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Abstract. A privately constrained pseudorandom function (pCPRF) is a PRF with the ad-
ditional property that one can derive a constrained key that allows evaluating the PRF only
on inputs satisfying a constraint predicate C, without revealing C itself or leaking information
about the PRF’s output on inputs that do not satisfy the constraint.

Existing privately constrained PRFs face significant limitations: either (1) they rely on as-
sumptions known to imply fully-homomorphic encryption or indistinguishability obfuscation,
(2) they support only highly restricted classes of constraints—for instance, no known group-
based pCPRF even supports the simple class of puncturing constraints (where the constrained
key permits evaluation on all but one point while hiding the punctured point), or (3) they are
limited to polynomial-size input domains. A long-standing open question has been whether one
can construct a privately constrained PRF from group-based assumptions for more expressive
classes of constraints. In this work, we present a pCPRF based on the decisional composite
residuosity (DCR) assumption that supports a highly expressive class of predicates, namely
constraints with polynomially bounded Waring rank, which notably includes puncturing.

From a technical perspective, our work follows the general template of Couteau, Meyer, Pas-
selègue, and Riahinia (Eurocrypt’23), who constructed a pCPRF from group-based homomor-
phic secret-sharing but were limited to inner-product constraints in the constraint-hiding set-
ting. Leveraging novel techniques for computing with distributed discrete logarithms (DDLog),
we enable the non-interactive authentication of powers of linear combinations of shares of some
value. This, in turn, allows us to express constraints with polynomially bounded Waring rank.

Our construction is single-key, selectively secure, and supports an exponential-size domain.
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1 Introduction

Pseudorandom functions (PRFs) are a fundamental tool in both the theory and practice
of cryptography. A constrained PRF (CPRF) allows a master secret PRF key to be used
to derive a constrained key that permits evaluation of the PRF only on a restricted set of
inputs. This restriction is determined by a predicate C, such that the constrained key allows
evaluation at all points where C(x) = 0, while for any x where C(x) = 1, the PRF output
remains pseudorandom.3

Some CPRFs support private constraints (or are constraint-hiding), meaning that the
constrained key reveals no information about the specific constraint used, beyond the allowed
class of constraints.

Originally, constrained PRFs were proposed for applications such as identity-based key
exchange and broadcast encryption [BW13]. Later, they played a key role in the punctured
programming technique [SW14], which enabled many applications of indistinguishability ob-
fuscation. CPRFs have also been used to construct watermarkable PRFs, searchable encryp-
tion, private keyword search, and symmetric-key deniable encryption [BLW17].

One of the most fundamental constraint classes is puncturing, where C(x) = 1 if and
only if x = x⋆. In this case, a constrained key—called a punctured key—allows evaluation
of the PRF at all points except for x⋆. Puncturable PRFs can be built using the GGM
construction [GGM84], where a PRF is constructed from a tree of length-doubling pseudo-
random generators (PRGs). However, in GGM-style constructions [BW13,KPTZ13,BGI14],
the punctured key reveals the punctured point x⋆, meaning that the construction is not
private.

Privately puncturable PRFs were first constructed by Boneh et al. [BLW17] using mul-
tilinear maps or indistinguishability obfuscation, achieving constrained PRFs for general
polynomial-size circuits. Later constructions obtained privately constrained PRFs for cir-
cuits under the learning with errors (LWE) assumption [BTVW17, CC17] and were fur-
ther extended in various ways, such as enabling programmability [PS18] and adaptive se-
curity [HKKW19,DKN+20]. Alternative constructions support weaker classes of predicates
or security properties while avoiding the full power of LWE. These include constructions based
on DDH [AMN+18], DCR [CMPR23], and even solely one-way functions [DKN+20,Ser24].

Notably, however, none of these constructions achieve a private puncturable PRF without
relying on either LWE or indistinguishability obfuscation. The only exception is the work of
Boyle et al. [BGIK22], which is based solely on one-way functions but requires the PRF
domain to be polynomially sized (as generating a constrained key requires iterating over the
entire domain). Thus, this construction is more akin to a “privately programmable incremental
PRG.” This leaves the following challenging open problem:

Is it possible to construct a privately puncturable PRF with a superpolynomial domain size
without relying on LWE or indistinguishability obfuscation?

Our Contributions. We construct the first privately puncturable PRF from the decisional
composite residuosity (DCR) assumption that supports an exponentially large domain, re-
solving the question posed above. In fact, we construct a private CPRF for a broader class of
functions—namely, functions with polynomially bounded Waring rank—that includes punc-
turing.

A function has polynomially bounded Waring rank if it can be expressed as the sum of
at most polynomially many powers of linear functions, and has polynomial degree. This class

3 The convention of using C(x) = 0 instead of C(x) = 1 for inputs that satisfy the constraint simplifies the
exposition of our construction.
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encompasses many useful functions, including puncturing, as well as all log-local functions,
inner product membership [BCM+24], and more.

Our private CPRF construction follows the homomorphic secret-sharing-based template
for building private CPRFs introduced by Couteau, Meyer, Passelègue, and Riahinia [CMPR23].
In essence, the CPRF key and constrained keys are defined as the values needed for non-
interactively computing (subtractive) secret shares of C(x) · FK(x), where C represents the
constraint and F is a PRF. Notably, the CPRF outputs are the shares of this value, and the
PRF F is not the PRF being constrained, but rather a tool for ensuring that when C(x) = 1,
the shares remain pseudorandom. Specifically, when C(x) = 0, both parties hold the same
shares (i.e., the constrained key produces the same output as the master key), whereas when
C(x) = 1, the PRF F ensures that the two shares are pseudorandom.

The construction of [CMPR23] supports only constraints that can be expressed as inner
products, as it relies on a special form of “offline-online” homomorphic secret sharing—a two-
party, authenticated secret-sharing scheme where one party’s share x0 of an input x can be
generated independently of x, and the other share x1 is later generated using x0 and x. Due
to this restriction, offline-online shared values support only linear homomorphism, limiting
their CPRF construction to inner-product constraints.4 We overcome this limitation via a
new technique based on distributed discrete logarithms (DDLog) and novel methods for ho-
momorphically combining authenticated secret shares. This technique may be of independent
interest and lead to further applications.

Comparison. There is a vast body of literature on constructing constrained PRFs under
various cryptographic assumptions. In Table 1, we summarize prior and concurrent results
that rely on group-based assumptions or one-way functions, as these are most relevant to
our work. The most expressive prior constructions are those of [AMN+18], which is based
on a variant of DDH in pairing-free groups, and [CMPR23], which relies on DCR or class
group assumptions. Both of these constructions support arbitrary NC1 constraints; however,
neither achieves constraint hiding.

Previous private CPRFs with superpolynomial domain sizes support constraints such as
inner products, bit-fixing, or t-CNF for constant t = O(1). Despite their apparent generality,
none of these function classes are expressive enough to capture puncturing, which is inherently
a high-degree constraint.

Concurrent Work. Ishai, Li, and Lin [ILL24] concurrentlydeveloped new CPRF construc-
tions extending the CMPR template. Their work introduces techniques for succinct partial
garbling, allowing them to construct CPRFs for any constraint expressible by a circuit. How-
ever, because their approach relies on partial garbling, their construction does not achieve
privacy. Thus, our results and those of [ILL24] extend the CMPR template in different direc-
tions. An interesting open question is whether both approaches can be combined to achieve
a private CPRF for general circuits.

2 Technical Overview

2.1 The CMPR Template and Its Limitations.

Couteau, Meyer, Passelègue, and Riahinia [CMPR23] provided a template for building (pri-
vately) constrained PRFs using homomorphic secret sharing (HSS) techniques. The key idea
is that the task can be viewed as enabling two parties—the master key holder and the con-
strained key holder—to compute pseudorandom shares of the value C(x) · PRFk(x) for any
4 [CMPR23] also obtained a CPRF for NC1 circuits, but this construction is not private.
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Table 1: Constructions of CPRFs using group-based assumptions or one-way functions. All
selectively secure constructions can be made adaptively secure in the random oracle model.

Private Constraints Adaptive Domain Size Assumption

[BW13],
✗ Prefix/puncturing ✗ exp OWF[KPTZ13],

[BGI14]
[BW13] ✗ Left-right ✓ exp Bilinear DDH + ROM

[AMN+18] ✗ NC1 ✗ exp L-DDHI
[CMPR23] ✗ NC1 ✗ exp DCR/class groups

[ILL24] ✗ P/Poly ✗ exp DCR/class groups
[AMN+18] ✓ Bit-fixing ✗ exp DDH
[DKN+20] ✓ t-CNF ✓ exp OWF
[CMPR23] ✓ Inner product ✗ exp DCR/class groups

[Ser24] ✓ Inner product ✓ exp ROM
[Ser24] ✓ Inner product ✗ exp DDH
[Ser24] ✓ Inner product ✗ poly OWF

[BGIK22] ✓ Puncturing ✗ poly OWF

Ours ✓
Bounded Waring Rank

✗ exp DCR(incl. Puncturing)

input x of the CPRF. If C(x) = 0 (meaning the input x is authorized), both shares are equal,
whereas if C(x) = 1, they are offset by PRFk(x). Provided the constrained key does not reveal
k, this ensures that unauthorized evaluations remain masked.
The main challenge in instantiating this template is designing a method for the parties to
compute pseudorandom subtractive shares of sk · C(x), where sk is the secret key of an
appropriately chosen encryption scheme. In this work, we use the Damgård-Jurik-ElGamal
scheme, whose security follows from DCR. This must be done while satisfying the following
constraints:

1. The master key sk must be sampled independently of C.
2. The constrained key ck should hide sk.
3. (Constraint privacy) ck should hide C.

Going from shares of sk · C(x) to shares of C(x) · PRFk(x), thereby obtaining a (privately)
constrained PRF, is then handled by the CMPR template.

2.2 Our Solution: Authenticating Powers of Shares

We write ⟨x⟩ for subtractive shares of x, and we denote by ⟨x⟩σ the share held by party Pσ. We
call ⟨sk · x⟩ an authenticated share of x. Similarly, we refer to Encsk(sk ·x) as an authenticated
encryption of x.

Now assume that two parties hold shares and authenticated shares of each input bit (i.e.
⟨xi⟩σ and ⟨sk · xi⟩σ), as well as encryptions and authenticated encryptions of the first party’s
input shares (i.e. Encsk(⟨xi⟩0), Encsk(⟨sk · xi⟩0), and Encsk(sk · ⟨xi⟩0)). We now explain how
they can locally compute shares of sk·f(x), where f is an arbitrary function with polynomially
bounded Waring rank.

Circuit Randomization Step. Our goal is to express the constraint function f in a form
that allows efficient computation over secret shares. To achieve this, we use the Waring rank
decomposition.
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Let f be a degree-d polynomial over {0, 1}m with Waring rank at most r. 5 By defini-
tion of Waring rank, there exist affine functions f1, . . . , fr, scalars α1, . . . , αr, and degrees
d1, . . . , dr ≤ d such that:

f(x) =
r∑

i=1

αi · [fi(x)]di (by definition of Waring rank)

=
r∑

i=1

αi · [ f ′i(⟨x⟩1)︸ ︷︷ ︸
:=fi(⟨x⟩1)−fi(0,...,0)

+fi(−⟨x⟩0)]di (by affinity of the fi)

=
r∑

i=1

di∑
j=0

αi

(
di
j

)
[f ′i(⟨x⟩1)]j · [fi(−⟨x⟩0)]di−j (by the binomial theorem)

Thus, computing subtractive shares of f(x) (resp. sk · f(x)) reduces to computing sub-
tractive shares of [L(⟨x⟩1)]j · [A(⟨x⟩0)]i (resp. sk · [L(⟨x⟩1)]j · [A(⟨x⟩0)]i), where L is linear and
A is affine.6

Authenticating Powers of linear combination of shares. The main technical contri-
bution of this work is a new method that enables non-interactive evaluation of powers of
authenticated shares. From a technical perspective, both our work and the concurrent work
of [ILL24] are inspired by the techniques for non-interactive computation on shares presented
in [MORS24] in the context of arithmetic garbling, but extend them in different directions.

Before detailing how the parties obtain shares for each term, recall that DDLog enables
them to non-interactively compute shares of the product of a secret-shared value and an
encrypted value. Specifically, if the parties hold ⟨X⟩, ⟨sk ·X⟩, and Encsk(Y ), they can use
DDLog to derive ⟨X · Y ⟩ without additional interaction.
At a high level, our approach consists of the following steps: The first step is to obtain shares
of [L(⟨x⟩1)]j and sk · [L(⟨x⟩1)]j , which the parties compute inductively.

