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Abstract. We propose new techniques for enhancing the efficiency of
Σ-protocols in lattice settings. One major challenge in lattice-based Σ-
protocols is restricting the norm of the extracted witness in soundness
proofs. Most of existing solutions either repeat the protocol several times
or opt for a relaxation version of the original relation. Recently, Boneh
and Chen have propose an innovative solution called LatticeFold [BC24],
which utilizes a sum-check protocol to enforce the norm bound on the
witness. In this paper, we elevate this idea to efficiently proving multiple
polynomial relations without relaxation. Simply incorporating the tech-
niques from LatticeFold into Σ-protocols leads to inefficient results; there-
fore, we introduce several new techniques to ensure efficiency. First, to
enable the amortization in [AC20] for multiple polynomial relations, we
propose a general linearization technique to reduce polynomial relations
to homomorphic ones. Furthermore, we generalize the folding protocol
in LatticeFold, enabling us to efficiently perform folding and other com-
plex operations multiple times without the need to repeatedly execute
sum-checks. Moreover, we achieve zero-knowledge by designing hiding
claims and elevating the zero-knowledge sum-check protocol [XZZ+19]
on rings. Our protocol achieves standard soundness, thereby enabling the
efficient integration of the compressed Σ-protocol theory [AC20,ACF21]
in lattice settings.
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1 Introduction

Σ-protocol is a fundamental cryptographic primitive for constructing zero knowl-
edge proofs. In discrete logarithm setting, we benefit from nice tools such as Bul-
letproofs [BBB+18] and amortization techniques [AC20, ACF21] that enhance
the efficiency of protocols. Unfortunately, the security of these implementations
largely hinges on the discrete logarithm problem, rendering them vulnerable to
potential threats posed by quantum computers.

This deficiency has impelled the development of “post-quantum” crypto-
graphic solutions that can withstand the advent of quantum computing. Lattice-



based cryptography stands out as a leading contender among post-quantum al-
ternatives, with its security relying on the hardness of computational problems
in lattices.

However, lattice-based approaches typically face extra challenges when con-
trasted with techniques in discrete logarithm environments. This is primarily
attributed to the norm bound constraints in lattice commitments. More pre-
cisely, consider a lattice commitment scheme Com, the commitment relation for
a public statement F and a witness f with small norm can be expressed as

RB
com := {(F ;f) : Com(f) = F, ∥f∥∞ ≤ B} .

The norm claim is crucial since it forms the foundation upon which the lat-
tice hardness problem is constructed. Applying this commitment scheme into a
Σ-protocol presents two challenges: (1) folding two vectors (the witness f and
the masking vector t) into a single vector g by means of random linear combi-
nation would increase the norm of the folded result, potentially surpassing the
norm constraint B, at which point the commitment scheme is no longer binding.
(2) In the soundness proof of Σ-protocol, the extractor can only extract f ′such
that ∥f ′∥∞ ≤ αB, where α is known as the soundness slack. To achieve stan-
dard soundness, one can use a small challenge space to restrict the value of α.
However this approach requires multiple iterations of the protocol to ensure a
negligible soundness error. Another option is to relax the commitment relation
by ∥f∥∞ ≤ αB. Nonetheless, in multi-round protocols the soundness slack accu-
mulates, necessitating a more rigorous analysis, particularly when incorporating
Bulletproofs [BBB+18] to further optimize the computation process.

In a recent development, Boneh and Chen [BC24] proposed a solution to the
aforementioned problems using the “split-and-fold” technique in their frame-
work, LatticeFold. Their approach maintains the witness norm within bounds
during folding process by first decomposing multiple witness vectors, each with
a norm bound of B, into k sub-vectors with a smaller norm b, where b =

⌈
B1/k

⌉
,

and then folding these sub-vectors back into a single vector. It is worth mention-
ing that the “split-and-fold” technique is not a novel concept, rather, it has been
widely used in various foundational building blocks and protocols, such as the
sum-check protocol, the Fast Reed-Solomon interactive oracle proofs of proxim-
ity protocol (FRI), and others. Nonetheless, one major significance of LatticeFold
is to achieve standard soundness for “split-and-fold” without the need for mul-
tiple repetitions. They incorporate a norm check on input vectors in the folding
protocol to ensure that each extracted witness has a small norm. Notably, they
employ a sum-check protocol to reduce the norm check into a multilinear polyno-
mial evaluation check. These advancements would enable efficiently composing
multiple protocols based on [KP23].

We consider their results to be both impressive and efficient, offering a solid
foundation for constructing multi-round Σ-protocols in lattice settings. But di-
rectly applying their technique to construct lattice-based Σ protocols would lead
to several issues (as detailed below), potentially reducing both efficiency and ef-
fectiveness.
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1.1 Our Contributions

Inspired by LatticeFold [BC24], we introduce an efficient lattice-based Σ-protocol
for multiple polynomial relations. Drawing from the advantages of LatticeFold,
our protocol eliminates the need for repetition and avoids the issue of soundness
slack. This enables further application of the compressed Σ-protocol theory in
[AC20,ACF21] efficiently. Nonetheless, to effectively integrate and leverage the
techniques from LatticeFold in a Σ-protocol for arbitrary polynomial relations,
we must overcome additional challenges.

Not Applicable to Non-homomorphic Relations. The amortization
technique in [AC20, ACF21] serves as a preprocessing step that folds multiple
homomorphic relations into one. However, this method is not directly applicable
to polynomial relations due to the non-homomorphic properties of high-degree
polynomials. Even though [AC20] demonstrates that a non-linear relation can
be reduced to a linear one by representing it with arithmetic circuits, the trans-
formation process incurs a non-negligible cost due to Fast Fourier Transforms
(FFT) [BCS21] and non-native operations [ZCYW23]. To address this problem,
we introduce a new linearization technique that provides a direct solution with-
out the circuit transformation. This method can be regarded as a generalized
linearization in [BC24] for any polynomial relations. By leveraging a sum-check
protocol, our approach ensures efficiency with only logarithmic overhead.

Multiple Sum-Checks. The amortization technique can be viewed as a
process of folding multiple relations, which can be achieved by executing the fold-
ing protocol proposed in [BC24]. However, since the folding protocol in [BC24]
applies norm enforcement on the input to ensure standard soundness, each invo-
cation of the folding protocol would introduce an additional norm check, specif-
ically a sum-check process. When a protocol requires multiple folds—like in Σ-
protocols where the use of a masking vector to hide the amortized witness can
be considered as an extra folding process—repeating the sum-check each time
introduces additional costs. To address this issue, we are inspired by the folding
protocol and generalize it into a more “sophisticated” protocol. This enhanced
protocol enables a single norm check (i.e., sum-check) while accommodating
multiple folds and other operations, all while ensuing the extracted witnesses to
be of a small norm.

Not Zero Knowledge. The approach described in [BC24] does not provide
zero-knowledge property, but this is actually crucial as the interactions and out-
put claims of the sum-check protocol may leak witness information. To achieve
zero-knowledge, we apply the zero-knowledge sum-check in [XZZ+19] to rings
and employ a hiding technique that pads the witness with a short random vec-
tor. These strategies allow us to preserve zero-knowledge while incurring only a
logarithmic cost.

A comparison between our protocol’s properties and other compressed Σ-
protocols is shown in Table 1. As the soundness slack in our approach remains
constant, we are able to use a much smaller parameter set compared to other
methods like [BLNS20, ACK21]. We also provide an informal summary of our
efficiency in Table 2 (the detailed one is given in Table 4).
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Table 1: Comparison of our approach with other compressed Σ-protocols. We do not
consider indirect approaches to address non-homomorphic relations in [AC20,ACF21].
SIS stands for short integer solution, and SIS relation is the knowledge of a SIS preim-
age.

Relation Post-Quantum Soundness Slack

[AC20] linear no standard -
[ACF21] homomorphic no standard -
[BLNS20] SIS yes relaxed increase
[ACK21] homomorphic yes relaxed increase
[AL21] SIS yes relaxed increase

This work polynomial yes standard fix

Table 2: Efficiency comparison (informal) between the direct approach and our proto-
col. The direct approach means sending all witnesses directly, which is the approach
described in 2.4 without arithmetation and compression. k represents the number of
instances, m represents the witness size for each instance, and D represents degree of
the polynomial relation. Compression refers to further adopting the Bulletproofs com-
pression in compressed Σ-protocol theory.

Size Prover Verifier

Direct approach O(kmD) O(kmD) O(kmD)
Ours (w/o compression) O(k+D logm+m) O(kmD log2 D) O(D logm+kD+m)
Ours (w/ compression) O(k+D logm) O(kmD log2 D) O(D logm+kD+m)

1.2 Related Work

Compressed Σ-protocol theory. Compressed Σ-protocols [AC20,ACF21] op-
timize the proof size of Σ-protocols to a logarithmic scale by utilizing the Bul-
letproofs compression [BBB+18]. Through the use of a preprocessed amortiza-
tion [AC20,ACF21], a prover can prove multiple homomorphic relations at the
cost of one. However, since Bulletproofs is a multi-round protocol, integrating
compressed Σ-protocol theory into Fiat-Shamir with abort protocols presents
significant challenges. Bootle et al. [BLNS20] introduce new solutions for Bullet-
proofs compression in lattice settings, and Attema et al. [ACK21] further provide
a tight proof for the knowledge soundness. Albrecht and Lai [AL21] study the
tradeoffs between the soundness error and slack. By carefully selecting an ap-
propriate ring, they can achieve better result than [ACK21]. Nonetheless, since
these approaches are designed upon relaxed relations,1 the soundness slack in-
creases with the number of rounds in the protocol. Consequently, they require a
larger parameter set to ensure the hardness of the underlying lattice problems.

Lattice-based proof systems. The fundamental hardness assumption upon
which lattice-based cryptography rests is that it is computationally difficult to

1 [AL21] can achieve a protocol with standard soundness, but incurs a large soundness
error.
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find a low-norm vector s⃗ satisfying As⃗ = t⃗ mod q. Early methods for proving
norm bounds can be categorized into two main types: those that proving ℓ∞-
norm of s⃗ and those that proving ℓ2-norm of s⃗. There are two major approaches
for proving ℓ∞-norm: Stern-type protocols [KTX08,LNSW13,YAZ+19] and Fiat-
Shamir with abort protocols [Lyu09,Lyu12,ESLL19,ESZ22]. Stern-type protocols
are capable of achieving standard soundness but require a small challenge space.
Consequently, their soundness error can be large, requiring the prover to repeat
the protocol multiple times to achieve a negligible soundness error. Fiat-Shamir
with abort protocols are similar to Σ-protocols in discrete logarithm settings,
and can utilize a large challenge space, allowing for a negligible soundness error
with a few (or even a single) rounds. But they do not have standard soundness
since the extracted witness does not necessarily satisfy the original relation (i.e.,
the relation is relaxed for the extracted witness). Thus, Fiat-Shamir with abort
protocols face efficiency challenges when composing multi-round protocols with
techniques in [KP23] due to the accumulated soundness slack.

[LNP22] proposed a direct method for proving that s⃗ has a small ℓ2-norm
by leveraging the inner product of two related vectors. This method has the
advantage of not requiring additional Number Theoretic Transform (NTT) or
Chinese Remainder Theorem (CRT) transformations. However, it is challenging
to apply this method to multiple-witness folding, and even more so to multi-
round protocols as discussed in [KP23] as it introduces a variety of non-linear
operations. Recently, LOVA [FKNP24] introduced a novel approach for proving
the ℓ2-norm by flexibly leveraging the Demillo-Lipton-Schwartz-Zippel lemma
in their proposed lattice-based folding scheme. Unfortunately, this work has not
yet been shown to support R1CS relations.

