑆𝐶 (𝑟1)⟩(𝑠, 3, 0).
• 𝑒2 ← SumCheck⟨𝑃𝑆𝐶 (G2,𝜏2,𝛼2

),𝑉𝑆𝐶 (𝑟2)⟩(𝑠 − 1, 3, 0).
• 𝑒3 ← SumCheck⟨𝑃𝑆𝐶 (G3,𝜏3 ),𝑉𝑆𝐶 (𝑟3)⟩(𝑠 + 𝑠′, 2, 0).

5. P: Compute
• 𝑣𝐴 := 𝐴′ (𝑟1) |𝛼1

, 𝑣𝐵 := 𝐵′ (𝑟1) |𝛼1
, 𝑣𝐶 := 𝐶′ (𝑟1) |𝛼1

, 𝑣𝐷 := 𝐷 (𝑟1) |𝛼1
∈

Gal(𝑄,𝑑);
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• 𝑣2 := 𝑤 ′ (𝑟2) |𝛼2
, �̂�2 := bits(𝑟2) |𝛼2

∈ Gal(𝑄,𝑑);
• 𝑣3 := b̃its(𝑟3) ∈ Gal(𝑄,𝑑).

Send (𝑣𝐴, 𝑣𝐵, 𝑣𝐶 , 𝑣𝐷 , 𝑣2, �̂�2, 𝑣3) to V.
6. Check the following openings; reject unless they all accept.

• PC.Eval⟨P(ppPC, (com𝑤′ , (𝑟2, 𝛼2), 𝑣2), st𝑤′ ),V(ppPC, (com𝑤′ , (𝑟2, 𝛼2), 𝑣2))⟩
• PC′ .Eval⟨P(pp′

PC
, (com𝐷 , (𝑟1, 𝛼1), 𝑣𝐷 ), st𝐷 ),V(pp′PC, (com𝐷 , (𝑟1, 𝛼1), 𝑣𝐷 ))⟩

• PC′′ .Eval⟨P(pp′′
PC

, (combits, 𝑟3, 𝑣3), stbits),V(pp′′PC, (combits, 𝑟3, 𝑣3))⟩
7. V: Check the following equations; reject unless they all hold true.
• 𝑒1

?
= ẽq(𝜏1, 𝑟1) · (𝑣𝐴 · 𝑣𝐵 − 𝑣𝐶 − 𝑣𝐷 · (𝛼𝑁

1 + 1)).
• 𝑒2

?
= ẽq(𝜏2, 𝑟2) · (𝑣2 − �̂�2).

• 𝑒3
?
= ẽq(𝜏3, 𝑟3) · (𝑣23 − 𝑣3).

8. V : Sample 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 ← 𝐸 and send them to P.
9. sumcheck #2. Run sumcheck protocols.
• 𝑒′1 ← SumCheck⟨P(𝑀𝑟1,𝑟𝐴,𝑟𝐵 ,𝑟𝐶 ,𝛼1

),V(𝑟 ′1)⟩(𝑠, 2, 𝑟𝐴𝑣𝐴 + 𝑟𝐵𝑣𝐵 + 𝑟𝐶𝑣𝐶 )
• 𝑒′2 ← SumCheck⟨P(�bits𝑟2,𝛼2

),V(𝑟 ′2)⟩(𝑠 + 𝑠′, 2, �̂�2)
10. P: Compute 𝑣 ′1 = 𝑤 ′ (𝑟 ′1 [1...]) |𝛼1

, 𝑣 ′2 = b̃its(𝑟2, 𝑟 ′2), ∈ Gal(𝑄,𝑑) and send
(𝑣 ′1, 𝑣 ′2) to V.

