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Abstract. We study the round-complexity of secure multi-party computation (MPC) in the post-
quantum regime where honest parties and communication channels are classical but the adversary can
be a quantum machine. Our focus is on the fully black-box setting where both the construction as well
as the security reduction are black-box in nature. In this context, Chia, Chung, Liu, and Yamakawa
[FOCS’22] demonstrated the infeasibility of achieving standard simulation-based security within con-
stant rounds, unless NP ⊆ BQP. This outcome leaves crucial feasibility questions unresolved. Specif-
ically, it remains unknown whether black-box constructions are achievable within polynomial rounds;
additionally, the existence of constant-round constructions with respect to ε-simulation, a relaxed yet
useful alternative to the standard simulation notion, remains unestablished.

This work provides positive answers to the aforementioned questions. We introduce the first black-
box construction for post-quantum MPC in polynomial rounds, from the minimal assumption of
post-quantum semi-honest oblivious transfers. In the two-party scenario, our construction requires
only ω(1) rounds. These results have already found application in the oracle separation between
classical-communication quantum MPC and P = NP in the recent work of Kretschmer, Qian, and
Tal [STOC’25].

As for ε-simulation, Chia, Chung, Liang, and Yamakawa [CRYPTO’22] resolved the issue for the
two-party setting, leaving the general multi-party setting as an open question. We complete the picture
by presenting the first black-box and constant-round construction in the multi-party setting. Our con-
struction can be instantiated using various standard post-quantum primitives including lossy public-key
encryption, linearly homomorphic public-key encryption, or dense cryptosystems.

En route, we obtain a black-box and constant-round post-quantum commitment that achieves a
weaker version of the standard 1-many non-malleability, from the minimal assumption of post-quantum
one-way functions. Besides its utility in our post-quantum MPC construction, this commitment scheme
also reduces the assumption used in the lower bound of quantum parallel repetition recently established
by Bostanci, Qian, Spooner, and Yuen [STOC’24]. We anticipate that it will find more applications in
the future.
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1 Introduction

Secure multi-party computation (MPC) allows two or more mutually distrustful parties to compute
any functionality without compromising the privacy of their inputs [Yao86, GMW87]. We study
foundational questions pertaining to the efficiency of secure multiparty computation in the post-
quantum regime where honest parties and communication channels are classical but the adversary
can be a quantum machine. We focus on two specific efficiency criteria: (1) the round-complexity,
and (2) the black-box nature of the protocols. We are only concerned with general-purpose protocols
in this work, i.e., protocols that can compute any well-defined multiparty functionality.

The black-box nature of the protocols manifests itself in at least two ways. First, the MPC
protocol is said to have a black-box construction, if it only relies on the input-output behaviour of
the underlying cryptographic primitives/assumptions. That is, the description of the MPC protocol
is independent of the implementation level details of the underlying cryptographic primitives. This
ensures that the efficiency of the protocol does not change with the implementation details of
the underlying primitives. Moreover, such constructions remain valid even if the building-block
primitives are based on a physical object such as a noisy channel or tamper-proof hardware [Wyn75,
CK88, GLM+04].

Second, the MPC protocol is said to have a black-box security-proof (or reduction) if the security
proof uses the adversary only as a black-box (i.e., only relies on its input/output functionality).
We are concerned with MPC protocols that are fully black-box [IR89, RTV04], i.e., they have a
black-box construction as well as a black-box reduction to the underlying cryptographic primitives.
Protocols that admit black-box reductions are often simpler and tend to result in more efficient
implementations.

The complexity of black-box MPC protocols is well understood in the classical setting, resulting
in fully black-box constructions in a constant number of rounds under standard polynomial hardness
assumptions [Goy11], obtained after a long sequence of works in this direction [IKLP06, IKOS07,
Hai08, IPS08, PW09, CDMW09, Wee10].

However, these questions are wide open in the post-quantum MPC (PQ-MPC) setting where
honest parties and communication channels are still classical but the adversary is allowed to be
a quantum machine. This is in part due to the fact that classical techniques for performing sim-
ulation and extraction in MPC and Zero-Knowledge protocols rarely work when the adversary is
a quantum machine. In fact, Chia, Chung, Liu, and Yamakawa [CCLY22b] recently showed that
standard (expected) polynomial-time black-box simulation is impossible to achieve by constant-
round constructions in the post-quantum setting (unless NP ⊆ BQP). Indeed, this impossibility
holds even in scenarios where honest parties have access to quantum capabilities [CCLL24]. These
strong results still leave glaring feasibility questions unresolved, which we discuss next.

Full simulation but non-constant rounds: In this regime, all known constructions achieving
full (or standard) simulation [ABG+21, LPY23a, GLM23]5 make extensive use of non-black-box
techniques. Indeed, [ABG+21, LPY23a] even achieve constant rounds by relying on non-black-box
simulation. However, no results are known if we insist on black-box constructions, even for the
two-party setting.6 This raises the following question:

5 Note that [LPY23b] and [LPY23a] refer to the same paper. We include two separate bibliography entries because
certain lemmas appear exclusively in the arXiv version [LPY23b] but not in the conference version [LPY23a], and
we occasionally need to cite them specifically.

6 We note that fully black-box constructions exist if the honest parties are allowed to leverage quantum power (e.g.,
[BCKM21, GLSV21]). However, this falls outside the scope of our focus on post-quantum protocols.
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Question 1: Do there exist black-box constructions of post-quantum 2PC (and MPC) with
full simulation (in more than constant number of rounds)?

Relaxed simulation in constant rounds: The everpresent desire for constant-round secure pro-
tocols has prompted exploration of alternative notions such as with ε-simulation, which is a relaxed
form of standard simulation-based security that allows for an arbitrarily small noticeable simulation
error ε. This is an extensively well-studied notion in the literature [DNRS99, JKKR17, BKP19] that
implies other important security notions — e.g., ε-zero-knowledge protocols imply witness indistin-
guishability [FS90] and ε-simulatable MPCs imply input-indistinguishable computation [MPR06].
In this ε-simulation regime, the recent work of [CCLY22a] made initial progress by presenting a
constant-round fully black-box protocol for the two-party setting. However, obtaining similar re-
sults in the multi-party setting has remained an unsolved challenge, even with stronger hardness
assumptions than those in the classical setting. This motivates our second question:

Question 2: Do there exist black-box, constant-round constructions of post-quantum MPC
with ε-simulation?

We remark that the recent breakthrough by Lombardi, Ma, and Spooner [LMS22] proposed
a new model for post-quantum simulation, called coherent-runtime expected quantum polynomial
time simulation. In this model, a simulator is allowed to coherently run multiple computational
branches with different runtime so that they can interfere with one another. They show a set
of results in this model that bypass the impossibility result of [CCLY22b]. We emphasize that
in the current work, we focus on the traditional notion of quantum strict, rather than expected,
polynomial-time simulation. It is also worth mentioning that although the [LMS22]’s coherent-
runtime expected QPT simulation implies ε-simulation, the round complexity of fully black-box
PQ-MPC has not been resolved in their model either. We leave it as an interesting direction to
investigate the implications of the [LMS22] model on the round complexity of black-box PQ-MPC.

1.1 Our Results

In this work, we give a positive resolution of these two questions.

1.1.1 Black-Box PQ-2PC and PQ-MPC with Full Simulation
We obtain the first fully black-box PQ-2PC protocol from minimal assumptions, in any super-
constant number of rounds, which is (asymptotically) optimal for black-box simulation (due to the
lower bound of [CCLY22b]):
Theorem 1. There exists a ω(1)-round,7 black-box construction of PQ-2PC (with full simulation),
from the minimal assumption of post-quantum, semi-honest oblivious transfers (OTs).

To build this protocol, we follow the approach of [CCLY22a] originally designed for black-box
PQ-2PC with ε-simulation. Very roughly speaking, the most crucial component in their approach is
a post-quantum extractable commitment with ε-simulation. This primitive is similar to the standard
notion of extractable commitments in the classical setting, but it additionally requires that the post-
extraction state of C∗ (the malicious committer) should be ε-indistinguishable from that in the real
execution.8 We observe that we can use [CCLY22a] template to also achieve the standard notion

7 While the term ω(1) is typically used for lower bounds, in our context, we use it to mean that “any super-constant
value suffices.”

8 We remark that while simulating for C∗’s post-extraction state is trivial in the classical setting, this task is
particularly challenging when C∗ is a quantum machine (see [CCLY22a]).
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of fully simulatable PQ-2PC (instead of just ε-simulatability) if we can just make the underlying
extractable commitment fully-simulatable.

While the goal is clear, achieving this turns out to be quite non-trivial. To the best of our knowl-
edge, all existing black-box constructions for this task crucially utilize quantum communication in
their protocol [BCKM21, GLSV21]. Since our aim is to build a post-quantum protocol, this does
not suit us. To address this issue, we introduce the first black-box construction of post-quantum
extractable commitments with full simulation. Our construction makes use of post-quantum semi-
honest OTs. We note that while semi-honest OTs may not be the minimal assumption for extractable
commitments per se, it is however minimal for our eventual goal of PQ-2PC.

Lemma 1. Assuming the existence of post-quantum semi-honest OTs, there exists a ω(1)-round,
black-box construction of post-quantum extractable commitments with full simulation.

Given our construction of black-box PQ-2PC, we can use it to get a construction for fully
simulatable PQ-MPC. This is done by invoking the [IPS08] black-box compiler to get a polynomial
round PQ-MPC — the key thing to notice is that our 2PC construction can also serve as the kind
of OT protocol that is required by this compiler, albeit necessitating sequential composition for
multiple OT calls. We refer the reader to Sec. 16 for further details.

Theorem 2. There exists a black-box construction of PQ-MPC with full simulation, from the
minimal assumption of post-quantum semi-honest OTs.

1.1.2 Application I: LOCC MPC without OWFs

A recent breakthrough by Kretschmer, Qian, and Tal [KQT25] constructed a classical oracle relative
to which P = NP, yet BQP-computable (and quantum-secure) trapdoor OWFs exist, making
them impossible to “de-quantize” in a black-box manner. This relativized world is particularly
surprising when contrasted with its classical counterpart, where BPP-computable OWFs can be
de-randomized in a black-box manner [IL89].

[KQT25] established their main theorem via a fully black-box reduction. Consequently, relative
to the same classical oracle, their theorem extends to demonstrate the existence of any “LOCC”
cryptographic object that admits a fully black-box reduction to trapdoor OWFs in the post-quantum
setting. Here, LOCC stands for “local operations and classical communication,” meaning that par-
ties can perform local quantum operations, but all communication must be classical.

By combining our Thm. 1 (and Thm. 2) above and the post-quantum fully black-box reduction
from semi-honest OTs to trapdoor OWFs from [GKM+00]9, the authors of [KQT25] were able to
derive the following Corollary 1 as a corollary of their main theorem. As explained in [KQT25],
our Thm. 1 (and Thm. 2) are essential for this result, as previous 2PC/MPC constructions either
make non-black-box use of semi-honest OTs or lack security proofs in the presence of a quantum
attacker.

Corollary 1 ([KQT25, Corollary 39], strengthened10). There exists a classical oracle relative
to which classical-communication and quantum-secure MPC exist, yet P = NP.

9 Although the original work [GKM+00] was focused on the classical setting, it is straightforward to see that their
reduction holds in the post-quantum setting as well.

10 The original [KQT25, Corollary 39] relied only on our Thm. 1 to obtain maliciously secure OTs (and thus 2PC).
Here, we extend it to MPC using the stronger Thm. 2.
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1.1.3 Constant-Round Black-Box PQ-MPC with ε-Simulation

As for ε-simulation, we study the general multi-party setting, and obtain the first constant-round
fully black-box construction for PQ-MPC by relying on the same (more accurately, the post-
quantum analog of) hardness assumptions as for the state-of-the-art classical MPC protocols:

Theorem 3. There exists a constant-round black-box construction of ε-simulatable PQ-MPC from
a variety of standard post-quantum cryptographic primitives, such as lossy public-key encryption,
linearly homomorphic public-key encryption, or dense cryptosystems.11

Our approach to Thm. 3 follows a pipeline established for classical constant-round black-box
MPC, which has evolved through a series of prior work [IPS08, PW09, Wee10, Goy11, GLOV12]. In
broad terms, we demonstrate that if the building components used in this pipeline are properly in-
stantiated using their post-quantum equivalents, the outcome can be extended to the post-quantum
realm. Further insights into this process are elaborated upon in Sec. 2.1. For now, it is worth not-
ing that a critical step in this framework is the development of a black-box 1-many non-malleable
commitment scheme in constant rounds. This constitutes the primary technical challenge in the
post-quantum setting.

Post-Quantum 1-Many Non-Malleability. Non-malleable commitments [DDN91] are commit-
ments secure in the so-called man-in-the-middle (MIM) setting: An adversary M plays the role of
a receiver in one instance of a commitment (referred to as the left session), while simultaneously
acting as a committer in another session (referred to as the right session). During the execution,M
can potentially make the value committed in the right session depend on that in the left session, in
a malicious manner that is to her advantage. Notice that this is not breaking the hiding property
of the commitment scheme, as M may be able to conduct the above attack without explicitly
learning the value committed in the left session. Furthermore, a commitment is said to be 1-many
non-malleable if it is secure in the MIM setting with one left session but polynomially many right
sessions, i.e., the adversary M cannot make the joint distribution of the values committed across
all right sessions depend on the one committed in the left session.

In the classical setting, the existence of black-box constant-round 1-many non-malleable com-
mitments was established under the minimal assumption of one-way functions [Goy11, GLOV12].
Such commitments played a pivotal role in enabling black-box constant-round MPC. However, in
the post-quantum context, achieving non-malleability (even in the 1-1 MIM setting) with constant
rounds proves to be an exceptionally challenging task. A recent result by [LPY23a] succeeded in
obtaining a post-quantum 1-1 non-malleable commitment in constant rounds. Yet, their construc-
tion relies significantly on non-black-box usage of post-quantum one-way functions, and it remains
uncertain if their scheme can maintain non-malleability in the more demanding 1-many scenario.

In this work, we obtain a black-box and constant-round construction for a weak version (ex-
plained shortly) of 1-many post-quantum non-malleable commitments, from the minimal assump-
tion of post-quantum one-way functions. Compared to the standard notion of 1-many non-malleability,
our construction is restricted in the following sense:

– It supports a polynomial tag space12, instead of a exponential-size tag space as required by the
standard definition.

11 We did not mention post-quantum (enhanced) trapdoor permutations as they are not known from standard
quantum hardness assumptions yet. But as long as they exist, they can be included in Thm. 3 as well.

12 Each execution of non-malleable commitments requires a unique tag; otherwise, it is impossible to protect against
MIM attacks (see [Pas04] for related discussions).
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– It is non-malleable only in the synchronous setting, meaning that all the messages of the left
session and the polynomially many right sessions are sent in parallel.

– It is non-malleable conditioned on the fact that the honest receiver in every right session accepts.
That is, if there is some right session where the receiver rejects during the commit stage (the
committed value for this session is then defined to be ⊥), then our protocol does not provide any
non-malleability guarantee. (We refer to Def. 6 for a formal treatment.)

We emphasize that while our construction may not be as powerful as the standard 1-many post-
quantum non-malleable commitments, it already has non-trivial applications. Firstly, such a scheme
suffices for our main focus of post-quantum MPC. Additionally, it also reduces the assumption
utilized in a lower bound of quantum parallel repetition (as we will discuss shortly). We believe it
will find more applications in the future.

Theorem 4. Assuming the existence of post-quantum one-way functions, there exists a black-box
and constant-round construction of weak (as explained above) post-quantum 1-many non-malleable
commitments.

It is known that 1-many non-malleability implies the seemingly more demanding many-many
non-malleability, using a standard hybrid argument. This reduction holds even in the post-quantum
setting (see e.g., [ABG+21, Lemma 7.3]). This yields the following corollary of Thm. 4.

Corollary 2. Assuming the existence of post-quantum one-way functions, there exists a black-
box and constant-round construction of weak (as explained above) post-quantum many-many non-
malleable commitments.

1.1.4 Application II: Quantum Parallel Repetition Lower Bound
Interestingly, our many-many non-malleability commitments find further application in establishing
the lower bound for parallel repetition of post-quantum arguments. The recent work by Bostanci,
Qian, Spooner, and Yuen [BQSY24] shows that parallel repetition does not always reduce the
soundness error of post-quantum interactive argument systems. In particular, for any polynomial
k(λ), the authors of [BQSY24] constructed a constant-round interactive argument for which a k-fold
parallel repetition does not reduce the (post-quantum) soundness at all. Their construction makes
use of many-many post-quantum (synchronous) non-malleable commitments in constant rounds,
which were not known previously. Now, the above Corollary 2 reduces the assumption used in
[BQSY24] to the existence of post-quantum one-way functions. We state the result in the following
Corollary 3 and refer the interested reader to [BQSY24, Theorem 1.6 and Section 6]13 for more
information.

Corollary 3. Assume the existence of post-quantum one-way functions. Then, for every polynomial
k(λ), there is a constant-round post-quantum interactive argument such that a k(λ)-fold repetition
does not decrease the soundness error compared to the original protocol.

1.2 More Related Work on Non-Black-Box Constructions

Besides the aforementioned works [ABG+21, LPY23a, GLM23], other non-black-box constructions
of PQ-2PC also exist, such as [LN11, HSS11]. This naturally raises the question: how large is the
13 We remark that [BQSY24, Theorem 1.6] assumes ‘concurrent-secure’ many-to-many non-malleable commitments.

But as the authors have shown in [BQSY24, Section 6], ‘parallel-secure’ (i.e., synchronous) many-to-many non-
malleable commitments suffice. Moreover, in their application, if the verifier in one session rejects, the entire
execution is considered rejected. Thus, our weak many-many non-malleability notion suffices.
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gap between these non-black-box PQ-2PC protocols and our black-box PQ-2PC in Thm. 1? What
are the key obstacles preventing the removal of non-black-box components in these constructions?

In fact, these works adopt a fundamentally different approach from ours, as we elaborate below.
[LN11] primarily focused on feasibility results rather than the black-box nature of the construc-

tion. Indeed, it is unclear how to remove the non-black-box components from the [LN11] approach.
This is because [LN11] builds PQ-2PC following the GMW approach [GMW87]: first constructing
a semi-honest protocol and then achieving active security by adding ZK proofs on each message to
enforce honest behavior from the parties. This GMW approach is inherently non-black-box due to
its reliance on ZK proofs for cryptographic statements (i.e., the parties’ next-message functions).

Even in the classical setting, black-box constructions of 2PC/MPC move away from the GMW
approach and instead follow a very different path established by the line of works [IPS08, PW09,
CDMW09, Hai08, IKLP06, Wee10, Goy11]. Briefly, the key advantage of this line of work lies
in the development of techniques that enforce honest behavior without requiring ZK proofs for
cryptographic statements, while achieving a constant number of interactions. Our constructions
follow this line of work in the post-quantum setting, and therefore have little overlap with the
[LN11] approach.

A similar situation applies to [HSS11]. Essentially, the PQ-2PC from [HSS11] follows the classical
approach established by [CLOS02]. This is another inherently non-black-box approach where a
commit-and-prove protocol is executed on cryptographic languages to enforce honest behavior from
the parties. This can be viewed as a variant of the GMW compiler in the Universal-Composable
(UC) framework. As such, there is little common ground for further comparison.

2 Technical Overview

This section provides an overview of our techniques. We first discuss our construction of ε-simulatable
PQ-MPC (i.e., Thm. 3). This is covered in Sec. 2.1 to 2.6. After that, we describe our approach to
PQ-2PC and PQ-MPC with full simulation (i.e., Thm. 1 and 2). This is covered in Sec. 2.7 and 2.8.

2.1 Reduction to Post-Quantum 1-Many Non-Malleability

As mentioned earlier, our approach to black-box ε-simulatable post-quantum MPC follows a pipeline
established in the classical setting. In the following, we first recall it.

Classical Framework. In the classical setting, the aforementioned pipeline to obtain constant-
round and black-box MPC proceeds as follows:
1. Malicious-Sender OT: First, build a 1-out-of-2 string OT with a weak property, namely, with se-

curity against malicious senders but only semi-honest receivers; Additionally, the associated sim-
ulator for proving security is required to be ‘straight-line’ (i.e., not performing any rewindings).
Such schemes are known from any of the following: certifiable enhanced trapdoor permutations,
dense cryptosystems, linearly homomorphic PKE, or lossy PKE (see, e.g., [CDMW09, Wee10]).
These schemes are black-box constructions and constant-round (indeed, two rounds suffice).

2. Multi-Party Parallel OT: Next, a compiler is employed to transfer the malicious-sender OT to a
fully-secure OT in the n-party parallel setting. This is the setting of n parties where every pair
of parties (Pi, Pj) runs two executions of same OT protocol, one with Pi as the sender and the
other with Pj as the sender. All of these 2 ·

(
n
2

)
executions happen in parallel. Such a compiler

was constructed in [Wee10, Goy11], which is constant-round and makes only black-box use of
its building blocks. (We provide more details when describing our approach.)
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3. General-Purpose MPC: Finally, another black-box compiler is employed to transfer the n-party
parallel OT to a general-purpose n-party secure computation protocol. This compiler was intro-
duced in [IPS08]. It blows up the round complexity only by a constant number.

Our Approach. At a high-level, our approach is to replace all the primitives employed in the
above pipeline with their post-quantum analog, preserving both the constant-round and black-box
properties.

First, we notice that Step 1 extends to the post-quantum setting straightforwardly. That is,
post-quantum malicious-sender OTs (with straight-line simulation) can be based on post-quantum
dense cryptosystems, linearly homomorphic PKE, or lossy PKE, which can be in turn based on the
quantum hardness of Learning with Errors (QLWE).

Obtaining the post-quantum analog of Step 2 represents the main technical challenge. Let us
first discuss about Step 3, assuming the existence of post-quantum multi-party parallel OTs (with ε-
simulation). For that purpose, we notice that the same [IPS08] compiler (introduced in the classical
setting) can be used to convert any post-quantum multi-party parallel OT (with ε-simulation) to a
post-quantum MPC (with ε-simulation)14. It adds at most constant rounds, makes only black-box
use of the given OT protocol, and does not rely on any extra assumptions. Roughly, this is because
the original security reduction in [IPS08] is in straight-line and does not copy (or ‘clone’) the state
of the adversary. Thus, the same proof can be migrated to the post-quantum setting. Although
there are some caveats (e.g., how to handle the ε-simulation error), we choose not to expand on
them in this overview and refer the reader to Sec. 12 for more details.

In the following, we focus on the post-quantum analog of Step 2.

Post-Quantum Multi-Party Parallel OT. Our starting point is the constant-round, black-box
compiler described in [Wee10, Goy11]. The specific structure of this protocol is not the primary
emphasis of this overview and is therefore omitted (see Sec. 11 for details). Our sole concern lies
in the fact that this compiler relies on a distinct commitment scheme that enjoys the following
properties:
– Constant-Round and Black-Box: This is necessary because our ultimate goal is to obtain a

constant-round OT (and MPC) that makes only black-box use of the building blocks.
– Parallel-Extractable: It considers the setting where a potentially malicious committer executes n

sessions of the scheme in parallel. It requires the existence of an extractor that can extract the
committed values in all the n sessions simultaneously.

– 1-Many Non-Malleable: As explained in the introduction, this notion considers a MIM adversary
M who plays the role of a receiver in one instance of the commitment (dubbed the left session),
while simultaneously acting as a committer in polynomially many other instances (referred to as
the right sessions). All the sessions happen in parallel. For security, we require that M cannot
correlate the joint distribution of the values committed in all of the right sessions with that in
the (single) left session. (See Sec. 3.4 for a formal definition.)

It can be shown that as long as we have a post-quantum analog of the above commitment scheme,
the same [Wee10, Goy11] compiler can be used to convert a post-quantum malicious-sender OT
(with ε-simulation) to a post-quantum multi-party parallel OT (with ε-simulation).

It is worth noting that the post-quantum equivalent of (parallel) extractability necessitates an
additional requirement: the extractor must be capable of simulating the post-extraction state of
the malicious committer. This aspect was not explicitly addressed in the classical setting because
14 The same observation has been made in the two-party setting in [CCLY22a].
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classical information can be ‘cloned,’ allowing an extractor to create two copies of the committer—
one for extraction and the other for simulating the post-extraction state, thereby mimicking a
straight-line execution. However, achieving such a ‘simulatable’ extraction becomes challenging
in the post-quantum realm. In fact, there have been suggestions that achieving post-quantum
extractable commitments with negligible simulation error may be impossible in constant rounds, if
one insists on black-box simulation techniques [CCLY22b, CCLY22a, CCLL24]. This very challenge
is the reason why we relax our security notion to ε-simulatability. Looking forward, our objective is
to aim for parallel-extractable commitments with ε-simulation for post-extraction state in the post-
quantum setting. We will demonstrate that this suffices for the [Wee10, Goy11] compiler when our
ultimate goal is ε-simulatable PQ-MPC. To maintain our focus on the core topics of this overview,
we will omit additional details in this regard and refer the reader to Sec. 12.

Post-Quantum 1-Many Non-Malleability. Next, our focus turns to the development of a com-
mitment scheme that satisfies the post-quantum analog of the three properties mentioned earlier. To
achieve this, we start with the constant-round post-quantum non-malleable commitment described
in [LPY23a]. First, we observe that the [LPY23a] scheme is already post-quantum extractable (with
ε-simulation of the post-extraction state) in the stand-alone setting. Also, it is not hard to see that
the techniques from [CCLY22a] can be used to prove that the [LPY23a] scheme is post-quantum
parallel-extractable as well. However, it is important to note that the [LPY23a] scheme achieves
non-malleability in the 1-1 setting only, as opposed to being 1-many non-malleable. Furthermore, it
extensively relies on the use of its underlying primitive (i.e., a post-quantum one-way function) in
a non-black-box manner. Indeed, the question of constructing constant-round post-quantum com-
mitments that achieve either of these two properties remains an open challenge. In the following,
we describe our ideas to achieves both properties, under the minimal assumption of post-quantum
one-way functions.

2.2 PQ-NMC from [LPY23a]

We first recall the [LPY23a] construction and the salient features therein that help with the proof
of non-malleability. For our purpose, it is sufficient to focus on the simplified scheme shown in the
technical overview of [LPY23a]. That construction achieves non-malleability in the synchronous 1-1
MIM setting, where the left-session tag t is strictly smaller than the right-session tag t̃ (dubbed
‘one-sided’ non-malleability).

It works as follows: To commit to a message m with tag t ∈ [n], the committer C first commits
to m using a statistically binding commitment scheme com = Com(m; r) (e.g., Naor’s commitment).
Then, the receiver R sends a hard puzzle that has exactly t distinct solutions; R also gives a witness-
indistinguishable proof of knowledge (referred to as WIPoK-1) to prove that it knows one of the
t solutions. Finally, C is required to prove using another WIPoK (referred to as WIPoK-2) that
it knows either the value committed in com or one solution to R’s hard puzzle.

We illustrate the 1-1 MIM execution of this protocol in Fig. 1a (borrowed from [LPY23a]),
where the t-solution hard puzzle is instantiated with t images (y1, . . . , yt) of an injective OWF f ,
and the solutions are the preimage xi’s satisfying yi = f(xi) for all i ∈ [t].

A Pigeon-Hole Argument. Proofs of non-malleability typically rely on the following intuitive
claim: in the MIM interaction, we want the honest committer C to be able to ‘cheat’ on the left,
while the MIM adversary M should not be able to ‘cheat’ similarly on the right. To show this,
[LPY23a] relies on a pigeon-hole based argument, which we sketch here. Note that in the MIM
interaction depicted in Fig. 1a, there is an inherent asymmetry between the left and right side
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executions—there are more puzzle solutions on the right as compared to the number on the left
(since t < t̃). This leads to the following intuitive observation: suppose the receiver R switches the
witness it uses in WIPoK-1 on the right. Due to this asymmetry, M cannot switch its witness in
every such case. Namely, by the pigeonhole principle, there must exist indices i, j ∈ [t̃] on the right
and k ∈ [t] on the left such that no matter which of x̃i or x̃j is used as a witness, M can only xk
as witness in the left WIPoK-1.

For this ‘pigeon-hole tuple’ (x̃i, x̃j , xk), we see that the following must also happen—suppose
the left-session C uses xk as witness in the left WIPoK-2, we can then argue thatM must use m̃
in the right WIPoK-2 as follows:

– First, assuming R uses x̃i in the right WIPoK-1 and M uses xk in the left WIPoK-1, if we
extract from the right WIPoK-2, the extracted value can only equal m̃ or x̃i. That is because
other x̃j ’s (with j 6= i) have not been used in the right WIPoK-1 and so we can appeal to the
one-wayness of f to say that M cannot learn these values.

– Similarly, assuming R uses x̃j in the right WIPoK-1 and M uses xk in the left WIPoK-1, if
we extract from the right WIPoK-2, the extracted value can only take the values m̃ or x̃j .

Then, by the witness indistinguishability of the right WIPoK-1, the extracted value should not
change if R switches between x̃i and x̃j (in the right WIPoK-1). Thus the extracted value can
only be m̃ if R uses x̃i (or x̃j) on the right and C uses xk on the left.

It seems that the approach outlined above is promising and can help show the intuitive guarantee
of allowing C to “cheat” on the left while preventing such behavior fromM on the right. However,
actually proving such a guarantee is quite challenging and is the core technical contribution of
[LPY23a]. In particular, they must address the following technical hurdles: (1) a mechanism is
needed to efficiently identify the ‘magic’ triples (x̃i, x̃j , xk)—one cannot extract xk from the left
WIPoK-1 simply by rewinding, because the above argument relies on the WI property of that
stage, which may not hold if it is rewound. (2) More crucially, the above pigeon-hole argument
assumed a one-to-one correspondence between the M’s witness and R’s witness used in WIPoK-
1. This is over simplified. Indeed, M can switch its witness probabilistically when R switches
witnesses.

To address these issues, [LPY23a] develops an involved distributional pigeon-hole lemma to
formally captures the intuition above. For the current overview, the details of this lemma is not
crucial, and thus we do not dig it further. However, the structure of the proof in [LPY23a] is
crucial for understanding our new techniques later. Therefore, we briefly recall its structure below,
focusing only on the aspects necessary to establish a foundation for the subsequent discussion of
our techniques.

[LPY23a]’s Proof Structure. At a high level, the [LPY23a] approach involves a reduction from
non-malleability to the hiding of the left Naor commitment Com performed initially. This is a
rigorous formalization of the aforementioned intuition that ‘we can cheat in the left butM cannot
in the right.’ In more detail, they first make the subsequent portion of the left execution after Com
independent of message m, so that the reduction can go through. Next, the idea is to extract the m̃
committed initially byM from the right session. If one can always extract the correct value m̃ and
while not unduly disturbingM’s post-extraction state, the reduction to the hiding of Com is easily
seen: If M’s m̃ changes according to m (i.e., the message committed in Com on the left), then one
can always use m̃ extracted from the right WIPoK-2 to detect the difference, compromising the
hiding property of Com. Thus, the most challenging part in this approach is to efficiently extract
m̃, without disturbing M’s post-extraction state too much.
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[LPY23a] builds such an ‘extractor with simulation’ in two steps. First, they build a ‘base’
extractor K without any simulation guarantee, whose job is only to extract m̃ correctly. K works
by sampling an uniform index i ∈ [t̃] and running the machine Ki depicted in Fig. 1b. In particular
Ki differs from the real MIM execution in the following way: (1) it uses x̃i (instead of x̃1) as the
witness in the right WIPoK-1; (2) it uses the witness extractor WE to obtain the witness j‖xj
used by M in the left WIPoK-1, and then uses this extracted j‖xj to finish the left WIPoK-2;
(3) it uses the witness extractor WE to extract the witness Val used byM in the right WIPoK-2
and hopes that Val = m̃.

[LPY23a] uses the aforementioned distributional pigeon-hole lemma to prove that such a ma-
chine K will indeed extract Val = m̃ with noticeable probability, conditioned on a ‘good’ prefix
(i.e., Steps 1 and 2) from which M will indeed finish the execution with noticeable probability (this
condition is necessary: one cannot hope to extract m̃ with noticeable probability if, say,M always
aborts in the real MIM execution).

Next, [LPY23a] develops a simulation-extraction lemma. Using this lemma, they are able to
convert the simulation-less K into a new machine SE that extracts m̃ while also being able to
simulate the post-extraction state. As remarked before, this gets them most of the way through the
proof—[LPY23a] show that one can use SE to complete the outlined reduction to hiding of Com,
and thus demonstrate non-malleability.

2.3 Our Black-Box Construction: 1-1 Setting

While the [LPY23a] commitment is non-malleable and works in constant rounds, it does not suffice
for our application because the construction makes heavy non-black-box use of its cryptographic
components, and it is unclear if their security proof holds in the more demanding 1-many MIM
setting. Now, we first introduce new ideas to obtain a black-box construction.

Observe that there are two sources of non-black-box usage in Fig. 1a. First, R’s proof in
WIPoK-1 needs the code of the hard puzzle (i.e., the OWF f); Second, C’s consistency proof
WIPoK-2 makes non-black-box use of both the hard puzzle and Naor’s commitment in Step-1.

We first notice that it is not hard to make R’s behavior black-box. Essentially, what R does
in the hard-puzzle set-up stage is first ‘committing’ to t solutions and then proving that it knows
one solution. This is actually a classical task called witness indistinguishable commit-and-prove (of
knowledge). It is not hard to modify existing black-box witness indistinguishable commit-and-prove
protocols (e.g., [CCLY22a]) to make R’s hard puzzle and the WIPoK-1 steps black-box. In the
following, we only focus on the non-black-box usage on C’s side.

Making C’s consistency proof WIPoK-2 black-box turns out to be quite challenging. One may
hope to re-use the aforementioned black-box commit-and-prove technique to resolve the non-black-
box use of the Step-1 Naor’s commitment. However, the real difficulty lies in its dependency on
the puzzle (i.e., the alternate clause in WIPoK-2 in Fig. 1a). Notice that the puzzle solutions are
only known to R! This means that the statement becomes one about the preimages of f , for which
the committer/prover (i.e., party C) does not have a witness. In this scenario, it is unclear how the
black-box commit-and-prove techniques could help.

We develop new ideas to tackle this challenge. Our guiding principle is to modify WIPoK-2
so that it proves only non-cryptographic relations. That is, we try to make WIPoK-2 depend
only on values that are either committed by C itself (so that it can be handled by black-box
commit-and-prove), or otherwise made available to both parties in the course of the protocol.

To do this, we start with careful scrutiny of [LPY23a]’s simulation-less extractor Ki shown in
Fig. 1b. We observe that the WIPoK-2 stage there can be interpreted as serving a dual function
in their security proof: (1) It is used to ensure honest behavior of the committer (orM in the MIM
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setting); This is what essentially helps them perform the distributional pigeon hole argument. (2)
The proof of knowledge property of this stage provides extraction opportunities to efficiently learn
m̃.

We find that these two purposes can in fact be ‘decoupled’, leading to a more modular security
proof as follows: first, one can imagine a K′i that is identical to the original Ki but does not invoke
WE for the right WIPoK-2. For this new K′i, we could hope to re-use [LPY23a]’s distributional
pigeon-hole lemma to argue that the witness ‘used’ by K′i in the right WIPoK-2 should be m̃ with
good probability. Second, it is a simple application of the proof of knowledge property to extract the
witness used in this WIPoK-2, which is guaranteed to be m̃ (with good probability) by the previous
step.

On the other hand, notice that once the protocol is completed, it is safe for R to disclose its
hard puzzle solutions. This seems vacuously true and useless. However, it becomes very useful once
combined with the observation in the last paragraph, which yields our key idea—we propose to
replace the WIPoK-2 stage by the following three steps:

1. ExtCom: C commits to m again using an extractable commitment;

2. Solution Reveal: R reveals all the hard puzzle solutions (x1, . . . , xt);

3. WIP-2: C proves the same relation as in [LPY23a] WIPoK-2, using a WI proof. (Note that we
do not require the proof of knowledge property anymore.) In particular, C proves that the value
committed in ExtCom is equal to either the value committed in Step-1 Naor’s commitment, or
one of the puzzle solutions among the (already revealed) xi’s.

This structure exercises our previous observations as follows. We first ‘decouple’ the two functions
of the original WIPoK-2 (as explained above) by delegating the extractability to ExtCom and
the consistency proof to WIP-2. Then, we can ask R to reveal the puzzle solutions right after
ExtCom, because at that moment C (or M in the MIM setting) has already ‘fixed’ the witness
for consistency proof (i.e., the current WIP-2) in ExtCom, and cannot change its mind anymore
even if the hard puzzle solutions are revealed to it.

Indeed, we can show this protocol is non-malleable as follows. Consider a K′′i that is similar to K
in Fig. 1b, but instead extract Val from M’s ExtCom on the right. Then, a similar distributional
pigeon-hole argument can be established, proving that the Val extracted from ExtCom indeed
equals to m̃ with good probability. Then, using the same technique as in [LPY23a], we can build a
simulation-less extractor K from this new K′′i and convert K to a simulation extractor to finish the
final reduction to the hiding property of the left Naor’s commitment.

It seems we are already done—To make C’s behavior black-box, note that all C does now is
to commit to two values, one in the original Step-1 and the other in the new ExtCom, and then
proves in the new WIP-2 a non-cryptographic predicate (since the puzzle solutions are revealed)
over the two committed values and the revealed puzzle solutions. As mentioned earlier, this task can
be made black-box by a simple application of known black-box commit-and-prove techniques. This
indeed works if our goal were to build a classically secure scheme. Unfortunately, this step turns
out to be challenging in the presence of a quantum M, due to reasons exclusive to the quantum
setting. We describe these in Sec. 2.4.

2.4 Quantum-Exclusive Challenges

To explain these challenges, we first briefly recall how canonical black-box commit-and-prove proto-
cols broadly work. At a very cursory level, such protocols have (as indicated by their nomenclature)
well-defined commit and prove stages. The commit stage has the prover commit to values involved
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later in the proof statement, but not directly. Instead, one commits to shares obtained from a Ver-
ifiable Secret Sharing (VSS) of the intended value. These are a strengthening of standard secret
secret sharing schemes and allow for reconstruction of the secret even if some shares are adversar-
ially tampered with—and like standard secret sharing schemes, hide the secret completely if not
enough shares are collected.

This is done for compatibility with the subsequent (black-box) prove stage, where the prover
follows the MPC-in-the-head [IKOS07, GLOV12] approach: First the committer (or prover) C
emulates in her head a MPC execution with n parties (where the inputs are the VSS shares from
the commit stage), and commits to the views of each party during this virtual execution. This is
followed by a ‘cut-and-choose’ interaction, where C and the receiver (or verifier) R agree on some
subset η ⊂ [n] (of size k) of the views from the virtual MPC execution (which includes the initial
VSS shares)—typically via a coin-tossing step which helps with extablishing zero knowledge for
this protocol, but we gloss over this for now—and the prover reveals the corresponding views. The
verifier then checks consistency of the views; by the design of the protocol, this allows the verifier
to catch a cheating prover out with a fairly high probability (establishing soundness), but reveals
nothing about the value committed by the prover in the commit stage (leading to zero knowledge).

As indicated, we want to use such a scheme to supply the commmitter’s proof of consistency.
Accordingly, we will have Step-1 and the new ExtCom correspond to the commit stage, and
the WIP-2 will correspond to the prove stage of the commit-and-prove protocol. In particular,
this makes the initial commitment in Step-1 of our protocol no longer a straightforward Naor
commitment to m—instead, this is now a commitment (in parallel) to VSS shares of m, as is
necessary for the commit-and-prove technique. Since we aim to overall reduce non-malleability to
the hiding of the initial commitment, we must now consider a reduction directly to the hiding of
the commit stage of the commit-and-prove protocol.

This is deceptively tricky. The reason lies in the operation of the black-box commit-and-prove
protocol; recall that this entails that some of the VSS shares from the commit phase be revealed
during the prove stage. To realize this with standard commitments is hard because the hiding
guarantee does not cover such ‘partial’ revealing of information about the committed value. The so-
lution turns out to involve modifying the standard hiding game to incorporate VSS shares (namely,
to perform the commitment as described earlier by committing to VSS shares of the message) and
allowing for a partial reveal of a certain subset shares of the adversary’s choice later in the challenge
(this ‘mimics’ the subsequent proof stage interaction, allowing for a subset of shares corresponding
to η to be revealed by the VSS-based hiding challenger). We articulate such a ‘VSS-based hiding’
game in the course of our proof and show that this is hard to win given standard (computational)
hiding of commitments and the secrecy property of VSS schemes.

We now turn to how the reduction itself works. As a first attempt, consider a reduction R∗ that
runs the MIM game internally and forwards the Step-1 commitment to the external VSS hiding
challenger. Note that R∗ needs to specify a challenge set η. R∗ could simply wait until the MIM
M sends η in the left WIP-2 execution, and forward this η to the external challenger. This seems
to work, assuming R∗ ran machine K′′i (or the K built out of K′′i ) to thereby win the VSS hiding
game. However, note that in the final reduction to hiding, R∗ instead needs to run the simulation
extractor SE that is built out of K using the [LPY23a] simulation-extraction lemma. In more detail,
SE involves coherently rewinding the machine K. This is problematic: recall that M sends set η in
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WIP-2, and this η needs to be forwarded to the external VSS hiding challenger, which we can of
course not rewind 15.

Our heuristic towards solving this is to make sure that R∗’s communication with the external
challenger should end before the post-prefix phase of its internal MIM execution starts. As a first
try, we let R∗ sample the set η by itself. To make sure that M indeed uses the same η during the
left WIP-2 stage, we add a coin-flipping protocol to generate the challenge set. The hope is to
let R∗ use the simulator for the coin-flipping interaction to ‘force’ M’s challenge set to the η it
sampled beforehand.

Unfortunately this does not work. Recall that we are in the MIM setting: if we forceM’s coin-
flip protocol on the left, it is possible that M could in turn force the coin-flipping result in the
right session with R, where the soundness guarantee of the right WIP-2 may not hold anymore.
It thus seems what we need is a non-malleable coin-flipping protocol; where we can force the result
in the left session but M cannot. This however puts the cart before the horse in that it is known
that non-malleable coin-flipping implies non-malleable commitments, which is our object. Thus it
seems this approach is a dead end.

Trapdoor Coin-Flipping. Fortunately, we manage to resuscitate this approach with the following
new ideas. To understand that, let us first delve deeper into the [LPY23a] proof of non-malleability.
We have already mentioned that for the machine K′′i described before, even if we do not extract from
the right ExtCom, we can use a similar pigeon-hole argument to show that the value committed
there is indeed m̃ with good probability. This is argued in two steps:
– First, we can use the [LPY23a] pigeon-hole argument to show that even if the left C commits

in the left ExtCom to some j‖xj it extracted from the hard puzzle, M cannot in turn commit
to some puzzle solution in the right ExtCom. We emphasize that this step does not rely on the
soundness of the right WIP-2. (This is a feature inherited from [LPY23a] design, though there
this observation was superfluous given that there was no call to ‘decouple’ the WIPoK-2 into
an ExtCom and a WIP-2 as we do).

– Second, we can now invoke the soundness of the left WIP-2—since m̃ and the right puzzle
solutions are the only witnesses for the relation WIP-2 proves, if the committed value in the
right ExtCom is not any of the puzzle solutions (as argued above), then it must be m̃.
It follows that even if we were to remove the WIP-2 step in our protocol, it would still enjoy a

limited form of ‘non-malleability’—M cannot commit to a left hard puzzle solution even if the left
C does so. Our idea is to leverage this limited ‘non-malleability’ by constructing a limited version
of non-malleable coin-flipping that suffices for our purposes. Specifically, we construct what we call
a trapdoor coin-flipping protocol. This is an augmented coin-flipping protocol between two parties
C and R where C additionally commits to some string x before coin-flipping starts. The security
guarantee of the actual coin-flipping stage is ‘controlled’ by the committed string x and a predicate
ϕ(·) given to both parties at the beginning of the coin-flipping stage. In particular, if the committed
x satisfies the predicate ϕ(·), then by design a committer can ‘force’ the coin-flipping result to a
pre-sampled random string η; but if the committed x does not satisfy the predicate, then no QPT
C∗ can bias the coin-flipping result. (see Sec. 4 for a formal treatment).