As quantum technology advances, lattice-based proof systems are increas-
ingly being proposed and applied in modern cryptography protocols. LaBRADOR
[BS22]has presented a succinct recursive lattice-based proof system with linear
time verifier. It uses random project to prove norm bound, which is an appealing
technique but has been shown to be inefficient than [BC24].

LatticeFold [BC24] is an innovative folding scheme for lattice commitments.
It provides new insights to address the norm bound challenge by employing a
sum-check protocol. To further mitigate the norm increment after folding mul-
tiple instances, LatticeFold adopts a split-and-fold technique to reduce the norm
bound of an output relation. We are mostly motivated by the ideas from [BC24]
in designing an efficient Σ-protocol that maintains standard soundness. How-
ever, we observe that straightforwardly adopting LatticeFold’s techniques leads
to inefficient designs, as we elaborate in Section 1.1. This requires novel solutions
to enhance efficiency within our protocol.

2 Preliminaries

2.1 Notations

Let q be a modulus, Zq := Z/qZ be the ring of integers modulo q, i.e.,
{
− q−1

2 , · · · , q−1
2

}
.

We use Zq[X] to denote the set of polynomials over Zq, i.e., whose coefficients
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are in Zq. For n ∈ N+, we denote [n] as the set {0, 1, · · · , n − 1}. Vectors are

denoted as f⃗ := (f0, · · · , fn−1) ∈ Zn
p . We use (f⃗ , g⃗) to denote appending vector

f⃗ to g⃗. Given a constant a ∈ Zq, define a⃗k := (1, a, a2, · · · , ak−1). Furthermore,

the Hadamard product is denoted as f⃗ ◦ g⃗ := (f0 · g0, · · · , fk−1 · gk−1) and

⃝k−1
i=0 f⃗i := f⃗0 ◦ · · · ◦ f⃗k−1. Given a distribution S, a $←S denotes sampling a from

S, or uniformly sampling from a set S.
Cyclotomic rings. Let R := Z[X]/(Xd + 1) denotes the polynomial ring

and Rq := R/qR = Zq[X]/(Xd + 1), where d > 1 is a power of 2. We use
bold-face letters to denote Rq elements except commitments and challenges,

i.e., polynomials such as f :=
∑d−1

i=0 fiX
i ∈ Rq. Here we slightly abuse the

notion of f to denote the coefficients of the polynomial, i.e., f = (f0, · · · , fd−1).
Note that though Zq elements can also be regarded as a constant polynomial,
we do not use bold-face letters for them. Define SB as the subset of polynomials
in Rq with ℓ∞-norm at most B (ℓ∞-norm is defined below).

We choose a prime q such that Zq contains a primitive 2t-th root of unity
ζ ∈ Zq but no elements whose order is a higher power of two, i.e. q − 1 ≡ 2t
mod 4t, where t ∈ N+ be a divisor of d. Therefore, we have:

Xd + 1 =

t−1∏
j=0

(Xd/t − ζ2j+1) mod q

where each factor (Xd/t − ζ2j+1) is irreducible and ζ2j+1 represents all the t
primitive 2t-th roots of unity. By applying the Chinese Remainder Theorem
(CRT), Rq can be split into the product of t quotient rings:

Rq
∼=

t−1∏
j=0

Zq[X]/(Xd/t − ζ2j+1) ∼= Zt
qd/t .

Definition 1. Number Theoretic Transform. For a polynomial f ∈ Rq, its
Number Theoretic Transform (NTT) is defined as

NTT(f) := (f̂0, · · · , f̂t−1) ∈ Zt
qd/t ,

where f̂j := f mod (Xd/t − ζ2j+1) (which is isomorphic to Zqd/t).

In a special case where t = d, we have Rq
∼=
∏d−1

j=0 Zq[X]/(X − ζ2j+1) ∼= Zd
q

and NTT(f) = (f̂0, · · · , f̂d−1) ∈ Zd
q .

NTT has the following property: Since NTT is a variant of Discrete Fourier
Transform (DFT) over the polynomial ring, we can apply DFT’s convolution
theorem to compute polynomial multiplications: given f , g ∈ Rq, we have the
following equation:

NTT(f · g) = NTT(f) ◦ NTT(g).
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We also define the inverse NTT operation. For a vector u⃗ ∈ Zt
qd/t

, NTT−1(u⃗)

returns a polynomial p ∈ Rq such that NTT(p) = u⃗. Given a vector of poly-

nomial f⃗ ∈ Rm
q , denote f⃗ ′ := (f⃗ ′

0, · · · , f⃗ ′
m−1) ∈ Rm

q , such that NTT(f⃗ ′) :=(
NTT(f⃗ ′

0), · · · ,NTT(f⃗ ′
m−1)

)
= (f0, · · · ,fm−1) (i.e., f⃗

′ = NTT−1(f⃗)).

Norms. Let Rq := R/Rq = Zq[X]/(Xd + 1). For a polynomial f :=∑d−1
i=0 fiX

i ∈ Rq, the ℓ1-norm, ℓ2-norm and ℓ∞-norm are defined as:

∥f∥1 :=

d−1∑
i=0

|fi|, ∥f∥2 :=

√√√√d−1∑
i=0

f2
i , ∥f∥∞ := max

i∈[d]
|fi|

For a vector of polynomial f⃗ := (f0, · · · ,fm−1) ∈ Rm
q , its ℓ1-norm, ℓ2-norm

and ℓ∞-norm are:

∥f⃗∥1 :=

m−1∑
i=0

∥fi∥1, ∥f⃗∥2 :=

√√√√m−1∑
i=0

∥fi∥22, ∥f⃗∥∞ := max
i∈[m]

(∥fi∥∞)

2.2 Sum-Checks and Multilinear Extensions over Rings

Challenge space. The definition of challenge space (sampling set) [CCKP19]
is defined as follows.

Definition 2. Define a subset C of Rq as a challenge space if the difference
of any two distinct elements in C is not a zero divisor. C is further a strong
challenge space if the difference of any two distinct elements in it is invertible
in Rq.

A typical example of a strong challenge space is Zq ⊂ Rq. Sometimes we
need a strong challenge space Csmall ⊂ Rq whose elements have small norms. The
expansion factor of Csmall is

∥Csmall∥op := sup
ρ∈Csmall,v∈R

∥ρv∥∞
∥v∥∞

. (1)

ρ · v here is performed in R. Attema et al. prove that C has a small expansion
factor and we can find large strong challenge spaces in Rq [ACK21].

Sum-check over rings.We give a generalized sum-check protocol operating
on an arbitrary ring R̄, utilizing challenges sampled from a strong sampling set.

Lemma 1. (Generalized sum-check [CCKP19]) For an arbitrary ring R̄,
let f ∈ R̄≤d[X0, · · · ,Xµ−1] be a µ-variate nonzero polynomial with per-variable
degree at most d. Let C ⊂ R̄ be a strong sampling set, the following protocol for
proving s =

∑
b⃗∈{0,1}µ f (⃗b) has soundness error µd

|C| .

1. In the i-th round (i ∈ [µ]):
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– Upon receiving the challenges r0, · · · , ri−1 from the previous rounds, P
sends the univariate polynomial

fi(X) :=
∑

b⃗∈{0,1}µ−i

f(r0, · · · , ri−1,X, b⃗) ∈ R̄[X].

More precisely, P sends d+ 1 evaluations of fi at d+ 1 points in C.
– V checks fi(0)+fi(1) = fi−1(ri−1) and sends a random challenge ri

$←C.
2. V checks fµ−1(rµ−1) = f(r0, · · · , rµ−1).

Sometimes the last check is deferred. Accordingly, the protocol outputs a
claim of fµ−1(rµ−1) = f(r0, · · · , rµ−1).

Multilinear extensions over rings The definition of multilinear extensions
over rings is defined below.

Definition 3. (Multilinear extensions over rings [CCKP19]). For an
arbitrary ring R̄, given a function f : {0, 1}µ → R̄, the multilinear extension
(MLE) of f is defined as

mle[f ](X⃗) :=
∑

b⃗∈{0,1}µ

f (⃗b) · eq(⃗b, X⃗) ∈ R̄≤1[X0, · · · ,Xµ−1],

where eq(⃗b, X⃗) :=
∏µ−1

i=0

(
(1− bi)(1−Xi) + biXi

)
.

When given an m-size vector f⃗ ∈ R̄m, denote the MLE of f⃗ as mle[f⃗ ](X⃗) :=∑
b⃗∈{0,1}log m fi · eq(⃗b, X⃗).

Similar to the field setting, the multilinear extension over rings of a Boolean
function is unique [CCKP19] and has the following properties.

Corollary 1. (Corollary 2.1 in [BC24]). For a multilinear polynomial f ∈
R̄≤1[X0, · · · ,Xµ−1] over a ring R̄, we have f(X⃗) =

∑
b⃗∈{0,1}µ f (⃗b) · eq(⃗b, X⃗).

Lemma 2. (Lemma 3.3 in [BC24]). Let r⃗ ∈ Clogm. Given k instances

(f⃗i, si)
k−1
i=0 such that mle[f⃗ ′

i ](r⃗) = si, where NTT(f⃗ ′
i) = f⃗i, set (f⃗ , s) as fol-

lows for any ρ⃗ ∈ Ck

f⃗ :=

k−1∑
i=0

ρi · f⃗i, NTT(s) =
k−1∑
i=0

ρi · NTT(si).

We have mle[f⃗ ′](r⃗) = s, where NTT(f⃗ ′) = f⃗ .

2.3 Lattice Problems and Ajtai Commitment

MSIS. We define the lattice problem known as the module short integer solution
(MSIS) [LS15], upon which the security of our schemes relies. Specifically, this
definition is a variant that utilizes the ℓ∞-norm [ACK21,BC24].
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Definition 4. MSIS(κ,m, q, γ). Given a random matrix A
$←Rκ×m

q , the goal

of the problem is to find non-zero z⃗ ∈ Rm
q such that Az⃗ = 0⃗ over Rq and

∥z⃗∥∞ ⩽ γMSIS.

In this paper, we regard γMSIS as γ. Based on the result in [MR09, BC24],
MSIS is expected to have 128-bit security when

min{q, 22
√

dκ log q log(1.0045)} > γMSIS.

.
Ajtai commitment scheme. We review the Ajtai commitment scheme

[Ajt96] where the messages are ring elements with small norms.

Definition 5. Ajtai commitment [Ajt96]. Let λ be the security parameter
and κ, q, γ be positive integers. Suppose a prover commits to a m-dimensional
short vector f⃗ ∈ Rm

q (with small norms). The Ajtai commitment is as follows:

– Setup(1λ): Sample a matrix G
$←Rκ×m

q . Output ck := G.

– Commitck(f⃗): Given f⃗ such that ∥f⃗∥∞ ≤ γ, output Com(f⃗) := Gf⃗ .

