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Abstract. The wide adoption of deep neural networks (DNNs) raises
the question of how can we equip them with a desired cryptographic func-
tionality (e.g, to decrypt an encrypted input, to verify that this input is
authorized, or to hide a secure watermark in the output). The problem
is that cryptographic primitives are typically designed to run on digital
computers that use Boolean gates to map sequences of bits to sequences
of bits, whereas DNNs are a special type of analog computer that uses
linear mappings and ReLUs to map vectors of real numbers to vectors
of real numbers. This discrepancy between the discrete and continuous
computational models raises the question of what is the best way to im-
plement standard cryptographic primitives as DNNs, and whether DNN
implementations of secure cryptosystems remain secure in the new set-
ting, in which an attacker can ask the DNN to process a message whose
“bits” are arbitrary real numbers. In this paper we lay the foundations
of this new theory, defining the meaning of correctness and security for
implementations of cryptographic primitives as ReLU-based DNNs. We
then show that the natural implementations of block ciphers as DNNs
can be broken in linear time by using such nonstandard inputs. We tested
our attack in the case of full round AES-128, and had 100% success rate
in finding 1000 randomly chosen keys. Finally, we develop a new method
for implementing any desired cryptographic functionality as a standard
ReLU-based DNN in a provably secure and correct way. Our protective
technique has very low overhead (a constant number of additional layers
and a linear number of additional neurons), and is completely practical.

Keywords: Deep learning, DNN, cryptography, cryptanalysis, domain
extension, secure implementation.

1 Introduction

Two highly active areas of research within Computer Science are deep learning
and cryptography, but so far very little had been done to combine them (unlike
the situation at the intersection of deep learning and cyber security, where there
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had been a lot of fruitful integration). One of the main obstacles is the fact that
the two areas are based on completely different models of computation: most
cryptographic schemes are mappings over the discrete domain of bits and are
implemented as a composition of Boolean gates, whereas DNNs are mappings
over the continuous domain of real numbers and are implemented as a compo-
sition of linear mappings and nonlinear activation functions such as Rectified
Linear Units (ReLUs). In this paper, we study the central problem at the inter-
section of deep learning and cryptography, namely whether one can implement
standard cryptographic primitives in deep neural networks while maintaining
their security.

Since the set of reals contains zeroes and ones, the transition from bits to real
numbers is a special example of a well-known process known as domain extension.
There are many examples in which domain extension can drastically change the
difficulty of computational problems. For example, the extension of real values
to complex values can turn unsolvable algebraic equations into solvable ones.
The same goes for the problem of finding optimal solutions for systems of linear
constraints: While integer programming is an NP-complete problem, its domain
extension to linear programming over the reals is easy to solve with interior
point methods. Finally, when we extend bits to qubits and consider quantum
circuits which can manipulate such qubits, the difficult problem of factoring
large numbers becomes polynomially solvable.

To clarify the research question, suppose that we want to implement the
Advanced Encryption Standard (AES) block cipher as a DNN. Due to the high
expressive power of such networks, there are several natural ways to do it in
such a way that for any standard plaintext (whose bits are zeroes and ones)
provided as input to the DNN, the output of the DNN will be the correct stan-
dard ciphertext (which also consists of zeroes and ones). However, due to the
domain extension, such a DNN must also provide some output when it is given
the nonstandard input whose first “bit” is 0.3, whose second “bit” is −7, whose
third “bit” is π, etc. Due to the continuity of linear mappings and ReLUs, such
nonstandard outputs will be some kind of nonlinear but continuous interpolation
between the standard outputs for nearby standard inputs. While the legitimate
user is only interested in binary inputs and outputs, an adversary can try to use
nonstandard real valued plaintext bits in his attack in order to extract the se-
cret cryptographic key from the DNN. This is reminiscent of the way hackers use
malformed SQL queries to take control of a computer, or the way cryptanalysts
“glitch” smart cards by providing them with unusual voltages in side channel
attacks.

It is important to note that DNNs cannot be trained via gradient descent
to perform typical cryptographic operations such as secret key encryption, since
by design the input/output relation is hard to generalize from a small number
of training examples. In addition, trained DNNs usually provide only an ap-
proximation of the desired functionality, whereas we want to have a perfectly
correct implementation. The only realistic way to implement such a mapping
is to synthesize the DNN as a composition of its basic operations. In such an
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implementation, the secret key bits are either stored as 0s and 1s in a special
inaccessible register whose values are fed into the DNN, or provided as some
additional inputs to the DNN which cannot be seen or manipulated by the at-
tacker. Note that in this case, the attacker cannot try to break the cryptosystem
by choosing real-valued key bits that are not 0s or 1s, and cannot use related
key attacks in which he tries to flip some key bits in order to check its effect on
the ciphertext.

One of the main motivations for our research was the recent paper “Plant-
ing Undetectable Backdoors in Machine Learning Models” by Goldwasser, Kim,
Vaikuntanathan and Zamir [7]. In this paper, the authors used standard cryp-
tographic primitives in order to hide a backdoor in the DNN. However, since
such primitives are only defined over the discrete domain of {0, 1}n, they had
to consider only DNN’s that behave as digital computers, by restricting all the
inputs to this domain (or by using some discontinuous activation function such
as sgn(x) which can map arbitrary real values to {0, 1}). Under this restric-
tion, they could use the following lemma which was attributed to Minsky and
Papert [14]:

“Lemma 3.2: Given a Boolean circuit C of constant fan-in and depth d, there
exists a multi layer perceptron N of depth d computing the same function.”

However, typical DNN’s (such as image classifiers) are essentially analog com-
puters, which accept floating point real values as inputs, multiply them with real
valued weights, and use the continuous ReLU as the activation function, and thus
it is not clear how to apply the techniques of [7] to such DNN’s. Any such at-
tempt will force us to reinterpret our standard notions of cryptographic security
when the discrete domain {0, 1}n is extended into the continuous domain of Rn.
It is this conceptual gap between the notions of security for digital and analog
computational models which motivated us to study this problem and to real-
ize that the situation is more complicated and more interesting than initially
believed.

As we show in this paper, the security of cryptosystems over 0/1 inputs
does not imply that their domain extension to real-valued inputs (via a perfectly
correct DNN implementation) is also secure. In fact, we show that all the natural
implementations of AES as a DNN can be broken in linear time by analyzing the
effect of changing each input “bit” around its initial value x by a tiny amount
ϵ into x + ϵ and x − ϵ. Surprisingly, this new type of real-valued differential
cryptanalysis can break any number of rounds of AES by just checking whether
the real-valued output “bits” change at all.

One possible countermeasure implementors can try to use is to “sanitize” the
inputs in order to prevent potentially harmful values from being processed by
the DNN. Unfortunately, there is no ReLU-based DNN gadget which can map
0 to 0, 1 to 1, and any other input to either 0 or 1, since any such function must
have at least one discontinuity point whereas any ReLU-based DNN is always
continuous. However, we can partially sanitize the inputs by adding one extra
layer in front of the DNN which applies to each input separately the function
ClippedReLU(x) = ReLU(x) − ReLU(x− 1). This function clips any negative x
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to 0, clips any x larger than 1 to 1, and leaves any input x between 0 and 1
unchanged. However, as we show in this paper such partial sanitization of all
the inputs and outputs of the DNN does not suffice to protect the cryptographic
functionality, since it can still be attacked with a different (and slightly more
complicated) attack.

In the last part of the paper we finally solve the problem by describing a
new protective technique which yields a provably secure implementation of any
desired cryptographic functionality as a standard ReLU-based DNN. We achieve
this by forcing the DNN to continuously interpolate between its standard outputs
(for standard binary inputs) in a way which cannot possibly reveal any new
information about the secret key.