We will use this trapdoor coin-flipping to determine the challenge in WIP-2, setting the trap-
door predicate to ‘ExtCom commits to one of the puzzle solutions.’ Then for machine K′′i , we can
enforce the WIP-2 challenge to η in the left execution using the trapdoor predicate (because C
15 This is of course not an issue in the classical setting, wherein the machine K does not need enhancement, because

simulation can be easily added on by making two copies of the adversary: one for extraction and the other for
simulation.
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does commit to some j‖xj in the left ExtCom). Then, we use the aforementioned ‘limited non-
malleability’ guarantee to argue that M cannot force the coin-flipping for the right WIP-2, and
thus the soundness guarantee of the right WIP-2 still holds. This obviates the issues raised above.

Putting everything together, our proof works as follows:

– We first use the [LPY23a] pigeon-hole argument to argue that M cannot commit to any puzzle
solutions in the right ExtCom. As mentioned above, this step does not make use of the soundness
of WIP-2.

– Since the right ExtCom does not commit to any puzzle solution, the soundness of the right
WIP-2 must hold, even if we enforce the coin-flipping step in the left WIP-2. This comes
as a guarantee of our trapdoor coin-flipping protocol. Therefore, by the soundness of the right
WIP-2, the value committed in the right ExtCom must be m̃ (and will be extracted by K′′i ).

As mentioned before, since we pre-sample η, R∗’s communication with the external VSS hiding
challenger can be pushed entirely to the prefix phase. So R∗ can make use of a ‘full-fledged’
simulation-extractor SE which is built from the new K′′i (indeed, from K that picks a random
i and runs K′′i as in [LPY23a]), to complete the reduction.

Noisy Simulation-Extraction Lemma. We emphasize that the overview above forms only an
intuitive explanation of our ideas. To implement them formally is more challenging as the afore-
mentioned issues appear in a more subtle and technical manner. Owing to the paucity of space, we
refer the reader to Sec. 5 for fuller details. However, there is a particularly subtle issue unique to
our protocol (i.e., not appearing in [LPY23a]) that we would like to highlight. The above discussion
pays much attention to the value committed in ExtCom. In certain steps of our proof, it becomes
important to extract this value efficiently, in order to reduce the security to some falsifiable16 as-
sumptions. For that we often need to consider the extracted value and take it to be the committed
message if it is not any of the puzzle solutions on the right. As reasoned above, this is the case in
all but a noticeable fraction of cases.

However, this indeed starts affecting the conversion from K to SE : the simulation-extraction
lemma given in [LPY23a] crucially relies on the fact that the simulation-less extractor K will,
if it does not abort, extract a unique string with good (technically, noticeable) probability. Put
another way, K needs to know that what it extracts is indeed m̃, and if not, it needs to output ⊥.
However, our new K cannot perform such checks—we only argued that K extracts m̃ with noticeable
probability. However, it could still be the case with noticeable probability that the extracted value is
simply garbage or ‘noise.’ Even worse, K cannot detect this case because the Step-1 commitment is
performed in a black-box commit-and-prove format.17 Fortunately, we can upgrade the simulation-
extraction lemma from [LPY23a] to tolerate such noise, which suffices for our purpose. We refer to
Sec. 7 for details.

This finishes the description of our 1-1 non-malleable commitments. The above discussion is
based on the ‘one-sided’ (i.e., t < t̃) scheme in the technical overview of [LPY23a] and thus our
protocol inherits this restriction. Fortunately, we can remove this restriction using exactly the same
‘two-slot’ trick (initiated by Pass and Rosen [PR05]) as in [LPY23a]. We refer to Sec. 8 for details.

16 An assumption is falsifiable [Nao03, GW11] if it can be modeled as an interactive game between an efficient
challenger and an adversary, at the conclusion of which the challenger can efficiently decide whether the adversary
won the game.

17 This issue does not happen in [LPY23a] because their Step-1 is Naor’s commitment and K extracts the committed
value together with the randomness from WIPok-2, so that it can check validity using Naor’s decommitment
algorithm.
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2.5 One-Many Non-Malleability

So far, we have restricted our attention to the 1-1 setting for non-malleability. We now discuss our
approach to obtain 1-many non-malleable commitments. Recall that this involves a man-in-the-
middle adversary M that runs a single commitment session with an honest committer C on the
left, and runs up to polynomially many commitment sessions on the right with honest receivers
R(1), . . . , R(N) (where we have used N to denote the total number of right sessions). We stress that
1-1 non-malleability does not directly imply 1-many non-malleability; this is a known barrier even
in the classical setting and we elide further explanation for the sake of conciseness.

In spite of this, we are able to demonstrate that the same black-box construction we described
above also enjoys 1-many non-malleability. In fact, we rely for the most part on very similar strate-
gies to those we employed in the 1-1 case. The key similarity we exploit is that in the reduction
to hiding that we outlined in the 1-1 case (that formed the base of our proof), the majority of the
modifications we make are with respect to the left session—the only changes made on the right are
changing which puzzle solution is committed to in ExtCom by the honest receiver, and extracting
the committed value. We can thus hope to translate our technique to the 1-many setting as well.
At a high level, we accomplish this in three steps:

Step 1. First, we design analogs of the simulation-less extractor K from earlier, that we call
localized simulation-less extractors K(j) (for j ∈ [N ]). K(j) performs extraction only in the j-th
right session, and acts as an honest receiver in all other right sessions. It is not hard to establish
the same guarantees for each K(j) from the guarantees for K in the 1-1 setting, by means of a
‘wrapper’ reduction: namely, since the other right sessions of M are run honestly, we can run the
1-many interaction internally while treating the j-th session as the sole right session in a 1-1 MIM
interaction, and handling all the other internal right sessions by itself.

Step 2. Next, we show how to build a simultaneous simulation-less extractor that is then able to
extract the committed values in all right sessions with high success (but without any simulation
guarantees). This step turns out to be particularly challenging due to the quantum nature of the
MIM adversaryM. Note that the instanced extractors K(j)’s described above enjoys extractability
only for a single run. If we want to perform simultaneous extraction, the natural attempt of running
them one-by-one does not work—after the execution of, say, K(1), the internal quantum state ofM
may have already been disturbed too much to support the execution of K(2).

Another natural idea is to first convert K(1) to a simulatable extractor, using the above noisy
simulation-extraction lemma, and hope that the simulation guarantees of that lemma can ‘protect’
the state of M after the execution of K(1) so that we can keep running K(2) (and also convert
K(2) to a simulatable extractror to support K(3) and so on). Unfortunately, this idea does not work
either due to a subtle technical reason: The simulation guarantees of the noisy simulation-extraction
lemma is for the post-extraction extraction state of M, which means it simulates M’s state at the
end (or ‘bottom’) of the protocol; However, to be able to run K(2) right after K(1), we have to
simulates M’s state at the beginning (or ‘top’) of the protocol! Thus, new ideas are needed to
resolve this problem.

We tackle this problem by crafting a novel simultaneous post-quantum extraction lemma, draw-
ing upon the measure-and-repair technique introduced in [Zha20, CMSZ21]. This represents another
main technical contribution of this work and it may find future applications where simultaneous
post-quantum extraction is needed. We provide an overview of it in Sec. 2.6.
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Step 3. Finally, we show that the same noisy simulation-extraction lemma described above can be
used to upgrade this simultaneous simulation-less extractor to one with simulation, and thus finish
the proof of non-malleability with a similar reduction to the VSS hiding game as in the 1-1 case.

2.6 Simultaneous Extraction

We now provide a brief overview of our simultaneous extraction lemma as mentioned above. We
will use slightly different notation. In the following description, machines K1, . . . ,Kn play the role
of our instanced simulation-less extractor K(1), . . . ,K(N) mentioned above (setting n = N). And V
is a machine that should be treated as enforcing the condition that we start from a ‘good’ prefix
(i.e., the Step-1 Naor’s commitment in the VSS form). It is necessary because as we mentioned
earlier, we cannot hope to extract m̃’s with good probability if M always aborts the execution
before it naturally ends. The machine K is our desired simultaneous simulation-less extractor.

Lemma 2 (Simultaneous extraction lemma (informal)). Let V and K1, . . . ,Kn be QPT
algorithms for a polynomial n that satisfy the following:
– V’s syntax: V takes a quantum state in Hilbert space H and outputs > or ⊥;
– Ki’s syntax: Ki takes a quantum state in Hilbert space H and outputs a classical string si or ⊥;
– Uniqueness of Ki’s output: For each i ∈ [n], there is a classical string s∗i such that Ki’s output

is either s∗i or ⊥ on any input;18

– “Good” states for V is also “good” for Ki: For any noticeable γ, there is noticeable δ such
that for any quantum state ρ, if

Pr[V(ρ) = >] ≥ γ,

then
Pr[Ki(ρ) = s∗i ] ≥ δ.

Then there is a QPT algorithm K (called a simultaneous extractor) satisfying the following:
– K’s syntax: K takes a quantum state in Hilbert space H and outputs n classical strings

(s1, s2, . . . , sn) or ⊥;
– Uniqueness of K’s output: K’s output is either (s∗1, s

∗
2, . . . , s

∗
n) or ⊥ on any input;

– “Good” states for V is also “good” for K: For any noticeable γ, there is noticeable δ′ such
that for any quantum state ρ, if

Pr[V(ρ) = >] ≥ 8γ, 19

then
Pr[K(ρ) = (s∗1, s

∗
2, . . . , s

∗
n)] ≥ δ′.

If the input ρ is classical, then the above lemma trivially holds: K can simply run each Ki
many times until it succeeds. However, if ρ is quantum, the state may collapse once we run Ki
for some i, which prevents us from running it on the same state again. To resolve the issue, our
idea is to use the “state repairing” technique introduced in [CMSZ21]. To explain their technique,
we first review the concept of (approximate) projective implementation introduced by Zhandry
18 The formal version of this lemma (see Lem. 18) permits the outputs of Ki to be other ‘noise’ values, provided that

the probability of this occurrence can be bounded by a noticeable function. This is essential for compatibility with
the previously described noisy simulation-extraction lemma. However, for this overview, we overlook this detail to
maintain focus on the main idea.

19 An arbitrary constant factor larger than 1 suffices, but we choose 8 to match the formal version of the lemma.
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[Zha20]. Let {(Πi, I −Πi)}i be a family of binary-outcome projective measurements indexed by a
classical index i of a certain length. Consider the “mixture” M of {(Πi, I−Πi)}i, i.e., the procedure
that first randomly samples i and then applies the projective measurement (Πi, I −Πi). Zhandry
showed the existence of “projective implementation” ProjImp of M , which is a real-valued projective
measurement that “measures” the success probability of M , i.e., for any state ρ, the distribution of
applying M on ρ is identical to first applying ProjImp on ρ to obtain p ∈ [0, 1] and then outputting
1 with probability p. Though it is unknown how to efficiently implement ProjImp, Zhandry gave
an efficient procedure called API (“Approximate Projective Implementation”) that approximates
ProjImp in an appropriate sense. Now, we are ready to describe the state repairing technique of
[CMSZ21]. Suppose that we apply API on some state, which yields an outcome p, and then apply
M . At this point, there is no guarantee on the outcome if we apply API again. The work [CMSZ21]
constructed an efficient state repairing procedure Repair which acts on the post-execution state so
that the output of API on the resulting state is at least p− ε with overwhelming probability for an
arbitrary noticeable function ε.

Our idea is to apply their technique in our context as follows. We consider a family {(Πi, I −
Πi)}i∈[n] where Πi corresponds to the event that Ki successfully extracts s∗i and API that approxi-
mates the probability that V returns >. If the initial state is accepted with probability sufficiently
larger than γ and ε is set to be sufficiently small, then if we alternately apply (Πi, I−Πi) (i.e., run
Ki) and the state repair procedure, we can guarantee that each application of (Πi, I−Πi) results in
the first outcome, which corresponds to successfully extracting s∗i , with probability at least δ. Thus,
we can simultaneously extract s∗1, . . . , s∗n if we repeat the above sufficiently many times. Though
we eventually prove that this idea works, this is not a direct application of the result of [CMSZ21]
since the situation is somewhat different. In particular, we have to make sure that

– we can construct API for any binary-outcome POVMs (that correspond to the success of V), and

– the state repairing procedure still works even if API is defined for a binary-outcome POVM that
is irrelevant to the projections {(Πi, I −Πi)}i∈[n].

First, we observe that the second point is actually not an issue since this is techncially already
proven in [CMSZ21]. That is, even though they only apply their technique in the setting where API
is defined for the mixture of projections, their core technical lemma [CMSZ21, Lemma 4.10] already
captures the situation where API is irrelevant to those projections. For the first point, though
Zhandry showed that an (inefficient) projective implementation can be defined for any binary-
outcome POVMs, he did not show how to efficiently approximate it. Thus, we give a construction
of API for any binary-outcome POVMs (that correspond to the success of V), which generalizes
Zhandry’s construction. The construction and its analysis are similar to Zhandry’s original one for
the case of mixtures of projective measurements while we rely on Jordan’s lemma as an additional
tool.20

2.7 Black-Box Post-Quantum 2PC and MPC with Full Simulation

We begin by recalling the framework established in [CCLY22a], which was devised originally for
constant-round black-box PQ-2PC with ε-simulation.

A key component of the [CCLY22a] framework is a black-box extractable commit-and-prove
protocol with ε-simulation, which we refer to as “ε-ExtCom-n-Prove” henceforth. This primitive
enables a committer to commit to a message m during the Commit Stage and subsequently prove,
20 [CMSZ21] also gives a variant of Zhandry’s API by using Jordan’s lemma, but they also only consider mixtures of

projective measurements.
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with ε-zero-knowledge, that the committed m satisfies a predicate ϕ during the Prove Stage. Fur-
thermore, the Commit Stage itself functions as a post-quantum extractable commitment with ε-
simulation, meaning that the post-extraction state of the malicious committer is ε-indistinguishable
from that in the real execution. It is worth noting that the symbol ε in the name “ε-ExtCom-n-
Prove” indicates that both the zero-knowledge property of the Prove Stage and the post-extraction
simulation of the Commit Stage are defined with ε-simulation.

We note that [CCLY22a] can be interpreted as a compiler that transforms a O(k)-round black-
box ExtCom-n-Prove protocol into a O(k)-round black-box PQ-2PC protocol; moreover, if the
ExtCom-n-Prove protocol is defined with ε-simulation (resp. full simulation), then the resulting
PQ-2PC protocol would be ε-simulatable (resp. fully simulatable). This observation is formalized
in Sec. 16.1. Consequently, our goal of constructing ω(1)-round black-box PQ-2PC can be simplified
to the task of building ω(1)-round black-box ExtCom-n-Prove protocols with full simulation.

Post-Quantum Extractable Batch Commitments. We further observe that in order to build
the desired ExtCom-n-Prove protocols, it (almost) suffices to develop black-box ω(1)-round post-
quantum extractable commitments. In this overview, we do not delve into the explanation of why
this is true (refer to Sec. 15 for details). More precisely, what we require and refer to as post-
quantum extractable batch commitments is as follows: The committer is able to commit to a vector
of messages m = (m1, . . . ,mn) collectively. The commitment can be decommited locally on each
index i ∈ [n]. We require the following security to hold:

Hiding For any index i∗ ∈ [n], mi∗ remains concealed even if the adversary is given mi and
the corresponding decommitment information for all i 6= i∗. In particular, this implies that for
any subset I ⊆ [n], the messages corresponding to indices in I remain concealed even if the
adversary is given mi and the corresponding decommitment information for all i /∈ I.21

Extractability There exists a QPT machine SE (dubbed the simulation extractor) capable of
extracting the committed vector message m∗ = (m∗1, . . . ,m

∗
n) from the malicious committer C∗,

while simultaneously (fully) simulating C∗’s post-extraction state to be negligibly close to that
in the real execution between C∗ and the honest receiver.

We remark that if we only consider the hiding and binding (rather than extractability), then a simple
parallel composition of a stand-alone commitment scheme would suffice. However, extractability
may not be preserved under parallel composition, and this is why we need to introduce the above
notion of extractable batch commitments.

We manage to build a black-box ω(1)-round construction for such a post-quantum extractable
batch commitment, assuming the existence of post-quantum semi-honest oblivious transfer. We pro-
vide an overview of this construction in Sec. 2.8. For now, we simply remark that this commitment
scheme leads to a black-box ω(1)-round construction of ExtCom-n-prove (with full simulation),
which, as discussed earlier, results in the first black-box ω(1)-round PQ-2PC (with full simulation)
from the minimal assumption of post-quantum semi-honest oblivious transfers.

Extension to the Multi-Party Setting. Note that the above results for PQ-2PC imply, in
particular, a black-box ω(1)-round construction of post-quantum oblivious transfers (maliciously
secure, with full simulation). Utilizing a known compiler from [IPS08], such an oblivious trans-
fer protocol can be converted into a black-box PQ-MPC (with full simulation), where the round
21 This may look similar to selective-opening security [Hof11], but we remark that we only require the hiding when I

is fixed at the beginning whereas selective-opening security in [Hof11] allows the adversary to adaptively choose I
depending on the commitment.
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complexity is polynomial in the number of parties (and consequently polynomial in the security
parameter λ). We refer to Sec. 16 for details.

2.8 Post-Quantum Extractable Batch Commitments

We now provide an overview of our ω(1)-round construction of post-quantum extractable batch
commitments (with full simulation), which only makes black-box use of a constant-round post-
quantum semi-honest OT. Since all the primitives in the sequel is post-quantum, we henceforth
drop the the quantifier “post-quantum” for succinctness.

We start by describing a protocol that only supports committing to vectors m of length 1. In this
case, the notion of extractable batch commitment degenerates to standard extractable commitments
(with full simulation). We emphasize that even such a commitment is previously unknown, if one
insists on black-box constructions. Our construction can be divided into the following three steps.

1. Construct ω(1)-round equivocal commitments with full simulation based on OWFs. Here, equiv-
ocality means that one can simulate the commit stage for malicious receivers in such a way that
the commitment can be opened to an arbitrary message in the reveal stage. There are well-known
classical black-box constructions of equivocal commitments from OWFs [Kil88, Kil94, PW09],
which are later adapted into the post-quantum setting [BCKM21]. Though those constructions
are O(λ)-round, we observe that they can be easily optimized to ω(1) rounds.

2. Convert equivocal commitments into extractable commitments with a weaker security guarantee
which we call extractability with over-extraction. It is similar to the standard extractability
(with full simulation) except that we allow the extractor to extract a non-⊥ message even if
the commitment is ill-formed (i.e., there is no valid opening to any message). In fact, we show
that our protocol supports (a certain form of) parallel extraction with over-extraction, which we
elaborate on later. The conversion incurs a constant-round overhead and makes black-box use of
constant-round ε-simulatable parallel OT, which in turn is constructed from a constant-round
semi-honest OT in a black-box manner in [CCLY22a]. We stress that the resulting (parallel)
extractable commitment protocol with over-extraction supports full simulation even though the
base OT only supports ε-simulation. Since this step is the technical core of our construction of
extractable commitments, we will provide more details shortly.

3. Eliminate over-extraction with a ω(1)-round overhead based on OWFs using a standard cut-
and-choose technique. Roughly, the commit stage of the protocol works as follows: The com-
mitter generates VSS shares of the message m and commits to each share using an extractable
commitment scheme with over-extraction in parallel. Then the committer and receiver execute
coin-flipping to agree on a subset on which the committer reveals the committed shares along
with the corresponding decommitment information. If all of the decommitments are valid, then
the receiver is convinced that a large-fraction of the unrevealed commitments is likely to be
well-formed (i.e., has a valid decommitment). Then the transcript of the commit stage is well-
formed whenever the receiver accepts (except for a negligible probability). In this case, the
simulation-extractor can figure out whether the commitment is well-formed by itself and thus
over-extraction never occurs. We remark that we only need the coin-flipping protocol to be sim-
ulatable against one malicious party (i.e., the role played by the receiver in the commitment
protocol), which can be constructed from any equivocal commitments with a constant-round
overhead. Since the first step gives ω(1)-round equivocal commitments from OWFs, the overall
overhead of round-complexity in this step is just ω(1).
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Below, we give more details of the second step. First, we explain how to achieve extractability
with over-extraction in the stand-alone setting (where there is no parallel execution). Our construc-
tion works as follows:
Commit stage.

1. The committer C commits to the message m using Naor’s commitment.

2. C generates 2k-out-of-2k secret sharing {sbj}j∈[k],b∈{0,1} of m where k = ω(log λ). That is, they
are uniformly random under the constraint that

⊕
j∈[k],b∈{0,1} s

b
j = m.

3. C and the receiver R execute k-parallel execution of ε-simulatable OT where in the j-th execution
C uses (s0j , s

1
j ) as input and R uses an independently random bit rj as input.

4. C and R engage in the following coin-flipping subprotocol to agree on t ∈ {0, 1}k:

(a) R samples a random string tR ← {0, 1}k and commits to it using the equivocal commitment
scheme.

(b) C samples a random string tC ← {0, 1}k and sends it to C.

(c) R sends to C the value tR together with the corresponding decommitment information. At
this point, C and R agree on t := tR ⊕ tC .

5. C sends stjj for j ∈ [k] where tj is the j-th bit of t.

Decommit stage. C sends all the randomness used during the commitment stage as decommit-
ment information, and R accepts if it is consistent to the transcript.

The statistical binding property of the above protocol follows straightforwardly from that of
Naor’s commitment. The computational hiding property can be shown as follows: Since the OT
satisfies ε-simulatable security, for any malicious receiver R∗, we can simulate the execution of the
OT in Step 3 only using {sr

∗
j

j }j∈[k] for some sequence {r∗j}j∈[k] of bits with a noticeable simulation
error ε. Since {sbj}j∈[k],b∈{0,1} is 2k-out-of-2k secret sharing of m, R∗ cannot learn any information
of m unless tj happens to be 1 − r∗j for all j ∈ [k]. However, by the binding property of the
equivocal commitment scheme, R∗ can cause only a negligible bias on the distribution of t. Thus,
the probability that tj = 1−r∗j for all j ∈ [k] is 2−k+negl(λ) = negl(λ). The above argument implies
that R∗ can distinguish commitments to different messages with advantage at most ε+negl(λ). Here,
ε can be any noticeable function in λ, and thus this actually implies the standard computational
hiding.

Below, we give a proof sketch for extractability with over-extraction. We construct the simula-
tion extractor as follows:

– Execute Steps 1 to 3 of the commit stage with the malicious committer C∗ while playing the role
of the honest receiver. At this point, the simulation extractor obtains {srjj }j∈[k] for some random
bits rj .

– Use equivocality to simulate the commit stage of the equivocal commitment scheme in Step 4a.

– Receive tC from C∗ in Step 4b.

– Set t := (1− r1)||(1− r2)||...||(1− rk) and tR := tC ⊕ t. Then open the equvocal commitment in
Step 4a to tR.

– Receive {stjj = s
1−rj
j }j∈[k] from C∗ in Step 5.

– Output the final state of C∗ along with the extracted message m :=
⊕

j∈[k],b∈{0,1} s
b
j .
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It is straightforward to see that the extracted message is equal to the committed message
assuming that the transcript is well-formed, i.e., it has a valid opening to some message. Indeed,
since the committer is required to reveal all the randomness in the decommit stage, to generate a
well-formed transcript, a malicious sender has to follow the protocol albeit with a possibly skewed
randomness distribution. In this case, the simulation extractor obtains half of the shares as the
output of the OT by the perfect completeness of the OT, and the rest of the shares in the final
step. Since the simulation extractor obtains all the secret shares of m, it recovers the correct
committed message.

Moreover, we can see that the simulated state of C∗ is computationally indistinguishable from
the real one (regardless of whether the transcript is well-formed) as follows. We observe that the
only difference between the real and simulated execution is that the result t of the coin-flipping is
programmed to be (1 − r1)||(1 − r2)||...||(1 − rk) by using equivocality. Though the bits r1, ..., rk
are also used as the receiver’s inputs of the OT, ε-simulatable security of the OT against malicious
senders ensure that they are computationally hidden from the view of the malicious committer.22

Thus, tR = tC ⊕ t is indistinguishable from uniformly random from the view of the malicious
committer. Then we can reduce the indistinguishability between the real and simulated execution
to equivocality of the equivocal commitment scheme.

Extractable Batch Commitments. The remaining issue is how to achieve parallel extraction. If
we have parallel equivocal commitments, then the above simulation extractor readily extends to the
parallel setting. However, the problem is that we do not know how to achieve parallel equivocality
in ω(1) rounds. To circumvent this issue, we change the syntax of the commitment protocol in
the parallel setting. That is, instead of considering parallel execution of many copies of the same
protocol, we consider a protocol where the committer commits to multiple messages at once, and we
require the simulation extractor to extract all the committed messages. In this setting, we can use
a single execution of coin-flipping subprotocol to generate the coins (i.e., t in the above protocol)
for all the sessions at once. This completely resolves the problem since now there is no parallel
execution of the equivocal commitment scheme. In the actual proof, we formalize commitments
with such modified syntax as batch commitments (see Def. 20) and show that all the remaining
steps work with this definition.

3 Preliminaries

3.1 Basic Notations

Let λ ∈ N denote security parameter. For a positive integer n, let [n] denote the set {1, 2, ..., n}.
For a finite set X , x← X means that x is uniformly chosen from X .

A function f : N → [0, 1] is said to be negligible if for all polynomial p and sufficiently large
λ ∈ N, we have f(λ) < 1/p(λ); it is said to be overwhelming if 1 − f is negligible, and said to be
noticeable if there is a polynomial p such that f(λ) ≥ 1/p(λ) for sufficiently large λ ∈ N. We denote
by poly an unspecified polynomial and by negl an unspecified negligible function. For two functions
f1(λ) and f2(λ), we will often use f1(λ) = f2(λ)±negl(λ) as a shorthand for |f1(λ)−f2(λ)| ≤ negl(λ).

Honest (classical) parties are modeled as interactive Turing machines (ITMs). We use PPT and
QPT to denote (classical) probabilistic polynomial time and quantum polynomial time, respectively.
For a classical probabilistic or quantum algorithm A, y ← A(x) means that A is run on input x
and outputs y. When we consider a non-uniform QPT adversary, we specify it by a sequence
of polynomial-size quantum circuits with quantum advice {Aλ, ρλ}λ∈N. In an execution with the
22 We rely on a well-known fact that ε-simulatable security implies indistinguishability-based security.
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security parameter λ, A runs Aλ taking ρλ as the advice. For simplicity, we often omit the index λ
and just write A(ρ) to mean a non-uniform QPT algorithm specified by {Aλ, ρλ}λ∈N.

Notations for Indistinguishability. We may consider random variables over bit strings or over
quantum states. This will be clear from the context. We use the same notations for classical and
quantum computational indistinguishability, but there should be no fear of confusion; It means
computational indistinguishability against PPT (resp. QPT) distinguishers whenever we consider
classical (resp. post-quantum) security. For ensembles of random variables X = {Xi}λ∈N,i∈Iλ and
Y = {Yi}λ∈N,i∈Iλ over the same set of indices I =

⋃
λ∈N Iλ and a function δ, we use X c

≈δ Y to
mean that for any non-uniform PPT (resp. QPT) algorithm A, there exists a negligible function
negl(·) such that for all λ ∈ N, i ∈ Iλ, we have

|Pr[A(Xi)]− Pr[A(Yi)]| ≤ δ(λ) + negl(λ). (1)

We say that X and Y are δ-computationally indistinguishable if the above holds. In particular,
when the above holds for δ = 0, we say that X and Y are computationally indistinguishable, and
simply write X c

≈ Y .
Similarly, we use X s

≈δ Y to mean that for any unbounded time algorithm A, there exists a
negligible function negl(·) such that for all λ ∈ N, i ∈ Iλ, Inequality (1) holds. In particular, when
the above hold for δ = 0, we say that X and Y are statistically indistinguishable, and simply write
X

s
≈ Y . Moreover, we write X i.d.

== Y to mean that Xi and Yi are distributed identically for all i ∈ I.
When we consider an ensemble X that is only indexed by λ (i.e., Iλ = {λ}), we write X = {Xλ}λ

for simplicity.

3.2 Post-Quantum Commitments

We define (classically-secure and post-quantum) commitments. The following definitions are based
on those in [CCLY22a].

Definition 1 (Post-Quantum Commitments). A post-quantum commitment scheme 〈C,R〉
is a classical interactive protocol between interactive PPT machines C and R. Let m ∈ {0, 1}ℓ(λ)
(where ℓ(·) is some polynomial) is a message that C wants to commit to. The protocol consists of
the following stages:

– Commit Stage: C(m) and R interact with each other to generate a transcript (which is also
called a commitment) denoted by τ ,23 C’s state STC , and R’s output bcom ∈ {⊥,>} indi-
cating acceptance (i.e., bcom = >) or rejection (i.e., bcom = ⊥). We denote this execution by
(τ, STC , bcom) ← 〈C(m), R〉(1λ). When C is honest, STC is classical, but when we consider a
malicious quantum committer C∗(ρ), we allow it to generate any quantum state STC∗. Similarly,
a malicious quantum receiver R∗(ρ) can output any quantum state, which we denote by OUTR∗

instead of bcom.
– Decommit Stage: C generates a decommitment decom from STC . We denote this procedure by

decom← C(STC). Then it sends a message m and decommitment decom to R, and R outputs a
bit bdec ∈ {⊥,>} indicating acceptance (i.e., bdec = >) or rejection (i.e., bdec = ⊥). We assume
that R’s verification procedure is deterministic and denote it by Verify(τ,m, decom).24 W.l.o.g.,
we assume that R always rejects (i.e., Verify(τ, ·, ·) = ⊥) whenever bcom = ⊥. (Note that w.l.o.g.,

23 That is, we regard the whole transcript as a commitment.
24 Note that Verify is well-defined since our syntax does not allow R to keep a state from the commit stage.
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τ can include bcom because we can always modify the protocol to ask R to send bcom as the last
round message.)
The scheme satisfies the following requirements:

1. (Completeness.) For any polynomial ℓ : N→ N and any m ∈ {0, 1}ℓ(λ), it holds that

Pr

bcom = bdec = > :
(τ, STC , bcom)← 〈C(m), R〉(1λ)
decom← C(STC)
bdec ← Verify(τ,m, decom)

 = 1.

2. (Statistically binding.) For any unbounded-time committer C∗, the following holds:

Pr

[
∃ m0,m1, decom0, decom1, s.t. m0 6= m1 ∧
Verify(τ,m0, decom0) = Verify(τ,m1, decom1) = >

: (τ, STC∗ , bcom)← 〈C∗, R〉(1λ)
]
= negl(λ).

3. (Computationally Hiding.) For any non-uniform QPT receiver R∗ and any polynomial ℓ :
N→ N, the following holds:{
OUTR∗〈C(m0), R

∗〉(1λ)
}
λ∈N, m0,m1∈{0,1}ℓ(λ)

c
≈

{
OUTR∗〈C(m1), R

∗〉(1λ)
}
λ∈N, m0,m1∈{0,1}ℓ(λ) ,

where OUTR∗〈C(mb), R
∗〉(1λ) (b ∈ {0, 1}) denotes the output of R∗ at the end of the commit

stage.
For a statistically binding commitment scheme (e.g., the one defined in Def. 1), we often need

to talk about the actual value that is “committed” by the committer at the end of the commit
stage. For that purpose. we develop a notion in Def. 2 for such a value. Note that this value is not
efficiently computable (before the starting of the decommit stage) due to the hiding property of
the commitment scheme. Rather, it is simply defined in a information-thoeretical sense.
Definition 2 (Committed Values). For a statistically binding commitment scheme 〈C,R〉 (as
per Def. 1), we define the value function as follows:

val(τ) :=

{
m if ∃ unique m s.t. ∃ decom,Verify(τ,m, decom) = 1

⊥ otherwise
.

where Verify is as defined in Def. 1.

3.3 Post-Quantum Extractable Commitments
We define the post-quantum analog of extractable commitments, which we denote as PQ-ExtCom.
As mentioned in the introduction, in the post-quantum setting, we need to explicitly require that
the extractor (almost) does not disturb the (potentially malicious) committer’s state during the
extraction. However, it is not known black-box constructions of such post-quantum extractable
commitments exist from (polynomially hard) post-quantum OWFs [CCLY22b]. Fortunately, a re-
cent work [CCLY22a] showed that a constant-round construction from post-quantum OWFs is
possible if we relax the extractability to allow an (arbitrarily small) noticeable simulation error.
The following definitions are taken from [CCLY22a].

Definition 3 (PQ-ExtCom with ε-Simulation). A post-quantum commitment scheme 〈C,R〉
(as per Def. 1) is extractable with ε-simulation if there exists a QPT algorithm SE (called the
ε-simulation extractor) such that for any noticeable ε(λ) and any non-uniform QPT C∗(ρ),{

SEC∗(ρ)(1λ, 1ε
−1
)
}
λ

s
≈ε

{
(val(τ), STC∗) : (τ, STC∗ , bcom)← 〈C∗(ρ), R〉(1λ)

}
λ
,

where val(τ) is the value committed by C∗ as defined in Def. 2.
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Parallel Extractability. We also define in Def. 4 the parallel version of Def. 3. This definition
considers polynomially many instances of a commitment in parallel, where the committers are
malicious. It requires the existence of a simulation-extractor SE that simultaneously extract the
values committed in all the sessions, while ε-simulating the post-extraction state of the malicious
committers. This definition is a little weak in the sense that it only requires SE to succeed when
R accepts in all the parallel sessions. In particular, when R accepts in some sessions but not in
others, the SE does not need to extract (or simulate) anything. As remarked in [CCLY22a], an
alternative stronger (and more natural) definition would require the SE to extract the committed
values in all the sessions where R accepts in the j-th session, and ε-simulate the post-extraction
state of the malicious committers across all the sessions (even for those where R rejects at the end
of commit stage). However, such a construction in constant rounds remains an open challenge, even
with non-black-box techniques.

Fortunately, this weak parallel version as per Def. 4 suffices for our purpose.

Definition 4 (Parallel Extractability with ε-Simulation). A post-quantum commitment
scheme 〈C,R〉 (as per Def. 1) is parallelly extractable with ε-simulation if for any integer n =
poly(λ), there exists a QPT algorithm SE (called the parallel ε-simulation extractor) such that for
any noticeable ε(λ) and any non-uniform QPT C∗(ρ),{

SEC∗(ρ)(1λ, 1ε
−1
)
}
λ

s
≈ε

{(
Γ{bcom,j}nj=1

({val(τj)}nj=1), STC∗
)
: ({τj}nj=1, STC∗ , {bcom,j}nj=1)← 〈C∗(ρ), Rn〉(1λ)

}
λ

where ({τj}nj=1, STC∗ , {bcom,j}nj=1) ← 〈C∗(ρ), Rn〉(1λ) means that C∗(ρ) interacts with n copies of
the honest receiver R in parallel and the execution results in transcripts {τj}nj=1, the final state
STC∗, and outputs {bcom,j}nj=1 of each copy of R and

Γ{bcom,j}nj=1
({val(τj)}nj=1) :=

{
{valΠ(τj)}nj=1 if ∀ j ∈ [n] bcom,j = >
⊥ otherwise

.

Constant-round and black-box constructions are know for the above versions of post-quantum
extractable commitments.

Lemma 3 ([CCLY22a]). Assume the existence of post-quantum one-way functions, there exist
constant-round black-box constructions of:

– post-quantum extractable commitments with ε-simulation (as per Def. 3)
– post-quatnum parallelly extractable commitments with ε-simulation (as per Def. 4).

3.4 Post-Quantum Non-Malleable Commitments

We define post-quantum non-malleable commitments (PQ-NMC). Our definition follows the one in
[LPY23a], but here we define 1-many non-malleability directly. We only state the definition in the
synchronous setting, supporting polynomially many tags. As mentioned in the introduction, this
version suffices for all applications herein.

In fact, we will define and rely on a form of 1-many non-malleability that is weaker than the
standard notion, which we accordingly title weak (1-many) non-malleability. This bears resemblance
to the weak parallel extractability defined above for extractable commitments, in that we will only
expect the non-malleability condition to hold in the parallel execution provided every session of
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this execution is completed successfully (i.e., the receiver in each session accepts the corresponding
interaction).

We will start by defining the notion of a man-in-the-middle execution in the 1-many setting,
and then present the standard and our weak definition of non-malleability in this setting.

1-Many Man-in-the-Middle Execution. Let 〈C,R〉 be a statistically binding and computa-
tionally hiding post-quantum commitment scheme. We use a tag-based specification so that every
execution of 〈C,R〉 is associated with a tag t ∈ [T ], where T is an integer. Consider a non-uniform
QPT adversary M = {Mλ, ρλ}λ participating in (k + 1) instances of 〈C,R〉 as follows: Mλ(ρλ)
plays the role of the receiver in one instance (referred to as the left session), while simultaneously
acting as a committer in the other k sessions (referred to as the right sessions). All the (k + 1)
sessions are execute in parallel, and we refer to this setting as the synchronous 1-k MIM execution,
where “MIM” is the acronym for “man-in-the-middle.”

Notation-wise, we denote the relevant entities used in the right interaction as the “tilde’d”
version of the corresponding entities on the left. In particular, let t denote the tag associated with
the left session and (t̃1, . . . , t̃k) denote the tags for the k right sessions respectively; let m denote
the value committed by the honest C in the left session, and (m̃1, . . . , m̃k) the values committed
byMλ(ρλ) in the k right sessions respectively, i.e., we set m̃i = val(τ̃i) where τ̃i is the transcript of
the i-th right session (see Def. 2).

For this 1-k MIM execution, let mim[k]Mλ

⟨C,R⟩(m, ρλ) denote concatenation of the final output of
Mλ(ρλ) and the values committed in all the k right sessions, when the honest C in the left session
commits to value m. That is,

mim[k]Mλ

⟨C,R⟩(m, ρλ) :=
(
OUTM, (m̃1, . . . , m̃k)

)
.

Definition 5 (Standard Synchronous 1-Many PQ-NMC). A post-quantum statistically
binding commitment 〈C,R〉 is said to be 1-k non-malleable if for all polynomial ℓ(·) and all non-
uniform QPT adversariesM = {Mλ, ρλ}λ participating the above synchronous 1-k MIM execution
with t 6= t̃i for all i ∈ [k], it holds that{

mim[k]Mλ

⟨C,R⟩(m0, ρλ)
}
λ∈N,m0,m1∈{0,1}ℓ(λ)

c
≈

{
mim[k]Mλ

⟨C,R⟩(m1, ρλ)
}
λ∈N,m0,m1∈{0,1}ℓ(λ) .

Some remarks follow:

1. Def. 5 requires that the left-session tag t is different from those for all right sessions. This is
standard practice when defining non-malleability, with the purpose of ruling out the uninteresting
case whenM is simply acting as a channel, forwarding messages from C on the left to the R on
some right session.

2. Def. 5 does not consider entanglement betweenM’s auxiliary input and distinguisher’s auxiliary
input. However, [BLS22, Claim 3.1] shows that the above definition implies the version that
considers such entanglement.

3. (1-1 Non-Malleability.) When k = 1, Def. 5 degenerates to the standard definition of post-
quantum non-malleability (in the synchronous setting).

Next we turn to our weaker definition of 1-many non-malleability.

Definition 6 (Weak 1-Many PQ-NMC). Let mim[k]Mλ

⟨C,R⟩(m, ρλ) denote the output of the
synchronous 1-k man-in-the-middle execution as above, and let dj ∈ {>,⊥} denote the decision of
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the receiver in each session for j ∈ [k]. Define the function Γ{dj}kj=1
(·) as follows:

Γ{dj}kj=1
(mim[k]Mλ

⟨C,R⟩(m, ρλ)) :=

{
mim[k]Mλ

⟨C,R⟩(m, ρλ) if ∀ j ∈ [k], dj = >
(OUTM,⊥k) otherwise

,

where OUTM is the first component of mim[k]Mλ

⟨C,R⟩(m, ρλ).
A post-quantum statistically binding commitment 〈C,R〉 is said to be weakly 1-k non-malleable

if for all polynomial ℓ(·) and all non-uniform QPT adversaries M = {Mλ, ρλ}λ participating the
above synchronous 1-k MIM execution with t 6= t̃i for all i ∈ [k], it holds that

{
Γ{dj}kj=0

(mim[k]Mλ

⟨C,R⟩(m0, ρλ))
}
λ∈N,m0,m1∈{0,1}ℓ(λ)

c
≈

{
Γ{dj}kj=0

(mim[k]Mλ

⟨C,R⟩(m1, ρλ))
}
λ∈N,m0,m1∈{0,1}ℓ(λ) .

Remark 1. Note that Def. 5 and Def. 6 are in fact equivalent in the basic 1-1 setting (i.e., the
man-in-the-middle runs exactly one left and right session each). This is easily verified by observing
the definition of the output in the MIM experiment: it is clear to see that in cases where the right
interaction is completed successfully, the definitions are identical. On the other hand, when the
right interaction is not completed successfully, the output according to both Def. 5 and Def. 6
consists of the output state of the MIM and the ⊥ symbol.

Remark 2. We further observe that in analogy with the standard definition, weak one-many non-
malleability also implies weak many-many non-malleability (which can be defined analogously). As
in the standard case, this can be easily inferred from a standard hybrid argument (where the input
in each left session is switched in turn).

3.5 Post-Quantum MPC with ε-Simulation

We present the formal definition for PQ-MPC with ε-simulation. It is identical to the standard
MPC definition in the classical setting except that:
1. The malicious party can be a QPT machine;
2. The indistinguishability between the real-world execution and the simulated one is parameterized

by a noticeable function ε(λ).
Consider n parties P1, . . . , Pn who wish to interact in a protocol Π to evaluate a n-party classical
functionality f on their joint inputs. They communicate via authenticated point-to-point channels
as well as broadcast channels, where everyone can send messages in the same round. The network is
assumed to be synchronous with rushing adversaries, i.e. adversaries may generate their messages
for any round after observing the messages of all honest parties in that round, but before observing
the messages of honest parties in the next round.

In this work, we consider a static adversary, namely, at the beginning of the execution the
adversary specifies a set I of corrupted parties which she controls, and through the execution she
will not change the set I. The ideal and real executions follow the standard description as in, e.g.,
[Gol04, Lin16].

In the real world, a non-uniformal QPT adversary A = {Aλ, ρλ}λ corrupting {Pi}i∈I inter-
acts with {Pi}i∈[n]\I . Let x = (x1, . . . , xn) denote the respective initial input to each party. Let
REALΠ,Aλ,I(λ,x, ρλ) denote the random variable consisting of the output of the adversary (which
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may be an arbitrary function of its view and in particular may be a quantum state) and the outputs
of the uncorrupted parties {Pi}i∈[n]\I .

In the ideal world, a QPT machine S controls the same parties in I asAλ. It gets {xi}i∈I as input
and is granted black-box access to Aλ(ρλ). Similar as in the ε-ZK definition [CCY21, CCLY22a],
S additionally takes as input a “slackness parameter” ε(λ), which is a noticeable function on λ.
Henceforth, we always require that S’s running time is a polynomial on both λ and ε−1. In this
ideal-world execution, let IDEALf,S,I(λ, ε,x, ρλ) denote the outputs of S (with slackness ε) and the
outputs of the uncorrupted parties {Pi}i∈[n]\I .

Definition 7 (Post-Quantum MPC with ε-Simulation). Let f be a classical n-party func-
tionality, and Π be a classical n-party protocol. We say that Π is a post-quantum MPC protocol
for f with ε-simulation if there exists a QPT simulator S such that for any non-uniform QPT
adversary A = {Aλ, ρλ}λ∈N, any I ⊂ [n], any x ∈ ({0, 1}∗)n, and any noticeable function ε(λ), it
holds that:

{REALΠ,Aλ,I(λ,x, ρλ)}λ∈N
c
≈ε {IDEALf,S,I(λ, ε,x, ρλ)}λ∈N.

3.6 Verifiable Secret Sharing and Information-Theoretic MPC

Verifiable Secret Sharing. We present in Def. 8 the definition of verifiable secret sharing (VSS)
schemes [CGMA85]. We remark that [BGW88, CDD+99] implemented (n + 1, bn/3c)-perfectly
secure VSS schemes. These constructions suffice for all the applications in the current paper.

Definition 8 (Verifiable Secret Sharing). An (n + 1, t)-perfectly secure VSS scheme ΠVSS

consists of a pair of protocols (VSSShare,VSSRecon) that implement respectively the sharing and
reconstruction phases as follows.
– Sharing Phase VSSShare: Player Pn+1 (referred to as dealer) runs on input a secret s and

randomness rn+1, while any other player Pi (i ∈ [n]) runs on input a randomness ri. During this
phase players can send (both private and broadcast) messages in multiple rounds.

– Reconstruction Phase VSSRecon: Each shareholder sends its view vi (i ∈ [n]) of the Sharing
Phase to each other player, and on input the views of all players (that can include bad or empty
views) each player outputs a reconstruction of the secret s.