A commitment scheme is binding if it is difficult to find two different openings
for the same commitment and hiding if it reveals no information about the input
message (formally defined in Appendix A). The Ajtai commitment is clearly
binding if MSIS(κ,m, q, 2γ) is hard. It can also support hiding by appending
a small random vector to the message [BDL+18, ACK21]. For simplicity, we
consider the randomness as part of the witness in our protocols, as noted in
[BLNS20,ACK21].

2.4 Lattice-based Σ-Protocol

Σ-Protocol. A Σ-protocol is a public coin interactive proof system to allow
a prover to convince a verifier that a statement is true. It has three proper-
ties: completeness, special soundness, and special honest-verifier zero-knowledge
(special HVZK), which are formally defined in Appendix A. Here we start from
a simple example in discrete logarithm settings to show the knowledge of a se-
cret f⃗ such that F = Com(f⃗) for a public F . Specifically, the prover samples a
masking vector t⃗ and sends T = Com(t⃗). The verifier challenges with a random

challenge λ and the prover responds with g⃗ = λf⃗ + t⃗. Finally, the verifier checks
Com(g⃗) = λF + T .

Rejection sampling [Lyu12]. In lattice settings, the verifier also needs to
check the norm bound of g⃗ to ensure the hardness of MSIS problem in Definition
4. Therefore, t⃗ must be sampled from a distribution (denoted as Dγ/2) with

a larger range to hide λf⃗ term, while the bound of the distribution should
be manageable for the hardness of MSIS. Besides, the prover cannot output g⃗
directly since the distribution of g⃗ leaks the information of f⃗ when t⃗ is not
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uniformly sampled from the field. For instance, consider one-bit message f ∈
{0, 1}, the distribution of g is the same as the distribution of t when f = 0,
and will shift by λ if f = 1. Anyone can infer f by observing the distribution of
g. Existing solutions adopt an additional rejection sampling algorithm to reject
responses that are “out-of-bounds”. Specifically, only g⃗’s that can be “touched”
by all possible values of f⃗ and follow an expected distribution are acceptable.
As we directly use the results of rejection sampling in this paper, we only briefly
summarize rejection sampling [Lyu12] in Algorithm 1, where τ := ∥λf⃗∥ and
ϕ := γ/(2τ). Returning 1 means g⃗ passes the rejection sampling.

Algorithm 1 Rejection Sampling [Lyu12]

Rej(g⃗, λf⃗ , ϕ, τ)

1: γ := 2ϕτ ; µ(ϕ) := exp(12ϕ + 1
2ϕ2 ); u

$←[0, 1)

2: if u > 1
µ(ϕ) · exp(

−4⟨g⃗,λf⃗⟩+2∥λf⃗∥2

γ2 ) then

3: Return ⊥
4: end if
5: Return 1

Lyubashevsky also proves the probability of Rej outputting 1 is within 2−100

of 1/µ(ϕ); and when the output is 1, the statistical distance between the distri-
bution of g⃗ and Dm

γ/2 is at most 2−100 [Lyu12].
Lattice-based Σ-Protocol. We summarize the lattice-based Σ-protocol in

Protocol 1. The major differences with that in discrete logarithm settings is
highlighted in blue.

Protocol 1 Lattice-Based Σ-Protocol

1. P: Sample t⃗
$←Dm

γ/2 and set T := Com(t⃗).
2. P → V: T .
3. V → P: λ $←C.
4. P: Set g⃗ := λf⃗ + t⃗ and run Rej(g⃗, λf⃗ , ϕ, τ).
5. P → V: g⃗.
6. V: Check Com(g⃗) = λF + T and ∥g⃗∥∞ ≤ γ.

The approach described above remains inefficient, as straightforward sound-
ness proofs under lattice assumptions are not viable. Consider a simple case
with two accepting transcripts, (T, λ1, g⃗1) and (T, λ2, g⃗2). Though the extrac-

tor can derive (λ2 − λ1)F = Com(g⃗2 − g⃗1), it cannot directly output f⃗ ′ =
(λ2 − λ1)

−1(g⃗2 − g⃗1) because: (1) (λ2 − λ1) may not be invertible; and (2) even
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if (λ2 − λ1) is invertible, (λ2 − λ1)
−1 may not be sufficiently short, resulting in

an invalid extracted opening. The former issue can be mitigated by restricting
challenges are sampled from a strong challenge space C. For the latter, Boneh
and Chen proposed a solution in [BC24], ensuring that the extracted witness

maintains a small norm by imposing a norm restriction on the input vector f⃗
through the use of sum-check norm enforcement technique.

Sum-check norm enforcement technique. The core idea of the norm
bound reduction process is to transform the range proof into a product check, and
subsequently into a sum-check using the NTT transformation. Since ∥f⃗∥∞ ≤ B is

equivalent to⃝B
i=−B(f⃗−⃗i) = 0⃗ in Zmd

q , where f⃗ ∈ Zmd
q is the concatenation of the

coefficients of f⃗ ∈ Rm
q and i⃗ = i · 1⃗. If we consider f⃗ as a NTT representation for

some f⃗ ′ ∈ Rm
q (assuming t = d in Definition 1 for simplicity), i.e., NTT(f⃗ ′) = f⃗ ,

we can reformulate this as
∏B

i=−B

(
mle[f⃗ ′](⃗b)− i

)
= 0 for all b⃗ ∈ {0, 1}logm.

Consequently, the prover and verifier can engage in a sum-check protocol over
Rq to ensure ∥f⃗∥∞ ≤ B.

This technique can be applied to Σ-Protocols by regarding the masking pro-
cedure as the process of folding (F , f⃗) and (T , t⃗) (of different rounds). We
present the sum-check based Σ-Protocol in Protocol 2.

Protocol 2 sum-check basedΣ-Protocol

1. P: Set f⃗ ′ := NTT−1(f⃗), t⃗′ := NTT−1(t⃗), and g(x⃗) as

g(x⃗) := λ ·
B∏

i=−B

(
mle[f⃗ ′](x⃗)− i

)
+

γ∏
i=−γ

(
mle[t⃗′](x⃗)− i

)
.

2. P and V: Engage in a sum-check on
∑

b⃗∈{0,1}log m g(⃗b) = 0 to reduce to an

evaluation claim g(r⃗) = sg, where r⃗
$←Clogm.

3. P → V: sf := mle[f⃗ ′](r⃗) and st := mle[t⃗′](r⃗). // additionally check the
following constraints in verification
4. V: Set g⃗′ := NTT−1(g⃗). Check

mle[g⃗′](r⃗) = λsf + st, sg = λ ·
B∏

i=−B
(sf − i) +

γ∏
i=−γ

(st − i).

Remarks. The above approach does not ensure the zero-knowledge property
since sf and the interaction of sum-check may leak information about f⃗ .
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2.5 Reduction of Knowledge

Let R1 and R2 be two relations. A reduction of knowledge protocol Π [KP23]
allows a prover to convince a verifier on input u1 to derive an output u2, such
that for anyone who knows w2 where (u2, w2) ∈ R2, one can extract w1 where
(u1, w1) ∈ R1. The protocol Π should satisfy three properties: completeness,
knowledge soundness, and public reducibility (formally defined in Appendix A).

For two (or multiple) reduction of knowledge protocols Π1 and Π2, they can
be composed in two ways [KP23]: sequential composition Π1 ⋄ Π2 and parallel
composition Π1 ×Π2.

Theorem 1. Sequential composition (Theorem 5 in [KP23]). Let R1,R2,R3

be three relations. Given two reduction of knowledge protocols, Π1 from R1 to
R2 and Π2 from R2 to R3, the composed protocol Π1 ⋄ Π2 is a reduction of
knowledge from R1 to R3.

Theorem 2. Parallel composition (Theorem 6 in [KP23]). Let R1,R2,R3,R4

be four relations. Given two reduction of knowledge protocols, Π1 from R1 to R2

and Π2 from R3 to R4, the composed protocol Π1 ×Π2 is a reduction of knowl-
edge from (R1 ×R3) to (R2 ×R4).

3 Technique Overview

In this section, we provide an overview of the techniques used in our protocol
and the enhancements made to [BC24]

3.1 LatticeFold Soundness Proof Review

LatticeFold is a lattice-based folding protocol built upon Ajtai commitment
scheme. One of our core contribution is to apply and generalize such folding
protocol to Σ-Protocols by leveraging its standard soundness property. In Sec-
tion 2.4, we briefly outlined how a simple Σ-Protocol can be viewed as a folding
process for two instances while highlighting how LatticeFold addresses the well-
known challenges of knowledge soundness.

In the following parts, we focus on handling a combination of instances that
will present more complex challenges regarding soundness. To clarify our tech-
nique, we first review the folding protocol in LatticeFold which is used to fold
multiple instances into one while achieving a standard soundness. The relation
handled by the folding protocol of LatticeFold is as follows:

Rb :=

{
(F ∈ Rκ

q , s ∈ Rq, r⃗ ∈ Rlogm
q ; f⃗ ∈ Rm

q ) :

F = Com(f⃗),
∥∥∥f⃗∥∥∥ ≤ b,mle[f̂ ](r⃗) = s

}
,

where NTT(f̂) = f⃗ . The framework of the folding protocol in LatticeFold consists
of two components: (1) the initial linearization phase, which reduces the norm
constraint on the witness to an evaluation claim, (2) the main folding phase,
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which is used to fold k-many instances of Rb (denoted as (Fi, si, r⃗i; f⃗i)
k
i=1) into

a single instance of RB (which is similar to Rb but with a larger norm bound

B, i.e.,
∥∥∥f⃗∥∥∥ ≤ B). The complete interaction between P and V in the folding

protocol proceeds as follows:

1. V → P: (ai, di)ki=1
$←(C × C)k and β⃗

$←Clogm.

2. P ↔ V: P and V engage in a sum-check protocol on such claim:

∑
b⃗∈{0,1}log m

g(⃗b) =

k∑
i=1

aisi,

where
g(x⃗) := gnorm(x⃗) + geval(x⃗),

gnorm(x⃗) :=

k∑
i=1

(
di · (eq(β⃗, x⃗) ·

b∏
j=−b

(mle[f̂i](x⃗)− j))
)
,

geval(x⃗) :=

k∑
i=1

(
ai · (eq(r⃗i, x⃗) ·mle[f̂i](x⃗))

)
.

The sum-check protocol reduces to an evaluation claim: g(r⃗) = v.

3. P → V:
(
νi := mle[f̂i](r⃗)

)k
i=1

4. V: Compute
(
ei := eq(r⃗i, r⃗)

)k
i=1

and e′ := eq(β⃗, r⃗), then check

v
?
=

k∑
i=1

(
aieiνi + die

′
b∏

j=−b

(νi − j)
)
.

5. V → P: (ρi)ki=1
$←Ck.

6. V: Output (F, s, r⃗), where

F :=

k∑
i=1

ρiFi, NTT(s) =
k∑

i=1

ρiNTT(si).

7. P: Output f⃗ =
∑k

i=1 ρif⃗i.

This framework ensures knowledge soundness, as the extractor can derive
witness vectors with a specified norm bound from the transcripts and outputs
during extraction. We illustrate this by first considering the simpler case when
k = 2 (also see in Theorem 3.2 in [BC24]).