11. V: Let 𝜎 := (𝑟2, 𝑟 ′2) ∈ {0, 1}
𝑠+𝑠′ . Check the following openings; reject

unless they all accept.
• PC.Eval⟨P (ppPC, (com𝑤′ , (𝑟 ′1 [1...], 𝛼1 ), 𝑣′1 ), st𝑤′ ),V(ppPC, (com𝑤′ , (𝑟 ′1 [1...], 𝛼1 ), 𝑣′1 ) ) ⟩
• PC′′ .Eval⟨P (pp′PC, (combits, 𝜎, 𝑣

′
2 ), stbits ),V(pp′PC, (combits, 𝜎, 𝑣

′
2 ) ) ⟩

12. V: Check the following equations; reject unless they all hold true.
• 𝑒′1

?
= (𝑟𝐴𝑣 ′𝐴 + 𝑟𝐵𝑣 ′𝐵 + 𝑟𝐶𝑣 ′𝐶 ) · 𝑣𝑍 , where

𝑣 ′𝐴 := 𝐴′ (𝑟1, 𝑟 ′1) |𝛼1
, 𝑣 ′𝐵 := 𝐵′ (𝑟1, 𝑟 ′1) |𝛼1

, 𝑣 ′𝐶 := 𝐶′ (𝑟1, 𝑟 ′1) |𝛼1

𝑣𝑍 := (1 − 𝑟 ′1 [0]) · 𝑣 ′1 + 𝑟1 [0] ·�(1, 𝑖𝑜) (𝑟 ′1 [1...]) |𝛼1
.

• 𝑒′2
?
= 𝑣 ′2 ·𝑊𝛼1

(𝑟 ′2).
13. V : Accept.

Theorem 5. The protocol above is a secure public-coin interactive argument of
knowledge for R1CS over the ring R = 𝑍𝑄 [𝑋 ]/(𝑋𝑁 + 1) when PC,PC′,PC′′ are
instantiated with extractable polynomial commitments constructed in theorem 3.

Proof. Completeness follows directly from the fact that if the Ring-R1CS in-
stance is satisfiable, the honest prover can construct all required polynomials
so that they all vanish when evaluated according to the protocol. Concretely,
given a valid witness 𝑤 ∈ R𝑚

2 , one derives polynomials 𝑄𝑤′,𝐷 , 𝑄
′
bits, 𝑄

′′
𝑤′,bits that

are zero polynomials. In each sub-protocol (including all sumcheck protocols),
the verifier’s checks pass with probability 1 by completeness of the sumcheck
protocol, and all polynomial openings in the commitment scheme are correct.
Hence, these prove the completeness.
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Then we prove the knowledge soundness. Here we construct the knowledge
extractor E as first obtaining the commitments com𝑤′ , com𝐷 , combits, from 𝑃∗,
and then using the extractor of the extractable polynomial commitment to
obtain a polynomial 𝑤 ′ ∈ (Gal(𝑄,𝑑) [𝑋 ]<𝑁 )𝑚/2 and functions 𝐷, bits, and set
𝑤 := 𝜙−1 (𝑤 ′) as the output witness. By lemma 9, if (pp, 𝕩,𝑤) ∉ ℜ, then at least
one of 𝑄𝑤′,𝐷 , 𝑄

′
bits, 𝑄

′′
𝑤′,bits is not a zero polynomial. Hence, we have

Pr
[
⟨P∗ (pp, 𝕩, st),V(pp, 𝕩)⟩ = 1 ∧ (pp, 𝕩,𝑤) ∉ ℜ

]
≤Pr

[
⟨P∗ (pp, 𝕩, st),V(pp, 𝕩)⟩ = 1 ∧ (𝑄𝑤′,𝐷 ≠ 0 ∨𝑄 ′′𝑤′,bits ≠ 0 ∨𝑄 ′bits ≠ 0)

]
≤Pr

[
V accepts ∧𝑄𝑤′,𝐷 ≠ 0

]
+ Pr

[
V accepts ∧𝑄 ′′𝑤′,bits ≠ 0

]
+ Pr

[
V accepts ∧𝑄 ′bits ≠ 0

]
.

Instead of directly checking whether 𝑄𝑤′,𝐷 and 𝑄 ′′
𝑤′,bits are zero polynomials, the

verifier first substitutes the variable 𝑋 with random elements 𝛼1, 𝛼2 ∈ 𝐸. By the
generalized Schwartz-Zippel lemma, this introduces soundness error

𝜀substitute ≤
deg𝑋 (𝑄𝑤′,𝐷 )

|𝐸 | +
deg𝑋 (𝑄 ′′𝑤′,bits)

|𝐸 | ≤ 𝑂 (𝑁 )
|𝐸 | .