Initialisation step (j = 1): This step requires computing shares of L(⟨x⟩1) and sk ·
L(⟨x⟩1). The first part is straightforward, as the parties already hold tautological shares of
⟨x⟩1—meaning that party 1 knows ⟨x⟩1 “in the clear,” and party 0 can simply set their own
share to 0. Since subtractive shares are compatible with linear transformations:

⟨L(⟨x⟩1)⟩σ ←

{
L(⟨x⟩1) if σ = 1

0 if σ = 0

To compute shares of sk · L(⟨x⟩1), we observe that:

sk · L(⟨x⟩1)− sk · L(⟨x⟩0) = sk · L(x)
= L(sk · x)
= L(⟨sk · x⟩1)− L(⟨sk · x⟩0) . (1)

This allows the parties to compute the desired shares as:

⟨sk · L(⟨x⟩1)⟩σ ←

{
L(⟨sk · x⟩1) if σ = 1

L(⟨sk · x⟩0)− sk · L(⟨x⟩0) if σ = 0.

5 Formally, we use the mixed Waring rank notion here. Later in the paper, we prove that the standard and
mixed Waring rank notions are polynomially related, meaning our results extend to both cases.

6 Remember that all functions here take as input vectors of bits, e.g., f(x) = f(x1, . . . , xn), and L(⟨x⟩1) =
L(⟨x1⟩1, . . . , ⟨xn⟩1), etc.
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Induction step: Observe that the first part (computing shares of [L(⟨x⟩1)]j) follows the
same tautological approach as before. For the second part (computing shares of sk·[L(⟨x⟩1)]j),
consider the identity:

sk · [L(⟨x⟩1)]j = (sk · L(⟨x⟩1)) · [L(⟨x⟩1)]j−1

=
(
sk · L(⟨x⟩0) + L(⟨sk · x⟩1)− L(⟨sk · x⟩0)

)
· [L(⟨x⟩1)]j−1 (by eq. (1))

= sk · [L(⟨x⟩1)]j−1 · L(⟨x⟩0)︸ ︷︷ ︸
Term 1

+L(⟨sk · x⟩1) · [L(⟨x⟩1)]j−1︸ ︷︷ ︸
Term 2

− [L(⟨x⟩1)]j−1 · L(⟨sk · x⟩0)︸ ︷︷ ︸
Term 3

The parties obtain shares of each term as follows:

1. First term. The parties hold shares of [L(⟨x⟩1)]j−1 and sk · [L(⟨x⟩1)]j−1 (by the induction
hypothesis), as well as Encsk(sk · ⟨x⟩0). Using the linear homomorphic properties7 of Enc,
they compute Encsk(sk ·L(⟨x⟩0)). By combining ⟨[L(⟨x⟩1)]j−1⟩, ⟨sk · [L(⟨x⟩1)]j−1⟩, and the
derived ciphertext with DDLog, they directly obtain shares of Term 1.

2. Second term. Since party 1 already knows ⟨sk · x⟩1 and ⟨x⟩1, they can compute the
second term locally. The parties then hold tautological shares:

⟨L(⟨sk · x⟩1) · [L(⟨x⟩1)]j−1⟩σ ←

{
L(⟨sk · x⟩1) · [L(⟨x⟩1)]j−1 if σ = 1

0 if σ = 0

3. Third term. Using the same approach as in the first term, the parties already hold
shares of [L(⟨x⟩1)]j−1 and sk · [L(⟨x⟩1)]j−1 (from the induction hypothesis), as well as
Encsk(⟨sk · x⟩0). They can derive a common ciphertext Encsk(L(⟨sk · x⟩0)) via linear ho-
momorphism and then use DDLog to compute shares of Term 3.

Sharing Mixed Term Products. Using linear homomorphism, the parties can derive the
same ciphertext Encsk(sk ·A(⟨x⟩0)). By leveraging their shares of [L(⟨x⟩1)]j and sk · [L(⟨x⟩1)]j
(as computed in the previous steps), the parties can recursively apply DDLog—specifically,
with Xi ← [L(⟨x⟩1)]j · [A(⟨x⟩0)]i−1 and Y ← sk ·A(⟨x⟩0)—to obtain shares of sk · [L(⟨x⟩1)]j ·
[A(⟨x⟩0)]i.

2.3 Waring Rank

We now analyze the expressiveness of the class of constraints that our technique can handle.
As already mentioned, our technique allows us to evaluate constraints with polynomially
bounded Waring rank: The Waring rank of a polynomial f of degree d is the smallest number
of linear polynomials whose di < d powers sum to f . More formally, for some scalars αi and
linear polynomials Li, it holds that

f(x) =
r∑

i=1

αi(Li(x))
di ,

where r is the Waring rank of f . For the special case of d = 2, the Waring rank equals the
rank of the corresponding symmetric matrix representation of f .
7 It is important that the homomorphic evaluation be a deterministic procedure, ensuring both parties hold

the same ciphertext.
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Functions with polynomially bounded Waring rank include log-local functions, since they
can be decomposed into sums of products of logarithmically many variables, and each such
product can be handled by lemma 13. Another example is inner product membership, which
follows from the same techniques we describe below for puncturing.

Applications of Waring Rank. Originally studied in invariant theory during the 19th
century [IK99, Introduction], Waring rank has since found applications in several areas of the-
oretical computer science. In algebraic complexity theory, it characterizes one of the simplest
yet non-trivial complexity classes, namely homogeneous depth-3 diagonal circuits [DGI+24,
Lan17,EGdOW18]. The problem of computing the matrix multiplication exponent ω, which
determines the fastest known algorithm for matrix multiplication, has been shown to be
closely related to Waring rank [CHI+18]. More recently, Pratt [Pra19] established an intrigu-
ing connection between algebraic algorithms for graph problems and upper bounds on the
Waring rank of certain polynomials. Our work introduces a new connection between cryp-
tography and Waring rank, showing how this algebraic notion captures a class of constraints
for pCPRFs.

Waring Rank of Puncturing. Note that the puncturing constraint can be expressed as
a polynomial with polynomially bounded degree and polynomially bounded Waring rank.
Intuitively, Cx⋆(x) = 1 (remember we want the constraint to be 1 for the punctured point)
iff all the bits of x and x⋆ are the same. Thus, we can define a polynomial of degree n (for
n-bit inputs), call it Ax⋆ , that counts the number of common bits between x and x⋆. The
puncturing constraint can then be rewritten as a product of (Ax⋆(x)−i) for all i = 0, . . . , n−1,
resulting in 0 iff the number of common bits is between 0 and n these terms. This polynomial
can then be normalized to ensure that Cx(x

⋆) ∈ {0, 1}.

Rounding Rational Shares Normalizing the puncturing polynomial requires division, so
the coefficients αi will not be rationals. This is typical for expressing functions in Waring rank
form – the expressive power is not great unless you have a sufficiently large field. Fortunately,
we can work over Q, and convert to integer shares as a final step. That is, if y0, y1 ∈ Q
are rational shares of an integer y1 − y0 = y, then ⌊y0⌋, ⌊y1⌋ will be integer shares of the
same y. Therefore, as long as f outputs integers, we can tolerate fractional coefficients in its
definition.

3 Preliminaries

3.1 Damgård-Jurik-ElGamal Cryptosystem

Definition 1 (Decision Composite Residuosity Assumption (DCR), [Pai99]). Let
RSA.Gen be a polynomial-time algorithm which, on input a security parameter λ, outputs
(N, p, q) where p and q are λ-bit primes and N = pq. Let λ be a security parameter. We say
that the Decision Composite Residuosity (DCR) problem is hard relative to modulus-sampling
algorithm RSA.Gen if{
(N, x) :

(N, p, q)
$← RSA.Gen(1λ)

x
$← (Z/N2Z)×

}
c
≈

{
(N, xN mod N2) :

(N, p, q)
$← RSA.Gen(1λ)

x
$← (Z/N2Z)×

}
.

Theorem 2. Assuming DCR, Damgård–Jurik–ElGamal encryption fig. 1 is a public key en-
cryption scheme satisfying correctness and KDM security for affine functions of the key.
Specifically, the following properties hold:
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Correctness: DJE.Decsk(DJE.Encpk(x)) = x, for any (sk, pk) in the support of DJE.KeyGen,
and any x ∈ Z/N ζZ.

KDM Security: For all p.p.t. adversaries Adv, the oracles OKDM
sk,pk,R and OKDM

sk,pk,$ are indis-
tinguishable in the following experiment

(sk, pk)
$← DJE.KeyGen(1λ)

output Adv
OKDM

sk,pk,R/$(pk)

where these oracles are defined as

OKDM
sk,pk,R(x, y):
(k,N)← sk
z ← x · k + y
return DJE.Encpk(z)

OKDM
sk,pk,$(x, y):
(k,N)← sk

z
$← Z/N ζZ

return DJE.Encpk(z)

Proof. This is very similar to many previous encryption schemes used in HSS and proven
KDM secure in that context. See, e.g., the Damgård–Jurik instantiation of the NIDLS frame-
work [ADOS22]), though details differ, as we do not require p and q to be safe primes. For
completeness, we present a full proof in appendix A.2.

DJE Damgård-Jurik-ElGamal Cryptosystem

Requires:

– ζ ≥ 1 is a parameter defining the plaintext size.
– Group isomorphism exp: (Z/N ζZ)+ → 1 + N(Z/N ζ+1Z) and its inverse log : 1 +

N(Z/N ζ+1Z)→ (Z/N ζZ)+, as defined as in [RS21]:

exp(x) =

ζ∑
k=0

(Nx)k

k!
and log(1 +Nx) =

ζ∑
k=1

(−N)k−1xk

k

DJE.KeyGen(1λ):

1. Sample (N, p, q)
$← RSA.Gen(1λ) a

2. Sample k
$← [0, N)

3. Sample g
$← (Z/N ζ+1Z)×

4. Compute h← g−k

5. Output (sk = (k,N), pk = (g, h,N))

a Note that p and q are unused, so N could
instead be a CRS.

DJE.Encpk(x):

1. Parse pk = (g, h,N)

2. Sample r
$← [0, N)

3. Compute c0 ← gr

4. Compute c1 ← hr · exp(x)
5. Output c = (c0, c1)

DJE.Decsk(c = (c0, c1)):

1. Parse sk = (k,N)

2. Assert ck0 · c1 ≡ 1 mod N

3. Output x← log(ck0 · c1)

Fig. 1: The Damgård-Jurik-ElGamal cryptosystem.
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3.2 Distributed Discrete Logarithm

DDLOG Damgård-Jurik Distance Function [RS21]

DDLogN (h ∈ Z/N ζ+1Z):
Compute and output z ← log

(
h

h mod N

)
∈ Z/N ζZ

Fig. 2: [RS21]’s distributed discrete logarithm for the Damgård-Jurik cryptosystem [DJ01].

Lemma 3 (Distributed Decryption). If we have shares over Z of ⟨x⟩1 − ⟨x⟩0 = x and
⟨k · x⟩1 − ⟨k · x⟩0 = k · x, then

DDLogN (c
⟨k·x⟩1
0 c

⟨x⟩1
1 )− DDLogN (c

⟨k·x⟩0
0 c

⟨x⟩0
1 ) ≡ x · y mod N ζ

always holds, for every choice of plaintext size ζ ≥ 1, key pair (sk = (k,N), pk) ∈
Supp(DJE.KeyGen(1λ)), plaintext y ∈ Z/N ζZ, ciphertext (c0, c1) ∈ Supp(DJE.Encpk(y)), and
scalar x ∈ Z/N ζZ.

Proof. Taking the ratio of the inputs to DDLog, we get

c
⟨k·x⟩1
0 c

⟨x⟩1
1

c
⟨k·x⟩0
0 c

⟨x⟩0
1

= ck·x0 cx1 = exp(DJE.Decsk(c0, c1))
x = exp(x · y).

The second and third equalities are from the definition of DJE.Dec and the correctness of
DJE, respectively. The inputs to the DDLogs are therefore multiplicative shares of exp(x · y),
which, by [RS21, Theorem 18], makes the outputs of the DDLogs additive shares over Z/N ζZ
of x · y.

Lemma 4 (Adapted from [RS21, Lemma 19]). For all moduli M > 1 and all modulo
M shares ⟨x⟩0, ⟨x⟩1 ∈ Z/MZ of some x ∈ Z, we have

Pr
r

$←Z/MZ

[
(⟨x⟩1 + r) mod M − (⟨x⟩0 + r) mod M = x

]
= max

(
1− |x|

N ζ
, 0

)
.