The extractor first rewinds twice with a same sum-check challenge r⃗ and

different folding challenges, (ρ
(1)
1 , ρ

(1)
2 ) and (ρ

(2)
1 , ρ

(2)
2 ), to obtain f⃗ (1) and f⃗ (2)

of norm bounded by B (ensured by the careful selection of the random challenge

set). Then, f⃗1 and f⃗2 can be extracted by solving the following system:
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f⃗ (1) = ρ
(1)
1 · f⃗1 + ρ

(1)
2 · f⃗2;

F (1) = ρ
(1)
1 · F1 + ρ

(1)
2 · F2;

f⃗ (2) = ρ
(2)
1 · f⃗1 + ρ

(2)
2 · f⃗2;

F (2) = ρ
(2)
1 · F1 + ρ

(2)
2 · F2.

(2)

Since f⃗ (1) and f⃗ (2) should be verified with small norms, the MSIS assumption
ensures that no other set of vectors can bind to F (1) and F (2). Therefore, (f⃗1, f⃗2)
is the unique solution to the system above.

Next, we prove f⃗1 and f⃗2 have a small norm. Rewind twice with (ρ
(1)
1 , ρ

(1)
2 )

and (ρ
(2)
1 , ρ

(2)
2 ) (same ρ as before) but under a different sum-check challenge r⃗′.

Since the folding challenges are identical, F (1) and F (2) must also be identical,
leading to the same vectors f⃗1 and f⃗2 within the same system. Therefore, even
under different independent sum-check challenges, (f⃗1, f⃗2) are expected to satisfy
the sum-check relation reduced from the norm bound constraint. This means
that the sum-check verification is independent of the selected challenge, that is:
(f⃗1, f⃗2) are determined before the sum-check challenges are sampled in extraction
(i.e., they are independent from r⃗). Therefore, based on the soundness of the sum-

check and the original MLE relation, the norm of f⃗1 and f⃗2 are guaranteed to be
bounded. In the more complex case where k > 2, the analysis follows a similar
approach, except that we must fix the other challenge parameters and examine
different witnesses individually.

LatticeFold undoubtedly provides key insights into the soundness problem
in lattice schemes for multi-instance folding operations. However, it has certain
limitations—when folding protocols are invoked multiple times within a single
system, each call necessitates a check on the input norm, adding extra sum-
check processes. We believe this process can be optimized in practice, allowing
the folding protocol to be generalized for broader applications.

3.2 Technique Overview

Our goal is to develop a lattice-based Σ-protocol with a standard soundness
for handling multiple relation instances, similar to [AC20,ACF21], but with en-
hancements that relax restrictions on homomorphic relations and the use of dis-
crete logarithm settings by redefining a new relation RB

poly in lattice for arbitrary
polynomial relations. Our protocol consists of two steps:

(1) Amortization of multiple instances. Our first step is to fold multi-
ple instances of RB

poly into one. The main challenges in this process come from
the non-linear nature of polynomial relations and issues introduced by lattice
settings. To address these challenges, first, we convert non-linear polynomial
relations into linear ones, and then amortize these instances by running an op-
timized protocol based on [BC24].
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For the linearization aspect, we propose a linearization protocol that gen-
eralizes the work in [BC24] by adding a process for handling polynomial con-
straints. Specifically, we address the non-linear property of arbitrary polynomial
functions by applying an MLE transformation on both sides. This converts the
polynomial constraint h(x⃗) = y⃗ into h(mle[x⃗′](⃗b)) = mle[y⃗′](⃗b) for all b⃗ in its
binary domain, where NTT(x⃗′) = x⃗ and NTT(y⃗′) = y⃗. As a result, the original
polynomial constraint reduces to a sum-check constraint, and then to an evalua-
tion check. Ultimately, the non-linear relation RB

poly is reduced into a new linear

relation RB
mle.

After linearization, multiple instances of RB
mle can be folded together to form

an amortized instance. To address norm growth and knowledge soundness chal-
lenges, we utilize the same “split-and-fold” approach as in [BC24]. Considering
the limitations discussed in 3.1, we propose an optimized protocol that extends
LatticeFold’s folding protocol.

By analyzing the soundness proof of the folding protocol in LatticeFold (see
Section 3.1), we found that ensuring the extracted witness has a regulated norm
relies on two factors: (1) When the output witness has a small norm that binds to
the output commitment in Equation 2, there exists a unique set of solutions that
corresponds to the output. (2) The extracted witnesses must be independent of
the sum-check challenge to ensure the extracted witnesses satisfy the sum-check
claim (i.e., the small norm constraint). Based on this observation, we propose a
lemma to show that if a lattice-based protocol with multiple operations meets
these two criteria, then when its output is constrained, connecting it with a
pre-check protocol that performs sum-check based norm enforcement can ensure
that the entire system maintains knowledge soundness property (see details in
4.3, Lemma 3).

With Lemma 3, we can “concatenate” multiple split-and-fold operations to-
gether to propose a single, “large” protocol. In this protocol, each splitting and
folding process can be invoked multiple times with just one norm check (i.e, one
sum-check), while preserving security properties.

(2) Σ-Protocol. Our second step is to run a lattice-based Σ-protocol to
verify the validity of the folded instance. Recall that the first phase of a Σ-
protocol is to sample a masking vector to hide the witness. Unlike [AC20], the
masking vector in our protocol is applied to the folded instance, rather than
directly to the original multiple instances, to avoid inefficient sum-checks on
instances with a large norm. Accordingly, the masking process is actually a
folding process for two linear relation instances and can therefore be integrated
into the aforementioned “large” protocol.

The final issue we need to address is to add zero-knowledge characteristics
into the entire system. We accomplish this by replacing the MLE claim and sum-
check process with zero-knowledge approaches, specifically by adding a hiding
factor on the original claims and introducing a masking polynomial into the
sum-check procedure.

Figure 1 illustrates the entire system’s workflow.
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Fig. 1: The entire system’s work flow.

4 Efficient Σ-Protocol for Polynomial Relations

In this section, we construct a Σ-protocol that can efficiently handle multi-
ple polynomial relations in lattice settings. Section 4.1 to 4.4 outline the sub-
components dedicated to achieving specific sub-goals, while Section 4.5 offers a
complete lattice-based Σ-protocol for polynomial relations.

4.1 Polynomial Relation in Lattice Settings

Our starting point is the amortization technique for Σ-protocols [AC20,ACF21],
which allows a prover to prove multiple instances of a homomorphic relation at
the cost of a single instance. Attema et al. describe this technique in discrete
logarithm settings [ACF21]. Consider a homomorphic relation

Rhom :=

{
(F ∈ G, v⃗ ∈ Zm

q ; f⃗ ∈ Zm
q ) :

Com(f⃗) = F, h(fi) = vi ∀i ∈ [m]

}
, (3)

where h is a homomorphic function over Zq and G is an elliptic curve group with

Zq as its scalar field. For k instances where
(
Fj , v⃗j ; f⃗j

)
∈ Rhom for all j ∈ [k],

it is equivalent to set F :=
∑k−1

j=0 ρ
jFj , v⃗ :=

∑k−1
j=0 ρ

j v⃗j , f⃗ :=
∑k−1

j=0 ρ
j f⃗j with

a random challenge ρ. The prover then proves
(
F, v⃗; f⃗

)
∈ Rhom. This process,

denoted as the amortization in [AC20], can be regarded as folding k-many Rhom

relations to one.
The requirement of h being a homomorphic function limits its practical ap-

plications. In many real-world scenarios, such as range proofs, h is a non-linear
polynomial. In this paper, we consider a more general case where h can be any
polynomial. We begin by generalizing Equation (3) to polynomial relations in
lattice settings. A straightforward approach is to regard each fi as fi ∈ Rq.
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Consequently, RB
poly is defined as

RB
poly :=

{ (
(F ∈ Rκ

q , v⃗ ∈ Rm
q ); f⃗ ∈ Rm

q

)
:

∥f⃗∥∞ ≤ B,Com(f⃗) = F, h(fi) = vi ∀i ∈ [m]

}
. (4)

Alternatively, we can divide a single fi ∈ f⃗ into d/t secrets (fi,j)
d/t−1
j=0 and

find f ′
i := (f ′

i,0, · · · ,f ′
i,d/t−1) ∈ R

d/t
q as well as v′

i := (f ′
i,0, · · · ,f ′

i,d/t−1) ∈ R
d/t
q

where NTT(f ′
i,j) = fi,j , NTT(v

′
i,j) = vi,j . The polynomial claim h(fi) = vi then

becomes h(f ′
i,j) = v′

i,j for all i ∈ [m] and j ∈ [d/t].

For ease of expression, let us assume q − 1 = 2d mod 4d, and thus Rq
∼= Zd

q

and t = d. Note that this can be generalized to an arbitrary prime modu-
lus as described in [BC24] (also see in Section 6). Accordingly, define f⃗ ′ :=

(f ′
0, · · · ,f ′

m−1) and v⃗′ := (v′
0, · · · ,v′

m−1) such that NTT(f⃗ ′) = f⃗ and NTT(v⃗′) =
v⃗. We can then redefine RB

poly as follows

RB
poly :=

{ (
F ∈ Rκ

q , v⃗ ∈ Rm
q ; f⃗ ∈ Rm

q

)
:

∥f⃗∥∞ ≤ B,Com(f⃗) = F, h(f ′
i) = v′

i ∀i ∈ [m]

}
. (5)

4.2 Linearization

The amortization technique [AC20,ACF21] cannot be applied directly on RB
poly

relations since h is not homomorphic. To address this issue, we use a sum-
check based protocol to convert the polynomial claim into a linear claim (more
precisely, an MLE claim). Our linearization can be regarded as a generalization
of the norm enforcement technique in [BC24], which is specifically designed for
grand product and Customizable Constraint System (CCS) relations [STW23].

First, we apply the same approach as in [BC24] to convert the norm claim in
RB

poly into a high-degree polynomial relation. We then linearize this high-degree
polynomial with h simultaneously.

Let f⃗ ∈ Zmd
q be the vector of concatenating all coefficients of f⃗ . Then,

∥f⃗∥∞ ≤ B is equivalent to ⃝B
i=−B(f⃗ − i⃗) = 0⃗, where i⃗ = i · 1⃗. Regarding f⃗ as

the NTT representation of a ring vector f⃗ ′ ∈ Rm
q such that NTT(f⃗ ′) = f⃗ , we

then have
∏B

i=−B
(
f ′
j − i

)
= 0, for all j ∈ [m].2 Therefore, by conducting an

MLE on f⃗ ′, we can rewrite the equation as
∏B

i=−B

(
mle[f⃗ ′](⃗b)− i

)
= 0 for all

b⃗ ∈ {0, 1}logm. As a result, we reduce the norm claim to a polynomial claim.
Second, consider the polynomial claim of h(f ′

i) = v′
i for all i ∈ [m]. Sim-

ilarly, by applying MLEs on f⃗ ′ and v⃗′, the polynomial claim is equivalent to
h
(
mle[f⃗ ′](⃗b)

)
= mle[v⃗′](⃗b) for all b⃗ ∈ {0, 1}logm.

Note that to prove a polynomial p(x) is zero on its domain, we cannot just

prove
∑

b⃗∈{0,1}log m p(⃗b) = 0, as some terms may cancel out each other. Instead,

2 Since we assume t = d in the NTT transform, i = NTT(i) holds.
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we can pair each term with eq(µ⃗, b⃗), where µ⃗ is a random challenge. And then

to prove
∑

b⃗∈{0,1}log m eq(µ⃗, b⃗) · p(⃗b) = 0, to imply p(⃗b) = 0 for all b⃗ ∈ {0, 1}logm.

