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Abstract. The requirement for privacy-aware machine learning increases
as we continue to use PII (Personally Identifiable Information) within
machine training. To overcome these privacy issues, we can apply Fully
Homomorphic Encryption (FHE) to encrypt data before it is fed into a
machine learning model. This involves creating a homomorphic encryp-
tion key pair, and where the associated public key will be used to encrypt
the input data, and the private key will decrypt the output. But, there
is often a performance hit when we use homomorphic encryption, and
so this paper evaluates the performance overhead of using the SVM ma-
chine learning technique with the OpenFHE homomorphic encryption
library. This uses Python and the scikit-learn library for its implementa-
tion. The experiments include a range of variables such as multiplication
depth, scale size, first modulus size, security level, batch size, and ring
dimension, along with two different SVM models, SVM-Poly and SVM-
Linear. Overall, the results show that the two main parameters which
affect performance are the ring dimension and the modulus size, and that
SVM-Poly and SVM-Linear show similar performance levels.
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1 Introduction

The rise in machine learning (ML) has caused an increasing demand for data
to be used in creating data for learning. Unfortunately, this data can also in-
clude PII, and where it is often needed to be protected before it is shared. While
data can be protected over-the-air and at-rest, we often do not protect data
in-process. For this, we can use homomorphic encryption to process encrypted
data. This can either be Partial Homomorphic Encryption (PHE) or Fully Homo-
morphic Encryption (FHE). With FHE, we can implement all of the arithmetic
operations, while PHE only implements a reduced number of operations. With
this, FHE typically uses lattice cryptography, and which often has an increased
processing requirement for its implementation. This paper thus makes a core
contribution in applying FHE to the SVM (Support Vector Machine) models,
and then evaluates the performance of this using a range of parameters using
within the OpenFHE library [1].
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2 Background

Homomorphic encryption supports mathematical operations on encrypted data.
In 1978, Rivest, Adleman, and Dertouzos [2] were the first to define the possi-
bilities of implementing a homomorphic operation and used the RSA method.
This supported multiply and divide operations [3], but does not support addi-
tion and subtraction. Overall, PHE supports a few arithmetic operations, while
FHE supports add, subtract, multiply, and divide.

Since Gentry defined the first FHE method [4] in 2009, there have been four
main generations of homomorphic encryption:

– 1st generation: Gentrys method uses integers and lattices [5] including the
DGHV method.

– 2nd generation. Brakerski, Gentry and Vaikuntanathans (BGV) and Braker-
ski/ Fan-Vercauteren (BFV) use a Ring Learning With Errors approach [6].
The methods are similar to each other, and there is only a small difference
between them.

– 3rd generation: These include DM (also known as FHEW) and CGGI (also
known as TFHE) and support the integration of Boolean circuits for small
integers.

– 4th generation: CKKS (Cheon, Kim, Kim, Song) and which uses floating-
point numbers [7].

Generally, CKKS works best for real number computations and can be ap-
plied to machine learning applications as it can implement logistic regression
methods and other statistical computations. DM (also known as FHEW) and
CGGI (also known as TFHE) are useful in the application of Boolean circuits
for small integers. BGV and BFV are generally used in applications with small
integer values.

2.1 Public key or symmetric key

Homomorphic encryption can be implemented either with a symmetric key or an
asymmetric (public) key. With symmetric key encryption, we use the same key
to encrypt as we do to decrypt, whereas, with an asymmetric method, we use a
public key to encrypt and a private key to decrypt. In Figure 1 we use asymmetric
encryption with a public key (pk) and a private key (sk). With this Bob, Alice
and Peggy will encrypt their data using the public key to produce ciphertext, and
then we can operate on the ciphertext using arithmetic operations. The result
can then be revealed by decrypting with the associated private key. In Figure 2
we use symmetric key encryption, and where the data is encrypted with a secret
key, and which is then used to decrypt the data. In this case, the data processor
(Trent) should not have access to the secret key, as they could decrypt the data
from the providers.
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Fig. 1. Asymmetric encryption (public key)

Fig. 2. Symmetric encryption
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2.2 Homomorphic libraries

There are several homomorphic encryption libraries that support FHE, including
ones that support CUDA and GPU acceleration, but many have not been kept
up-to-date with modern methods or have only integrated one method. Overall,
the native language libraries tend to be the most useful, as they allow the com-
pilation to machine code. The main languages used for this are C++, Golang,
and Rust, although some Python libraries exist through wrappers of C++ code.
This includes HEAAN-Python, and its associated HEAAN library.

One of the first libraries which supported a range of methods is Microsoft
SEAL [8], SEAL-C# and SEAL-Python. While it supports a wide range of meth-
ods, including BGV/BFV and CKKS, it has lacked any real serious development
for the past few years. It does have support for Android and has a Node.js port
[9]. Wood et al. [10] define a full range of libraries. One of the most extensive
libraries is PALISADE, and which has now developed into OpenFHE. Within
OpenFHE. The main implementations is this library are:

– Brakerski/Fan-Vercauteren (BFV) scheme for integer arithmetic
– Brakerski-Gentry-Vaikuntanathan (BGV) scheme for integer arithmetic
– Cheon-Kim-Kim-Song (CKKS) scheme for real-number arithmetic (includes

approximate bootstrapping)
– Ducas-Micciancio (DM) and Chillotti-Gama-Georgieva-Izabachene (CGGI)

schemes for Boolean circuit evaluation.