All computations performed by honest players are efficient. The computationally unbounded adver-
sary can corrupt up to t players that can deviate from the above procedures. The following security
properties hold.
1. Perfectly Verifiable-Committing: if the dealer is dishonest, then one of the following two

cases happen (i.e., with probability 1):
(a) During the Sharing Phase, honest players disqualify the dealer, therefore they output a

special value ⊥ and will refuse to play the reconstruction phase;
(b) During the Sharing Phase, honest players do not disqualify the dealer. Therefore such a

phase determines a unique value s∗ that belongs to the set of possible legal values that does
not include ⊥, which will be reconstructed by the honest players during the reconstruction
phase.

2. Secrecy: if the dealer is honest, then the adversary obtains no information about the shared
secret before running the protocol Recon. More accurately, there exists a PPT oracle machine
S(·) such that for any message m, and every (potentially inefficient) adversary A corrupting a
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set T of parties with |T | ≤ t during the Sharing Phase VSSShare(m) (denote A’s view in this
execution as ViewA,T (1

λ,m)), the following holds: {ViewA,T (1λ,m)} i.d.
== {SA(1λ, T )}.

3. Correctness: if the dealer is honest throughout the protocols, then each honest player will output
the shared secret s at the end of protocol Recon.

Information-Theoretically Secure MPC. We first recall information-theoretically secure MPC
and relevant notions that will be employed in the MPC-in-the-head paradigm shown later.

Information-Theoretic MPC. We now define MPC in the information-theoretic setting (i.e.,
secure against unbounded adversaries).

Definition 9 (Perfectly/Statistically-Secure MPC). Let f : ({0, 1}∗)n 7→ ({0, 1}∗)n be an
n-ary functionality, and let Π be a protocol. We say that Π (n, t)-perfectly (resp., statistically)
securely computes f if for every static, malicious, and (possibly-inefficient) probabilistic adversary
A in the real model, there exists a probabilistic adversary S of comparable complexity (i.e., with
running time polynomial in that of A) in the ideal model, such that for every I ⊂ [n] of cardinality
at most t, every x = (x1, . . . , xn) ∈ ({0, 1}∗)n (where |x1| = · · · = |xn|), and every z ∈ {0, 1}∗, it
holds that:

{REALΠ,A(z),I(x)}
i.d.
== {IDEALf,S(z),I(x)}

(
resp., {REALΠ,A(z),I(x)}

s
≈ {IDEALf,S(z),I(x)}

)
.

Recall that the MPC protocol from [BGW88] achieves (n, t)-perfect security (against static and
malicious adversaries) with t being a constant fraction of n.

Theorem 5 ([BGW88]). Consider a synchronous network with pairwise private channels. Then,
for every n-ary functionality f , there exists a protocol that (n, t)-perfectly securely computes f in
the presence of a static malicious adversary for any t < n/3.

Consistency, Privacy, and Robustness. We now define some notation related to MPC protocols.
Their roles will become clear when we discuss the MPC-in-the-head technique later.

Definition 10 (View Consistency). A view Viewi of an honest player Pi during an MPC
computation Π contains input and randomness used in the computation, and all messages received
from and sent to the communication tapes. A pair of views (Viewi,Viewj) is consistent with each
other if

1. Both corresponding players Pi and Pj individually computed each outgoing message honestly by
using the random tapes, inputs and incoming messages specified in Viewi and Viewj respectively,
and:

2. All output messages of Pi to Pj appearing in Viewi are consistent with incoming messages of Pj
received from Pi appearing in Viewj (and vice versa).

Remark 3 (View Consistency of VSS). Although Def. 10 defines view consistency for MPC proto-
cols, we will also refer to the view consistency for the execution of verifiable secret sharing schemes
(Def. 8). The views (vi, vj) of players i and j (excluding the dealer) during the execution of VSSShare
is said to be consistent if any only if (vi, vj) satisfies the two requirements in Def. 10.

We further define the notions of correctness, privacy, and robustness for multi-party protocols.
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Definition 11 (Semi-Honest Computational Privacy). Let 1 ≤ t < n, let Π be an MPC
protocol, and let A be any static, PPT, and semi-honest adversary. We say that Π realizes a
function f : ({0, 1}∗)n 7→ ({0, 1}∗)n with semi-honest (n, t)-computational privacy if there is a
PPT simulator S such that for any inputs x,w1, . . . , wn, every subset T ⊂ [n] (|T | ≤ t) of players
corrupted by A, and every D with circuit size at most poly(λ), it holds that∣∣Pr[D(ViewT (x,w1, . . . , wn)) = 1]− Pr[D(S(T, x, {wi}i∈T , fT (x,w1, . . . , wn))) = 1]

∣∣ ≤ negl(λ), (2)

where ViewT (x,w1, . . . , wn) is the joint view of all players.
Definition 12 (Statistical/Perfect Correctness). Let Π be an MPC protocol. We say that Π

realizes a deterministic n-party functionality f(x,w1, . . . , wn) with perfect (resp., statistical) cor-
rectness if for all inputs x,w1, . . . , wn, the probability that the output of some party is different from
the output of f is 0 (resp., negligible in k), where the probability is over the independent choices of
the random inputs r1, . . . , rn of these parties.
Definition 13 (Perfect/Statistical Robustness). Assume the same setting as the previous
definition. We say that Π realizes f with (n, t)-perfect (resp., statistical) robustness if in addition
to being perfectly (resp., statistical) correct in the presence of a semi-honest adversary as above, it
enjoys the following robustness property against any computationally unbounded malicious adversary
corrupting a set T of at most t parties, and for any inputs (x,w1, . . . , wn): if there is no (w′1, . . . , w

′
n)

such that f(x,w′1, . . . , w′n) = 1, then the probability that some uncorrupted player outputs 1 in an
execution of Π in which the inputs of the honest parties are consistent with (x,w1, . . . , wn) is 0
(resp., negligible in λ).

3.7 MPC-in-the-Head
MPC-in-the-head (MitH) is a technique originally developed for constructing black-box ZK pro-
tocols from MPC protocols [IKOS07]. Intuitively, the MPC-in-the-head idea works as follows. Let
Fzk be the zero-knowledge functionality for an NP language. Assume there are n parties holding
a witness in a secret-sharing form. Fzk takes as public input x and one share from each party, and
outputs 1 iff the secret reconstructed from the shares is a valid witness. To build a ZK protocol,
the prover runs in his head an execution of MPC w.r.t. Fzk among n imaginary parties, each one
participating in the protocol with a share of the witness. Then, it commits to the view of each party
separately. The verifier obtains t randomly chosen views, checks that such views are “consistent”
(see Def. 10), and accepts if the output of every party is 1. The idea is that, by selecting the t views
at random, V will catch inconsistent views if the prover cheats.

We emphasize that, in this paradigm, a malicious prover decides the randomness of each virtual
party, including those not checked by the verifier (corresponding to honest parties in the MPC
execution). Therefore, MPC protocols with standard computational security may fail to protect
against such attacks. We need to ensure that the adversary cannot force a wrong output even
if it additionally controls the honest parties’ random tapes. The (n, bn/3c)-perfectly secure MPC
protocol in Thm. 5 suffices for this purpose (see also Rmk. 4).

One can extend this technique further (as in [GLOV12]), to prove a general predicate ϕ about an
arbitrary value α. Namely, one can consider the functionality Fϕ in which party i participates with
input a VSS share [α]i. Fϕ collects all such shares, and outputs 1 iff ϕ(VSSRecon([α]1, . . . , [α]n)) = 1.
Remark 4 (Exact Security Requirements on the Underlying MPC.). To be more accurate, any
MPC protocol that achieves semi-honest (n, t)-computational privacy (as per Def. 11) and (n, t)-
perfect robustness (as per Def. 13) will suffice for the MPC-in-the-head application.25 These two
25 It is also worth noting that the (n, t)-perfect robustness could be replaced with adaptive (n, t)-statistical robustness.

See [IKOS07, Section 4.2] for more details.
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requirements are satisfied by any (n, t)-perfectly secure MPC (and, in particular, the one from
Thm. 5).

MPC-in-the-Head Commitments. We present a hiding game that relies on the (MitH) tech-
nique, and show that no QPT adversary can win this game with non-negligible probability. This
game is essentially a black-box post-quantum commitment protocol due to [GLOV12, CCLY22a].
We choose to present it as the following hiding game because this game will be of direct use later
when proving the security of our protocol in Sec. 5.3 (particularlly in Lem. 10).

Experiment 1: VSS Hiding Game
Parameters: Let n(λ) be a polynomial in λ. Let k be a constant-fraction of n such that k ≤ n

3 .
This involves an (efficient) challenger Ch interacting with the adversary A. The interaction pro-
ceeds as follows:
1. A selects messages m0,m1 ∈ {0, 1}λ and sends these to Ch.
2. Next, A samples a random size-k subset η of [n]. It then runs an interaction of ExtCom (as per

Def. 3) with Ch, where it commits to η.
3. Ch prepares n views {vi}i∈[n], corresponding to an MitH execution for the (n + 1, k)-VSSShare

of the message mb (see Rmk. 5 for details). Ch commits to each vi (i ∈ [n]) independently in
parallel, using Naor’s commitment.

Remark 5. We describe this step more explicitly. Ch emulates n+ 1 virtual parties {Pi}i∈[n+1]

‘in its head.’ Party Pn+1 is the dealer, possessing the string x. Other parties do not have any
input. These parties execute the VSSShare stage of the (n + 1, k)-VSS scheme to compute the
functionality VSSShare. At the end of the execution, Pi (i ∈ [n]) obtains the i-th VSS share of mb

as the output, and Pn+1 does not receive any output. The {vi}i∈[n] corresponds to the views of
{Pi}i∈[n] from this execution (emulated in Ch’s head).

4. A sends η togther with the decommitment informaiotn w.r.t. the ExtCom in Step 2.
5. Ch then decommits to the VSS shares in the set η, i.e. it sends {vi}i∈η along with the corre-

sponding decommitment information w.r.t. the commitment in Step 3.
6. Finally, A submits a guess bit b′ corresponding to its estimate of which message was committed

to by Ch.

Output: We use VSShd(1
λ,A) to denote the output of this game, where VSShd(A) = 1 iff b′ = b.

Lemma 4. For any QPT adversary A, it holds that Pr
[
VSShd(1

λ,A) = 1
]
= 1

2 ± negl(λ), where
VSShd(1

λ,A) is defined in Expr. 1.

Proof Sketch. The proof of this lemma already appears in [CCLY22a, Section 6.5]. Here, we only
recall the high-level idea. We will show the when Ch changes the committed value from m0 to m1,
A cannot tell the difference. For this, we assume for contradiction that A can tell the different with
some inverse-polynomial advantage δ(λ) for infinitely many λ ∈ N. Then, Ch can extract the subset
η from Step 2, using the simulation-extractor SE guaranteed by Def. 3, setting the error parameter
ε := δ

3 .
With the η in hand, Ch does not need to generate the views {vi}i∈[n] in Step 3 honestly. Instead,

it can invoke the (n, k)-MitH simulator to simulate the views in set η, and set other views {vi}i∈[n]\η
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to all-0 strings with proper length. By the security of the underlying (n, k)-MPC, the views in η does
not contain any information of the committed value mb. This helps Ch to change the committed
value from m0 to m1.

By our parameter setting ε := δ
3 , after Ch changes the committed value from m0 to m1, A can

tell the different with probability at most 2δ
3 , which is still smaller than δ, reaching the desired

contradiction.

MPC-in-the-Head Interactive Arguments. As a proof of concept, we show in the following
a constant-round black-box interactive argument built from the MitH technique. This protocol is
taken from [IKOS07, CCLY22a]. A prover C first commits to a string x, and then starts to interact
with the verifier R for the statement that the committed x satisfies a predicate ϕ(·). The soundness
requirement is: if ϕ(x) = 0, then the verifier will reject the proof except for negligible probability.

Protocol 1: MPC-in-the-Head Interactive Argument
Parameters: Let n be a polynomial in λ, and k be a constant fraction of n such that k ≤ n/3.
We will employ a (n+ 1, k) VSS scheme and a (n, k)-secure MPC scheme.
Inputs: Both parties receive λ as the common input. The prover in addition gets a string x as
its private input.

Commit Stage: In this stage, C commits to the string x (using the MitH approach).
– C prepares n views {vi}i∈[n], corresponding to an MitH execution for the (n+ 1, k)-VSSShare of

the string x (see Rmk. 5 for details). C commits to each vi (i ∈ [n]) independently in parallel,
using Naor’s commitment.

Proof Stage: Both parties learn an efficiently computable predicate ϕ(·).
1. C then prepares n views {v′i}i∈[n] corresponding to an (n, k)-MitH execution for the function-

ality Fϕ described below, where party Pi uses vi as input. It then commits to each of these
views v′i independently in parallel using Naor’s commitment.
– Functionality Fϕ: This collects inputs vi from party i, runs VSSRecon on these inputs to

recover a value x, and outputs ϕ(x).
2. R then samples a size-k random subset η ⊂ [n] and sends it to C.
3. C now decommits to the views {vi}i∈η and {v′i}i∈η.
4. Finally, R checks these decommitments, and also checks if these revealed views are consistent

w.r.t. the VSS and MPC executions, here by ‘consistent’ we refer to the consistency require-
ments as per Def. 10 and Rmk. 3. It also checks for each i ∈ η the final output of Pi contained
in v′i is 1. It aborts immediately if any of the checks fail.

We know state the properties Prot. 1 satisfies as Lem. 5.

Lemma 5 ([IKOS07, CCLY22a].). Prot. 1 satisfies the following properties:

1. The Commit Stage is a statistically binding commitment.

2. If the x committed in the Commit Stage satisfies ϕ(x) = 1, then R accepts with probability 1.

3. If the x committed in the Commit Stage satisfies ϕ(x) = 0, then R rejects except for with
probability O(2k), even if C∗ is a malicious QPT machine and ϕ is picked by C∗.
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Extension of Prot. 1. We remark that [IKOS07, CCLY22a] indeed proved that Prot. 1 can be
converted into a ε-simulatable zero-knowledge protocol if Step 2 is replaced with a coin-flipping
protocol that is ε-simultable against any QPT R∗. Such a coin-flipping protocol can be constructed
as follows: (1) R∗ to commit to a share ηR using a extractable commitment with ε-simulation (as
per Def. 3); (2) C sends a random share ηC ; (3) R decommits to ηR. The coin-flipping result will
be η := ηC ⊕ ηR.

3.8 Watrous’ Rewinding Lemma

The following is Watrous’ rewinding lemma [Wat09] in the form of [BS20, Lemma 2.1].

Lemma 6 (Watrous’ Rewinding Lemma [Wat09]). There is a quantum algorithm R that
gets as input the following:

– A quantum circuit Q that takes n-input qubits in register Inp and outputs a classical bit b and an
m-qubit output.

– An n-qubit state ρ in register Inp.
– A number T ∈ N in unary.

R(1T ,Q, ρ) executes in time T ·|Q| and outputs a distribution over m-qubit states Dρ := R(1T ,Q, ρ)

with the following guarantees.
For an n-qubit state ρ, denote by Q0

ρ the conditional distribution of the output distribution Q(ρ),
conditioned on b = 0, and denote by p(ρ) the probability that b = 0. If there exist p0, q ∈ (0, 1),
γ ∈ (0, 12) such that:

– Amplification executes for enough time: T ≥ log(1/γ)
4p0(1−p0) ,

– There is some minimal probability that b = 0: For every n-qubit state ρ, p0 ≤ p(ρ),
– p(ρ) is input-independent, up to γ distance: For every n-qubit state ρ, |p(ρ)− q| < γ, and
– q is closer to 1

2 : p0(1− p0) ≤ q(1− q),
then for every n-qubit state ρ,

TD(Q0
ρ, Dρ) ≤ 4

√
γ

log(1/γ)

p0(1− p0)
.

Moreover, R(1T ,Q, ρ) only makes black-box use of Q(ρ).26

4 Post-Quantum Trapdoor Coin-Tossing with ε-Simulation

In this section, we build a trapdoor coin-flipping protocol. This is a coin-flipping protocol between
two parties C and R where C additionally commits to some string x before the coin-flipping starts.
The security guarantee of the actual coin-flipping stage is ‘controlled’ by the committed string x and
a predicate ϕ(·) that is given to both party at the beginning of the coin-flipping stage. In particular,
if the committed x does not satisfy the predicate ϕ(·), then even a cheating C∗ cannot gain any
advantage over R in the coin-flipping stage. This is formalized as the standard simulation-based
requirement, namely, we require the existence of a simulator that can ‘enforce’ the coin-tossing
result to a given random string if C∗ does not abort the execution.
26 The black-boxness is observed in [CCY21, CCLY22a]
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On the other hand, if the committed x satisfies the predicate, then C can enforce the coin-tossing
result to a given random string against any efficient R∗ that does not abort the execution (this is
what we call ‘trapdoor’). We require that this ‘enforcing procedure’ should happen in straight-line,
i.e., it is not allowed to rewind R∗. Indeed, we actually require a stronger version of this property
as follows.

We consider a real-world execution where C commits honestly to a string x to the malicious R∗;
Here, we do not require that x satisfies ϕ. Then, in the simulation world, we provide a potentially
different x′ to a ‘straight-line’ simulator S such that ϕ(x′) = 1. With this valid witness x′, S can
enforce the coin-flipping result to a pre-sampled random string, interacting in straight-line with a
potentially malicious R∗.

In the following, we first present the definition in Sec. 4.1 and then show our construction with
security proof in Sec. 4.2. We remark that this construction is a simple application of the MPC-in-
the-Head technique. Indeed, the main contribution of this work does not lie in this construction.
We abstract out the notion of ‘trapdoor coin-flipping’ simply because it helps us present our post-
quantum non-malleable commitments (in Sec. 5) in a modular manner.

4.1 Definition

Definition 14. A post-quantum trapdoor coin-tossing with ε-simulation protocol consists of a pair
of PPT ITM 〈C,R〉. Let x ∈ {0, 1}ℓ(λ) (where ℓ(·) is some polynomial) is a message that C wants
to commit to. The protocol consists of the following stages (we omit the input 1λ to C and R):

– Commit Stage: C(x) and R interacts to generates a transcript (commitment) com, C’s state
STC , and R’s decision bit b ∈ {>,⊥} indicating acceptance (i.e., b = >) or rejection (i.e., b = ⊥).
We denote this execution as (com, STC , b) ← 〈C(x), R〉com. Note that a malicious receiver is
allowed to output any quantum state, which we denote by STR∗ instead of b, and to keep the state
for the following stages.

– Decommit Stage:27 C(STC) generates a decommitment decom and sends it to R along with a
message x. R accepts or rejects.

– Coin-Flipping Stage: Let ϕ(·) be any predicate. C(STC , ϕ) and R(com, ϕ) interacts, after
which R outputs > (accept) or ⊥ (reject). We denote the execution of this stage as (η1, η2) ←
〈C(STC), R(com)〉ϕcf, where η1, η2 ∈ {0, 1}∗ are the respective output of C and R. Note that a
malicious receiver is allowed to output any quantum state, which we denote by OUTR∗ instead of
η2.

The following requirements are satisfied:

1. Statistically Binding. The Commit Stage and Decommit Stage together constitute a post-
quantum commitment scheme that is statistically binding and (post-quantum) computational
hiding.

2. Completeness. For any x ∈ {0, 1}ℓ(λ) and any predicate ϕ, it holds that

Pr

[
η1 = η2 :

(com, STC , b)← 〈C(x), R〉com
(η1, η2)← 〈C(STC), R(com)〉ϕcf

]
= 1. (3)

3. Security against Malicious R∗. For any QPT R∗, there exists a ‘straight-line’ QPT simulator
S such that for any efficiently computable predicate ϕ(·), any x, x′ ∈ {0, 1}ℓ(λ) such that ϕ(x′) = 1,

27 This stage is rarely executed in applications.
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it holds that
{
(η1,OUTR∗ ) :

(com, STC , STR∗ )← ⟨C(x), R∗⟩com
(η1,OUTR∗ )← ⟨C(STC), R∗(STR∗ )⟩ϕcf

}
λ

c
≈

{(
Γd(η),OUTR∗

)
:

(STS , STR∗ )← ⟨S(x′), R∗⟩com

η
$←− {0, 1}k(λ)

(d,OUTR∗ )← ⟨S(STS , η), R
∗(STR∗ )⟩ϕcf

}
λ

,

where Γd(η) :=
{
η if d = >
⊥ if d = ⊥

.

4. Security against Malicious C∗. For any QPT C∗ with STC∗ there exists a QPT simulator S
such that for any noticeable ε(λ), any predicate ϕ(·) and and any com∗such that ϕ

(
val(com∗)

)
=

0,28 it holds that{
(OUTC∗ , η2) : (OUTC∗ , η2)← ⟨C∗(STC∗), R(com∗)⟩ϕcf

}
λ

c
≈ε

{(
OUTC∗ , Γd(η)

)
: η

$←− {0, 1}k(λ)
(OUTC∗ , d)← S(1λ, η, ϕ, com∗)

}
λ

,

where Γd(η) is defined as above.

Some remarks regarding Def. 24 follows:
– Note that the above completeness condition (Property 2) holds regardless of whether x satisfies

the predicate ϕ(·) or not.
– When defining Properties 3 and 4, we essentially follow the standard simulation-based notion for

two-party coin-flipping with aborting. That is, we require the simulator to successfully ‘enforce’
the coin-flipping result to the pre-sampled η only if the malicious party does not abort the
protocol. Indeed, if the malicious party aborts before the protocol ends, the honest party cannot
receive any output, and thus of course we cannot enforce its output to η while being consistent
with the real-world execution (where the honest party simply outputs ⊥).

4.2 Construction

We present the construction in Prot. 2. It makes use of (the post-quantum version of) Naor’s
commitment and the post-quantum extractable commitment ExtCom with ε-simulation (as per
Def. 3). Note that both of these building blocks are known in black-box and constant-round from
post-quantum OWFs.

Protocol 2: Post-Quantum Trapdoor Coin-Flipping with ε-Simulation

Input: Both the C and R get the security parameter 1λ as the common input. C gets a string
x ∈ {0, 1}ℓ(λ) as its private input.

Commit Stage:
1. C prepares n views {vi}i∈[n], corresponding to an MitH execution for the (n+ 1, k)-VSSShare of

the string x (as detailed in Rmk. 5). C commits to each vi (i ∈ [n]) independently in parallel,
using Naor’s commitment.

Decommit Stage:
1. C sends {vi}i∈[n] together with the decommitment information w.r.t. the commitments in

Step 1.
28 Recall from Def. 2 that val(com∗) is the value statistically bound in transcript com∗.
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2. R checks the validity of the decommitment information and the consistency among {vi}i∈[n] (as
per Rmk. 3). If these checks are successful, R recovers x as x := VSSRecon(v1, . . . , vn); otherwise,
R rejects and output ⊥.

Coin-Flipping Stage: At the beginning of this stage, both parties learn the description of a
predicate ϕ(·). They proceed as follows.

1. C picks ηC
$←− {0, 1}k(λ) and commits to it with MitH. Namely, C prepares n views {cfv(1)i }i∈[n]

corresponding to an MitH execution for the (n + 1, k)-VSSShare of the value ηC . C commits to
each cfv

(1)
i (i ∈ [n]) independently in parallel, using ExtCom.

2. R picks ηR
$←− {0, 1}k(λ) and sends it to C.

3. C now sets η′C := ηC and sends η′C to R.

4. C prepares n views {cfv(2)i }i∈[n], corresponding to an (n, k)-MitH execution of the n-party
functionality Fϕ described below, where party Pi (i ∈ [n]) uses vi‖cfv

(1)
i as input. (Note that

vi‖cfv
(1)
i will be the prefix of cfv(2)i .) C commits to each cfv

(2)
i (i ∈ [n]) independently in parallel,

using Naor’s commitment. Here, the honest committer will use as an ‘effective witness’ the value
ηC reconstructed from {cfv(2)i }i∈[n], and hence only evaluates the ‘first clause’ of Fϕ (described
below) in the virtual MPC execution.

– Functionality Fϕ: It has η′C hare-wired. It collects input (and parses it as) vi‖cfv
(1)
i

from party i for each i ∈ [n]. It then runs the recovery algorithm of VSS to obtain
a := VSSRecon(v1, . . . , vn) and b := VSSRecon(cfv

(1)
1 , . . . , cfv

(1)
n ). It outputs 1 to each party if

either
• (First clause.) b equals η′C sent in Step 3, or
• (Second clause.) ϕ(a) = 1.
Otherwise, it outputs 0 to each party.

5. C and R now engage in the following coin-flipping subprotocol as detailed below.
(a) R samples a random string θR of proper length and commits to it using ExtCom.
(b) C samples a random string θC of proper length and sends it to R.
(c) R sends to C the value θR together with the corresponding decommitment information

w.r.t. the ExtCom in Step 5a. Now, C and R agree on a random string θ := θR ⊕ θC . By
a proper choice of length, the string θ it can be interpreted as specifying a size-k random
subset of [n]. In the following, we abuse notation by using θ to denote the corresponding
size-k random subset.

6. C sends back the list {(vi, cfv(1)i , cfv
(2)
i )}i∈θ together with the corresponding decommitment

information w.r.t. the commitment made in Steps 1 and 4.
7. R now checks the validity of the decommitments provided by C and the consistency among the

revealed views {(vi, cfv(1)i , cfv
(2)
i }i∈θ. It also checks for each i ∈ θ the final output of Pi contained

in cfv
(2)
i is 1. If any of these checks fail, R aborts immediately.

Output: C and R output η := η′C ⊕ ηR.
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Security. The security of Prot. 2 is stated as the following lemma.

Lemma 7. Prot. 2 is a black-box, constant-round trapdoor coin-flipping protocol (as per Def. 24).

Proof. It is straightforward to see that Prot. 2 is constant-round and makes only black-box use of
its underlying cryptographic components. Also, the completeness (i.e., Property 2) and statistically
binding property (i.e., Property 1) of Prot. 2 is straightforward from the protocol description. Thus,
to prove Lem. 7, we only need to show that Prot. 2 satisfies Properties 3 and 4 in Def. 24.

As we mentioned earlier, Prot. 2 is a simple application of the MPC-in-the-Head technique.
Indeed, similar constructions have appeared previously in, e.g., [GLOV12, CCLY22a]. Our proof
for Properties 3 and 4 follows almost immediately from these known techniques. In the following,
we only provide a proof sketch and refer the interested readers to [CCLY22a, Section 6.5] for similar
proofs.

Proving Property 3. Note that Prot. 2 can be viewed as a black-box commit-and-prove protocol
where C commits to two values, one being the x committed in Step 1 of the Commit Stage and
the other being ηC committed in Step 1 of the Coin-Flipping Stage; C then proves that these two
values satisfies the predicate Fϕ defined in Step 4. Note that such a black-box commit-and-prove
protocol is witness indistinguishable (see [CCLY22a, Section 6.5] for a proof of this fact29), namely,
even if C changes the committed values to another x′ and η′′C , as long as x′ and η′′C together satisfy
the predicate Fϕ, then no (potentially malicious) R∗ could tell the difference.

With this observation, a simulator S can be constructed as follows. S commits to x′ in Step 1
of the Commit Stage and emulates the honest C, where recall from the condition of Property 3
that x′ is a valid witness for ϕ and is given to S as input. In Step 3, instead of setting η′C to ηC
honestly, S sets η′C = η ⊕ ηR, where recall that η is the input to S that it wants to enforce. Now,
since η′C 6= ηC , the ‘first clause’ of Fϕ does not hold. Fortunately, since ϕ(x′) = 1, the ‘second clause’
of Fϕ still holds. Thus, the new x′ together with ηC constitute a valid witness for Fϕ. Then, the
witness indistinguishability of this commit-and-prove protocol implies Property 3.

Proving Property 4. This proof is even simpler. S works by extracting the η∗C committed by C∗ in
Step 1 of the Coin-Flipping Stage, using the (parallel) extractability of ExtCom with ε-simulation.
In more details, recall that the shares {cfv(1)i }i∈[n] is committed in parallel using ExtCom in Step 1.
S will extract all of these shares using the parallel extractability of ExtCom with ε-simulation (as
per Def. 4), and compute η∗C := VSSRecon(cfv

(1)
1 , . . . , cfv

(1)
n ).

Then, S sends ηR := η⊕η∗C in Step 2, and finishes the remaining execution emulating the honest
R.

First, note that in a real-world execution between C∗ and R, the value η∗C (committed by C∗ in
Step 1 of the Coin-Flipping Stage) must equal to the η′C sent by C∗ in Step 3. This is because
we know that the value committed by C∗ in Step 1 of the Commit Stage does not satisfies the
predicate ϕ(·) (this is state as ϕ

(
val(com∗)

)
= 0 in the condition of Property 4). Thus, if C∗ sends

η′C 6= η∗C in Step 3, then both clauses of Fϕ are unsatisfied. In this situation, C∗ cannot provide
a convincing proof to R; Otherwise, she breaks the soundness of the commit-and-prove protocol.
Again, see [CCLY22a, Section 6.5] for a similar proof.

By the extractability of ExtCom, S is able to extract the same η∗C while simulating the post-
extraction state of C∗ up to a arbitrarily small noticeable ε(λ) error, and successfully enforce the
coin-flipping result to η∗C ⊕ η∗C ⊕ η = η. This establishes Property 4.
29 Indeed, [CCLY22a, Section 6.5] proves a stronger claim that such a protocol is ε-zero-knowledge, which implies

witness indistinguishability.
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This concludes the proof of Lem. 7.

5 Post-Quantum Non-Malleable Commitments: One-to-One and One-sided

We present a black-box, constant-round construction of post-quantum non-malleable commitment
in the synchronous setting and supporting a polynomial number of tags. The construction shown
in this section is non-malleable under the ‘one-sided’ assumption, i.e., its non-malleability holds in
the 1-1 MIM execution where the left-session tag t is strictly smaller than the right-session tag t̃.
This constraint will be subsequently alleviated in Sec. 8.

5.1 Construction
The construction is described in Prot. 3. It makes black-box use of the following building blocks:
1. The post-quantum parallelly extractable commitment scheme ExtCom with ε-simulation Def. 4,

which can be built in black-box from any post-quantum OWFs (see Lem. 3).
2. A post-quantum commitment scheme that is statistically-binding and computationally-hiding

(against QPT adversaries). This is also known assuming only black-box access to post-quantum
secure OWFs. In particular, we will make use of Naor’s commitment which can be built in
black-box from any post-quantum OWFs as well.

3. A perfectly secure verifiable secret sharing scheme VSS = (VSSShare,VSSRecon) (as per Def. 8);
We will set the parameters to make use of an (n + 1, k) scheme and an (n + 1, 2k) scheme. See
Prot. 3 for details.

4. A semi-honest computationally private and perfectly robust MPC protocol (see Rmk. 4); We
will set the parameters to make use of an (n, k) scheme and an (n, 2k) scheme. See Prot. 3 for
details.

We remark that the MPC and VSS are used to implement the MPC-in-the-Head (MitH) technique
as explained in Sec. 3.7.

Protocol 3: One-Sided PQ-NMC: Black-Box and Constant-Round
Parameter Setting: The tag space is defined to be [T ], where T is a polynomial in the security
parameter λ. Let n be a polynomial in λ, and k be a constant fraction of n such that 2k ≤ n/3.

Input: Both the committer C and the receiver R get the security parameter 1λ and a tag t ∈ [T ]

as the common input; C gets a string m ∈ {0, 1}ℓ(λ) as its private input, where ℓ(·) is a polynomial.

Commit Phase:
1. (Initial Com to m.) In this stage, C commits to the message (using the MPC-in-the-head

approach).

– C prepares n views {cv(1)i }i∈[n], corresponding to an MitH execution for the (n+1, 2k)-VSSShare
of the message m (as detailed in Rmk. 5). C commits to each cv

(1)
i (i ∈ [n]) independently

in parallel, using Naor’s commitment.
2. (Hard Puzzle Setup.) In this stage, R sets up a t-solution hard puzzle. It then commits to

one solution of the puzzle and proves in zero-knowledge the consistency (using the MPC-in-
the-head approach).
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(a) C samples a size-k random subset ch ⊆ [n], and commits to it using ExtCom.

(b) R samples t random strings x1, . . . , xt $←− {0, 1}λ. R prepares n views {rv(1)i }i∈[n], corre-
sponding to an MitH execution for the (n + 1, k)-VSSShare of the string x1‖ . . . ‖xt (as
detailed in Rmk. 5). R commits to each rv

(1)
i (i ∈ [n]) independently in parallel, using

Naor’s commitment.
(c) R prepares another n views {rv(2)i }i∈[n], corresponding to an MitH execution for the (n+

1, k)-VSSShare of the string 1‖x1 (as detailed in Rmk. 5). R commits to each rv
(2)
i (i ∈ [n])

independently in parallel, using ExtCom.

(d) R then prepares another n views {rv(3)i }i∈[n], corresponding to an (n, k)-MitH execution of
the n-party functionality FRconsis described below (intuitively, FRconsis checks the consistency
between Step 2b and Step 2c), where party Pi (i ∈ [n]) uses rv

(1)
i ‖rv

(2)
i as input. (Note

that rv
(1)
i ‖rv

(2)
i will be a prefix of rv(3)i .) R commits to each rv

(3)
i (i ∈ [n]) independently in

parallel, using Naor’s commitment.

– Functionality FRconsis: It collects input (and parses it as) rv
(1)
i ‖rv

(2)
i from party i

for each i ∈ [n]. It then runs the recovery algorithm of VSS to obtain a1‖ . . . ‖at :=

VSSRecon(rv
(1)
1 , . . . , rv

(1)
n ) and j‖bj := VSSRecon(rv

(2)
1 , . . . , rv

(2)
n ). If j ∈ [t] and bj = aj , it

outputs 1 to each party; otherwise, it outputs 0 to each party.
(e) C sends ch together with the decommitment information (w.r.t. Step 2a).

(f) R sends {(rv(1)i , rv
(2)
i , rv

(3)
i )}i∈ch together with the decommitment information (w.r.t. their

respective commitments in Steps 2b to 2d).
(g) C checks the validity of the decommitment information and the consistency among the

revealed views {(rv(1)i , rv
(2)
i , rv

(3)
i )}i∈ch. In particular, it checks for each i ∈ ch that rv(1)i ‖rv

(2)
i

is the prefix of rv
(3)
i . It also checks for each distinct pair i, j ∈ ch that (rv

(1)
i , rv

(1)
j ) are

consistent, (rv(2)i , rv
(2)
j ) are consistent, and (rv

(3)
i , rv

(3)
j ) are consistent, where by ‘consistent’

we refer to the consistency requirements as per Def. 10 and Rmk. 3. It also checks for each
i ∈ ch the final output of Pi contained in rv

(3)
i is 1. It aborts immediately if any of the

checks fail.
3. (ExtCom to m.) C commits to m once again, using ExtCom in the MitH format. In more

detail:
– C prepares n views {cv(2)i }i∈[n], corresponding to an MitH execution for the (n+1, 2k)-VSSShare

of the message m (as detailed in Rmk. 5). C commits to each cv
(2)
i (i ∈ [n]) independently

in parallel, using ExtCom.
We remark that this step can be viewed as the Commit Stage of the trapdoor coin-flipping
protocol shown in Prot. 2. Here are two key points we want to emphasize: (1) The original
Prot. 2 uses Naor’s commitment for this stage, but here we instead use ExtCom. This is to make
this commitment extractable. (2) The original Prot. 2 uses a (n + 1, k)-VSS scheme, but here
we instead use a (n+ 1, 2k) VSS scheme. That is because we need to open two subsets of size
k, one in Step 5b, which is the Coin-Flipping Stage, and the other in Step 5c, which is for
the proof of consistency of the current PQ-NMC protocol.
These modifications will be important later when we prove non-malleability.
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4. (Puzzle Solution Reveal.) R reveals (x1, . . . , xt) by decommitting to {rv(1)i }i∈[n]. In more
detail,

(a) R sends {rv(1)i }i∈[n] together with the decommitment information w.r.t. the commitments
in Step 2b.

(b) C checks the validity of the decommitment information and the consistency among
{rv(1)i }i∈[n] (as per Rmk. 3). If these checks are successful, C recovers x1‖ . . . ‖xt :=

VSSRecon(rv
(1)
1 , . . . , rv

(1)
n ); otherwise, C rejects and output ⊥.

5. (Committer’s Consistency Proof.) This stage should be interpreted as C proving consis-
tency between its actions in Steps 1 and 3 (i.e., these two steps commit to the same value)
using a witness indistinguishable argument, where the trapdoor statement is that C manages
to commit to a puzzle solution in Step 3. This step is again conducted in the MitH format. Note
that for the honest committer, the ‘effective witness’ in MitH is the message m reconstructed
from both {cv(1)i }i∈[n] and {cv(2)i }i∈[n], and so the virtual MPC execution in reality evaluates
the ‘first clause’ of FCconsis as defined below. In more detail, this stage proceeds as follows.

(a) C prepares n views {cv(3)i }i∈[n], corresponding to an (n, 2k)-MitH execution of the n-
party functionality FCconsis described below, where party Pi (i ∈ [n]) uses cv

(1)
i ‖cv

(2)
i as

input. (Note that cv
(1)
i ‖cv

(2)
i will be the prefix of cv(3)i .) C commits to each cv

(3)
i (i ∈ [n])

independently in parallel, using Naor’s commitment.

– Functionality FCconsis: It collects input (and parses it as) cv(1)i ‖cv
(2)
i from party i for each

i ∈ [n]. It then runs the recovery algorithm of VSS to obtain a := VSSRecon(cv
(1)
1 , . . . , cv

(1)
n )

and b := VSSRecon(cv
(2)
1 , . . . , cv

(2)
n ). It outputs 1 to each party if either

• (First clause.) b = a, or
• (Second clause.) b can be parsed as j‖x′ such that j ∈ [t] and x′ = xj (recall that xj

is among the puzzle solutions revealed by R in Step 4.
Otherwise, it outputs 0 to each party.

(b) (Trapdoor Coin-Flipping) C and R then execute the Coin-Flipping Stage of the
trapdoor coin-flipping protocol shown in Prot. 2, with the trapdoor predicate ϕ(·) defined
as follows
– Predicate ϕ(·): It has the values (x1, . . . , xt) hard-wired (recall that these values are

revealed in Step 4). On input i‖a, it outputs 1 iff i ∈ [t] and a = xi.
By the completeness of the trapdoor coin-flipping protocol (i.e., Property 2 in Def. 24),
at the end of this step, C and R agree on a string η. By a proper choice of length, the
string η can be interpreted as specifying a size-k random subset of [n]. In the following,
we abuse notation by using η to denote the corresponding size-k random subset.

(c) C sends {(cv(1)i , cv
(2)
i , cv

(3)
i )}i∈η together with the decommitment information (w.r.t. their

respective commitments in Steps 1, 3 and 5a).
(d) R checks the validity of the decommitment information and the consistency among the

revealed views {(cv(1)i , cv
(2)
i , cv

(3)
i )}i∈η. It also checks for each i ∈ η the final output of Pi

contained in cv
(3)
i is 1. R aborts if any of these checks fail.
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Decommit Stage:

1. C sends {cv(1)i }i∈[n] together with the decommitment information w.r.t. the commitments in
Step 1.

2. R checks the validity of the decommitment information and the consistency among {cv(1)i }i∈[n]
(as per Rmk. 3). If these checks are successful, R recovers m as m := VSSRecon(cv

(1)
1 , . . . , cv

(1)
n );

otherwise, R rejects and output ⊥.

Security. The security of Prot. 3 is stated as the following theorem.

Theorem 6. Assuming the existence of post-quantum one-way functions, there exists (i.e., Prot. 3)
a black-box, constant-round construction of 1-1 post-quantum non-malleable commitments (as per
Def. 5 with k = 1) in synchronous setting, with one-sided security, and supporting tag space [T ]

with T (λ) being any polynomial in the security parameter λ.

It is straightforward to see that Prot. 3 is constant-round and makes only black-box use of its
underlying cryptographic components. Completeness of Prot. 3 is also straightforward from the
protocol description. The statistical binding property follows from that of Naor’s commitment in
Step 1. Computational-hiding property of any non-malleable commitment scheme follows directly
from its non-malleability. So, to prove Thm. 6, we only need to prove the post-quantum non-
malleability of Prot. 3, which we prove in subsequent subsections.

5.2 Outline for the Proof of Non-Malleability

The proof for the non-malleability of Prot. 3 is very involved and lengthy. To help the reader
understand it better, we provide an outline delving into it.

Recall from Def. 5 (with k = 1) that to prove non-malleability of Prot. 3, we consider the
synchronous 1-1 MIM execution of Prot. 3 where the left session uses tag t and the right session
uses tag t̃. Also recall that t̃ ≥ t+1 since we focus on the ‘one-sided’ setting. We need to show that
for any QPT MIM adversary Mλ(ρλ), it holds that{

mimMλ(m0, ρλ)
}
λ∈N,m0,m1∈{0,1}ℓ(λ)

c
≈

{
mimMλ(m1, ρλ)

}
λ∈N,m0,m1∈{0,1}ℓ(λ)

, (4)

where mimMλ(mb, ρλ) denotes the joint distribution of the output ofMλ and the value m̃ committed
in the right session, where the left (honest) committer C commits to message mb.

At a high level, our proof follows the template from [LPY23a]. We reduce non-malleability to
the computational-hiding property of the Naor’s commitment in Step 1 of the left session. That is,
we consider in the MIM execution that the Naor’s commitment in Step 1 of the left session comes
from an external challenger, committing to an underlying message mb with b picked uniformly from
{0, 1}. Our goal is to construct a machine SE (dubbed simulation-extractor) that can efficiently
extract the value m̃ committed by Mλ in the left session, while simulating Mλ’s post-extraction
state (possibly with an arbitrarily small simulation error ε). Note that if such an SE exists, it
indeed efficiently outputs the value mimMλ(mb, ρλ) (which was not efficiently computable since
the m̃ value is hidden in the transcript). Then, if Eq. (4) does not hold, SE ’s output will be
distinguishable when the external challenger changes the committed value between m0 and m1.
This breaks the computational hiding property of Naor’s commitment.

However, there are some challenges in implementing this template.
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1. First, note that the message m committed in Step 1 of the left session is used again in Step 3 of
the left session. Thus, to be able to forward the left Step 1 to the external challenger, we have
to come up with some method to avoid using the underlying m in Step 3 of the left session (as
this m is known only to the external challenger in the reduction we outlined above).

2. In sharp contrast to the original [LPY23a] construction, Step 1 of our Prot. 3 is not a Naor’s
commitment to the underlying message m. Rather, it is a parallel execution of Naor’s scheme
committing to n VSS shares of the message m. Moreover, note that Steps 1, 3 and 5 of Prot. 3
essentially consist of a black-box commit-and-prove protocol, where C first commits to two
messages in Steps 1 and 3 respectively, and then proves a predicate FCconsis over the two committed
values. This structure induces new challenges: Even if we can make Step 3 independent of the m
committed in Step 1, it still need to reveal some of the shares committed in Step 1 when proving
consistency in Step 5 (in particular, in Step 5c).

Resolving these issues requires us to use new ideas described in Sec. 2. In more detail, we will
first show that assume the existence of the SE , we can still follow the same template but rather
reduce non-malleability to the VSS hiding game shown in Expr. 1, instead of to the vanilla Naor’s
commitment. We then show that the desired SE can indeed be constructed. In the following, we
present an outline for these two steps.

Reducing Non-Malleability to VSS Hiding. This step is performed in Sec. 5.3. It is organized
as follows.
1. We the first ‘decouple’ the the committed message in Step 1 of the left session from the remaining

steps. To do that, we design a game H̃Mλ in Algo. 5.2. This H̃Mλ is essentially identical to the
1-1 MIM execution, but makes use of a new machine G1 (in Algo. 5.3) to finish the steps after
Step 1. A key feature of G1 is that it does not need to know the m committed in Step 1 of the
left session.

2. Next, we define another game G̃Mλ (in Algo. 5.4), which performs Step 1 in the same manner
as H̃Mλ , but replace the G1 machine by a simulation extractor SE that we assume to exist. We
will show (in Lem. 9) that this SE can extract from G1 the m̃ committed by Mλ in the right
session, while simulating the post-extraction state of G1 (with a noticeable error ε that can be
made arbitrarily small).

3. Finally, we show that the machine G̃Mλ is designed on purpose so that we can reduce non-
malleability to the VSS hiding game. This is done in Sec. 5.4.

Building Simulation-Extractor SE. To build the desired SE , we first build a machine K that
is able to extract the correct m̃ from the machine G1 mentioned above. But K is not capable of
simulating the post-extraction state of G1. We will also show that K satisfies some extra requirements
so that we can later convert it to an extractor with simulation. The description of K and the proof
for its properties are the focus of Sec. 6.