The main contributions of this paper are:

1. Formalizing the notions of a correct and secure implementation of a crypto-
graphic functionality in a DNN (see section 3 and section 9).

2. Demonstrating that for some cryptographic task which is defined over bits
but implemented as a DNN, there is a provably exponential gap between the
difficulty of solving the problem when the adversary can use only bits and
when he can use real numbers as inputs (see section 5).

3. Defining the notion of natural implementations of cryptographic function-
alities as DNNs, which compose the DNN versions of their basic Boolean
operations (see section 4 and section 6).

4. Showing that such natural implementations of cryptosystems are completely
insecure in the sense that an adversary who can feed the DNN with real
numbers as plaintext “bits” can extract all their embedded secret key bits in
linear time (see section 7).

5. Demonstrating that just clipping the inputs to the range [0, 1] does not solve
this insecurity problem (see section 7.4).

6. Experimentally verifying our key recovery attacks on natural implementa-
tions of AES-128 with 100% success rate (see section 8).

7. Developing a new way of implementing any key-based cryptographic func-
tionality as a DNN, which is provably secure in the sense that any informa-
tion about the secret key bits which can be obtained by using real-valued
inputs can also be obtained by using only zeroes and ones as inputs (see
section 9).

2 Related Work

Encrypting Analog Data

Cryptography has very strong roots in the discrete domain, and the design of
cryptographic primitives that process continuous data is uncommon. However,
such primitives flourished for a time during WW2 due to the need for secure
speech systems, to protect the confidentiality of telephonic communications. One
notable example is the SIGSALY [16] system from Bell Labs, which swapped ten
frequency bands and six amplitude bands based on a secret key.
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After this period, cryptosystems that processed real-valued data have not
received a lot of attention, as most of them can be shown to be insecure (in
particular, they suffer from the fact that in any continuous mapping, nearby
plaintexts are always encrypted into nearby ciphertexts). It is important to real-
ize that we do not face the same problem in this paper, since our goal is different:
in our case, the legitimate user of the scheme only wants to encrypt standard
plaintexts which are strings of zeroes and ones, but he wants to use an analog
type of computational device which can also accept real-valued inputs prepared
by an adversary.

Boolean Functions, Cryptography and Neural Networks

The idea of implementing arbitrary Boolean logic through a neural network,
therefore showing the universality of this computational model, has been central
to the field since its inception, when Pitts and Mc Culloch [13] suggested that
biological neurons, through their threshold activation mechanism, could com-
pute Boolean functions. The first practical construction of an artificial neuron,
the perceptron of Rosenblatt [15], was criticized for its inability to learn non-
linearly separable Boolean functions (such as XOR) by Minsky and Papert [14],
possibly triggering the first so-called “AI winter”. The study of the representa-
tion power of multilayer perceptron culminated with the universal approximation
theorem established by Cybenko [5] and Hornik et al. [8], stating that they can
approximate any continuous function on a compact domain.

While it has been known for a long time that neural networks can be used to
build any Boolean circuits, the implementation of cryptographic primitives into
neural network has received very little attention. Recently, Goldwasser, Kim,
Vaikuntanathan and Zamir [7] proposed a backdoor construction for neural net-
works based on a cryptographic signature algorithm, implemented as described
in [14], with a non-continuous step activation function. This idea of adding cryp-
tographic backdoors to neural networks was also extended to large language
models in [6] [9].

Finally, some attempts based on training, rather than building, DNNs have
shown little success [3], and essentially concluded that the required amount of
data for training is exponential in the state size.

Neural Networks for Cryptography

The dual problem of building cryptography using neural networks has been more
popular. For instance, in [10], Kanter et al. propose to iteratively synchronize two
randomly and independently initialized neural networks through their answers to
public queries until convergence, and to derive a shared cryptographic key from
their states at the end of the procedure. However, this key exchange mechanism
was quickly shown to be insecure [11], and subsequent attempts have also been
shown to be vulnerable.

Abadi and Anderson [2] extended this idea to adversarial neural cryptog-
raphy, where the neural networks are given a shared key, and synchronize to
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learn a secure encryption scheme. This work uses three neural networks: Alice
encrypts its plaintext input with the shared key, Bob attempts to invert the
encryption with the key, and Eve without it. The three neural networks are
trained in turns with different goals: Bob and Eve’s loss depends on their abil-
ity to reconstruct the plaintext, while Alice’s loss function aims to maximize
Bob’s score while minimizing Eve’s advantage. In [4], the authors generalize the
framework to enhance Eve with chosen plaintext abilities, and use a dedicated
architecture to permit the neural networks to learn the XOR function. The en-
cryption algorithms produced by such techniques have so far been very simple,
and their security relies heavily on the ability to use the one time pad through
their unlimited key material.

Cryptography for Neural Networks

The design of techniques to enable either learning or inference on encrypted data
is a very active research field [12], where dedicated neural networks are used to
support the use of binary inputs; this differs from our goal in this work, which
is to build a secure encryption functionality into a generic, continuous neural
network, where adversarial real-valued queries are a strong attack vector.

3 Preliminaries

3.1 Basic DNN Definitions and Notations

Definition 1 (ReLU Activation Function). The ReLU (Rectified Linear
Unit) activation function, which maps negative values to 0, is defined as

ReLU(x) = max{0, x}.

Definition 2 (Neuron). A neuron is a function η determined by a weight (col-
umn) vector w, a bias b, and an activation function f , which computes

η(x) = f(x · w + b).

Definition 3 (Deep Neural Network (DNN)). A Deep Neural Network is
a function f : Rd0 → Rdr+1 built as a composition of neurons arranged into
layers. Layer l is defined by a weight matrix W l, bias vector bl and activation
functions list σl, such that neuron j of layer l has weights W l

·,j, bias blj and
activation σj.

Throughout this paper, we focus on ReLU-based neural networks, which only
have linear mappings and ReLUs; we sometimes loosely use the term DNN to
refer to such neural networks.
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3.2 The Threat Model

Let D be a DNN-based implementation of some binary keyed cryptographic
primitive B (e.g., AES encryption, HMAC, RSA signing, etc).

The binary implementation B has a binary key space K ⊆ {0, 1}λ, a binary
input space PBin ⊂ {0, 1}∗, and a binary output space CBin ⊂ {0, 1}∗, such that:

B : K,PBin → CBin.

The DNN-based implementation of the same cryptographic primitive D has
(the same) key space K ⊆ {0, 1}λ, an infinite precision real valued input space
PR ⊂ R∗, and an output space CR ⊂ R∗, such that:

O : K,PR → CR.

For the sake of brevity, we will omit the key from our notation, unless it is
specifically required.

Throughout this paper, we will assume that our DNN-based implementation
D is “correct”, i.e., it agrees with the binary implementation B on all binary
inputs. More formally:

Definition 4 (Correctness of DNN-based implementation). For any DNN-
based implementation D of a binary cryptographic primitive B, D is correct if

∀k ∈ K ∧ ∀p ∈ PBin : Bk(p) = Dk(p).

Our threat model assumes an adaptive attacker with oracle access to D. The
attacker can ask for the output value of D on any chosen input values, where
each input “bit” is a real number. Our adaptive attacker can choose their next
input value based on the results of the previous queries.

The main question we ask ourselves is, what is the relative security of our
DNN-based implementation D that can receive real-valued inputs, compared to
the binary implementation B that can only receive binary inputs?

We will show that in many cases, such an adaptive attacker can exploit
queries with non-binary input values to extract the keys of “natural” DNN-based
implementations. However, in section 9, we will introduce some novel DNN-based
gadgets, and show how to use them in order to construct a blackbox transfor-
mation so that the resultant DNN provably satisfies our security definition.