3.3 Privately Constrained Pseudorandom Function

We use the simulation-based definition of Peikert-Shiehian [PS18], which simultaneously cap-
tures privacy of the constraining function, pseudorandomness on unauthorised inputs, and
correctness of constrained evaluation on authorised inputs.

Definition 5 (Privately Contrained Pseudorandom Function). A privately con-
strained PRF (pCPRF) with input space {0, 1}n and output space {0, 1}µ and supporting as
constraints a class of class of circuits C (where each circuit in C is from {0, 1}n to {0, 1}) is a
tuple of algorithms PCPRF = (PCPRF.KeyGen,PCPRF.Eval,PCPRF.Constrain,PCPRF.CEval)
with the following syntax and properties:

– PCPRF.KeyGen(1λ) → msk: On input a security parameter 1λ, the key generation algo-
rithm KeyGen produces a master secret key msk.

– PCPRF.Eval(1λ,msk, x)→ y: On input a security parameter 1λ, a master secret key msk,
and an input x ∈ {0, 1}n, the evaluation algorithm Eval output an element y ∈ {0, 1}µ.
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– PCPRF.Constrain(1λ,msk, C) → ck: On input a security parameter 1λ, a master secret
key msk, and a constraining circuit C ∈ C, the constraining algorithm Constrain outputs
a constrained key ck.

– PCPRF.CEval(1λ, ck, x) → y: On input a security parameter 1λ, a constrained secret key
ck, and an input x ∈ {0, 1}n, the constrained evaluation algorithm CEval output an element
y ∈ {0, 1}µ.

– Single-key selective PCPRF security. A privately constrained PRF is single-key se-
lectively secure if for any p.p.t. adversary A (which we require to never repeat a query)
and any m ∈ {0, 1}λ there exists a p.p.t. simulator S such that:{

RealA(1
λ, 1m)

}
λ∈N

c
≈

{
IdealA,S(1

λ, 1m)
}
λ∈N

where Real and Ideal are the respective views of A in the experiments of fig. 3.

Experiment Privately Constrained PRF Security

RealA(1
λ, 1m)

C
$← A(1λ, 1m)

msk
$← KeyGen(1λ)

ck
$← Constrain(1λ,msk, C)

Send ck to A
Repeat until A halts:

Wait to receive x from A

y
$← Eval(1λ,msk, x)

Send y to A

IdealA,S(1
λ, 1m)

C
$← A(1λ, 1m)

ck
$← S(1λ, 1m)

Send ck to A
Repeat until A halts:

Wait to receive x from A
If C(x) = 0:

y
$← CEval(1λ, ck, x)

If C(x) = 1:

y
$← {0, 1}µ

Send y to A

Fig. 3: Real and Ideal worlds of PCPRF security (definition 5).

4 Share Conversion Procedures

In this section, we present “homomorphic share conversion” algorithms based on distributed
discrete logarithms, which allow two parties holding appropriately encoded representation
(namely, shares, authenticated shares, encryptions) of some inputs to compute shares of some
function of these inputs. We emphasise that we make no security claims in this section, and
only show that these algorithms output (not necessarily secret) shares of the correct result.

1. Multiplication. Section 4.1 (and specifically fig. 4) recalls from [BGI16] (with the “DCR
variants” of [OSY21,RS21]) how to compute ⟨x · y⟩ given ⟨x⟩, ⟨k · x⟩, Enck(y).

2. Bounded Waring Rank. Section 4.2 (and specifically fig. 5) is the main technical con-
tribution of this paper and shows how to compute ⟨(1, sk) · f(x)⟩, where f is any (public)
polynomial with bounded8 degree and Waring rank, given ⟨xi⟩, ⟨sk · xi⟩, Encsk(⟨xi⟩0),
Encsk(⟨sk · xi⟩0), Encsk(sk · ⟨xi⟩0).

8 The bound can be an arbitrary polynomial in the security parameter.
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3. RMS Programs with Leading Multiplication. Section 4.3 (and specifically fig. 6)
recalls from [CMPR23] how to compute ⟨X · RMS(y1, . . . , y1)⟩ for any RMS program
RMS, given ⟨X⟩, ⟨sk ·X⟩, Encsk(yi), and Encsk(sk · yi).

4.1 Homomorphic Share Conversion: Multiplication

Algorithm Homomorphic Share Conversion: Multiplication

Mult(sh, auth-sh, ct, r) : // Given ⟨x⟩, ⟨k · x⟩, Enck(y), r ∈ [N ζ ] compute ⟨x · y⟩ (ran-
domised by r)

1. Parse ct as ct = (ct0, ct1)
2. Output DDLog(ctauth-sh0 · ctsh1 ) + r mod N ζ

Fig. 4: Homomorphic multiplication of secret shares, from DDLog “à la ElGamal”, adapted
from [BGI16,OSY21].

Lemma 6 (Correctness of share conversion procedure for multiplications). Let
λ ∈ N⋆ be a security parameter and let B = λO(1). For all (x, y) ∈ [0, B)2 such that xy ≤ B
and for all ct ∈ Supp(DJE.Encpk(y)),

Pr
[
y1 − y0 = x · y : (y0, y1) $← Sam(1λ, x, y, ct)

]
≥ 1−B/N ζ−1

where the sampler Sam is defined as follows (where Mult is the deterministic algorithm of
fig. 4 and DJE is the cryptosystem of fig. 2):
Sam(1λ, x, y, ct) :

1. ((k,N), pk)
$← DJE.KeyGen(1λ)

2. sh0
$← [0, 2λB)

3. sh1 ← x+ sh0
4. shauth0

$← [0, N · 2λB)

5. shauth1 ← k · x+ shauth0

6. r
$← Z/N ζZ

7. For σ ∈ {0, 1}, yσ ← Mult(shσ, sh
auth
σ , ct, r)

8. Output (y0, y1)

Lemma 6 follows immediately from lemma 18.

4.2 Homomorphic Share Conversion: Bounded Waring Rank

Algorithm Homomorphic Share Conversion: Bounded Waring Rank

// Compute ⟨f(x1, . . . , xn)⟩σ and ⟨k · f(x1, . . . , xn)⟩σ .

Requires:

1. r and d are fixed bounds on the Waring rank and the degree of functions which can
be evaluated homomorphically

2. DJE is the cryptosystem of fig. 1
3. Mult is the algorithm of fig. 4
4. HEval is the linearly homomorphic evaluation algorithm for the Damgård-Jurik-

ElGamal encryption scheme
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ShareConv (σ, // The party index
k, // The key (only needed for σ = 0)
(αi, fi, di)i∈[r], //f =

∑r
i=1 αif

di
i

(shσ,i)i∈[m], // ⟨xi⟩σ (λ-bit shares over Z)
(shauthσ,i )i∈[m], // ⟨k · xi⟩σ ((λ · logN)-bit shares over Z)
(ci = (ci,0, ci,1))i∈[m], // An encryption under (k,N) of sh0,i
(cauthi = (cauthi,0 , cauthi,1 ))i∈[m], // An encryption of shauth0,i

(cext-authi = (cext-authi,0 ,

cext-authi,1 ))i∈[m],

// Encryption of k · sh0,i

(ccst, c
auth
cst ), // Encryptions of 1 and k

crs) : // A random string in (Z/N ζZ)4·rd

1. For i ∈ [r], f ′i ← fi − fi(0, . . . , 0) // Linear part of affine function fi

2. Parse crs as crs = (crsi,j,b)i∈[r],j∈[d],b∈[4] ∈ [N ζ ]4rd

3. Initialise table TABσ, indexed by [r]× [d]× [d]
// TABσ[i][j][ℓ] will be used to store ⟨[f ′i(⟨x⟩1)]j · [fi(−⟨x⟩0)]ℓ⟩σ

4. Initialise table TABauth
σ , indexed by [r]× [d]× [d]

// TABauth
σ [i][j][ℓ] will be used to store ⟨k · [f ′i(⟨x⟩1)]j · [fi(−⟨x⟩0)]ℓ⟩σ

5. Compute the Enc(k · f ′
i(⟨x⟩0)) (for i ∈ [r]).

ct′i ← DJE.HEval(f ′i , c
ext-auth
1 , . . . , cext-authn )

6. Compute the Enc(f ′
i(⟨k · x⟩0)) (for i ∈ [r]).

ct′′i ← DJE.HEval(f ′i , c
auth
1 , . . . , cauthn )

7. Compute the Enc(fi(−⟨x⟩0)) (for i ∈ [r]).

ct′′′i ← DJE.HEval(gi, c1, . . . , cn, ccst)

where gi : (X1, . . . , Xn, Xm+1) 7→ f ′i(−X1, . . . ,−Xn) + fi(0, . . . , 0) ·Xm+1

8. Compute the Enc(k · fi(−⟨x⟩0)) (for i ∈ [r]).

ct′′′′i ← DJE.HEval(gi, c
ext-auth
1 , . . . , cext-authn , cauthcst )

9. Compute the ⟨k · [f ′
i(⟨x⟩1)]j⟩σ (for 1 ≤ j ≤ i ≤ r).

For i = 1, . . . , r do (in parallel):
(a) For j = 1, . . . , di do (in parallel):

TABσ[i][j][0]←

{
[f ′i(⟨x1⟩1, . . . , ⟨xn⟩1)]j if σ = 1

0 if σ = 0

(b) Set TABauth
σ [i][1][0] to{

f ′i(sh
auth
1,1 , . . . , shauth1,m ) if σ = 1

f ′i(sh
auth
0,1 , . . . , shauth0,m )− k · f ′i(sh0,1, . . . , sh0,m) if σ = 0
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(c) For j = 2, . . . , di (sequentially), set TABauth
σ [i][j][0] to

f ′i(sh
auth
1,1 , . . . , shauth1,m ) · [f ′i(sh1,1, . . . , sh1,m)]j−1

+Mult(TAB1[i][j − 1][0],TABauth
1 [i][j − 1][0], ct′i, crsi,j,1)

−Mult(TAB1[i][j − 1][0],TABauth
1 [i][j − 1][0], ct′′i , crsi,j,2)

if σ = 1

Mult(TAB0[i][j − 1][0],TABauth
0 [i][j − 1][0], ct′i, crsi,j,1)

−Mult(TAB0[i][j − 1][0],TABauth
0 [i][j − 1][0], ct′′i , crsi,j,2)

if σ = 0

10. Compute the ⟨k · [f ′
i(⟨x⟩1)]j · [fi(−⟨x⟩0)]ℓ⟩σ (for 0 ≤ j < i ≤ r and ℓ ∈ [di]).

For i = 1, . . . , r do (in parallel):
(a) Set TABσ[i][0][di] to {

0 if σ = 1

[fi(−sh0,1, . . . ,−sh0,m)]di if σ = 0

(b) Set TABauth
σ [i][0][di] to{

0 if σ = 1

k · [fi(−sh0,1, . . . ,−sh0,m)]di if σ = 0

(c) For j = 1, . . . , di do (in parallel):
For ℓ = 1, . . . , di − j do (sequentially):

TABσ[i][j][ℓ]← Mult(TABσ[i][j][ℓ− 1],

TABauth
σ [i][j][ℓ− 1],

ct′′′i , crsi,j,3)

TABauth
σ [i][j][ℓ]← Mult(TABσ[i][j][ℓ− 1],

TABauth
σ [i][j][ℓ− 1],

ct′′′′i , crsi,j,4)

11. Compute ⟨f(x)⟩σ and ⟨k · f(x)⟩σ.

yσ ←
r∑

i=1

di∑
j=0

αi ·
(
di
j

)
· (−1)di−j · TABσ[i][j][di − j]

yauthσ ←
r∑

i=1

di∑
j=0

αi ·
(
di
j

)
· (−1)di−j · TABauth

σ [i][j][di − j]

12. Output (⌊yσ⌋,
⌊
yauthσ

⌋
)

Fig. 5: Share conversion precedure for homomorphically evaluating functions of bounded War-
ing rank.

