
Trapdoor Hash Functions and PIR from Low-Noise LPN

Damiano Abram
Bocconi University

Giulio Malavolta
Bocconi University

Lawrence Roy
Aarhus University

Abstract

Trapdoor hash functions (TDHs) are compressing hash functions, with an additional trap-
door functionality: Given a encoding key for a function f , a hash on x together with a (small)
input encoding allow one to recover f(x). TDHs are a versatile tool and a useful building block
for more complex cryptographic protocols.

In this work, we propose the first TDH construction assuming the (quasi-polynomial) hard-
ness of the LPN problem with noise rate ε = O(log1+β n/n) for β > 0, i.e., in the so-called

low-noise regime. The construction achieves 2Θ(log1−β λ) compression factor. As an application,

we obtain a private-information retrieval (PIR) with communication complexity L/2Θ(log1−β L),
for a database of size L. This is the first PIR scheme with non-trivial communication complexity
(asymptotically smaller than L) from any code-based assumption.

1 Introduction

A trapdoor hash function (TDH) [DGI+19] Hash : Zℓ
2 → Zλ

2 is a compressing (and deterministic)
hash function, with an additional trapdoor-like functionality. Specifically, it is equipped with a
generation algorithm Gen that takes as input a function f and allows one to generate a (public)
encoding key ek and a (private) trapdoor td. Then, given Hash(x) and Enc(ek, x), the trapdoor
allows one to recover f(x). Furthermore, the encoding key ek hides any information about the
function f (function privacy). An important property of TDHs is that the size of the output of
Enc(ek, x) should be approximately the same as that of f(x), i.e., the encoding algorithm should
have a good information rate.

Besides being a cryptographic primitive of general interest, TDHs played a central role in recent
works developing new cryptographic constructions, such as oblivious transfer [DGI+19, BBDP22,
BDS23, BDS24], private information retrieval [DGI+19], fully-homomorphic encryption [BDGM19],
lossy trapdoor functions [DGI+19], non-committing encryption [BBD+20, YKT19], correlation in-
tractable hash functions and non-interactive zero-knowledge proofs [BKM20, JJ21], succinct argu-
ments [CGJ+23], and homomorphic secret sharing [ARS24].

Given the wide array of applications of this primitive, it is natural to ask under which com-
putational assumption one can construct TDHs with good encoding rate. The work of Döttling
et al. [DGI+19] proposed constructions of TDHs under group-based assumptions (such as DDH,
QR, DCR) or lattice-based assumptions (LWE). However, at present no construction of TDHs from
code-based assumptions is known, highlight our lack of a full understanding for this primitive.

Code-based assumptions, such as the learning parity with noise (LPN) are one of the foundations
for cryptography and have recently seen a surge in popularity in the context of post-quantum
cryptography. The LPN problem [BFKL94] asserts that it is hard to distinguish between the two

1

distributions
(A,As+ e) ≈ (A,w)

where A ∈ Zm×n
2 , s ∈ Zn

2 , w ∈ Zm
2 are uniformly sampled, whereas e is sampled from an i.i.d.

Bernoulli distribution. The LPN problem has a worst-case to average-case reduction [KS06] and it
is known that solving LPN also implies the existence of learning algorithms for 2-DNF formulas,
juntas, and any function with a sparse Fourier spectrum [FGKP06].

The LPN noise is often regarded as more conservative than the LWE problem1, due to the lack
of mathematical structure that is instead present in general q-ary lattices. LPN has withstood an
extensive cryptanalytic effort (more discussion on this later), which helps us in building confidence
in the security of this assumption. Unfortunately, the aforementioned lack of structure makes
it also more challenging to build cryptographic primitives from LPN, since many of the available
construction techniques do not apply in the code settings. The lack of TDHs from code assumptions
can be seen as a manifestation of this phenomenon. Besides TDHs, it is also a long standing open
problem to build private information retrieval with non-trivial complexity from any variant of LPN.

1.1 Our Results

In this work, we propose the first TDH construction where the security assumes only the hardness
of the LPN problem, in the low-noise regime. Existing constructions of TDHs [DGI+19] assume the
intractability of a variety of different problems (such as DDH, DCR, QR, or LWE) all of which are
structurally different from the LPN problem, with no reduction known one way or another. Our
TDH only achieves a weaker notion of compactness compared to prior work, which we nevertheless
show to be sufficient for some applications. Our main result can be summarized in the following
theorem.

Theorem 1.1. (Informal). For any 0 < β < 1, there exists a TDH construction for linear functions
secure against the hardness of the LPN problem with noise rate Θ(log1+β n/n). The TDH satisfies
the following properties:

• (Correctness) It is correct with probability 1/2 + 1/poly(λ).

• (Weak Compactness) The the size of the digest is smaller than the size of the input by a factor

of 2Θ(log1−β(λ)).

• (Rate) The size of the encoding for a 1-bit output is exactly 1 bit, i.e., it has rate 1.

• (Linear Decoding) Has a linear decoding algorithm.

Our construction (Section 3) is obtained in two steps: We first build a simple base TDH from
LPN with linear decoding, then we use the latter property to recursively compose the scheme with
itself, in order to obtain better parameters. In the main body, we also explore different tradeoffs
between the compactness of the hash and choosing a more aggressive parameter regime for the
LPN problem.

We emphasize that the version of the LPN problem that we consider can only be quasi-
polynomially secure (since there is an algorithm solving the problem running in quasi-polynomial

1Although the variant of LPN that we consider in this work has security that is at most quasi-polynomial, i.e.,
the so-called low-noise regime.

2

time), and therefore we recommend caution. Nevertheless, we also stress the hardness of LPN
is well-studied [BK02, BKW03, Lyu05, MMT11, BLP11, BJMM12, EKM17] and the low-noise
version of LPN has already been used in prior work to construct other cryptographic primitives,
such as identity-based encryption [BLSV18, DGHM18]. Furthermore, the only construction for a
(compressing) collision-resistant hash function from LPN [YZW+19, BLVW19] is also in the low-
noise regime, and specifically with noise rate Θ(log2 n/n), which for us would correspond to setting
β = 1. Since a TDH is also (among other things) a compressing collision-resistant hash, one cannot
expect to obtain a TDH from a more noisy version of LPN, without first improving on the simpler
primitive.

As an application of this primitive, we propose the first non-trivial PIR protocol from LPN
(Section 4). Prior to our work, no PIR with sublinear communication complexity (in the size of
the database) was known. We summarize this in the following theorem.

Theorem 1.2. (Informal). Assuming the hardness of the LPN problem with noise rate
Θ(log1+β n/n), for any 0 < β < 1, there exists a two-message PIR protocol with communication

L/2Θ(log1−β L), for a database of size L.