2.3 Bootstrapping

A key topic within fully homomorphic encryption is the usage of bootstrapping.
Within a learning with-errors approach, we add noise to our computations. For
a normal decryption process, we use the public key to encrypt data and then the
associated private key to decrypt it. Within the bootstrap version of homomor-
phic encryption, we use an encrypted version of the private key that operates
on the ciphertext. In this way, we remove the noise which can build up in the
computation. Figure 3 outlines that we perform an evaluation on the decryp-
tion using an encrypted version of the private key. This will remove noise in the
ciphertext, after which we can then use the actual private key to perform the
decryption.

The main bootstrapping methods are CKKS [7], DM [11]/CGGI, and BGV/BFV.
Overall, CKKS is generally the fastest bootstrapping method, while DM/CGGI
is efficient with the evaluation of arbitrary functions. These functions approxi-
mate math functions as polynomials (such as with Chebyshev approximation).
BGV/BFV provides reasonable performance and is generally faster than DM/CGGI
but slower than CKKS.

2.4 Arbitrary smooth functions

With approximation theory, it is possible to determine an approximate polyno-
mial p(x) that is an approximation to a function f(x). A polynomial takes the
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Fig. 3. Bootstrap

form of p(x) = an.x
n + an−1.x

n−1 + ... + a1.x + a0, and where a0... an are the
coefficients of the powers, and n is the maximum power of the polynomial.

For this, we can define arbitrary smooth functions for CKKS using Chebyshev
approximation [12]. These were initially created by Pafnuty Lvovich Chebyshev.
This method involves the approximation of a smooth function using polynomials.
Examples of these functions include log10, log2, loge, and ex [13].

2.5 Plaintext slots

With many homomorphic methods, we can encrypt multiple plaintext values
into ciphertext in a single operation. This is defined as the number of plaintext
slots, and is illustrated in Figure 4.

2.6 BGV and BFV

With BGV and BFV, we use a Ring Learning With Errors (LWE) method [6].
With BGV, we define a moduli (q), which constrains the range of the polynomial
coefficients. Overall, the methods use a moduli, which can be defined within
different levels. We then initially define a finite group of Zq, and then make this
a ring by dividing our operations with (xn + 1) and where n − 1 is the largest
power of the coefficients. The message can then be represented in binary as:

m = an−1an−2...a0 (1)

This can be converted into a polynomial with:

m = an−1x
n−1 + an−2x

n−2 + ...+ a1x+ a0 (mod q) (2)

The coefficients of this polynomial will then be a vector. Note that for effi-
ciency, we can also encode the message with ternary (such as with -1, 0 and 1).
We then define the plaintext modulus with:
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Fig. 4. Slots for plaintext

t = pr (3)

and where p is a prime number and r is a positive number. We can then
define a ciphertext modulus of q, and which should be much larger than t. To
encrypt with the private key of s, we implement:

(c0, c1) =
(q
t
.m+ a.s+ e,−a

)
mod q (4)

To decrypt:

m =
⌊ t
q
(c0 + c1).s

⌉
(5)

This works because:

mrecover =
⌊ t
q

(q
t
.m+ a.s+ e− a.s

)⌉
(6)

=
⌊(

m+
t

q
.e

)⌉
(7)

≈ m (8)

(9)
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For two message of m1 and m2, we will get:

Enc(m1 +m2) = Enc(m1) + Enc(m2) (10)

Enc(m1.m2) = Enc(m1).Enc(m2) (11)

Noise and computation But each time we add or multiply, the error also
increases. Thus bootstrapping is required to reduce the noise. Overall, addition
and plaintext/ciphertext multiplication is not a time-consuming task, but ci-
phertext/ciphertext multiplication is more computationally intensive. The most
computational task is typically the bootstrapping process, and the ciphertext/-
ciphertext multiplication process adds the most noise to the process.

Parameters We thus have a parameter of the ciphertext modulus (q) and the
plaintext modulus (t). Both of these are typically to the power of 2. An example
of q is 2240 and for t is 65,537. As the value of 2q is likely to be a large number,
we typically define it as a log q value. Thus, a ciphertext modulus of 2240 will
be 240 as defined as a logq value.

2.7 CKKS

HEAAN (Homomorphic Encryption for Arithmetic of Approximate Numbers)
defines a homomorphic encryption (HE) library proposed by Cheon, Kim, Kim
and Song (CKKS). The CKKS method uses approximate arithmetics over com-
plex numbers [7]. Overall, it is a levelled approach that involves the evaluation of
arbitrary circuits of bounded (pre-determined) depth. These circuits can include
ADD (X-OR) and Multiply (AND).

HEAAN uses a rescaling procedure to measure the size of the plaintext. It
then produces an approximate rounding due to the truncation of the ciphertext
into a smaller modulus. The method is especially useful in that it can be applied
to carry out encryption computations in parallel. Unfortunately, the ciphertext
modulus can become too small, and where it is not possible to carry out any
more operations.

The HEAAN (CKKS) method uses approximate arithmetic over complex
numbers (C) and is based on Ring Learning With Errors (RLWE). It focuses
on defining an encryption error within the computational error that will happen
within approximate computations. We initially take a message (M ) and convert
it to a cipher message (ct) using a secret key sk. To decrypt ([ct,sk ]q), we produce
an approximate value along with a small error (e).