Core Lemma 1 (Correctness of share conversion procedure for bounded Waring rank). Let
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λ ∈ N∗ be a security parameter, let (λDCR, ζ) be parameters for the Damgård-Jurik-ElGamal
cryptosystem, let r, d be fixed polynomials in the security parameter, and let f =

∑r
i=1 αi · fdi

i

be a integer-valued degree-d polynomial with Waring rank at most r (where f1, . . . , fr are
affine functions and α1 . . . , αr ∈ Q), and consider the deterministic algorithm ShareConv of
fig. 5 parameterised by Damgård-Jurik parameter ζ. Let β be a bound on the coefficients of
the fi. For any inputs x1, . . . , xn ∈ [0, B)m,

Pr
[
y1 − y0 = sk · f(x1, . . . , xn) : (sk, y0, y1) $← Sam(1λ, (xi)

m
i=1)

]
≥ 1− 4rd2(nB2λβ)d

(2λDJE−1)ζ−1

when f(x1, . . . , xn) ∈ Z, where the sampler Sam is defined as:

Sam(1λ, (xi)i∈[m]) :

1. ((k,N), pk)
$← DJE.KeyGen(1λ)

2. sh0,i
$← [0, 2λB)

3. sh1,i ← xi + sh0,i
4. shauth0,i

$← [0, N · 2λB)

5. shauth1,i ← k · xi + sh0,i

6. ci
$← DJE.Encpk(sh0,i)

7. cauthi
$← DJE.Encpk(sh

auth
0,i )

8. cext-authi
$← DJE.Encpk(sk · sh0,i)

9. crs
$← (Z/N ζZ)4rd

10. For σ ∈ {0, 1},
yσ ← ShareConv (σ, (αi, fi, di)i∈[r],

(shσ,i)i∈[m], (sh
auth
σ,i )i∈[m],

(ci)i∈[m], (c
auth
i )i∈[m],

(cext-authi )i∈[m], crs)
11. Output (sk, y0, y1)

We refer to appendix B.1 for the proof of core lemma 1.

4.3 Homomorphic Share Conversion: RMS Programs with Leading
Multiplication

Definition 7 (Restricted-Multiplication Straight-line Programs, adapted from
[BGI16]). A (single-output) restricted-multiplication straight-line (RMS) program is an ar-
bitrary sequence of instructions, each matching one of the following four:

– Loading an input into memory: (“Load”, ŷj , ŵi) // Instructing to load input ŵi into mem-
ory value/variable ŷj

– Add values in memory: (“Add”, ŷk, ŷi, ŷj) // Instructing to store the sum of memory
values/variables ŷi and ŷj in memory value/variable ŷk

– Multiply value in memory by an input value: (“Multiply”, ŷk, ŵi, ŷj) // Instructing to store
the product of input ŵi and memory value/variable ŷj in memory value/variable ŷk

– Output value from memory: (Output, j, ŷi) // Instructing to output the memory value ŷi

We say a set of inputs is admissible to an RMS program with respect to bound B if all
memory values remain bounded by B.

Algorithm Homomorphic Share Conversion: RMS Programs with Leading Multiplica-
tion, adapted from [CMPR23]

// Given ⟨X⟩, ⟨sk ·X⟩, Encsk(yi), and Encsk(sk · yi), compute ⟨X · RMS(y1, . . . , y1)⟩.
Requires: Mult is the algorithm of fig. 4. The scheme is additionally parameterised by
parameters N, ζ.
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ShareConvExtRMS(σ, // Party index
pk, // Pk for the enc. underlying DDLog
Π, // An RMS program
shσ, // ⟨X⟩σ
shauthσ , // ⟨sk ·X⟩σ
(ci)i∈[m], // Encsk(yi) for i ∈ [m]

(cauthi )i∈[m], // Encsk(sk · yi) for i ∈ [m]

crs) // A (M · ζ · logN)-bit string

1. Parse crs as (crsj)j∈[M ] ∈ (Z/N ζZ)M
2. Parse Π as a sequence of RMS instructions op1, . . . , opM .
3. Initialise a vector MemSharesσ indexed by [M ].

// Used to store in position ℓ the memory value resulting from opℓ.
4. Initialise a vector MemSharesauthσ indexed by [M ].

// Used to store in position ℓ the authenticated memory value resulting from opℓ.
5. For ℓ = 1, . . . ,M :

– If opℓ is of the form (“Load”, ŷj , ŵi):

MemSharesσ[j]← Mult(shσ, sh
auth
σ , ci, crsℓ)

MemSharesauthσ [j]← Mult(shσ, sh
auth
σ , cauthi , crsℓ)

– If opℓ is of the form (“Add”, ŷq, ŷi, ŷj):

MemSharesσ[q]← MemSharesσ[i] +MemSharesσ[j]

MemSharesauthσ [q]← MemSharesauthσ [i] +MemSharesauthσ [j]

– If opℓ is of the form (“Multiply”, ŷq, ŵi, ŷj):

MemSharesσ[q]← Mult(MemSharesσ[j],MemSharesauthσ [j], ci, crsℓ)

MemSharesauthσ [q]← Mult(MemSharesσ[j],MemSharesauthσ [j], cauthi , crsℓ)

MemSharesσ[q]← DDLogpk( (cPRF,i.fst)
MemSharesauthσ [j]

·(cPRF,i.snd)MemSharesσ [j])

MemSharesauthσ [q]← DDLogpk( (c
auth
i .fst)MemSharesauth0 [j]

·(cauthi .snd)MemSharesσ [j])

– If opℓ is of the form (Output, ŷi)

y0 ← MemSharesσ[i]

6. Output y0

Fig. 6: Share conversion procedure for RMS programs with leading term.

Lemma 8 (Correctness of share conversion for RMS with leading multiplication,
adapted from [CMPR23]). Let λ ∈ N∗ be a security parameter, let β,B = λO(1) be bounds,
let Π be a B-bounded size-M RMS program on n inputs, and consider the deterministic
algorithm ShareConvExtRMS of fig. 6 parameterised by Damgård-Jurik parameter ζ. For every
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X ∈ [0, β) and all admissible inputs x1, . . . , xn ∈ [0, B),

Pr
[
y1 − y0 = X ·Π(x1, . . . , xn) : (y0, y1)

$← Sam(1λ, (xi)
n
i=1)

]
≥ 1− 2MβB

N ζ−1 ,

where the sampler Sam is defined as:

Sam(1λ, (xi)i∈[n]) :

1. ((k,N), pk)
$← DJE.KeyGen(1λ)

2. sh0
$← [0, 2λB)

3. sh1 ← X + sh0,i
4. shauth0

$← [0, N · 2λB)
5. shauth1 ← k ·X + sh0,i
6. ci

$← DJE.Encpk(xi)

7. cauthi
$← DJE.Encpk(sk · xi)

8. crs
$← (Z/N ζZ)M

9. For σ ∈ {0, 1},
yσ ← ShareConvExtRMS (σ, pk, Π, shσ,

shauthσ , (ci)i∈[n],

(cauthi )i∈[n], crs)
10. Output (y0, y1)

Lemma 8 follows from [CMPR23] (without using the formalism of staged HSS).

5 Privately Constrained PRF for Bounded Dual Waring Rank

We are finally ready to present our construction of a privately constrained PRF for con-
straints with polynomially bounded degree and Waring rank. As the main intuition behind
the constructions and its security were already provided in the introduction, we only provide
the formal protocol description and formal theorem statement here.

PCPRF Bounded Dual Waring-rank constrained PRF

Requires:

– r and d are fixed bounds on the Waring rank and the degree of the dual constraints
– DJE is the cryptosystem of fig. 1
– ShareConv is the algorithm of fig. 5
– C ⊆ {0, 1}n → {0, 1} is a class of constraints whose dual have Waring rank at

most r and degree at most d; namely Encode : C → {0, 1}m is an encoding function,
C⊥ := {Cx : {0, 1}m → {0, 1}, Ĉ 7→ C(x)} is the dual class of C, and Decompose is a
deterministic function mapping each Cx ∈ C⊥ to one of its Waring-rank-r decompo-
sitions (αi, di, fi)i∈[r].

– PRF : {0, 1}n × {0, 1}λ → [0, 2µ) is a PRF which can be expressed RMS program of
polynomial size M .

– ShareConvExtRMS is the algorithm of fig. 6.

CPRF.KeyGen(1λ) :

1. (sk = (k,N), pk = (g, h,N))
$← DJE.KeyGen(1λ)

2. kPRF = (kPRF,1, . . . , kPRF,λ)
$← {0, 1}λ

3. ccst
$← DJE.Encpk(1)

4. cauthcst
$← DJE.Encpk(k))

5. For i ∈ [m]:
– sh0,i

$← [0, 2λ) // ⟨Ĉi⟩0 (λ-bit share over Z)
– shauth0,i

$← [0, N2λ) // ⟨k · Ĉi⟩0 ((λ+ logN)-bit share over Z)
– ci

$← DJE.Encpk(sh0,i) // Encpk(⟨Ĉi⟩0)
– cauthi

$← DJE.Encpk(sh
auth
0,i ) // Encpk(⟨k · Ĉi⟩0)
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– cext-authi
$← DJE.Encpk(k · sh0,i) // Encpk(k · ⟨Ĉi⟩0)

6. For i ∈ [λ]:
– cPRF,i

$← DJE.Encpk(kPRF,i)

– cext-authPRF,i
$← DJE.Encpk(k · kPRF,i)

7. crs = (crs1, crs2)
$← (Z/N ζZ)4·rd × (Z/N ζZ)M // A uniformly random string.

8. Output msk← ( sk, kPRF, ccst, c
auth
cst ,

(sh0,i, sh
auth
0,i , ci, c

auth
i , cext-authi )i∈[m],

(cPRF,i, c
ext-auth
PRF,i )i∈[λ],

crs)
9. Output msk

CPRF.Eval(1λ,msk, x) :

1. Parse sk← (k, pk)

2. (αi, di, fi)i∈[r] ← Decompose(Cx)

3. Parse msk = ( sk, kPRF, ccst, c
auth
cst ,

(sh0,i, sh
auth
0,i , ci, c

auth
i , cext-authi )i∈[m],

(cPRF,i, c
ext-auth
PRF,i )i∈[λ],

crs = (crs1, crs2))

4. (y0, y
auth
0 )← ShareConv( 0, k,

(αi, fi, di)i∈[r],

(sh0,i)i∈[m],

(shauth0,i )i∈[m],

(ci)i∈[m],

(cauthi )i∈[m],

(cext-authi )i∈[m],

(ccst, c
auth
cst ),

crs1)

5. y0 ← ShareConvExtRMS(0, N,PRF, y0, y
auth
0 , (ci)i∈[m], (c

ext-auth
i )i∈[m], crs2)

6. Output y0 mod 2µ

CPRF.Constrain(1λ,msk, C) :

1. Ĉ = (Ĉ1, . . . , Ĉm)← Encode(C)
2. Parse msk = ( sk, kPRF, ccst, c

auth
cst ,

(sh0,i, sh
auth
0,i , ci, c

auth
i , cext-authi )i∈[m],

(cPRF,i, c
ext-auth
PRF,i )i∈[λ],

crs)
3. For i ∈ [m],

– sh1,i ← Ĉi + sh0,i
– shauth1,i ← sk · Ĉi + shauth0,i

4. ck← ( pk, ccst, c
auth
cst ,

(sh1,i, sh
auth
1,i , ci, c

auth
i , cext-authi )i∈[m],

(cPRF,i, c
ext-auth
PRF,i )i∈[λ],

crs)
5. Output ck

CPRF.CEval(1λ, ck, x) :
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1. Parse ck = ( pk, ccst, c
auth
cst ,

(sh1,i, sh
auth
1,i , ci, c

auth
i , cext-authi )i∈[m],

(cPRF,i, c
ext-auth
PRF,i )i∈[λ],

crs = (crs1, crs2))

2. (y1, y
auth
1 )← ShareConv( 1,⊥,

(αi, fi, di)i∈[r],

(sh1,i)i∈[m],

(shauth1,i )i∈[m],

(ci)i∈[m],

(cauthi )i∈[m],

(cext-authi )i∈[m],

(ccst, c
auth
cst ),

crs1)

3. y1 ← ShareConvExtRMS(1, N,PRF, y1, y
auth
1 , (ci)i∈[m], (c

ext-auth
i )i∈[m], crs2)

4. Output y1 mod 2µ

Fig. 7: Privately Constrained PRF for any class of constraints whose dual have (polynomially)
bounded Waring rank and degree.

Main Theorem 1 (Privately Constrained PRF for Bounded Dual Waring Rank from DCR).
Let C be any class of constraints whose duals all have Waring rank and algebraic degree upper
bounded by some polynomials in the security parameter. The construction of fig. 7 is a single-
key, selectively secure privately constrained PRF for C.

We refer to appendix B.2 for the proof of main theorem 1.

Corollary 9 (Privately Punctured PRF from DCR). Assuming DCR, there exists a
single-key, selectively secure, privately punctured PRF.