We then show how to equip K with simulation in Sec. 7. To do that, we first need a generalization
of the counterpart lemma from [LPY23b, Lemma 20]. This is because our construction makes heavy
use of black-box commit-and-prove techniques so that the simulation-less extractor K satisfies only
weaker properties than its counterpart in [LPY23b, Lemma 31]. In particular, our K cannot check if
the value it extracted is indeed the correct m̃. Thus, we need to generalize the simulation-extraction
lemma in [LPY23b, Lemma 20] to take care of related issues. This is handled in Sec. 7.1.

Finally, with all the preparatory work before, we can eventually convert our K to the desired
SE using the a ‘noisy’ simulation-extraction lemma developed in Sec. 7.1. This is done in Sec. 7.2.
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This finishes the outline for our proof of non-malleability.

5.3 Reduction to VSS Hiding Game

We first define some notion related to the MIM execution of Prot. 3.

Algorithm 5.1: Machine HMλ(λ,m, ρλ)

Machine HMλ(λ,m, ρλ): This is the man-in-the-middle execution of the commit stage of Prot. 3,
where the left committer commits to m and Mλ’s non-uniform advice is ρλ. The output of this
game is denoted by OutHMλ (λ,m, ρλ) and consists of the following three parts:
1. OUT: This is the (quantum) output of M at the end of this game;
2. τ̃ : This is the commitment transcript sent by M in the Step 1 of the right session;
3. d̃ ∈ {>,⊥}: This is the output of the honest receiver R in the right session, indicating if the

man-in-the-middle’s commitment (i.e., the right session) is accepted (d̃ = >) or not (d̃ = ⊥).

Also, to prove non-malleability, we need to talk about the value committed in the right session.
Toward that, we define the following function:

val
d̃
(τ̃) :=

{
val(τ̃) d̃ = >
⊥ d̃ = ⊥

,

where val(τ̃) denote the value statistically-bound τ̃ (i.e., the value that can be re-constructable from
{cv(1)i }i∈[n]). Note that val

d̃
(τ̃) is exactly the value committed in the right session by M. Thus, to

prove satisfies Def. 5 (when k = 1), we only need to establish the following equation:{(
OUT0, val

d̃0
(τ̃0)

)
: (OUT0, τ̃0, d̃0)← HMλ(λ,m0, ρλ)

}
c
≈

{(
OUT1, val

d̃1
(τ̃1)

)
: (OUT1, τ̃1, d̃1)← HMλ(λ,m1, ρλ)

}
, (5)

where both ensembles are indexed by λ ∈ N and (m0,m1) ∈ {0, 1}ℓ(λ) × {0, 1}ℓ(λ).
Next, we describe a new game H̃Mλ , which is a slight modification of the game H̃Mλ . It will

help us switch out different commitments in the left interaction.

Algorithm 5.2: Game H̃Mλ(λ, ε,m, ρλ)

Input: It takes as input the same parameters λ, ρλ, and m as for HMλ . It additionally takes as
input a noticeable function λ(·).
It proceeds as follows:
1. (Prefix phase.) This proceeds as follows.

(a) Sample a random size-k subset η ⊂ [n].
(b) Execute HMλ(m1, λ, ρλ) until the end of Step 1. At the moment, it already receives the

Step 1 commitment made by the left-session honest committer C. It performs brute-
force computation to obtain from C’s commitment the committed shares cvi and their
decommitment information for i ∈ η. We denote these values as VIη := {(cvi, decomi}i∈η.

Notation: Let stM denote the state of M at the end of Step 1; Let stC (resp. stR) denote the
state of the honest committer (resp. receiver) at the end of Step 1; Let τ̃ denote the commitment
sent by M in Step 1 of the right session. We denote the tuple (stM, stR, τ, τ̃) as pref. We use
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the following nation to express the execution of this Prefix phase:

(pref, η,VIη)← H̃Mλ
pref (λ,m, ρλ). (6)

We will often use pref ′ := (pref, η,VIη) to refer to the concatenation of pref and the η,VIη. We
remark that this prefix generation step is independent of the error parameter ε.

2. (Remainder phase.) This involves the following steps:
(a) H̃Mλ now invokes G1(1λ, 1ε

−1
, pref, η,VIη)) (as described in Algo. 5.3), which outputs a

tuple (OUT, d̃).
(b) H̃Mλ outputs (OUT, τ̃ , d̃).

We now describe the subprocedure G1(·).

Algorithm 5.3: Machine G1(1λ, 1ε
−1

, pref, η,VIη)

Game G1(1λ, 1ε
−1
, pref, η,VIη) continues the execution using pref just as in HMλ(λ,m, ρλ), apart

from the following differences:
1. In the left Step 2c against Mλ, instead of following the honest receiver algorithm for ExtCom,

it instead uses the extractor SEMλ
ExtCom(1

λ, 1ε
−1
) to obtain an extracted value of the form j′||x′j′

(and continuing the execution with the simulated state).
In more detail, the shares {rv(2)i }i∈[n] are committed by Mλ using independent ExtCom in
parallel. G1 will extract all of these shares using the parallel extractability of ExtCom with
ε-simulation (as per Def. 4), and compute j′||x′j′ := VSSRecon(rv

(2)
1 , . . . , rv

(2)
n ).

2. In the ExtCom execution for Step 3 on the left, it commits to the extracted value j′‖x′j′ .
In more detail, G1 first prepares n views {cv(2)i }i∈[n], corresponding to an MitH execution for
the (n+ 1, 2k)-VSSShare of the value j′‖x′j′ extracted in Step 2, and then commits to each cv

(2)
i

(i ∈ [n]) independently in parallel, using ExtCom.
3. In Step 4 of the left session, after reconstructing the receiver’s puzzle solutions x1‖ . . . ‖xt, it

checks whether xj′ = x′j′ , i.e., the value that it extracted earlier. If not, it aborts the execution
and outputs ⊥.

4. In Step 5a of the left session, instead of generating the views {cv(3)i }i∈[n] using the ‘first clause’ of
FCconsist, generate these views using the ‘second clause’. We remark that this is possible because
in Step 2 above, we already commit to the extracted j′‖x′j′ , which satisfies the ‘second clause’
of FCconsist.
Recall that each cv

(3)
i has cv

(1)
i as a prefix. However, G1 only knows the cv

(1)
i for i ∈ η. For that,

G1 simply set cv
(1)
i for i ∈ [n] \ η to all-0 strings. This does not affect this step as G1 now is

proving the ‘second clause’ of FCconsist, which is independent of the value determined by the real
{cv(1)i }i∈[n]. (Also note that this problem does not occur for {cv(2)i }i∈[n], which is generated by
G1 itself in Step 2.)

5. In Step 5b of the left session, instead of executing the trapdoor coin-flipping protocol honestly,
use the ‘straight-line’ simulator S(STC , η, j′‖x′j′ , ϕ) that is guaranteed to exist by Property 3 in
Def. 24 (where STC is the classical state of the committer at the end of Step 3, emulated by
G1). Note that this is possible because we current have ϕ(j′‖x′j′) = 1. This effectively ‘enforce’
the coin-flipping result to the η contained in the input to S.
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6. It concludes the execution by performing the remaining steps as in HMλ(λ,m, ρλ). One caveat
is: In Step 5c of the left session, G1 will be asked to decommitment to {cv(1)i }i∈[n]\η. Note
that the η is already ‘enforced’ to the η in Step 5, and G1 does know the cv

(i)
i shares and

decommitment information for i ∈ η (contained in VIη).

7. It finally outputs the values (OUT, d̃), where again OUT isM’s final output and d̃ is the honest
R’s final decision in the right session.

Lemma 8. For all m ∈ {0, 1}ℓ(λ) and all noticeable ε(·), it holds that{(
OUT, val

d̃
(τ̃)

)
: (OUT, τ̃ , d̃)← HMλ(λ,m, ρλ)

}
λ

c
≈ε

{(
OUT, val

d̃
(τ̃)

)
: (OUT, τ̃ , d̃)← H̃Mλ(λ, ε,m, ρλ)

}
λ
.

Proof. We prove this lemma by a hybrid argument. Some of the modifications are pretty standard
within black-box MPC literature and we sketch them for brevity. In the following, we fix arbitrary
an m and an ε. For each hybrid Hi, we use OUTHi

to denote its output.

Hybrid H0: This is simply the game HMλ(m, ρλ), renamed for convenience.

Hybrid H1: This hybrid is identical to the previous one, except for the following changes. In
Step 2c of the left session, instead of following the honest C’s algorithm, it uses the extractor
SEMλ

ExtCom(1
λ, 1ε

−1
) to obtain an extracted a value of the format j′‖x′j′ and a (simulated) state st′M

(as described in Step 2 of G1). It records j′‖x′j′ and continues the execution of the MIM interaction
with st′M up till Step 4, where it obtains x1, . . . , xt and checks if xj′ = x′j′ . If not, it aborts; otherwise
it finishes the execution. All other steps are carried out as in the previous hybrid. Note that H1

now requires the additional input 1ε
−1 .

OutH0

s
≈ε OutH1 : This follows directly from the parallel extractability with ε-simulation of ExtCom

(as per Def. 4).

Hybrid H2: This hybrid is identical to the previous one, except for the following changes. In Step 3
of the left session, it uses the extracted j′‖x′j′ as the committed message; And in Step 5a of the left
session, instead of generating the views {cv(3)i }i∈[n] using the ‘first clause’ of FCconsist, generate these
views using the ‘second clause’.

Remark 6. We remark that this step is slight different from Step 4 of G1, where the shares {cv(1)i }i∈[n]\η
(as prefix of cv(3)i ’s) is set to 0-strings. In the current hybrid, H2 still uses the honest {cv(1)i }i∈[n]\η
shares, because these shares are generated by itself and thus it knows them. We will change these
shares to 0-strings in a later hybrid (i.e., H4).

OutH1

c
≈ OutH2 : Note that Step 3 and Step 5 constitutes a black-box commit-and-prove protocol.

What we did in this step is to switch from one witness for the target predicate to another witness.
This switch is computationally indistinguishable. Since this argument is standard, we omit the
details (see [CCLY22a, Section 6.5] for an example).

Hybrid H3: This hybrid is identical to the previous one, except for the following changes. At
the very beginning, it samples a random size-k subset η ⊂ [n]; and In Step 5b of the left session,
instead of executing the trapdoor coin-flipping protocol honestly, it uses the ‘straight-line’ simulator
S(STC , η, j′‖x′j′ , ϕ) to ‘enforce’ the coin-flipping result (in the same manner as described in Step 5
of G1).
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OutH2

c
≈ OutH3 : This follows directly from the security guarantee of S (i.e., Property 3 in Def. 24).

Hybrid H4: This hybrid is identical to the previous one, except for the following changes. In
Step 5a of the left session, when generating cv

(3)
i , it sets the shares {cv(1)i }i∈[n]\η to 0-strings. This

is to compensate the concern in Rmk. 6.

OutH3

c
≈ OutH4 : First, note that changing the shares {cv(1)i }i∈[n]\η does not affect Step 5a of the left

session, as we already switch to using the witness for the ‘second clause’ of it in H3. Also note that
these shares will never be revealed because in H2 we already ‘enforce’ the challenge set to η. Thus,
the indistinguishability of H3 and H4 follows directly from the computational hiding property of
Naor’s commitment in Step 5a of the left session.

Hybrid H5: Note that in H4, we already do not need to use any information about the shares
{cv(1)i }i∈[n]\η. In this hybrid, we can think that after Step 1 of the execution, H5 performs brute-
force computation to learn the shares {cv(1)i }i∈η and their corresponding decommitment information
(and put them together as VIη). Indeed, these are the only information that is need to finish the
remaining execution.

OutH4

i.d.
== OutH5 : There is no real change in H5 other than a change of perspective. These two

hybrids are thus identical.
Finally, note that H5 is exactly H̃Mλ(λ, ε,m, ρλ). This concludes the proof of Lem. 8.

Next, we define a further modified game G̃ that instead invokes a particular simulator-extractor
SE that helps obtain the value committed to byMλ on the right (which then helps to demonstrate
non-malleability).

Algorithm 5.4: Game G̃Mλ(λ, ε,m, ρλ)

This proceeds in two phases as well:
1. (Prefix phase.) This is identical to the prefix phase of Algo. 5.2, i.e., it computes

(pref, η,VIη)← H̃Mλ
pref (λ,m, ρλ).

2. Remainder phase: This involves the following steps:
– It invokes a machine SE , which is guranteed to exist by the following Lem. 9: SE takes in as

input a tuple (1λ, 1ε
−1
, pref, η,VIη) and outputs (OUT,Val).

– G̃Mλ outputs (OUT,Val) as its own output.

The following Lem. 9 serves as assurance that we can build such a machine SE so that the games
H̃Mλ and G̃Mλ present ε-close views to the adversary (where we control the closeness parameter).
Lem. 9 represents the most challenging task in the current proof of non-malleability. We will prove
it in Sec. 6 and 7

Lemma 9 (1-1 Simulation-Extractor). Let G1(·) be the efficient procedure defined in Algo. 5.3.
There exists a simulation-extractor SE such that for any (pref, η,VIη) in the support of H̃Mλ

pre , and
for any noticeable ε(λ), there is a noticeable ε′(λ) ≤ 8ε(λ) that is efficiently computable form ε(λ)

such that the following holds:{
(OUT,Val) : (OUT,Val)← SE(1λ, 1ε−1

, pref, η,VIη)
}

c
≈ε

{(
OUT, val

d̃
(τ̃)

)
: (OUT, d̃)← G1(1λ, 1ε

′−1
, pref, η,VIη)

}
.
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The following Corollary 4 is an immediate consequence of Lem. 9.

Corollary 4. Let H̃Mλ and G̃Mλ be as defined in Algo. 5.2 and Algo. 5.4 respectively. For any QPT
adversary Mλ(ρλ), any m ∈ {0, 1}ℓ(λ), and any noticeable ε(λ), there is a noticeable ε′(λ) ≤ 8ε(λ)

that is efficiently computable form ε(λ) such that the following holds:{
(OUT,Val) : (OUT,Val)← G̃Mλ(λ, ε,m, ρλ)

}
c
≈ε

{(
OUT, val

d̃
(τ̃)

)
: (OUT, τ̃ , d̃)← H̃Mλ(λ, ε′,m, ρλ)

}
.

Proof. Note that the prefix stages of H̃Mλ (see Step 1 in Algo. 5.2) and G̃Mλ (see Step 1 in Algo. 5.4)
are identical, and therefore Lem. 9 immediately applies to show that (OUT, val

d̃
(τ̃)) obtained by

running H̃Mλ and (OUT,Val) obtained by running G̃Mλ are ε-close.

5.4 Finishing the Proof of Non-Malleability

With the helper machines defined in Sec. 5.3, we can now finish the proof of non-malleability. This
is a proof by contradiction. We will show that if the non-malleability of Prot. 3 does not hold, then
the machine G̃Mλ can be used to break the VSS hiding game defined in Expr. 1. We present the
formal argument in the following.

We first show a lemma that relates machine G̃Mλ to the VSS hiding game defined in Expr. 1.

Lemma 10. Let G̃Mλ be defined as in Algo. 5.4. For For any QPT adversary Mλ(ρλ) and any
noticeable ε(λ), it holds that{

(OUT0,Val0) : (OUT0,Val0)← G̃Mλ(λ, ε,m0, ρλ)
}

c
≈

{
(OUT1,Val1) : (OUT1,Val1)← G̃Mλ(λ, ε,m1, ρλ)

}
, (7)

where both ensembles are indexed by λ ∈ N and (m0,m1) ∈ {0, 1}ℓ(λ) × {0, 1}ℓ(λ).

Proof. We show this by means of a reduction to the VSS hiding game defined in Expr. 1. We assume
for contradiction that there exist a machine Mλ(ρλ), a distinguisher Dλ, and a pair of messages
(m0,m1) so that Lem. 10 does not hold. We build a malicious A that wins the VSS hiding game
(i.e., breaking Lem. 4).

The A works as follows:
1. It sends (m0,m1) to the external Ch for the VSS hiding game, as the Step 1 message of Expr. 1.
2. It internally samples a random size-k subset η ⊂ [n].
3. It commits to η to the external Ch using ExtCom, as the Step 2 message of Expr. 1.
4. When the external Ch sends the Step 3 message of Expr. 1, it uses this message as the Step 1

message of the left session in its internal emulation of G̃Mλ with Mλ.
5. It then decommits to η to the external Ch, as the Step 4 message of Expr. 1.
6. When it receives the revealed shares and their corresponding decommitment information form

the external Ch (i.e., the Step 5 message of Expr. 1), it puts them together to define VIη.

7. It executes the machine SE(1λ, 1ε−1
, pref, η,VIη) as in the Remainder phase of G̃Mλ (see

Algo. 5.4).
8. It finally invokes the distinguisher Dλ on SE ’s output, and outputs whatever Dλ outputs.
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Note that this A simulates perfectly emulates the execution of G̃Mλ(λ, ε,mb, ρλ) (when the external
Ch uses mb). Note that in game G̃Mλ , we define the variable VIη by brute force (see Step 1b in
Algo. 5.2). But in the above VSS hiding game, A learns the values in VIη from the external Ch.
This is only a syntax change as these two way leads to the same VIη.

Therefore, if Lem. 10 does not hold, the above A will win the VSS hiding game with advantage
non-negligibly greater than 1/2.

Derivation of Contradiction. We assume for contradiction that Eq. (5) does not hold (i.e., the
non-malleability of Prot. 3 does not hold). This means that there must be a (possibly non-uniform)
QPT distinguisher D = {Dλ, σλ}λ∈N, an ensemble of messages {(m0,m1)}λ∈N and a function δ(λ) =
1/poly(λ) such that for infinitely many λ ∈ N, it holds that∣∣∣∣Pr[Dλ(OUT0, val

d̃0
(τ̃0);σλ

)
= 1

]
− Pr

[
Dλ

(
OUT1, val

d̃1
(τ̃1);σλ

)
= 1

]∣∣∣∣ ≥ δ(λ), (8)

where the first probability is taken over the random procedure (OUT0, τ̃0, d̃0) ← HMλ(λ,m0, ρλ),
and the second probability is taken over the random procedure (OUT1, τ̃1, d̃1) ← HMλ(λ,m1, ρλ)

(and the randomness due to the measurements performed by Dλ).
Now recall that by Lem. 8, we have that for any m and any noticeable ε1(λ), it holds that{(

OUTH , val
d̃H

(τ̃H)
)

: (OUTH , τ̃H , d̃H)← HMλ(λ,m, ρλ)
}

c
≈ε1

{(
OUTH̃ , val

d̃H̃
(τ̃ H̃)

)
: (OUTH̃ , τ̃ H̃ , d̃H̃)← H̃Mλ(λ, ε1,m, ρλ

}
.

Using this to replace terms on both sides of Inequality (8), we get∣∣∣∣Pr[Dλ(OUT0, val
d̃0
(τ̃0);σλ

)
= 1

]
− Pr

[
Dλ

(
OUT1, val

d̃1
(τ̃1);σλ

)
= 1

]∣∣∣∣ ≥ δ(λ)− 2ε1(λ), (9)

where the inputs to Dλ in the above are sampled as (OUT0, τ̃0, d̃0) ← H̃Mλ(λ, ε1,m0, ρλ) and
(OUT1, τ̃1, d̃1)← H̃Mλ(λ, ε1,m1, ρλ).

Further, we have from Corollary 4 that for any m and any noticeable ε2(λ), there exists a
noticeable ε1(λ) ≤ 8ε2(λ) that is efficiently computable from ε2(λ) such that{(

OUTH̃ , val
d̃H̃

(τ̃ H̃)
)
: (OUTH̃ , τ̃ H̃ , d̃H̃)← H̃Mλ(λ, ε1,m, λ, ρλ)

}
c
≈ε2

{(
OUTSE ,ValSE

)
: (OUTSE ,ValSE ← G̃Mλ(λ, ε2,m, λ, ρλ)

}
.

Again, replacing terms on both sides of Inequality (9), we have∣∣∣∣Pr[Dλ(OUT0
SE ,Val

0
SE ;σλ

)
= 1

]
− Pr

[
Dλ

(
OUT1

SE ,Val
1
SE ;σλ

)
= 1

]∣∣∣∣ ≥ δ(λ)− ε1(λ)− ε2(λ), (10)

where the inputs to Dλ in the above are sampled as (OUT0
SE ,Val

0
SE) ← G̃Mλ(λ, ε2,m0, λ, ρλ) and

(OUT0
SE ,Val

0
SE)← G̃Mλ(λ, ε2,m1, λ, ρλ).

If we set ε2 := δ
18 , then the lower-bound in Inequality (10) becomes

δ(λ)− ε1(λ)− ε2(λ) ≥ δ(λ)− 8ε2(λ)− ε2(λ) = δ(λ)− 9ε2(λ) = δ(λ)− 9 · δ(λ)
18

=
δ(λ)

2
.

Since δ(λ)
2 is noticeable, this is in direct contradiction to Lem. 10, which says that the LHS of

Inequality (10) can at most be negligible. We conclude that Inequality (8) is false.
This establishes that our protocol described in Prot. 3 is indeed non-malleable as per Def. 5

with k = 1.
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6 Simulation-less Extractor K: 1-1 Settings

In this section we introduce a ‘basic’ extractor machine K. We then describe its operation and show
that the stated properties hold.

We will rely on some of the notation from the previous section. In particular, recall from
Algo. 5.2 that the procedure H̃Mλ

pre (λ,m, ρλ) generates η, VIη, and pref = (stM, stR, τ, τ̃). We will
define pref ′ := (pref, η,VIη). Also, we define the following quantity pSimpref′ [ε1] that will be important
in the statement of K:

pSimpref′ [ε1] := Pr
[
d̃ = > : (OUT, d̃)← G1(1λ, 1ε

−1
1 , pref ′)

]
. (11)

Lemma 11 (Simulation-less Extraction). Let H̃Mλ
pre (λ,m, ρλ) be as defined in Algo. 5.2. There

exists a QPT machine K such that for any noticeable ε(λ), there is a noticeable ε1(λ) ≤ ε(λ)

that can be efficiently computed form ε, such that for any noticeable ε2(λ) and any tuple pref ′ =
(stM, stR, τ, τ̃ , η,VIη) in the support of H̃Mλ

pre (λ,m, ρλ), the following holds

1. (Almost Uniqueness:) K takes as input (1λ, 1ε−1
1 , 1ε

−1
2 , pref ′). It outputs a value Val ∈ {0, 1}ℓ(λ)∪

{⊥} such that

Pr
[
Val /∈ {val(τ̃),⊥} : Val→ K(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
≤ ε2(λ) + negl(λ).

2. (Extraction:) If pSimpref′ [ε1] ≥ ε(λ), then it holds that

Pr
[
Val = val(τ̃) : Val← K(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
≥ ε′(λ)− ε2(λ)

t̃
,

where pSim
pref′

[ε1] is defined in Eq. (11) and ε′(λ) := ε(λ)
10t2

.

In the following, we fix a noticeable function ε(λ) for which we want to prove Lem. 11. We show
that it suffices to set ε1(λ) := t+1

t2+4t+2
· ε′(λ).

6.1 Description of K

Before describing the extractor K, we first need to introduce some new machines related to G1.

Algorithm 6.1: Machine Gi(1λ, 1ε
−1
1 , pref′)

Machine Gi(1λ, 1ε
−1
1 , pref ′): Recall that we have already defined G1 in Algo. 5.3. For i ∈ [t̃]\{1}, the

machine Gi(1λ, 1ε
−1
1 , pref ′) works identically to G1(1λ, 1ε

−1
1 , pref ′), apart from the following changes:

1. It commits to the value i||x̃i instead of the value 1||x̃1 in Step 2c of the right session.
In more detail, Gi first prepares n views {rv(2)j }j∈[n], corresponding to an MitH execution for the
(n+ 1, k)-VSSShare of the string i‖x̃i, and then commits to each rv

(2)
j independently in parallel,

using ExtCom.
2. Additionally, now the string i||x̃i is used as the ‘effective input’ in the (virtual) MPC execution

computing FRconsis in Step 2d. (Indeed, this is an implicit change and occurs automatically when
the first change is made.)

Next we define another machine Ki for each i ∈ [t̃] in Algo. 6.2. These Ki’s sever as the basic
component for the eventual extractor K we are going to build.
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Algorithm 6.2: Machine Ki(1
λ, 1ε

−1
1 , 1ε

−1
2 , pref′)

Machine Ki(1λ, 1ε
−1
1 , 1ε

−1
2 , pref ′): For each i ∈ [t̃], the machine Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′) works iden-

tically to machine Gi(1λ, 1ε
−1
1 , pref ′) except that

– In Step 3 of the right session, instead of following the honest receiver’s algorithm, it invokes
SEExtCom(1λ, 1ε

−1
2 ) to obtain an extracted value ṽ.

In more detail, the shares {cv(2)j }j∈[n] are committed byMλ in Step 3 of the right session using
independent ExtCom in parallel. Ki will extract all of these shares using the parallel extractability
of ExtCom with ε2-simulation (as per Def. 4), and compute ṽ := VSSRecon(cv

(2)
1 , . . . , cv

(2)
n ).

Outputs of Ki: To aid in our proof, we define the output of the machines Ki differently from the
outputs of the machines described so far.
Let ṽ denote the value extracted and recorded by Ki in Step 3. As described, Ki will complete
the execution of both left and right sessions (just as in Gi). Recall that we use d̃ to denote the
acceptance or rejection of the right-session honest receiver (i.e., its verdict). The output of Ki is
denoted as Val ∈ {0, 1}ℓ(λ)∪{⊥

Ỹ
,⊥invalid} (where (⊥

Ỹ
,⊥invalid) are two specialized abort symbols),

and is computed as follows:
1. If d̃ = > . Then, there are two sub-cases:

(a) ṽ /∈ {x̃i}i∈[t̃] : In this case, we set Val := ṽ.

(b) ṽ ∈ {x̃i}i∈[t̃] : In this case, we set Val := ⊥
Ỹ

.

2. Otherwise, if d̃ = ⊥, set Val := ⊥invalid.
We emphasize that such a Val satisfies the syntactic requirement in Property 1 of Lem. 11 a (but
does not imply the actual probabilistic condition, which we will show separately).

a Note that here we defined two types of abortion: ⊥Ỹ and ⊥invalid, while Property 1 of Lem. 11 only allows a
single abortion symbol ⊥. We remark that this is only a cosmetic difference—It can be made consistent using
the following rules: ⊥ = ⊥Ỹ and ⊥ = ⊥invalid (i.e., Val = ⊥ ⇔ (Val = ⊥Ỹ ∨ Val = ⊥invalid)).

Finally, we are ready to define the extractor K. Intuitively, K can be thought of as an average-
case version of {Ki}i∈[t̃]:

– Extractor K: On input (1λ, 1ε
−1
1 , 1ε

−1
2 , pref ′), K samples an index i

$←− [t̃] uniformly and runs
Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′), and outputs the resulting output of Ki.

It is easy to see that the extractor K runs in polytime, and hence is a QPT machine. We now show
the other properties in Lem. 11 are satisfied as well.

6.2 Almost Uniqueness of K

In this part, we prove Property 1 of Lem. 11.
First, note that K by definition samples a random i and run Ki. Thus, to prove Property 1, it

suffices to prove the inequality shown in Property 1 for all Ki’s. That is, to prove Property 1, it
suffices to show the following: Under the same parameter settings as in Lem. 11, it holds that

∀i ∈ [t̃], Pr
[
Val /∈ {val(τ̃),⊥} : Val← Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
≤ ε2(λ) + negl(λ). (12)

In the following, we focus on establishing Inequality (12).
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First, note that the following holds for any i ∈ [t̃] (all the provabilities below is taken over the
execution Val← Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)):

Pr[Val /∈ {val(τ̃),⊥}] = Pr
[
Val /∈ {val(τ̃),⊥invalid,⊥Ỹ }

]
(13)

= Pr
[(
Val /∈ {val(τ̃),⊥invalid,⊥Ỹ }

)
∧
(
d̃ = >

)]
(14)

≤ Pr
[(
Val /∈ {val(τ̃),⊥

Ỹ
}
)
∧
(
d̃ = >

)]
, (15)

where Eq. (13) follows from the fact that the symbol ⊥ corresponds to both ⊥invalid and ⊥
Ỹ

(recall
it from Algo. 6.2), Eq. (14) follows from the fact that Val is set to ⊥invalid on the right whenever
d̃ = ⊥ (see Algo. 6.2).

Thus, to prove Inequality (12), it suffices to upper-bound the RHS of Inequality (15) by ε2(λ)+
negl(λ). Towards that, we now compare the RHS of Inequality (15) with the corresponding condition
on the committed value in Step 3 on the right in machine Gi (see Algo. 6.1). Recall that Ki differs
from Gi only by its invocation of the SEExtCom with error parameter ε2 in the right Step 3. Thus, it
follows from the extractability with ε2-simulation of the right Step 3 that

∀i ∈ [t̃], Pr
[(
Val /∈ {val(τ̃),⊥

Ỹ
}
)
∧
(
d̃ = >

)
: Val← Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
≤ Pr

[(
α̃ /∈ {val(τ̃)} ∪ {x̃j}j∈[t̃]

)
∧
(
d̃ = >

)
: (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
+ ε2, (16)

where α̃ denotes the value statistically bound (i.e., the committed value) in Step 3 of the right in
machine Gi.

Inequality (16) essentially reduces the almost uniqueness of Ki to that of machine Gi. That is,
we claim that to prove Inequality (12), it suffices to prove the following Lem. 12.

Lemma 12 (Almost Uniqueness of Gi). For Gi as defined, we have that

∀i ∈ [t̃], Pr
[(
α̃ /∈ {val(τ̃)} ∪ {x̃j}j∈[t̃]

)
∧
(
d̃ = >

)
: (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
≤ negl(λ).

Proof of Lem. 12 (Sketch). This proof follows from standard techniques. Thus, we only provide a
sketch.

At a high level, we prove this lemma by a reduction to the soundness of the commit-and-
prove protocol shown in Prot. 1. Assuming Lem. 12 is false, we can build a malicious C∗ that
first commit to the value α̃ (by forwarding M’s commitment in Step 3 of the right session to
the external honest receiver), and then convince the external receiver that FCconsis is satisfied with
non-negligible probability. However, this should not happen because, by the condition in Lem. 12,
α̃ /∈ {val(τ̃)} ∪ {x̃j}j∈[t̃] and thus FCconsis is not satisfied.

The only caveat is: the external receiver will specify a random challenge set η, but in machine
Gi this set η is determined by the trapdoor coin-flipping in Step 5b. To make sure that we can
indeed employ the internal right session withM to convince the external receiver, we have to make
sure that the internal right session uses the η sampled by the external receiver. To do that, first
notice that if α̃ /∈ {x̃j}j∈[t̃], then the trapdoor predicate ϕ(·) in Step 5b in the right session will
not be satisfied. By the security of the trapdoor coin-flipping protocol (in particular, Property 4
in Def. 24), there must exist a simulator S that can ‘enforce’ the coin-flipping result to a random
η sampled independently. Using this S, we can make sure that the internal M indeed generates a
proof of consistency using the external receiver’s η.
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With Lem. 12 in hand, it is straightforward to see that Inequalities (15) and (16) and Lem. 12
together immediately implies Inequality (12).

This finishes the proof for Property 1 in Lem. 11.

6.3 Extraction Property of K
In this part, we prove Property 2 of Lem. 11.

By definition, K simply picks an i uniformly from [t̃] and runs machine Ki. Thus, to establish
Property 2 in Lem. 11, it suffices to show the following:
Lemma 13. For the same parameter settings as in Lem. 11, it holds that

∃i ∈ [t̃], Pr
[
Val = val(τ̃) : Val← Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
≥ ε′(λ)− ε2(λ).

We claim that Lem. 13 follows as a result of the following Lem. 14 regarding machine Gi’s
defined in Algo. 6.1.
Lemma 14 (Validity of Gi). For the same parameter settings as in Lem. 11, it holds that

∃i ∈ [t̃], Pr
[(
α̃ = val(τ̃)

)
∧
(
d̃ = >

)
: (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
≥ ε′(λ).

In the following, we first prove Lem. 13, assuming Lem. 14 holds. Then, we will show the proof
of Lem. 14 in Sec. 6.4, which represents the main technical task we perform in this section.

Proof. (Proving Lem. 13) We will show this via contradiction. For the sake of contradiction, assume
that Lem. 13 does not hold. That is, we assume that under the parameter conditions in Lem. 13,
it holds that

∀i ∈ [t̃], Pr
[
Val = val(τ̃) : Val← Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
< ε′(λ)− ε2(λ). (17)

First, recall from the description of machine Ki (Algo. 6.2) that Val is set to ⊥invalid if d̃ = ⊥.
Thus, it must hold that

Pr
[
Val = val(τ̃) : Val← Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
= Pr

[(
ṽ = val(τ̃)

)
∧
(
d̃ = >

)
: Val← Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
. (18)

Next, recall that the only different between Ki and Gi lies in that K)i additionally invoke the
extractor with error parameter ε2 in Step 3 of the right session. By the ε2-simulatable extractability
of ExtCom (as per Def. 4), it holds hat∣∣∣∣Pr[(α̃ = val(τ̃)

)
∧
(
d̃ = >

)
: (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
− Pr

[(
Val = val(τ̃)

)
∧
(
d̃ = >

)
: Val← Ki(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]∣∣∣∣ ≤ ε2(λ) (19)

Inequality (19) Eq. (18), and Inequality (17) together imply the following

∀i ∈ [t̃], Pr
[(
α̃ = val(τ̃)

)
∧
(
d̃ = >

)
: (OUT, d̃)← Gi(pref ′)

]
< ε′(ε),

which contradicts Lem. 14.
This completes the proof of Lem. 13.

This completes the proof for Property 2 of Lem. 11, modulo the proof of Lem. 14 that we will
present in Sec. 6.4.
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6.4 Validity of Gi

In this part, we present the proof for Lem. 14.
We first need to define (in Algo. 6.3) two helper machines G′i and G′′i (∀i ∈ [t̃]). They are machines

very similar to the Gi.

Algorithm 6.3: Machines G′i and G′′i

Machine G′i(1λ, 1ε
−1
1 , pref ′): For each i ∈ [t̃], machine G′i(1λ, 1ε

−1
1 , pref ′) proceeds as follows:

1. It behaves identically as Gi(1λ, 1ε
−1
1 , pref ′) (see Algo. 6.1) until the end of Step 2b.

2. It then performs brute-force computation to obtain the VSS shares {rv(1)i }i∈[t̃] committed by
Mλ in the Step 2b Naor’s commitment of the left session, and then runs the reconstruction
algorithm VSSRecon to obtain the puzzle solutions x1|| . . . ||xt (it aborts if reconstruction is
unsuccessful).

3. It then samples an uniform index s $←− [t] and commits to the value (s||xs) (i.e., it uses the s-th
puzzle solution obtained from the previous step) in the left Step 3.
In more detail, it prepares n views {cv(2)i }i∈[n], corresponding to an MitH execution for the
(n + 1, 2k)-VSSShare of the message (s||xs). It commits to each cv

(2)
i (i ∈ [n]) independently in

parallel, using ExtCom, as the Step 3 message of the left session.
4. In Step 4 of the left session, G′i checks the extracted xs is indeed the s-th puzzle solution as

revealed by Mλ. If not, it aborts.
5. In Step 5a of the left session, it uses (s‖xs) as the ‘effective input’ in the virtual execution of

FCconsis. This is possible because xs is indeed the s-th puzzle solution, and thus s‖xs serves as a
valid witness for the ‘second clause’ of FCconsis.

6. All other steps are carried out as in Gi.

Machine G′′i (1λ, pref ′): For each i ∈ [t̃], G′′i (1λ, pref ′) works similarly to G′i except that G′′i no
longer runs the extractor SEExtCom(1λ, 1ε

−1
1 ) in the left Step 2c, and thus does not need the error

parameter ε1 anymore.

At a High Level. we prove Lem. 14 by contradiction. Assuming Lem. 14 is false, we will derive
the desired contradiction using the machine G′′1 . In particular, we will prove an upper-bound and a
lower-bound for the probability related to the committed value in the right Step 3 in G′′1 . We will
show that these two bounds indeed contradict to each other, thus finishing the proof of Lem. 14.

In the following, we first present the upper-bound in Lem. 15 and the lower-bound in Lem. 16
without a proof, and show how to derive the desired contradiction if these bounds hold. We then
focus on establishing these bounds in Sec. 6.5 and 6.6 respectively.

The Bounds. The upper-bound is for the probability of the event that the value α̃ committed by
Mλ in the right Step 3 in G′′1 is ‘valid’, i.e., it is either the message committed to initially on the
right (namely, val(τ̃)), or a legitimate puzzle solution (i.e., is among the strings (x̃1, . . . , x̃t̃)). We
capture this formally in the following Lem. 15, and prove it in Sec. 6.5. We remark that Lem. 15
does not rely on the assumption (for contradiction) that Lem. 14 is false.
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Lemma 15 (Upper Bound). For the same parameter settings as in Lem. 14, it holds that

Pr
[(
α̃ ∈ {val(τ̃)} ∪ {x̃j}j∈[t̃]

)
∧
(
d̃ = >

)
: (OUT, d̃)← G′′1 (1λ, pref ′)

]
≤ pSimpref′ [ε1] + ε1 + negl(λ).

The lower bound is for the probability of the event that the value α̃ committed by Mλ in
the right Step 3 in G′′1 is actually a puzzle solution (i.e., is among the strings (x̃1, . . . , x̃t̃)). This is
formally stated as the following Lem. 16. We present its proof in Sec. 6.6. We remark that Lem. 16
relies on the assumption (for contradiction) that Lem. 14 is false.

Lemma 16 (Lower bound). Assume that Lem. 14 is false. Then, for the same parameter settings
as in Lem. 14, it holds that

∀i ∈ [t̃], Pr
[(
α̃ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← G′′1 (1λ, pref ′)

]
≥
pSimpref′ [ε1]− 2ε1 − ε′

t
− ε1 − negl(λ).

The Final Contradiction. Assume Lem. 14 is false. Using Lem. 15 and 16, we derive the desired
contradiction in the following. All the probabilities below are taken over (OUT, d̃) ← G′′1 (1λ, pref

′),
which we omit for notation succinctness.

Pr
[(
α̃ ∈ {val(τ̃)} ∪ {x̃j}j∈[t̃]

)
∧
(
d̃ = >

)]
= Pr

[(
α̃ = val(τ̃)

)
∧
(
d̃ = >

)]
+

t̃∑
i=1

Pr
[(
α̃ = xi

)
∧
(
d̃ = >

)]

≥
t̃∑
i=1

Pr
[(
α̃ = xi

)
∧
(
d̃ = >

)]
≥ t̃ ·

(
pSim
pref′

[ε1]− 2ε1 − ε′

t
− ε1 − negl(λ)

)
(20)

= t̃ · 1
t
·
(
pSimpref′ [ε1]− (t+ 2)ε1 − ε′

)
− negl(λ)

≥ t+ 1

t
·
(
pSimpref′ [ε1]− (t+ 2)ε1 − ε′

)
− negl(λ) (21)

=
t+ 1

t
·
(
pSimpref′ [ε1]− (t+ 2)ε1 − ε′ −

t

t+ 1
· ε1

)
+ ε1 − negl(λ)

=
t+ 1

t
·
(
pSimpref′ [ε1]−

t2 + 4t+ 2

t+ 1
· ε1 − ε′

)
+ ε1 − negl(λ)

=
t+ 1

t
·
(
pSimpref′ [ε1]− 2ε′

)
+ ε1 − negl(λ) (22)

= pSimpref [ε1] + ε1 +

(
pSim
pref′

[ε1]

t
− 2ε′ − 2ε′

t

)
− negl(λ)

≥ pSimpref′ [ε1] + ε1 +
5t2 − t− 1

5t3
· ε− negl(λ), (23)

where Inequality (20) follows from Lem. 16, Inequality (21) follows from the assumption that
t̃ ≥ t + 1, Eq. (22) follows from our parameter setting ε1(λ) =

t+1
t2+4t+2

· ε′(λ), and Inequality (23)
follows from the assumption that pSim

pref′
[ε1] ≥ ε(λ) and our parameter setting ε′(λ) = ε(λ)

10t2
.
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Recall that t is the tag taking values from [n] with n being a polynomial of λ. Also recall that
ε(λ) is an inverse polynomial on λ. Therefore, Inequality (23) can be written as:

Pr
[(
α̃ ∈ {val(τ̃)} ∪ {x̃j}j∈[t̃]

)
∧
(
d̃ = >

)
: (OUT, d̃)← G′′1 (1λ, pref ′)

]
≥ pSimpref′ [ε1]+ε1(λ)+

1

poly(λ)
−negl(λ),

which contradicts the upper-bound shown in Lem. 15, yielding the desired contradiction.
This concludes the proof of Lem. 14.

6.5 The Upper Bound

In this part, we present the proof for Lem. 15.
We start by recalling from Eq. (11) that by definition:

Pr
[
d̃ = > : (OUT, d̃)← G1(1λ, 1ε

−1
1 , pref ′)

]
= pSimpref′ [ε1]. (24)

We will use the machines G′1 and G′′1 (see Algo. 6.3). First, recall that compared with G1, G′1
performs a brute-force computation to learn s‖xs (as per Step 2); It commits to s‖xs in Step 3 of
the left session (as per Step 3) and use s‖xs as the witness to perform the proof of consistency in
Step 5 of the left session (as per Step 5). In other words, what G′1 does is simply to change the
witness committed in Step 3 in the commit-and-prove protocol consisting of Step 3 and Step 5;
Note that that ‘witness’ used by G′1 (i.e., s‖xs) still satisfies the target predicate FCconsis. This will not
be noticed by Mλ as the commit-and-prove protocol is witness-indistinguishable30. Also note that
the brute-force computation performed by G′1 does not affect the computational indistinguishability
between G′1 and G1, as that step happens before the beginning of Step 3 and can be treated as non-
uniform advice when invoking the witness-indistinguishability of the commit-and-prove protocol.
This argument implies the following:∣∣∣∣Pr[d̃ = > : (OUT, d̃)← G1(1λ, 1ε

−1
1 , pref ′)

]
− Pr

[
d̃ = > : (OUT, d̃)← G′1(1λ, 1ε

−1
1 , pref ′)

]∣∣∣∣ ≤ negl(λ). (25)

Eq. (24) and Inequality (25) together imply the following:

Pr
[
d̃ = > : (OUT, d̃)← G′1(1λ, 1ε

−1
1 , pref ′)

]
≤ pSimpref′ [ε1] + negl(λ) (26)

Next, notice that the difference between G′1 and G′′1 is that the latter stops running machine
SEExtCom(1λ, 1ε

−1
1 ) (see Algo. 6.3). Thus, G′1 and G′′1 are at most ε1-far. Therefore, Inequality (26)

implies the following:

Pr
[
d̃ = > : (OUT, d̃)← G′′1 (1λ, pref ′)

]
≤ pSimpref′ [ε1] + ε1(λ) + negl(λ) (27)

Inequality (27) immediately implies the inequality in Lem. 15.
This completes the proof of Lem. 15.

30 This can be proven formally using standard techniques and thus we omit the details. A formal proof can be found
in, e.g., [CCLY22a, Section 6.5].
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6.6 The Lower Bound

In this part, we present the proof for Lem. 16.

Assumption for Contradiction. As mentioned earlier, this proof (in particular, in the proof of
Claim 8) will make use of the negation of Lem. 14, which is for the sake of contradiction. That is,
we assume for contradiction that: Under the parameter setting of Lem. 14, it holds that

∀i ∈ [t̃], Pr
[(
α̃ = val(τ̃)

)
∧
(
d̃ = >

)
: (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
< ε′(λ) (28)

Preparatory Claims. Before showing this bound, we will first consider three preparatory claims
(i.e., Claims 7 to 9) regarding the machine Gi’s. They will help us to bound the probability regarding
G′′1 as in Lem. 16 eventually.

Claim 7. For the same parameter settings as in Lem. 16, it holds that

∀i ∈ [t̃], Pr
[
d̃ = > : (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
≥ pSimpref′ [ε1]− 2ε1(λ)− negl(λ).

Proof. This lemma again makes use of the machines G′1 and G′′1 defined in Algo. 6.3.
We first claim that

∀i ∈ [t̃],

∣∣∣∣Pr[d̃ = > : (OUT, d̃)← Gi(1λ, 1ε
−1
1 , pref ′)

]
− Pr

[
d̃ = > : (OUT, d̃)← G′i(1λ, 1ε

−1
1 , pref ′)

]∣∣∣∣ ≤ negl(λ). (29)

Indeed, we have already shown Inequality (29) for the case i = 1 (see Inequality (25)). Inequality (29)
follows from the same argument as we presented for Inequality (25). Thus, we omit the details.