Craig Gentry [14] has outlined three important application areas within
privacy-preserving genome association, neural networks, and private informa-
tion retrieval. Along with this, he proposed that the research community should
investigate new methods which did not involve the usage of lattices.
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Chebyshev approximation With approximation theory, it is possible to de-
termine an approximate polynomial p(x) that is an approximation to a function
f(x). A polynomial takes the form of p(x) = an.x

n + an−1.x
n−1 + a1.x + a0,

and where a0...an are the coefficients of the powers, and n is the maximum
power of the polynomial. In this case, we will evaluate arbitrary smooth func-
tions for CKKS and use Chebyshev approximation. These were initially created
by Pafnuty Lvovich Chebyshev. This method involves the approximation of a
smooth function using polynomials.

Overall, with polynomials, we convert our binary values into a polynomial,
such as 101101 is:

x5 + x3 + x2 + 1 (12)

Our plaintext and ciphertext are then represented as polynomial values.

Approximation theory With approximation theory, we aim to determine an
approximate method for a function f(x). It was Pafnuty Lvovich Chebyshev who
defined a method of finding a polynomial p(x) that is approximate for f(x).
Overall, a polynomial takes the form of:

p(x) = an.x
n + an−1.x

n−1 + a1.x+ a0 (13)

and where a0...an are the coefficients of the powers, and n is the maximum
power of the polynomial. Chebyshev published his work in 1853 as ”Theorie des
mecanismes, connus sous le nom de parallelogrammes”. His problem statement
was to determine the deviations which one has to add to get an approximated
value for a function f , given by its expansion in powers of x − a, if one wants
to minimise the maximum of these errors between x = a − h and x = a + h, h
being an arbitrarily small quantity”.

2.8 Polynomial evaluations

A polynomial takes the form form of p(x) = an.x
n + an−1.x

n−1 + a1.x + a0,
and where a0...an are the coefficients of the powers, and n is the maximum
power of the polynomial. With CKKS in OpenFHE, we can evaluate the result
of a polynomial for a given range of x values. For example, if we have p(x) =
5.x2 + 3.x+ 7 will give a result of p(2) = 33.

3 Related work

Homomorphic encryption supports the usage of machine learning methods, and
some core features include a dot product operation with an encrypted vector and
logistic functions. With this, OpenFHE supports a range of relevant methods and
even has a demonstrator for a machine learning method.

https://orcid.org/0000-0003-0809-3523
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3.1 State-of-the-art

Iezzi et al. [15] define two methods of training with homomorphic encryption:

– Private Prediction as a Service (PPaaS). This is where the prediction is
outsourced to a service provider who has a pre-trained model and where
encrypted data is sent to the service provider. In this case, the data owner
does not learn the model used.

– Private Training as a Service (PTaaS). This is where the data owner provides
data to a service provider and who will train the model. The service provider
can then provide a prediction for encrypted data.

Wood et al [10] adds models of:

– Private outsourced computation. This involves moving computation into the
cloud.

– Private prediction. This involves homomorphic data processed into the cloud,
and not having access to the training model.

– Private training. This is where a cloud entity trains a model based on the
client’s data.

3.2 Basic primitives

Logistic Function With homomorphic encryption, we can represent a math-
ematical operation in the form of a homomorphic equation. One of the most
widely used methods is to use Chebyshev polynomials, and which allows the
mapping of the function to a Chebyshev approximation. A core application of
the logistic function - also known as the sigmoid function - is within machine
learning. With this, an artificial neural network is created with weighted sum-
mation and a sigmoid function (Figure 5). Mathematically, this is defined as:

f(x) =
1

1 + e−x
(14)

This is supported in OpenFHE, and which implements Chebyshev approx-
imation. For this, we can use the function of [16] and which evaluates 1/(1 +
exp(-x)) for f(x), and where x is a range of coefficients with ciphertext. The value
of a is the lower bound of the coefficients, and b is the upper bound. The degree
value is the desired degree of approximation.

Logistic regression is often used to predict binary outcomes of whether pa-
tients need treatment in medical applications, such as with diabetic patients
[17].

Inner product The inner product of two vectors of a and b is represented by
a, b. It is the dot product of two vectors and represented as a, b = |a|.|b|.cos(θ),
where θ is the angle between the two vectors. This operation is supported in
OpenFHE [18].
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Fig. 5. Sigmoid function

Matrix operations We can perform matrix operations with an encrypted input
vector from OpenFHE [19]. For this, if we have a vector of the form:

v1 =
[
x1 x2 x3

]
(15)

and a matrix of:

m1 =

w11 w21 w31

w12 w22 w32

w13 w23 w33

 (16)

We now get:

v1.m1 =
[
x1 x2 x3

] w11 w21 w31

w12 w22 w32

w13 w23 w33

 (17)

and:

v1.m1 =
[
x1.w11 + x2.w21 + x3.w31 x1.w12 + x2.w22 + x3.w32 x1.w13 + x2.w23 + x3.w33

]
(18)

Thus we get:

y1 = x1.w11 + x2.w21 + x3.w31y2 = x1.w12 + x2.w22 + x3.w32y3 = x1.w13 + x2.w23 + x3.w33

(19)

Figure 6 shows this setup.