4 Natural Implementations of Small Boolean Functions
as A DNN

In this section, we describe the simplest way to implement any Boolean function
over a small number of bits as a ReLU-based neural network, which we refer
to in the rest of the paper as its natural implementation. We first illustrate the
technique through the example of the XOR of two bits, before describing the
general case.
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4.1 Natural Implementation of XOR

The XOR function of two inputs x1, x2 can be implemented in a simple
one layer DNN with two neurons which compute the following two intermediate
values C1, C2:

C1 = ReLU(x2 − x1)

C2 = ReLU(x1 − x2)

The value y = C1+C2 (which is the absolute value of the difference between
the two inputs, and thus measures the real-valued distance between them) pro-
duces the desired XOR value for any combination of {0, 1} values of x1 and
x2, and continuously extends this definition to R2. Notice that when we embed
this XOR in a larger circuit, there is no need to spend a second DNN layer to
compute this addition operation - any subsequent neuron that needs the value
y will simply incorporate the computation of C1 + C2 into the linear mapping
of its inputs.

4.2 Natural Implementations of Other Boolean Functions

The natural implementations we present in this subsection generalize this tech-
nique to arbitrary Boolean functions over a small number k of input bits through
a corner summation construction. In particular, we will use this method in sec-
tion 6 to naturally implement the SBox of the AES block cipher (which maps 8
input bits to 8 output bits) as a small ReLU-based DNN.

Consider any Boolean function f : {0, 1}k → {0, 1}. We again add only
one layer, which contains one neuron for each binary input b = (b1 . . . bk) such
that f(b) = 1. We call any such vertex b of the Boolean hypercube an active
corner, and denote the set of all the active corners by C. The output of the
implementation of f is the sum of the outputs of all these intermediate values.
Note that this layer contains at most 2k neurons, which is not too large whenever
k is a small constant such as k = 8.

We now describe the linear mapping of the neuron associated with a partic-
ular active corner b = (b1 . . . bk) of f . We want this linear mapping to output
the value 1 at the associated corner, and negative or zero values at all the other
corners of the Boolean hypercube (which will be turned into 0’s by the neuron’s
ReLU). We achieve this by orienting the zero hyperplane of the linear mapping
in such a way that it splits the Boolean hypercube into two half-spaces so that
the positive side of the linear mapping will contain only b, and the negative side
of the linear mapping will contain all the other 2k − 1 corners, as depicted in
Figure 1. The formal definition of this corner function is the following:
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Definition 5 (Corner Function). : The corner function associated with the
active corner b = (b1 . . . bk) ∈ {0, 1}k is:

cornerc,b1...bk(x) = ReLU

(
1

c

( ∑
i:bi=1

xi +
∑

i:bi=0

(1− xi)− k + c

))
,

for any choice of 0 < c ≤ 1.

It is easy to verify that this function outputs the value 1 at corner b, and zero
at any other corner of the Boolean hypercube. The free parameter 0 < c ≤ 1
determines how close to b we want the zero hyperplane to pass (for c = 1 the
hyperplane is maximally far away from its corner and passing through some
other corners, and as c gets smaller it passes closer and closer to the corner).
The effect of c in two dimensions is illustrated in Figure 2.

Fig. 1: A three dimensional corner function. a. The Boolean hypercube with one
active corner. b. The zero hyperplane of the corner function associated with this
corner for c = 1.

Fig. 2: The corner function cornerc,0,1(x1, x2).
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When the Boolean function f has more than one active corner, we formally
define its implementation as:

Definition 6 (Sum of Corners). Let fC : {0, 1}k → {0, 1} be a Boolean func-
tion, with active corners C = {b = (b1 . . . bk) : f(b) = 1}. The continuous
generalization of fC is the sum of its corner functions for all the active corners
of f :

ΣC(x) =

(∑
b∈C

cornerc,b1...bk(x)

)

Note that the implementation of XOR described in the previous subsection
is a special case of this general construction in two dimensions with two active
corners at (0, 1) and (1, 0) with c = 1.

Finally, we define the natural implementation of a vectorial Boolean function
f : {0, 1}k → {0, 1}m as the concatenation of the m sums, placed side by side
in the DNN. This construction is formalized in Algorithm 1, which describes
how to implement a vectorial Boolean function f : {0, 1}k → {0, 1}m as a neural

network with k input neurons,
m∑
o=1
|Co| neurons in the hidden layer, and m output

neurons which implement the m sums of corners.

Algorithm 1 NN(f,c)

Input: A Boolean function f : {0, 1}k → {0, 1}m, a distance parameter 0 < c ≤ 1.
Output: The natural implementation NNf, c.
1: NN ← k input neurons ▷ Build input layer of NN

2: /* Build first hidden layer of NN with
m∑

o=1

|Co| neurons: */

3: for o ∈ [1;m] do
4: Co ← {x : f(x)o = 1} ▷ Collect corners.
5: for x ∈ Co do
6: w ← (w1, . . . , wk) ▷ Initialize weights and biases.
7: b← c− k
8: for xi ∈ x do
9: if xi = 0 then

10: wi ← −1
11: b← b+ 1
12: else
13: wi ← 1

14: NN ← (w, b, ReLU) ▷ Add neuron to layer, with ReLU activation
15: /* Build output layer of NN: */
16: for o ∈ [1;m] do
17: w = [1] ∗ |Co| ▷ All weights have value 1.
18: b = 0
19: NN ← (w, b) ▷ Add ΣCo to layer
20: return network NN
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These natural implementations of Boolean functions over a small number
of bits (or Boolean functions over a large number of bits when they have only
a small number of active corners) can be composed into arbitrarily complex
structures in order to implement any Boolean circuit as a DNN. Note that the
sum of corner functions and the parallel evaluation of the m outputs can again
be absorbed into the linear mapping of the next layer, and thus require only one
additional layer in the DNN.

5 A Provably Exponential Gap Between The Complexity
of a Problem With Binary and Real Queries

In this section, we show the existence of a simple search problem which is defined
over binary inputs and can be naturally implemented with a blackbox DNN with
a single neuron, which can be solved exponentially faster when real valued queries
are allowed.

The problem we consider is the well known problem of unstructured search,
in which the Boolean hypercube has a single hidden corner b ∈ {0, 1}k =
(b1, . . . , bk) at which f(b) = 1, and at all the other corners the value of f is
zero. We are given blackbox access to the natural single neuron implementation
of f as a DNN, and our goal is to find the hidden corner b with the smallest
possible number of queries under two scenarios: When all the queries must be
binary, and when real-valued queries are allowed. We will show that in the first
scenario there is a provable lower bound of Ω(2k) on the complexity of the prob-
lem, while in the second scenario there is a simple O(k) algorithm for solving it.
Incidentally, the same unstructured search problem was shown by Grover to be
solvable quadratically faster under a different type of domain extension (from
bits to qubits).

In the Boolean version of the problem, the expected number of queries needed
to find b is exponential in the input size k, since the only information which can
be gained by querying the 2k − 1 nonactive corners of the Boolean hypercube
and obtaining the answer 0 is that they are not the correct hidden corner.

Consider now the second scenario, in which we are allowed to use arbitrary
queries from Rk when interacting with the natural single neuron implementation
of f . We can start from the center of the cube (at point x = (0.5, . . . , 0.5), which
is always on the negative side of the hyperplane) and try to find the positive half
space of this neuron by going sufficiently far in the positive or negative directions
of each one of the coordinates xi separately, as depicted by the six dashed lines
in Figure 1. It is easy to verify that for the natural definition of the corner
function from Definition 5, it suffices to move a distance of k

2 from the center
of the cube in order to obtain a positive output, provided that we move in the
correct (positive or negative) direction of the i-th coordinate. Consequently, we
can deduce that bi = 1 if we obtain a positive output when we increase xi by k

2 ,
and that bi = 0 if we still get a value of 0 after increasing xi. We can thus solve
the k dimensional hidden corner problem in this scenario with exactly k queries.
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6 A Natural Implementation of The AES

In this section we describe the natural implementation of the Advanced Encryp-
tion Standard (AES) as a DNN denoted by NNAES, which uses sums of corner
functions to implement all its basic operations.