Similarly, we also have the following ‘all-i’ version of Inequality (27):

∀i ∈ [t̃],

∣∣∣∣Pr[d̃ = > : (OUT, d̃)← G′i(1λ, 1ε
−1
1 , pref ′)

]
− Pr

[
d̃ = > : (OUT, d̃)← G′′i (1λ, pref ′)

]∣∣∣∣ ≤ ε1(λ) + negl(λ). (30)

Next, using a similar (non-uniform) argument as for Inequality (25) over the commit-and-prove
protocol consisting of the hard puzzle setup step (i.e., Step 2) of the right session, we can establish
the following

∀i ∈ [t̃],

∣∣∣∣Pr[d̃ = > : (OUT, d̃)← G′′i (1λ, pref ′)
]

− Pr
[
d̃ = > : (OUT, d̃)← G′′1 (1λ, pref ′)

]∣∣∣∣ ≤ negl(λ). (31)

Using Inequalities (29) to (31) by setting i = 1, we obtain

Pr
[
d̃ = > : (OUT, d̃)← G′′1 (1λ, pref ′)

]∣∣∣∣ ≥ pSimpref′ [ε1]− ε1(λ)− negl(λ), (32)

where recall the definition of pSimpref′ [ε1] from Eq. (11).
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Finally, we have the following for all i ∈ [t̃]:

Pr
[
d̃ = > : (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
≥ Pr

[
d̃ = > : (OUT, d̃)← G′i(1λ, 1ε

−1
1 , pref ′)

]
− negl(λ) (33)

≥ Pr
[
d̃ = > : (OUT, d̃)← G′′i (1λ, pref ′)

]
− ε1(λ)− negl(λ) (34)

≥ Pr
[
d̃ = > : (OUT, d̃)← G′′1 (1λ, pref ′)

]
− ε1(λ)− negl(λ) (35)

≥ pSimpref′ [ε1]− 2ε1(λ)− negl(λ), (36)

where Inequality (33) follows from Inequality (29), Inequality (34) follows from Inequality (30),
Inequality (35) follows from Inequality (31), and Inequality (36) follows from Inequality (32).

This concludes the proof of Claim 7.

Claim 8. Assume that Lem. 14 is false. For the same parameter settings as in Lem. 16, it holds
that

∀i ∈ [t̃], Pr
[(
α̃ ∈ {x̃j}j∈[t̃]

)
∧
(
d̃ = >

)
: (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
≥ pSimpref′ [ε1]−2ε1(λ)−ε

′(λ)−negl(λ).

Proof. In the following, we will fix an arbitrary i ∈ [t̃] and describe events only within Gi, and omit
the rider that the variables in question are generated from Gi(1λ, 1ε

−1
1 , pref ′) for notation convenience.

First, it follows from Lem. 12 and Claim 7 that

Pr
[(
α̃ ∈ {val(τ̃)} ∪ {x̃j}j∈[t̃]

)
∧
(
d̃ = >

)]
≥ pSimpref′ [ε1]− 2ε1(λ)− negl(λ). (37)

Inequality (37) and Inequality (28) (i.e., our assumption for contradiction) together immediately
imply

Pr
[(
α̃ ∈ {x̃j}j∈[t̃]

)
∧
(
d̃ = >

)]
≥ pSimpref′ [ε1]− 2ε1(λ)− ε′(λ)− negl(λ). (38)

This completes the proof of Claim 8.

Claim 9. For the same parameter settings as in Lem. 16, it holds that

∀i ∈ [t̃], Pr
[(
α̃ ∈ {x̃j}j∈[t̃]\{i}

)
∧ (d̃ = >) : (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
≤ negl(λ),

Proof. We first define a new machine G∗i as follows.

Algorithm 6.4: Machine G∗i (1λ, 1ε
−1
1 , 1ε

∗−1
, pref′)

This machine takes an additional parameter ε∗ than Gi. On input (1λ, 1ε
−1
1 , 1ε

∗−1
, pref ′), G∗i is

identical to Gi(1λ, 1ε
−1
1 , pref ′) except for the following difference:

– In Step 2a of the right session, it invokes the the extractor for ExtCom with simulation error set
to ε∗, to extracts the set η̃ committed by M.

– In Step 2d of the right session, it prepares the shares {r̃v(3)j }j∈[n] differently. First, recall that
each r̃v

(3)
j is the output of the MitH party Pj using input r̃v

(1)
j ‖r̃v

(2)
j to compute the ideal

functionality FRconsis. G∗i modifies the input to Pj ’s as follows:
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• It defines a new vector (x̃∗1, . . . , x̃
∗
t̃
), where x̃∗i is equal to the x̃i sampled in Step 2b, but

x̃∗j = 0λ for all j 6= i.

• It creates a new set of VSS shares {r̃v∗(1)j }j∈[n] for the new (x̃∗1, . . . , x̃
∗
t̃
) satisfying the require-

ment that r̃v
∗(1)
j = r̃v

(1)
j for all j ∈ η̃. That is, it takes the shares {r̃v(1)j }j∈η̃, which is the

VSS shares for the original vector (x̃1, . . . , x̃t̃), and computes a new set of ‘the remainder’
shares {r̃v∗(1)j }j∈[n]\η̃, such that the new set {r̃v∗(1)}i∈[n]\η̃ ∪{r̃v(1)}i∈η̃ constitutes VSS sharing
of the new vector (x̃∗1, . . . , x̃

∗
t̃
). We remark that this is possible because any k shares of a

(n+1, k)-VSS scheme contain no information of the underlying secret; Thus, any k shares of
some secret can be ‘extended’ to n shares that constitute a VSS of a different secret. Indeed,
the VSS scheme we use (from [CDD+99]) satisfies this property.

With the above, G∗i prepares {r̃v(3)j }j∈[n] by running the (n, k)-MitH execution with party Pj

(∀j ∈ [n]) using r̃v
∗(1)
j ‖r̃v(2)j as its input.

– It finishes the remaining execute in the same manner as Gi.

We first claim that for any noticeable ε∗(λ) and any i ∈ [t̃], it holds that

Pr
[
α̃ ∈ {x̃j}j∈[t̃]\{i} ∧ (d̃ = >) : (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
c
≈ε∗ Pr

[
α̃ ∈ {x̃j}j∈[t̃]\{i} ∧ (d̃ = >) : (OUT, d̃)← G∗i (1λ, 1ε

−1
1 , 1ε

∗−1
, pref ′)

]
. (39)

To see Eq. (39), note that the only difference between Gi and G∗i is how the shares rv
(3)
j ’s are

generated (modulo the extractor with ε∗-simulation that G∗i invokes in Step 2a, which is already
taken into account by the symbol c

≈ε∗). First, we remark that the new rv
∗(1)
j ’s generated by G∗i still

satisfy the predicate FRconsis in Step 2d. This is because these rv
∗(1)
j ’s will reconstruct to (x̃∗1, . . . , x̃

∗
t̃
),

where x̃∗i does equal to x̃i, to which the (unchanged) rv
(2)
j ’s will reconstruct. Thus, if we compare

the {rv(3)j }j∈η̃ shares between Gi and G∗i , they are the views of parties Pj (j ∈ η̃) resulted from
different inputs that lead to the same output for FRconsis. By the (n, k)-privacy of the underlying
MPC, we know that any k shares (i.e., those in set η̃) does not reveal the input of other parties Pj
for j ∈ [n] \ η̃. Therefore, the view of Mλ is computationally indistinguishable between Gi and G∗i
(modulo the error ε∗ accounting for the extractor with ε∗-simulation invoked by G∗1 in Step 2a).

This seems to already establish Eq. (39). But we remark that there is a caveat: what we have
shown so far is about Mλ view. But the event in Eq. (39) is about the committed value α̃. To
compensate for that, note that the committed α̃ can be efficiently extracted using the extractor
SE for the ExtCom in Step 3 of the right session, with an arbitrarily small noticeable simulation
error ε. Thus, the indistinguishability of Mλ does translate to the event regarding the committed
α̃. This finises the proof of Eq. (39).

With Eq. (39) in hand (where note that the ε∗ can be made arbitrarily small), to prove Claim 9,
it suffices to prove the following regarding machine G∗: for all i ∈ [t̃] and all ε∗, it holds that

Pr
[
α̃ ∈ {x̃j}j∈[t̃]\{i} ∧ (d̃ = >) : (OUT, d̃)← G∗i (1λ, 1ε

−1
1 , 1ε

∗−1
, pref ′)

]
≤ negl(λ). (40)

In the following, we establish Inequality (40) by reducing it to the VSS hiding game shown in
Expr. 1.
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Assume for the sake of contradiction that Inequality (40) does not hold. Namely, there exists
an i ∈ [t̃] and a inverse polynomial quantity ν(λ) such that for infinitely many λ ∈ N, it holds that

Pr
[
α̃ ∈ {x̃j}j∈[t̃]\{i} ∧ (d̃ = >) : (OUT, d̃)← G∗i (1λ, 1ε

−1
1 , 1ε

∗−1
, pref ′)

]
> ν(λ).

We show there exists an adversary A that wins the VSS hiding game shown in Expr. 1. A works
as follows:
1. A picks two tuples of messages {x̃j}j∈[t̃] and {x̃′j}j∈[t̃] that are distinct in every entry other than

i (i.e., x̃j 6= x̃′j ∀j ∈ [t̃] \ {i}), but it holds that x̃i = x̃′i. Externally, it sends m0 := {x̃j}j∈[t̃] and
m1 := {x̃′j}j∈[t̃] to the challenger Ch for the VSS hiding game, as Step 1 in Expr. 1.

2. Internally A starts executing G∗i (1λ, 1ε
−1
1 , 1ε

∗−1
, pref ′). It proceeds with this execution till the end

of Step 2a of the right session. Note that by definition of G∗i (see Algo. 6.4), the set η̃ has already
been extracted at this moment. A then commit to η̃ using ExtCom to the external challenger Ch

as Step 2 in Expr. 1.
3. The challenger next sends commitments as Step 3 in Expr. 1. A forwards these commitments to
Mλ (at Step 2b on the right).

4. A then sends the η̃ together with the decommitment information w.r.t. its ExtCom made in
Step 2, as the Step 4 message in Expr. 1.

5. Then, Ch will send the shares {vj}j∈η̃ to A, as the Step 5 message in Expr. 1. A records this
values.

6. Internally, A continues the execute as G∗i , until the beginning of Step 2d. It executes Step 2d
in the following manner (which is also identical to G∗i by renaming some variables as explained
below):
– It first prepares the shares {rv∗(1)j }j∈[n] that constitute a VSS of (x̃∗1, . . . , x̃∗t̃ ) where x̃∗i = x̃i but
x̃∗j = 0λ for all j 6= i, and these shares satisfy the requirement that rv

∗(1)
j = vj for j ∈ η̃, as we

explain in the description of G∗i with {vj}j∈η̃ playing the role of {rv(1)j }j∈η̃ in the description
in Algo. 6.4.

– G∗i then prepares {r̃v(3)j }j∈[n] by running the (n, k)-MitH execution with party Pj (∀j ∈ [n])
using r̃v

∗(1)
j ‖r̃v(2)j as its input.

It is worth noting that in this step, A does not make use of the shares {vj}j∈[n]\η̃ (which are
anyway only know to the external Ch but not to A). A only uses the shares {vj}j∈η̃ that is
revealed by Ch in Step 5.

7. A then internally finish the remaining execution in the same manner as G∗i , with only one
difference—In Step 3 of the right session, A invokes the extractor SEExtCom with error parameter
εA to get an extracted value ṽ. It parses ṽ as j||a. If a = x̃j , A halts and output b′ = 0; If a = x̃′j ,
A halts and output b′ = 1; If neither of the cases happen, A halts and output a random bit b′

By the above description, it is not hard to see that up to Step 6, the internal execution of A perfectly
emulates the view of Mλ in game G∗i . If Mλ indeed commits to an α̃ ∈ {x̃j}j∈[t̃]\{i} (and d̃ = >)
with probability ν(λ), A in Step 7 will extract a ṽ ∈ {x̃j}j∈[t̃]\{i} (or ṽ ∈ {x̃′j}j∈[t̃]\{i}, depending on
the Ch uses m0 or m1) with probability at least ν(λ)− εA(λ). Therefore, the advantage of A in the
VSS hiding game is at least:(

ν(λ)− εA(λ)
)
· 1 +

(
1− (ν(λ)− εA(λ))

)
· 1
2
=

1

2
+
ν(λ)− εA(λ)

2
.
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Note that we can set εA(λ) to be an arbitrarily small noticeable function. By setting εA(λ) := ν(λ)
2 ,

the above lower bound becomes 1
2 +

ν(λ)
4 . Since ν(λ)

4 is still a noticeable function, this contradicts
Lem. 4, breaking the VSS hiding game.

This concludes the proof of Claim 9.

Finishing the Proof of Lem. 16. With the above preparatory Claims 7 to 9, we now proceed
to finish the proof of Lem. 16.

From Gi to G′i. We start by comparing machine Gi and G′i (see Algo. 6.3). Note that G′i differs from Gi
in that it performs brute-force computation to extract the puzzle solutions from Step 2b of the left
session (see Step 2 of Algo. 6.3), while Gi extract a puzzle solution (j‖xj) using the extractability
from ExtCom. Note that the (j‖xj) extracted by Gi must be among the t real solutions (which are
all extracted by G′i using brute force). Also, recall form Algo. 6.3 that G′i picks a random (s‖xs) to
finish the reminder execution as in Gi. Thus, in the case where j = s (i.e., G′i happens to guess the
same (j‖xj) as extracted by Gi), then the games Gi and G′i are identical. Moreover, since G′i guesses
s uniformly at random from [t], the event j = s happens with probability at least 1/t. Therefore,
the following holds:

∀i ∈ [t̃], Pr
[(
α̃ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← G′i(1λ, 1ε

−1
1 , pref ′)

]
≥

Pr
[(
α̃ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
t

. (41)

On the other hand, notice that Claim 8 and Claim 9, we conclude that

∀i ∈ [t̃], Pr
[(
α̃ = x̃i

)
∧
(
d̃ = >

)
: (OUT, d̃)← Gi(1λ, 1ε

−1
1 , pref ′)

]
≥ pSimpref′ [ε1]− 2ε1(λ)− ε′(λ)− negl(λ).

(42)
Inequalities (42) and (41) together imply the following:

∀i ∈ [t̃], Pr
[(
α̃ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← G′i(1λ, 1ε

−1
1 , pref ′)

]
≥
pSimpref′ [ε1]− 2ε1(λ)− ε′(λ)

t
−negl(λ).

(43)

From G′i to G′′i . Next, note that the machines G′i and G′′i only differ in that G′′i no longer invokes
SEExtCom(1λ, 1ε

−1
1 ) to extract from Step 2c on the left (see Algo. 6.3). As a consequence, it holds

that

∀i ∈ [t̃], Pr
[(
α̃ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← G′′i (1λ, pref ′)

]
≥
pSimpref′ [ε1]− 2ε1(λ)− ε′(λ)

t
− ε1− negl(λ).

(44)

From G′′i to G′′1 . We first note that to finish our current proof of Lem. 16, it suffices to show the
following inequality

∀i ∈ [t̃],

∣∣∣∣Pr[(α̃ = x̃i
)
∧ (d̃ = >) : (OUT, d̃)← G′′i (1λ, pref ′)

]
− Pr

[(
α̃ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← G′′1 (1λ, pref ′)

]∣∣∣∣ ≤ negl(λ), (45)

because Inequalities (44) and (45) together imply Lem. 16 immediately. Thus, the only thing left
is to prove Inequality (45).
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Proof of Inequality (45). For the sake of contradiction, assume that there exist an i ∈ [t̃] and an
inverse polynomial κ(λ) such that for infinitely many λ ∈ N, it holds that∣∣∣∣Pr[(α̃ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← G′′i (1λ, pref ′)

]
− Pr

[(
α̃ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← G′′1 (1λ, pref ′)

]∣∣∣∣ > κ(λ) (46)

We next introduce a new machine Ĝi for this proof.

Algorithm 6.5: Machine Ĝi(1λ, 1ε̂
−1

, pref′)

Machine Ĝi(1λ, 1ε̂
−1
, pref ′): For each i ∈ [t̃], this machine works similar to G′′i (1λ, pref ′) (see

Algo. 6.3), except that
– In Step 3 of the right session, instead of using the honest receiver’s algorithm, Ĝi invokes
SEExtCom(1λ, 1ε̂

−1
) to extract a value ṽ, which is supposed to be the value committed byMλ in

the right Step 3.
In more detail, the shares {c̃v(2)i }i∈[n] are committed by Mλ using independent ExtCom in
parallel in the right Step 3. G1 will extract all of these shares using the parallel extractability
of ExtCom with error parameter ε̂ (as per Def. 4), and compute ṽ := VSSRecon(c̃v

(2)
1 , . . . , c̃v(2)n ).

We start by comparing the value α̃ committed to in Step 3 on the right in G′′i and the value
ṽ extracted by SEExtCom in Step 3 on the right within Ĝi. Similar to before, we can base this
comparison on the simulation-extraction guarantee of SEExtCom(1λ, 1ε̂

−1
), which implies that for

any noticeable ε̂, it holds that

∀i, j ∈ [t̃],

∣∣∣∣Pr[(α̃ = x̃j
)
∧ (d̃ = >) : (OUT, d̃)← G′′i (1λ, pref ′)

]
− Pr

[(
ṽ = x̃j

)
∧ (d̃ = >) : (OUT, d̃)← Ĝi(1λ, 1ε̂

−1
, pref ′)

]∣∣∣∣ ≤ ε̂(λ). (47)

Next, using a similar (non-uniform) argument as for Inequality (31) over the commit-and-prove
protocol consisting of the hard puzzle setup step (i.e., Step 2) of the right session, we can establish
the following: for any noticeable ε̂(λ), it holds that

∀i, j ∈ [t̃],

∣∣∣∣Pr[(ṽ = x̃j
)
∧ (d̃ = >) : (OUT, d̃)← Ĝi(1λ, 1ε̂

−1
, pref ′)

]
− Pr

[(
ṽ = x̃j

)
∧ (d̃ = >) : (OUT, d̃)← Ĝ1(1λ, 1ε̂

−1
, pref ′)

]∣∣∣∣ ≤ negl(λ). (48)

It then follows from Inequality (48) and Inequality (47) that for any noticeable ε̂(λ), it holds that

∀i, j ∈ [t̃],

∣∣∣∣Pr[(α̃ = x̃j
)
∧ (d̃ = >) : (OUT, d̃)← G′′i (1λ, pref ′)

]
− Pr

[(
ṽ = x̃j

)
∧ (d̃ = >) : (OUT, d̃)← Ĝ1(1λ, 1ε̂

−1
, pref ′)

]∣∣∣∣ ≤ ε̂(λ) + negl(λ). (49)

Setting j = i in Inequality (49) implies that for any noticeable ε̂(λ), it holds that

∀i ∈ [t̃],

∣∣∣∣Pr[(α̃ = x̃i
)
∧ (d̃ = >) : (OUT, d̃)← G′′i (1λ, pref ′)

]
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− Pr
[(
ṽ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← Ĝ1(1λ, 1ε̂

−1
, pref ′)

]∣∣∣∣ ≤ ε̂(λ) + negl(λ). (50)

Setting i = 1 (and then renaming j to i) in Inequality (49) implies that for any noticeable ε̂(λ), it
holds that

∀i ∈ [t̃],

∣∣∣∣Pr[(α̃ = x̃i
)
∧ (d̃ = >) : (OUT, d̃)← G′′1 (1λ, pref ′)

]
− Pr

[(
ṽ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← Ĝ1(1λ, 1ε̂

−1
, pref ′)

]∣∣∣∣ ≤ ε̂(λ) + negl(λ). (51)

Combining Inequalities (50) and (51) implies that for any noticeable ε̂(λ), it holds that

∀i ∈ [t̃],

∣∣∣∣Pr[(α̃ = x̃i
)
∧ (d̃ = >) : (OUT, d̃)← G′′i (1λ, pref ′)

]
− Pr

[(
α̃ = x̃i

)
∧ (d̃ = >) : (OUT, d̃)← G′′1 (1λ, pref ′)

]∣∣∣∣ ≤ 2 · ε̂(λ) + negl(λ). (52)

By setting ε̂(λ) := κ(λ)
4 in Inequality (52), we obtain a contradiction to Inequality (46).

This concludes the proof of Inequality (45).

This eventually concludes our proof for Lem. 16. .

7 Simulation-Extractor SE: 1-1 Settings

7.1 Noisy Simulation-Extraction Lemma

Lemma 17 (Noisy Simulatable-Extraction Lemma). Let G be a QPT algorithm that takes
the security parameter 1λ, an error parameter 1γ

−1, a quantum state ρ, and a classical string z as
input, and outputs d ∈ {>,⊥} and a quantum state ρout.

Suppose that there exists a QPT algorithm K (referred to as the simulation-less extractor) that
takes as input the security parameter 1λ, two error parameters 1γ

−1 and 1ζ
−1, a quantum state

ρ, and a classical string z, and outputs s ∈ {0, 1}poly(λ) ∪ {⊥} satisfying the following w.r.t. some
sequence of classical strings {s∗z}z∈{0,1}∗.

1. For any λ, ρλ, zλ, and any noticeable functions γ(λ) and ζ(λ), it holds that

Pr
[
s /∈ {s∗zλ ,⊥} : s← K(1λ, 1γ−1

, 1ζ
−1
, ρλ, zλ)

]
≤ ζ(λ) + negl(λ).

2. For any noticeable function γ(λ), there exists a noticeable function δ(λ), which is efficiently
computable from γ(λ), so that the following requirement is satisfied: For any noticeable function
ζ(λ) and any sequence {ρλ, zλ}λ∈N of polynomial-size quantum states and classical strings, if

Pr
[
d = > : (d, ρout)← G(1λ, 1γ

−1
, ρλ, zλ)

]
≥ 8γ(λ),

then
Pr

[
s = s∗zλ : s← K(1λ, 1γ−1

, 1ζ
−1
, ρλ, zλ)

]
≥ δ(λ)− ζ(λ)− negl(λ).
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Then, there exists a QPT algorithm SE such that for any noticeable function ε = ε(λ), there exists a
noticeable function γ = γ(λ) ≤ ε(λ) that is efficiently computable from ε and satisfies the following:
For any sequence {ρλ, zλ}λ∈N of polynomial-size quantum states and classical strings,

{SE(1λ, 1ε−1
, ρλ, zλ)}λ∈N

s
≈ε {(ρout, Γd(s∗zλ)) : (d, ρout)← G(1λ, 1γ

−1
, ρλ, zλ)}λ∈N,

where Γd(s∗zλ) :=
{
s∗zλ if d = >
⊥ otherwise

.

Proof sketch. Since the proof is almost identical to that of [LPY23b, Lemma 20], we only describe
the differences.31 There are the following two differences in the statement:
– We introduce an additional error parameter ζ, which gives an upper bound of the probability

that K outputs s /∈ {s∗zλ ,⊥}. In [LPY23b, Lemma 20], the probability was assumed to be 0.
– The lower bound of G′s success probability in Item 2 is 8γ(λ) instead of γ(λ).
The second point can be easily dealt with by simply replacing γ with 8γ in the original proof. The
first point introduces an additional noticeable error polynomially related to ζ in the simulation for
the case of b = >. Since ζ can be chosen to be an arbitrarily small noticeable function, we can
manage the additional error by appropriately setting the parameters.

Below, we give more concrete explanation for the readers who are familiar with the proof of
[LPY23b, Lemma 20]. We only need to modify the proof of [LPY23b, Lemma 26], which claims that
the simulation for the case b = > works. The first difference causes an error probability ζ+negl(λ) in
[LPY23b, Claims 29 and 30], which eventually causes an error ζ1/2 + negl(λ) in [LPY23b, Eq. (84)]
where the square root appears due to the gentle measurement lemma. As a result, [LPY23b, Eq.
(84)] should be replaced with

(
12(8γ)1/2 + 2ν1/2

)1/2
+ ζ1/2 + negl(λ) instead of

(
12γ1/2 + 2ν1/2

)1/2.
(Note that γ is replaced with 8γ to deal with the second point as explained above.) It suffices to
set γ := 1

8

(
ε
10

)4, ν :=
(
ε
4

)4, and ζ :=
(
ε
2

)2 so that
(
12(8γ)1/2 + 2ν1/2

)1/2
+ ζ1/2 < ε.

7.2 Converting K to SE

In this part, we build the simulation-extractor SE as required by Lem. 9. This eventually finishes
the proof of Lem. 9, which is the only left piece in the proof of 1-1 non-malleability of Prot. 3.

The existence of the desired SE relies on Lem. 11 and 17 that we established previously. Roughly
speaking, we will use Lem. 17 to convert the simulation-less extractor K from Lem. 11 to the desired
SE satisfying the stipulated property in Lem. 9. However, we remark that this must be done with
proper choice of the parameters. In the following, we show how this can be done.

We first define machines K′ and G′, which are “wrappers” for the machines K and G1 in Lem. 11.
These machines will help us set parameters properly so we can invoke Lem. 17:

Machine G′: it takes as input (1λ, 1γ
−1
, pref ′) and proceeds as follows:

1. Set ε := 8γ.
2. Compute ε1 from ε. Note that this can be done because Lem. 11 stipulates the there is a

noticeable ε1 ≤ ε that is efficiently computable from ε.
3. Run machine G1(1λ, 1ε

−1
1 , pref ′) (as per Lem. 11) and output whatever it outputs.

Machine K′: it takes as input (1λ, 1γ
−1
, 1ζ

−1
, pref ′) and proceeds as follows:

31 [LPY23b] is the full version of [LPY23a] on arXiv.
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1. Set ε := 8γ.
2. Compute ε1 from ε. Note that this can be done because Lem. 11 stipulates the there is a

noticeable ε1 ≤ ε that is efficiently computable from ε.
3. Set ε2 := ζ.
4. Run machine K(1λ, 1ε−1

1 , 1ε
−1
2 , pref ′) (as per Lem. 11) and output whatever it outputs.

In the following, we invoke Lem. 17 with G′, K′, (stM, stR, τ, η,VIη), τ̃ , and val(τ̃) playing the role
of G, K, ρλ, zλ, and s∗zλ respectively in Lem. 17. To do that, we first prove the G′ and K′ indeed
satisfy the conditions Items 1 and 2 in Lem. 17.

For Item 1 in Lem. 17. First, by Lem. 11, we know that the machine K when invoked with
parameters (1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′) outputs val(τ̃) with probability at most ε2(λ) + negl(λ). Since ε2 is

set to ζ in machine K′, this implies that K′ outputs val(τ̃) with probability at most ζ(λ) + negl(λ),
satisfying Item 1 in Lem. 17.

For Item 2 in Lem. 17. First, we claim that if G′(1λ, 1γ−1
, pref ′) output d̃ = > with probability

8γ, then it must hold that pSimpref [ε1] ≥ ε, with the ε1 defined in G′. To see that, first notice that

Pr
[
d̃ = > : (OUT, d̃)← G′(1λ, 1γ−1

, pref ′)
]
= Pr

[
d̃ = > : (OUT, d̃)← G1(1λ, 1ε

−1
1 , pref ′)

]
where ε1 is defined in the description of G′. Thus, if the LHS of the above equation is greater than
8γ, then it must hold that

pSimpref [ε1] = Pr
[
d̃ = > : (OUT, d̃)← G1(1λ, 1ε

−1
1 , pref ′)

]
≥ 8γ = ε.

Next, recall from Lem. 11 that under the condition of pSimpref [ε1] ≥ ε, it must hold that

Pr
[
Val = val(τ̃) : Val← K(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
≥ ε′(λ)− ε2(λ)

t̃
,

where ε′ = ε(λ)
10t2

. Then, by definition of K′, it must hold that

Pr
[
Val = val(τ̃) : Val← K′(1λ, 1γ−1

, 1ζ
−1
, pref ′)

]
= Pr

[
Val = val(τ̃) : Val← K(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′)

]
≥ ε′(λ)− ε2(λ)

t̃

= δ(λ)− ζ(λ)

t̃

≥ δ(λ)− ζ(λ)− negl(λ),

where we δ(λ) := ε′(λ)

t̃
with ε′ = ε(λ)

10t2
. (Also note that ε2 = ζ by definition of K′.)

The above shows that the Item 2 in Lem. 17 is satisfied.

Invoking Lem. 17. Since K′ and G′ satisfy the conditions in Lem. 17, we can invoke it to claim the
existence of a machine SE such that for any noticeable ε(λ), there exists a noticeable γ(λ) ≤ ε(λ)

such that

{SE(1λ, 1ε−1
, pref ′)}λ∈N

s
≈ε {(OUT, vald̃(τ̃)) : (OUT, d̃)← G′(1λ, 1γ−1

, pref ′)}λ∈N.
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Finally, recall that G′(1λ, 1γ−1
, pref ′) is identical to machine G1(1λ, 1ε

−1
1 , pref ′) where ε1 ≤ ε(= 8γ)

is efficiently computable from γ as in the description of G′. Thus, the above implies that: For any
noticeable ε(λ), there exists a noticeable ε′(λ) ≤ 8ε(λ) that is efficiently computable from ε(λ), such
that

{SE(1λ, 1ε−1
, pref ′)}λ∈N

s
≈ε {(OUT, vald̃(τ̃)) : (OUT, d̃)← G1(1λ, 1ε

′−1
, pref ′)}λ∈N,

which is exactly Lem. 9.

8 Post-Quantum Non-Malleable Commitments: One-to-One and Two-sided

In this section, we show how to remove the ‘one-sided’ restriction from Prot. 3.
Recall that our proof for the non-malleability of Prot. 3 works only if t < t̃. However, this is not

guaranteed in the real main-in-the-middle attack—the adversary can of course use a smaller tag in
the right session. Fortunately, this problem can be addressed by the so-called ‘two-slot’ technique
proposed by Pass and Rosen [PR05]. The idea is to create a situation where no matter how the
MIM adversary M schedules the messages, there is always a ‘slot’ for which the ‘t < t̃’ condition
holds; As long as this is true, non-malleability can be proven using the same techniques as we did
for Prot. 3.

To do that, first observe that the only place where Prot. 3 makes use of the tag t is Step 2 Hard
Puzzle Setup: The receiver is required to setup a t-solution hard puzzle where t is determined by
the tag. Of course, Steps 4 and 5 also depend on t but that is rather a consequence of Step 2 using
a t-solution hard puzzle.

This observation allows us to instantiate the [PR05] technique for Prot. 3 as follows. We view
Step 2 as a ‘slot’ in [PR05] terminology. We ask the receiver to repeat this ‘slot’ twice sequentially,
using t and (T − t) as their respective tag, where recall that T is the upper-bound for the size of
tag space and is a polynomial on the security parameter λ. That is,

– Slot-A: R first executes Step 2 as it is, setting a t-solution hard puzzle;

– Slot-B: R then executes Step 2 again, but using (T − t) in place of t in the first execution. This
sets a (T − t)-solution hard puzzle.

We also modify Steps 4 and 5 as follows:

– In Step 4, R reveals the solutions to both the t solutions w.r.t. Slot-A and the (T − t) solutions
w.r.t. Slot-B;

– In Step 5, we change the trapdoor statement from ‘C manages to commit to a puzzle solution in
Step 3’ to ‘C manages to commit to a puzzle solution either for Slot-A or for Slot-B in Step 3’.

By the above design, it is easy to see that one of the following case must happen no matter how
M sets the tags t and t̃:

1. t = t̃: This is the trivial case that is already ruled out by the definition of non-malleability.

2. t < t̃: In this case, non-malleability follows by applying the same argument as we did for Prot. 3
to Slot-A.

3. t > t̃: In this case, it must hold that (T − t) < (T − t̃). In other words, the tag for the left Slot-B
is smaller than the tag for the right Slot-B. Therefore, non-malleability follows by applying the
same argument as we did for Prot. 3 to Slot-B.

Therefore, the modified protocol is non-malleable without the ‘one-sided’ restriction.
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We remark that the same technique has been employed by [LPY23a] to remove the ‘one-sided’
restriction in their original protocol as well. Our application does not encounter any new challenges
compared with the same step in [LPY23a]. Thus, we omit the proof details and only present the
formal description of this updated protocol in Appx. A.

We summarize the result of this section as the following theorem.

Theorem 10. Assuming the existence of post-quantum one-way functions, there exists (i.e., Prot. 10)
a black-box, constant-round construction of 1-1 (two-sided) post-quantum non-malleable commit-
ments (as per Def. 5 with k = 1) in the synchronous setting, supporting tag space [T ] with T (λ)

being any polynomial in the security parameter λ.

9 Simultaneous Extraction Lemma

So far, we have obtained a post-quantum non-malleable commitment in the 1-1 MIM setting. Recall
that our final goal is to obtain a construction secure in the more demanding 1-many MIM setting.
Jupping ahead, we will manage to show (in Sec. 10) that the same protocol Prot. 3 (more accurately,
its two-sided version Prot. 10), without any modifications, is indeed already secure in the 1-many
MIM setting. However, this or course requires a different security proof.

In this section, our develop a ‘simultaneous extraction lemma’ (Lem. 18). This lemma will play
a crucial role later when we upgrade the security proof for Prot. 3 (or Prot. 10) to the 1-many
setting in Sec. 10.

9.1 Lemma Statement

Lemma 18 (Simultaneous Extraction Lemma). Let V be a QPT algorithm that takes the
security parameter 1λ, an error parameter 1γ

−1, a quantum state ρ, and a classical string z as input,
and outputs d ∈ {>,⊥}.

Suppose that for i ∈ [n], there exists a QPT algorithm Ki (referred to as the extractor) that
takes as input the security parameter 1λ, two error parameters 1γ

−1 and 1ζ
−1, a quantum state ρ

and outputs s ∈ {0, 1}poly(λ) ∪ {⊥} satisfying the following w.r.t. some sequence of classical strings
{s∗z,i}z∈{0,1}∗,i∈[n].
– Assumption 1: For any λ, ρλ, zλ, i ∈ [n], and any noticeable functions γ(λ) and ζ(λ), it holds

that

Pr
[
s /∈ {s∗zλ,i,⊥} : s← Ki(1λ, 1γ

−1
, 1ζ

−1
, ρλ, zλ)

]
≤ ζ(λ) + negl(λ).

– Assumption 2: For any noticeable function γ(λ), there exists a noticeable function δ(λ), which is
efficiently computable from γ(λ), so that the following requirement is satisfied: For any noticeable
function ζ(λ) and any sequence {ρλ, zλ}λ∈N of polynomial-size quantum states and classical strings
and i ∈ [n], if

Pr
[
d = > : d← V(1λ, 1γ−1

, ρλ, zλ)
]
≥ γ(λ),

then
Pr

[
s = s∗zλ,i : s← Ki(1λ, 1γ

−1
, 1ζ

−1
, ρλ, zλ)

]
≥ δ(λ)− ζ(λ)− negl(λ).

Then, there exists a QPT algorithm K that satisfies the following:
1. For any λ, ρλ, zλ, and any noticeable functions γ(λ) and ζ(λ), it holds that

Pr
[
s /∈ {s∗zλ,1||s

∗
zλ,2

...||s∗zλ,n,⊥} : s← K(1λ, 1γ−1
, 1ζ

−1
, ρλ, zλ)

]
≤ ζ(λ) + negl(λ).
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2. For any noticeable function γ(λ), there exists a noticeable function δ′(λ), which is efficiently
computable from γ(λ), so that the following requirement is satisfied: For any noticeable funntion
ζ(λ) and any sequence {ρλ, zλ}λ∈N of polynomial-size quantum states and classical strings, if

Pr
[
d = > : d← V(1λ, 1γ−1

, ρλ, zλ)
]
≥ 8γ(λ),

then

Pr
[
s = s∗zλ,1||s

∗
zλ,2

...||s∗zλ,n : s← K(1λ, 1γ−1
, 1ζ

−1
, ρλ, zλ)

]
≥ δ′(λ)− ζ(λ)− negl(λ).

9.2 Preparation

We take several tools and lemmas from [Zha20, CMSZ21] and give slight extensions of them.

Definition 15 (Projective Implementation [Zha20]). LetM = (M0,M1) be a binary outcome
POVM. Let E = {Ep}p∈S be a projective measurement indexed by p ∈ S for some finite subset S of
[0, 1].32 Consider the following experiment:
1. Apply the measurement E to obtain p ∈ S.
2. Output 1 with probability p and output 0 with probability 1− p.
We say that E is a projective implementation of M if for any initial state, the above experiment
yields the identical distribution to that obtained by applying the POVM M.

Lemma 19 ([Zha20, Lemma 3.3]). Any binary outcome POVM M has a unique projective
implementation.

For a binary outcome POVM M, we write ProjImp(M) to mean its projective implementation.

Definition 16 (Shift Distance [Zha20]). For two distributions D0, D1, with cumulative density
functions f0, f1, respectively, the shift distance with parameter ε is defined as

∆ε
Shift(D0, D1) := sup

x∈R
min

y∈[f1(x−ε),f1(x+ε)]
|f0(x)− y|.

For two real-valued measurements M and N over the same quantum system, the shift distance
between M and N with parameter ε is

∆ε
Shift(M,N ) := sup

|ψ⟩
∆ε

Shift(M(|ψ〉),N (|ψ〉)).

By the definition, we can see the following: If ∆ε
Shift(M,N ) ≤ η, then for any state |ψ〉 and

x ∈ R,

Pr[M(|ψ〉) ≤ x] ≤ Pr[N (|ψ〉) ≤ x+ ε] + η, Pr[M(|ψ〉) ≥ x] ≤ Pr[N (|ψ〉) ≥ x− ε] + η,

Pr[N (|ψ〉) ≤ x] ≤ Pr[M(|ψ〉 ≤ x+ ε] + η, Pr[N (|ψ〉) ≥ x] ≤ Pr[M(|ψ〉 ≥ x− ε] + η.

Definition 17 (Almost Projective Measurements [Zha20]). A real-valued measurementM =

(Mi)i∈I is (ε, η)-almost projective if the following is true: for any quantum state |ψ〉, apply M twice
in a row to |ψ〉, obtaining outcomes x, y. Then Pr[|x− y| ≤ ε] ≥ 1− η.
32 In [Zha20], E is labeled by a distribution D. The definition here is identical to theirs if we interpret p as a

distribution that takes 1 with probability p and otherwise takes 0.

67



The following is a variant of [Zha20, Theorem 6.2].

Lemma 20. For any binary-outcome POVM M = (M0,M1) and reals 0 < ε, η < 1, there is a
real-valued measurement APIε,ηM that satisfies the following:
1. ∆ε

Shift(API
ε,η
M ,ProjImp(M)) ≤ η.

2. APIε,ηM is (ε, η)-almost projective.
3. The run time of APIε,ηM is TM · poly(ε−1, log

(
η−1

)
), where TM is the run time of the POVM M.

There are the following two differences from the original statement of [Zha20, Theorem 6.2].
1. We consider general binary-outcome POVM whereas they focuses on a special case called “mix-

ture of projective measurements.”
2. We require the run time of APIε,ηM is TM · poly(ε−1, log

(
η−1

)
) whereas they require it only for the

expected run time.
For the first difference, we observe that the original proof can be easily extended to general binary-
outcome POVM by using Jordan’s lemma. The second difference can be resolved by using an idea
of “scaling down” as sketched in [Zha20, Remark 6.4].

For completeness, we prove Lem. 20. We note that the proof is based on the proof of [Zha20,
Theorem 6.2] and we often repeat very similar arguments to theirs.

Proof of Lem. 20. First, we construct ÃPI
ε,η

M that satisfies the requirements if ProjImp(M) is sup-
ported by p ∈ [1/4, 3/4], i.e., for any state ρ, it holds that

Pr

[
1

4
≤ p ≤ 3

4
: p← ProjImp(M)(ρ)

]
= 1.

Looking ahead, this assumption is used to make sure that ÃPI
ε,η

M runs in strict QPT (rather than
expected QPT as in [Zha20, Theorem 6.2]). At the end of the proof, we modify it to APIε,ηM that
works for any binary-outcome measurement.

Suppose that ProjImp(M) is supported by p ∈ [1/4, 3/4]. Let X be a quantum register for states
on which M = (M0,M1) acts. Let U be a purification of M on X and an ancilla register Y. That
is, we define the unitary U in such a way that for any state ρX on X and b ∈ {0, 1}, we have

Tr(MbρX) = Tr
(
U †(|b〉 〈b| ⊗ I)U(ρX ⊗ |0〉 〈0|Y)

)
where |b〉 〈b| ⊗ I means the operator that projects the first qubit of X onto |b〉. We define two
projectors Π0 and Π1 over X and Y as:

Π0 := IX ⊗ |0n〉 〈0n|Y , Π1 := U †(|1〉 〈1| ⊗ I)U

where n is the number of qubits in Y. By applying Jordan’s lemma to Π0 and Π1, we can see
that there is an orthogonal decomposition of the Hilbert space over X and Y into two-dimensional
subspaces {Sj}j that satisfies the following:33 For each two-dimensional subspace Sj , there exist
two orthonormal bases (

∣∣αj〉 , ∣∣∣α⊥j 〉) and (
∣∣βj〉 , ∣∣∣β⊥j 〉) of Sj such that

Π0

∣∣αj〉 =
∣∣αj〉 , Π0

∣∣α⊥j 〉 = 0,

33 In general, there may also appear one-dimensional subspaces. However, by our assumption that ProjImp(M) is
supported by p ∈ [1/4, 3/4], all eigenvalues of Π0Π1Π0 belongs to [1/4, 3/4], and thus one-dimensional subspaces
do not appear in our case.
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Π1

∣∣βj〉 =
∣∣βj〉 , Π1

∣∣β⊥j 〉 = 0.

Moreover, if we let

pj :=
〈
αj

∣∣Π1

∣∣αj〉 ,
then we have 1/4 ≤ pi ≤ 3/4 and∣∣αj〉 =

√
pj

∣∣βj〉+√
1− pj

∣∣β⊥j 〉 , ∣∣βj〉 =
√
pj

∣∣αj〉+√
1− pj

∣∣α⊥j 〉 .
In particular, this implies that

Π1

∣∣αj〉 =
√
pj

∣∣βj〉 , (I −Π1)
∣∣αj〉 =

√
1− pj

∣∣β⊥j 〉 ,
Π1

∣∣α⊥j 〉 =
√

1− pj
∣∣βj〉 , (I −Π1)

∣∣α⊥j 〉 =
√
pj

∣∣β⊥j 〉 ,
Π0

∣∣βj〉 =
√
pj

∣∣αj〉 , (I −Π0)
∣∣βj〉 =

√
1− pj

∣∣α⊥j 〉 ,
Π0

∣∣β⊥j 〉 =
√

1− pj
∣∣αj〉 , (I −Π0)

∣∣βj〉 =
√
pj

∣∣α⊥j 〉
(53)

Since Π0

∣∣αj〉 =
∣∣αj〉, we can write

∣∣αj〉 =
∣∣∣α′j〉

X
|0〉Y for each j. For each p ∈ [1/4, 3/4], we define

a projector Ep on X as
Ep :=

∑
j:pj=p

∣∣α′j〉 〈α′j∣∣ .
Then one can see that E = {Ep}p∈S is the projective implementation of M where

S := {p ∈ [1/4, 3/4] : ∃j s.t. pj = p}.

We describe the algorithm ÃPI
ε,η

M on register X below:
1. Prepare and initialize the register Y to the all-zero state.
2. Initialize a classical list L = (0).
3. Repeat the following “main loop” for i = 1, 2, . . . , T , where T := dln(6/η)/ε2e:

(a) Apply the projective measurement (I − Π1,Π1), obtaining an outcome b2i−1, and append
b2i−1 to the end of L.

(b) Apply the projective measurement (Π0, I −Π0), obtaining an outcome b2i, and append b2i
to the end of L.

4. Let t be the number of bit flips in the sequence L = (0, b1, b2, ..., b2T ), and let p̃ := t/2T .
5. If b2T = 1, repeat the “main loop” until the first time b2i = 0 or it is repeated T ′ = dlog5/8(η/3)e

times. We say that it fails if b2i = 0 does not occur within T ′ times repetition.
6. Discard Y and output p̃.
The run time requirement of Item 3 is clear from the description. We next establish one by one.
First, we remark that ÃPI

ε,η

M just applies projective measurements (I −Π1,Π1) and (Π0, I −Π0) on
registers X,Y. Therefore, when proving Items 1 and 2, we can analyze each subspace separately.

That is, we can focus on the case where the initial state is
∣∣∣α′j〉 for some j.