1.2 Technical Outline

We give a brief and informal overview of our approach, and we refer to the technical sections for
more precise technical statements.

Trapdoor Hashing. First, let us recall the syntax of trapdoor hashing. A TDH consists of a
tuple of algorithms (Setup,Hash,Gen,Enc,Dec), where the setup procedure Setup is used to generate
the hash key hk, which can be used as a regular hash function h← Hash(hk,x) to produce a digest
h. Additionally, a TDH is equipped with a generation algorithm (ek, td)← Gen(hk, f), which takes
as an additional input a function f that, in this work, we assume to be a linear function. One
can then run an encoding algorithm on the same input to produce an encoding t ← Enc(hk,x).
Given the trapdoor td and a the digest h, the corresponding decoding algorithm returns a pair of
encodings (t0, t1) where t0 ̸= t1. For correctness, we require that tf(x) = t with sufficiently high
probability. Note that this allows one to correctly decode f(x), given the trapdoor and the hash,
by simply comparing it with t.

We require that a TDH is compact, meaning that the size of the digest h is smaller than that
of the input x, and has good rate, meaning that the encoding t is efficient in terms of information.
In this work we consider rate-1 schemes, where |t| = |f(x)|. Notice that, in these constructions, it
holds that t ⊕ t0 = f(x) ⊕ ε, where ε is an error term. As for security, a TDH must be function
private, which requires that for all f and f ′ the distributions

{ek|(ek, td) $← Gen(hk, f)} ≈ {ek|(ek, td) $← Gen(hk, f ′)}

are computationally indistinguishable.

A Simple TDH from LPN. Before describing our construction, let us introduce the notion of
a sparsifier, a function that takes as input a vector x and returns a low Hamming weight vector x′.
Sparsification is obtained by dividing the input vector into blocks and substituting each block with
the corresponding unit vector. For this overview, we denote this sparsification function by D−1(·).

3

Note that the inverse of this sparsification procedure is a linear function, which implies that there
exists a matrix D that satisfies the following identity

D ·D−1(x) = x

for all vectors x. Equipped with this tool, we can describe the standard LPN-based hash function
[AHI+17] as

Hash(hk = A,x) = AD−1(x)

where hk = A is a uniformly sampled matrix. We are now in the position to describe our base TDH
construction. For a given linear function f (in its coefficient representation y), the Gen algorithm
computes a key

ek = AT s⊕ e⊕DT · y

where s is uniformly sampled and set to be the trapdoor, whereas e is sampled from a Bernoulli
distribution, with appropriate rate. The encoding algorithm simply computes ekT ·D−1(x), whereas
the decoding algorithm computes t0 = sTHash(A,x) and t1 = t0 ⊕ 1. To establish correctness, let
us pretend for the moment that e = 0, then it is clear that

ekT ·D−1(x) = sTAD−1(x)⊕ yTDD−1(x)

= sTAD−1(x)⊕ yTx

= sTHash(A,x)⊕ f(x)

= tf(x)

which is exactly what the decoder expects. To take into account the presence of the noise, one must
deal with the correctness error introduced by the extra term eTD−1(x). Recalling that D−1(x)
has low Hamming weight and setting the parameters of the scheme carefully, one can ensure that
the decoder maintains a bias towards the correct bit, while keeping the hash function (slightly)
compressing. Specifically, the entries of eTD−1(x) will be distributed according to Bernoulli dis-
tributions of parameter 1

2 − exp
(
−Ω

(
logβ(λ) · |x| · |h|−1

))
. This means that any improvement

in compactness is paid exponentially in correctness! We therefore achieve only o(log1−β λ)-weak

compactness, i.e. |h| = |x|
o(log1−β λ)

.

Finally, function privacy comes from a straightforward application of the LPN assumption,
which ensures that switching the encoding key to a uniformly sampled vector is computationally
indistinguishable.

Improved Efficiency via Recursive Composition. Our next observation is that the (noisy)
decoding procedure is a linear function and there is therefore hope to attain better parameters by
recursively composing the TDH with itself. In more details, we define our new hash function Hash∗

as
Hash∗(x) = HashT−1 ◦ · · · ◦ Hash0(x)

where Hashi is the previously defined scheme, with appropriately chosen parameters. To sample
an encoding key, we start with a coefficient encoding of the function y as before, and compute
(ek1, td1) ← Gen0(hk,y). Using the linearity of decoding, we set y1 := td1 to be the function for

4

the next iteration and we proceed this way until we generate (ekT , tdT). On the other hand, the
new encoding function is defined as

t← Enc∗(x) =
⊕
i

Enc(eki,xi)

where xi is the input of Hashi. It is easy to verify that

Enc(eki,xi)⊕ ti,0 = yT
i xi ⊕ εi

where ti,0 is the first output of Dec(yi+1,xi+1) and εi is an error term. Recalling that yT
i xi = t0,i−1,

we can conclude that
t⊕ Dec(yT ,xT)︸ ︷︷ ︸

Dec∗

= yTx⊕
⊕
i

εi

defining our new decoding algorithm Dec∗. It is possible to prove that, if εi is described by
a Bernoulli distribution of parameter 1

2 −
δi
2 , then the final error term

⊕
i εi is described by a

Bernoulli distribution of parameter 1
2 −

∏
i δi
2 . In other words, correctness degrades exponentially in

T , however, at the same time, compactness improves exponentially! To conclude, any improvement
in compactness is paid polynomially in correctness. This leads to significantly better efficiency.

Application: Private Information Retrieval. A TDH suggest a natural PIR protocol: Pass
the database as an input x to the hash function to compute hk, and let the client compute the
encoding key ek corresponding to a function f , which indexes the entry that the client is interested
in. Privacy follows immediately from the function privacy of the TDH.

Unfortunately our TDH supports only linear functions, which in particular means that the size
of f (in its coefficient encoding), and consequently the size of ek, would be linear in the size of the
database. To solve this, we use a standard rebalancing algorithm, where we partition the database
in blocks and we let the client retrieve an entry for each block. So long as the client sets the index
of the “correct” block to be the one corresponding the the desired entry, correctness holds.

Finally, we have to contend with the fact that the TDH correctness is only approximate. This
is solved by a standard parallel amplification, along with a majority vote in the end. Plugging in
our newly constructed TDH, we obtain our final PIR protocol.

A Failed Attempt at Obtaining NIZKs from LPN via Correlation Intractability. A
common approach to build non-interactive zero-knowledge proofs (NIZKs) without relying on ide-
alised settings, such as the random oracle model, is to apply the Fiat-Shamir transform [FS87]
using a correlation intractable hash functions [CGH04]. This is a particular type of hash function
CI.Hash tackling a sparse relation R: it guarantees the hardness of finding a value x such that
(x,CI.Hash(x)) ∈ R.