Proof. As already discussed in the technical overview, the puncturing constraint can be ex-
pressed with a polynomial of bounded degree and Waring rank. More formally, the class of
puncturing constraints is9

C := {Cx⋆ : {0, 1}n → {0, 1}, x 7→ x = x⋆ | x⋆ ∈ {0, 1}n}

and it coincides with its own dual class

C⊥ := {Cx : {0, 1}n → {0, 1}, x⋆ 7→ x = x⋆ | x ∈ {0, 1}n}

We show that the puncturing constraint Cx can be expressed as a polynomial of degree
n in the bits of x⋆: We can define a function Ax that counts the number of common bits
between x, x⋆ and rewrite the puncturing constraint as a the product of these terms, and
then normalize it by the max value of this polynomial to ensure that Cx(x

⋆) = 1. More

9 Remember we want C(x) = 0 for authorized inputs, and C(x) = 1 for constrained inputs.
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formally:

Cx(x
⋆) =

[
n∑

i=1

(xi = x⋆i ) = n

]

=

[
n−1∏
i=0

(Ax(x
⋆)− i) = 0

]
where Ax : {0, 1}n → Z

(Xi)i∈[n] 7→
n∑

i=1

(xi = Xi)

=

[
n∑

i=0

αi ·Ax(x
⋆)i

]
/(n!)

=
n∑

i=0

αi

n!
·Ax(x

⋆)i

where the (αi)
n
i=0 are the coefficients10 of the degree-n polynomial

∏n−1
i=0 (X − i) . In this

form, the dual of puncturing clearly has Waring rank at most n.

6 Waring Rank

In this section, we provide some background on Waring rank and prove some results that
are useful for our construction. We will relax the homogeneity condition and define Waring
rank for polynomials of degree at most d.

Definition 10 (Waring Rank and its variants). Let f ∈ Q[X1, . . . , XN ] be a polynomial
of degree d ∈ N. In the following, let f1, . . . , fr, g1, . . . , gr ∈ Q[X1, . . . , XN ] denote affine
functions11 and α1, . . . , αr ∈ Q.
– The Waring rank of f is defined to be the smallest integer r ∈ N such that there exists

affine functions f1, . . . , fr and coefficients α1, . . . , αr satisfying

f(X1, . . . , XN ) =

r∑
i=1

αi (fi(X1, . . . , XN ))d.

We will refer to the set {(f1, α1), . . . , (fr, αr)} as a Waring decomposition of f of rank r.
– The Mixed-degree Waring rank of f is defined to be the smallest integer r ∈ N such that

there exists affine functions f1, . . . , fr and coefficients α1, . . . , αr satisfying

f(X1, . . . , XN ) =

r∑
i=1

αi (fi(X1, . . . , XN ))di , where each 0 ≤ di ≤ d.

We will refer to the set {(f1, d1, α1), . . . , (fr, dr, αr)} as a Mixed Waring decomposition of
f of rank r.

– The Split Waring Rank of f is defined to be the smallest integer r ∈ N such that there
exists affine functions f1, . . . , fr and g1, . . . , gr and coefficients α1, . . . , αr satisfying

f(X1, . . . , XN ) =

r∑
i=1

αi (fi(X1, . . . , XN/2))
di · (gi(XN/2+1, . . . , XN ))ei ,

where for each i ∈ [r], di, ei ≥ 0 and (di + ei) ≤ d. We will refer to the set
{(f1, g1, d1, e1, α1), . . . , (fr, gr, dr, er, αr)} as a Split Waring decomposition of f of rank
r.

10 Note that these coefficients can be computed in polynomial time.
11 We allow affine (instead of linear) functions here because we are concerned with representing inhomogeneous

polynomials 7.
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An example. We give two simple examples of Waring decomposition for concreteness.

X1X2 =
1

4
(X1 +X2)

2 − 1

4
(X1 −X2)

2

X1X2X3 =
1

24
(X1 +X2 +X3)

3 − 1

24
(X1 +X2 −X3)

3

− 1

24
(X1 −X2 +X3)

3 − 1

24
(−X1 +X2 +X3)

3

At first sight, it is unclear whether the Waring rank of every degree ≤ d polynomial is finite.
However, extending the above examples, it is not difficult to show that every monomial of
degree ≤ d has a finite Waring rank, and this shows that every degree ≤ d polynomial has a
finite Waring rank (using the fact that monomials of degree ≤ d span the space of polynomials
of degree ≤ d). For a proof of this see e.g., [Tei14].

Relation Between Notions. We will first show that for a polynomial f of degree d, the Waring
rank, Mixed Waring rank, and Split Waring rank are equivalent up to poly(d) factors, i.e. if
f has a low-rank Waring, Mixed Waring, Split Waring decomposition, then it has a low-rank
Waring, Mixed Waring, and Split Waring decomposition (see Lemma 12). To show this, we
will use the following lemma.

Lemma 11. Let ℓ1, ℓ2 ∈ Q[X1, . . . , XN ] be affine functions. For any d1, d2 ∈ N, the Waring
rank of ℓd11 · ℓ

d2
2 is ≤ (d1 + d2 + 1).

Proof of Lemma 11. Consider the following univariate polynomial:

A(t) := (ℓ1(X1, . . . , XN ) + t · ℓ2(X1, . . . , XN ))d1+d2

Note that coefficient of td2 in the univariate polynomial A(t) is exactly
(
d1+d2
d1

)
ℓd11 ℓd22 . Using

interpolation on A(t), we can express each coefficient of A(t) as a linear combination of eval-
uations of A(t). More precisely, there exists coefficients c0, . . . , cd1+d2 such that the following
holds:

coefficient of td2 in A(t) =

d1+d2∑
j=0

cjA(j) =

d1+d2∑
j=0

cj(ℓ1 + jℓ2)
d1+d2 .

So we have expressed the coefficient of td2 as a sum of the (d1 + d2)
th power of (d1 + d2 + 1)

affine functions. As noted before, the coefficient of td2 in A(t) is a non-zero scalar multiple of
(ℓ1(X1, . . . , XN ))d1 · (ℓ2(X1, . . . , XN ))d2 . This completes the proof of Lemma 11.

Now we are ready to show that the ranks are equivalent up to poly(d) factors.

Lemma 12. Let f ∈ Q[X1, . . . , XN ] be a polynomial of degree ≤ d. If any one of the Waring
rank/Mixed Waring rank/Split Waring rank of f is ≤ r, then the remaining two are at most
O(rd2). In simple words, all three ranks are equivalent up to a multiplicative factor of poly(d).

Proof of Lemma 12. We start by observing that if f(X1, . . . , XN ) has Waring rank r, then it
has Mixed Waring rank ≤ r (every Waring decomposition is also a Mixed Waring decompo-
sition). We now show that if f has Waring rank r, then it has Split Waring rank ≤ r(d+ 1).
Suppose f has a Waring decomposition {(f1, α1), . . . , (fr, αr)} of rank r, then we “split” each
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affine function fi as a sum of two affine functions fi,1 and fi,2 on disjoint sets of variables,
i.e.

fi(X1, . . . , XN ) = fi,1(X1, . . . , XN/2) + fi,2(XN/2+1, . . . , XN ).

Using Binomial Theorem on fd
i = (fi,1 + fi,2)

d for each i ∈ [r], we have,

(fi(X1, . . . , XN ))d =
d∑

j=0

(
d

j

)
(fi,1(X1, . . . , XN/2))

j · (fi,2(XN/2+1, . . . , XN ))d−j

This gives us a Split Waring decomposition of f of rank ≤ r(d+ 1).

Suppose f(X1, . . . , XN ) has Mixed Waring rank r. We will now argue that f(X1, . . . , XN )
has Waring rank ≤ r(d + 1). Suppose f has a Mixed Waring decomposition
{(f1, d1, α1), . . . , (fr, dr, αr)} of rank r. Define the polynomial A(X1, . . . , XN , Z) as follows:

A(X1, . . . , XN , Z) =
r∑

i=1

αi (fi(X1, . . . , XN ))di · Zd−di , where each 0 ≤ di ≤ d

Applying Lemma 11 on fdi
i · Zd−di for each i ∈ [r], we get that A(X1, . . . , XN , Z) has a

Waring decomposition which has r(d+1) affine functions in Q[X1, . . . , XN , Z]. Observe that
A(X1, . . . , XN , 1) = f(X1, . . . , XN ). Setting Z = 1 shows that f(X1, . . . , XN ) has Waring
rank ≤ r(d+ 1).

Suppose f(X1, . . . , XN ) has Split Waring rank r. We will now argue that f(X1, . . . , XN )
has Waring rank ≤ r(d + 1)2. Suppose f has a Split Waring decomposition
{(f1, g1, d1, e1, α1), . . . , (fr, gr, dr, er, αr)} of rank r. Applying Lemma 11 on fdi

i geii for
each i ∈ [r], we get that the Mixed Waring rank of f(X1, . . . , XN ) is ≤

∑r
i=1(di + ei + 1).

Now using the discussion from the previous paragraph, we conclude that the Waring rank of
f(X1, . . . , XN ) is ≤ (d+ 1)

∑r
i=1(di + ei + 1), which is ≤ r(d+ 1)2.

To finish the proof, we need to argue that the Mixed Waring rank and the Split Waring rank
are equivalent. If f has Mixed Waring rank ≤ r, then it has Waring rank ≤ r(d+ 1), which
implies it has Split Waring rank ≤ r(d+ 1)2. Similarly, if f has Split Waring rank ≤ r, then
it has Waring rank ≤ r(d + 1)2, which implies it has Mixed Waring rank ≤ r(d + 1)2. This
finishes the proof of Lemma 12.

The next lemma shows that if two polynomials have a small Waring rank, then their product
also has a small Waring rank.

Lemma 13. Let f, g ∈ Q[X1, . . . , XN ] be polynomials with Waring ranks (resp. mixed-degree
Waring ranks) rf and rg. Then the polynomial fg has Waring rank (resp. mixed-degree Waring
rank) ≤ rfrg(deg(f) + deg(g) + 1).

Proof. Suppose f and g have Waring decompositions
{
(f1, α1), . . . , (frf , αrf )

}
and{

(g1, α1), . . . , (grg , αrg)
}

of ranks rf and rg respectively. Then,

f(X1, . . . , XN ) · g(X1, . . . , XN ) =
∑

1≤i≤rf
1≤j≤rg

αiβi (fi(X1, . . . , XN )deg(f) · (gi(X1, . . . , XN ))deg(g).

Now applying Lemma 11 on f
deg(f)
i g

deg(g)
j for each 1 ≤ i ≤ rf and 1 ≤ j ≤ rg, we get that
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the Waring rank of f(X1, . . . , XN ) · g(X1, . . . , XN ) is ≤ rfrg(deg(f) + deg(g) + 1).

An analogous argument shows that if f and g have Mixed Waring rank rf and rg, then
f(X1, . . . , XN ) · g(X1, . . . , XN ) have Mixed Waring rank ≤ rfrg(deg(f) + deg(g) + 1). This
finishes the proof of Lemma 13.

Theorem 14 (Duality). For every d, r ∈ N, there exists an encoding ρ : Q[X1, . . . , XN ]→
QM of all polynomials f ∈ Q[X1, . . . , XN ] with deg(f) ≤ d and Waring rank ≤ r, where
M = (r + 1)N .
Additionally, for every (x1, . . . , xN ) ∈ QN , there exists a polynomial gx1,...,xN ∈ Q[Y1, . . . , YM ]
of degree ≤ d such that gx1,...,xN (ρ(f)) = f(x1, . . . , xN ), and Waring rank of gx1,...,xN is ≤ r.

Proof. We first describe an encoding ρ. Suppose f is a degree ≤ d polynomial with Waring
rank ≤ r, with the following Waring decomposition12:

f(X1, . . . , XN ) =
r∑

i=1

αi (fi(X1, . . . , XN ))d, (2)

where for every i ∈ [r], the affine function fi ∈ Q[X1, . . . , XN ] is

fi(X1, . . . , XN ) = ci,0 + ci,1X1 + . . .+ ci,NXN . (3)

The map ρ maps f(X1, . . . , XN ) to QM as follows:

ρ(f(X1, . . . , XN )) = (c1,0, . . . , c1,N , . . . , cr,0, . . . , cr,N ).

In simple words, ρ simply maps f to a M -dimensional vector which has all the coefficients
of every affine function fi in a (fixed) Waring decomposition of f of rank r.