With random challenges α
$←C and µ⃗

$←Clogm, we can compose the two poly-
nomials as g(x⃗) := g1(x⃗) + αg2(x⃗), where

g1(x⃗) := eq(µ⃗, x⃗) ·
B∏

i=−B

(
mle[f⃗ ′](x⃗)− i

)
,

g2(x⃗) := eq(µ⃗, x⃗) ·
(
h
(
mle[f⃗ ′](x⃗)

)
−mle[v⃗′](x⃗)

)
.

(6)

Accordingly, the prover and verifier can engage in a sum-check protocol to show∑
b⃗∈{0,1}log m g(⃗b) = 0, which outputs an MLE claim.

We define the output MLE relation RB
mle as follows

RB
mle :=

{(
F ∈ Rκ

q , s ∈ Rq, r⃗ ∈ Clogm; f⃗ ∈ Rm
q

)
:

∥f⃗∥∞ ≤ B,Com(f⃗) = F,mle[f⃗ ′](r⃗) = s

}
. (7)

We provide a detailed description of the protocol ΠB
lin in Protocol 3. ΠB

lin

converts an input instance (F,v; f⃗) ∈ RB
poly to an output (F, s, r⃗; f⃗) ∈ RB

mle.

Protocol 3 ΠB
lin: reduce RB

poly to RB
mle

P(F, v⃗, f⃗),V(F, v⃗)

1: P: α $←C, µ⃗ $←Clogm.
2: P and V: Set g(x⃗) := g1(x⃗)+αg2(x⃗) where g1 and g2 are defined in Equation

(6). Engage in a sum-check for the claim∑
b⃗∈{0,1}log m

g(⃗b) = 0.

The protocol reduces to check an evaluation claim g(r⃗) = sg, where

r⃗
$←Clogm.

3: P → V: s := mle[f⃗ ′](r⃗).
4: V: Set sv := mle[v⃗′](r⃗) and eµ := eq(µ⃗, r⃗). Check

sg
?
= eµ ·

B∏
i=−B

(
s− i

)
+ α · eµ

(
h(s)− sv

)
. (8)

5: P: Output f⃗ .
6: V: Output (F, s, r⃗).

Efficiency. Let D := max(deg(h), 2B+1). The sum-check protocol requires
P to send (D + 1) logm-many Rq messages. Additionally, P also needs to send
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an MLE claim at step 3. Thus, ΠB
lin has (1 + (D + 1) logm) prover messages in

Rq. For the time efficiency, the complexity of the sum-check is approximately
O(mD log2 D) for P and O(D logm) for V. Furthermore, checking the equation
in step 4 takes O(D) time.

Parallel composition. For k instances of the (Fj , v⃗j ; f⃗j) ∈ RB
poly for all

j ∈ [k], we can leverage the parallel composition theorem in Theorem 9 to
concurrently execute k-many ΠB

lin protocols (denoted as (ΠB
lin)

k) with a single
sum-check. Accordingly, the communication cost is (k + (D + 1) logm) (in-
stead of (k + k(D + 1) logm)) and the verification cost for the sum-check is
O(D logm) (instead of O(kD logm)). Specifically, this is achieved by setting

g(x⃗) :=
∑k−1

j=0

(
αjg1,j(x⃗) + βjg2,j(x⃗)

)
with random challenges α⃗, β⃗

$←Ck, where
g1,j(x⃗) and g2,j(x⃗) are defined as

∀j ∈ [k] : g1,j(x⃗) := eq(µ⃗, x⃗) ·
B∏

i=−B

(
mle[f⃗ ′

j ](x⃗)− i
)
,

∀j ∈ [k] : g2,j(x⃗) := eq(µ⃗, x⃗) ·
(
h
(
mle[f⃗ ′

j ](x⃗)
)
−mle[v⃗′

j ](x⃗)
)
.

(9)

Accordingly, after receiving k-many sj = mle[f⃗ ′
j ](r⃗), V checks

sg
?
=

k−1∑
j=0

(
αjeµ

B∏
i=−B

(
sj − i

)
+ βjeµ

(
h(sj)− sv,j

))
(10)

where sg = g(r⃗) is the output claim and sv,j := mle[v⃗′
j ](r⃗).

Theorem 3. ΠB
lin is a reduction of knowledge from RB

poly to RB
mle.

Proof. Public reducibility. Given input public statements (F, v⃗) and the tran-
script that includes r⃗, s, α and µ, one can output (F, s, r⃗) if the V checks pass
and abort otherwise.

Completeness. Given a maliciously chosen input (F, v⃗; f⃗) ∈ RB
poly, the proto-

col outputs (F, s, r⃗) and f⃗ if the verifier check passes. Since g is defined as the
composite of two polynomials g1(x⃗) and g2(x⃗), based on the completeness of the

sum-check, Equation (19) holds and step 4 passes. Furthermore, mle[f⃗ ′](r⃗) = s

holds by definition. Additionally, since (F, v⃗; f⃗) ∈ RB
poly, the norm claim (i.e.,

∥f⃗∥∞ ≤ B) and the commitment claim (i.e., Com(f⃗) = F ) hold. Thus, the

output (F, s, r⃗; f⃗) ∈ RB
mle.

Knowledge soundness. Given a maliciously chosen input public statement
(F, v⃗), the extractor simulates the protocol with the malicious prover and abort

if V rejects. Otherwise, denote the output as (F, s, r⃗; f⃗). The extractor outputs

f⃗ as the extracted witness.
Next, we show if the extractor does not abort and (F, s, r⃗; f⃗) ∈ RB

mle, then

(F, v⃗; f⃗) ∈ RB
poly for the extracted witness. Since (F, s, r⃗; f⃗) ∈ RB

mle, we have

Com(f⃗) = F and mle[f⃗ ′](r⃗) = s. As the binding property of the commitment
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scheme ensures f⃗ binds with F and F is fixed before receiving r⃗, the extracted f⃗
(and the polynomial g) are independent from r⃗ with overwhelming probability.
Additionally, since step 4 passes, by sum-check soundness, the following equation
holds with overwhelming probability over the sum-check challenges.∑

b⃗∈{0,1}log m

g(⃗b) = 0.
(11)

Define p1(x⃗) :=
∏B

i=−B

(
mle[f⃗ ′](x⃗)− i

)
. By the uniqueness of MLE, we de-

fine p̃1(µ⃗) = mle[p1](µ⃗) =
∑

b⃗∈{0,1}log m eq(µ⃗, b⃗) · p1(⃗b). Recall the definition

of g1 in Equation (6), we have p̃1(µ⃗) =
∑

b⃗∈{0,1}log m g1(⃗b). Similarly, define

p2(x⃗) := h
(
mle[f⃗ ′](x⃗)

)
−mle[v⃗′](x⃗), we have p̃2(µ⃗) =

∑
b⃗∈{0,1}log m g2(⃗b). Recall

the definition of g at step 2, we can rewrite Equation (11) as∑
b⃗∈{0,1}log m

g(⃗b) = p̃1(µ⃗) + α · p̃2(µ⃗) = 0.
(12)

Since α and µ⃗ are uniformly chosen from the challenge space, by the gener-
alized Schwartz-Zippel lemma, we have p̃1(µ⃗) = 0 and p̃2(µ⃗) = 0 with over-

whelming probability over α and µ⃗. Therefore, p1(⃗b) = 0 and p2(⃗b) = 0 for

all b⃗ ∈ {0, 1}logm. Accordingly,
∏B

i=−B
(
f ′
j − i

)
= 0 for all j ∈ [m] (which

implies ∥f⃗∥∞ ≤ B), and h(f ′
i) = vi for all i ∈ [m]. Thus, the extracted

(F, v⃗; f⃗) ∈ RB
poly.

4.3 Main Protocol on Multiple Instances

After linearization, we can apply the amortization technique to multiple RB
mle

instances to get a single one. As mentioned in 3.1, directly using the folding tech-
nique from [BC24] for amortization would require additional sum-checks when
multiple folding operations are invoked. To address this issue and allow multiple
operations within a “large” protocol while minimizing sum-checks (ideally to just
one), we first present a lemma to generalize the soundness proof of Latticefold,
then provide our main protocol according to this lemma.

Definition 6. We define a mapping as extractive injective if and only if dur-
ing the extraction process, the extracted system—comprising re-winding factors,
private inputs, and public outputs —is “perfectly injective”. In other words, each
output can only extract exactly one input set.

Remarks. The extracted system derived from Equation 2 is perfectly in-
jective, as only one set of (f⃗1, f⃗2) can be extracted, indicating that no other
solutions can satisfy the extracted system. Therefore, the protocol presented in
3.1 is constitutes an extractive injective mapping.
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Lemma 3. Given a lattice-based protocol ΠpreCheck⋄ΠG, where ΠpreCheck includes
the sum-check based norm enforcement and ΠG performs some additional opera-
tions (e.g., folding operations). If ΠG is extractive injective and ensures that
operations on witnesses remain independent of the challenge used in
the sum-check in ΠpreCheck, then when the output witness is bounded, the pro-
tocol ΠpreCheck ⋄ΠG can maintain knowledge soundness.

Proof. Without loss of generality, we assume ΠG takes k inputs ((Xi); (x⃗i))
k
i=1

and outputs one instance (Y ; y⃗). Moreover, we represent the process as G(ρ⃗, (x⃗i)
k
i=1) =

y⃗ and G(ρ⃗, (Xi)
k
i=1) = Y , where G(·) is an injective function and ρ⃗ denotes the

challenge sent by the verifier to conduct G. Regard r⃗ as the sum-check challenge
in the final MLE claim of ΠpreCheck.

We illustrate the knowledge soundness proof of ΠpreCheck ⋄ΠG by first consid-
ering the simple case when k = 2 (the general case follows the same approach).
The extractor first rewinds twice with the same sum-check challenge r⃗ and dif-
ferent operation challenges (ρ⃗(1), ρ⃗(2)), producing output witnesses (y⃗(1), y⃗(2))
and their corresponding commitments (Y (1), Y (2)):

y⃗(1) = G(ρ⃗(1), x⃗1, x⃗2);

Y (1) = G(ρ⃗(1), X1, X2);

y⃗(2) = G(ρ⃗(2), x⃗1, x⃗2);

Y (2) = G(ρ⃗(2), X1, X2).

(13)

When the norm of the output witness is bounded, the MSIS assumption ensures
that (y⃗(1), y⃗(2)) uniquely binds to the output commitments (Y (1), Y (2)). Addi-
tionally, since G is extractive injective, there is only one set of (x⃗1, x⃗2) can be
extracted corresponding to the unique output set (y⃗(1), y⃗(2)).

Additionally, we need to show that the extracted witnesses (x⃗1, x⃗2) have a
small norm. Similar to LatticeFold, for each ρ⃗(1) and we ρ⃗(2), we rewind using the
same operation challenges (i.e., ρ⃗(1) or ρ⃗(2)) but with different sum-check chal-
lenge r⃗′. Since G does not take the sum-check challenge as an input, and the op-
eration challenges (ρ⃗(1), ρ⃗(2)) are the same, the output commitments (Y (1), Y (2))
must also be identical. This leads to the same (y⃗(1), y⃗(2)) and extracted wit-
nesses (x⃗1, x⃗2) within the system in Equation 3. Therefore, since the extracted
witnesses are independent from the sum-check challenges, they are expected to
satisfy the sum-check relation reduced from the norm bound constraint. This
implies that the extracted witnesses are determined before the sum-check chal-
lenges are sampled in extraction. Based on the soundness of sum-check, the
norms of the extracted witnesses are guaranteed to be bounded.