The AES is a block cipher which encrypts 128-bit plaintexts with 128, 192
or 256 bit keys. The 128-bit key variant, denoted AES-128, applies 10 iterations
of a round function to the state, represented as a 4 × 4 matrix of bytes. This
round function is composed of four operations:

– AddRoundKey (ARK): An XOR with the round key
– SubBytes (SB): A non-linear bytewise substitution layer
– ShiftRows (SR): A circular rotation of the state rows
– MixColumns (MC): A matrix multiplication applied to the columns of the

state; it is omitted in the last round.

The round keys are build from the master key through the key schedule
algorithm, which we assume is run ahead of time to embed the keys directly into
the neural network when it is built. Note that the first round key k1 is equal to
the master key k, so anyone who can find the first round key can easily derive
from it all the other round keys.

The high level description of our implementation is given in Algorithm 2. All
the Boolean functions of the implementation are defined using NN(·, c), for a
fixed value c chosen a priori. This parameter is only used to describe different
variations of our attacks in section 7 (since neural networks built from different
c values have different exploitable weaknesses), and can be safely forgotten until
then.

Algorithm 2 NNAESk(p)

Input: A 128-bit plaintext p and a 128-bit key k.
Output: 128-bit ciphertext.
1: (k1, . . . , k11)← AES key schedule(k) ▷ Derive round keys from AES key schedule
2: x← NNARK(p, k1)
3: for i ∈ [1, . . . , 9] do
4: x← NNSB(x)
5: x← NNSRMC(x)
6: x← NNARK(x, ki+1)

7: x← NNSB(x)
8: x← NNSR(x)
9: x← NNARK(x, k11)

10: return x

Bitwise XOR: NNXOR Bitwise XOR is implemented as NN((x1, x2)→ x1⊕x2)).
In our implementation, we often need to perform XORs of bytes or 128-bit words,
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which simply corresponds to the concatenation of the neurons of multiple NNXOR
networks; we denote these with the shorthand NNXOR8 and NNXOR128. Similarly, in
the MC operation, we loosely use the notation NNXOR8(·, ·, ·, ·) for the XOR of 4
bytes, obtained by combining 8 4-way XORs NN((x1, x2, x3, x4)→ x1⊕x2⊕x3⊕
x4).

AddRoundKey NNARK. The network NNARK applies the natural implementation
of XOR between the 128 bits of the state p and a 128-bit round key k, using
NNXOR128(p, k).

SubBytes NNSB. The SubBytes operation of AES applies a bijective SBox to
each byte of the 128-bit state. In our implementation, we concatenate the nat-
ural implementations of the Boolean functions of each of the 8 output bits,
NN((x1 . . . x8) → SB(x)i). Each of the resulting eight networks has 128 neu-
rons which represent the corner functions of the 128 active corners in the 8-
dimensional Boolean cube representing one output bit of the SB operation (since
the 256-entry SBox is balanced, and thus each output bit is 0 half of the time
and 1 in the other half).

Fig. 3: a. Truth table representation of the SubBytes operation that maps eight
input bits x1, . . . , x8 to a single output bit o1, . . . , o8. b. Neural network imple-
mentation NNSBOX of the 8 outputs in the truth table.

In total, the corresponding network has 8 × 128 = 2, 048 neurons in the
hidden layer that performs a single SB operation, as visualized in Figure 3b.

ShiftRows and MixColumns NNSRMC. The ShiftRows transformation applies
a left rotation by i bytes for each row i. In terms of neural network construc-
tion, this simply corresponds to applying the appropriate permutation when
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connecting the outputs of NNSBOX to the inputs of the next operation. We omit
this remapping here for the sake of clarity.

The MixColumns operation multiplies the state by a 4 × 4 matrix, with
coefficients 1, 2 and 3, corresponding to multiplications in the Rijndael finite
field. These multiplications are implemented using lookup tables [1] MULt de-
fined over 8-bit inputs, such that MULt[x] returns the multiplication of input
x by the constant t. In our natural implementation, we concatenate the natu-
ral implementations of the corresponding Boolean functions to build NNMUL2 as
NN((x1 . . . x8)→ MUL2(x)i), and NNMUL3 as NN((x1 . . . x8)→ MUL3(x)i).

The application of MixColumns on column j of the state, NNMCj (Algo-
rithm 3), combines these intermediate values using NNXOR8.

Algorithm 3 NNMCj(x)

Input: A vector x = (x1 . . . x32)
Output: The output of the MixColumns operation on x
1: a0 ← (x1 . . . x8)
2: b0 ← (x9 . . . x16)
3: c0 ← (x17 . . . x24)
4: d0 ← (x25 . . . x38)
5: a1 ← NNXOR8(NNMUL2(a0), c0, d0, NNMUL3(b0))
6: b1 ← NNXOR8(NNMUL2(b0), a0, d0, NNMUL3(c0))
7: c1 ← NNXOR8(NNMUL2(c0), a0, b0, NNMUL3(d0))
8: d1 ← NNXOR8(NNMUL2(d0), b0, c0, NNMUL3(a0))
9: return (a1, b1, c1, d1)

The 128-bit state after MixColumns is build as the concatenation of the 4
32-bit column outputs.

7 Attacking This Natural DNN Implemetation

7.1 Attack Overview

In this section, we demonstrate the existence of a simple key recovery attack
on the natural implementation of any block cipher (such as AES) in which the
encryption operation starts with a XOR between the plaintext and the key. This
attack can be easily extended to other common structures (e.g., when a plaintext
byte and a key byte are added rather than XOR’ed). Our attack can deal with
block ciphers with arbitrarily many rounds with arbitrarily complicated round
functions, and runs in linear time (as a function of the number of bits in the first
round key).

Consider the first operation of XOR’ing one key bit ki and one plaintext
bit xi, as represented in Figure 4. The binary key bit is fixed and cannot be
seen or modified by the attacker, while the plaintext value can be chosen by the
attacker. Note that in this figure, the attacker can move only horizontally, and
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does not know whether he is at the top or the bottom side of the square since
he does not know ki.

In the binary input case, the attacker is restricted to setting xi to either 0 or
1, and flipping xi flips the output of the XOR. This can be potentially used in
standard (discrete) differential attacks, but no such attack is expected to exist
for strong cryptosystems such as full AES-128. On the other hand, we show that
in natural DNN implementations of this XOR, we can use a continuous version
of differential cryptanalysis to recover ki by comparing the ciphertexts which
are produced by tiny horizontal movements of xi. We have to use three slightly
different attack strategies when c < 1, when c = 1 and xi is not sanitized, and
when c = 1 and xi is sanitized. The distinction between the cases can be seen in
Figure 4.

Fig. 4: Our attacks on natural implementations of the XOR. a. Binary imple-
mentation of the XOR xi ⊕ k1i . b. A natural implementation of the XOR with
separated ReLU’s (c < 1) NNXOR(xi, ki). c. A natural implementation of the XOR
with back-to-back ReLU’s (c = 1). d. A sanitized version of the natural imple-
mentation, in which plaintext values must remain in the range [0, 1].