Next we describe the polynomial gx1,...,xN . Fix an arbitrary (x1, . . . , xN ) ∈ QN . For each
i ∈ [r], define a new polynomial f̃i ∈ Q[X1, . . . , XN ][Y1, . . . , YM ] (i.e. f̃i is a polynomial in
Y -variables with coefficients from the ring Q[X1, . . . , XN ]) as follows: We replace ci,j with
the variable Y(i−1)(N+1)+(j+1). In other words, for each i ∈ [r],

f̃i(X1, . . . , XN , Y1, . . . , YM ) = Y(i−1)N+1 + Y(i−1)N+2X1 + . . .+ Y(i−1)N+(N+1)XN .

Similarly, using Equation (2), let f̃ :=
∑r

i=1 αif̃i. Observe that f̃i’s have degree 1 in the Y
variables, and f̃ is a polynomial of degree ≤ d in the Y variables.

Define the polynomial gx1,...,xN ∈ Q[Y1, . . . , YM ] as follows:

gx1,...,xN (Y1, . . . , YM ) := f̃(x1, . . . , xN , Y1, . . . , YM ).

By definition, f̃(x1, . . . , xN , ρ(f)) = f(x1, . . . , xN ), which implies that gx1,...,xN (ρ(f)) =
f(x1, . . . , xN ). Since the degree of f̃ in Y -variables is ≤ d, this implies that the degree
of gx1,...,xN is ≤ d. Now it remains to show that the Waring rank of gx1,...,xN is ≤ r. Using
Equation (2), it is easy to verify:

gx1,...,xN (Y1, . . . , YM ) =

r∑
i=1

αi f̃i(x1, . . . , xN , Y1, . . . , YM ).

Note that for each i ∈ [r], the polynomial f̃i(x1, . . . , xN , Y1, . . . , YM ) ∈ Q[Y1, . . . , YM ] is an
affine function. In other words, we have given a Waring decomposition of f̃ of rank r. This
finishes the proof of Theorem 14.
12 If there are multiple Waring decompositions of f , we choose one decomposition arbitrarily.

23



Acknowledgments

We thank Geoffroy Couteau for insightful discussions.
This research was supported by: the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme under grant agreement
number 803096 (SPEC); the Danish Independent Research Council under Grant-IDs DFF-
3103-00077B (CryptoDigi) and DFF-0165-00107B (C3PO); and the DARPA SIEVE program
(contract HR001120C0085 “FROMAGER”). Amik Raj Behera is supported by Srikanth Srini-
vasan’s start-up grant from the University of Copenhagen. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of DARPA. Distribution Statement “A” (Approved for Public
Release, Distribution Unlimited).

References

ADOS22. Damiano Abram, Ivan Damgård, Claudio Orlandi, and Peter Scholl. An algebraic framework
for silent preprocessing with trustless setup and active security. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 421–452. Springer,
Cham, August 2022.

AMN+18. Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Constrained PRFs for NC1 in traditional groups. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 543–574. Springer,
Cham, August 2018.

BCM+24. Dung Bui, Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. Fast public-
key silent OT and more from constrained Naor-Reingold. In Marc Joye and Gregor Leander,
editors, EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages 88–118. Springer, Cham,
May 2024.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer,
Berlin, Heidelberg, March 2014.

BGI16. Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure computation
under DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume
9814 of LNCS, pages 509–539. Springer, Berlin, Heidelberg, August 2016.

BGIK22. Elette Boyle, Niv Gilboa, Yuval Ishai, and Victor I. Kolobov. Programmable distributed point
functions. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume
13510 of LNCS, pages 121–151. Springer, Cham, August 2022.

BLW17. Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately. In
Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 494–524. Springer, Berlin,
Heidelberg, March 2017.

BTVW17. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained
PRFs (and more) from LWE. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 264–302. Springer, Cham, November 2017.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages
280–300. Springer, Berlin, Heidelberg, December 2013.

CC17. Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 446–476. Springer, Cham, April / May 2017.

CHI+18. Luca Chiantini, Jonathan D. Hauenstein, Christian Ikenmeyer, Joseph M. Landsberg, and Gior-
gio Ottaviani. Polynomials and the exponent of matrix multiplication. Bulletin of the London
Mathematical Society, 50(3):369–389, 2018.

Cle90. Richard Cleve. Towards optimal simulations of formulas by bounded-width programs. In 22nd
ACM STOC, pages 271–277. ACM Press, May 1990.

CMPR23. Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. Constrained pseu-
dorandom functions from homomorphic secret sharing. In Carmit Hazay and Martijn Stam,
editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 194–224. Springer, Cham,
April 2023.

DGI+24. Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov.
Fixed-parameter debordering of waring rank. In Olaf Beyersdorff, Mamadou Moustapha Kanté,

24



Orna Kupferman, and Daniel Lokshtanov, editors, 41st International Symposium on Theoreti-
cal Aspects of Computer Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France,
volume 289 of LIPIcs, pages 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2024.

DJ01. Ivan Damgård and Mats Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001, volume 1992 of
LNCS, pages 119–136. Springer, Berlin, Heidelberg, February 2001.

DKN+20. Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Adaptively secure constrained pseudorandom functions in the standard model. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages
559–589. Springer, Cham, August 2020.

EGdOW18. Klim Efremenko, Ankit Garg, Rafael Mendes de Oliveira, and Avi Wigderson. Barriers for rank
methods in arithmetic complexity. In Anna R. Karlin, editor, 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, vol-
ume 94 of LIPIcs, pages 1:1–1:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (ex-
tended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.

HKKW19. Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adaptively secure
constrained pseudorandom functions. In Ian Goldberg and Tyler Moore, editors, FC 2019,
volume 11598 of LNCS, pages 357–376. Springer, Cham, February 2019.

IK99. Anthony Iarrobino and Vassil Kanev. Power Sums, Gorenstein Algebras, and Determinantal
Loci. Cambridge Studies in Advanced Mathematics. Springer Berlin, Heidelberg, 1999.

ILL24. Yuval Ishai, Hanjun Li, and Huijia Lin. Succinct partial garbling from groups and applications.
Cryptology ePrint Archive, Paper 2024/2073, 2024.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-
able pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013.

Lan17. J. M. Landsberg. Geometry and Complexity Theory. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 2017.

MORS24. Pierre Meyer, Claudio Orlandi, Lawrence Roy, and Peter Scholl. Rate-1 arithmetic garbling from
homomorphic secret sharing. In Elette Boyle and Mohammad Mahmoody, editors, TCC 2024,
Part IV, volume 15367 of LNCS, pages 71–97. Springer, Cham, December 2024.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic secret
sharing and public-key silent OT. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 678–708. Springer, Cham, October
2021.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, Berlin,
Heidelberg, May 1999.

Pra19. Kevin Pratt. Waring rank, parameterized and exact algorithms. In David Zuckerman, editor,
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 806–823. IEEE Computer Society, 2019.

PS18. Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the LWE way.
In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS,
pages 675–701. Springer, Cham, March 2018.

RS21. Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from DCR and
applications. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827
of LNCS, pages 687–717, Virtual Event, August 2021. Springer, Cham.

Ser24. Sacha Servan-Schreiber. Constrained pseudorandom functions for inner-product predicates from
weaker assumptions. Cryptology ePrint Archive, Paper 2024/058, 2024.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June
2014.

Tei14. Zach Teitler. Ranks of polynomials. https://www.theoremoftheday.org/Docs/Teitler2014.p
df, 2014.

25

https://www.theoremoftheday.org/Docs/Teitler2014.pdf
https://www.theoremoftheday.org/Docs/Teitler2014.pdf


Supplementary Material

A More Preliminaries

A.1 Damgård-Jurik-ElGamal encryption scheme

Definition 15 (Decision Composite Residuosity Assumption (DCR), [Pai99]). Let
RSA.Gen be a polynomial-time algorithm which, on input a security parameter λ, outputs
(N, p, q) where p and q are λ-bit primes and N = pq. Let λ be a security parameter. We say
that the Decision Composite Residuosity (DCR) problem is hard relative to modulus-sampling
algorithm RSA.Gen if{
(N, x) :

(N, p, q)
$← RSA.Gen(1λ)

x
$← (Z/N2Z)×

}
c
≈

{
(N, xN mod N2) :

(N, p, q)
$← RSA.Gen(1λ)

x
$← (Z/N2Z)×

}
.

Theorem 16. Assuming DCR, Damgård–Jurik–ElGamal encryption fig. 8 is a public key
encryption scheme satisfying correctness and KDM security for affine functions of the key.
Specifically, the following properties hold:

Correctness: DJE.Decsk(DJE.Encpk(x)) = x, for any (sk, pk) in the support of DJE.KeyGen,
and any x ∈ Z/N ζZ.

KDM Security: For all p.p.t. adversaries Adv, the oracles OKDM
sk,pk,R and OKDM

sk,pk,$ are indis-
tinguishable in the following experiment

(sk, pk)
$← DJE.KeyGen(1λ)

output Adv
OKDM

sk,pk,R/$(pk)

where these oracles are defined as

OKDM
sk,pk,R(x, y):
(k,N)← sk
z ← x · k + y
return DJE.Encpk(z)

OKDM
sk,pk,$(x, y):
(k,N)← sk

z
$← Z/N ζZ

return DJE.Encpk(z)

Proof. This is very similar to many previous encryption schemes used in HSS and proven
KDM secure in that context. See, e.g., the Damgård–Jurik instantiation of the NIDLS frame-
work [ADOS22]), though details differ, as we do not require p and q to be safe primes. For
completeness, we present a full proof in appendix A.2.

DJE Damgård-Jurik-ElGamal Cryptosystem

Requires:

– ζ ≥ 1 is a parameter defining the plaintext size.
– Group isomorphism exp: (Z/N ζZ)+ → 1 + N(Z/N ζ+1Z) and its inverse log : 1 +

N(Z/N ζ+1Z)→ (Z/N ζZ)+, as defined as in [RS21]:

exp(x) =

ζ∑
k=0

(Nx)k

k!
and log(1 +Nx) =

ζ∑
k=1

(−N)k−1xk

k



DJE.KeyGen(1λ):

1. Sample N
$← RSA.Gen(1λ)

2. Sample k
$← [0, N)

3. Sample g
$← (Z/N ζ+1Z)×

4. Compute h← g−k

5. Output (sk = (k,N), pk = (g, h,N))

DJE.Encpk(x):

1. Parse pk = (g, h,N)

2. Sample r
$← [0, N)

3. Compute c0 ← gr

4. Compute c1 ← hr · exp(x)
5. Output c = (c0, c1)

DJE.Decsk(c = (c0, c1)):

1. Parse sk = (k,N)

2. Assert ck0 · c1 ≡ 1 mod N

3. Output x← log(ck0 · c1)

Fig. 8: The Damgård-Jurik-ElGamal cryptosystem.

A.2 Damgård-Jurik-ElGamal Cryptosystem Proofs

Correctness is straightfoward from the definitions:

DJE.Decsk(DJE.Encpk(x)) = DJE.Decsk(g
r, (g−k)r · exp(x))

= log(gkr · (g−k)r · exp(x))
= log(exp(x)) = x

A.3 DCR over (Z/Nζ+1Z)×

Before proving security, we will need a lemma to extend the DCR assumption to the group
(Z/N ζ+1Z)× that we are actually working over.
Lemma 17. Assuming DCR, for any plaintext size parameter ζ ≥ 1 (which in general can
be any polynomially-bounded PPT function of N), we have{
(N, x) :

(N, p, q)
$← RSA.Gen(1λ)

x
$← (Z/N ζ+1Z)×

}
c
≈

{
(N, xN

ζ
mod N ζ+1) :

(N, p, q)
$← RSA.Gen(1λ)

x
$← (Z/N ζ+1Z)×

}
.

Proof. The following is an adaptation of the proof of security for Damgård–Jurik encryption
[DJ01]. Define hybrid distributions Hi for i ∈ {0, . . . , ζ} as follows:

Hi =

{
(N, xN

i
) :

(N, p, q)
$← RSA.Gen(1λ)

x
$← (Z/N ζ+1Z)×

}
Clearly, H0 and Hζ are our original left and right distributions, respectively.
To complete the proof, we must show that Hi

c
≈ Hi+1 for all i. First, write x = y · exp(Nr)

for random y
$← (Z/N ζ+1Z)× and r

$← Z/N ζZ. Notice that x only depends on y through
y mod N2, because exp(Nr) randomises the coefficients of N2 and all higher powers in the
N -adic expansion of x. (That is, exp(Nr) outputs a uniform element of 1 +N2(Z/N ζ+1Z).)
Therefore, by DCR it is indistinguishable to set y = y′N , where y′

$← (Z/N ζ+1Z)×. Finally,
let x′ = y′ exp(r). We now have

xN
i
= (y exp(Nr))N

i
= (y′N exp(Nr))N

i
= (y′ exp(r))N

i+1
= x′N

i+1
,

where the distribution of x′ is uniform on (Z/N ζ+1Z)×.
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A.4 KDM Security

Recall that we want to show that the following oracles

OKDM
sk,pk,R(x, y):
(k,N)← sk
z ← x · k + y
return DJE.Encpk(z)

OKDM
sk,pk,$(x, y):
(k,N)← sk

z
$← Z/N ζZ

return DJE.Encpk(z)

are indistinguishable to a PPT adversary who is given pk but not sk. Here, sk = (k,N) and
pk = (g, h,N) are sampled by generating a random k

$← [0, N) and g
$← (Z/N ζ+1Z)×, then

setting h ← g−k. We present a hybrid proof, starting with the real KDM oracle and ending
at the random KDM oracle:

H1. Sample g instead as g = g′N
ζ , where g′

$← (Z/N ζ+1Z)×. This is indistinguishable by
lemma 17.