In the folding protocol of LatticeFold, ΠpreCheck corresponds to the initial
linearization phase, while ΠG is the folding phase. In our design, ΠpreCheck aligns
with ΠB

lin, and ΠG is the Πmain described below, which consists of the following
two operations.
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(1) Folding Operation on k instances When dealing with k-many RB
mle

instances (Fj , sj , r⃗; f⃗j)
k−1
j=0 , one can adopt the amortization technique [AC20,

ACF21] to fold them into one. Considering that theRB
mle instances are the output

of ΠB
lin process, whose witnesses are expected to have smaller norms—no more

than B, and in many applications, B is quite small (such as B is 1 in binary
proofs)—we can directly fold these witnesses together without needing to split
and fold each one individually.

The folding operation on k witnesses is performed as follows. First, the ver-
ifier samples a random challenge ρ⃗ from a small strong challenge space (as de-
fined in Definition 2). Then, the prover computes the random linear combina-

tion f⃗ =
∑k−1

j=0 ρj f⃗j . As for the public parameters, the verifier could compute

F :=
∑k−1

j=0 ρj · Fj , and s such that NTT (s) =
∑k−1

i=0 ρj · NTT (sj).

(2) Splitting and Folding Operation Note that the output folded witness

f⃗ may have a larger norm B̄, which scales linearly with the number of inputs.
Consequently, we may require a larger set of parameters to uphold the MSIS
assumption, which will be inefficient for real-world applications. To avoid this,
we can apply the “split-and-fold” technique, which divides a single f⃗ with a
large norm bound B̄ into ℓ witnesses with a smaller norm bound ω, and then
folds them into one vector with a relatively small norm bound b. Accordingly,
we can choose a smaller parameter set for our final protocol.

For positive integers B̄ = kB and b < γ, choose ω, ℓ such that ωℓ = B̄
and cℓω = b (c is the norm bound of challenges, see Definition 2). For an m-

size vector f⃗ ∈ Rm
q where ∥f⃗∥∞ ≤ B̄, we can split it into an m × ℓ matrix

split(f⃗) := (f⃗0, · · · , f⃗ℓ−1) ∈ Rm×ℓ
q , such that ∥f⃗j∥∞ ≤ ω for all j ∈ [ℓ] and f⃗ :=∑ℓ−1

j=0 ω
j · f⃗j . Furthermore, we can fold them into one f⃗∗ such that ∥f⃗∗∥∞ ≤ b

by conducting the same folding operation as mentioned above.

A detailed description of our main protocol Πmain is shown in Protocol 4.

Efficiency. P needs to send ℓ commitments in Rκ
q and ℓ messages in Rq.

In terms of time efficiency, the prover requires O(mk + mℓ) time for the
folding operations and O(κmℓ) for the splitting operations. The verifier takes
O(κk + κℓ) time to compute the folded instances and O(κℓ) time to verify the
validity of the splitting operations.

Theorem 4. Πmain satisfies public reducibility and completeness.

Proof. Public reducibility. Given input public statements (Fj , sj , r⃗)
k−1
j=0 and the

transcript that includes folding challenges ρ⃗1, ρ⃗2, and (Fi, si)
ℓ−1
i=0 , one can output

(F∗, s∗, r⃗) if V passes and abort otherwise.

Completeness. Given maliciously chosen inputs (Fj , sj , r⃗; f⃗j)
k−1
j=0 ∈ (RB

mle)
k,

the protocol < P,V > proceeds as follows:

1. P computes f⃗ =
∑k−1

j=0 ρ1,j f⃗j , then splits f⃗ into (f⃗0, . . . , f⃗ℓ−1) and sends

Fi := Com(f⃗i) and si := mle[f⃗ ′
i ](r⃗) for each i ∈ [ℓ].
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Protocol 4 Πmain: Main Protocol on (RB
mle)

k

P((Fj , sj)
k−1
j=0 , r⃗, (f⃗j)

k−1
j=0 ),V((Fj , sj)

k−1
j=0 , r⃗)

1: V → P: ρ⃗1
$←Cksmall, ρ⃗2

$←Cℓsmall.

2: P: Compute f⃗ =
∑k−1

j=0 ρ1,j f⃗j .
3: V: Compute:

F :=

k−1∑
j=0

ρ1,j · Fj , NTT (s) =

k−1∑
i=0

ρ1,j · NTT (sj) .

4: P: Set (f⃗0, · · · , f⃗ℓ−1) := split(f⃗).
5: P → V: (Fi, si)

ℓ−1
i=0 such that:

Fi := Com(f⃗i), si := mle[f⃗ ′
i ](r⃗).

6: V: Check
∑ℓ−1

i=0 ω
i · Fi = F and

∑ℓ−1
i=0 ω

i · si = s.

7: P: Compute f⃗∗ =
∑ℓ−1

i=0 ρ2,if⃗i

8: P: Output f⃗∗.
9: V: Output F∗, s∗, r⃗ such that:

F∗ :=

ℓ−1∑
i=0

ρ2,i · Fi, NTT (s∗) =

ℓ−1∑
i=0

ρ2,i · NTT (si) . (14)

2. V verifies that
∑ℓ−1

i=0 ω
i · Fi

?
=
∑k−1

j=0 ρ1,j · Fj and
∑ℓ−1

i=0 ω
i · NTT(si)

?
=∑k−1

j=0 ρ1,j · NTT(sj). If either check fails, V aborts.

3. If the checks pass, P outputs f⃗∗ =
∑ℓ−1

i=0 ρ2,if⃗i and V outputs F∗, s∗, r⃗.
It can be proved that V accepts in the honest execution. First, since the

commitment scheme is homomotphic,

ℓ−1∑
i=0

ωi · Fi =

ℓ−1∑
i=0

ωi · Com(f⃗i) = Com(

ℓ−1∑
i=0

ωi · f⃗i) = Com(

k−1∑
j=0

ρ1,j f⃗j) =

k−1∑
j=0

ρ1,jFj

Similarly,

ℓ−1∑
i=0

ωi · NTT(si) =
ℓ−1∑
i=0

ωi · NTT(mle[f⃗ ′
i ](r⃗)) =

k−1∑
j=0

ρ1,j · NTT(sj).

The first equality follows from the definition of si, while the second is based on
Lemma 2.
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Theorem 5. For any c, ℓ, ω and b such that cℓω = b and b < γ, when the
norm of the output witness of Πmain is bounded, ΠB

lin ⋄Πmain satisfies knowledge
soundness.

Proof. We prove this by demonstrating that Πmain satisfies the properties out-
lined in Lemma 3.

First, we demonstrate that Πmain is extractive injective—there is just one
unique valid input set corresponding to the output. For a given output f⃗∗ with a
small norm bound, the analysis in Section 3.1 guarantees that there is only one
set of (f⃗i)

ℓ−1
i=0 corresponding to f⃗∗. Hence, computing

∑ℓ
i=0 ω

if⃗i will only yield

one result vector, f⃗ . Similarly, for this fixed f⃗ , there is only one set of input
solutions (f⃗j)

k−1
j=0 corresponding to it. Thus, Πmain is indeed extractive injective.

Furthermore, it is evident that the extracted witnesses of Πmain are indepen-
dent of the sum-check challenge in ΠB

lin. According to Lemma 3, we can conclude
that ΠB

lin ⋄Πmain possesses knowledge soundness.

4.4 Achieving Zero-Knowledge

After executing (ΠB
lin)

k ⋄Πmain, we have an output instance (F∗, s∗, r⃗; f⃗∗) ∈ Rb
mle.

The verification of (F∗, s∗, r⃗; f⃗∗) can be performed by sending f⃗∗ to the verfier

and checking (F∗, s∗, r⃗; f⃗∗) ∈ Rb
mle directly. However, to achieve zero knowledge

for Σ-protocols, we require an additional masking step. In [AC20], the masking
instance is treated as one of the k-many instances in the input of Protocol 4.
This approach works well in discrete logarithm settings, as there is no norm
constraint. While in lattice scenarios, adding the masking vector to the result of
the first folding (denoted as f⃗ in Protocol 4) poses a challenge: since the norm

of f⃗ may be large, fully masking it would require a vector with a much larger
norm, leading to a larger parameter for MSIS and more processing overhead.
To ensure efficiency, we choose to add the masking phase to the output vector
f⃗∗, which has a relatively small norm. But this introduces another issue: during
the phase in which we obtain f⃗∗, the interaction between the prover and verifier
may leak some information about the witness (specifically, the prover’s messages
and evaluation claims of sum-check protocols may reveal the information about
the witness). Thus, to make this process zero-knowledge, we need to incorpo-
rate zero-knowledge characteristics into the original sum-check process and the
evaluation claims.

Masking Operation In order to mask the witness f⃗∗, we use a masking vector
t⃗ with a norm σ. The relation of the masking instance is defined as follows:

Rσ :=
{(

T ∈ Rκ
q ; t⃗ ∈ Rm

q

)
: ∥t⃗∥∞ ≤ σ,Com(t⃗) = T

}
. (15)

Then, followed the linearization process described before, we can convert Rσ

into a linearized instance Rσ
mle:

Rσ
mle :=

{(
T ∈ Rκ

q , st ∈ Rq, r⃗ ∈ Clogm; t⃗ ∈ Rm
q

)
:

∥t⃗∥∞ ≤ σ,Com(t⃗) = T,mle[t⃗′](r⃗) = st

}
. (16)
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The linearization process is almost identical to the one used for RB
poly, except

that the norm bound for t⃗ is σ, and t⃗ only needs to satisfy the norm constraint
without requiring additional polynomial constraints.

The masking operation on f⃗∗ can be regarded as a folding operation be-
tween Rσ

mle and Rb
mle. Additionally, recall that in a lattice-based Σ-protocol, the

prover must run a rejection sampling algorithm to obscure the distribution of
the composed vector. We need to incorporate this phase into the masking pro-
cess: After the prover folds witness as g⃗ := λf⃗∗ + t⃗ based on a challenge λ, he
runs Rej(g⃗, λf⃗∗, ϕ, τ) to ensure g⃗ is within the expected distribution. In order to
condense the overall structure, this masking operation can be incorporated into
the Πmain protocol. We regard the updated version of Πmain as ΠZKmain, which is
shown in Protocol 5.

Protocol 5 ΠZKmain: zero-knowledge version of Πmain

P((Fj , sj)
k−1
j=0 , r⃗, (f⃗j)

k−1
j=0 ),V((Fj , sj)

k−1
j=0 , r⃗)

1: V → P: ρ⃗1
$←Cksmall, ρ⃗2

$←Cℓsmall.

2: P: Compute f⃗ =
∑k−1

j=0 ρ1,j f⃗j .

3: P: Set (f⃗0, · · · , f⃗ℓ−1) := split(f⃗).