The protocol runs three sumcheck sub-protocols in the first stage. By the gen-
eralized Schwartz–Zippel lemma and union bound, the soundness error of these
sumcheck sub-protocols is

𝜖sumcheck#1 ≤
3𝑠

|𝐸 | +
3(𝑠 − 1)
|𝐸 | + 2(𝑠 + 𝑠′)

|𝐸 | ≤ 𝑂 (𝑠 + 𝑠′)
|𝐸 | .

Next, the protocol reduces from checking 𝑣𝐴, 𝑣𝐵, 𝑣𝐶 to checking 𝑟𝐴𝑣𝐴 +𝑟𝐵𝑣𝐵 +𝑟𝐶𝑣𝐶 ,
which introduces soundness error 𝜀combine ≤ 1

|𝐸 | . The protocol then runs two
sumcheck sub-protocols in the second stage. By the generalized Schwartz–Zippel
lemma and union bound, the soundness error of these sumcheck sub-protocols is

𝜖sumcheck#2 ≤
2𝑠

|𝐸 | +
2(𝑠 + 𝑠′)
|𝐸 | ≤ 𝑂 (𝑠 + 𝑠′)

|𝐸 | .

Finally, the prover might still convince the verifier although one of 𝑒𝑖 or 𝑒′𝑖
derived from the protocol is not the correct evaluation of the correspond-
ing polynomial. By the argument of knowledge and binding property of the
polynomial commitment, such an event occurs only with probability at most

𝜀polycommit ≤ 2

(√
𝑚𝑁 log𝑄

|𝐸 | + 0.9𝜆
)
+ 𝜀Merkle (𝜆) (by theorem 3). In total, the knowl-

edge soundness error of the protocol is at most

𝜀substitute + 𝜀sumcheck#1 + 𝜀combine + 𝜀sumcheck#2 + 𝜀polycommit

= 𝑂

(
𝑁 +

√︁
𝑚𝑁 log𝑄

|𝐸 | + 0.9𝜆 + 𝜀Merkle

)
.
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Efficiency. We analyze the complexity of our interactive argument for RICS
over the ring R.

– Prover time: The main bottlenecks of the prover’s computation are as fol-
lows. Committing to 𝑤 ′, 𝐷, bits requires computing 𝑂 (2𝑠+𝑠′ ) Merkle hashes.
Running the sumcheck protocols as the prover costs 𝑂 (2𝑠+𝑠′ ) Galois ring op-
erations 3. The computation of 𝑣𝐴, 𝑣𝐵, 𝑣𝐶 costs 𝑂 (𝑛𝑁 ) Galois ring operations.
The evaluation protocol of the polynomial commitment requires 𝑂 (2𝑠+𝑠′ ) Ga-
lois ring operations. The total cost is 𝑂 (𝑛𝑁 +2𝑠+𝑠′ ) = 𝑂 (𝑛𝑁 +𝑚𝑁 log𝑄) Galois
ring operations and Merkle hashes.

– Verifier time: The bottleneck of the verifier consists of running the evaluation
protocols of the polynomial commitments as the verifier, and evaluating
multi-linear extensions of 𝐴′, 𝐵′,𝐶′,�(1, 𝑖𝑜),𝑊 ′ on a single point each. The
former costs 𝑂 (

√
2𝑠+𝑠′ ) = 𝑂 (

√︁
𝑚𝑁 log𝑄) ring operations according to theorem

3. The latter costs 𝑂 (𝑛𝑁 +𝑁 log𝑄) ring operations by the definition of multi-
linear extensions, taking into account the substitution of 𝑋 with 𝛼1. The total
cost is 𝑂 (𝑛𝑁 +

√︁
𝑚𝑁 log𝑄 + 𝑁 log𝑄) Galois ring operations.

– Communication cost: The bottleneck appears in the evaluation proto-
cols of the polynomial commitments. The total communication cost is
𝑂 (

√︁
𝑚𝑁 log𝑄) Galois ring elements.

We conclude this section by transforming the interactive argument of knowl-
edge in the previous section into a non-interactive argument of knowledge with
sublinear proof size via the Fiat–Shamir transformation [FS86] in the Random
Oracle Model (ROM).