H2. Whenever Enc samples r from [0, N), sample r from [0, N ζ+12λ) instead. Note that r
only matters modulo the order of g in (Z/N ζ+1Z)×, and the order of g must divide
φ(N) = (p − 1)(q − 1) because g is a perfect N ζth power. Therefore, this change is
statistically indistinguishable because both distributions for r are exponentially close to
uniform modulo φ(N):

N mod φ(N)

N
=

p+ q − 1

N
= O(N−

1
2 ) and

N ζ+12λ mod φ(N)

N ζ+12λ
< N−ζ2−λ.

H3. Use lemma 17 to change g back to being sampled as g
$← (Z/N ζ+1Z)×.

H4. Sample s
$← [0, N ζ) and add φ(N)s to r inside Enc. That is, Enc will now calculate

c0 ← gr+φ(N)s and c1 ← hr+φ(N)s · exp(z). This is statistically indistinguishable because
r is sampled from a much wider range than this shift: φ(N)Nζ

Nζ+12λ
< 2−λ.

H5. Rewrite OKDM
sk,pk,R as follows, to avoid using sk:

OKDM
sk,pk,R(x, y):
(g, h,N)← pk

r
$← [0, N ζ+12λ)

s
$← [0, N ζ)

c0 ← gr+φ(N)s · exp(x)
c1 ← hr+φ(N)s · exp(y)
return (c0, c1)

To see why this is indistinguishable, let u = log(gφ(N)) and notice that −k·u = log(hφ(N)).
Therefore, c0 = gr exp(u · s) and c1 = hr exp(−k · u · s + x · k + y). With probability
1 − N−1 we have u ̸≡ 0 mod N , so we can substitute s = (s′ + u−1x) mod N ζ to get
c0 = gr exp(u · s′+ x) and c1 = hr exp(−k · u · s′+ y). Finally, changing back from exp(u)
and exp(−k · u) to gφ(N) and hφ(N), and renaming s′ to s, gives the new KDM oracle
above.

H6. Undo the changes from H4, to remove s from the KDM oracle.
H7. Once again, let g = g′N

ζ , where g′ $← (Z/N ζ+1Z)×. This is indistinguishable by lemma 17.
H8. Sample k from [0, N ζ+12λ) instead [0, N). This is statistically indistinguishable for the

same reason as in H2, as k is now only used to compute h = g−k.
H9. Again, use lemma 17 to change g back to being sampled as g

$← (Z/N ζ+1Z)×.
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H10. Add φ(N)u−1 mod N ζ to k when computing h, where u = log(gφ(N)). That is, now
h = g−k+φ(N)u−1

= g−k exp(1). This is statistically indistinguishable for the same reason
as H4.

H11. Again, use lemma 17 to set g = g′N
ζ , where g′

$← (Z/N ζ+1Z)×.
H12. Reintroduce s into the KDM oracle.13 That is, sample s

$← [0, N ζ) and add φ(N)s to r.
This is statistically indistinguishable for the same reason as H4. Because the order of g
divides φ(N) (as g is a perfect N ζth power), we have

c0 = gr+φ(N)s · exp(x) = gr exp(x)

c1 = hr+φ(N)s · exp(y) = g−kr · exp(φ(N)s+ y).

H13. Replace y with y′
$← Z/N ζZ. To show indistinguishability, substitute s = (s′+φ(N)−1(y′−

y)) mod N ζ , so that now c1 = g−kr · exp(φ(N)s′ + y′). And sampling s′
$← [0, N ζ) is an

equivalent distribution to sampling s uniformly.
H14. Now that y has been replaced with random, undo hybrids H12–H1. We are now have a

distribution equivalent to OKDM
sk,pk,R, except that it ignores y and replaces it with a uniformly

sampled y′.
H15. Notice that sampling y′

$← Z/N ζZ and computing z ← x · k + y′ is equivalent to just
sampling z

$← Z/N ζZ, as the y′ works as a one-time pad. Making this change, we are now
at OKDM

sk,pk,$.

A.5 Distributed Discrete Logarithm

DDLOG Damgård-Jurik Distance Function [RS21]

DDLogN (h ∈ Z/N ζ+1Z):

Compute and output z ← log
(

h
h mod N

)
∈ Z/N ζZ

Fig. 9: [RS21]’s distributed discrete logarithm for the Damgård-Jurik cryptosystem [DJ01].

Lemma 18 (Distributed Decryption). If we have shares over Z of ⟨x⟩1 − ⟨x⟩0 = x and
⟨k · x⟩1 − ⟨k · x⟩0 = k · x, then

DDLogN (c
⟨k·x⟩1
0 c

⟨x⟩1
1 )− DDLogN (c

⟨k·x⟩0
0 c

⟨x⟩0
1 ) ≡ x · y mod N ζ

always holds, for every choice of plaintext size ζ ≥ 1, key pair (sk = (k,N), pk) ∈
Supp(DJE.KeyGen(1λ)), plaintext y ∈ Z/N ζZ, ciphertext (c0, c1) ∈ Supp(DJE.Encpk(y)), and
scalar x ∈ Z/N ζZ.

Proof. Taking the ratio of the inputs to DDLog, we get

c
⟨k·x⟩1
0 c

⟨x⟩1
1

c
⟨k·x⟩0
0 c

⟨x⟩0
1

= ck·x0 cx1 = exp(DJE.Decsk(c0, c1))
x = exp(x · y).

The second and third equalities are from the definition of DJE.Dec and the correctness of
DJE, respectively. The inputs to the DDLogs are therefore multiplicative shares of exp(x · y),
which, by [RS21, Theorem 18], makes the outputs of the DDLogs additive shares over Z/N ζZ
of x · y.
13 We couldn’t have kept s there the whole time, because the use of φ(N) would interfere with using lemma 17

to change how g is sampled.
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Lemma 19 (Adapted from [RS21, Lemma 19]). For all moduli M > 1 and all modulo
M shares ⟨x⟩0, ⟨x⟩1 ∈ Z/MZ of some x ∈ Z, we have

Pr
r

$←Z/MZ

[
(⟨x⟩1 + r) mod M − (⟨x⟩0 + r) mod M = x

]
= max

(
1− |x|

N ζ
, 0

)
.

B Proofs

B.1 Proof of core lemma 1

The proof of core lemma 1 boils down to proving that all the comments in the pseudocode
of ShareConv are invariants holding with all but negligible probability.
These claims are:

For i ∈ [r]: ct′i ∈ Supp(Enc(k · f ′i(sh0,1, . . . , sh0,m))) (4)

For i ∈ [r]: ct′′i ∈ Supp(Enc(f ′i(sh
auth
0,1 , . . . , shauth0,1 ))) (5)

For i ∈ [r]: ct′′′i ∈ Supp(Enc(fi(−sh0,1, . . . ,−sh0,m))) (6)
For i ∈ [r]: ct′′′′i ∈ Supp(Enc(k · fi(−sh0,1, . . . ,−sh0,m))) (7)

For i ∈ [r], j ∈ [0, di], and ℓ ∈ [di − j]:

TAB1[i][j][ℓ]− TAB0[i][j][ℓ] = [f ′i(sh1,1, . . . , sh1,m)]j · [fi(−sh0,1, . . . ,−sh0,m)]ℓ (8)

For i ∈ [r], j ∈ [0, di], and ℓ ∈ [di − j]:

TABauth
1 [i][j][ℓ]− TABauth

0 [i][j][ℓ] = k · [f ′i(sh1,1, . . . , sh1,m)]j · [fi(−sh0,1, . . . ,−sh0,m)]ℓ (9)

y1 − y0 = f(x1, . . . , xn) (10)

yauth1 − yauth0 = k · f(x1, . . . , xn) (11)

Note that eqs. (10) and (11) imply our desired equalities, because if y1 − y0 ∈ Z then ⌊y1⌋ −
⌊y0⌋ = y1 − y0.
Let us now prove that these invariants all hold with the desired probabil-
ity. We do this by first establishing a sequence of problem-reducing implica-
tions between these various statements. First observe that for all i ∈ [r],
|f(sh0,1, . . . , sh0,m)|, |f ′(sh0,1, . . . , sh0,m)|, |f(sh1,1, . . . , sh1,m)|, |f ′(sh1,1, . . . , sh1,m)| ≤ m · B ·
2λ · β. In particular, because k ≤ N , k · |f(sh0,1, . . . , sh0,m)|, k · |f ′(sh0,1, . . . , sh0,m)|, k ·
|f(sh1,1, . . . , sh1,m)|, k · |f ′(sh1,1, . . . , sh1,m)| ≤ N ·m ·B · 2λ · β.

1. Equations (4) to (7) hold unconditionally for all i ∈ [r]. For each i ∈ [r], eqs. (4)
and (5) holding (with probability 1) follow directly from linear homomorphism of the
Damgård-Jurik-ElGamal encryption scheme. Equations (6) and (7) also follow from linear
homomorphism, with the observation that gi(sh0,1, . . . , sh0,m, 1) = f ′i(sh0,1, . . . , sh0,m) +
fi(0, . . . , 0) = fi(sh0,1, . . . , sh0,m) (for eq. (6)) and gi(k · sh0,1, . . . , k · sh0,m, k) = f ′i(k ·
sh0,1, . . . , k ·sh0,m)+fi(0, . . . , 0)·k = k ·(fi(sh0,1, . . . , sh0,m)−f(0, . . . , 0))+f(0, . . . , 0)·k =
k · f(sh0,1, . . . , sh0,m) (for eq. (7)).

2. For all i ∈ [r], if j = 0 and ℓ = di, eqs. (8) and (9) holds unconditionally. This
is true tautologically for all i ∈ [r] because TAB1[i][0][di] is defined as 0 and TAB0[i][0][di]
is defined as [fi(−sh0,1, . . . ,−sh0,m)]di , and because TABauth

1 [i][0][di] is defined as 0 and
TABauth

0 [i][0][di] is defined as k · [fi(−sh0,1, . . . ,−sh0,m)]di .
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3. If ℓ = 0, eq. (8) holds unconditionally for all i ∈ [r] and j ∈ [di]. If ℓ = 0, then
eq. (8) is true tautologically for all i ∈ [r] and j ∈ [di] because TAB1[i][j][0] is defined as
[f ′i(sh1,1, . . . , sh1,m)]j and TAB0[i][j][0] is defined as 0.

4. If ℓ = 0 and j = 1, eq. (9) holds unconditionally for all i ∈ [r]. For all i ∈ [r],

TABauth
1 [i][1][0]− TABauth

0 [i][1][0] =f ′i(sh
auth
1,1 , . . . , shauth1,m )− f ′i(sh

auth
0,1 , . . . , shauth0,m )

+ k · f ′i(sh0,1, . . . , sh0,m)

=f ′i(sh
auth
1,1 − shauth0,1 , . . . , shauth1,m − shauth0,m )

+ k · f ′i(sh0,1, . . . , sh0,m)

=f ′i(k · x1, . . . , k · xn) + k · f ′i(sh0,1, . . . , sh0,m)

=k · f ′i(x1, . . . , xn) + k · f ′i(sh0,1, . . . , sh0,m)

=k · f ′i(sh1,1 − sh0,1, . . . , sh1,m − sh0,m)

+ k · f ′i(sh0,1, . . . , sh0,m)

=k · f ′i(sh1,1, . . . , sh1,m)

by linearity of f ′i and the facts that sh1,t − sh0,t = xt and shauth1,t − shauth0,t = k · xt. Hence
eq. (9) holds unconditionally for all i ∈ [r] is (j, ℓ) = (1, 0).