Proving Item 1 of Lem. 20. Note that ProjImp(M) on
∣∣∣α′j〉 results in pj with probability 1. By

Eq. (53), we can see that the list L obtained by applying ÃPI
ε,η

M on
∣∣∣α′j〉 is according to the following

distribution:
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– Let K be a list of 2T independent coin flips with expected value pj .
– Set Li be the parity of the first i bits of K.
Then t = 2T p̃ is the number of 1s in K. Thus, by Hoeffding’s bound, we have

Pr
[
|pj − p̃| ≥ ε/2

]
≤ 2e−2(2T )(ε/2)

2 ≤ η/3 < η

where we used T ≥ ln(6/η)/ε2. This implies ∆ε
Shift(ÃPI

ε,η

M ,ProjImp(M)) ≤ η, finishing the proof of
Item 1.

Proving Item 2 of Lem. 20. Suppose that we sequentially run ÃPI
ε,η

M twice on the initial state
∣∣∣α′j〉.

Let p̃0 and p̃1 be the measurement outcome of the first and second application, respectively. If the
first application of ÃPIε,ηM does not fail, then the state in X goes back to

∣∣∣α′j〉 at the end of the first
application. Thus, by repeating a similar analysis to the above, we can see that

Pr
[
|p̃b − pj | ≥ ε/2

]
≤ η/3

for b ∈ {0, 1} conditioned on that the first application does not fail. Moreover, each trial in Step 5 of
the description of ÃPIε,ηM succeeds with probability 2pj(1− pj) ≥ 3/8 where we used pj ∈ [1/4, 3/4],
and thus the probability of failure is at most (1 − 3/8)T

′ ≤ η/3 where we used T ′ ≥ log5/8(η/3).
Combining the above, we have

Pr[|p̃0 − p̃1| ≥ ε] ≤ η/3 + η/3 + η/3 = η,

which implies Item 2. This finishes the proof of Lem. 20 for the case where ProjImp(M) is supported
by p ∈ [1/4, 3/4].

For the General Case of p ∈ [0, 1]. Finally, we extend it to general binary-outcome POVMs. For
any binary-outcome POVMM = (M0,M1), letM′ := ( I4 +

M0
2 ,

I
4 +

M1
2 ). That is,M′ corresponds to

the process that either outputs a uniformly random bit or appliesM with probability 1/2 for each.
Let E = {Ep}p∈S be the projective implementation of M. Then it is easy to see that the projective
implementation of M′ is E ′ = {E′p′}p′∈S′ where E′p′ := E2p′−1/2 and S′ := {p′ : 2p′ − 1/2 ∈ S}.
For any p′ ∈ S′, since 2p′ − 1/2 ∈ [0, 1], we have p′ ∈ [1/4, 3/4]. Thus, ProjImp(M′) is supported
by p′ ∈ [1/4, 3/4] and ÃPI is applicable for M′. Based on this observation, we construct APIε,ηM as
follows:

1. Apply ÃPI
ε/2,η

M′ , obtaining an outcome p′.
2. Output p := 2p′ − 1/2.

Then the properties of ÃPIε/2,ηM′ which we showed above are directly translated into those of APIε,ηM ,
which concludes the proof of Lem. 20.

Lemma 21 ([CMSZ21, Lemma 4.10]). Let N be an (ε, η)-almost projective measurement on
a Hilbert space H, and P = (P0, P1) be a binary-outcome projective measurement on H. Then there
is a quantum algorithm RepairN ,P on H satisfying the following:
– For a positive integer T , consider the following procedure RepairExptN ,P(1T ) on H:

1. Apply N , obtaining outcome p;
2. Apply P, obtaining outcome b;
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3. Apply RepairN ,P(1T , b, p).
4. Output p.
Then RepairExptN ,P(1T ) is (2ε, 2(η + 1/T ) + 4

√
η)-almost projective.

– The expected run time of RepairN ,P(1T , b, p) is at most (TN + TP) · (4T
√
η + 3) where TN and TP

are run times of N and P, respectively.

We show the following corollary.

Corollary 5. Let N be an (ε, η)-almost projective measurement on a Hilbert space H, and A be a
quantum algorithm that takes a quantum state in H as input and outputs a classical string satisfying
the following: There are some classical string s∗ and 0 ≤ ζ ≤ 1 such that for any state ρ,

Pr[s /∈ {s∗,⊥} : s← A(ρ)] ≤ ζ.

Then for any positive integer T and p ∈ [0, 1], there is a measurement A-Repair(1T , p) satisfying the
following:
– For any T , p, and any state ρ in H, if we apply A-Repair(1T , p) on ρ, then the distribution of the

measurement outcome is identical to that of A(ρ).
– For a positive integer T , consider the following procedure RepairExptN ,A-Repair(1T ) on H:

1. Apply N , obtaining outcome p;
2. Apply A-Repair(1T , p), obtaining outcome s;
3. Output p.
Then RepairExptN ,A-Repair(1T ) is

(
2ε, 2(η + 1/T ) + 4

√
η +
√
ζ
)
-almost projective.

– The expected run time of A-Repair(1T , p) is at most (TN +TA) · (4T
√
η+3) where TN and TA are

run times of N and A, respectively.

Proof. Intuitively, A-Repair first runs A and then applies the repair procedure of Lem. 21. A formal
proof is given below.

We can describe A by using a unitary U over the input register Inp, output register S, and
working register W as follows:

A(ρ) : Set ρ in Inp, initialize S and W to be all-zero states, apply U , measure S, and output the
outcome s.

We define a binary projective measurement P = (P0, P1) on Inp, S, and W as

P1 := U †(
∑
s ̸=⊥
|s〉 〈s|)SU

and P0 := I − P1. We apply Lem. 21 for N and P to get RepairN ,P satisfying the requirements of
Lem. 21.34 By using it, we construct A-Repair(1T , p) on Inp as follows:
1. Initialize S and W to all-zero states.
2. Apply P, obtaining an outcome b.
34 Strictly speaking, N is a POVM on Inp but P is a projector on (Inp,S,W) and thus Lem. 21 is not directly

applicable. We abuse the notation to simply write N to mean its trivial extension to registers (Inp,S,W) that
does not touch (S,W).
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3. If b = 0, then set s := ⊥. If b = 1, then apply U , measure S to obtain s, and apply U †.
4. Apply RepairN ,P(1T , b, p).
5. Output s as the measurement outcome.
It is clear from the construction that the distribution of s obtained by applying A-Repair(p) on ρ

is identical to the distribution of A(ρ). The requirement about the run time directly follows from
that of Lem. 21. Below, we show that RepairExptN ,A-Repair(1T ) is (2ε, 2(η+1/T )+4

√
η+
√
ζ)-almost

projective.
Let A-Repair′(p) be a quantum process that works similarly to A-Repair(p) except that Steps 3

and 5 are removed. Then, it is not hard to see that RepairExptN ,A-Repair′(1T ) is identical to RepairExptN ,P(1T ),
and thus it is (2ε, 2(η + 1/T ) + 4

√
η)-almost projective by Lem. 21. Moreover, we observe that the

measurement in Step 3 of A-Repair(p) for the case of b = 1 yields a fixed value s∗ with probability
except for ζ by the assumption about A. Thus, by the gentle measurement lemma [Aar05, Lemma
2.2], the trace distance between the states before and after the step is at most

√
ζ. This implies

that RepairExptN ,A-Repair(1T ) is (2ε, 2(η + 1/T ) + 4
√
η +
√
ζ)-almost projective.

This finishes the proof of Corollary 5.

9.3 Proof of Lem. 18

LetMλ,γ,z be the binary-outcome POVM corresponding to V(1λ, 1γ−1
, ·, z). That is, it is defined in

such a way that Pr
[
Mλ,γ,z(ρ) = 1

]
= Pr

[
V(1λ, 1γ−1

, ρ, z) = >
]

for any state ρ. Let APIε,ηMλ,γ,z
be the

(ε, η)-almost projective measurement as given in Lem. 20. For each i, λ, γ, ζ, ρ, z, ε, η, we apply Corol-
lary 5 to the (ε, η)-almost projective measurement APIε,ηMλ,γ,z

and the algorithm Ki(1λ, 1γ
−1
, 1ζ

−1
, ·, z),

and we denote the corresponding repairing measurement by Ki(1λ, 1γ
−1
, 1ζ

−1
, ·, z)-Repair and the

corresponding repairing experiment by RepairExptε,ηλ,γ,ζ,z(1
T ).35 By the assumption about Ki and

Corollary 5, RepairExptε,ηλ,γ,ζ,z(1T ) is
(
2ε, 2(η + 1/T ) + 4

√
η +
√
ζ + negl(λ)

)
-almost projective.

We first construct expected QPT algorithm K that satisfies the requirements, after which we
argue that we can modify it to be strict QPT by truncation.

The expected QPT algorithm K is described as follows:

K(1λ, 1γ−1
, 1ζ

−1
, ρ, z): Do the following:

1. Compute δ as in Assumption 2 of Lem. 18 from the given γ.
2. Take an positive integer T ′ in such a way that (1 − δ/3)T

′ ≤ γ/n holds. (For example,
T ′ = O(δ−1 log γ−1 log n) suffices).

3. Set parameters as follows:

T := d6nT ′γ−1e
ε := min{2γ/(2nT ′ + 1), γ/4}

η :=
(
γ/(18nT ′)

)2
ζ ′ := min{ζ/(nT ′),

(
γ/(3nT ′)

)2
, δ/2}

4. Apply APIε,ηMλ,γ,z
on Inp to obtain an outcome p̃. If p̃ < 4γ − ε, output ⊥ and halt.

35 If we strictly follow the notation in Corollary 5, then the experiment should be written as

RepairExpt
API

ε,η
Mλ,γ,z

,Ki(1
λ,1γ

−1
,1ζ

−1
,·,z)-Repair

(1T ), but we simply write RepairExptε,ηλ,γ,ζ,z(1
T ) for brevity.
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5. For i = 1, 2, ..., n, do the following:
(a) For j = 1, 2, ..., T ′, do the following

i. Apply APIε,ηMλ,γ,z
to obtain an outcome p̃i,j .

ii. If p̃i,j < p̃i,j−1− 2ε, output ⊥ and halt, where when i = 1 and j = 1, p̃i,j−1 := p̃ and
when i ≥ 2 and j = 1, p̃i,j−1 := p̃i−1,T ′ .

iii. Apply Ki(1λ, 1γ
−1
, 1ζ

′−1
, ·, z)-Repairε,η(1T , p̃i,j) to obtain an outcome si,j .

iv. If si,j 6= ⊥, set si := si,j , break the inner loop, and proceed to the outer loop for
i+ 1.

(b) If si,j = ⊥ for all j ∈ [T ′], output ⊥ and halt.
6. Output s1||s2||...||sn.

We can see that K runs in expected QPT by Lem. 20 and Corollary 5.

Proving Property 1 of Lem. 18. We observe that whenever K does not output ⊥, for each i ∈ [n], si
is a non-⊥ value obtained by Ki(1λ, 1γ

−1
, 1ζ

′−1
, ·, z)-Repairε,η(p̃i,j). By Corollary 5, its distribution

is identical to the output distribution of Ki(1λ, 1γ
−1
, 1ζ

′−1
, ·, z).

By Assumption 1 of Lem. 18, it outputs non-⊥ value other than s∗z,i with probability at most
ζ ′ + negl(λ). Since we apply it at most T ′ times, the probability that it ever occurs is at most
T ′(ζ ′ + negl(λ)). By taking union bound over all i ∈ [n], the probability that it occurs for some
i ∈ [n] is at most nT ′(ζ ′ + negl(λ)) ≤ ζ + negl(λ). This finishes the proof of Property 1.

Proving Property 2 of Lem. 18. Suppose that ρ and z satisfy the requirement of Property 2, i.e.,
we have

Pr
[
d = > : d← V(1λ, 1γ−1

, ρ, z)
]
≥ 8γ. (54)

We define the following events in the execution of K(1λ, 1γ−1
, 1ζ

−1
, ρ, z):

– Bad1: The event that K returns ⊥ in Step 4.
– Bad2: The event that K returns ⊥ in Step 5(a)ii for some i, j.
– Bad3: The event that K returns ⊥ in Step 5b for some i.
Note that we have

Pr
[
K(1λ, 1γ−1

, 1ζ
−1
, ρ, z) = ⊥

]
= Pr[Bad1] + Pr[Bad2] + Pr[Bad3]. (55)

Below (Lem. 22 to 24), we upper bound each term in the RHS of Eq. (55).

Lemma 22. Pr[Bad1] ≤ 1− 4γ + η

Proof of Lem. 22. Eq. (54) implies

Pr
[
Mλ,γ,z(ρ) = 1

]
≥ 8γ.

By the definition of ProjImp(Mλ,γ,z) and an averaging argument, we have

Pr
[
p ≥ 4γ : p← ProjImp(Mλ,γ,z)(ρ)

]
≥ 4γ.
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By Item 1 of Lem. 20, we have

Pr
[
p̃ ≥ 4γ − ε : p̃← APIε,ηMλ,γ,z

(ρ)
]
≥ 4γ − η.

This completes the proof of Lem. 22.

Lemma 23. Pr[Bad2] ≤ γ + negl(λ).

Proof of Lem. 23. Since APIε,ηMλ,γ,z
is (ε, η)-almost projective, we have

Pr[p̃1,1 < p̃− 2ε] ≤ η.

Note that the loop done in Step 5a of K(1λ, 1γ−1
, 1ζ

−1
, ρ, z) is identical to RepairExptε,ηλ,γ,ζ′,z(1

T )

except for an additional check in Step 5(a)ii. Since RepairExptε,ηλ,γ,ζ′,z(1
T ) is

(
2ε, 2(η + 1/T ) + 4

√
η +√

ζ ′ + negl(λ)
)
-almost projective by Corollary 5, it holds for each (i, j) 6= (1, 1) that

Pr
[
p̃i,j < p̃i,j−1 − 2ε

]
≤ 2(η + 1/T ) + 4

√
η +

√
ζ ′ + negl(λ) ≤ γ/(nT ′) + negl(λ)

where we used η ≤ (γ/(18nT ′))2, T = d6nT ′γ−1e, and ζ ′ ≤ (γ/(3nT ′))2.
Noting that

η ≤
(
γ/(18nT ′)

)2 ≤ γ/(nT ′),
the union bound over all (i, j) ∈ [n]× [T ′] gives Lem. 23.

Lemma 24. Pr[Bad3] ≤ γ.

Proof of Lem. 24. For each i, j, let ρi,j be the state just before applying Ki(1λ, 1γ
−1
, 1ζ

′−1
, ·, z)-Repairε,η(p̃i,j)

in Step 5(a)iii. Note that whenever Step 5(a)iii is invoked, either of Bad1 or Bad2 has not occurred
by that point, which implies p̃i,j ≥ 4γ − (2nT ′ + 1)ε ≥ 2γ where we used ε ≤ 2γ/(2nT ′ + 1). Since
APIε,ηMλ,γ,z

is (ε, η)-almost projective by Item 2 of Lem. 20,

Pr
[
p̃′i,j ≥ 2γ − ε : p̃′i,j ← APIε,ηMλ,γ,z

(ρi,j)
]
≥ 1− η.

Since we have ∆ε
Shift(API

ε,η
Mλ,γ,z

,ProjImp(Mλ,γ,z)) ≤ η by Item 1 of Lem. 20, we have

Pr
[
pi,j ≥ 2γ − 2ε : pi,j ← ProjImp(Mλ,γ,z)(ρi,j)

]
≥ 1− 2η.

This implies
Pr

[
d = > : d← V(1λ, 1γ−1

, ρi,j , z)
]
≥ (1− 2η)(2γ − 2ε) ≥ γ

where we used η ≤ (γ/(18nT ′))2 ≤ γ/4 and ε ≤ γ/4. Thus, by Assumption 2 of Lem. 18, we have

Pr
[
si = s∗z,i : si ← Ki(1λ, 1γ

−1
, 1ζ

′−1
, ρi,j , z)

]
≥ δ − ζ ′ − negl(λ) ≥ δ/3

for sufficiently large λ where we used ζ ′ ≤ δ/2. Noting that Ki(1λ, 1γ
−1
, 1ζ

′−1
, ·, z)-Repairε,η(1T , p̃i,j)

on ρi,j yields the identical distribution as Ki(1λ, 1γ
−1
, 1ζ

′−1
, ρi,j , z) by Corollary 5 , for each i, j, the

probability of breaking the inner loop in Step 5(a)iv is at least δ/3. Thus, for each i, the probability
that this does not happen for all j ∈ [T ′] is at most (1− δ/3)T ′ ≤ γ/n. By taking the union bound
over all i ∈ [n], Lem. 24 holds.
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Combining Eq. (55) and Lem. 22 to 24, we have

Pr
[
K(1λ, 1γ−1

, 1ζ
−1
, ρ, z) = ⊥

]
≤ 1− 4γ + η + γ + γ + negl(λ) ≤ 1− γ + negl(λ)

where we used η ≤ (γ/(18nT ′))2 ≤ γ. Combined with Property 1 of Lem. 18 which is already proven,
we have

Pr
[
K(1λ, 1γ−1

, 1ζ
−1
, ρ, z) = s∗z,1||...||s∗z,n

]
≥ γ − ζ − negl(λ).

This finishes the proof that K satisfies Property 2 of Lem. 18.

On Strictly QPT. Finally, we argue how to convert K into a strict QPT one. For some polynomial
C(λ), suppose that we modify K so that if it runs C(λ) times longer than its expected run time,
then it immediately outputs ⊥ and halts. Then K now runs in strict QPT. This modification does
not affect Property 1 since K only outputs ⊥ in the case of the time out. By Markov’s inequality, the
time out occurs with probability at most C(λ)−1, which may decrease the probability in Property 2
by at most C(λ)−1. Thus, if we set C(λ) in such a way that C(λ)−1 ≤ δ′(λ)/2, then Property 2 is
still satisfied if we replace δ′(λ) with δ′(λ)/2.

This completes the proof of Lem. 18.

10 Post-Quantum Non-Malleable Commitments: One-Many

In this section, we turn to the construction of a black-box commitment scheme that satisfies the weak
one-many definition of post-quantum non-malleability (as described in Def. 6). The construction
for this setting is identical to Prot. 3 (more accurately, its ‘two-sided’ version described in Sec. 8
and Prot. 10) given in Sec. 5.1, and thus uses the same component primitives. In effect, we show
that the security of Prot. 3 extends to the one-many case as well. This is stated formally below.

Theorem 11. For any polynomial N(λ) in the security parameter, Prot. 10 is a black-box, constant-
round construction of a 1-N post-quantum weakly non-malleable commitment (as per Def. 6) in the
synchronous setting, supporting tag space [T ] with T (λ) being any polynomial in λ.

Note that in Thm. 11, we have referred to the number of right sessions in the non-malleability
game by N , while this parameter was denoted by k in Prot. 3. We rename this for clarity, since k
is already used to denote an important quantity in our construction.

To prove Thm. 11, note that completeness and hiding can be argued similar as for Prot. 3. We
focus on showing 1-many non-malleability in the following.

10.1 Proof Overview

Technically, we need to prove weak 1-many non-malleability for Prot. 10. But to simplify the
presentation, we only focus on the ‘one-sided’ version of it (i.e., Prot. 3) in the following. This is
because we can use the same ‘two-slots’ trick as explained in Sec. 8 to lift the proof to the ‘two-sided’
setting as well.

While the setting is now different for the 1-many case, and our formalism for handling this
case has to change to account for this, we wish to emphasize that our core strategy and indeed our
intuition for this proof remains essentially the same! Intuitively, the fundamental idea behind our
proof is to design experiments that allow us to reduce non-malleability to the hiding property of
the initial commitment on the left. Now while the 1-many setting involves multiple parallel right
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sessions, there is only a single session on the left, and so our proof strategy and technique remains
largely unchanged—At a high level, we seek to extract a ‘trapdoor’ from Step 2c of the left session
to then decouple the main body of the left session from the commitment made in the prefix phase
(i.e., Step 1), and subsequently we extract the value from the Step 3 ExtCom of the right session and
show that this must be the committed value m̃ in the right session with sufficiently high probability.

This helps us better understand what remains unchanged (in the 1-many case) from our earlier
proof for Prot. 3, and what needs new treatment. The key thing that changes here is the extraction
step, which is now more involved. Note that to establish 1-many non-malleability, we must obtain
the tuple of values committed byM across all the N right sessions (and show this must not depend
on the left session commitment). So in our proof, we must extract the right side committed value
as before, but now we must do so simultaneously from all the parallel sessions with sufficiently
high probability. It is not clear that our technique so far extends directly to this case; indeed, this
extension to the simultaeneous extraction case turns out to be nontrivial and will be our focus here.

More technically, we will arrange our task as follows:

– First, we describe how to capture the reduction from non-malleability to the VSS hiding game
Expr. 1 by modifying the MIM experiment. This is essentially identical to what is presented in
Sec. 5.3 and 5.4. We will sketch the argument while mostly focusing on the syntactic differences
arising from the 1-many setting.

– We state the key lemma formalizing the existence of the simulator-extractor (i.e., the analog of
SE from Sec. 5.4) in the 1-many setting. This is used to complete the proof of non-malleability.

– We then show how to build an instanced version of the simulation-less extractor K from Lem. 11:
For each session j ∈ [N ] on the right, we design an extractor K(j) that works essentially the same
way as K in the 1-1 setting (i.e., in Lem. 11).

– Finally, we show how to get a full-fledged simulation-extractor from these K(j)’s using our simul-
taneous extraction lemma given in Lem. 18.

10.2 Reduction to VSS Hiding Game

We start by describing the analogs of the key experiments introduced in Sec. 5.3. We begin by
defining the real man-in-the-middle experiment.

Game HMλ(λ,m,N, ρλ): Analogous to Algo. 5.1, this is just the real MIM interaction, now in the
1-N setting. The game now takes the number of parallel right sessions N as input. We continue to
denote the left committer by C. But for clarity, we now refer to the various receivers on the right by
R(1), . . . , R(N) respectively. Recall that in the 1-N man-in-the-middle experiment, these receivers
function honestly and independently.

The output of this game is again denoted by OutHMλ (λ,m, ρλ) and consists of the following
parts:

1. OUT: The (quantum) output of M at the end of this game;

2. For each j ∈ [N ], τ̃ (j): The commitment transcript sent by M to R(j) in the Step 1 of the j-th
right session;

3. Also for each j ∈ [N ], d̃(j) ∈ {>,⊥}: The output of the honest receiver R(j) in the j-th right
session, indicating if Mλ’s commitment in the j-th right session is accepted (d̃(j) = >) or not
(d̃(j) = ⊥).
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We will also need to refer to the value committed in the right sessions. Toward that, we define
the function Γ{d̃(j)}kj=1

(·) in exactly the style given in Def. 6.
Specifically, let val(j)(τ̃) = val(j)(τ̃ (j)) denote the value committed in the j-th right session by

M (note that this is well defined by the statistical binding property).
Thus, to prove 1-N non-malleability as per Def. 6, we need only establish the following:{

Γ{d̃(j)0 }Nj=1

(
OUT0, {val(j)(τ̃0(j))}j∈[N ]

)
: (OUT0, {τ̃

(j)
0 , d̃

(j)
0 }j∈[N ])← HMλ(λ,m0, N, ρλ)

}
c
≈

{
Γ{d̃(j)1 }Nj=1

(
OUT1, {val(j)(τ̃

(j)
1 )}j∈[N ]

)
: (OUT1, {τ̃

(j)
1 , d̃

(j)
1 }j∈[N ])← HMλ(λ,m1, N, ρλ)

}
, (56)

where both ensembles are indexed by λ ∈ N and (m0,m1) ∈ {0, 1}ℓ(λ) × {0, 1}ℓ(λ).
We next turn to defining the machine H̃Mλ in the 1-N setting, which is the analog of Algo. 5.2

in Sec. 5.3.

Algorithm 10.1: Game H̃Mλ(λ, ε,m,N, ρλ) in 1-N Setting

Input: This takes as input the same parameters λ, ρλ, m, and N as for HMλ . It additionally
takes as input a noticeable function ε(·).
It proceeds as follows:
1. (Prefix phase.) This proceeds as follows.

(a) Sample a random size-k subset η ⊂ [n].
(b) Execute HMλ(m,N, λ, ρλ) until the end of Step 1. At the moment, it already receives

the Step 1 commitment made by the left-session honest committer C. It performs brute-
force computation to obtain from C’s commitment the committed shares cvi and their
decommitment information for i ∈ η. We denote these values as VIη := {(cvi, decomi}i∈η.

Notation: Let stM denote the state of M at the end of Step 1; Let stC (and {st(j)R }j∈[N ])
denote the state of the honest committer (and receivers) at the end of Step 1; Let {τ̃ (j)}j∈[N ]

denote the commitments sent by M in Step 1 in all the N right sessions. We denote the tuple
(stM, {st

(j)
R }j∈[N ], τ, {τ̃ (j)}j∈[N ]) as pref1:N . We use the following nation to express the execution

of this Prefix phase:

pref ′
1:N := (pref1:N , η,VIη)← H̃Mλ

pref (λ,m,N, ρλ). (57)

We remark that this prefix generation step is independent of the error parameter ε.
2. (Remainder phase.) This involves the following steps:

(a) H̃Mλ invokes the G1(1λ, 1ε
−1
, pref1:N , η,VIη)) defined in Algo. 10.2 (where pref1:N is now

as defined above in the 1-N setting), which now outputs a tuple (OUT, {d̃(j)}j∈[N ]).

(b) H̃Mλ outputs (OUT, {τ̃ (j)}j∈[N ], {d̃(j)}j∈[N ]).

We now describe the subprocedure G1(·) adapted to the 1-N setting, which is the analog of
Algo. 5.3 in Sec. 5.3.

Algorithm 10.2: Machine G1(1λ, 1ε
−1

, pref1:N , η,VIη) in 1-N Setting

Machine G1(1λ, 1ε
−1
, pref1:N , η,VIη) works in the same manner as the G1(1λ, 1ε

−1
, pref, η,VIη) defined

in Algo. 5.3 but in the 1-N setting. This is even no need to give a full description of the current

77



G1(1λ, 1ε
−1
, pref1:N , η,VIη), because it has literally identical syntax as the G1(1λ, 1ε

−1
, pref, η,VIη)

defined in Algo. 5.3—All the G1(1λ, 1ε
−1
, pref, η,VIη) does is to make some modifications on the

left session; Here in the 1-N setting, we also has only a single left session. So, what our current
G1(1λ, 1ε

−1
, pref1:N , η,VIη) does is to do the same thing on the left session as Algo. 5.3 and follow

the honest receivers’ algorithm on the right sessions.
The only point that deserves a remark is the format of the output of the current G1 in the 1-N
setting, which we describe as follows:
– It finally outputs the values (OUT, {d̃(j)}j∈[N ]), where again OUT is M’s final output and
{d̃(j)}j∈[N ] are the final decisions by the honest R(j)s in the N right session.

As in Sec. 5.3, one can again show that the outputs of H and H̃ defined above are computa-
tionally indistinguishable (i.e., an analog of Lem. 8). We next turn our attention to the machine
G̃ in the 1-N setting that makes use of our simultaeneous simulator-extractor. This machine is the
analog of Algo. 5.4 in Sec. 5.3.

Algorithm 10.3: Game G̃Mλ(λ,m,N, ρλ, ε)

This proceeds in two phases as well:
1. (Prefix phase.) This is identical to the prefix phase of Algo. 5.2, i.e., it computes

(pref1:N , η,VIη)← H̃Mλ
pref (λ,m,N, ρλ).

2. Remainder phase: This involves the following steps:
– It invokes a machine SE , which is guaranteed to exist by the following Lem. 25: SE takes in

as input a tuple (1λ, 1ε
−1
, pref1:N , η,VIη) and outputs (OUT, {Val(j)}j∈[N ]).

– G̃Mλ outputs (OUT, {Val(j)}j∈[N ]) as its own output.

With this, we can turn to the main lemma: comparing executions of H̃ and G̃. Note that in
the latter game we also obtain the committed values in the right sessions. Then Lem. 25 that is
analogous to Lem. 9 shows that these executions yield outputs that are close up to a controllable
error parameter:

Lemma 25 (1-many Simulation-Extractor). Let G1(·) be the efficient procedure defined in
Algo. 10.2. For any polynomial N(λ) in the security parameter λ, there exists a simulation-extractor
SE such that for any (pref1:N , η,VIη) in the support of H̃Mλ

pref , and for any noticeable ε(λ), there is
a noticeable ε′(λ) ≤ 8ε(λ) that is efficiently computable from ε(λ) such that the following holds:{

(OUT, {Val(j)}j∈[N ]) : (OUT, {Val(j)}j∈[N ])← SE(1λ, 1ε
−1
, pref1:N , η,VIη)

}
c
≈ε

{
Γ{d̃(j)}Nj=1

(
OUT, {val(j)

d̃
(τ̃)}j∈[N ]

)
: (OUT, {d̃(j)}j∈[N ])← G1(1λ, 1ε

′−1
, pref1:N , η,VIη)

}
.

The remainder of the proof to non-malleability can be shown just as in the earlier setting (via
the reduction to the VSS hiding game as done in Sec. 5.4). We omit the details to avoid repetition.
Instead, we will focus on the key task of building this simulator-extractor SE . Our approach will be
the same as before—Namely, for each right session j ∈ [N ], we will first describe a base extractor
K(j) that is essentially the extractor K from Lem. 11 but localized to session j, and then show (in
Sec. 10.4) how to use these ‘localized’ versions of K to obtain the 1-N simulation-extractor SE as
required by Lem. 25.
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10.3 Localized Simulation-Less Extractors K(j)

Recall that we defined the shorthand pref ′1:N := (pref1:N , η,VIη). Also, we define the following
quantity pSim

pref′1:N
[ε1] that will be important in the formal statement of K(j)s. It is the 1-N analog

of the quantity pSim
pref′

[ε1] defined in Eq. (11).

pSim
pref′1:N

[ε1] := Pr
[
∧j∈[N ]

(
d̃(j) = >

)
: (OUT, {d̃(j)}j∈[N ])← G1(1λ, 1ε

−1
1 , pref ′1:N )

]
. (58)

The following lemma states the formal guarantee provided by these localized base extractors
K(j). It is the 1-N analog of lem. 11.

Lemma 26 (Localized Simulation-less Extraction). For any polynomial N(λ), let H̃Mλ
pref (λ,m,N, ρλ)

be as defined in Algo. 10.1. There exist QPT machines {K(j)}j∈[N ] such that for any noticeable ε(λ),
there is a noticeable ε1(λ) ≤ ε(λ) that can be efficiently computed from ε, such that for any no-
ticeable ε2(λ) and any tuple pref ′1:N = (stM, {stR(j)}j∈[N ], τ, {τ̃ (j)}j∈[N ], η,VIη) in the support of
H̃Mλ

pref (λ,m,N, ρλ), the following conditions hold:

1. (Almost Uniqueness:) For each j ∈ [N ], K(j) takes as input (1λ, 1ε−1
1 , 1ε

−1
2 , pref ′1:N ). It outputs

a value Val(j) ∈ {0, 1}ℓ(λ) ∪ {⊥} that satisfies

Pr
[
Val(j) /∈ {val(τ̃ (j)),⊥} : Val(j) → K(j)(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′1:N )

]
≤ ε2(λ) + negl(λ).

2. (Extraction:) If pSim
pref′1:N

[ε1] ≥ ε(λ), then for each j ∈ [N ] it holds that

Pr
[
Val(j) = val(τ̃ (j)) : Val(j) ← K(j)(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′1:N )

]
≥ ε′(λ)− ε2(λ)

t̃
,

where pSim
pref′1:N

[ε1] is defined in Eq. (58) and ε′(λ) := ε(λ)
10t2

.

This statement of the simulation-less extractor(s) in the one-many setting looks quite different
from the one appearing in Lem. 11, and at first glance, seems to be significant extension of the
latter. At the very least, there are more moving parts with the multiple parallel sessions on the
right. Further consideration however reveals that this is not quite the case. The trick to this is
to see that since the receivers R(1), . . . R(N) in the right sessions operate independently, and act
honestly (unless we extract in that session), we can simply treat them as standard interactions of
the commitment.

In particular, when invoking this extractor on a particular session j ∈ [N ], we can treat the
other right sessions as context: in more detail, given the 1-many man-in-the-middle adversary M,
we can come up with a new adversary M(j) that runs the other parallel sessions internally in a
one-many MIM interaction with M and then treats the j-th session as the sole right session in a
one-one MIM interaction. We can then apply Lem. 11 to derive these guarantees for K(j) (where
the MIM adversary is M(j)). Armed with this reasoning, we can see that Lem. 26 readily follows
from Lem. 11.

This also allows us to set parameters the same way as in Lem. 11. Namely, we work by first
fixing a noticeable ε(·) and then set ε1(λ) := t+1

t2+4t+2
· ε′(λ) with ε′(λ) := ε(λ)

10t2
.
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10.4 Simulation-Extractor SE: 1-Many Setting

To finish the proof of Lem. 25 (and thus the proof of weak 1-many non-malleability), there are two
things left now. First, we will build a simultaneous simulation-less extractor K that extracts the
m̃(j)’s in all the right sessions. As long as we have such an K, we can re-use the noisy simulation
extraction lemma (i.e., Lem. 17) to upgrade it to the desired simulation-extractor SE as required
by Lem. 25. In the following, we elaborate on these two steps.

Simultaneous Simulation-less Extractor K. Such a K can be built by applying the simultaneous
extraction lemma we developed in Lem. 18 to the localized simulation-less extractors K(j)’s. For
that, we first need to prove that these K(j)’s in Lem. 26 indeed satisfied the prerequisites in Lem. 18.
Similar as in Sec. 7.2, we will not show it directly with the K(j)’s. Some ‘wrapper’ machines need
to be defined to make the parameters match. Fortunately, this step is almost identical to what we
did in Sec. 7.2. We will be able to use almost the same parameter settings.

Machine G′: it takes as input (1λ, 1γ
−1
, pref ′1:N ) and proceeds as follows:

1. Set ε := γ.
2. Compute ε1 from ε. Note that this can be done because Lem. 26 stipulates the there is a

noticeable ε1 ≤ ε that is efficiently computable from ε.
3. Run machine G1(1λ, 1ε

−1
1 , pref ′1:N ) (as per Lem. 26) and output whatever it outputs.

Machine K′(j) (j ∈ [t̃]): it takes as input (1λ, 1γ
−1
, 1ζ

−1
, pref ′1:N ) and proceeds as follows:

1. Set ε := γ.
2. Compute ε1 from ε. Note that this can be done because Lem. 26 stipulates the there is a

noticeable ε1 ≤ ε that is efficiently computable from ε.
3. Set ε2 := ζ.
4. Run machine K(j)(1λ, 1ε

−1
1 , 1ε

−1
2 , pref ′1:N ) (as per Lem. 26) and output whatever it outputs.

Compare the above machines with the G′ and K′ defined in Sec. 7.2, the only differences regarding
the parameters is that we set ε1 = γ directly, instead of ε1 = 8γ. That is because the RHS of the
Assumption 2 of Lem. 18 is γ(λ) ( instead of 8γ(λ) in the RHS of Item 2 in Lem. 17).

Now, if we treat the above G′ as machine V in Lem. 18, treat the above {K′(j)}j∈[N ] as the
machines {Ki}i∈[n] (i.e., n = N), and set δ(λ) :=

ε′(λ)

t̃
, then it is straightforward to see that that

Assumption 1 and Assumption 2 of Lem. 18 are satisfied.36 Thus, Lem. 18 implies the desired
simultaneous simulation-less extractor K that is able to extract all the committed values in the N
right sessions.

1-Many Simulation-Extractor SE. Finally, simply observe that Properties 1 and 2 in Lem. 18 is
exactly the prerequisites of the noisy simulation-extraction lemma (i.e., Lem. 17). Thus, a straight-
forward application of Lem. 17 to the machines K and V (with them being the K and G in Lem. 17)
implies our desired simulation-extraction SE in the 1-N setting. This finishes the proof of Lem. 25
, and thus in turns finishes our proof of weak 1-N non-malleability (i.e., Def. 6).

Note that limitation to weak 1-many non-malleability is somewhat inherent to our approach:
the simultaeneous simulator-extractor we define has a requirement on the machine that corresponds
to G′ — namely, it should output > with a certain noticeable probability. In our interpretation,
36 Similar as in Sec. 7.2, pref′1:N , {τ̃ (j)}j∈[N ], and {val(τ̃ (j))}j∈[N ] play the role of, ρλ, zλ, and {s∗zλ,j}j∈[N ] respectively.
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this output corresponds to the conjunction of all the verifier decisions (accept/reject) in the right
sessions. This condition translates to assuming that our MIM adversary completes every right
session successfully with a reasonably large probability, and so our treatment can only consider
adversaries that obey this constraint — and not ones, for example, that always abort in certain
right sessions. We thus eschew showing standard 1-many non-malleability; and as we shall later see,
weak one-many non-malleability suffices for the applications we have in mind for our commitment.

11 Post-Quantum Multi-Party Parallel OT

In this section, we describe a black-box, constant-round protocol implementing the n-party OT
functionality (as defined in Fig. 1) w.r.t. the ε-simulatable PQ-MPC security notion (as per Def. 7).
We state the definition we will be able to realize and work-with in Def. 18.

Figure 1: The Ideal Functionality Fn
OT

The functionality FnOT is specified by the number of distinct senders Si and receivers Rj (for
i, j ∈ [n]). It acts as follows:

Sender’s Message: FnOT receives (send, i, j, si0, s
i
1) from a sender Si (which also specifies a pur-

ported receiver Rj). It ignores this message if i = j. Otherwise, it records this quintuple, and
ignores subsequent messages that have the same initial triple (send, i, j).

Receiver’s Message: FnOT receives (receive, i, j, b) from a receiver Rj . It responds with
(open, i, j, sib) to the receiver Rj .

Definition 18 (Post-Quantum Multi-Party OT with ε-Simulation). A protocol Π is called
a malicious multiparty secure oblivious transfer protocol if for every polynomial n := n(λ), Π is a
post-quantum (ε-simulatable) MPC protocol for FnOT precisely as stated in Def. 7.

Below we will describe a constant-round, black-box protocol and prove that it satisfies Def. 18.
Our approach will in fact be to first describe a 2-party OT protocol Π running in constant rounds,
and then show that the parallel repetition of Π satisfies the requirements of Def. 18.

More precisely for a 2-party protocol Π, let us define the n-fold parallel repetition as follows:
consider n entities where each entity would like to participate in an OT session both as a sender and
as a receiver against all the other entities in parallel. In other words, for each i 6= j ∈ [n], we consider
two OT sessions between parties Pi and Pj where in one Pi plays the role of sender and Pj that
of the receiver, and vice versa in the other. This comprises 2 ·

(
n
2

)
parallel independent executions

of Π. We will show that the n-fold parallel repetition of Π (denoted by Πn) is a post-quantum
(ε-simualatable) MPC protocol for FnOT.

We note that sequential composition would serve the same purpose were we not constrained
by the constant-round requirement. Relying on parallel composition, however, we get the desired
constant-round OT protocol since Πn has the same round complexity as Π.

11.1 Building Blocks

Before diving into the main construction of the parallel malicious secure OT protocol, we need
some building blocks.

Malicious-Sender Secure OT: The first component we require is a constant-round OT protocol
with a simpler or weaker property: namely, with security against malicious senders and semi-honest
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receivers. Additionally, we require that the associated simulator for proving security be straight-
line. Fortunately, such schemes are known to be easily obtainable from any of the following: post-
quantum dense cryptosystems, post-quantum linearly homomorphic PKE, or post-quantum lossy
PKE (see, e.g., [CDMW09, Wee10]). These schemes are black-box constructions and also work in
the post-quantum setting (due to straightline security proofs).

Theorem 12 ([CDMW09, Wee10]). There exist two-round and black-box post-quantum OT
schemes with indistinguishability security against honest receivers and simulation security against
malicious QPT senders, based on (any of) post-quantum dense cryptosystems, linearly homomorphic
public key encryption, or lossy public key encryption.

We will denote such a protocol by Γ , where the sender uses as inputs two strings (s0, s1) and
receiver uses as input a bit r. For technical reasons we will also refer in our construction to the
receiver’s private random tape in the protocol, which we denote as a string τ of length t(λ) that is
a polynomial in the security parameter.

Post-Quantum Extractable Commitment: We make use of the post-quantum parallelly ex-
tractable commitment scheme ExtCom with ε-simulation (as per Def. 4), which can be built in
black-box from any post-quantum OWFs (see Lem. 3).

1-Many Weak Non-Malleable Commitment: The final component we require is a constant-
round, post-quantum, 1-many weakly non-malleable commitment scheme that is also parallel ε-
simulation extractable. To make our overall OT construction fully black-box, we also require this
construction to be fully black-box. Fortunately, such a construction is available to us from Sec. 10.

We note that the extractablity property mentioned above is easily observed due to the intrinsic
execution of ExtCom in Step 3 of Prot. 3, for which we can invoke the associated SEExtCom (it is easy
to see that this step also commmits to the initial committed value with overwhelming probability).
Indeed, such an observation was made in [LPY23a]. We denote this protocol by ENMC.

11.2 Construction
Our construction is given below in Prot. 4.

Protocol 4: The parallel malicious secure OT scheme Π

Parameters: The security parameter is denoted by λ. Other parameters will be specified by
polynomials in λ unless otherwise specified.
Receiver’s input: A bit r ∈ {0, 1}
Sender’s input: Strings s0, s1 ← {0, 1}ℓ
The protocol proceeds as follows:

1. Phase I: Random Tape Coin Tossing
(a) The receiver samples 2λ uniform random strings (rR1 , τ

R
1 ), . . . , (rR2λ, τ

R
2λ) of length t + 1

corresponding to samples of the receiver’s input bit and randomness for Γ .
(b) The receiver then runs 2λ parallel executions of ExtCom with the sender, where the receiver

commits to the values (rR1 , τ
R
1 ), . . . , (rR2λ, τ

R
2λ) independently.

(c) The sender then samples 2λ uniform random strings (rS1 , τ
S
1 ), . . . , (r

S
2λ, τ

S
2λ) of its own and

sends these back to the receiver.
(d) The receiver sets ri = rRi ⊕ rSi and τi = τRi ⊕ τSi for i ∈ [2λ].

2. Phase II: Base OT Execution
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(a) The sender samples 2λ pairs of uniform random strings (s01, s
1
1), . . . , (s

0
2λ, s

1
2λ).

(b) The sender and receiver then execute 2λ parallel executions of Γ . For the ith execution,
the sender uses the inputs (s0i , s

1
i ) and the receiver uses input ri and randomness τi (for

each i ∈ [2λ]).
3. Phase III: Cut & Choose

(a) The sender samples an uniform random string qS
$←− {0, 1}λ. It then runs an execution of

ENMC with the receiver to commit to the string qS .

(b) The receiver then samples an uniform string qR
$←− {0, 1}λ and sends this back to the

sender.
(c) The sender provides the decommitment of its commitment to qS to the receiver.
(d) Both parties then compute q = qS ⊕ qR. They also compute the description of a subset

Q ⊂ [2λ] of size λ using the following correspondence: Q = {2i− qi}λi=1 where qi is the ith
bit of q. More descriptively, we imagine the previous 2λ executions of Γ to be laid out in
λ pairs (of adjacent executions). Then Q marks the subset of executions to be ‘opened’,
including the first or second execution in each of the λ pairs depending on whether qi is 0

or 1 (so Q has exactly one member in each pair).
(e) For each i ∈ Q, the receiver decommits its phase I commitment to (rRi , τ

R
i ).

(f) The sender then computes (ri, τi) for all such sessions i ∈ Q. It next checks that (ri, τi)

is consistent with the receiver’s messages in the ith parallel session of Γ in phase II. The
sender aborts if this is not the case.

4. Phase IV: OT Combiner
(a) For every j /∈ Q, the receiver computes αj = r ⊕ rj (recall r is its original input bit) and

sends the list {αj}j /∈Q to the sender.

(b) The sender then computes σ0 = s0 ⊕ (
⊕

j /∈Q s
αj

j ) and σ1 = s1 ⊕ (
⊕

j /∈Q s
1−αj

j ). It sends
(σ0, σ1) to the receiver.

(c) Finally, the receiver computes and outputs the string sr = σr ⊕ (
⊕

j /∈Q s
rj
j ).

Remark 7. We note here that we can use an ENMC scheme as described above in lieu of ExtCom

in Step 1 without losing anything in terms of functionality (indeed, earlier works do exactly this).
We use the extractable commitment ExtCom separately for modularity and to invite a clearer
examination of how the separate components and assumptions are used in our construction and
what role they play in security.