3.3 GWAS

Blatt et al. [20] implemented the Genome-wide association study (GWAS) and
which is a secure large-scale genome-wide association study using homomorphic
encryption.

https://orcid.org/0000-0003-0809-3523
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Fig. 6. Neural network

Chi-Square GWAS The Chi-squared GWAS test has been implemented in
OpenFHE Here. With this, each of the participants in the student group is
given a public key from a GWAS (Genome-wide association studies) coordinator,
who then encrypts the data with CKKS and sends it back for processing. The
computation includes association statistics using full logistic regression on each
variant with sex, age, and age squared as covariates. Pearsons chi-square test
uses categories to determine if there is a significant difference between sets of
data 1.

χ̃2 =
1

d

n∑
k=1

(Ok − Ek)
2

Ek
(20)

and where:

– χ̃2 is the chi-square test statistic.

– O is the observed frequency.

– E is the expected frequency.

Overall, the implementation involved a dataset of 25,000 individuals, and it
was shown that 100,000 individuals and 500,000 single-nucleotide polymorphisms
(SNPs) could be evaluated in 5.6 hours on a single server [20].

1 It implements as RunChi2 from https://github.com/openfheorg/openfhe-genomic-
examples/blob/main/demo-chi2.cpp

https://github.com/openfheorg/openfhe-genomic-examples/blob/main/demo-chi2.cpp
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Linear Regression The GWAS method is also implemented with linear regres-
sion for homomorphic encryption (See RunLogReg in Here). The results show
that the accuracy of both the Chi-squared and linear regression tests was good.
The run time varied linearly with the number of participants in the test.

3.4 Support Vector Machines (SVM)

With the SVM (Support Vector Machine) model, we have a supervised learning
technique. Overall, it is used to create two categories (binary) or more (multi)
and will try to allocate each of the training values into one or more categories.
Basically, we have points in a multidimensional space and try to create a clear
gap between the categories. New values are then placed within one of the two
categories.

Overall, we split out the input data into training and test data and then
train with a sklearn model with unencrypted values from the training data. The
output from the model is the weights and intercepts. Next, we can encrypt the
test data with the homomorphic public key and then feed this into the SVM
model. The output values can then be decrypted by the associated private key,
as illustrated in Figure 7.

CKKS and SVM The CKKS scheme is a homomorphic encryption method
designed for encrypted arithmetic operations. For a given plaintext feature vector
of:

x = (x1, x2, . . . , xn) (21)

and a public key of pk, the encryption function is:

Enc(x, pk) = cx (22)

and where cx is the encrypted representation of x [7]. For Support Vector
Machine (SVM) classification with Linear SVM, we use a linear decision func-
tion of:

flin(x) = wTx+ b (23)

and where x is the feature vector, w is the weight vector, and b is the bias
term.

For classification:

y = sign(flin(x)) (24)

Using FHE, the computation is performed on encrypted values [7]:

Enc(flin(x)) = Enc(wTx+ b) (25)

A Polynomial Kernel SVM extends the decision function to:

https://orcid.org/0000-0003-0809-3523
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Fig. 7. SVM
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fpoly(x) = (wTx+ b)d (26)

where d is the polynomial degree, and where the rest of the parameters are
the same as the Linear SVM. For classification:

y = sign(fpoly(x)) (27)

With homomorphic encryption, we compute this function without decrypt-
ing:

Enc(fpoly(x)) = Enc((wTx+ b)d) (28)

and which follows prior encryption-based SVM work [14,7]. After computa-
tion, the result is decrypted using the private key (sk:

Dec(cf , sk) = f(x) (29)

The final classification is:

y = sign(Dec(cf , sk)) (30)

4 Methodology

This paper explores the integration of Fully Homomorphic Encryption (FHE)
with Support Vector Machines (SVM) for privacy-preserving machine learning.
The proposed framework employs the CKKS encryption scheme, implemented
via the OpenFHE library, to enable encrypted inference while maintaining classi-
fication accuracy. Homomorphic encryption allows computations to be performed
directly on encrypted data without decryption, ensuring data privacy through-
out the machine-learning pipeline [7]. OpenFHE is an open-source library that
provides implementations of lattice-based encryption schemes, including CKKS,
which supports approximate arithmetic operations on encrypted data [21].

The dataset used for this experiment is the Iris dataset, which contains mea-
surements of iris flowers, including sepal length, sepal width, petal length, and
petal width [22]. This dataset, originally introduced by Fisher [23], is widely
used in machine learning research due to its simplicity and well-separated class
distributions. The objective of using this dataset is to evaluate the effectiveness
of the encrypted SVM framework in classifying iris species while ensuring data
privacy. The dataset is publicly available from the UCI ML Repository [24].

The methodology consists of environment setup and data preprocessing. The
SVM model, originally introduced by Cortes and Vapnik [25], is trained on plain-
text data before being used for encrypted inference. To analyse the trade-offs
between encryption security, computational efficiency, and model accuracy, the
implementation is conducted using OpenFHE within a Python-based machine-
learning pipeline, leveraging libraries such as Scikit-Learn and NumPy [26].
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4.1 Environment Setup

The encryption parameters in the Fully Homomorphic Encryption (FHE) frame-
work are essential for balancing security, computational efficiency, and model
accuracy. The following section outlines the installation process, provides a de-
tailed explanation of each parameter, and presents the system specifications, as
shown in Table 1.

Experimental Setup The implementation of the encrypted SVM framework
followed a structured approach to ensure efficiency and reproducibility. The setup
commenced with the installation of openfhe-python, adhering strictly to the of-
ficial guidelines [1]. This library provided the essential cryptographic primitives
required for executing encrypted computations securely.