5. If ℓ = 0, then for all i ∈ [r] and j ∈ [2, di], if eq. (9) holds for (i, j − 1, ℓ = 0)
then it holds with probability at least 1−4(nB2λβ)d/Nζ−1 for (i, j, ℓ = 0). For
all i ∈ [r] and j ∈ [2, di], if we assume eq. (9) hold for (i, j − 1, ℓ = 0) then, because , the
following hold with probability at least 1− 4(nB2λβ)d/N ζ−1 by lemma 6 (using eqs. (4)
and (5)):

TABauth
1 [i][j][0]− TABauth

0 [i][j][0] =f ′i(sh
auth
1,1 , . . . , shauth1,m ) · [f ′i(sh1,1, . . . , sh1,m)]j−1

+Mult(TAB1[i][j − 1][0],TABauth
1 [i][j − 1][0], ct′i, crsi,j,1)

−Mult(TAB1[i][j − 1][0],TABauth
1 [i][j − 1][0], ct′′i , crsi,j,2)

−Mult(TAB0[i][j − 1][0],TABauth
0 [i][j − 1][0], ct′i, crsi,j,1)

+Mult(TAB0[i][j − 1][0],TABauth
0 [i][j − 1][0], ct′′i , crsi,j,2)

=f ′i(sh
auth
1,1 , . . . , shauth1,m ) · [f ′i(sh1,1, . . . , sh1,m)]j−1

+ [f ′i(sh1,1, . . . , sh1,m)]j−1 · k · f ′i(sh0,1, . . . , sh0,m)

− [f ′i(sh1,1, . . . , sh1,m)]j−1 · f ′i(shauth0,1 , . . . , shauth0,m )

=[f ′i(sh1,1, . . . , sh1,m)]j−1

· [f ′i(shauth1,1 , . . . , shauth1,m ) + k · f ′i(sh0,1, . . . , sh0,m)− f ′i(sh
auth
0,1 , . . . , shauth0,m )]

=[f ′i(sh1,1, . . . , sh1,m)]j−1

· [f ′i(k · x1, . . . , k · xn) + k · f ′i(sh0,1, . . . , sh0,m)]

=[f ′i(sh1,1, . . . , sh1,m)]j−1

· k · f ′i(x1 + sh0,1, . . . , xn + sh0,m)

=k · [f ′i(sh1,1, . . . , sh1,m)]j

6. For all i ∈ [r], j ∈ [di], and ℓ ∈ [di − j], if eqs. (8) and (9) hold for (i, j, ℓ− 1)
then they hold with probability at least 1 − 2(nB2λβ)d/Nζ−1 for (i, j, ℓ − 1).
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Let (i, j, ℓ) ∈ [r]× [di]× [di − j] and assume eqs. (8) and (9) both hold.

By lemma 6 (and using eq. (6)), with all but probability at most 2(nB2λβ)d/N ζ−1:

TAB1[i][j][ℓ]− TAB0[i][j][ℓ] =Mult(TAB1[i][j][ℓ− 1],TABauth
1 [i][j][ℓ− 1], ct′′′i , crsi,j,3)

−Mult(TAB1[i][j][ℓ− 1],TABauth
1 [i][j][ℓ− 1], ct′′′i , crsi,j,3)

=[f ′i(sh1,1, . . . , sh1,m)]j · [fi(−sh0,1, . . . ,−sh0,m)]ℓ−1 · fi(−sh0,1, . . . ,−sh0,m)

=[f ′i(sh1,1, . . . , sh1,m)]j · [fi(−sh0,1, . . . ,−sh0,m)]ℓ

which is to say eq. (8) holds for (i, j, ℓ).

Similarly, by lemma 6 (and using eq. (7)), with probability at least 1− 2B/N ε:

TABauth
1 [i][j][ℓ]− TABauth

0 [i][j][ℓ] =Mult(TAB1[i][j][ℓ− 1],TABauth
1 [i][j][ℓ− 1], ct′′′′i , crsi,j,4)

−Mult(TAB1[i][j][ℓ− 1],TABauth
1 [i][j][ℓ− 1], ct′′′′i , crsi,j,4)

=[f ′i(sh1,1, . . . , sh1,m)]j · [fi(−sh0,1, . . . ,−sh0,m)]ℓ−1 · k · fi(−sh0,1, . . . ,−sh0,m)

=k · [f ′i(sh1,1, . . . , sh1,m)]j · [fi(−sh0,1, . . . ,−sh0,m)]ℓ

which is to say eq. (9) holds for (i, j, ℓ).

7. If, for all i ∈ [r], j ∈ [di], eq. (8) holds for (i, j, ℓ = di−j), then eq. (10) holds.
Assume eq. (8) holds for (i, j, ℓ = di − j) for all (i, j) ∈ [r]× [di], then

y1 − y0 =
r∑

i=1

di∑
j=1

αi ·
(
di
j

)
· (−1)di−j · (TAB1[i][j][di − j]− TAB0[i][j][di − j])

=

r∑
i=1

di∑
j=1

αi ·
(
di
j

)
· (−1)di−j · [f ′i(sh1,1, . . . , sh1,m)]j · [fi(−sh0,1, . . . ,−sh0,m)]di−j

=

r∑
i=1

αi ·
(
f ′i(sh1,1, . . . , sh1,m)− fi(−sh0,1, . . . ,−sh0,m)

)di
=

r∑
i=1

αi · (fi(x1, . . . , xn))di

=f(x)

That is to say, eq. (10) holds.

8. If, for all i ∈ [r], j ∈ [di], eq. (9) holds for (i, j, ℓ = di−j), then eq. (11) holds.
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Assume eq. (9) holds for (i, j, ℓ = di − j) for all (i, j) ∈ [r]× [di], then

yauth1 − yauth0 =
r∑

i=1

di∑
j=0

αi ·
(
di
j

)
· (−1)di−j ·

(
TABauth

1 [i][j][di − j]− TABauth
0 [i][j][di − j]

)

=
r∑

i=1

di∑
j=0

αi ·
(
di
j

)
· (−1)di−j · k · [f ′i(sh1,1, . . . , sh1,m)]j · [fi(−sh0,1, . . . ,−sh0,m)]di−j

=k ·
r∑

i=1

αi ·
(
f ′i(sh1,1, . . . , sh1,m)− fi(−sh0,1, . . . ,−sh0,m)

)di
=k ·

r∑
i=1

αi · (fi(x1, . . . , xn))di

=k · f(x)

That is to say, eq. (11) holds.

By combining these polynomially many implications, we get that eqs. (10) and (11) hold
simultaneously with probability at least 1− 4rd2(nB2λβ)d/N ζ−1 (by a union bound), which
is what we set out to prove.

B.2 Proof of main theorem 1

In this section we prove main theorem 1. Even though definition 5 is simulation-based, we
start by establishing a strong notion of correctness in section B.2.1 for convenience, before
resuming the proof in section B.2.2.

B.2.1 Correctness lemma.

Lemma 20 (Correctness of the PCPRF of fig. 7). Let λ ∈ N∗ be a security parameter,
let (λDCR, ζ) be parameters for the Damgård-Jurik-ElGamal cryptosystem, let B be a bound
on inputs. Let r, d, β be polynomial-size bounds. Consider the construction of fig. 7 for any
class of constraints C whose dual have Waring rank bounded by r and degree bounded by d,
and furthermore such that the coefficients of affine functions used in a corresponding Waring
decomposition ( i.e. “the fi”) are bounded by β.

∀C ∈ C,

Pr

[
∀x ∈ {0, 1}m,∀kPRF ∈ {0, 1}λ, B-admissible w.r.t. PRF,
CEval(1λ, ck, x)− Eval(1λ,msk, x) = C(x) · PRFkPRF(x)

:
msk

$← PCPRF.KeyGen(1λ)

ck
$← PCPRF.Constrain(1λ,msk, C)

]

≥ 1− 2|PRF| ·B + 4rd2(nB2λβ)d

(2λDJE−1)ζ−1
· 2n2λ .

Proof. Let C ∈ C, x ∈ {0, 1}m, and kPRF ∈ {0, 1}λ which is B-admissible with respect to
bound B. By combining core lemma 1 and lemma 8, we get that

Pr

[
CEval(1λ, ck, x)− Eval(1λ,msk, x) = C(x) · PRFkPRF(x) :

msk
$← PCPRF.KeyGen(1λ)

ck
$← PCPRF.Constrain(1λ,msk, C)

]

≥ 1− 2|PRF| ·B + 4rd2(nB2λβ)d

(2λDJE−1)ζ−1
.

We get the desired result by a union bound over all x and kPRF.
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B.2.2 Full simulation-based proof. We now prove single-key selective PCPRF security,
using the strong correctness (lemma 20) of our PCPRF, and the KDM security of the un-
derlying Damgård–Jurik–ElGamal encryption scheme (theorem 16). We must show that the
constrained key can be simulated using only the size of the constraint, such that oracle access
to master evaluations Eval(1λ,msk, ·) in the real world is indistinguishable from oracle access
to

x 7→

{
CEval(1λ, ck, x) if C(x) = 0

R(x) if C(x) = 1
,

in the simulated world, where R : {0, 1}n → [0, 2µ) is sampled as a uniformly random function.
In fig. 10 we present our simulator for this property.

Simulator Privately Constrained PRF

S(1λ, 1m):
1. (sk = (k,N), pk = (g, h,N))

$← DJE.KeyGen(1λ)
2. For i ∈ [m]:
– sh1,i

$← [2λ]

– shauth1,i
$← [N2λ]

– ci, c
auth
i , cext-authi

$← DJE.Encpk($) // All are encryptions of uniformly random plain-
texts.

3. For i ∈ [λ]:
– cPRF,i

$← DJE.Encpk($)

– cext-authPRF,i
$← DJE.Encpk($)

4. crs = (crs1, crs2)
$← (Z/N ζZ)4·rd × (Z/N ζZ)M

5. ck← ( pk,

(sh1,i, sh
auth
1,i , ci, c

auth
i , cext-authi )i∈[m],

(cPRF,i, c
ext-auth
PRF,i )i∈[λ],

crs)
6. Output ck

Fig. 10: Simulator for single-key selective security.

We now present a hybrid proof starting from the real world and ending at the simulated
world.

H1. First, we use lemma 20 to rewrite the oracle access to Eval(1λ,msk, ·) in terms of
PEval(1λ, ck, ·). According to the lemma, λDJE and ζ can be chosen as sufficiently large
polynomials in the security parameter so that except with negligible probability we have
that, for all evaluation points x,

CEval(1λ, ck, x)− Eval(1λ,msk, x) ≡ C(x) · PRFkPRF(x) mod 2µ.

Therefore, we rewrite the Eval oracle as

x 7→ (CEval(1λ, ck, x)− C(x) · PRFkPRF(x)) mod 2µ.

H2. For all i ∈ [m], instead of sampling sh0,i
$← [2λ] and setting sh1,i ← Ĉi + sh0,i, sample

sh1,i
$← [2λ] and set sh0,i ← −Ĉi + sh0,1. This shifts the distribution of the shares by at

most 1, so each change gives an advantage of at most 2−λ. Similarly, we reverse which
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share is sampled first for the auth shares: now shauth1,i
$← [N2λ] and shauth0,i ← −k ·Ĉi+shauth1,i .

This shifts the shares by at most k ≤ N , so again each change has an advantage of at
most 2−λ. The total advantage from this hybrid is then at most m21−λ.

H3. Notice that there are now only two places where k is used after DJE.KeyGen:
(i) to compute master key auth shares shauth0,··· , which only used to create cipher-
texts cauth···

$← DJE.Encpk(sh
auth
0,··· ), and (ii) to generate the ext-auth ciphertexts

cext-auth···
$← DJE.Encpk(k · sh0,···). Both of these are only encryptions of affine functions

of the key, so by the KDM security of DJE it is indistinguishable to replace all ciphertexts
with encryptions of uniformly random values.

H4. Notice that the master key shares sh0,··· and shauth0,··· are no longer used. Remove them.

H5. Notice that the PRF key kPRF is now only used in the Eval oracle. Therefore, by secu-
rity of the PRF we can remove kPRF, and instead sample a uniformly random function
R′ : {0, 1}n → [0, 2µ) and let the Eval oracle be

x 7→ (CEval(1λ, ck, x)− C(x) ·R′(x)) mod 2µ.

H6. Define R(x) = (CEval(1λ, ck, x)−R′(x)) mod 2µ. Then we can write the Eval oracle as

x 7→

{
CEval(1λ, ck, x) if C(x) = 0

R(x) if C(x) = 1
.

H7. Because R′ has outputs uniform on [0, 2µ), it is an identical distribution to remove R′ and
directly sample R uniformly. This hybrid matches the simulation.
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