In [BKM20], Brakerski, Koppula and Mour showed how to build correlation intractable hash
functions using any rate-1, δ-correct, trapdoor hashing scheme for linear functions with particular
efficiency properties. Their argument is the following: suppose thatR is described by all pairs (x,y)
where y = f(x) for some linear function f . The hash key of the correlation intractable scheme is

a trapdoor hash encoding key obtained as (ek, td)
$← TDH.Gen(hk, f) along with a random shift r.

The digest of x consists of TDH.Enc(ek,x)⊕ r.

5

Their argument is based on the following observation. Let (t0, t1) ← TDH.Dec(td, h) where
h← TDH.Hash(hk,x) and observe that, since the trapdoor hashing scheme has rate 1,

TDH.Enc(ek,x)⊕ r = f(x)⊕ t0 ⊕ r⊕ ε,

where ε is an error vector whose entries are distributed according to i.i.d. Bernoulli distributions
Ber(1 − δ). In order for (x,CI.Hash(x)) ∈ R, we would therefore need that t0 ⊕ ε = r. However,
there may be an entropy issue: the information in t0 is upper-bounded by the size of the digest
in the trapdoor hashing scheme. Therefore, if this is particularly small, and so is 1 − δ, there is
not enough entropy for the support of the random variable t0 ⊕ ε to contain a uniformly sampled
r (except with negligible probability).

Unfortunately, our LPN-based trapdoor hashing schemes do not seem to be efficient enough
to obtain correlation intractability, or at least, not with the approach of [BKM20]. Specifically,
suppose that the the domain of our correlation intractable function has size ℓ and let m be the
size of the output, where m < ℓ. If we consider our recursive construction, in T steps, we obtain a
digest of size ℓ · 2−T and an error probability roughly 1

2 − 2−T ·ω(1), where the ω(1) term depends
on the LPN parameters. The number of m-bit vectors with weight smaller than m · (12 − x) can
be approximated, using the Chernoff bound, to 2m · exp(−2m · x2). Therefore, we can expect ε
to contain m −m · 2−T ·ω(1) bits of information. Notice that if we add the ℓ

2T
bits of information

contained in t0, we obtain
m−m · 2−T ·ω(1) + ℓ · 2−T ≥ m.

It may therefore be that the support of t0 ⊕ ε contains all m-bit strings, including r.
Similar issues are encountered when we try to follow the blueprint of [DGI+19] to build lossy

trapdoor functions, two-round statistically sender-private oblivious transfer [BF22] or even fully
efficient PIR: for all of these applications, we would need a two-round oblivious transfer protocol
with constant download rate2. Due to the 1/2−poly(λ) error probability and the weak compactness,
our TDH does not trivially achieve this: in this work, we have only obtained a 1-out-of-L OT where
the download message has sublinear size in L (this is sufficient for PIR). The download rate remains,
however, high.

1.3 Related Work

The LPN problem (and variants thereof) have been used to construct basic cryptographic prim-
tives, such as public-key encryption [Ale03, ABW10] and message authentication codes [KPC+11].
For more advanced primitives, we know how to use LPN to construct two-round oblivious
transfer [DGH+20], trapdoor functions [YZ16], homomorphic secret sharing [BCG+22, DIJL23],
oblivious linear evaluation [BCGI18] multi-party computation with sublinear communication
[CM21, BCM23], to mention a few. Very recently, a new variant of LPN (called dense-sparse
LPN) has been proposed [DJ24], enabling the first construction of lossy trapdoor functions from
code problems. The problem of PIR from LPN was explicitly left open in [DJ24].

2The download rate is defined as the ratio between the size of the download message (i.e. the second OT message)
and the size of the output.

6

2 Preliminaries

Notation. We denote the security parameter by λ. Let κ be a statistical security parameter.
For any positive integer n, we use [n] to denote the set {0, 1, . . . , n− 1}. We adopt the convention
where vectors are denoted using bold font and matrices are indicated by bold-font capital letters.
We assume that entries of vectors and rows and columns of matrices are indexed starting from 0. We
use Ber(ε) to denote the Bernoulli distribution of parameter ε. In other words, the random variable
is equal to 1 with probability ε and 0 with probability 1 − ε. In a similar way, we use Bern×m(ε)
to denote the distribution over n ×m matrices, where each entry is distributed according to i.i.d.
(independent, identically distributed) Bernoulli random variables Ber(ε). If m = 1, we simply write
Bern(ε). For any integer x ∈ [ℓ], we use ux to denote the binary unit vector of dimension 2ℓ having
x as special position. In other words, all entries of ux will be equal to 0 except the one in position
x which will be equal to 1. We denote the concatenation operator by ∥. Given any matrix A, we
represent the transposed matrix by A⊺. For ease of notation, whenever we deal with functions f(λ)
of the security parameter, we often drop the dependency in λ, writing just f . All logarithms are
in base 2, exp denotes exponentiation in the natural base e. For any binary string v, we use |v| to
denote its length. We denote the row-vector with n ones by 1n, we use ⊗ to denote the Kronecker
product between matrices. We use idn to denote the identity matrix of dimension n. We use ≡p to
denote perfectly indistinguishable distributions.

2.1 Learning Parity with Noise

Definition 2.1. (Learning Parity with Noise). Let n = n(λ), m = m(λ) and ε = ε(λ) be
efficiently computable functions of the security parameter, where n(λ) and m(λ) are polynomially
bounded positive integers and ε(λ) is a real value in [0, 1]. The LPNε

n,m assumption holds if, for
every PPT adversary A, there exists a negligible function negl(λ) such that:∣∣∣∣∣∣∣∣∣∣

Pr

A(1λ,A,w) = 1

∣∣∣∣∣∣∣∣∣∣
A

$← Zm×n
2

s
$← Zn

2

e
$← Ber(ε)m

w← A · s⊕ e

− Pr

[
A(1λ,A,w) = 1

∣∣∣∣∣A
$← Zm×n

2

w
$← Zm

2

]∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

In this paper, we rely on LPN with low noise rate ε = O
(
α(λ)·logn

n

)
where α(λ) = ω(1). In this

parameter regime, the assumption is still believed to hold for any polynomial m(n), however, with
rather weak security guarantees [EKM17]: Due to Gaussian elimination, we can hope to achieve
security only against adversaries that run in quasi-polynomial time o

(
nα(λ)

)
.

Before continuing with other preliminaries, we recall the following fundamental lemma.