Following the installation, the model training phase was conducted using the
model training.py script. This process involved training an SVM classifier and
saving the learned parameters, which were subsequently utilised for encrypted
inference. The trained model served as the foundation for performing secure
classification without exposing sensitive data.

To facilitate a standardised evaluation, the dataset was organised within the
data/ directory. If necessary, the dataset could be regenerated by executing the
get data.py script, ensuring consistency and reproducibility across experiments.

For encrypted inference, two dedicated scripts were employed: encrypted svm
linear.py and encrypted svm poly.py. These scripts enabled inference using lin-
ear and polynomial kernel SVM models, respectively, allowing for a comprehen-
sive assessment of encrypted classification performance under different kernel
settings. Through this structured approach, the framework effectively demon-
strated the feasibility of privacy-preserving machine learning using homomorphic
encryption.

Encryption Parameters Homomorphic encryption relies on several key pa-
rameters that impact computational efficiency, security, and accuracy [7]. The
primary encryption parameters used in this study are:

– Ring Dimension (N): Defines the size of the polynomial ring used in
encryption. A larger N increases security but also raises computational cost
[27]. Typical values include N = 210, 212, 214, . . ..

– Multiplication Depth (D): Represents the number of consecutive mul-
tiplications a ciphertext can undergo before noise accumulation becomes a
limiting factor [14]. Higher D enables more complex computations, which is
essential for polynomial kernel approximation in SVM.

– Scaling Factor (S): Determines the precision of fixed-point arithmetic in
CKKS encryption. A higher S improves numerical accuracy but increases
computational complexity [28].

– First Modulus Size (M): Defines the initial modulus size, impacting ci-
phertext precision and computational overhead [29].
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– Security Level (L): Specifies the cryptographic strength of encryption
(e.g., 128-bit, 192-bit, 256-bit security). A higher L enhances security but
introduces additional computational costs [30].

– Batch Size (B): Represents the number of encrypted values processed in
parallel. A larger B improves computational efficiency, particularly for batch
inference [28].

These parameters significantly impact the feasibility of encrypted machine
learning. In our experiments, we analyse their influence on classification accuracy,
encryption overhead, and inference efficiency.

System Specifications The system was deployed on an AWS EC2 t3.medium
instance, equipped with two virtual CPUs (Intel Xeon 3.1 GHz) and 4 GB of
RAM, providing a balanced environment for machine learning and encrypted
computations. For software, Python was used as the primary programming lan-
guage, enabling seamless integration between machine learning and encryption
frameworks. scikit-learn then supports the training and evaluation of traditional
SVMmodels, ensuring a robust baseline for comparison. Meanwhile, OpenFHE is
used to perform encryption, ciphertext operations, and homomorphic inference,
thus enabling secure computation without compromising model performance.

Table 1: Experimental Setup
Component Description

Compute Environment AWS EC2 t3.medium (Two vCPUs, Intel Xeon 3.1 GHz,

4 GB RAM)

Operating System Ubuntu 20.04

Programming Language Python 3.x

ML Library scikit-learn (for SVM training and evaluation) [31]

HE Library OpenFHE (CKKS scheme for encrypted inference) [21]

Dataset Iris Dataset (150 samples, four features) [23]

Preprocessing Standardisation (zero mean, unit variance), Train-Test

Split (80%-20%)

Encryption Parameters N,D, S,M,L,B (Ring Dim, Mult Depth, Scaling Factor,

Modulus Size, Sec Level, Batch Size)

SVM Models Linear SVM, Polynomial SVM (homomorphic kernel

approximation) [25]

Performance Metrics Classification Accuracy, Encryption Overhead, Inference

Time, Memory Usage, Scalability

4.2 Data Preprocessing

Data preprocessing is a crucial step to ensure reliable and efficient machine
learning, particularly when incorporating Homomorphic Encryption [32]. In this

https://orcid.org/0000-0003-0809-3523
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study, we use the Iris dataset (150 samples, four features) and apply standardisa-
tion to achieve zero mean and unit variance, improving model stability. The data
is then split into 80% training and 20% testing to enable fair evaluation. Given
the constraints of encrypted computation, categorical features are appropriately
encoded. These steps help maintain accuracy while minimising computational
overhead in secure inference.

Dataset Overview The Iris dataset is a widely recognised benchmark in ma-
chine learning, frequently employed for evaluating classification algorithms [31].
It provides a structured framework for distinguishing between different iris flower
species based on their physical attributes. The dataset consists of 150 samples,
each representing an individual iris flower, and is characterised by four key fea-
tures: sepal length, sepal width, petal length, and petal width, all measured in
centimetres. These features enable effective classification by capturing the mor-
phological differences among species.

The dataset comprises three distinct classes, each containing 50 samples,
corresponding to three species: Iris setosa (label ‘0‘), Iris versicolor (label ‘1‘),
and Iris virginica (label ‘2‘). It is well-structured, balanced, and contains no
missing values, making it particularly suitable for both educational purposes
and experimental evaluations in machine learning research.

Due to its simplicity and interpretability, the Iris dataset is commonly used
for demonstrating data preprocessing techniques, exploratory data analysis, and
classification models, including Support Vector Machines (SVM) and decision
trees [25]. Furthermore, its features can be visualised through pair plots, enabling
an intuitive understanding of feature relationships and class separability.