4: P → V: (Fi, si)
ℓ−1
i=0 such that Fi := Com(f⃗i), si := mle[f⃗ ′

i ](r⃗).
5: V: Check:

ℓ−1∑
i=0

ωi · Fi
?
=

k−1∑
j=0

ρ1,j · Fj ,

ℓ−1∑
i=0

ωi · NTT(si)
?
=

k−1∑
j=0

ρ1,j · NTT(sj). (17)

6: P: Compute f⃗∗ =
∑ℓ−1

i=0 ρ2,if⃗i

7: V → P: λ $←C.
8: P: t⃗

$←Rm
q with

∥∥∥t⃗∥∥∥
∞
≤ δ, then compute g⃗ = λf⃗∗ + t⃗ and run

Rej(g⃗, λf⃗∗, ϕ, τ).
9: P → V: g⃗, T = Com(t⃗), st = mle[t⃗′](r⃗).

Theorem 6. ΠZKmain still satisfies Theorem 4 and Theorem 5.

Proof. The zero-knowledge version of Πmain is padded with an additional mask-
ing operation, which is essentially a folding operation. According to Section
4.3, ΠZKmain will still maintain completeness and public reducibility. Moreover,
it continues to fulfill the requirements stated in Lemma 3, which implies that
ΠB

lin ⋄ΠZKmain still preserves knowledge soundness.

When (σ + cb) ≤ γ, the output of ΠZKmain would be an instance in Rγ
mle,

which can be further verified by running Protocol 6.
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Protocol 6 Πcheck: check the properties of g⃗

P(F∗, s∗, r⃗; f⃗∗),V(F∗, s∗, r⃗)

1: P → V: the output of Rej(g⃗, λf⃗∗, ϕ, τ), denote as g⃗.
2: V: Check

Com(g⃗)
?
= λF∗ + T, NTT(sG)

?
= λNTT(s∗) + NTT(st), ∥g⃗∥∞ ≤ γ

ZK Sum-Check and Zk Claims In ΠB
lin, the MLE claim of mle[f⃗ ′

j ](r⃗) = sj

can leak the information of f⃗j . Additionally, since the sum-check is executed as
a sub-protocol, the interaction along with the output of the sum-check is not
zero-knowledge, which leaks the information about the witness.

We first show how to hide f⃗j within the MLE claim mle[f⃗ ′
j ](r⃗) = sj and the

output of a sum-check. Consider µ claims on a same f⃗j . We concatenate f⃗j with

a randomly sampled vector r⃗f
$←Rµ

q as f⃗j,r := (f⃗j , r⃗f ). Accordingly, the claim

on f⃗r is mle[f⃗ ′
j,r](r⃗, r⃗1) = sj +mle[r⃗′f ](r⃗1), which is uniform in Rq. Additionally,

µ claims on a same f⃗r are indistinguishable from µ uniformly sampled points
in Rq. This allows the simulator to sample uniformly from Rq to simulate the
claims. Note that, the norm of r⃗f can be large, it should not be included in
the norm enforcement in ΠB

lin and the commitment. (The commitment scheme
should use a different randomness of small norm.)

Moreover, to achieve a zero-knowledge sum-check, we employ the idea in
[XZZ+19] and generalize it on rings. For any arbitrary ring R̄, to mask a multi-

lineal polynomial g(X⃗) ∈ R̄≤1[X0, · · · ,Xµ−1], we introduce a masking polyno-
mial

gr(x0, · · · ,xµ−1) := a+ a0x0 + · · ·+ aµ−1xµ−1,

where a and ai are uniformly sampled from R̄ for all i ∈ [µ]. Denote the orig-

inal claim as v :=
∑

b⃗∈{0,1}µ g(⃗b) and vr :=
∑

b⃗∈{0,1}µ gr (⃗b). With a challenge

ζ
$←C, the prover and verifier engage in the sum-check protocol on v + ζvr =∑
b⃗∈{0,1}µ

(
g(⃗b) + ζgr (⃗b)

)
. After the protocol, the verifier obtains a claim on

g(r⃗) + ζgr(r⃗). The prover then sends gr(r⃗), which allow the verifier to compute
the claim on g(r⃗). Since ζ is from C, the proof follows the same logic as the result
in [XZZ+19], Theorem 3.

4.5 Putting Everything Together

By substituting the sum-checks in ΠB
lin with zero-knowledge sum-checks, and

replacing the evaluation claims with hiding claims, we obtain the desired protocol
Π := Πδ

lin × ((ΠB
lin)

k ⋄ΠZKmain) ⋄Πcheck.
The full protocol is shown in Protocol 7.
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Protocol 7 Π: Σ-Protocol for k polynomial relation instances

P((Fj , v⃗j)
k−1
j=0 , (f⃗j)

k−1
j=0 ),V((Fj , v⃗j)

k−1
j=0 )

(1) Run zero knowledge ΠB
lin:

1: V → P: challenge ζ
$←C

2: P: (αj , βj)
k−1
j=0

$←(C × C)k, µ⃗ $←Clogm, r⃗f
$←Rlogm

q , (aθ)
logm
θ=0

$←Rlogm+1
q .

3: P: Set gr(x⃗) = a0 + a1x0 + · · · + alogmxlogm−1, and compute sr =∑
b⃗∈{0,1}log m gr (⃗b).

4: P and V: P Set f⃗j,r = (f⃗j , r⃗f ), v⃗j,r = (v⃗j , h(r⃗f )),

g(x⃗, r⃗1) :=
∑k−1

j=0 (αjg1,j(x⃗, , r⃗1) + βjg2,j(x⃗, r⃗1)) where g1,j and g2,j are de-
fined as below. Let gf (x⃗, r⃗1) := g(x⃗, r⃗1) + ζgr(x⃗).

∀j ∈ [k], g1,j(x⃗, r⃗1) := eq(µ⃗, x⃗) ·
B∏

i=−B
(mle[f⃗ ′

j,r](x⃗, r⃗1)− (i+mle[r⃗′f ](r⃗1)))

∀j ∈ [k], g2,j(x⃗, r⃗1) := eq(µ⃗, x⃗) · (h(mle[f⃗ ′
j,r](x⃗, r⃗1))−mle[v⃗′

j,r](x⃗, r⃗1))

Engage in a sum-check for the claim∑
b⃗∈{0,1}log m

gf (⃗b, r⃗1) = ζsr. (18)

The protocol reduces to check an evaluation claim gf (r⃗, r⃗1) = sg.

5: P → V: (sj := mle[f⃗ ′
j ](r⃗))

k−1
j=0 , and gr(r⃗).

6: V: Set sv,j := mle[v⃗′
j ](r⃗) and eµ := eq(µ⃗, r⃗). Check

sg − ζgr(r⃗)
?
=

k−1∑
i=0

(
αjeµ ·

B∏
i=−B

(sj − i) + βjeµ · (h(sj)− sv,j)
)
.

(2) Run ΠZKmain. (See Protocol 5)
(3) Run Πcheck:

1: V: Compute sG = mle[g⃗′](r⃗). Check:

Com(g⃗)
?
= λ

ℓ−1∑
i=0

ρ2,i · Fi + T,

NTT (sG)
?
= λ

ℓ−1∑
i=0

ρ2,i · NTT (si) + st, ∥g⃗∥∞ ≤ γ.

27



Theorem 7. Given a ring Rq, let pp := (κ,m,G, γ < q/2) be the public param-
eters such that MSIS(κ,m, q, 2γ) is hard, C, Csmall ⊂ Rq be super-poly large strong
sampling sets where ∥Csmall∥op = c. Choose b, ℓ, ω, δ such that B̄ = ωℓ, cℓω = b
and (δ+cb) ≤ γ. Π satisfies completeness, special soundness, and special HVZK.

Proof. Completeness Based on Theorem 3 and Theorem 6, (ΠB
lin)

k ⋄ ΠZKmain

serves as a public-coin reduction of knowledge from the tuple ((RB
poly)

k,Rδ) to

Rγ
mle. Meanwhile, Πδ

lin represents a reduction of knowledge from Rδ to Rδ
mle.

Thus, Πδ
lin× ((ΠB

lin)
k ⋄ΠZKmain) ensures completeness according to the knowledge

composition theorems in [KP23]. Furthermore, since Πcheck satisfies complete-
ness, it can be concluded that Π also satisfies completeness.

Special Soundness According to Theorem 6, ΠZKmain meets the criteria spec-

ified in Lemma 3. As the norm of the output witness from (ΠB
lin)

k ⋄ ΠZKmain is
verified by Πcheck, ((Π

B
lin)

k ⋄ΠZKmain)⋄Πcheck demonstrates knowledge soundness.
Specifically, the extractor first requires two accepting transcripts of the same T
but with different λ values to recover the amortized witness. This amortized
witness is then used to extract the original witnesses with a regularized norm
based on ℓ and k accepting transcripts, respectively. Therefore, Π demonstrates
(k, ℓ, 2)-special soundness.

Special HVZK. For (ΠB
lin)

k ⋄ΠZKmain, denote the folding challenge in the first

folding operation as ρ⃗(1). Randomly sample sj
$←Rq for all j ∈ [k]. Compute the

folded commitment as F :=
∑k−1

j=0 ρ
(1)
j Fj and the folded MLE claim s such that

NTT (s) =
∑k−1

j=0 ρ
(1)
j · NTT (sj). Set sg := g(r⃗) where g is defined as Equation

(9) by replacing mle[f⃗ ′
j ](r⃗) with sj . Thus, the check of Equation (10) passes and

the simulated sj ’s are indistinguishable from the real ones.

For splitting operation, sample F ∗
1 · · · , F ∗

ℓ−1
$←Rκ

q and s∗1 · · · , s∗ℓ−1
$←Rq. Set

F ∗
0 := F −

∑ℓ−1
j=1 ω

jF ∗
j and s∗0 := s −

∑ℓ−1
j=1 ω

js∗j . Clearly, (F
∗
j , s

∗
j )

ℓ−1
j=0 pass the

check at step 5 of ΠZKmain in Π. Moreover, (F ∗
j , s

∗
j )

ℓ−1
j=0 are indistinguishable from

real ones due to the hiding property of claim and commitment.
Similarly, denote the folding challenge as ρ⃗(2) in the second folding operation.

The simulator simply compute F∗ :=
∑ℓ−1

j=0 ρ
(2)
j F ∗

j and s∗ such that NTT (s∗) =∑ℓ−1
i=0 ρ

(2)
j · NTT

(
s∗j
)
. Finally, the simulator selects λ uniformly at random and

samples g⃗ randomly to compute T = Com(g⃗)− λF∗.
Since all steps pass, the simulated transcript is a valid one and indistinguish-

able from a real transcript.

5 Evaluation

Efficiency. Table 3 summarizes the efficiency of each sub-protocol used in our
system. Where D := max(deg(h), 2B + 1), D′ := 2δ + 1, m is the length of the
witness, κ is the length of the commitment.
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Table 3: Efficiency of sub protocols

prover cost verifier cost proof size

ΠB
lin for RB

poly O(mD log2 D) O(D logm) (1 + (D + 1) logm)Rq

Πδ
lin for Rδ O(mD′ log2 D′) O(D′ logm) (1 + (D′ + 1) logm)Rq

ΠZKmain for ( (RB
mle)

k,Rδ
mle) O(mk + κmℓ) O(κk) + O(κℓ) ℓ Rκ

q + (ℓ+m)Rq

Πcheck / O(κℓ+m) /

Table 4: Efficiency of our protocol.

w/o compression w/ compression

Proof size
((D + 1) logm+ k+

ℓ+ (D′ + 1) logm+ 1 +m) Rq

ℓ Rκ
q

((D + 1) logm+ 2 logm+ k+
ℓ+ 1 + (D′ + 1) logm) Rq

(2 logm+ ℓ) Rκ
q

Prover time
O(kmD log2 D +mD′ log2 D′+

km+ κmℓ)
O(kmD log2 D +mD′ log2 D′+

km+ κmℓ)

Verifier time
O(D logm+ kD +D′ logm

+κk + κℓ+m)
O(D logm+ kD +D′ logm

+κk + κℓ+ κm)

As explained in the parallel composition in Section 4.2, when linearizing
k instances simultaneously, we can use the parallel composition theorem to
concurrently execute k-many ΠB

lin protocols with a single sum-check.(ΠB
lin)

k has
(k+(D+1) logm) prover messages in Rq. The complexity of prover and verifier
are O(kmD log2 D) and O(D logm+ kD), respectively.