Lemma 2.2. (Piling-Up Lemma [Mat94]). Let X0, . . . , Xn−1 be independent Bernoulli random
variables where Xi is distributed according to Ber(εi). Then, X0⊕· · ·⊕Xn−1 is distributed according
to

Ber

1

2
− 1

2
·
∏
i∈[n]

(1− 2εi)

 .

7

2.2 Trapdoor Hashing

We recall the definition of trapdoor hashing from [DGI+19].

Definition 2.3. (Trapdoor Hashing [DGI+19]). A trapdoor hashing scheme for the function class
C = (Cλ)λ∈N with input size ℓ(λ) consists of a tuple of PPT algorithms (Setup,Hash,Gen,Enc,Dec)
with the following syntax:

• Setup is randomised and takes as input the security parameter 1λ. The output is a hash key
hk.

• Hash is deterministic and takes as input a hash key hk and a binary string x ∈ Zℓ(λ)
2 . The

output is a digest h.

• Gen is randomised and takes as input an hash key hk and the description of a function f ∈ Cλ.
The output is an encoding key ek and a trapdoor td.

• Enc is deterministic and takes as input an encoding key ek and a binary string x ∈ Zℓ(λ)
2 . The

output is an encoding t.

• Dec is deterministic and takes as input a trapdoor td and a digest h. The output is a pair of
encodings (t0, t1) where t0 ̸= t1.

Definition 2.4. (Correctness). Let δ(λ) be a function of the security parameter. Let
(Setup,Hash,Gen,Enc,Dec) be a trapdoor hashing scheme for the function class C = (Cλ)λ∈N with

input size ℓ(λ). We say that the scheme is δ(λ)-correct if, for every λ ∈ N, x ∈ Zℓ(λ)
2 , f ∈ Cλ and

hash key hk ∈ Setup(1λ), we have

Pr

t = tf(x)

∣∣∣∣∣∣∣∣∣∣
h← Hash(hk,x)

(ek, td)
$← Gen(hk, f)

t← Enc(ek,x)

(t0, t1)← Dec(td, h)

 ≥ δ(λ).

We say that the trapdoor hashing scheme is fully correct if δ(λ) is negligible. Observe that the
above probability is taken only over the randomness of Gen.

We recall the definition of function privacy, that says that the encoding key should hide all
information about the function f .

Definition 2.5. (Function Privacy). Let (Setup,Hash,Gen,Enc,Dec) be a trapdoor hashing scheme
for the function class C = (Cλ)λ∈N with input size ℓ(λ). We say that the scheme is function private
if, for every PPT adversary A and sequence of functions (f0

λ , f
1
λ)λ∈N where f0

λ , f
1
λ ∈ Cλ for every

λ ∈ N, there exists a negligible function negl(λ) such that, for every λ ∈ N, we have∣∣∣∣∣Pr
[
A(1λ, hk, ek) = 1

∣∣∣∣∣hk
$← Setup(1λ)

(ek, td)
$← Gen(hk, f0

λ)

]
−

Pr

[
A(1λ, hk, ek) = 1

∣∣∣∣∣hk
$← Setup(1λ)

(ek, td)
$← Gen(hk, f1

λ)

]∣∣∣∣∣ ≤ negl(λ).

8

Next, we define the rate for trapdoor hashing.

Definition 2.6. (Rate). Let µ(λ) be a function of the security parameter. Let (Setup,Hash,
Gen,Enc,Dec) be a trapdoor hashing scheme for the function class C = (Cλ)λ∈N with input size ℓ(λ).

We say that the scheme has rate µ if, for every λ ∈ N, x ∈ Zℓ(λ)
2 and f ∈ Cλ, it holds that

|f(x)|
|Enc(ek,x)|

≤ µ(λ)

for all hk ∈ Setup(1λ) and ek ∈ Gen(hk, f).

Finally, we define a weaker version of the compactness property, than the one presented in
[DGI+19].

Definition 2.7. (Weak Compactness). Let (Setup,Hash,Gen,Enc,Dec) be a trapdoor hashing
scheme for the function class C = (Cλ)λ∈N with input size ℓ(λ). Let γ(λ) be a function of the
security parameter. We say that the scheme is γ(λ)-weakly compact if, for every λ ∈ N and

x ∈ Zℓ(λ)
2 , we have

|Hash(hk,x)| ≤ ℓ(λ)

γ(λ)

where hk ∈ Setup(1λ).

2.3 Two-Round Private Information Retrieval

We recall the standard definition of private information retrieval [KO97].

Definition 2.8. (Two-Round Private Information Retrieval). A two-round private information
retrieval (PIR) consists of a triple of PPT algorithms (Query,Response,Dec) with the following
syntax:

• Query takes as input the security parameter 1λ, the database size 1L and an index i ∈ [L].
The output is an encoding key ek and a secret-key sk.

• Response is deterministic and takes as input an encoding key ek and a database v ∈ ZL
2 . The

output is an encoding e.

• Dec is deterministic and takes as input a secret key sk and an encoding e. The output is a
value z ∈ Z2

Definition 2.9. (Correctness). A two-round PIR (Query,Response,Dec) is correct if there exists
a negligible function negl(λ) such that, for every λ, L ∈ N, index i ∈ [L] and database v ∈ ZL

2 , we
have

Pr

[
Dec(sk, e) ̸= v[i]

∣∣∣∣∣(ek, sk) $← Query(1λ, 1L, i)

e← Response(ek,v)

]
≤ negl(λ).

Definition 2.10. (Query-Privacy). A two-round PIR (Query,Response,Dec) is query-private if,
for every PPT adversary A, polynomial function L(λ) and sequence of indexes (i0λ, i

1
λ)λ∈N where

i0λ, i
1
λ ∈ [L(λ)], there exists a negligible function negl(λ) such that:∣∣∣∣∣Pr

[
A(1λ, 1L(λ), ek) = 1

∣∣∣∣∣b
$← Z2

(ek, sk)
$← Query(1λ, 1L(λ), ibλ)

]
− 1

2

∣∣∣∣∣ ≤ negl(λ).

9

Definition 2.11. (Compactness of Two-Round Private Information Retrieval). Let α(λ) and L(λ)
be polynomial functions of the security parameter. A two-round private information retrieval (PIR)
(Query,Response,Dec) is α(λ)-compact with respect to databases of size L(λ) if, for all sufficiently

large λ ∈ N, for every index i ∈ [L(λ)] and every database v ∈ ZL(λ)
2 , we have

|ek|+ |Response(ek,v)| ≤ α(λ)

where (ek, sk) ∈ Query(1λ, 1L(λ), i).