In this study, the Iris dataset serves as a controlled environment for analysing
the effects of homomorphic encryption on SVM classification. By leveraging its
structured nature, we facilitate a reliable comparison between traditional and
encrypted inference methods, allowing for a comprehensive assessment of com-
putational performance and classification accuracy.

The Iris dataset is a classic benchmark for machine learning algorithms,
favored for its simplicity and accessibility. It is widely used in educational settings
and can be easily accessed through libraries like scikit-learn in Python.

Data Preprocessing and Feature Encoding To ensure robust and efficient
encrypted classification, the data set was subjected to a systematic preprocessing
pipeline implemented by get data.py. This process involved feature selection,
transformation, and structuring to optimise the data for FHE-based machine
learning.

The dataset contains 150 rows (samples) and four columns (four predictive
features): sepal length, sepal width, petal length, petal width. There is one tar-
get column of species classification. Standardisation was applied to normalise
values, ensuring a mean (µ) of approximately zero, and a standard deviation (σ)
of approximately unity. This improves model performance by placing features
on a similar scale. The data were split into 120 training samples and 30 test
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samples, ensuring a well-balanced split for model evaluation. Furthermore, cate-
gorical labels were encoded into numerical representations to facilitate seamless
integration into the machine learning framework.

This preprocessing stage establishes a structured and standardised founda-
tion for encrypted SVM training. Harmonising feature distributions, optimising
data representation, and preparing the dataset for secure computation enhance
both the accuracy and efficiency of privacy-preserving machine learning.

5 Implementation

This section presents the approach used to implement privacy-preserving clas-
sification using FHE. The Support Vector Machine (SVM) model is adapted to
operate on encrypted data using the CKKS encryption scheme [7].

The implementation consists of dataset preprocessing, encryption of feature
vectors, SVM training, and encrypted classification. The process follows estab-
lished principles from privacy-preserving machine learning [33]. The overall work-
flow is visualised in Figure 8.

Fig. 8. Experimental setup for encrypted classification. The pipeline includes data
encryption, encrypted inference, and decryption of results.

The evaluation of the impact of homomorphic encryption on machine learn-
ing performance involves a number of experiments measuring key performance
metrics. Classification accuracy was assessed by comparing encrypted and non-
encrypted inference, with the SVM model achieving high accuracy. Computation
time was also analysed, including encryption, inference, and decryption dura-
tions. Additionally, the scale-up runtime was examined by calculating the ratio
of non-encrypted to encrypted execution times.
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Memory overhead was evaluated to determine the effect of homomorphic
encryption on resource consumption, particularly memory usage. Finally, scal-
ability was assessed by analysing performance variations as the ring dimension
size and multiplication depth increased.

5.1 Encryption Using CKKS

The CKKS encryption scheme was employed to encrypt feature vectors, allow-
ing privacy-preserving computations on floating-point values [7]. CKKS supports
approximate arithmetic operations, making it well-suited for machine learning
applications. The encryption parameters used in our experiments were selected
based on a balance between computational efficiency and security. The multi-
plicative depth (D) ranged from 1 to 7, scaling factor (S) values varied between
10 and 50, and the first modulus size (M) was tested at 20, 30, 40, 50, and 60.
The security level (L) was evaluated at 128-bit, 192-bit and 256-bit configura-
tions. Batch sizes (B) included 128, 256, 512, 1024, 2048, and 4096. The ring
dimension (N) was tested at 214 (16,384), 215 (32,768), 216 (65,536), and 217

(131,072), providing insights into the scalability of homomorphic encryption in
machine learning.

5.2 Encrypted Classification Algorithm

In this work, we propose an FHE-based approach for SVM classification that
supports both linear and polynomial kernels. The classification process involves
encrypting the feature vector and model parameters, performing homomorphic
computations to evaluate the decision function, and decrypting the result to
obtain the classification outcome. The detailed steps are outlined in Algorithm 1,
which describes the encrypted inference procedure for both linear and polynomial
SVM models.

5.3 Model training

The model training example is shown in Appendix B.

6 Results

The experimental results provide a comprehensive evaluation of the impact of
homomorphic encryption on SVM inference. A key observation is the trade-off
between encryption depth and computational efficiency, where higher security
parameters lead to increased execution time and memory consumption. This
behaviour is consistent with the theoretical complexity of homomorphic encryp-
tion, which introduces overhead due to polynomial arithmetic and ciphertext
expansion.
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Algorithm 1 Homomorphic SVM Classification [14,7]

Require: Feature vector x, public key pk, private key sk, degree d (for polynomial
SVM)

Ensure: Classification result y
1: Encrypt Features: cx ← Enc(x, pk) (Equation 22)
2: Encrypt Model Parameters:
3: cw ← Enc(w, pk)
4: cb ← Enc(b, pk)
5: Compute Encrypted Decision Function:
6: if Linear SVM then
7: cf ← Enc(wTx+ b) (Equation 25)
8: elsePolynomial SVM
9: cf ← Enc((wTx+ b)d) (Equation 28)
10: end if
11: Decrypt the Result: f(x)← Dec(cf , sk) (Equation 29)
12: Classify Output:

y ←

{
1, f(x) ≥ 0

−1, f(x) < 0
(Equation 30)

13: return y

Beyond computational cost, the study examines the extent to which en-
crypted inference preserves classification accuracy. By systematically tuning en-
cryption parameters, the analysis explores the balance between security and per-
formance, offering insights into optimising privacy-preserving machine learning.
The following sections present a detailed discussion of these findings, grounded
in both empirical observations and theoretical considerations.