Theorem 6 (Sublinear Proof for Ring-R1CS via Ring Switching). Let
𝜆 be the security parameter and R = ℤ𝑄 [𝑋 ]/(𝑋𝑁 + 1) be a ring that depends on
the security parameter, where 𝑄 = 𝑝𝑠 is a power of prime. Let 𝑑 = log𝑝

(
2
√
𝑚𝑁

)
+

𝜔 (log 𝜆). Assuming the existence of collision-resistant hash functions, there exists
a non-interactive argument of knowledge (under the Fiat–Shamir heuristic) for
R1CS over the ring R with the following efficiency and security characteristics.

– Proof Size: The proof size is 𝑂 (
√︁
𝑚𝑁 log𝑄) elements in Gal(𝑝𝑠 , 𝑑).

– Prover Time: The prover’s running time is 𝑂𝜆 (𝑛𝑁 +𝑚𝑁 log𝑄) operations
in Gal(𝑝𝑠 , 𝑑).

– Verifier Time: The verifier’s running time is 𝑂𝜆 (𝑛𝑁 +
√︁
𝑚𝑁 log𝑄+𝑁 log𝑄)

operations in Gal(𝑝𝑠 , 𝑑).

4.3 Proving the Witness Has a Small Norm

Let 𝛽 < 𝑄 be a power-of-two threshold. In lemma 8, we restrict each entry of
witness 𝑤 to be in the subring R by requiring that 𝑄 ′bits and 𝑄 ′′

𝑤′,bits to be zero
polynomial. Recall that bits a function with domain {0, 1}𝑠−1 × {0, 1 . . . , 𝑁 − 1} ×
3 This can be done by employing [Tha13,WJB+17,XZZ+19] to implement a linear-time

prover for the sumcheck protocol
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{0, 1, . . . , log𝑄 − 1} and we interpret it as follows: For every 𝑥 ∈ {0, 1}𝑠−1, the
entry of 𝑤 ′ encoded by 𝑥 has bit decomposition

𝑁−1∑︁
𝑖=0

log𝑄−1∑︁
𝑗=0

bits(𝑥, 𝑖, 𝑗) · 2𝑗 · 𝑋 𝑖 ∈ ℤ𝑄 [𝑋 ]<𝑁 ,

where bits(𝑥, 𝑖, 𝑗) takes value in {0, 1}. Consider replacing log𝑄 by log 𝛽. Then
the above sum must equal to

𝑁−1∑︁
𝑖=0

𝑎𝑖𝑋
𝑖 ∈ ℤ𝑄 [𝑋 ]<𝑁

for some 𝑎0, . . . , 𝑎𝑁−1 ∈ {0, 1, . . . , 𝛽 − 1}. This way, we can restrict every entry of
𝑤 ′ to be a polynomial in ℤ𝑄 [𝑋 ]<𝑁 with coefficients smaller than 𝛽.
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A Proximity Gap of Interleaved Linear Codes over Ring

Lemma 10 (Lemma 3 restated). Let 𝐶 ⊆ 𝑅𝑀 be linear code over ring 𝑅 with
minimum distance 𝑑, and let 𝐶𝑚 ⊆ 𝑅𝑚×𝑀 be the 𝑚-fold interleaved code of 𝐶.
Then the following holds for all 𝑢 ∈ 𝑅𝑚×𝑀 . Define

𝐻
def
= { 𝑗 ∈ [𝑀] : ∃𝑖 ∈ [𝑚] s.t. 𝑢𝑖 [ 𝑗] ≠ 𝑐𝑖 [ 𝑗]} ,

where 𝑢𝑖 denotes the 𝑖-th row of 𝑢 and 𝑐𝑖 ∈ 𝐶 is the codeword closest to 𝑢𝑖 . For
every ℎ ∈ ℕ such that 𝑑 ≥ 4ℎ and |𝐻 | ≥ ℎ, it holds that

Pr
𝛼1,...,𝛼𝑚←𝑅

[d(𝛼1𝑢1 + · · ·𝛼𝑚𝑢𝑚,𝐶) < ℎ] ≤ ℎ

L(𝑅) .

Proof. Write 𝑆
def
= 𝑅𝑢1 + · · · + 𝑅𝑢𝑚. Let D be the distribution of 𝛼1𝑢1 + · · ·𝛼𝑚𝑢𝑚

where 𝛼1, . . . , 𝛼𝑚 ← 𝑅.