2.4 Sparsification with Linear Reconstruction

Definition 2.12. (Sparsification). Let ℓ and c be positive values. We define the algorithm D−1
ℓ,c

which, on input a vector x ∈ Zℓ
2, computes the following operations:

1. Split x into B := ℓ
c·log ℓ blocks x0, . . . , xB−1 of size c · log ℓ. View them as values in [ℓc].

2. For every i ∈ [B]: x′
i ← uxi, the xi-th unit vector.

3. Output x′ ← (x′
0 ∥ . . . ∥ x′

B−1).

Definition 2.13. (Reconstruction Matrix). Let ℓ and c be positive values. We define the matrix
D′

ℓ,c as the (c · log ℓ) × ℓc matrix where, for every i ∈ [ℓc], the i-th column consists of the binary

representation of the positive integer i. We define Dℓ,c as D′
ℓ,c ⊗ idB, where B = ℓ

c·log ℓ .

Lemma 2.14. Let ℓ and c be positive values, and consider any vector x ∈ Zℓ
2. Then D−1

ℓ,c (x) is a

binary vector of length ℓ1+c

c·log ℓ having Hamming weight exactly ℓ
c·log ℓ . Furthermore, we have

Dℓ,c ·D−1
ℓ,c (x) = x.

Proof: We start by observing that D−1
ℓ,c (x) is obtained by concatenating B := ℓ

c·log ℓ unit vectors

of length ℓc. This ensures that D−1
ℓ,c (x) has length ℓ1+c/c · log ℓ and Hamming weight ℓ/c · log ℓ. To

conclude the proof, we observe that

Dℓ,c ·D−1
ℓ,c (x) = (D′

ℓ,c · ux0 ∥ . . . ∥D′
ℓ,c · uxB−1)

where xi is the integer representation of the i-th (c · log ℓ)-bit block in x. It is easy to see that,
by the way the matrix was defined, for any y ∈ [ℓc], we have that D′

ℓ,c · uy is equal to the binary

representation of the integer y. In conclusion, Dℓ,c ·D−1
ℓ,c (x) = (x0 ∥ . . . ∥ xB−1) = x. □

3 Trapdoor Hashing for Linear Functions from Low-Noise LPN

In this work, we obtain a construction of trapdoor hash with a linear encoding and rate exactly 1,
which we formally define below.

Definition 3.1. (Linear Decoding, Rate-1 Trapdoor Hashing). We say that a rate-1 trapdoor
hashing scheme (Setup,Hash,Gen,Enc,Dec) has linear decoding if the trapdoor td output by Gen
consists of a binary vector the same size as the digest and the decoding t0 output by Dec is td⊺ · h.

10

We present our basic construction of trapdoor hash in Figure 1. We summarize the main result
of this section in the following theorem.

Theorem 3.2. Under the hardness of the LPNε
n,m assumption, the construction in Figure 1 is

a log ℓ/γ(λ)-weakly compact, rate-1, function private, (1/2 + 1/2 · ℓ−4η·α(λ)/c·γ(λ))-correct trapdoor
hashing scheme for linear functions. The construction has linear decoding. The size of the encoding
key is ℓ1+c/c · log ℓ.

Proof: We start by proving (1/2 + 1/2 · ℓ−4
η·α(λ)
c·γ(λ))-correctness. We observe that

t = v⊺ · x′ = s⊺ ·A · x′ ⊕ e⊺ · x′ ⊕ y⊺ ·Dℓ,c · x′

= s⊺ · d⊕ e⊺ · x′ ⊕ y⊺ · x
= ty⊺·x ⊕ e⊺ · x′.

Since x′ has Hamming weight B = ℓ
c·log ℓ , each entry of e⊺ ·x′ can be rewritten as the sum of B i.i.d.

Bernoulli random variables of parameter ε. By the piling-up lemma (Lemma 2.2), we conclude
that each entry of e⊺ · x′ is described by an independent Bernoulli random variable of parameter
1
2 −

1
2 · (1− 2ε)B. Now, we observe that

(1− 2ε)B ≥ 2−2·(2ε)·B = 2
−4·η·α(λ)·logn

n
· ℓ
c·log ℓ ≥ 2

−4·η·α(λ)·log2 ℓ
γ(λ)·ℓ · ℓ

c·log ℓ = ℓ
− 4·η·α(λ)

c·γ(λ) .

In other words, t = ty⊺·x with probability at least (1/2 + 1/2 · ℓ−4
η·α(λ)
c·γ(λ)).

Next, we focus on weak compactness. This property can be easily verified by observing that
the size of the digest is n = ℓ(λ)·γ(λ)

log ℓ . It is also straightforward that the scheme has rate 1.
Finally, we prove function privacy. We observe that, under the LPNε

n,m assumption, the pair

(A⊺,A⊺ · s⊕ e) is computationally indistinguishable from (A⊺,u), where u
$← Zm

2 . In other words,
no PPT adversary can distinguish v from a random vector of size m, even if we provide it with A.
This ensures the privacy of y. □

We highlight the following implications of Theorem 3.2.

• (Corollary 1) Setting γ(λ) = β · log ℓ for β > 0, α(λ) = log n, and η and c so that 4η
c = ν

for ν > 0, we obtain a β-weakly compact, rate-1, function private, (1/2 − Ω(ℓ−ν))-correct
trapdoor hashing scheme for linear functions. This assumes the hardness of the LPNε

n,m

problem, where ε = Θ(log
2 n
n).

• (Corollary 2) Let ℓ = λΘ(1) and let 1 > β > 0 and ν > 0. Set γ(λ) = logβ ℓ, α(λ) = logβ n,
and choose η and c so that 4η

c = ν. There exists a (log1−β ℓ)-weakly compact, rate-1, function
private, (1/2 + Ω(ℓ−ν))-correct trapdoor hashing scheme for linear functions, assuming the

hardness of the LPNε
n,m problem, where ε = Θ(log

1+β n
n).

• (Corollary 3) Let ν > 0 and let ℓ = λΘ(1). Setting γ(λ) = log log ℓ, α(λ) = log log n and η and
c so that 4η

c = ν, we obtain a (log ℓ/ log log ℓ)-weakly compact, rate-1, function private, (1/2+
Ω(ℓ−ν))-correct trapdoor hashing scheme for linear functions. This assumes the hardness of
the LPNε

n,m assumption, where ε = Θ(logn·log lognn).

11

Trapdoor Hashing for Linear Functions from Low-Noise LPN

Parameters: Let ℓ(λ) = λΘ(1) be the size of the hash function input. Let the linear function
be described a row vector in Zℓ

2. Consider any functions α(λ) = ω(1) and γ(λ) = Ω(α(λ)). Pick

arbitrary positive constants c and η. We rely on the LPNε
n,m assumption, where n = ℓ(λ)·γ(λ)

log ℓ

and ε = η · α(λ)·lognn . Let m be ℓ1+c

c·log ℓ .