Tables 3 and 2 data gathered. MD is multiplicative depth, SS is scalar size,
FM is first mod size, BS is batch size and RD is the ring dimension. AEA is Av-
erage Encryption Accuracy, NEA is Non-Encrypted Accuracy, AET is Average
Encryption Time, and ANT is Average Non-Encryption Time.

Classification Accuracy Table 4 presents the classification accuracy of plain-
text and encrypted SVM models. The results show that, in this experiment, ho-
momorphic encryption has no significant impact on model accuracy, as both ver-
sions achieve similar performance. This confirms the effectiveness of the CKKS
encryption scheme in preserving the integrity of machine learning inference.

Computational Overhead Homomorphic encryption introduces additional
computational costs due to encryption, encrypted inference, and decryption
steps. Table 5 compares execution times for plaintext and encrypted models.

The encrypted inference process is around 1,000 times slower than plaintext
execution, primarily due to polynomial evaluations performed under encryption.
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Table 2: Results for SVM-Linear
MD SS FM SL BS RD AEA NEA AET ANT Scale up

1 30 60 128 1,024 16,384 0.967 0.967 0.643458 0.000623 1,032.838
2 30 60 128 1,024 16,384 0.967 0.967 0.782 0.000067 1,172.735
3 30 60 128 1,024 16,384 0.967 0.967 0.924 0.000161 1,397.215
4 30 60 128 1,024 16,384 0.967 0.967 1.101 0.000613 1,794.548
5 30 60 128 1,024 16,384 0.967 0.967 1.283 0.000624 2,056.393
6 30 60 128 1,024 16,384 0.967 0.967 1.391 0.000627 2,097.537
7 30 60 128 1,024 16,384 0.967 0.967 1.530 0.000658 2,324.503

1 10 60 128 1,024 16,384 0.817 0.967 0.649 0.000067 9,697.24
1 20 60 128 1,024 16,384 0.967 0.967 0.672 0.000065 10,332.49
1 30 60 128 1,024 16,384 0.967 0.967 0.651 0.000073 8,919.69
1 40 60 128 1,024 16,384 0.967 0.967 0.650 0.000029 22,431.52
1 50 60 128 1,024 16,384 0.967 0.967 0.650 0.000027 24,084.56

1 30 20 128 1,024 16,384 0.967 0.967 0.627 0.000076 8,251.12
1 30 30 128 1,024 16,384 0.967 0.967 0.632 0.000067 9,434.24
1 30 40 128 1,024 16,384 0.967 0.967 0.635 0.000074 8,573.4
1 30 50 128 1,024 16,384 0.967 0.967 0.643 0.000065 9,905.05
1 30 60 128 1,024 16,384 0.967 0.967 0.641 0.000067 9,574.09

1 30 60 192 1,024 16,384 0.967 0.967 0.204 0.000184 1,108.59
1 30 60 256 1,024 16,384 0.967 0.967 0.197 0.000188 1,050.52
1 30 60 512 1,024 16,384 0.967 0.967 0.201 0.000191 1,050.31
1 30 60 1,024 1,024 16,384 0.967 0.967 0.198 0.000193 1,023.06
1 30 60 2,048 1,024 16,384 0.967 0.967 0.202 0.000193 1,048.5
1 30 60 4,096 1,024 16,384 0.967 0.967 0.647 0.000711 910.78

1 30 60 128 128 16,384 0.967 0.967 0.198 0.000109 1,817.4
1 30 60 128 256 16,384 0.967 0.967 0.195 0.000107 1,822.5
1 30 60 128 512 16,384 0.967 0.967 0.196 0.000109 1,808.7
1 30 60 128 1,024 16,384 0.967 0.967 0.641 0.000067 9,574.88
1 30 60 128 2,048 16,384 0.967 0.967 0.206 0.000109 1,878.6
1 30 60 128 4,096 16,384 0.967 0.967 0.213 0.000109 1,945.3

1 30 60 128 1,024 16,384 0.967 0.967 0.638 0.000662 963.82
1 30 60 128 1,024 32,768 0.967 0.967 1.265 0.000624 2,026.52
1 30 60 128 1,024 65,536 0.967 0.967 2.583 0.00067 3,646.68
1 30 60 128 1,024 131,072 0.967 0.967 5.103 0.00065 8,245.34



22 William J Buchanan and Hisham Ali

Table 3: Results for SVM-poly
MD SS FM SL BS RD AEA NEA AET ANT Scale up

1 30 60 128 1,024 16,384 0.967 0.967 0.648 0.000708 915.2
2 30 60 128 1,024 16,384 0.967 0.967 0.783 0.000730 1,093.3
3 30 60 128 1,024 16,384 0.967 0.967 0.919 0.000763 1,405.0
4 30 60 128 1,024 16,384 0.967 0.967 1.097 0.000629 1,527.7
5 30 60 128 1,024 16,384 0.967 0.967 1.288 0.000773 1,665.7
6 30 60 128 1,024 16,384 0.967 0.967 1.399 0.000712 1,954.9
7 30 60 128 1,024 16,384 0.967 0.967 1.562 0.000715 2,248.4

1 10 60 128 1,024 16,384 0.784 0.967 0.649 0.000067 973.8
1 20 60 128 1,024 16,384 0.967 0.967 0.671 0.000065 1,032.4
1 30 60 128 1,024 16,384 0.967 0.967 0.651 0.000073 889.4
1 40 60 128 1,024 16,384 0.967 0.967 0.650 0.000029 1,033.9
1 50 60 128 1,024 16,384 0.967 0.967 0.650 0.000027 1,036.4