The basic idea of our attacks is that whenever we change only one plaintext
position by a tiny amount and this change is blocked by the first XOR in which
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it participates, all the outputs of the initial layer of XOR’s of key and plaintext
values remain unchanged, and thus all the ciphertext values remain unchanged.
On the other hand, if the implementation of the XOR passes the change in its
input to its output, this change has an excellent chance of avalanching through
the remaining operations of the encryption process, resulting in a large number
of ciphertext values being different in the two encryptions. However, this is not
guaranteed, and as we will see there are some cases in which a change in the
output of the initial XOR is blocked by later operations, leading to identical
ciphertexts. This implies that errors in our cryptanalysis may exist, but they
are rare and one sided. In section 8 we will describe out experimental results,
analyze the causes of these rare failures, and demonstrate that we can overcome
them by just trying a different random plaintext as a basis for the tiny changes.

Our three attack strategies differ only in the number of attacked key bits per
iteration nbits, which is 1 in the first two attacks and 8 in the last one, and
the way to generate plaintext pairs for which a collision is expected, GenPairs.
The attack algorithm KeyRecovery, parametrized by GenPairs and nbits, is
described in Algorithm 4. It returns the recovered key k′, and the number of
iterations of the main loop, np.

Algorithm 4 KeyRecovery(NNAES, GenPairs, nbits)

Input: A handle to a natural implementation of the AES, NNAESk(·), for a secret key k;
a pairs generation algorithm GenPairsfor a variation parameter ϵ returning 2nbits

plaintext pairs, each corresponding to a candidate value for nbitsconsecutive key
bits.

Output: Candidate k′ for key k, number of base plaintexts used np

1: remainingPositions← {1, · · · , 128
nbits}

2: np ← 0
3: while remainingPositions ̸= ∅ do
4: Select random base plaintext p
5: np ← np + 1
6: for i ∈ remainingPositions do ▷ For each unknown key position
7: candidates← ∅
8: (x0, x′0) . . . (x2nbits

, x′2nbits

)← GenPairs(p, i)
9: for Candidate key value v ∈ {0 . . . 2nbits − 1} do

10: C ← NNAES(x
v)

11: C′ ← NNAES(x
′v)

12: if C = C′ then
13: Add v to candidates
14: if candidates contains a single value v then
15: k′

i...i+nbits ← v
16: Remove i from remainingPositions
17: return k′, np

The attacks start from a random initial plaintext, and iterate over all tar-
get key positions (bits or bytes). For each position i, the GenPairs algorithm
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generates 2nbits pairs of plaintexts, such that the pair in position v encrypts to
identical ciphertexts if the target key bit(s) have value v. By encrypting these
2nbits pairs and comparing the resulting ciphertexts, we obtain a list of candidate
key values for the targeted bits. If a single candidate is obtained, then the key
position is successfully recovered; otherwise, an unlucky cancellation happened,
and the position remains unrecovered. The procedure is repeated with a new
base plaintext until all positions have been recovered.

We now describe the pair generation algorithms GenPairschange, GenPairssym,
GenPairsclip corresponding to our three attack strategies.

7.2 Attack On a XOR With Separated ReLUs

This attack focuses on separated ReLUs in the natural implementation of the
initial XOR between one plaintext value and one key value at the very beginning
of the encryption process, as depicted in Figure 4b.

The application of the attack in the case of separated ReLU’s is based on
the observation that tiny changes in the plaintext value xi will be blocked at the
two inactive corners of the square, and passed through at the two active corners
of the square. This can reveal whether we are at the top side of the square or
at the bottom side of the square, and thus expose the value of the i-th key bit
ki. For each value of bit ki, the pair generation algorithm prepares two pairs
of plaintexts that only vary in position i, where they take values x0

i = 0 and
x′0
i = ϵ, and x1

i = 1 and x′1
i = 1− ϵ, for some tiny ϵ.

Note that in this case we only use plaintext values which are already in the
range [0, 1], and thus forcing them to be in this range by using ClippedReLU
does not stop the attack.

The corresponding pair generation algorithm, GenPairschange, is described
in Algorithm 5.

Algorithm 5 GenPairschange(p, i, ϵ)

1: (x0, x′0)← ((p|pi = 0), (p|pi = ϵ))
2: (x1, x′1)← ((p|pi = 1), (p|pi = 1− ϵ))
3: return (x0, x′0), (x1, x′1)

7.3 Attack on Back-to-back ReLUs with c = 1

In the back-to-back ReLU case, for a fixed key bit ki, there are no distinct xi, x
′
i

such that NNXOR(xi, ki) = NNXOR(x
′
i, ki) = 0, and thus moving away horizontally

from any one of the four corners of the square is likely to result in modified
ciphertext values. Consequently, we cannot use the previous attack which was
based on the question whether tiny changes in the plaintext are blocked or not
by the XOR. On the other hand, the symmetry of the output of the XOR around
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the diagonal implies that pairs xi = ki − ϵ, x′
i = ki + ϵ should have the same

output under NNXOR(·, ki).
Remember that when c = 1, NNXOR(xi, ki) is equal to ReLU(xi − ki)+ReLU(ki − xi);

with the above values, we obtain

C1 = ReLU(−ϵ) = 0 C ′
1 = ReLU(ϵ) = ϵ

C2 = ReLU(ϵ) = ϵ C ′
2 = ReLU(−ϵ) = 0

C1 + C2 = ϵ C ′
1 + C ′

2 = ϵ

On the other hand, when xi varies around 1−ki, the two outputs are expected
to be different. We can thus adapt the attack strategy to focus on symmetry
rather than on constancy situation, by changing the pair generation algorithm
to GenPairssym, described in Algorithm 6.

Algorithm 6 GenPairssym(p, i, ϵ)

1: (x0, x′0)← ((p|pi = −ϵ), (p|pi = ϵ))
2: (x1, x′1)← pi = 1− ϵ), (p|pi = 1 + ϵ))
3: return (x0, x′0), (x1, x′1)

7.4 Attack on Back-to-back ReLUs with c = 1 and Sanitized Inputs

The previous attack depends on the symmetric behaviour of the natural imple-
mentation of the bitwise XOR operator for carefully chosen inputs. In particular,
it requires querying the encryption of plaintexts p where a input pi ∈ {0, 1} is
changed to pi − ϵ and pi + ϵ. A natural countermeasure to thwart this attack
is to sanitize all the inputs and outputs of the encryption function to eliminate
some unsafe values, for instance by forcing all the inputs to be between 0 and 1.
This operation can be performed by using the function:

ClippedReLU(x) = ReLU(x)− ReLU(x− 1)

Applying ClippedReLU to all plaintext and ciphertext positions effectively
clips all inputs to the interval [0, 1], thus nullifying our attack when c = 1 since
the symmetry checking can only be done by going outside the box.

We now describe a different attack which can be applied to such sanitized
implementations of AES. Instead of targeting the initial XOR of key and plain-
text bits, the new attack targets each SBox operation in the first round, and
recovers one key byte at a time. It relies on the observation that small changes
around the preimage of 00000000 in the SBox of AES (which is 01010010), are
completely blocked since for all the 8 output bits, the corresponding corner in
the 8-dimensional Boolean cube is not active (for any other SBox input, at least
one output bit has the value 1, and is thus an active corner whose corner function
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will pass the input changes to the outputs). This will enable us to identify cases
in which the input to a particular SBox in the first round of AES was 01010010,
and thus to recover the 8 key bits which were XOR’ed to the input bits in this
round.

The attack in this case has the following structure: For each one of the 256
key byte candidates v, we build the corresponding candidate plaintext byte that
goes to 0 after the corresponding SBox in the first layer, xv

i...i+8 = v⊕01010010,
and x′v

i...i+8 in which all bits are moved by ϵ in the allowed direction (i.e., the
direction which will leave them in the range [0, 1]). The candidate for which
the two corresponding ciphertexts are equal is our key guess. This procedure is
described in Algorithm 7.