Setup(1λ)

1. A
$← Zn×m

2

2. Output hk := A

Hash(hk = A,x)

1. x′ ← D−1
ℓ,c (x)

2. d← A · x′

3. Output h := d

Gen(hk = A,y)

1. s
$← Zn

2

2. e
$← Berm(ε)

3. v← A⊺ · s⊕ e⊕D⊺
ℓ,c · y

4. Output ek := v and td := s

Enc(ek = v,x)

1. x′ ← D−1
ℓ,c (x)

2. t← v⊺ · x′

3. Output t

Dec(td = s, h = d)

1. t0 ← s⊺ · d
2. Output t0 and t1 := t0 ⊕ 1.

Figure 1: Trapdoor hashing for linear functions from low-noise LPN

12

A More Efficient Trapdoor Hashing Scheme

Parameters: For every i ∈ [T], let LDTHi = (Setup,Hash,Gen,Enc,Dec) be a γi(λ)-weakly
compact, rate-1, (1/2+1/2 ·δi(λ))-correct trapdoor hashing scheme with input size ℓi(λ) where

ℓi(λ) :=
ℓi−1(λ)
γi−1(λ)

, if i > 0, and ℓ0(λ) := ℓ(λ). Assume that all these schemes have linear decoding.

Suppose that
∏

i∈[t] δi(λ) = λO(1).

Setup(1λ)

1. For every i ∈ [T]:

(a) hki
$← LDTHi.Setup(1

λ)

2. Output hk := (hk0, . . . , hkT−1)

Hash(hk = (hk0, . . . , hkT−1),x)

1. x0 ← x

2. For i = 0, . . . , T − 1:

(a) xi+1 ← LDTHi.Hash(hki,xi)

3. Output h := xT

Gen(hk = (hk0, . . . , hkT−1),y)

1. y0 ← y

2. For i = 0, 1, . . . , T − 1:

(a) (eki,yi+1)
$← LDTHi.Gen(hki,yi)

3. Output ek := (hk0, . . . , hkT−1, ek0, . . . , ekT−1) and td := yT

Enc(ek = (hk0, . . . , hkT−1, ek0, . . . , ekT−1),x)

1. x0 ← x

2. For i = 0, . . . , T − 1:

(a) xi+1 ← LDTHi.Hash(hki,xi)

3. t←
⊕

i∈[T] LDTHi.Enc(eki,xi)

4. Output t

Dec(td = yT , h = xT)

1. (t0, t1)← LDTHT .Decode(yT ,xT)

2. Output t0 and t1

Figure 2: A more efficient trapdoor hashing scheme

13

Improved Efficiency with Self-Composition. Here we show how to improve the efficiency of
our trapdoor hash construction by composing our construction recursively with itself. In fact, we
prove a somewhat more general statement that holds for any trapdoor hash function with linear
decoding. The scheme is presented in Figure 2.

Theorem 3.3. The construction in Figure 2 is a (
∏

i∈[t] γi(λ))-weakly compact, rate-1, function
private, (1/2+1/2·

∏
i∈[T] δi)-correct trapdoor hashing scheme for linear functions. The construction

has linear decoding.

Proof: We start by proving correctness. For every i ∈ [T], let (ti+1
0 , ti+1

1) be the output of
LDTHi.Dec(yi+1,xi+1). By the linear decoding property, we have that

LDTHi.Enc(eki,xi)⊕ ti+1
0 = y⊺

i · xi ⊕ ei

where ei is a small noise term where distributed according to Ber(12 −
1
2 · δ

′
i) and δ′i ≥ δi. Remember

that, for every i > 0, we have y⊺
i · xi = ti0. We conclude that

t⊕ t0 = y⊺ · x⊕
⊕
i∈[T]

ei.

By the piling-up lemma (Lemma 2.2), we observe that
⊕

i∈[T] ei is distributed according to Ber(1/2−
1/2 ·

∏
i∈[T] δ

′
i). We also observe that

1

2
− 1

2
·
∏
i∈[T]

δ′i ≤
1

2
− 1

2
·
∏
i∈[T]

δi.

This proves that the construction is (1/2 + 1/2 ·
∏

i∈[T] δi)-correct.
Next, we focus on weak compactness. This property can be easily verified by observing that,

for every i > 0 the size of xi is ℓi−1(λ)/γi−1(λ). Given that ℓ0(λ) = ℓ(λ), we conclude that the size
of the digest xT is

|xT | =
ℓ(λ)∏

i∈[t] γi(λ)
.

It is immediate to observe that the scheme has rate 1.
Finally, we prove function privacy. This easily follows from the function privacy of (LDTHi)i∈[t].

Specifically, we follow a hybrid argument: for every i ∈ [t + 1], we consider Hybrid i, in which
eki, . . . , ekt−1 are all generated by encoding the ℓi(λ)-dimensional vector where all the entries are
0. Thanks to the function privacy of LDTHi, Hybrid i is computationally indistinguishable from
Hybrid i + 1. Notice also that in Hybrid 0, ek contains no information about the encoded linear
function y. Hybrid T on the other hand corresponds to the usual encoding of y. □ We highlight a
few corollaries of Theorem 3.3.

• (Corollary 1) Let T (λ) = log1−β ℓ. For every i ∈ [T], instantiate the linear decoding hash
functions LDTHi using the scheme in Figure 1 with parameters γ(λ) = 1

2 · log ℓi and α(λ) =

logβ n. Choose η and c so that 4η
c = ν, where ν > 0, and set β to be some positive constant

1 > β > 0. There exists a (2Θ(log1−β ℓ))-weakly compact, rate-1, and (1/2 + Ω(ℓ−ν))-correct
trapdoor hashing scheme for linear functions. The construction has linear decoding and is

function private assuming the hardness of the LPNε
n,m problem, where ε = Θ(log

1+β n
n).

14

• (Corollary 2) Let T (λ) = log ℓ
log log ℓ . For every i ∈ [T], instantiate the linear decoding hash

functions LDTHi using the scheme in Figure 1 with parameters γ(λ) = 1
2 · log ℓi and α(λ) =

log log n. Choose η and c so that 4η
c = ν. Let ν > 0 and let ℓ = λΘ(1). There exists a 2

Θ(log ℓ)
log log ℓ -

weakly compact, rate-1, (1/2+Ω(ℓ−ν))-correct trapdoor hashing scheme for linear functions.
The construction has linear decoding and is function private assuming the hardness of the
LPNε

n,m problem, where ε = Θ(logn·log lognn).