11.3 Security

The correctness of Prot. 4 is straightforward. We turn to proving security for this scheme. This is
captured formally by the following theorem.

Theorem 13. Let λ denote the security parameter. Let Γ , ExtCom, and ENMC be as described
in Sec. 11.1. Then, the n-fold parallel execution of Prot. 4 (i.e., an execution among n parties,
where each pair of parties run two independent parallel instances with reversed roles of sender and
receiver) realizes Def. 18, for any polynomial n = n(λ).
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Algorithm 11.1: The simulator S for the parallel malicious secure OT protocol

Description: The simulator S enjoys black-box access to the possibly quantum adversary A. The
simulator may interact using quantum communication with the adversary occasionally (indeed,
this is required to carry out the quantum analog of rewinding). It also takes in as input the security
parameter as 1λ, and the error parameter as 11/ε. Thus its runtime is poly(λ, ε−1).

Operation: Note that the simulation is for an n-fold parallel execution of Π, where A may corrupt
a single party in each session of Π. In each session, S will act according to which of the parties A
corrupts. Its operation is detailed below.

Sender Corruption: S takes over the receiver operation for the session. It acts as follows:

– Preamble: It starts by sampling an uniform string q $←− {0, 1}λ and computing the associated
subset Q ⊂ [2λ].

– Phase I: For each i ∈ Q, S acts just as the honest receiver for this phase, committing to
uniformly sampled (rRi , τ

R
i ). However, for each i /∈ Q, S commits to the strings (0, 0t) (i.e., sets

ri, τi to be the zero strings of appropriate length).
– Phase II: For each i ∈ Q, S plays out the execution of Γ honestly with the above sampled

(rRi , τ
R
i ). However, for each i /∈ Q, it S runs the simulator SΓ for Γ to simulate the view of A

in this phase, and also extracts A’s inputs in this phase, namely the strings {(s0i , s1i )}i/∈Q.
– Phase III: S uses the weak parallel ε-simulator-extractor for ENMC to extract the value qS

from the sender-side non-malleable commitment. Note that such an extractor returns ⊥ if even
one of the component executions was declared invalid by the ENMC receiver. In such a scenario,
the simulator calls for the ideal functionality FnOT to abort the entire execution, and halts its
own operation, outputting the adversary’s state. Otherwise, it then sets qR = q ⊕ qS and sends
this back to the sender. Next, when the corrupted sender opens its commitment to qS , S opens
its own commitments to {(rRi , τRi )}i∈Q.

– Phase IV: S sends uniformly chosen bits {αj}j /∈Q to the corrupted sender, which sends strings
(σ0, σ1) back in turn. S then computes s0 = σ0⊕ (

⊕
j /∈Q s

αj

j ) and s1 = σ1⊕ (
⊕

j /∈Q s
1−αj

j ) (recall
that it extracted {(s0i , s1i )}i/∈Q earlier in Phase II). S then sends the functionality FnOT for the
relevant session with inputs (s0, s1). This completes its execution for this session.

Receiver corruption: S takes over the sender operation for this session. It proceeds as follows:
– Phase I: For i ∈ [2λ], S
• uses the ε-simulator-extractor for ExtCom to extract the values (rRi , τ

R
i ) committed by the

corrupted receiver,
• samples uniformly random strings (ri, τi), and
• sets rSi = ri ⊕ rRi , τSi = τi ⊕ τRi and sends these values to the corrupted receiver.

– Phase II: S acts exactly as the honest sender does in this phase.
– Phase III: S acts exactly as the honest sender does in this phase.
– Phase IV: S computes an index j∗ /∈ Q such that the values (rj∗ , τj∗) are consistent

with the messages the corrupted receiver sent in the j∗th execution of Γ in Phase II
(note that to perform this check, S crucially needs the values it extracted in Phase I).
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If there exists no such session, S outputs a special symbol Fail and halts immediately. If the
execution continues, it next receives the values {αj}j /∈Q from the corrupted receiver, and com-
putes r = αj∗ ⊕ rj∗ and queries FnOT for the appropriate session with input r. Upon receiving a
reply sr from FnOT, S then computes the values (σ0, σ1) as follows:

• If r = 0, then it sets σ0 = s0 ⊕ (
⊕

j /∈Q s
αj

j ) and samples an uniform σ1
$←− {0, 1}ℓ.

• If r = 1, then it samples an uniform σ0
$←− {0, 1}ℓ and sets σ1 = s1 ⊕ (

⊕
j /∈Q s

1−αj

j ).

Proof. Our proof relies on a simulator for the n-fold parallel execution of the scheme Π, which we
can denote by Πn. Our simulator S for this protocol is described in Algo. 11.1. It is easily seen that
this simulator runs in (quantum) polynomial time.

Our proof, very broadly, rests primarily on two claims Lem. 27 and 28. The first is that the
special abort condition Fail specified in the description of S is triggered with at most negligible
probability. The second claim says that in the event that S does manage to not trigger Fail, it
goes on to furnish a viable simulation of the execution Πn. The logic of the proof is thus fairly
straightforward, and we now turn to formalizing these claims and their respective justifications.

Lemma 27. Denote the adversary for Πn by A. Recall that S = SA is the simulator for Πn (i.e.,
the procedure that produces IDEALFn

OT,SA
(λ,x, ρλ)). Then we have

Pr[Fail← S] ≤ negl(λ)

Proof. A similar proof already appears in [Wee10, Goy11]. The proof is in fact almost identical, with
two notable differences: (1) we need to take care of the ε simulation error; (2) while [Wee10] defines
non-malleability w.r.t. extractability and [Goy11] defines non-malleability w.r.t. replacement, we
do not need such adjustments since we have fully many-many non-malleability.

Assume that there is in fact an adversary A for Πn that runs in polynomial time, and also is
such that Pr[Fail← S] = ν(λ) where ν(·) is non-negligible. Assume that S outputs Fail in a specific
session k ∈ [n′] (where n′ := 2 ·

(
n
2

)
).

We begin by examining exactly when S outputs Fail during simulation. From the description of
S, this happens only when the receiver is corrupted in session k, and there is no sub-index j∗ ∈ [2λ]

which is (i) not opened in the cut and choose phase, and (ii) A behaves honestly in the session of Γ
corresponding to j∗. In fact, with further consideration, we can infer that the following must also
happen:
– For each pair in the 2λ executions, A behaves honestly in exactly one execution in the pair: if

it did cheat in both, then it cannot succeed in opening either execution in the pair during the
cut and choose execution; if indeed it did not cheat in either, we have nothing to worry about
and can set j∗ to be the index of the unopened execution. Consequently, there is an unique bit
for every pair of (sub-)executions of Γ , and therefore a unique string q∗ ∈ {0, 1}λ across the 2λ

executions of Γ , which when picked in the cut and choose phase will allow A to cheat.
– Further,Amust ensure in Step 3 that q∗ is indeed the result, i.e., it sends qR such that qS⊕qR = q∗.

We will use this observation to attack the non-malleability of ENMC and eventually derive a
contradiction. To begin, we consider certain hybrids relating to Step 3 of Πn. We define the view
or output of a hybrid to be the adversary’s view of the Πn of the hybrid execution (therefore,
corresponding to the output variable IDEAL for the simulator).

Hybrid H0: This is simply the simulated execution of Πn. For clearer contrast with subsequent
hybrids, we make note of the index k identified as above. Further, we use K ′ ⊂ [n′] to denote the
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indices of the sessions in which A corrupts the sender (note that k and K ′ are random variables).
In particular, we emphasize that H0 aborts the entire execution if any of the ENMC executions for
Step 3a in the OT sessions in K ′ are not accepted by the corresponding receiver (see Phase-III
for sender corruption in Algo. 11.1). Further, the hybrid also records the values {qk′S }k′∈K′ that it
extracts in Step 3a.

Remark 8. In H0, we have that the following condition holds by the above analysis: with probability
ν, the receiver picks qkR such that qkS ⊕ qkR = q∗.

Hybrid H1: This hybrid only differs from H0 in the following operation: instead of using the
simulator-extractor for ENMC to extract the values {qk′S }k′∈K′ from Step 3a, it instead extracts
them by running a brute force attack on the transcript of the Step 3a ENMC execution (recall that
the hybrid then requires these values to finish its execution of Step 4). If however any of the ENMC

sessions in K ′ corresponding to Step 3a are not completed successfully, the extracted values for all
ENMC sessions in K ′ are set to be ⊥.

Additionally, we make the following syntactic change for Step 3b in session k: instead of the
hybrid sampling qkS directly, it instead samples an uniform value q′kS

$←− {0, 1}λ, and then sets
qkS = q′kS .

Out(H0)
s
≈ε Out(H1): A cursory examination reveals that the actual view of the adversary remains

identical in both hybrids till Step 3. The extracted values {qk′S }k′∈K′ , and the resulting adversary
state, are ε-indistinguishable inH0 andH1 by the (weak-parallel) ε-simulation-extraction guarantees
of ENMC (as per Def. 4), and Step 4 is otherwise unaffected (crucially, note that both hybrids
suspend the entire execution whenever any ENMC within OT sessions in K ′ is not accepted by the
corresponding receiver, and the ‘extracted’ values are set to ⊥ in such cases). Indistinguishability
of the entire view of A follows.

Remark 9. We note from the above indistinguishability condition that in particular, the receiver
in session k continues to pick qkR such that qkS ⊕ qkR = q∗ with probability at least ν − ε.

Hybrid H2: This hybrid samples an uniform q′kS as in H1, but sets qkS = 0λ instead of q′kS . All other
steps remain the same as in H1. We note here that the operation of H2 is efficient but for the brute
force extraction from Step 3a.

Out(H1)
c
≈ Out(H2): At first glance it may appear that this should be guaranteed directly by the

hiding guarantee of the ENMC in Step 3a. This is however not the case: the reason is that while
we have so far focused only on the session k, in truth the hybrid is also following the simulation
strategy for corrupted senders in the sessions in K ′. Note that in these sessions, the simulator itself
is extracting the sender side ENMC values using brute force (starting from H1)! This happens in
parallel to the change we would make in H2, and hence we cannot appeal to the computational
hiding property.

What we can do however is appeal to the weak 1-many non-malleability property of ENMC. As
pointed out, the executions of ENMC resemble that of a 1-many man-in-the-middle attack, where
the one in session k is the ‘left’ session, and those in the sessions in K ′ form the ‘right’ sessions. Note
that such a reduction, argued naively, will still inherit the brute-force extraction issue (whereas non-
malleability is still a computational property). However, one can maneuver around this difficulty
using the design of the non-malleability challenge: the extracted values {qk′S }k′∈K′ (required by the
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hybrid to complete the execution and manufacture its output) are not extracted by the adversary
itself — instead, the challenger does so itself and then presents them to the distinguisher. Then,
if all the right sessions are successfully completed, we allow the distinguisher (using a standard
nonuniformity argument) to ‘resurrect’ the hybrid and complete the execution. Since the only
brute force step by the hybrid is actually carried out by the challenger, this makes the adversary-
distinguisher pair efficient, giving us a valid reduction to weak 1-many non-malleability.

Note that weak 1-many non-malleability indeed suffices in this setting, because of the deliber-
ate construction of our hybrids. In more detail, observe that at the end of Step 3a, H1 has the
corresponding information to exactly reconstruct Γ{dj}kj=1

(mim[k]Mλ

⟨C,R⟩(q
′k
S , ρλ)), whereas H2 has the

information to exactly reconstruct Γ{dj}kj=1
(mim[k]Mλ

⟨C,R⟩(0
λ, ρλ)). In other words, any cases where the

adversary chooses to selectively not complete some of the right ENMC sessions are discarded by the
hybrids — and so only cases where all right sessions are successfully completed are considered. This
ensures that we can then successfully rely on weak one-may non-malleability to argue similarity.

We proceed to formally reduce this claim to the weak 1-many nonmalleability of ENMC as
defined in Def. 6. In more detail, assume there is a distinguisher D that can distinguish (with
non-negligible advantage κ(λ)) between the outputs of H2 and H1. We describe a valid man-in-
the-middle adversary and distinguisher pair (Ã, D̃) for the weak 1-many non-malleability game. We
make use of the original adversary A and the assumed distinguisher D. The description of Ã and
D̃ are given below.

The adversary Ã works as follows:
– Internally, it runs the hybrid H2 with A embedded in the execution. It continues this up to the

start of Step 3.
– Next, it externally begins participating in a 1-many challenge for ENMC, with challenge messages

0λ and q′kS (uniformly sampling the latter).
– It forwards the challenger’s sender (or ‘left-side’) messages as the Step 3a sender messages in

session k of Π, and forwards out the receiver’s session k replies out to the challenger as its own
left-side receiver messages. Similarly, it cross-forwards the ENMC interactions for Step 3a in the
sessions in K ′ to act as the ‘right-side’ ENMC interactions in the external challenge.

– At the end of Step 3a, it records its view and the adversary’s state as its output, and halts.
Note that the adversary’ state may be quantum, but this is okay as the MIM adversary for
post-quantum non-malleability is allowed to output quantum information.
The distinguisher D̃ works as follows:

– D̃ receives the output of Ã from the challenger, along with the left-side committed values q′kS . It
then reconstructs the operation of the hybrid up to the start of Step 4 (along with the appropriate
state of A at this stage).

– From the 1-many non-malleability challenger, it then receives the values committed by Ã in the
right side sessions, namely {qk′S }k′∈K′ .

– It then completes the execution of the hybrid and feeds the resulting hybrid output to D. It then
outputs whatever D does.
It is easy to see that the operation of Ã and D̃ follow exactly the execution of the hybrid H1

if the ENMC challenger commits to q′kS in the left side commitment, and conversely these follow
exactly the execution of H2 when the ENMC challenger commits to 0λ. Consequently, within D̃, the
view fed to the distinguisher D comes either from H1 or H2. Therefore D̃ succeeds in winning the
weak 1-many nonmalleability challenge whenever D distinguishes successfully within these hybrids.
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Thus (Ã, D̃) win the weak 1-many non-malleability challenge with non-negligible probability κ,
which contradicts the security of ENMC. We conclude that there is no such efficient distinguisher
D that manages to distinguish between H1 and H2 with non-negligible probability.

Finally, in the hybrid H2, we obtain a contradiction. Set ε = ν/2. From the above, we can
conclude that even in H2, we have that the receiver in session k continues to pick qkR such that
q′kS ⊕q

k
R = q∗ with non-negligible probability ν/2. Recall that q′kS is sampled uniformly by H2 and not

used in its internal execution of Πn. Therefore, q′kS is not seen by A. This is a clear contradiction,
since an uniformly sampled string of λ bits that is absent from the view of A has entropy λ from
A’s point of view; and so even a quantum (or even unbounded) machine can predict this string
with probability 1

2λ
, which is negligible.

This concludes the proof of Lem. 27.

We turn now to the second claim.

Lemma 28. Conditioned on the event E where S does not output Fail, S produces a valid simulation
of Πn with respect to A. Namely, given that E occurs, we have

REALΠn,A(λ,x, ρλ)
c
≈ε IDEALFn

OT,SA
(λ,x, ρλ)

Proof. This is essentially the same argument that is used in previous work [Wee10, IKLP06]. We
refer the reader to these for a full proof, and include a sketch of the proof for the sake of complete-
ness.

The case for simulating for a corrupted sender is straightforward, relying directly on the ma-
licious sender security of Γ . The only thing of note here is that since the simulator relies on the
simulator-extractor for ENMC, it inherits an ε simulation error for the portion of the view from
Step 3a onwards. This is reflected in the final simulation guarantee stated in the lemma.

We focus instead on the corrupted receiver case. Here we observe that if S does not output Fail,
then everything in the first three phases is essentially identical to how an honest sender acts, and it
is only in the values (σ0, σ1) that the simulator’s distribution changes. A distinguisher for the real
and simulated view can then be used to attack the honest receiver security of Γ .

The attack is somewhat subtle, but it essentially uses the following observation: the ‘hidden’
value σ1−r has the ‘correct’ distribution in the real execution, while in the simulated execution it
is uniformly sampled. Thus a distinguisher for the real and simulated executions will be biased
towards identifying an execution as ‘real’ when the hidden value has the correct distribution. The
actual reduction makes an initial guess as to the hidden value and performs a sort of retroactive
check, and uses the distinguisher’s output cleverly to gain advantage in the honest receiver security
game for Γ .

Of course, to make this reduction meaningful, care has to be taken to make sure that the internal
Γ sub-execution within Π is indeed honest. This is essentially the function of the session j∗ tracked
by the simulator: for this session of Γ , we are guaranteed that the adversary uses honest inputs -
as the simulator extracts all the receiver inputs initially and aborts if this is not the case.

Note that again we have to account for the ε-simulation guarantee from the extraction step in
phase I, but this can be handled by a standard ‘funneling’ argument (i.e., start by assuming an
distinguisher with a certain distinguishing advantage, and set ε to be significantly smaller to still
derive a contradiction).

This concludes the proof of Lem. 28.
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Finally, we tie together these claims to obtain the stated result. Since Fail is a simulator specific
abort message, it is very easy to distinguish real and simulated executions whenever Fail is output.
Now by Lem. 28, the maximum possible distinguishing advantage for a computationally bounded
distinguisher (which we denoted by ∆c) is ε whenever E occurs. Formally, we define ∆c(X,Y ) :=

supD∈PPT|Pr[D(X) = 1] − Pr[D(Y ) = 1]|. For brevity we will denote REALΠn,A(λ,x, ρλ) by REAL

and IDEALFn
OT,SA

(λ,x, ρλ) by IDEAL below.
We begin with the following decomposition

∆c(REAL, IDEAL) =[∆c(REAL, IDEAL)|E] · Pr[E]

+ [∆c(REAL, IDEAL)|E] · Pr
[
E
]

By Lem. 27, we can write the RHS as

=[∆D∗(REAL, IDEAL)|E] · (1− negl(λ))

+ [∆D∗(REAL, IDEAL)|E] · negl(λ),

which is of course simply
≤ ε · (1− negl(λ)) + 1 · negl(λ)

Which yields
∆c(REAL, IDEAL) ≤ ε′ = ε+ negl(λ)

Readjusting ε→ ε/2 gives us the stated result.
This concludes the proof of Thm. 13.

12 Post-Quantum ε-Simulatable MPC

In this section we will describe and show security of a black-box, constant-round ε-MPC protocol.
In fact we have gathered essentially all the ingredients needed for this task. The sole remaining
component is the black-box compiler given in [IPS08]. Their protocol is a constant-round black-box
MPC protocol, albeit with UC security and additionally assuming ideal OT channels. Here we will
argue that this protocol when initialized with our malicious parallel OT protocol37, will give us an
MPC protocol with all the desired properties. We capture this in the following lemma.

Lemma 29. The MPC protocol described in [IPS08], instantiated with the OT construction given
in Prot. 4 (in lieu of an ideal OT functionality) is a black-box, constant-round, post-quantum
ε-simulatable MPC protocol as defined in Def. 7.

Proof. The construction simply involves instantiating the MPC protocol from [IPS08] using our
OT scheme, as is already stated. We refer to their protocol as IPS for convenience.

We begin with a brief overview of the IPS MPC protocol. This involves composing two MPC
protocols (titled the inner and outer protocols) in a specific fashion. The outer protocol uses the
so-called client-server model, which involves parties called servers that have no input of their own
but carry out the majority of the computation in the protocol. The key stratagem devised in IPS
is to emulate the function of these servers distributedly using the inner MPC protocol. To ensure
honesty, the protocol uses a mechanism introduced in IPS known as watchlists, which ensure that
each party is able to monitor some emulated servers.
37 Indeed, this observation has been employed in the classical setting [Wee10, Goy11].
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Thus, in the running of the IPS protocol, there are various OT calls that are of two kinds. The
first kind is used to initialize the watchlist mechanism, and this can be performed at the start of
the protocol. The second kind is in the operation of the inner OT protocol that is used to emulate
the servers (the inner protocol is in the OT-hybrid model, and needs to make calls to the ideal OT
functionality).

We make the following two observations about the IPS protocol. These are easily verifiable from
the descriptions present in [IPS08]. The first is that the watchlist setup can be initialized with an
n-party OT functionality (this is observed in their work), i.e., 2 ·

(
n
2

)
OT calls in totally where

each pair of parties run two OT calls with reversed role of sender and receiver. So we can use an
n-fold parallel execution Prot. 4 in the beginning that suffices to setup the watchlists. The second
is a randomized OT trick that can be used to ‘prepone’ the OT executions required by the inner
protocol (this is also observed in their work). This modification is also needed for security. The
idea is to basically initially perform n-fold OT executions with random values for the senders and
receivers. Subsequently, the sender can send appropriately offset values (that encode OT inputs of
its choice) to the receiver and the latter can recover its intended message from this.

This is to say that using this trick, the inner OT calls can also be pushed to the beginning of
the protocol where we perform an n-fold parallel execution of Prot. 4 (for sufficiently long sender
inputs). Therefore, we can complete an execution of the IPS protocol by beginning with two n-fold
parallel (randomized) OT executions, for the watchlist and for the inner MPC protocol respectively.
Subsequently, we proceed with the IPS protocol, setting up the watchlists and then executing the
composed MPC protocol. Everytime the inner protocol would make an OT call, we use the random
OT transformation and consume a predefined portion of the initial parallel randomized OT call to
perform the actual OT interaction in the protocol.

Next we will argue why this achieves the desired security guarantee - security is already some-
what apparent and straightforward to establish, and we limit ourselves to addressing the more
prominent concerns in this regard. We treat these in turn.

Constant-Round: The first thing to determine is simply whether the composed protocol is still
constant round. While the total number of atomic OT calls made in the IPS protocol does depend
on the number of parties (and hence grows polynomially with λ), these can be batched into a single
parallel OT execution and shunted to the start of the protocol as described above. Now the IPS
protocol itself is constant round (this includes the interactions made due to the randomized OT
trick). In turn, our OT protocol from Prot. 4 also runs in constant rounds. The resulting protocol is
therefore constant rounds. Indeed, this exact pipeline has been used in previous work on black-box
MPC protocols to get protocols with constant round overhead (over the parallel OT part) in the
classical standalone setting (see [Wee10, Goy11]).

Security: As pointed out, the security of the IPS protocol when initialized with a parallel OT
protocol has been noted and employed in previous work ([Wee10, Goy11]). Our setting however
presents two new challenges that are not present in the more standard setting, and we tackle them
in turn.

Post-Quantum security: A simple examination of the IPS security proof and that of our OT protocol
reveals that both of these are black-box and also quantum compatible - namely, they enjoy straightline
simulation and are not reliant on classical rewinding. The combined security proof for the composed
MPC protocol inherits these properties.

Sequential composition: A detail we have elided so far is that our OT is limited to ε-simulatability.
This can affect the hybrids where we sequentially simulate various parallel OT executions in the
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protocol. Fortunately, this exact kind of post-quantum sequential composition guarantee for ε-
simulation has been shown in the work of [CCLY22a, Section 7.2].

13 Post-Quantum Equivocal Commitments

Here, we define equivocal commitments and construct an ω(1)-round equivocal commitment scheme
from OWFs. Looking ahead, this is used as a building block for constructing fully-simulatable
(rather than ε-simulatable) extractable (batch) commitments in Sec. 14.

13.1 Definition

The definition of equivocality is given below. We stress that we require the simulation error to be
negligible since this is used for achieving extractability with negligible simulation errors.

Definition 19 (PQ-EqCom). A post-quantum commitment scheme 〈C,R〉 (as per Def. 1) is
equivocal if there exists a QPT algorithm SQ = (SQ0,SQ1) (called the simulation equivocator)
such that for any non-uniform QPT R∗(ρ) and any polynomial ℓ(·),{

(STR∗ , decom) :
(STR∗ , STSQ)← SQ

R∗(ρ)
0 (1λ)

decom← SQ1(STSQ,m)

}
λ∈N,m∈{0,1}ℓ(λ)

c
≈
{
(STR∗ , decom) :

(τ, STC , STR∗)← 〈C(m), R∗(ρ)〉(1λ)
decom← C(STC)

}
λ∈N,m∈{0,1}ℓ(λ)

The main theorem we prove in this section is the following:

Theorem 14. Assuming the existence of post-quantum OWFs, there is a black-box construction of
ω(1)-round equivocal commitment schemes.38

13.2 Construction with Noticeable Binding Error

For the ease of presentation, we start by constructing a constant-round equivocal commitment
scheme wEqCom that has a noticeable binding error. Later, we argue that ω(1)-times sequential
repetition of wEqCom achieves negligible soundness error while preserving the equivocality. The
construction is based on the ideas of [Kil88, Kil94], which have been used in many later works, e.g.,
[PW09, BCKM21]. The scheme wEqCom is described in Prot. 5 where it makes black-box use of
a constant-round statistically-binding and computationally-hiding commitment scheme Com (e.g.,
Naor’s commitment).

Protocol 5: Equivocal Commitments with Noticeable Soundness Error wEqCom

Parameters: Let k = Θ(log λ) be a positive integer.
Inputs: Both parties receive λ as the common input. The committer in addition gets a string
m ∈ {0, 1}ℓ(λ) as its private input where ℓ(·) is a polynomial. For each i ∈ [ℓ], mi denotes the i-th
bit of m.

Commit Stage:
38 Formally speaking, this means that for any time-constructible function r(·) = ω(λ), there is a r(λ)-round equivocal

commitment scheme. We use a similar convention throughout the paper.
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1. C picks uniformly random bits ri,j and defines(
s00i,j s01i,j
s10i,j s11i,j

)
=

(
ri,j mi ⊕ ri,j
ri,j mi ⊕ ri,j

)
for i ∈ [ℓ] and j ∈ [k].

2. C commits to {sabi,j}i∈[ℓ],j∈[k],(a,b)∈{0,1}2 using Com in a bit-by-bit manner in parallel. Let
{τabi,j}i∈[ℓ],j∈[k],(a,b)∈{0,1}2 be the corresponding transcripts.

3. R randomly picks uniformly random bits cj for j ∈ [k] and sends them to C.

4. C reveals s0cji,j and s1cji,j along with the corresponding decommit information w.r.t. Com in Step 2
to R for i ∈ [ℓ] and j ∈ [k].

5. R accepts if all the decommit information are valid and s
0cj
i,j = s

1cj
i,j for all i ∈ [ℓ] and j ∈ [k]

and otherwise rejects.
Decommit Stage:

1. C picks uniformly random bits di,j and reveals m and s
di,j(1−cj)
i,j along with the corresponding

decommit information w.r.t. Com in Step 2 of Commit Stage to R for i ∈ [ℓ] and j ∈ [k].

2. R accepts if all the decommit information are valid and s
di,j(1−cj)
i,j = mi ⊕ s

di,jcj
i,j for all i ∈ [ℓ]

and j ∈ [k] and otherwise rejects. (Note that sdi,jcji,j is already revealed in the commit stage.)

Theorem 15. The scheme wEqCom (Prot. 5) is constant-round and satisfies computational hiding,
equivocality (as per Def. 19), and (2−k + negl(λ))-statistical binding, which is defined similarly to
statistical binding (as per Def. 1) except that we only require the malicious committer’s winning
probability to be at most 2−k + negl(λ) instead of negl(λ).
Proof. It is clear from the description that it is constant-round. Since computatioanl hiding im-
mediately follows from equivocality, we prove (2−k + negl(λ))-statistical binding and equivocality
below.

(2−k + negl(λ))-Statistical Binding. In an execution of the protocol between unbounded-time
malicious committer C∗ and honest receiver R, let Bad be the event that any of τabi,j can be de-
committed to more than one messages. By statistical binding of Com, Bad occurs with a negligible
probability. Below, we assume that Bad does not occur. For i ∈ [ℓ], let Inconsistenti be the event
that for all j ∈ [k], there exists bi,j such that val(τ

0bi,j
i,j ) 6= val(τ

1bi,j
i,j ). When Inconsistenti occurs,

then C∗ can pass the verification by R in the commit stage only if cj = 1 − bi,j for all j ∈ [k].
Since cj is uniformly random, this occurs with probability 2−k. Thus, whenever C∗ passes the
verification in the commit stage, then neither of Bad or Inconsistenti for any i ∈ [k] occurs except
for probability 2−k + negl(λ). When neither of Bad or Inconsistenti occurs, there is j∗i such that
val(τ00i,j∗i

) = val(τ10i,j∗i
) and val(τ01i,j∗i

) = val(τ11i,j∗i
), in which case the i-th bit can be only decommitted

to val(τ00i,j∗i
) ⊕ val(τ01i,j∗i

) = val(τ10i,j∗i
) ⊕ val(τ11i,j∗i

).39 Thus, except for probability 2−k + negl(λ), all the
bits can be decommitted to either of 0 or 1. This means that it satisfies (2−k + negl(λ))-statistical
binding.

Equivocality. The proof strategy is similar to that in the security proof of the equivocality compiler
of [BCKM21], which in turn is based on quantum zero-knowledge proofs by Watrous [Wat09]. We
39 We define ⊥⊕ β = ⊥ for β ∈ {0, 1,⊥}.
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first construct a weaker simulation equivocator that guesses the challenges and works only when
the guess is correct. Then we compile it to the full-fledged simulation equivocator (as per Def. 19)
by using Watrous’ rewinding lemma (Lem. 6).

First, we consider the following algorithm Q:
QR

∗(ρ)(1λ):
1. Randomly pick bits c′j for j ∈ [k] and ei,j and ri,j for i ∈ [ℓ] and j ∈ [k].
2. Define s0c′ji,j s

0(1−c′j)
i,j

s
1c′j
i,j s

1(1−c′j)
i,j

 =

(
ri,j ei,j
ri,j 1− ei,j

)

for i ∈ [ℓ] and j ∈ [k].
3. Commit to {sabi,j}i∈[ℓ],j∈[k],(a,b)∈{0,1}2 using Com in a bit-by-bit manner in parallel. Let {τabi,j}i∈[ℓ],j∈[k],(a,b)∈{0,1}2

be the corresponding transcripts. Send them to the malicious receiver R∗.
4. Receive bits {cj}j∈[k] from R∗.
5. If cj 6= c′j for some j ∈ [k], output β = 1 and immediately halt. Otherwise, proceed to the next

step.
6. Reveal s0cji,j = s

1cj
i,j = ri,j along with the corresponding decommit information w.r.t. Com to R for

i ∈ [ℓ] and j ∈ [k].

7. Define decomη
i,j to be the decommit information for τ (ei,j⊕η)(1−cj)i,j w.r.t. Com for i ∈ [ℓ], j ∈ [k],

and η ∈ {0, 1}. Note that the committed message in τ
(ei,j⊕η)(1−cj)
i,j is η.

8. Output a quantum state σ that consists of the final state STR∗ of R∗ and {decomη
i,j}i∈[ℓ],j∈[k],η∈{0,1}

along with a bit β = 0.
Let Q0

ρ be the distribution of σ output by QR
∗(ρ)(1λ) conditioned on that β = 0. Let p(ρ) be the

probability that QR
∗(ρ)(1λ) returns β = 0. By computational hiding of Com, it is easy to see that

we have
|p(ρ)− 2−k| ≤ negl(λ)

for any quantum advice ρ. Thus, by applying Watrous’ rewinding lemma (Lem. 6) with p0 =

2−k − negl(λ), q = 2−k, γ = negl(λ), and T = b log(1/γ)
4p0(1−p0)c, we obtain a QPT algorithm Q̃ that makes

black-box use of R∗(ρ) such that

TD(Q0
ρ, Q̃

R∗(ρ)(1λ)) ≤ 4
√
γ

log(1/γ)

p0(1− p0)
= negl(λ) (59)

where we used k = Θ(log λ) and thus p0 = 2−k − negl(λ) = 1/poly(λ). We remark that Q̃ plays the
role of R in Lem. 6. We changed the notation to avoid confusion with the malicious receiver R∗.
We also remark that Q̃ makes black-box use of R∗(ρ) since it makes black-box use of Q, which in
turn makes black-box use of R∗(ρ).

We are now ready to describe the simulation equivocator SQ = (SQ0,SQ1):
SQR

∗(ρ)
0 (1λ):

1. Run Q̃R
∗(ρ)(1λ) to obtain STR∗ and {decomη

i,j}i∈[ℓ],j∈[k],η∈{0,1}.
2. Output STR∗ and STSQ := {decomη

i,j}i∈[ℓ],j∈[k],η∈{0,1}.
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SQ1(STSQ,m):
1. Parse STSQ = {decomη

i,j}i∈[ℓ],j∈[k],η∈{0,1}.
2. Let mi be the i-th bit of m for i ∈ [ℓ].
3. Output decom := {decommi

i,j }i∈[ℓ],j∈[k].

Let SQR
∗(ρ)

0 (1λ) be a not necessarily QPT algorithm that works similarly to SQR
∗(ρ)

0 (1λ) except
that it samples STR∗ and {decomη

i,j}i∈[ℓ],j∈[k],η∈{0,1} from Q0
ρ. By Eq. (59), we have{

(STR∗ , decom) :
(STR∗ , STSQ)← SQ

R∗(ρ)
0 (1λ)

decom← SQ1(STSQ,m)

}
λ∈N,m∈{0,1}ℓ(λ)

s
≈

{
(STR∗ , decom) :

(STR∗ , STSQ)← SQ
R∗(ρ)
0 (1λ)

decom← SQ1(STSQ,m)

}
λ∈N,m∈{0,1}ℓ(λ)

.

Moreover, by computational hiding of Com, it is easy to show that{
(STR∗ , decom) :

(STR∗ , STSQ)← SQ
R∗(ρ)
0 (1λ)

decom← SQ1(STSQ,m)

}
λ∈N,m∈{0,1}ℓ(λ)

c
≈
{
(STR∗ , decom) :

(τ, STC , STR∗)← 〈C(m), R∗(ρ)〉(1λ)
decom← C(STC)

}
λ∈N,m∈{0,1}ℓ(λ)

.

Combining the above, the proof of equivocality is completed.

13.3 Reducing Binding Error

We show that sequential repetition of wEqCom (Prot. 5) reduces the binding error to be negligible
while preserving equivocality.

Protocol 6: Equivocal Commitments EqCom

Parameters: Let n = ω(1) be a positive integer.
Inputs: Both parties receive λ as the common input. The committer in addition gets a string
m ∈ {0, 1}ℓ(λ) as its private input where ℓ(·) is a polynomial.

Commit Stage:
1. C commits to m using wEqCom n times in a sequential manner.
Decommit Stage:
1. C reveals m along with the corresponding decommit information w.r.t. all the n executions of

wEqCom.
2. R accepts if all the decommit information are valid and otherwise rejects.

Theorem 16. The scheme EqCom (Prot. 6) satisfies computational hiding, equivocality (as per
Def. 19), and statistical binding.

Proof. Statistical binding follows from (2−k+negl(λ))-statistical binding of wEqCom noting that the
binding error is exponentially reduced by sequential repetition and (2−k+ negl(λ))n = negl(λ) when
k = Θ(log λ) and n = ω(1). Equivocality immediately follows from that of wEqCom noting that
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equivocality is preserved under sequential composition. Indeed, this can be shown by a straight-
forward hybrid argument (see e.g., [BCKM21]). Computational hiding immediately follows from
equivocality.

Since EqCom runs in ω(1) rounds makes black-box use of OWFs, Thm. 16 implies Thm. 14.

14 Post-Quantum Extractable Batch Commitments

14.1 Definitions

Definition 20 (Post-Quantum Batch Commitments). A post-quantum batch commitment
scheme 〈C,R〉 is a classical interactive protocol between interactive PPT machines C and R. Let
m = (m1, ...,mn) ∈ {0, 1}ℓ(λ)×n(λ) (where ℓ(·) and n(λ) are some polynomials) be a sequence of
messages that C wants to commit to. The protocol consists of the following stages:
– Commit Stage: C(m) and R interact with each other to generate a transcript (which is

also called a commitment) denoted by τ ,40 C’s state STC , and R’s output bcom ∈ {⊥,>} in-
dicating acceptance (i.e., bcom = >) or rejection (i.e., bcom = ⊥). We denote this execution by
(τ, STC , bcom) ← 〈C(m), R〉(1λ). When C is honest, STC is classical, but when we consider a
malicious quantum committer C∗(ρ), we allow it to generate any quantum state STC∗. Similarly,
a malicious quantum receiver R∗(ρ) can output any quantum state, which we denote by OUTR∗

instead of bcom.
– Decommit Stage: C generates a sequence of decommitments decom = (decom1, ..., decomn)

from STC . We denote this procedure by decom← C(STC). Then it sends a sequence of messages
m = (m1, ...,mn) and the sequence of decommitments decom = (decom1, ..., decomn) to R. For
each i ∈ [n], R runs a deterministic verification procedure bdec,i ← Verifyi(τ,mi, decomi) where
bdec,i = > and bdec,i = ⊥ indicate acceptance and rejection on the i-th bit, respectively. W.l.o.g.,
we assume that R always rejects (i.e., Verifyi(τ, ·, ·) = ⊥ for all i ∈ [n]) whenever bcom = ⊥. (Note
that w.l.o.g., τ can include bcom because we can always modify the protocol to ask R to send bcom
as the last round message.)
The scheme satisfies the following requirements:

1. (Completeness.) For any polynomials ℓ : N→ N and n : N→ N, any m ∈ {0, 1}ℓ(λ)×n(λ), and
any i ∈ [n], it holds that

Pr

bcom = bdec,i = > :

(τ, STC , bcom)← 〈C(m), R〉(1λ)
(decom1, ..., decomn)← C(STC)

bdec,i ← Verifyi(τ,mi, decomi)

 = 1.

2. (Statistically binding.) For any unbounded-time committer C∗, the following holds:

Pr

[
∃ i ∈ [n],m0,m1, decom0, decom1, s.t. m0 6= m1 ∧
Verifyi(τ,m0, decom0) = Verifyi(τ,m1, decom1) = >

: (τ, STC∗ , bcom)← 〈C∗, R〉(1λ)
]
= negl(λ).

3. (Computationally Hiding.) For any non-uniform QPT receiver R∗ and any polynomials
ℓ : N→ N and n : N→ N , the following holds:{

OUTR∗〈C(m0), R
∗〉(1λ), {decomi′}i′ ̸=i

}
λ∈N, i∈[n(λ)], m0,m1∈∆i

40 That is, we regard the whole transcript as a commitment.
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c
≈

{
OUTR∗〈C(m1), R

∗〉(1λ), {decomi′}i′ ̸=i
}
λ∈N, i∈[n(λ)], m0,m1∈∆i

,

where

∆i := {(m0 = (m0,1, ...,m0,n),m1 = (m1,1, ...,m1,n)) ∈ ({0, 1}ℓ(λ))2 : ∀i′ ∈ [n] \ {i} m0,i′ = m1,i′},

OUTR∗〈C(mb), R
∗〉(1λ) (b ∈ {0, 1}) denotes the output of R∗ at the end of the commit stage,

and (decom1, ..., decomn) denotes the sequence of decommitments generated by C in the decommit
stage.

Remark 10. By a straightforward hybrid argument, the above computational hiding property im-
plies the following:

– (Computationally Hiding w.r.t. Subsets.) For any non-uniform QPT receiver R∗ and any
polynomials ℓ : N→ N and n : N→ N , the following holds:{

OUTR∗〈C(m0), R
∗〉(1λ), {decomi′}i′ /∈S

}
λ∈N, S⊆[n(λ)], m0,m1∈∆S

c
≈

{
OUTR∗〈C(m1), R

∗〉(1λ), {decomi′}i′ /∈S
}
λ∈N, S⊆[n(λ)], m0,m1∈∆S

,

where

∆S := {(m0 = (m0,1, ...,m0,n),m1 = (m1,1, ...,m1,n)) ∈ ({0, 1}ℓ(λ))2 : ∀i′ ∈ [n] \ S m0,i′ = m1,i′},

OUTR∗〈C(mb), R
∗〉(1λ) (b ∈ {0, 1}) denotes the output of R∗ at the end of the commit stage, and

(decom1, ..., decomn) denotes the sequence of decommitments generated by C in the decommit
stage.

Similarly to the stand-alone setting (Def. 2), we define committed values for batch commitments
as follows.

Definition 21 (Committed Values for Batch Commitments). For a statistically binding
batch commitment scheme 〈C,R〉 (as per Def. 20), we define the value function as follows:

vali(τ) :=

{
mi if ∃ unique mi s.t. ∃ decomi,Verifyi(τ,mi, decomi) = 1

⊥ otherwise
,

where Verifyi is as defined in Def. 20.

Then we define extractability for batch commitments. This is a natural extension of that in
the stand-alone setting (Def. 3) but there is a crucial difference that we require simulation with
negligible errors instead of ε-simulation because the purpose of this section is to achieve negligible
simulation errors at the cost of sacrificing round complexity.

Definition 22 (PQ-ExtBCom). A post-quantum batch commitment scheme 〈C,R〉 (as per
Def. 20) is extractable if there exists a QPT algorithm SE (called the simulation extractor) such
that for any non-uniform QPT C∗(ρ),{

SEC∗(ρ)(1λ)
}
λ

c
≈

{
({vali(τ)}i∈[n], STC∗) : (τ, STC∗ , bcom)← 〈C∗(ρ), R〉(1λ)

}
λ
,

where vali(τ) is the value committed by C∗ as defined in Def. 21.
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Remark 11. We remark that we only require computational indistinguishability between the sim-
ulated and real execution while Def. 3 requires statistical indistinguishability (with a noticeable
simulation error). This is because computational indistinguishability is sufficient for our purpose.

Remark 12. One may find a conceptual similarity between extractable batch commitments (Def. 22)
and parallelly extractable commitments (Def. 4). Indeed, if a (stand-alone) commitment scheme (as
per Def. 1) satisfies the negligible simulation error version of parallel extractability (as per Def. 4),
then its parallel composition is an extractable batch commitment scheme (as per Def. 22). However,
we do not know how to construct a commitment scheme that satisfies the negligible simulation error
version of parallel extractability. This is why we introduced extractable batch commitments.

As an intermediate tool towards constructing extractable batch commitments (as per Def. 22),
we introduce a weaker security notion which we call extractability with over-extraction. Intuitively, it
is similar to the full-fledged extractability (Def. 22) except that we allow the simulation extractor to
extract non-⊥ messages even if the transcript is invalid (i.e., there is no accepting decommitment).

Definition 23 (PQ-ExtBCom with Over-extraction). A post-quantum batch commitment
scheme 〈C,R〉 (as per Def. 20) is extractable with over-extraction if there exists a QPT algorithm
SEover (called the simulation extractor with over-extraction) such that for any non-uniform QPT
C∗(ρ),{
(τ, STC∗) : (τ, STC∗ , {mExt,i}i∈[n])← SE

C∗(ρ)
over (1λ)

}
λ

c
≈

{
(τ, STC∗) : (τ, STC∗ , bcom)← 〈C∗(ρ), R〉(1λ)

}
λ
,

and
Pr

[
∃i ∈ [n] s.t. vali(τ) /∈ {mExt,i,⊥}

]
≤ negl(λ)

where (τ, STC∗ , {mExt,i}i∈[n]) ← SE
C∗(ρ)
over (1λ) and vali(com) is the value committed by C∗ as defined

in Def. 21.

Remark 13. Extractability with over-extraction is conceptually similar to weak extractability de-
fined in [CCLY22a] in the sense that both only require the extracted message be correct only when
the transcript is valid. However, the crucial difference is that extractability with over-extraction
requires that simulation of the committer’s state be indistinguishable from the real one even when
the transcript is invalid whereas weak extractability only requires it when the transcript is valid.

14.2 Extractable Batch Commitments with Over-extraction
Our construction of an extractable batch commitment scheme with over-extraction is described in
Prot. 7. It makes black-box use of the following building blocks:
1. A constant-round statistically-binding, computationally-hiding commitment Com, (e.g., Naor’s

commitment).
2. A parallel oblivious transfer protocol OT that satisfies ε-simulation security against malicious

receivers and indistinguishability-based security against malicious senders. Assuming t(λ)-round
semi-honest OT, [CCLY22a] gives a black-box and O(t(λ))-round construction of such a proto-
col.41

3. An equivocal commitment scheme EqCom (as per Def. 19). A ω(1)-round construction of it is
known assuming only black-box access to post-quantum secure OWFs (Thm. 14).

41 Their construction is shown to satisfy ε-simulation security for both malicious senders and malicious receivers, and
ε-simulation security immediately implies indistinguishability-based security.
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Protocol 7: Extractable Batch Commitments with Over-Extraction OverExtBCom

Parameters: Let k = ω(log λ) be a positive integer. We use k to mean the number of parallel
sessions in OT.
Inputs: Both parties receive λ as the common input. The committer in addition gets a sequence of
strings m = (m1, ...,mn) ∈ {0, 1}ℓ(λ)×n(λ) as its private input where ℓ(·) and n(·) are polynomials.