Algorithm 7 GenPairsclip(p, i, ϵ)

1: for v ∈ {0 . . . 255} do ▷ For each candidate byte value
2: xv = (p|pi...i+8 = v ⊕ 82)
3: x′v = (xv|xv

j = if xv
j = 0 then xv

j + ϵ else xv
j − ϵ), j ∈ {i . . . i+ 8})

4: return (x0, x′0), . . . , (x255, x′255)

8 Experimental Results

We ran these attacks on the natural implementation of AES-128, and success-
fully retrieved the entire 128-bit key in all our experiments. The attacks using
Algorithm 5 and Algorithm 6 for pair generation recover one key bit at a time,
and detect a bit recovery failure when both candidate pairs result in identical
ciphertexts; such cases are very rare (they occur with approximate probability
0.003 in both cases), and all key recoveries were concluded successfully when
using at most two additional random plaintexts. Furthermore, the failures can
be completely eliminated by adjusting the change parameter ϵ. The results are
summarized in Table 1.

8.1 Attacking Natural AES with Separated ReLUs

We ran the attack described in Algorithm 5 on a natural implementation of
the AES using separated ReLUs, with c = 0.5. The attack was run for 1000
random keys, which were all successfully recovered, 792 (79.2%) of which on the
first try. In the remaining cases, a Fail was detected in one or several of the
recovered key bits, so that 203 (20.3%) keys required a second base plaintext,
and five (0.5%) required a third plaintext. These correspond to a total of 366
bit recovery failures, out of 128000 key bits recovered; all these failures were
identified during the attack, rather than via comparison to the ground truth.
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ϵ #K np = 1 np = 2 np = 3 np = 4 Failures

GenPairschange
0.1 1000 792 203 5 0 366
0.4 1000 1000 0 0 0 0

GenPairssym
0.1 1000 687 310 3 0 386
10−8 1000 1000 0 0 0 0

GenPairsclip 0.1 1000 1000 0 0 0 0
Table 1: The results of our key recovery attacks on full-round natural imple-
mentations of AES, listing, among the total number of attacked keys #K, how
many were recovered using one, two, three or four base plaintexts, and the total
number of bit failures.

8.2 Attacking Natural AES with Back to Back ReLUs

We ran the attack described in Algorithm 6 on a natural implementation of
the AES using back to back ReLUs, with c = 1. The attack was run for 1000
random keys, which were all successfully recovered, 687 (68.7%) of which on
the first try. In the remaining cases, a Fail was detected in one or several of
the recovered key bits, so that 310 (31%) keys required a second base plaintext,
and three (0.3%) required a third plaintext. These correspond to a total of 386
bit recovery failures, out of 128000 key bits recovered; all these failures were
identified during the attack.

8.3 Failures Analysis

In the attacks using PredictKeybitChange and PredictKeybitSymm, bit
recovery failures were detected for a small number of target key bits.

After our first series of attacks, we reviewed the failure data to extract the
base plaintexts, keys, and bit positions corresponding to these failures. We then
encrypted the pairs step by step to identify the operation where an unexpected
difference cancellation occurred. We observed that all the failure cancellations
occurred during some Sbox operation. In the PredictKeybitChange, all 366
observed change cancellations occurred immediately after the first SBox layer,
and in the PredictKeybitSymm attacks, they occured during the Sbox oper-
ations in various rounds between 3 and 8.

These failure cases correspond to unfortunate difference cancellations during
the encryption process. This occurs, for instance, when we move in the vicinity
of the preimage of 00000000 at the input of some SBox operation, as explained
in section 7.4. Note that for each SBox operation this situation happens with
probability of 1

256 , but due to the avalanche property of block ciphers, changes
at multiple SBox’es must die out simultaneously in order to leave all the entries
in the ciphertext unchanged, depending on their location.
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8.4 Adjusting the ϵ Parameter

Following this analysis, we adapted the ϵ parameter in both attacks, which com-
pletely eliminated all bit recovery failures.

In the PredictKeybitChange, small changes around the preimage of zero
through the Sbox were canceled in the first layer; by increasing the magnitude
of the change ϵ to 0.4, we introduce a larger variation at the input of the first
Sbox, which prevents it from going to 0.

In the case of PredictKeybitSymm the failures occur after some diffusion
through the encryption process, and can be traced to internal values approaching
0.5 in most state bits; setting a smaller ϵ = 10−8 keeps the internal state values
closer to 0 and 1, and effectively eliminates all cancellations.

8.5 Attacking Natural AES with Back to Back ReLUs and Sanitized
Inputs

We ran the attack described in Algorithm 7 on a natural implementation of the
AES using back to back ReLUs, with c = 1, and the Clipped ReLU sanitization.
The attack was run for 1000 random keys, which were all successfully recovered
on the first try, so that no adjustment of the ϵ parameter was needed.

9 Defenses and Security Proof

In this section we describe a generic blackbox secure transformation, which uses
only linear and ReLU functions; it takes an arbitrary DNN-based implementation
D of some cryptographic primitive B which uses a secret key, and yields a prov-
ably secure implementation DS of the same primitive. We start by informally
describing our security definition. Then, we will describe our transformation and
prove its security. Informally, our transformation achieves the following correct-
ness and security guarantees:

1. Correctness — On any binary input (i.e., where all input values are ’0’ or
’1’), the secure DNN-based implementation DS will output the same values
as the original DNN-based implementation D (assuming that D outputs
binary outputs on binary inputs).

2. Security — Queries to DS which use real numbers as inputs do not leak
any information about the secret key that is not already leaked via binary
valued queries to the original D.

Assuming that the original D behaves correctly on all binary inputs (i.e.,
returns the same output values as B), this will result in a secure implementation,
in which no polynomial time adversary can exploit the ability to use real numbers
as inputs to leak information about the secret key, regardless of the specifics of
D. Note that DS is only as secure as the original cryptographic primitive B, and
any possible attack on B will also apply to our new implementation.
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Fig. 5: The overall structure of our secure transformation from D to DS

9.1 Blackbox Secure Transformation

Figure 5 shows the overall structure of our transformation, which is comprised
of two main parts:

1. Inputs and outputs “sanitization” layers, which use an approximation of a
step function to map the real input and output values to a range of 0 to
1. The resulting mapping partitions the domain of real numbers into “safe”
input values, which will always be mapped to binary values of ’0’ or ’1’, and
a small leftover range of “unsafe” values that will be mapped to real numbers
between 0 and 1. The output “sanitization” layer ensures that even when the
input values are “unsafe”, all the output values will be in the range of 0 to 1.

2. Outputs masking layer, which zeroizes all of the output values if any of the
input values are ”unsafe”. This layer uses an approximation of a rectangular
function that receives the value 1 if the input value is in the “unsafe” range
but is 0 if the input value is binary (either ’0’ or ’1’). By summing the
rectangular functions over all input values, we get a “masking” value, which
is larger than or equal to 1 if even one of the input values is “unsafe” but is 0
if all input values are binary. The masking layer subtracts the masking value
from each output value and then applies a ReLU function on the result. As
we will show, if any of the input values are in the “unsafe” range, all outputs
will be 0. If all the input values are binary, the output will be the expected
result. Finally, for other input values that are neither unsafe nor binary, the
output will be a smooth interpolation between the expected result and zero
whose form does not depend on the secret key.