When adopting the compressed Σ-protocol theory, our scheme can be further
optimized. We give the overall efficiency of our protocol in Table 4.

Instantiation. Set m = 216, d = 64, κ = 9 and let q be a 64-bit prime. By
the MSIS hardness bound we can achieve 128-bit security as long as the norm
bound logB ≤ 27− 0.5 logm. We choose γ = 219.

Let the challenge set Csmall be a set of elements with {−1, 0, 1, 2} in Rq. Then,
we have |Csmall| = 4d = 464 = 2128. Additionally, Csmall is a strong sampling set
because the difference between any two distinct elements has an infinity norm
of at most 3, which is less than q1/16/

√
16 = 4. Thus, it is invertible.

In this set, our proof size is 16(D +D′ + 2) + k + l +m. Considering k and
ℓ is much less than D,D′ and m, the approximate proof size is 64KB.

6 Optimization and Extension

Supporting small prime modulus. As mentioned in Section 4.1, our protocol
is also compatible with a small prime modulus. By choosing a q that is signif-
icantly smaller than 2128, our protocol can achieve better efficiency while still
maintain 128-bit security at the same time. This adaptation is a straightforward
application of the challenge space in [BC24], which we briefly summarize here.
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Recall the NTT transform in Section 2.1. To ensure 128-bit security, we can
choose a prime q such that q − 1 = 2t mod 4t and qd/t ≈ 2128. The challenge
space C is (re)defined as follows

C :=
{
ai ∈ Rq : NTT(ai) = i⃗

}
i∈Z

qd/t

,

where i⃗ ∈ Zt
qd/t

is a vector containing t-many i’s.

Linearizing inner-product relations. Unlike methods in [AC20,ACK21],
our approach cannot directly extend to support inner-product relations due to
the high-degree polynomial h. Nonetheless, since the inner-product relation is
essentially a sum-check argument [BCS21], this provides us with the opportunity
to seamlessly integrate the inner-product claims within the sum-check protocol.

Define the inner-product polynomial relation RB
polyIP as follows:

RB
polyIP :=

{ (
F ∈ Rκ

q , a⃗ ∈ Rm
q ,v ∈ Rq; f⃗ ∈ Rm

q

)
:

∥f⃗∥∞ ≤ B,Com(f⃗) = F,
∑m−1

i=0 h(a′
i,f

′
i) = v′

}
, (19)

where a⃗′ and v′ are the NTT transform of a⃗ and v, respectively.
We show how to adjust ΠB

lin to convert RB
polyIP into RB

mle. In particular, for
the polynomial claim, g2 in Equation (6) is modified as follows:

g2(x⃗) := h
(
mle[a⃗′](x⃗),mle[f⃗ ′](x⃗)

)
, (20)

and in step 3 of Protocol 3, the sum-check claim becomes
∑

b⃗∈{0,1}log m g(⃗b) =

α · v′, where g(x⃗) := g1(x⃗) + α · g2(x⃗). Consequently, the at step 5, Equation
(19) becomes

sg = eµ ·
B∏

i=−B
(s− i) + α · h(sa, s), (21)

where sa := mle[a⃗′](r⃗) is computed by V. The remaining steps are the same.
It is important to noted that the Ajtai commitment in Definition 5 can also

be represented by an inner-product relation with the witness. This enables us to
simultaneous linearize the commitment claim and polynomial claim simultane-
ously within ΠB

lin.
Generalize to different polynomial relations (and arithmetic circuit

relations). Relation RB
poly in Equation (5) is defined on a fixed h. Our lineariza-

tion technique can be generalized to support different hj polynomials without
incurring extra costs. This can be simply achieved by setting g2,j in Equation
(9) to

g2,j(x⃗) := eq(µ⃗, x⃗) ·
(
hj

(
mle[f⃗ ′

j ](x⃗)
)
−mle[v⃗′

j ](x⃗)
)
.

The verification on Equation (10) is adjusted to hj accordingly.
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Note that arithmetic circuit relations such as R1CS (rank-1 constraint sys-
tem) [GGPR13] and CCS [STW23] are special instances of the polynomial rela-
tions (with inner-product relations, which are captured by RB

polyIP). By incorpo-
rating an extra step that decomposes the witness into its binary representation
and subsequently reconstructs it within arithmetic circuit relations, our approach
inherently supports arithmetic circuit relations by definition. Since this is essen-
tially the technique in [BC24] to support CCS relations, we omit the detailed
description here. Besides, since we also present the case to support different h
polynomials, our protocol can also handle multiple different arithmetic circuit
relations directly, such as proving multiple R1CS and CCS relations at the same
time.
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A Formal Definitions

A.1 Hiding and Binding

Given a commitment scheme, let Commitck(f⃗ ; r⃗) represent the operation of con-

catenating the vector r⃗ to f⃗ and then committing to the combined vector (f⃗ , r⃗).

Definition 7. Hiding. The commitment scheme is hiding if for For all PPT
adversaries A,

Pr

[
ck← Setup(1λ), (m⃗0, m⃗1)← A(ck),
b

$←{0, 1}, r⃗ $←Dck, C ← Commitck(m⃗b; r⃗)
: A(C) = b

]
≈ 1

2
.

where Dck is the space of the randomness controller by ck.

Definition 8. Binding. The commitment scheme is hiding if for For all PPT
adversaries A,

Pr

[
ck← Setup(1λ),
(m⃗0, r⃗0, m⃗1, r⃗1)← A(ck)

:
m⃗0 ̸= m⃗1 ∧
Commitck(m⃗0; r⃗0) = Commitck(m⃗b; r⃗b)

]
≈ 0.

A.2 Properties of Σ-Protocols

For any Nondeterministic Polynomial time (NP) relation R∗, let G be a setup
algorithm that generates public parameters pp for the Σ-protocol. Given an
instance (u;w) where u is the public statement and w is the witness, the Σ-
protocol to prove (u;w) ∈ R∗ works as follows: (i) P sends an initial message t,

(ii) V issues with a random challenge λ
$←C from the challenge space, and (iii)

P provides with a response g. The properties of the Σ-protocol are defined as
follows.

Completeness. When (u;w) ∈ R∗, the interaction between an honest prover
and an honest verifier yields an accepting transcript with probability larger than
1− ϵc, where ϵc is denoted as the completeness error.

Formally, for all PPT adversaries A,

Pr

[
pp← G(1λ), (u,w)← A(pp),
t← P(pp, u, w), λ $←C, g ← P(λ)

: V(pp, u, t, λ, g) = 1

]
= 1− ϵc.

Special soundness. There exists an efficient extractor E that on any state-
ment u and k accepting transcripts (t, λi, gi)

k−1
i=0 with common t and distinct

λi’s and gi’s, outputs a witness w′ such that (u,w′) ∈ R∗ with probability larger
than 1−ϵs, where ϵs is denoted as the soundness error. This is also known as the
k-special soundness prosperity. A more generalized version, (k1, · · · , kµ)-special
soundness, allows E to run with a (k1, · · · , kµ)-tree of accepting transcripts tr,
where tr is a set of

∏µ
i=1 ki accepting transcripts with the following structure.

The nodes in tr correspond to the prover’s messages and the edges correspond
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to the verifier’s challenges. Every node at depth i has precisely ki children cor-
responding to ki pairwise distinct challenges. Every transcript corresponds to
exactly one path from the root node to a leaf node.

Formally, for all PPT adversaries A,

Pr
[
pp← G(1λ), (u, tr)← A(pp), w ← E(pp, u, tr) : (u;w) ∈ R

]
= 1− ϵs.

Special HVZK. There exists an efficient simulator that on any statement
u and a challenge λ from the challenge space, outputs (t, g) such that (t, g) is
indistinguishable from an accepting transcript produced by running the protocol.

Formally, for all PPT adversaries A,

Pr
[
pp← G(1λ), (u,w, λ)← A(pp), t← P(pp, u, w), g ← P(λ) : A(t, λ, g) = 1

]
≈ Pr

[
pp← G(1λ), (u,w, λ)← A(pp), (t, λ, g)← S(pp, u) : A(t, λ, g) = 1

]
.

A.3 Reduction of Knowledge Protocols

Definition 9. Reduction of knowledge [KP23]. Let λ be a security param-
eter. Given two relations R1 and R2, denote ⟨P,V⟩ be an interactive protocol
between a prover P and a verifier V. A reduction of knowledge protocol Π from
R1 to R2 consists of the following algorithms:

– Setup(1λ)→ pp: Output public parameters pp.
– ⟨P(pp, u1, w1),V(pp, u1)⟩ → (u2, w2): On input public parameters pp, a shared

public statement u1, P (with a witness w1 such that (u1, w1) ∈ R1) and V
engage in Π. At the end of Π, P and V V output u2 (or ⊥ if abort), P
additionally outputs w2.

Reduction of knowledge protocols satisfy the following properties:
Completeness. For every PPT adversary A that adaptively chooses an R1

instance (u1, w1) ← A(pp) when given pp ← Setup(1λ), the protocol execution
(u2, w2)← ⟨P(pp, u1, w1),V(pp, u1)⟩ satisfies (u2, w2) ∈ R2 if (u1, w1) ∈ R1.

Knowledge soundness. For every expected polynomial-time adversary A
and malicious prover P∗, there is an expected polynomial-time extractor E such
that given pp← Setup(1λ) and (u1, w

∗
1)← A(pp),

Pr
[(
u1, E(pp, u1, w

∗
1)
)
∈ R1

]
≈ Pr

[
⟨P∗(pp, u1, w

∗
1),V(pp, u1)⟩ ∈ R2

]
.

Public reducibility. There is a deterministic polynomial-time algorithm f ,
such that for any PPT adversary A and a malicious expected polynomial-time
prover P∗, given

pp← Setup(1λ), (u1, w
∗
1)← A(pp), (u2, w2)← ⟨P∗(pp, u1, w

∗
1),V(pp, u1)⟩,

and the transcript tr, we have f(pp, u1, tr) = u2.
By the composition theory [KP23], the reduction of knowledge protocols can

be composed.
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Theorem 8. Sequential composition (Theorem 5 in [KP23]). Let R1,R2,R3

be three relations. Given two reduction of knowledge protocols, Π1 from R1 to
R2 and Π2 from R2 to R3, the composed protocol Π1 ⋄ Π2 is a reduction of
knowledge from R1 to R3.

Theorem 9. Parallel composition (Theorem 6 in [KP23]). Let R1,R2,R3,R4

be four relations. Given two reduction of knowledge protocols, Π1 from R1 to R2

and Π2 from R3 to R4, the composed protocol Π1 ×Π2 is a reduction of knowl-
edge from (R1 ×R3) to (R2 ×R4).
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