Commit Stage:
1. C commits to mi using Com for all i ∈ [n] in parallel. Let comi be the transcript of the i-th

execution.
2. For i ∈ [n], C generates 2k-out-of-2k XOR secret sharing {sbi,j}j∈[k],b∈{0,1} of mi. That is, they

are uniformly random under the constraint that
⊕

j∈[k],b∈{0,1} s
b
i,j = mi.

3. C and R execute n-parallel executions of OT.a We refer to the i-th execution by OTi where
C uses {s0i,j , s1i,j}j∈[k],b∈{0,1} as input and R uses independently and uniformly random bits
{ri,j}j∈[k] as input.

4. C and R now engage in the following coin-flipping subprotocol as detailed below.
(a) R samples a random string θR ← {0, 1}nk and commits to it using EqCom.
(b) C samples a random string θC ← {0, 1}nk and sends it to R.
(c) R sends to C the value θR together with the corresponding decommitment information

w.r.t. the EqCom in Step 4a. Now, C and R agree on a random string θ := θR⊕θC ∈ {0, 1}nk.
Interpret θ as a family {ti,j}i∈[n],j∈[k] of bits. That is, let ti,j be the (i− 1)k+ j-th bit of θ
for i ∈ [n] and j ∈ [k].

5. C sends sti,ji,j to R for i ∈ [n] and j ∈ [k].
6. R never rejects in the commit stage, i.e., it always outputs bcom = >. C sets the randomness

used in the commit stage as STC and keep it for the decommit stage.
Decommit Stage:
1. For i ∈ [n], C defines decomi to be a string consisting of the decommit information of comi

w.r.t. Com in Step 1 of the Commit Stage, {s0i,j , s1i,j}j∈[k],b∈{0,1}, and the sender’s randomness
used in OTi in Step 3 of the Commit Stage.

2. C sends m = (m1, ...,mn) along with decom = (decom1, ..., decomn) to R.
3. For each i ∈ [n], R runs the verification procedure Verifyi that accepts if

(a) the decommitment of comi is valid w.r.t. the committed message mi,
(b)

⊕
j∈[k],b∈{0,1} s

b
i,j = mi,

(c) the revealed randomness for OTi is consistent to the transcript of OTi with input
{s0i,j , s1i,j}j∈[k],b∈{0,1}, and

(d) the string sent in Step 5 of the Commit Stage is consistent to {s0i,j , s1i,j}j∈[k],b∈{0,1}, i.e., it
is equal to sti,ji,j where ti,j is the bit generated in Step 4 of the Commit Stage.

R accepts if Verifyi accepts for all i ∈ [n] and otherwise rejects.
a Note that OT itself is a k-parallel OT, and thus nk-parallel executions are happening in total.
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Security. The security of Prot. 7 is stated as the following theorem.

Theorem 17. Assuming the existence of t(λ)-round semi-honest OT protocols, there exists (i.e.,
Prot. 7) a black-box, O(t(λ))+ω(1)-round construction of batch commitments that satisfies statistical
binding, computational hiding (as per Def. 20), and extractability with over-extraction (as per
Def. 23).

Proof. Statistical binding property immediately follows from that of Com. Below, we show compu-
tational hiding and extractability with over-extraction.

Computational Hiding. Let R∗(ρ) be any malicious QPT receiver. Fix i∗ ∈ [ℓ] and pair of
sequence of messages m0 and m1 that differ only on the i∗-th component. We consider the following
hybrids for b ∈ {0, 1} and noticeable function ε.

Hybrid Hb: This hybrid simulates execution between C with input mb and R∗(ρ) and outputs
(OUTR∗〈C(mb), R

∗〉(1λ), {decomi}i ̸=i∗) where (decom1, ..., decomn) denotes the sequence of decom-
mitments generated by C in the decommit stage.

Hybrid Hε
b : This hybrid is identical to Hb, except that the execution of OTi∗ in Step 3 of the

commit stage is replaced with its ε-simulation.

OutHb

c
≈ε OutHε

b
: This follows directly from ε-simulation security of OT against malicious receivers.

OutHε
0

s
≈ OutHε

1
: In Hε

b , let {r∗i∗,j}j∈[k] be the receiver’s input to the ideal functionality of parallel
OT provided by the simulator. Then the ideal functionality returns {sri∗,ji∗,j }i∗∈[n],j∈[k] to the sim-
ulator where {s0i∗,j , s1i∗,j}j∈[k] is the honest committer’s input to OTi∗ generated according to the
description of the protocol. Especially, no information of {s1−ri∗,ji∗,j }j∈[k] is used until this point.
Since {sbi∗,j}j∈[k],b∈{0,1} is a 2k-out-of-2k XOR secret sharing of mb,i∗ , which is the i∗-th component
of mb, no information of mb,i∗ is revealed in Hε

b unless all the remaining shares {s1−ri∗,ji∗,j }j∈[k] are
revealed at later stages, which happens only if ti∗,j = 1 − ri∗,j for all j ∈ [k] where {ti,j}i∈[n],j∈[k]
is the result of coin-flipping in Step 4 of the commit stage. However, by computational hiding of
EqCom, the malicious receiver can cause only a negligible bias on the distribution of {ti,j}i∈[n],j∈[k].
Thus, the probability that ti∗,j = 1−ri∗,j for all j ∈ [k] is at most 2−k+negl(λ) = negl(λ). Thus, with
probability 1−negl(λ), mb,i∗ remains information-theoretically hidden. This implies OutHε

0

s
≈ OutHε

1
.

Combining the above, we obtain OutH0

c
≈2ε OutH1 . Since this holds for any noticeable function

ε, this implies OutH0

c
≈ OutH1 , which means that the protocol satisfies computational hiding.

Extractability with Over-extraction. Let SQ = (SQ0,SQ1) be the simulation equivocator for
EqCom. We construct the simulation extractor with over-extraction SEover as follows:
SEC

∗(ρ)
over (1λ):

1. Interact with C∗ in Step 1 playing the role of R.
2. Execute n-parallel executions of OT in Step 3 with C∗ where SEover plays the role of the honest

receiver of OT that uses a independently and uniformly random bits {ri,j}j∈[k] as input in OTi
for i ∈ [n]. Let {s∗i,j}j∈[k] be the receiver’s outcome of OTi for i ∈ [n].

3. Let ρ′ be the internal state of C∗ at the end of Step 3. Run (ρ′′, STSQ)← SQ
C∗(ρ′)
0 (1λ). (Recall

that C∗ plays the role of receiver for EqCom.)
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4. Resume C∗ from Step 4b with its internal state ρ′′ to obtain θC .

5. Let r ∈ {0, 1}nk be the string whose (i − 1)k + j-th bit is 1 − ri,j for i ∈ [n] and j ∈ [k] and set
θR := r ⊕ θC .

6. Run EqCom.decom← SQ1(STSQ, θR) and sends θR and EqCom.decom to C∗. Note that ti,j is now
programmed to be 1− ri,j .

7. Receive sti,ji,j = s
1−ri,j
i,j from C∗. Note that it obtains all the shares {sbi,j}i∈[n],j∈[k],b∈{0,1} at this

point.

8. Compute mExt,i =
⊕

j∈[k],b∈{0,1} s
b
i,j for i ∈ [n].

9. Output the transcript τ , the final state STC∗ of C∗, and {mExt,i}i∈[n].

First, it is easy to see that

Pr
[
∃i ∈ [n] s.t. vali(τ) /∈ {mExt,i,⊥}

]
= 0

where (τ, STC∗ , {mExt,i}i∈[n]) ← SE
C∗(ρ)
over (1λ). To see this, suppose that vali(τ) 6= ⊥. In this case,

there must exist secret sharing {sbi,j}j∈[k],b∈{0,1} of mi that is consistent to the transcript. By the
perfect correctness of OT, these shares are obtained by SEover and thus mExt,i = mi.

Below, we prove{
(τ, STC∗) : (τ, STC∗ , {mExt,i}i∈[n])← SE

C∗(ρ)
over (1λ)

}
λ

c
≈

{
(τ, STC∗) : (τ, STC∗ , bcom)← 〈C∗(ρ), R〉(1λ)

}
λ
.

(60)
We consider the following hybrids.

Hybrid H0: This hybrid executes (τ, STC∗ , bcom)← 〈C∗(ρ), R〉(1λ) and outputs (τ, STC∗).

Hybrid H1: This hybrid is identical to the previous one except that the commitment by R of
EqCom in Step 4a is generated by SQ0, which is decomitted to θR by SQ1 in Step 4c. Note that θR
is just a uniformly random string that is independent of {ri,j}i∈[n],j∈[k] in this hybrid.

OutH0

c
≈ OutH1 : This follows directly from equivocality of EqCom

Hybrid H2: This hybrid is identical to the previous one except that R uses 0k as input of OTi for
all i ∈ [n] in Step 3.

OutH1

c
≈ OutH2 : This follows directly from indistinguishability-based security of OT against mali-

cious senders.

Hybrid H3: This hybrid is identical to the previous one except that θR is set as θR = r⊕ θC where
r is as defined in the description of SEover. Note that θR can depend on θC since θR is not used in
Step 4a due to the modification made in H1.

OutH2

i.d.
== OutH3 : This follows directly from the observation that u1 is a independently and uni-

formly random string in both hybrids noting that no information of r is used in Step 3 due to the
modification made on H2.

Hybrid H4: This hybrid is identical to the previous one except that R uses {ri,j}j∈[k] as input of
OTi for all i ∈ [n] in Step 3.
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OutH3

c
≈ OutH4 : This follows directly from indistinguishability-based security of OT against mali-

cious senders.
Now, we can see that H4 just runs (τ, STC∗) : (τ, STC∗ , {mExt,i}i∈[n])← SE

C∗(ρ)
over (1λ) and outputs

(τ, STC∗). Combining the above, we obtain Eq. (60). This completes the proof of extractability with
over-extraction.

14.3 Removing Over-extraction

Next, we give a compiler that upgrades extractable batch commitments with over-extraction (as
per Def. 23) into one with full-fledged extractability without over-extraction (as per Def. 22). It is
based on the cut-and-choose technique that is very similar to the one used for upgrading “weak”
extractable commitments into “strong” one in [CCLY22a].42 Our construction of an extractable
batch commitment scheme with over-extraction is described in Prot. 8. It makes black-box use of
the following building blocks:
1. The extractable batch commitment scheme OverExtBCom with over-extraction given in Prot. 7,

which in turn makes black-box use of any OTs. Note that it is (O(t(λ)) + ω(1))-round if the
assumed OT is t(λ)-round (Thm. 17).

2. A commitment scheme ε-ExtCom that satisfies statistical binding, computational hiding, and
extractability with ε-simulation (as per Def. 3). Constant-round and black-box construction of
such a scheme based on OWFs is given in [CCLY22a].43

3. An (n+1, k)-perfectly verifiable secret sharing scheme VSS = (VSSShare,VSSRecon) (as per Def. 8).
We require that k is a constant fraction of n such that k ≤ n/3. There are known constructions
(without any computational assumptions) satisfying these properties [BGW88, CDD+99].

Protocol 8: Extractable Batch Commitment ExtBCom

Parameters. Let n(λ) be a polynomial on λ. Let k be a constant fraction of n such that k ≤ n/3.

Input: Both the committer C and the receiver R get security parameter 1λ as the common input.
C in addition gets a sequence of strings m = (m1, ...,mN ) ∈ {0, 1}ℓ(λ)×N(λ) as his private input,
where ℓ(·) and N(·) are polynomials.a

Commit Stage:
1. For i ∈ [N ], C prepares n views {vi,j}j∈[n], corresponding to an MitH execution for the (n+1, k)-

VSSShare of the message mi (see Rmk. 5 for details).
2. For i ∈ [N ], C and R involve an execution of OverExtBCom where C commits to v :=

{vi,j}i∈[N ],j∈[n] ∈ {0, 1}ℓ×Nn.
3. C and R engage in the following coin-flipping subprotocol as detailed below.

(a) R samples a random string θR of proper length and commits to it using ε-ExtCom.
(b) C samples a random string θC of proper length and sends it to R.
(c) R sends to C the value θR together with the corresponding decommitment information

w.r.t. the ε-ExtCom in Step 3a. Now, C and R agree on a random string θ := θR ⊕ θC . By
a proper choice of length, the string θ it can be interpreted as specifying N size-k random
subsets of [n]. We write (η1, ..., ηN ) to mean these subsets.

42 We omit the definitions of weak and strong extractability in [CCLY22a] since this is not needed for our purpose.
43 In fact, we only need a weaker security called “weak extractability with ε-simulation” in [CCLY22a].
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4. For i ∈ [N ], C decommits to the VSS shares in the set ηi, i.e. it sends {vi,j}j∈ηi along with the
corresponding decommitment information w.r.t. OverExtBCom in Step 2.

5. R checks the following conditions:
(a) All the decommitments in Step 4 are valid; and
(b) for any i ∈ [N ] and j, j′ ∈ ηi, views (vi,j , vi,j′) are consistent (as per Def. 10 and Rmk. 3)

w.r.t. the VSSShare execution in Step 1.
If all the checks pass, R accepts (i.e., outputs bcom = >); otherwise, R rejects (i.e., outputs
bcom = ⊥).

Decommit Stage:
1. For i ∈ [N ], C defines decomi to be a string consisting of {vi,j}j∈[n] together with all the

corresponding decommitment information w.r.t. OverExtBCom in Step 2 of the Commit Stage.
C sends m = (m1, ...,mN ) and decom = (decom1, ..., decomN ).

2. For each i ∈ [N ], R runs the verification procedure Verifyi that works as follows:
(a) Construct {v′i,j}j∈[n] as follows: in Step 1 of the Decommit Stage, if the decommitment to

vi,j is valid, R sets v′i,j := vi,j ; otherwise, R sets v′i,j := ⊥.
(b) Accept if mi = VSSRecon(v

′
i,1, . . . , v

′
i,n) and otherwise reject.

R accepts if Verifyi accepts for all i ∈ [N ] and otherwise rejects.
a We use N instead of n to mean the number of committed messages of OverExtBCom to avoid notational collision

with the parameter for VSS.

Theorem 18. Assuming the existence of t(λ)-round semi-honest OT protocols, there exists (i.e.,
Prot. 8) a black-box, O(t(λ))+ω(1)-round construction of batch commitments that satisfies statistical
binding, computational hiding (as per Def. 20), and extractability (as per Def. 22).

Proof. Statistical binding property immediately follows from that of OverExtBCom. Below, we show
computational hiding and extractability.

Computational Hiding. Let R∗(ρ) be any malicious QPT receiver. Fix i∗ ∈ [ℓ] and pair of
sequence of messages m0 and m1 that differ only on the i∗-th component. We consider the following
hybrids for b ∈ {0, 1} and noticeable function ε.

Hybrid Hb: This hybrid simulates execution between C with input mb and R∗(ρ) and outputs
(OUTR∗〈C(mb), R

∗〉(1λ), {decomi}i ̸=i∗) where (decom1, ..., decomn) denotes the sequence of decom-
mitments generated by C in the decommit stage.

Hybrid Hε
b : This hybrid is identical to Hb, except for the following changes: It takes size-k random

subsets ηi ⊆ [n] for all i ∈ [N ] at the beginning. Then it runs the ε-simulation extractor for ε-ExtCom
to extract θR while simulating the state of R∗ in Step 3a and defines θC so that θR ⊕ θC specifies
the subsets (η1, ..., ηN ) in Step 3b.

OutHb

c
≈ε OutHε

b
: This follows directly from extractability with ε-simulation of ε-ExtCom noting that

the distribution of θC is uniformly random in both hybrids.

OutHε
0

c
≈ OutHε

1
: Note that the subset θi∗ is fixed at the beginning in these hybrids. Then we can

reduce computational indistinguishability of them to computational hiding of OverExtBCom by the
same argument as the security proof of the VSS hiding game (Expr. 1).
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Combining the above, we obtain OutH0

c
≈2ε OutH1 . Since this holds for any noticeable function

ε, this implies OutH0

c
≈ OutH1 , which means that the protocol satisfies computational hiding.

Extractability. Let SEover be the simulation extractor with over-extraction for SEover. We con-
struct the simulation extractor SE as follows:
SEC∗(ρ)(1λ):

1. Run (OverExtBCom.τ, ρ′, {vExt,i,j}i∈[N ],j∈[n])← SE
C∗(ρ)
over (1λ) where OverExtBCom.τ is the simulated

transcript of the execution of OverExtBCom in Step 2, ρ′ is the simulated state of C∗ at the end
of Step 2, and {vExt,i,j}i∈[N ],j∈[n] is the tuple of the extracted messages.

2. Run the rest of the commit stage while playing the role of the honest receiver R.

3. Let STC∗ be the state of C∗ at the end of the commit stage. Define {mExt,i}i∈N as follows:

(a) If bcom = ⊥ (i.e., R rejects in Step 5 of the commit stage), then set mExt,i := ⊥ for all i ∈ [N ].

(b) Otherwise, set mExt,i := VSSRecon(vExt,i,1, . . . , vExt,i,n) for i ∈ [N ].

4. Output (STC∗ , {mExt,i}i∈[N ]).

For i ∈ [N ], let Goodi be the event that there exists m∗i such that m∗i = VSSRecon(v
′
i,1, . . . , v

′
i,n)

for all {v′i,j}j∈[n] such that v′i,j = vali,j(OverExtBCom.τ) or vali,j(OverExtBCom.τ) = ⊥ for all j ∈ [n]

where OverExtBCom.τ is the transcript of OverExtBCom in Step 2 of the Commit Stage. Let Badi be
the complementary event of Goodi. Then for any i ∈ [N ], we have

Pr[Badi ∧ bcom = >] = negl(λ). (61)

We omit its proof since almost identical claim is proven in [CCLY22a, Section 5.2].
It is easy to see that mExt,i = m∗i = vali(τ) whenever Goodi occurs where τ is the transcript

of the commit stage of ExtBCom. By the union bound, Eq. (61) implies that Goodi occurs for all
i ∈ [N ] whenever bcom = > except for a negligible probability. Thus, whenever bcom = >, mExt,i =

vali(τ) except for a negligible probability. Combined with extractability with over-extraction (as
per Def. 23), this directly implies extractability (as per Def. 22).

15 Black-Box Post-Quatnum ExtCom-and-Prove

15.1 Definition

The following definition is taken from [CCLY22a] with modifications to admit negl-simulation in-
stead of ε-simulation for extractability and ZK.

Definition 24 (Simulatable ExtCom-and-Prove). An ExtCom-and-Prove scheme consists of
a pair of protocols ΠECnP = (ExtCom,Prove) executed between a pair of PPT machines P and V .
Let m ∈ {0, 1}ℓ(λ) (where ℓ(·) is some polynomial) is a message that P wants to commit to. The
protocol consists of the following stages (we omit the input 1λ to P and V ):

– Commit Stage: P (m) and V execute ExtCom, which generates a transcript (commitment) com,
P ’s state STP , and V ’s decision b ∈ {>,⊥} indicating acceptance (i.e., b = >) or rejection (i.e.,
b = ⊥). We denote this execution as (com, STP , b)← 〈P (m), V 〉EC. A malicious verifier is allowed
to output any quantum state, which we denote by STV ∗ instead of b, and to keep the state for the
prove stage.
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– Decommit Stage:44 P (STP ) generates a decommitment decom and sends it to V along with a
message m. V accepts or rejects.

– Prove Stage: Let ϕ be any predicate. P (STP , ϕ) and V (com, ϕ) execute Prove, after which V out-
puts > (accept) or ⊥ (reject). We denote the execution of this stage as b′ ← 〈P (STP ), V (com)〉ϕPr,
where b′ ∈ {>,⊥} is V ’s output. A malicious verifier is allowed to output an arbitrary quantum
state, which we denote by OUTV ∗ instead of b′.

The following requirements are satisfied:
1. Security as Simulation Extractable Commitment. The Commit Stage and Decommit Stage

constitute a post-quantum commitment scheme (as per Def. 1 where P and V play the roles of C
and R, respectively) that is computationally hiding, statistically binding, and extractable. Here,
the extractability means the following: There exists a QPT algorithm SE (called the simulation
extractor) such that for any non-uniform QPT C∗(ρ),{

SEC∗(ρ)(1λ)
}
λ

c
≈

{
(val(τ), STC∗) : (τ, STC∗ , bcom)← 〈C∗(ρ), R〉(1λ)

}
λ
,

where val(τ) is the value committed by C∗ as defined in Def. 2.45

2. Completeness. For any m ∈ {0, 1}ℓ(λ) and any polynomial-time computable predicate ϕ s.t.
ϕ(m) = 1, it holds that

Pr

[
b = > ∧ b′ = > :

(com, STP , b)← 〈P (m), V 〉EC
b′ ← 〈P (STP ), V (com)〉ϕPr

]
= 1. (62)

3. Soundness. For any predicate ϕ and any non-uniform QPT prover P ∗(ρ),

Pr

[
b = > ∧ b′ = >
∧ ϕ(valExtCom(com)) = 0

:
(com, STP ∗ , b)← 〈P ∗(ρ), V 〉EC
b′ ← 〈P ∗(STP ∗), V (com)〉ϕPr

]
= negl(λ), (63)

where valExtCom(com) is as defined in Def. 2 and we stipulate that ϕ(⊥) = 0.
4. Zero-Knowledge. There exists a pair of QPT simulators (SEC,SPr) such that for any m ∈
{0, 1}ℓ(λ), polynomial-time computable predicate ϕ s.t. ϕ(m) = 1, any non-uniform QPT verifier
V ∗(ρ), and any noticeable function ε(λ), the following conditions hold:{
S̃TV ∗ : (S̃TV ∗ , STEC)← S

V ∗(ρ)
EC

}
λ

c
≈

{
STV ∗ : (com, STP , STV ∗)← 〈P (m), V ∗(ρ)〉EC

}
λ

(64){
ÕUTV ∗ :

(S̃TV ∗ , STEC)← S
V ∗(ρ)
EC

ÕUTV ∗ ← SV ∗
Pr (1

ε−1
, S̃TV ∗ , STEC, ϕ)

}
λ

c
≈

{
OUTV ∗ :

(com, STP , STV ∗)← 〈P (m), V ∗(ρ)〉EC
OUTV ∗ ← 〈P (STP ), V ∗(STV ∗)〉ϕPr

}
λ

.

(65)

We refer to SEC (resp. SPr) as the Commit-Stage (resp. Prove-Stage) simulator.

15.2 Construction of ExtCom-and-Prove

We construct an ExtCom-and-Prove scheme based on extractable batch commitments. The con-
struction is almost identical to that in [CCLY22a, Section 6.5] except that we require full-simulation
security instead of ε-simulation.

The construction is shown in Prot. 9. It makes black-box use of the following building blocks:
44 This stage is rarely executed in applications.
45 We only require computational indistinguishability rather than statistical one unlike Def. 3. This is inherited from

Def. 22 (see also Rmk. 11).
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1. The extractable batch commitment (as per Def. 22) ExtBCom (Prot. 8), which in turn makes
black-box use of any OTs. Note that it is (O(t(λ))+ω(1))-round if the assumed OT is t(λ)-round
(Thm. 18).

2. An equivocal commitment scheme EqCom (as per Def. 19). A ω(1)-round construction of it is
known assuming only black-box access to post-quantum secure OWFs (Thm. 14).

3. A constant-round statistically-binding, computationally-hiding commitment Com, (e.g., Naor’s
commitment).

4. An (n+1, k)-perfectly verifiable secret sharing scheme VSS = (VSSShare,VSSRecon) (as per Def. 8).
We require that k is a constant fraction of n such that k ≤ n/3. There are known constructions
(without any computational assumptions) satisfying these properties [BGW88, CDD+99].

5. A (n, k)-perfectly secure MPC protocol Πmpc (as per Def. 9).

Protocol 9: ExtCom-and-Prove scheme ΠECnP

Parameter Setting: Let n(λ) be a polynomial on λ. Let k be a constant fraction of n such that
k ≤ n/3.

Input: Both the prover P and the verifier V get 1λ as the common input. P in addition gets a
string m ∈ {0, 1}ℓ(λ) as his private input, where ℓ(·) is a polynomial.

Commit Stage:
1. P prepares n views {vi}i∈[n], corresponding to an MitH execution for the (n+ 1, k)-VSSShare of

the string x (see Rmk. 5 for details).
2. P and V involve in ExtBCom, where P commits to (v1, ..., vn).

Decommit Stage:
1. P sends m and {vi}i∈[n] together with the corresponding decommitment information w.r.t. the

ExtBCom in Step 2 of the Commit Stage.
2. V checks that all the decommitments in Step 1 of the Decommit Stage are valid and m =

VSSRecon(v1, . . . , vn). If so, it accepts and otherwise rejects.

Prove Stage: Both parties learn a polynomial-time computable predicate ϕ.
1. P prepares n views {v′i}i∈[n] corresponding to an (n, k)-MitH execution for the functionality Fϕ

described below, where party Pi uses vi as input. It then commits to each of these views v′i
independently in parallel using Com.
– Functionality Fϕ: This collects inputs vi from party i, runs VSSRecon on these inputs to

recover a value x, and outputs ϕ(x).
2. P and V engage in the following coin-flipping subprotocol as detailed below.

(a) P samples a random string θP of proper length and commits to it using EqCom.
(b) V samples a random string θV of proper length and sends it to P .
(c) P sends to V the value θP together with the corresponding decommitment information

w.r.t. the EqCom in Step 2a. Now, P and V agree on a random string θ := θP ⊕ θV . By
a proper choice of length, the string θ it can be interpreted as specifying a size-k random
subset η ⊂ [n].

3. P sends to V in one round the following messages:
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(a) {vi}i∈η together with the corresponding decommitment information w.r.t. the ExtBCom in
Step 2 of the Commit Stage; and

(b) {v′i}i∈η together with the corresponding decommitment information w.r.t. the Com in
Step 1 of the Prove Stage.

4. V checks the following conditions:
(a) All the decommitments in Steps 3a and 3b are valid; and
(b) for any i ∈ η, vi is the prefix of v′i ; and
(c) for any i, j ∈ η, views (v′i, v

′
j) are consistent (as per Def. 10 and Rmk. 3) w.r.t. the VSSShare

execution in Step 1 of the Commit Stage and the Πmpc execution as described in Step 1
of the Prove Stage.

If all the checks pass, V accepts; otherwise, V rejects.

Theorem 19. Assume the existence of t(λ)-round semi-honest OTs. Then, there exists a (O(t(λ))+

ω(1)-round construction of an ExtCom-and-Prove scheme ΠECnP (i.e., Prot. 9) satisfying Def. 24.
Moreover, this construction makes only black-box use of the assumed OT.

This can be proven similarly to the security proof of ε-ExtCom-and-Prove in [CCLY22a, Section
6.5]. The only differences from their construction are that
1. we use fully-simulatable extractable batch commitments to commit to the views in Step 2 whereas

they use ε-simulatable parallel extractable commitments, and
2. we implement the coin-flipping subprotocol Step 2 using equivocal commitments instead whereas

they used ε-simulation extractable commitments.
The difference between full-simulation and ε-simulation is directly connected to that we achive

full-simulation instead of ε-simulation for the resulting protocol. For the coin-flipping subprotocol,
what we need here is one-sided simulation security where we require simulation-based security
against malicious verifiers but only require a weaker security against malicious provers that they
cannot bias the result of coin-flipping. This can be achieved using either equivocal commitments
as is done here or extractable commitments as is done in [CCLY22a, Section 6.5]. With the above
remarks in mind, it is straightforward to adapt the proof in [CCLY22a, Section 6.5] to our setting.
Thus, we omit the proof of Thm. 19.

16 Post-Quantum Black-Box MPC with Full Simulation

16.1 Black-Box PQ-2PC with Full Simulation

In this part, we prove the following theorem.

Theorem 20. Assuming the existence of a constant-round, semi-honest post-quantum OT, there
exists a black-box, ω(1)-round construction of post-quantum 2PC.

To prove Thm. 20, we follow the paradigm established in earlier works, in particular [GLSV21,
CCLY22a]. This involves two steps.

Step-1: In [CCLY22a], the authors first define an ideal functionality F tso-com for “selective-opening
secure” commitments, which is shown in Fig. 2. More descriptively, this is an idealization of a
commitment that offers selective opening security in a bounded-parallel execution. That is, it can be
used by a committer to commit to an a-priori bounded number, say a polynomial t(λ), of strings
within a single invocation; later, the receiver may specify an arbitrary subset I ⊂ [t] of positions,
and the committer must decommit to the i-th commitment it made, for each i ∈ I.

106



The intuitive benefit in having access to such a construct arises from the fact that it allows
for implementations of cut-and-choose protocols which naturally involve committing to several in-
stances of certain data and then later opening a receiver-chosen subset of these committed instances.
The techniques we use to get 2PC will involve these techniques.

Figure 2: The Ideal Functionality F t
so-com [GLSV21, CCLY22a]

Commit Stage: F tso-com receives from the committer C a query
(
Commit, sid, (m1, . . . ,mt)

)
.

F tso-com records
(
sid, (m1, . . . ,mt)

)
and sends (Receipt, sid) to the receiver R. F tso-com ignores fur-

ther Commit messages with the same sid.

Decommit Stage: F tso-com receives from R a query (Reveal, sid, I), where I is a subset of [t]. If no(
sid, (m1, . . . ,mt)

)
has been recorded, F tso-com does nothing; otherwise, it sends to R the message(

Open, sid, {mi}i∈I
)
.

Step 2: Then, it is shown in [CCLY22a, Section 7.4] that F tso-com is indeed black-box 2PC-complete.
Namely, [CCLY22a, Section 7.4] shows that given a protocol π that securely implements F tso-com
against QPT adversaries, one can construct a general-purpose 2PC protocol (i.e, computing any
efficient 2-party functionality) that is secure against QPT adversaries. Moreover, the 2PC con-
struction makes only black-box use of π and involves only a constant multiplicative blow up in the
number of rounds (as compared to π).

We must keep in mind the following caveat: the protocol π as described in [CCLY22a, Section
7.4] in fact implements F tso-com w.r.t. ε-simulation. Hence the final 2PC they obtained is also
w.r.t. ε-simulation. It is straightforward however to see that the same proof works w.r.t. standard
negligibly-close simulation as well. Namely, if one starts with a π that implements F tso-com w.r.t. the
standard notion of negligible-close simulation, then the resulting 2PC protocol will also be secure
w.r.t. the standard notion of negligible-close simulation.

Implementing F tso-com. From the above discussion we can see that to prove Thm. 20, it suffices to
construct a ω(1)-round, black-box, post-quantum protocol implementing the F tso-com functionality.
For that, we will make use of the ω(1)-round ExtCom-and-Prove protocol described in Prot. 8. Note
that it is okay to make use of this ExtCom-and-Prove protocol because this protocol makes only
black-box use of a semi-honest post-quantum OT protocol, which is indeed the minimal assumption
for our current goal of 2PC.

We can then conclude the proof of Thm. 20 using the following lemma.

Lemma 30 ([CCLY22a, Lemma 26]). Assume the existence of Post-Quantum ExtCom-and-
Prove (as per Def. 24). Then, for any polynomial t(λ), there exists a post-quantum protocol imple-
menting F tso-com. Moreover, this construction makes only black-box use of the ExtCom-and-Prove
protocol and incurs only a constant blow up in the number of rounds.

Proof. This proof is essentially identical to the proof of [CCLY22a, Lemma 26], relying on the
extractable commit-and-prove protocol given in Prot. 9. The idea is simple: the committer uses the
Commit Stage of the Extcom-and-Prove protocol to commit to different messages (m1, . . . ,mt) of
its choice. Next, when required to decommit to a certain subset I ⊂ [t] of messages, the committer
reveals these messages {mi}i∈I to the receiver and then uses to Prove Stage to prove that the
revealed messages are indeed the committed ones for the appropriate positions. Note that this pro-
tocol then is purely black-box and only adds a small constant number of rounds of communication
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(relating to sending the revealed subset and the decommitment information) over the underlying
Extcom-and-Prove protocol.

Security against a cheating committer is obtained via the soundness of Prot. 9, and that against
a cheating reciever can be seen from the zero-knowledge of the same underlying protocol. The crucial
(and in fact only) difference is that [CCLY22a, Lemma 26] uses an underlying ExtCom-and-Prove
protocol that offers ε-simulation. This is why they only manage to obtain a protocol implementing
F tso-com w.r.t. ε-simulation. In contrast, Prot. 9 does achieve the standard notion of negligibly close
simulation. It is then easy to verify that our protocol for F tso-com achieves the standard notion of
full simulation as well, using the same proof.

16.2 Black-Box PQ-MPC with Full Simulation

Here we turn to the problem of obtaining a fully simulatable black-box post-quantum MPC protocol.
More precisely, we show the following theorem.

Theorem 21. Assuming the existence of a semi-honest post-quantum OT, there exists a black-box
construction of post-quantum MPC in polynomial rounds.

This theorem follows directly from Thm. 20 and [IPS08]. To start, we observe that Thm. 20
provides a black-box construction of post-quantum maliciously secure and fully simulatable OT —
via the constructed 2PC protocol (recall that the latter can be made to implement any 2 party
functionality). We have further seen in Sec. 12 that the black-box compiler given in [IPS08] from
OT to MPC works in the post-quantum setting as is.

There is however a caveat: recall that the original [IPS08] result is in the OT hybrid model in
the UC setting, where the OT primitive is modeled as an ideal UC functionality. Such modeling
indeed allows parallel OT calls (this has been observed and discussed in [CCLY22a, Section 7] and
in Sec. 12). But the OT protocol we obtain from Thm. 20 is only secure in the standalone setting.

Fortunately, this does not become a problem for our application. Recall that the IPS compiler
involves carrying out a certain polynomial number of OT calls or executions at the start of the
protocol, which are carried out in parallel as observed above. For our purposes, we simply make
required number of OT calls in sequence instead of in parallel, which adds to the round complexity
of our protocol but preserves the desired order asymptotics — it is easy to check that our overall
MPC protocol still takes only polynomial rounds in n (and thus also in λ).
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A Full Description of the Two-Sided PQ-MNC Protocol

In this section, we present the full description of the 1-1 PQ-NMC protocol without the ‘one-sided’
restriction. As explained in Sec. 8, this is obtained by applying the [PR05] ‘two-slot’ technique to
Prot. 3.

The protocol is presented in Prot. 10. It makes use of exactly the same building blocks for
Prot. 3 (as listed at the beginning of Sec. 5.1).

Protocol 10: (Two-Sided) PQ-NMC: Black-Box and Constant-Round

Parameter Setting: The tag space is defined to be [T ], where T is a polynomial in the security
parameter λ. Let n be a polynomial in λ, and k be a constant fraction of n such that 2k ≤ n/3.

Input: Both the committer C and the receiver R get the security parameter 1λ and a tag t ∈ [T ]

as the common input; C gets a string m ∈ {0, 1}ℓ(λ) as its private input, where ℓ(·) is a polynomial.

Commit Phase:
1. (Initial Com to m.) In this stage, C commits to the message with MitH.

– C prepares n views {cv(1)i }i∈[n], corresponding to an MitH execution for the (n + 1, 2k)-
VSSShare of the message m. C commits to each cv

(1)
i (i ∈ [n]) independently in parallel, using

Naor’s commitment.
2. (Hard-Puzzle-A.) In this stage, R sets up a t-solution hard puzzle. It then commits to one so-

lution of the puzzle and proves in zero-knowledge the consistency with MitH. This corresponds
to the Slot-A as described in Sec. 8.
(a) C samples a size-k random subset chA ⊆ [n], and commits to it using ExtCom.

(b) R samples t random strings xA1 , . . . , xAt
$←− {0, 1}λ. R prepares n views {rv(1,A)i }i∈[n], cor-

responding to an MitH execution for the (n + 1, k)-VSSShare of the string xA1 ‖ . . . ‖xAt . R
commits to each rv

(1,A)
i (i ∈ [n]) independently in parallel, using Naor’s commitment.

(c) R prepares another n views {rv(2,A)i }i∈[n], corresponding to an MitH execution for the
(n+ 1, k)-VSSShare of the string 1‖xA1 . R commits to each rv

(2,A)
i (i ∈ [n]) independently in

parallel, using ExtCom.
(d) R then prepares another n views {rv(3,A)i }i∈[n], corresponding to an (n, k)-MitH execu-

tion of the n-party functionality FR,Aconsis described below, where party Pi (i ∈ [n]) uses
rv

(1,A)
i ‖rv(2,A)i as input. R commits to each rv

(3,A)
i (i ∈ [n]) independently in parallel, using

Naor’s commitment.
– Functionality FR,Aconsis: It collects input (and parses it as) rv

(1,A)
i ‖rv(2,A)i from party i

for each i ∈ [n]. It then runs the recovery algorithm of VSS to obtain a1‖ . . . ‖at :=

VSSRecon(rv
(1,A)
1 , . . . , rv

(1,A)
n ) and j‖bj := VSSRecon(rv

(2,A)
1 , . . . , rv

(2,A)
n ). If j ∈ [t] and bj =

aj , it outputs 1 to each party; otherwise, it outputs 0 to each party.
(e) C sends chA together with the decommitment information (w.r.t. Step 2a).

(f) R sends {(rv(1,A)i , rv
(2,A)
i , rv

(3,A)
i )}i∈chA together with the decommitment information (w.r.t.

their respective commitments in Steps 2b to 2d).
(g) C checks the validity of the decommitment information and the consistency among the

revealed views {(rv(1,A)i , rv
(2,A)
i , rv

(3,A)
i )}i∈chA . In particular, it checks for each i ∈ chA that
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rv
(1,A)
i ‖rv(2,A)i is the prefix of rv

(3,A)
i . It also checks for each distinct pair i, j ∈ chA that

(rv
(1,A)
i , rv

(1,A)
j ) are consistent, (rv(2,A)i , rv

(2,A)
j ) are consistent, and (rv

(3,A)
i , rv

(3,A)
j ) are con-

sistent, where by ‘consistent’ we refer to the consistency requirements as per Def. 10 and
Rmk. 3. It also checks for each i ∈ chA the final output of Pi contained in rv

(3,A)
i is 1. It

aborts immediately if any of the checks fail.
3. (Hard-Puzzle-B.) In this stage, R sets up a (T − t)-solution hard puzzle. It then commits

to one solution of the puzzle and proves in zero-knowledge the consistency with MitH. This
corresponds to the Slot-B as described in Sec. 8.
(a) C samples a size-k random subset chB ⊆ [n], and commits to it using ExtCom.

(b) R samples (T − t) random strings xB1 , . . . , xBT−t
$←− {0, 1}λ. R prepares n views {rv(1,B)

i }i∈[n],
corresponding to an MitH execution for the (n + 1, k)-VSSShare of the string xB1 ‖ . . . ‖xBt .
R commits to each rv

(1,B)
i (i ∈ [n]) independently in parallel, using Naor’s commitment.

(c) R prepares another n views {rv(2,B)
i }i∈[n], corresponding to an MitH execution for the

(n+1, k)-VSSShare of the string 1‖xB1 . R commits to each rv
(2,B)
i (i ∈ [n]) independently in

parallel, using ExtCom.

(d) R then prepares another n views {rv(3,B)
i }i∈[n], corresponding to an (n, k)-MitH execu-

tion of the n-party functionality FR,Bconsis described below, where party Pi (i ∈ [n]) uses
rv

(1,B)
i ‖rv(2,B)

i as input. R commits to each rv
(3,B)
i (i ∈ [n]) independently in parallel, using

Naor’s commitment.
– Functionality FR,Bconsis: It collects input (and parses it as) rv

(1,B)
i ‖rv(2,B)

i from party i

for each i ∈ [n]. It then runs the recovery algorithm of VSS to obtain a1‖ . . . ‖aT−t :=
VSSRecon(rv

(1,B)
1 , . . . , rv

(1,B)
n ) and j‖bj := VSSRecon(rv

(2,B)
1 , . . . , rv

(2,B)
n ). If j ∈ [T − t] and

bj = aj , it outputs 1 to each party; otherwise, it outputs 0 to each party.
(e) C sends chB together with the decommitment information (w.r.t. Step 3a).

(f) R sends {(rv(1,B)
i , rv

(2,B)
i , rv

(3,B)
i )}i∈chB together with the decommitment information (w.r.t.

their respective commitments in Steps 3b to 3d).
(g) C checks the validity of the decommitment information and the consistency among the

revealed views {(rv(1,B)
i , rv

(2,B)
i , rv

(3,B)
i )}i∈chB in the same manner as in Step 2g. It also

checks for each i ∈ chB the final output of Pi contained in rv
(3,B)
i is 1. It aborts immediately

if any of the checks fail.
4. (ExtCom to m.) C commits to m once again with an extractable MitH.

– C prepares n views {cv(2)i }i∈[n], corresponding to an MitH execution for the (n + 1, 2k)-
VSSShare of the message m. C commits to each cv

(2)
i (i ∈ [n]) independently in parallel, using

ExtCom.
5. (Puzzle Solution Reveal.) R reveals (xA1 , . . . , x

A
t ) and (xB1 , . . . , x

B
T−t) by decommitting to

{rv(1,A)i }i∈[n] and {rv(1,B)
i }i∈[n].

6. (Committer’s Consistency Proof.) This stage should be interpreted as C proving consis-
tency between its actions in Steps 1 and 4 (i.e., these two steps commit to the same value) using
a WI argument, where the trapdoor statement is that: C manages to commit to a puzzle solu-
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tion in Step 4 either for Hard-Puzzle-A or Hard-Puzzle-B. Note that this is corresponding
to the modification described in Sec. 8.
This step is again conducted in MitH. Note that for the honest committer, the ‘effective witness’
is the same message m reconstructed from both {cv(1)i }i∈[n] and {cv(2)i }i∈[n], and so the virtual
MPC execution in reality evaluates the ‘first clause’ of FCconsis as defined below.

(a) C prepares n views {cv(3)i }i∈[n], corresponding to an (n, 2k)-MitH execution of the n-party
functionality FCconsis described below, where party Pi (i ∈ [n]) uses cv

(1)
i ‖cv

(2)
i as input. C

commits to each cv
(3)
i (i ∈ [n]) independently in parallel, using Naor’s commitment.

– Functionality FCconsis: It collects input (and parses it as) cv(1)i ‖cv
(2)
i from party i for each

i ∈ [n]. It then runs the recovery algorithm of VSS to obtain a := VSSRecon(cv
(1)
1 , . . . , cv

(1)
n )

and b := VSSRecon(cv
(2)
1 , . . . , cv

(2)
n ). It outputs 1 to each party if

• b = a, or
• b can be parsed as j‖x′ such that j ∈ [t] and x′ = xAj (recall that xAj is among the

Hard-Puzzle-A solutions revealed by Rrevealed in Step 5, or
• b can be parsed as j‖x′ such that j ∈ [T − t] and x′ = xBj (recall that xBj is among

the Hard-Puzzle-B solutions revealed by Rrevealed in Step 5.
Otherwise, it outputs 0 to each party.

(b) (Trapdoor Coin-Flipping) C and R then execute the Coin-Flipping Stage of the
trapdoor coin-flipping protocol shown in Prot. 2, with the trapdoor predicate ϕ(·) defined
as follows
– Predicate ϕ(·): It has the values (xA1 , . . . , x

A
t ) and (xB1 , . . . , x

B
T−t) hard-wired (recall

that these values are revealed in Step 5). On input j‖x′, ϕ outputs 1 if and only if either
• j ∈ [t] and x′ = xAj or

• j ∈ [T − t] and x′ = xBj .
By the completeness of the trapdoor coin-flipping protocol (i.e., Property 2 in Def. 24),
at the end of this step, C and R agree on a string η. By a proper choice of length, the
string η can be interpreted as specifying a size-k random subset of [n]. In the following,
we abuse notation by using η to denote the corresponding size-k random subset.

(c) C sends {(cv(1)i , cv
(2)
i , cv

(3)
i )}i∈η together with the decommitment information (w.r.t. their

respective commitments in Steps 1, 4 and 6a).
(d) R checks the validity of the decommitment information and the consistency among the

revealed views {(cv(1)i , cv
(2)
i , cv

(3)
i )}i∈η. It also checks for each i ∈ η that the output of Pi

contained in cv
(3)
i is 1. It aborts if any of these checks fail.

Decommit Stage:

1. C sends {cv(1)i }i∈[n] together with the decommitment information w.r.t. the commitments in
Step 1.
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2. R checks the validity of the decommitment information and the consistency among {cv(1)i }i∈[n].
If these checks are successful, R recovers m as m := VSSRecon(cv

(1)
1 , . . . , cv

(1)
n ); otherwise, R

rejects and output ⊥.
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