Claim. For every 𝑣 ∈ 𝑆, the following distribution is identical to D:

– D′: sample 𝛼1, . . . , 𝛼𝑚 ← 𝑅 and output 𝑤 := 𝑣 + 𝛼1𝑢1 + · · ·𝛼𝑚𝑢𝑚.

Proof. Write 𝑣 = 𝛽1𝑢1 + · · · + 𝛽𝑚𝑢𝑚 where 𝛽1, . . . , 𝛽𝑚 ∈ 𝑅. It suffices to prove that
for all 𝑤∗ ∈ 𝑆, Pr𝑤←D′ [𝑤 = 𝑤∗] = Pr𝑤←D [𝑤 = 𝑤∗]. Fix 𝑤∗ ∈ 𝑆. Clearly,

Pr
𝑤←D

[𝑤 = 𝑤∗] = |𝐴|/|𝑅 |𝑚, Pr
𝑤←D′

[𝑤 = 𝑤∗] = |𝐴′ |/|𝑅 |𝑚
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where

𝐴 = {(𝛼1, . . . , 𝛼𝑚) ∈ 𝑅𝑚 : 𝛼1𝑢1 + · · ·𝛼𝑚𝑢𝑚 = 𝑤∗} ,
𝐴′ =

{
(𝛼 ′1, . . . , 𝛼 ′𝑚) ∈ 𝑅𝑚 : 𝑣 + 𝛼 ′1𝑢1 + · · ·𝛼 ′𝑚𝑢𝑚 = 𝑤∗

}
=

{
(𝛼 ′1, . . . , 𝛼 ′𝑚) ∈ 𝑅𝑚 : (𝛼 ′1 + 𝛽1)𝑢1 + · · · (𝛼 ′𝑚 + 𝛽𝑚)𝑢𝑚 = 𝑤∗

}
.

Note that (𝛼1, . . . , 𝛼𝑚) ↦→ (𝛼1 − 𝛽1, . . . , 𝛼𝑚 − 𝛽𝑚) is a bijection between 𝐴 and 𝐴′,
and the claim follows.

Let 𝐸 be an exceptional set of 𝑅 with |𝐸 | = L(𝑅). We consider two cases.
Case 1. There exists some 𝑣∗ ∈ 𝑆 such that d(𝑣∗,𝐶) ≥ 2ℎ. By the claim above, if
one samples 𝛼 ← 𝐸,𝑤 ′ ← D and set 𝑤 := 𝛼𝑣∗ +𝑤 ′, then the distribution of 𝑤 is
still D. Hence,

Pr
𝑤←D

[d(𝑤,𝐶) < ℎ] = Pr
𝛼←𝐸,𝑤′←D

[d(𝛼𝑣∗ +𝑤 ′,𝐶) < ℎ] .

We shall prove that for every fixed value of 𝑤 ′, there exists at most one 𝛼 ∈ 𝐸

satisfying d(𝛼𝑣∗ +𝑤 ′,𝐶) < ℎ; this would imply

Pr
𝛼←𝐸,𝑤′←D

[d(𝛼𝑣∗ +𝑤 ′,𝐶) < ℎ] ≤ 1

|𝐸 | .

Fix 𝑤 ′ ∈ 𝑆 and assume towards contradiction that there are 𝛼, 𝛼 ′ ∈ 𝐸 such
that 𝛼 ≠ 𝛼 ′ and d(𝛼𝑣∗ +𝑤 ′,𝐶) < ℎ, d(𝛼 ′𝑣∗ +𝑤 ′,𝐶) < ℎ. Since 𝐶 is a linear code,
by triangle inequality we have d((𝛼 − 𝛼 ′)𝑣∗,𝐶) < 2ℎ, meaning that there exists a
codeword 𝑐 ∈ 𝐶 such that d((𝛼 − 𝛼 ′)𝑣∗, 𝑐) ≤ 2ℎ. Since (𝛼 − 𝛼 ′) is a unit, we have

d(𝑣∗,𝐶) ≤ d(𝑣∗, (𝛼 − 𝛼 ′)−1 · 𝑐) = d((𝛼 − 𝛼 ′) · 𝑣∗, 𝑐) < 2ℎ.