We will now describe the two components in detail, and explain the STEP

and RECT functions that we use.
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9.2 Inputs and outputs “sanitization”

Recall that the previously shown DNN-based cryptographic implementations
were correct when using only binary values of ’0’ and ’1’. However, an attacker
could exploit the ability to use arbitrary real numbers as input to leak informa-
tion about the key. If we were able to map all possible input values into either
’0’ or ’1’, this would prevent all such attacks. One way to do it, is using an ideal
step function, that return ’0’ on all inputs that are smaller than 0.5, and ’1’ for
all inputs equal or larger than 0.5.

STEPIDEAL(x) =

{
1 if x ≥ 0.5,

0 if x < 0.5

We would like to add an “input sanitization” layer of ideal step functions before
our DNN-based implementation, where each input value is mapped to either
zero or one before it is used by the original DNN-based implementation. Unfor-
tunately, such an ideal step function cannot be implemented by a ReLU-based
DNN, since it is not a continuous function.

Fig. 6: Visualization of the STEP1/3 and RECT1/3 functions used in our sanitization
layers and the resulting masking value MASK1/3 for two-dimensional inputs.

Approximate Step Function Although we cannot implement an ideal step
function, we can implement the following approximate step function using only
two ReLUs:

STEPϵ(x) =


1 if x ≥ 0.5 + ϵ/2,

0 if x ≤ 0.5− ϵ/2

ϵ−1 · (x− (0.5− ϵ/2)) if 0.5− ϵ/2 < x < 0.5 + ϵ/2
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Fig. 7: Visualization of the (truncated) three dimensional Punsafe input domain

We can set ϵ to any value which is strictly larger than 0 and strictly smaller
than 1, but for the sake of brevity we will use from now on the particular constant
ϵ = 1/3. The function STEP1/3, shown in Figure 6a, can be implemented using
ReLUs as follows:

STEP1/3(x) = 3 · (ReLU(x− 1/3)− ReLU(x− 2/3))

As this approximate step function is realizable by a ReLU-based DNN, we
can use it in an “input sanitization” layer. Note that it is different from the
ClippedReLU sanitization function we used before (which was the identity in the
range [0, 1]), since we have to use a narrower range of unsafe inputs in order to
leave room for the other elements in our construction to operate.

We can now define a “safe” input domain Psafe, such that for every input
p ∈ Psafe, every input value pi is either smaller than 1/3 (which will be mapped
to ’0’) or is larger than 2/3 (which will be mapped to ’1’). Intuitively, the new
input sanitization layer STEP1/3 “rounds” all inputs from the “safe” input domain
to ’0’ and ’1’, and thus prevents the attacker from exploiting such values in his
attack. However, we don’t have any guarantees about inputs from the comple-
mentary Punsafe input domain. The shape of this Punsafe input domain in three
dimensions is described in Figure 7.

To further limit the attacker’s ability to exploit values from the Punsafe input
domain, we will also add an “output sanitization”, layer where each output value
is also passed through STEP1/3. This layer has no effect when using inputs from
the “safe” domain (as they are all mapped to ’0’ or ’1’, and thus create only
outputs values of ’0’ or ’1’). However, we get the additional guarantee that even
for “unsafe” inputs, all outputs will be limited to the range of [0, 1]. We will use
this guarantee in our output masking layer that we will describe in the next
subsection.

To summarize, we can define the sanitization layer as follows: For input p with
input values pi, we define the sanitized input p′ with values p′i = STEP(pi), the
output c with output values ci, as the output of our DNN-based implementation
D on the sanitized input p′ such that c = D(p′), and the sanitized output c′ with
values c′i = STEP(ci).
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9.3 Outputs Masking Layer

Although our sanitization layer significantly restricts the attacker’s capabilities,
we have shown in section 7.4 that attackers can still exploit “unsafe” input values
which are not mapped to 0 to 1 to leak information about the key. The second
part of our transformation aims to protect against such attackers. This is done
by ensuring that if at least one of the inputs pi to the DNN is “unsafe” (i.e., in
the range 1/3 < pi < 2/3), then all the output values will be set to zero. The
masking layer calculates a masking value which is a function of the input values,
that is at least 1 whenever at least one of the inputs is ”unsafe”, but is zero
whenever all of the input values are binary. This masking value is subtracted
from each sanitized output value, and then a ReLU is applied to the result.

Approximate RECT: To calculate our masking value, we can use a rectangular
function RECT that has the value 1 on the “unsafe” range (between 1/3 and 2/3)
and 0 otherwise. Unfortunately, as in the case of the ideal step function, the
ideal rectangular function cannot be implemented by a ReLU-based DNN as it
is not a continuous function. Although we cannot implement such a rectangular
function, we can implement the following approximate function RECT1/3:

RECT1/3(x) =



0 if x ≤ 0,

3 · x if 0 < x < 1/3

1 if 1/3 ≤ x ≤ 2/3,

3 · (1− x) if 2/3 < x < 1

0 if x ≥ 1,

Figure 6b shows the approximate RECT function RECT1/3 which can be imple-
mented using four ReLUs as follows:

RECT1/3(x) = 3 · (ReLU(x)− ReLU(x− 1/3)

− ReLU(x− 2/3) + ReLU(x− 1))

Masking With Approximate RECT: For every input p, we define the following
masking value MASK1/3 as:

MASK1/3(p) =
∑
i

RECT1/3(pi)

This new masking values partitions Psafe into two subdomains. The first
domain is the domain P0 where MASK1/3(p) = 0. By definition we get that:

p ∈ P0 if ∀pi ∈ p, pi ≤ 0 ∨ pi ≥ 1

The second domain Psafe \P0 is the part of the domain which is still “safe”, but
its masking value is not zero:
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p ∈ Psafe \ P0 if p ∈ Psafe ∧ ∃pi ∈ p s.t. 0 < pi ≤ 1/3 ∨ 2/3 ≥ pi < 1

Finally, we can describe our masking values as:

MASK(p) =


0 ∀p ∈ P0

> 0 ∀p ∈ Psafe \ P0

≥ 1 ∀p ∈ Punsafe

(1)

Figure 6b shows the masking value for the two dimensional case. Note that
in this case the value of the mask on all unsafe inputs is between 1 and 2, it is
0 for all p ∈ P0 and it is some non zero value for all p ∈ Psafe \ P0.

We can now use our masking value in the masking layer to zeroize the output
values for all “unsafe” inputs:

cmasked
i = ReLU(c′i − MASK(p)) (2)

Assuming that the implementation D is correct on binary inputs, we know
that:

∀p ∈ Psafe : p
′ ∈ {0, 1}∗ ∧ c′ = c = D(p′) ∈ {0, 1}∗ (3)

As ∀ci, 0 ≥ STEP(ci) ≥ 1, from equation 1, 2, and 3 we get that:

cmasked
i =


ci ∀p ∈ P0

cmasked
i ∀p ∈ Psafe \ P0

0 ∀p ∈ Punsafe

Where the value of cmasked
i when p ∈ Psafe \ P0 is a smooth interpolation

between the binary value of ci and 0.

Secure Transformation Overhead: We now show that our secure transfor-
mation is highly practical, adding only a small additive complexity to the original
(insecure) implementation of the cryptographic functionality. Our transforma-
tion requires adding only three layers to the total depth of the DNN. One layer is
for the input sanitization, one layer is for the output sanitization, and one layer
is for the masking layer. For each input value, we need two ReLUs for calculating
the STEP function in the input sanitization layer and 4 ReLUs for the RECT func-
tion for calculating the mask value. For each output value, we need 2 ReLUs for
calculating the STEP function in the output sanitization layer, and one ReLUto
calculate the masked output value. Taking our AES DNN-based implementation
as an example, adding our secure transformation results in an overhead that is
negligible compared to the cost of the original implementation.
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Algorithm 8 Secure Blackbox Transformation DS

Input: A possibly insecure DNN-based implementation of a keyed cryptographic prim-
itive D, a key k and input p.