4 Private Information Retrieval from Trapdoor Hashing

Next, we show how to use our trapdoor hash construction to build a two-round PIR protocol with
sublinear communication complexity. The protocol is described in Figure 3.

Theorem 4.1. Let κ = ω(log λ). The construction in Figure 3 is a correct, query private, two-
round PIR protocol. Furthermore, consider any L = λΘ(1). The construction in Figure 3 is α(λ)-
compact with respect to L(λ), where

α(λ) = M0(λ) + κ · δ−2(λ) ·M1(λ) +
L(λ)

γ(λ)
+ µ · L(λ)

ℓ(λ)
· κ · δ−2(λ).

Proof: We start by proving correctness. We observe that, due to the
(
1
2 + δ(λ)

)
-correctness of

the trapdoor hash function, for every k ∈ [T], we have

Pr
[
zk = v[i]

]
≥ 1

2
+ δ(λ).

Now, let εk be the random variable described by zk ⊕ v[i]. We observe that ε0, . . . , εT−1 are
described by T independent Bernoulli distributions of parameter smaller than 1

2 − δ(λ). By the
Chernoff bound, we observe that the probability that Maj(ε0, . . . , εT−1) ̸= 0 is bounded from above
by exp(−2κ). Since this is a negligible function in λ, we conclude that Maj(z0, . . . , zT−1) = v[i]
with overwhelming probability.

Next, we prove query privacy. This is an immediate consequence of function privacy of the
trapdoor hashing scheme. We can prove this by relying on a hybrid argument. Specifically, we rely
on T +1 hybrids. Rewrite i0λ as ι0λ · ℓ(λ)+ ι0λ and i1λ as ι1λ · ℓ(λ)+ ι1λ, where ι

0
λ, ι

1
λ ∈ [ℓ(λ)]. In Hybrid

0, we generate the encoding key ek using Query(1λ, 1L(λ), i0λ). In Hybrid T , on the other hand, we
generate ek using Query(1λ, 1L(λ), i1λ). Finally, for every intermediate Hybrid j, we generate the first
j trapdoor hashing encoding keys in ek using TDH.Gen(hk,uι1λ

), whereas we generate the rest using

TDH.Gen(hk,uι0λ
). It is easy to observe that any pair of consecutive Hybrids are indistinguishable

thanks to function privacy of TDH. □

Instantiations. We can use different trapdoor hashing constructions, in order to obtain different
PIR protocols trading compactness for a more aggressive choice of parameters of the underlying
computational assumption. In what follows we always assume that the database size L = λΘ(1) is
a polynomial in the security parameter.

For instance, instantiate the trapdoor hashing with the scheme from Theorem 3.3 (Corollary

1), with input length ℓ(λ) = L
1

c+1 . We choose c as a constant such that ℓc upper bounds M0(λ) +

15

Private Information Retrieval from Trapdoor Hashing

Parameters: Let TDH = (Setup,Hash,Gen,Enc,Dec) be a γ(λ)-weakly compact, rate-µ(λ),
function private,

(
1
2 + δ(λ)

)
-correct trapdoor hashing scheme for linear functions with input

size ℓ(λ). Suppose that the size of hk is M0(λ), whereas the length of an encoding key is M1(λ).
Let T be κ · δ(λ)−2.

Query(1λ, 1L, i)

1. Rewrite i as ι · ℓ+ ι where ι ∈ [ℓ].

2. hk
$← TDH.Setup(1λ)

3. For every k ∈ [T]: (ekk, tdk)
$← TDH.Gen(hk,uι)

4. Output ek := (hk, ek0, . . . , ekT−1), sk = (ι, td0, . . . , tdT−1)

Response(ek = (hk, ek0, . . . , ekT−1),v)

1. Split v into B := L/ℓ blocks v0, . . . ,vB−1

2. For every j ∈ [B]: hj ← TDH.Hash(hk,vj)

3. For every j ∈ [B] and k ∈ [T]: tj,k ← TDH.Enc(ekk,vj)

4. Output e := (h0, . . . , hB−1, (t0,k)k∈[T], . . . , (tB−1,k)k∈[T])

Dec(sk = (ι, td0, . . . , tdT−1), e = (h0, . . . , hB−1, (t0,k)k∈[T], . . . , (tB−1,k)k∈[T]))

1. For every k ∈ [T]: (t0ι,k, t
1
ι,k)← TDH.Dec(tdk, hι)

2. For every k ∈ [T]: set zk ← 0 if tι,k = t0ι,k. Otherwise, set zk ← 1.

3. Output z := Maj(z0, . . . , zT−1).

Figure 3: Private information retrieval from trapdoor hashing

16

κ · δ−2(λ) ·M1(λ). Choose any constant ν < 1/2, any 1 > β > 0, and set κ = ℓr where r is a

positive constant smaller than 1 − 2ν. We obtain a two-round (L(λ) · 2−Θ(log1−β L))-compact PIR

protocol, assuming the hardness of the LPNε
n,m problem, where ε = Θ(log

1+β n
n).

On the other hand, we can also instantiate the trapdoor hashing with the scheme from The-

orem 3.3 (Corollary 2) having input length ℓ(λ) = L
1

c+1 . We choose c as a constant such that
ℓc upper bounds M0(λ) + κ · δ−2(λ) ·M1(λ). Choose any constant ν < 1

2 and κ = ℓr where r is
a positive constant smaller than 1 − 2ν. Under the hardness of the LPNε

n,m assumption, where

ε = Θ(logn·log lognn), there exists a L(λ) · 2−
Θ(logL)
log logL -compact, query private, two-round PIR protocol.

Can Recursion Help? One may notice that in our PIR protocol, the server sends more informa-
tion than what the client actually needs: The decoding procedure never uses any of hj , tj,0, . . . , tj,T−1

except when j = ι. A standard technique to further reduce the communication complexity of two-
round PIR protocols is to recurse the scheme. Specifically, we can run another instance of the PIR
protocol on a database that consists of the bit representation of e, where the client’s goal is to
retrieve the entries corresponding to hι, tι,0, . . . , tι,T−1.

Unfortunately this idea runs quickly into problems: At each step of the recursion, the number
of bits that the client needs to receive gets is raised by a constant greater than 1. Thus, we can
recurse at most a constant number of times before the communication complexity becomes super-
polynomial. To summarise, the number of bits the client needs to retrieve grows so fast that soon
will exceed the size of the whole database.