which contradicts the choice of 𝑣∗.
Case 2. For all 𝑣 ∈ 𝑆, d(𝑣,𝐶) < 2ℎ. For 𝑖 ∈ [𝑚], define 𝐻𝑖

def
=

{ 𝑗 ∈ [𝑀] : 𝑢𝑖 [ 𝑗] ≠ 𝑐𝑖 [ 𝑗]}. Clearly, 𝐻 = ∪𝑖∈[𝑚]𝐻𝑖 . Since 2ℎ ≤ 𝑑/2, each 𝑢𝑖
can be uniquely expressed as 𝑢𝑖 = 𝑐𝑖 + 𝛿𝑖 where 𝑐𝑖 ∈ 𝐶 and the non-zero entries
of 𝛿𝑖 is exactly 𝐻𝑖 . We shall prove that for every 𝑗 ∈ 𝐻 ,

Pr
𝑤←D

[ 𝑗 ∉ Δ(𝑤,𝐶) ∧ d(𝑤,𝐶) < ℎ] ≤ 1

|𝐸 | .

Let 𝐵 𝑗 denote the event that 𝑗 ∉ Δ(𝑤,𝐶) ∧ d(𝑤,𝐶) < ℎ. Note that if |Δ(𝑤,𝐶) | =
d(𝑤,𝐶) < ℎ = |𝐻 |, there must be some 𝑗 ∈ 𝐻 such that 𝑗 ∉ Δ(𝑤,𝐶), meaning 𝐵 𝑗

does happen. Hence, by union bound,

Pr
𝑤←D

[d(𝑤,𝐶) < ℎ] ≤ Pr
𝑤←D

[
∪𝑗∈𝐻𝐵 𝑗

]
≤ |𝐻 ||𝐸 | ≤

ℎ

|𝐸 | .

It remains to prove Pr𝑤←D
[
𝐵 𝑗

]
≤ 1/|𝐸 | for all 𝑗 ∈ 𝐻 . Fix 𝑗 ∈ 𝐻 , say, 𝑗 ∈ 𝐻𝑖 .

Again, by the claim above,

Pr
𝑤←D

[𝐵𝑖 ] = Pr
𝛼←𝐸,𝑤′←D

[ 𝑗 ∉ Δ(𝛼𝑢𝑖 +𝑤 ′,𝐶) ∧ d(𝛼𝑢𝑖 +𝑤 ′,𝐶) < ℎ] .
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It suffices to show that, for every fixed value of 𝑤 ′, there exists at most one 𝛼 ∈ 𝐸
such that Δ(𝛼𝑢𝑖 +𝑤 ′,𝐶) ∧ d(𝛼𝑢𝑖 +𝑤 ′,𝐶) < ℎ.

Fix 𝑤 ′ ∈ 𝑆 and assume towards contradictions that there exists 𝛼, 𝛼 ′ ∈ 𝐸 such
that 𝛼 ≠ 𝛼 ′ and

𝑗 ∉ Δ(𝑧,𝐶), d(𝑧,𝐶) < ℎ, 𝑗 ∉ Δ(𝑧′,𝐶), d(𝑧′,𝐶) < ℎ,

where 𝑧
def
= 𝛼𝑢𝑖 +𝑤 ′ and 𝑧′

def
= 𝛼 ′𝑢𝑖 +𝑤 ′. Since d(𝑧,𝐶) < ℎ and d(𝑧′,𝐶) < ℎ, 𝑧 and

𝑧′ can be uniquely written as 𝑧 = 𝑐𝑧 + 𝛿𝑧, 𝑧′ = 𝑐𝑧′ + 𝛿𝑧′ where 𝑐𝑧, 𝑐𝑧′ ∈ 𝐶 and the
non-zero entries of 𝛿𝑧 and 𝛿𝑧′ are exactly Δ(𝑧,𝐶) and Δ(𝑧′,𝐶) respectively. Since
𝑢𝑖 = (𝛼 −𝛼 ′)−1 (𝑧 − 𝑧′), we have 𝑐𝑖 = 𝑐𝑧 + 𝑐𝑧′ and Δ(𝑢𝑖 ,𝐶) ⊆ Δ(𝑧,𝐶) ∪Δ(𝑧′,𝐶); thus,
𝑗 ∉ Δ(𝑢𝑖 ,𝐶), contradicting with 𝑗 ∈ 𝐻𝑖 .
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