Output: output c.
1: p′ ← STEP1/3(p) ▷ Sanitization layer, applied on each input value
2: MASK1/3 ← Σpi∈p(RECT1/3(pi)) ▷ Calculating masking value
3: c← D(k, pstep)
4: c′ ← STEP1/3(c) ▷ Sanitization layer, applied on each output value
5: cmasked ← ReLU(c′ − MASK1/3) ▷ Masking layer, applied on each output value
6: return cmasked

9.4 Secure Implementation Correctness

Our full secure transformation is described in Algorithm 8. We start by analyzing
the correctness of our secure transformation DS . We note that any binary input
is not affected by our step function, and results in a mask value of 0:

∀p ∈ {0, 1}∗ : p′ = STEP1/3(p) = p ∧ MASK1/3(p) = 0

Assuming that D outputs binary values for binary inputs, we get that:

∀p ∈ {0, 1}∗ : c = D(p′) = D(p) ∈ {0, 1}∗ ∧ c′ = STEP1/3(c) = D(p)

Since for such inputs the mask value is 0, we get that:

∀p ∈ {0, 1}∗ : cmasked = c⇒ DS(p) = D(p)

Thus, for binary inputs, we get the correctness requirements that DS outputs
the same values as D. We will now describe our formal security claim and its
proof.

9.5 Security Proof

While the formal security proof may seem to be complicated, the idea behind
it is very simple. Consider the n-dimensional cube of possible inputs. It can be
naturally divided into 2n orthants with respect to the center of the cube, so
that each orthant contains a unique binary point consisting of just zeroes and
ones. What we show is that given any real valued input point p, the attacker
can compute by himself the output of our secure implementation DS(p) by just
asking the original binary functionality B what is the value of B(p′) for the
unique binary point p′ which resides in the same orthant as p (when p is at
the boundary between orthants, the attacker outputs zeroes). Consequently, an
oracle access to our secure implementation DS does not leak any information
about the secret key that is not already leaked by the original cryptogrpahic
primitive. To prove this, we will formally show how to simulate the answer for
any real-valued query for DS when we are given blackbox access to the binary
implementation that accepts only binary inputs.
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Theorem 1 (Perfect Simulation). Let B be the binary implementation of the
cryptographic primitive such that for every binary input ∀p ∈ PBin : B(p) = D(p),
and let DS be our secured DNN-based implementation transformation of D. For
any probabilistic polynomial-time adversary A with oracle access to DS (which
we denote as ADS ), there exist a probabilistic polynomial-time adversary A′ with
oracle access to B (which we denote as A′B), that perfectly simulates ADS , such
that the statistical distance between the output distribution of A and A′ is zero.

Formally,

∆(ADS ,A′B) =
1

2

∑
x

∣∣Pr[ADS = x]− Pr[A′B = x]
∣∣ = 0.

where x can be any arbitrary function of the key.

Algorithm 9 Secure Blackbox Transformation Simulator
Input: A binary implementation of a keyed cryptographic primitive B, a key k and

input p.
Output: output c ∈ RN .
1: if p /∈ Psafe then ▷ If the input is not “safe” return output of zeros.
2: return {0}N

3: p′ ← STEP1/3(p) ▷ Sanitization layer, applied on each input value
4: MASK1/3 ← Σpi∈p(RECT1/3(pi)) ▷ Calculating masking value
5: c← B(k, p′)
6: c′ ← STEP1/3(c) ▷ Sanitization layer, applied on each output value
7: cmasked ← ReLU(c′ − MASK1/3) ▷ Masking layer, applied on each output value
8: return cmasked

Proof (Sketch). We will start by explaining our simulator that is described in Al-
gorithm 9. The teal colored lines show the diff between the real secure imple-
mentation and our simulator. The only differences are added check that returns
an all zero output if p /∈ Psafe and the fact that we use the binary oracle B
instead of the DNN-based implementation D.

We will now prove that our simulator provides the same output as the secure
implementation on all inputs. In our analysis we will handle two case. The first
case is when the inputs are in the Psafe domain, and the second case is when the
inputs are in the complementary “unsafe” Punsafe = P \Psafe input domain. For
each case, we will show that the output of our simulator is equal to the output
of the secure implementation.

We start from the case where p /∈ Psafe. From its definition:

∀p /∈ Psafe : MASK1/3 ≥ 1

This means that in our secure implementation, due to the output sanitization
and masking layers, for every such input, the output values will be all zero. Due
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to the check in line 1, our simulator will also return the same all zero for all such
outputs.

For the complementary p ∈ Psafe, from its definition:

∀p ∈ Psafe : p
′ ← STEP1/3(p) ∈ {0, 1}∗

I.e., for every such “safe” input, our approximate step function rounds the value
to the nearest binary value. As we assume that for all such values B(p′) = D(p′),
and for such safe values the if statement at line 1 has no effect, our simulator
will return the same value as our secure transformation.

Finally, as our simulator only has access to the binary oracle B and the input,
we can use it to define A’. A’ is just A where we replace the oracle queries to
DS with queries to our simulator which is based on calls to B. Note that as our
simulator only includes one call to B, the query complexities for A and A’ is the
same.

Security of Control Bits An interesting fine point in the formulation of the
security properties is related to the fact that, in some cases, we may require
another type of input value, which we call control bits. For example, to support
both encryption and decryption, the encryption and decryption processes should
be done either by providing two separate DNNs or by adding an additional con-
trol input bit z to the DNN, so that when z = 0 the DNN performs an encryption
operation and when z = 1 it performs a decryption operation on the other input
values. Whereas standard attacks on cryptosystems allow the attacker to either
encrypt or decrypt chosen messages, the existence of such a z input enables the
attacker to set it to an intermediate value such as z = 0.5, which will force the
DNN to perform operations which are neither encryption nor decryption and
whose meaning depends on the details of the DNN implementation. However,
our protective techniques are sufficiently general to deal with such generalized
attacks.

Security of Signature Verification A slightly different scenario we can con-
sider is a DNN-based implementation of a digital signature verification scheme,
like the one considered in [7]. The main difference is that in this case the imple-
mentation only contains a public key; since there is no secret key to protect, our
security guarantees are meaningless 4.

A standard signature verification scheme is an algorithm A which accepts as
input a binary message m and a binary signature s: it should output 1 whenever
the signature is valid, and 0 when it is not. Since we assume that the DNN
implementation A′ of A is correct, it should output the same 0/1 values for
binary inputs. The security guarantee in this case should be that an adversary
who cannot find a binary signature s which makes A(m, s) = 1 should not be
able to find any real-valued s′ for which A′(m, s′) = 1. Notice that this also
implies that the adversary should not be able to find one real-valued s′′ for
4 This issue was pointed out to us by Or Zamir.
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which A′(m, s′′) > 1 and another real-valued s′′′ for which A′(m, s′′′) < 1, since
by interpolation between s′′ and s′′′ the adversary can also find an s′ for which
A′(m, s′) = 1 due to the continuity of A′.

It is easy to verify that the secure transformation outlined in Figure 5 can
also be used to protect against such attacks. In particular, we can guarantee
that:

1. For all “unsafe” input values, the output will be 0, i.e., the verification fails.
2. For all binary inputs (and indeed for all inputs in P0), we get the correct

0/1 results.
3. For all input values in Psafe \P0, our sanitization technique maps the inputs

to a value which is strictly smaller than 1 and thus the verification fails.

10 Conclusion

In this paper we considered the basic problem of how to securely implement
digital cryptography on an analog computer such as a DNN. After showing
that all the natural implementations of cryptosystems as DNN’s can be easily
broken, we developed a new implementation technique which is provably secure
and completely practical.
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