Acknowledgments

D.A. and G.M. are supported by the European Research Council through an ERC Starting Grant
(Grant agreement No. 101077455, ObfusQation). G.M. is also funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA – 390781972. L.R. is supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant agreement
number 101124977 (DECRYPSIS) and the Danish Independent Research Council under Grant-ID
DFF-0165-00107B (C3PO).

References

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In Leonard J. Schulman, editor, 42nd ACM STOC, pages 171–
180. ACM Press, June 2010.

[AHI+17] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod
Vaikuntanathan. Low-complexity cryptographic hash functions. In Christos H. Pa-
padimitriou, editor, ITCS 2017, volume 4266, pages 7:1–7:31, 67, January 2017. LIPIcs.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th
FOCS, pages 298–307. IEEE Computer Society Press, October 2003.

17

[ARS24] Damiano Abram, Lawrence Roy, and Peter Scholl. Succinct homomorphic secret shar-
ing. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part VI, volume
14656 of LNCS, pages 301–330. Springer, Cham, May 2024.

[BBD+20] Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, and Giulio Malavolta.
Constant ciphertext-rate non-committing encryption from standard assumptions. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS,
pages 58–87. Springer, Cham, November 2020.

[BBDP22] Zvika Brakerski, Pedro Branco, Nico Döttling, and Sihang Pu. Batch-OT with optimal
rate. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II,
volume 13276 of LNCS, pages 157–186. Springer, Cham, May / June 2022.

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch,
and Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508
of LNCS, pages 603–633. Springer, Cham, August 2022.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 896–912. ACM Press, October 2018.

[BCM23] Elette Boyle, Geoffroy Couteau, and Pierre Meyer. Sublinear-communication secure
multiparty computation does not require FHE. In Carmit Hazay and Martijn Stam,
editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 159–189. Springer,
Cham, April 2023.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
407–437. Springer, Cham, December 2019.

[BDS23] Pedro Branco, Nico Döttling, and Akshayaram Srinivasan. A framework for statistically
sender private OT with optimal rate. In Helena Handschuh and Anna Lysyanskaya, ed-
itors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 548–576. Springer, Cham,
August 2023.

[BDS24] Pedro Branco, Nico Döttling, and Akshayaram Srinivasan. Two-round maliciously-
secure oblivious transfer with optimal rate. In Marc Joye and Gregor Leander, editors,
EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages 271–300. Springer, Cham,
May 2024.

[BF22] Nir Bitansky and Sapir Freizeit. Statistically sender-private OT from LPN and de-
randomization. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part III, volume 13509 of LNCS, pages 625–653. Springer, Cham, August 2022.

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Crypto-
graphic primitives based on hard learning problems. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 278–291. Springer, Berlin, Heidelberg, Au-
gust 1994.

18

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 520–536. Springer, Berlin, Heidelberg, April 2012.

[BK02] Piotr Berman and Marek Karpinski. Approximating minimum unsatisfiability of linear
equations. In David Eppstein, editor, 13th SODA, pages 514–516. ACM-SIAM, January
2002.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor
hash via correlation intractability for approximable relations. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 738–767. Springer, Cham, August 2020.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. Journal of the ACM (JACM), 50(4):506–
519, 2003.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents:
Ball-collision decoding. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 743–760. Springer, Berlin, Heidelberg, August 2011.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
IBE, leakage resilience and circular security from new assumptions. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 535–564. Springer, Cham, April / May 2018.

[BLVW19] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs.
Worst-case hardness for LPN and cryptographic hashing via code smoothing. In Yu-
val Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of
LNCS, pages 619–635. Springer, Cham, May 2019.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, July 2004.

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng
Zhang. Correlation intractability and SNARGs from sub-exponential DDH. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of
LNCS, pages 635–668. Springer, Cham, August 2023.

[CM21] Geoffroy Couteau and Pierre Meyer. Breaking the circuit size barrier for secure compu-
tation under quasi-polynomial LPN. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 842–870. Springer,
Cham, October 2021.

[DGH+20] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel Wichs.
Two-round oblivious transfer from CDH or LPN. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 768–797. Springer,
Cham, May 2020.

19

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New con-
structions of identity-based and key-dependent message secure encryption schemes. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS,
pages 3–31. Springer, Cham, March 2018.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 3–32. Springer, Cham, August 2019.

[DIJL23] Quang Dao, Yuval Ishai, Aayush Jain, and Huijia Lin. Multi-party homomorphic
secret sharing and sublinear MPC from sparse LPN. In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part II, volume 14082 of LNCS, pages 315–348.
Springer, Cham, August 2023.

[DJ24] Quang Dao and Aayush Jain. Lossy cryptography from code-based assumptions. In
Annual International Cryptology Conference, pages 34–75. Springer, 2024.

[EKM17] Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages
486–514. Springer, Cham, August 2017.

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami.
New results for learning noisy parities and halfspaces. In 47th FOCS, pages 563–574.
IEEE Computer Society Press, October 2006.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Berlin, Heidelberg, August 1987.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-
exponential DDH. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 3–32. Springer, Cham, October
2021.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th FOCS, pages 364–373. IEEE
Computer Society Press, October 1997.

[KPC+11] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi. Ef-
ficient authentication from hard learning problems. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 7–26. Springer, Berlin, Heidelberg,
May 2011.

[KS06] Jonathan Katz and Ji Sun Shin. Parallel and concurrent security of the HB and HB+
protocols. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
73–87. Springer, Berlin, Heidelberg, May / June 2006.

20

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In International Workshop on Approximation
Algorithms for Combinatorial Optimization, pages 378–389. Springer, 2005.

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor,
EUROCRYPT’93, volume 765 of LNCS, pages 386–397. Springer, Berlin, Heidelberg,
May 1994.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes
in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 107–124. Springer, Berlin, Heidelberg, December 2011.

[YKT19] Yusuke Yoshida, Fuyuki Kitagawa, and Keisuke Tanaka. Non-committing encryption
with quasi-optimal ciphertext-rate based on the DDH problem. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages
128–158. Springer, Cham, December 2019.

[YZ16] Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor from
constant-noise LPN. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 214–243. Springer, Berlin, Heidelberg, August
2016.

[YZW+19] Yu Yu, Jiang Zhang, Jian Weng, Chun Guo, and Xiangxue Li. Collision resistant
hashing from sub-exponential learning parity with noise. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS, pages 3–24.
Springer, Cham, December 2019.

21

	Introduction
	Our Results
	Technical Outline
	Related Work

	Preliminaries
	Learning Parity with Noise
	Trapdoor Hashing
	Two-Round Private Information Retrieval
	Sparsification with Linear Reconstruction

	Trapdoor Hashing for Linear Functions from Low-Noise LPN
	Private Information Retrieval from Trapdoor Hashing