1 30 20 128 1,024 16,384 0.967 0.967 0.627 0.000076 927.7
1 30 30 128 1,024 16,384 0.967 0.967 0.632 0.000067 940.1
1 30 40 128 1,024 16,384 0.967 0.967 0.634 0.000074 941.8
1 30 50 128 1,024 16,384 0.967 0.967 0.643 0.000065 998.1
1 30 60 128 1,024 16,384 0.967 0.967 0.641 0.000067 961.3

1 30 60 192 1,024 16,384 0.967 0.967 0.203 0.000184 1,090.9
1 30 60 256 1,024 16,384 0.967 0.967 0.197 0.000188 1,049.6
1 30 60 512 1,024 16,384 0.967 0.967 0.201 0.000191 1,052.2
1 30 60 1,024 1,024 16,384 0.967 0.967 0.197 0.000193 1,023.7
1 30 60 2,048 1,024 16,384 0.967 0.967 0.202 0.000193 1,048.9
1 30 60 4,096 1,024 16,384 0.967 0.967 0.646 0.000711 908.7

1 30 60 128 128 16,384 0.967 0.967 0.641 0.000067 961.3
1 30 60 128 256 16,384 0.967 0.967 0.204 0.000184 1,090.9
1 30 60 128 512 16,384 0.967 0.967 0.197 0.000188 1,049.6
1 30 60 128 1,024 16,384 0.967 0.967 0.201 0.000191 1,052.2
1 30 60 128 2,048 16,384 0.967 0.967 0.198 0.000193 1,023.7
1 30 60 128 4,096 16,384 0.967 0.967 0.202 0.000193 1,048.9

1 30 60 128 1,024 16,384 0.967 0.967 0.680 0.000747 910.6
1 30 60 128 1,024 32,768 0.967 0.967 1.269 0.000668 1,951.5
1 30 60 128 1,024 65,536 0.967 0.967 2.549 0.000604 3,935.1
1 30 60 128 1,024 131,072 0.967 0.967 5.245 0.000687 7,716.4

Table 4: Classification Accuracy Comparison
Model Accuracy (%)

SVM (Plaintext) 96.7

SVM (Encrypted) 96.7

Table 5: Runtime Analysis (sec)
Operation Plaintext Encrypted

Feature Encryption - 0.2029

Inference 0.0002 0.2029

Decryption - 0.0001
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Scalability and Resource Utilisation Scalability ensures stable performance
as data grows, while resource utilisation optimises computational efficiency. Bal-
ancing encryption parameters helps maintain security, accuracy, and perfor-
mance.

Impact of Ring Dimension Size The effect of increasing the ring dimen-
sion on encrypted inference time is shown in Table 6 and Figure 9. Larger ring
dimensions increase computation time due to expanded ciphertext size.

Table 6: Homomorphic Scale-up with Varying Ring Dimensions
MD SS FM SL BS RD SVM-Linear SVM-Poly

1 30 60 128 1024 16K 963.8 910.6
1 30 60 128 1024 32K 2,026.5 1,851.7
1 30 60 128 1024 64K 3,646.7 3,935.1
1 30 60 128 1024 128K 8,245.3 7,716.4
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Fig. 9. Homomorphic Scale-up vs SVM-Linear and SVM-Poly Ring Dimension

Impact of Multiplication Depth on FHE Scale-up Table 7 presents the
effect of increasing multiplication depth D on encrypted inference speed, as
visualised in Figure 10.
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Fig. 10. Homomorphic Scale-up vs SVM-Linear and SVM-Poly MultDepth

Table 7: Homomorphic Scale-up for SVM-Linear and SVM-Poly with Varying
Multiplication Depth

MD SS FM SL BS RD SVM-Linear SVM-Poly

1 30 60 128 1024 16,384 1,032.8 915.2

2 30 60 128 1024 16,384 1,172.7 1,093.3

3 30 60 128 1024 16,384 1,397.2 1,460.5

4 30 60 128 1024 16,384 1,794.5 1,527.7

5 30 60 128 1024 16,384 2,056.4 1,665.7

6 30 60 128 1024 16,384 2,097.5 1,954.9

7 30 60 128 1024 16,384 2,324.5 2,248.4

https://orcid.org/0000-0003-0809-3523
https://orcid.org/0000-0002-0333-4757


Evaluation of Privacy-aware SVM 25

The experimental results highlight key trade-offs in homomorphic encryption
for SVM inference. Table 4 confirms that the encrypted SVM model maintains
96.7% accuracy, similar to the plaintext model, demonstrating that CKKS en-
cryption does not affect classification performance. Table 5 shows that encrypted
inference is approximately 1,000 times slower than plaintext inference, primarily
due to polynomial evaluations under encryption. This slowdown arises from the
computational complexity of homomorphic operations, particularly ciphertext
multiplication and relinearisation [7]. Unlike plaintext arithmetic, where mul-
tiplication is a constant-time operation, homomorphic multiplication involves
modular reductions, rescaling, and key-switching, leading to significant overhead
[34].

Impact of Multiplication Depth Table 7 and Figure 10 reveal that increasing
multiplication depth significantly raises execution time, with SVM-Poly scale-
up increasing from 915.2s at depth 1 to 2248.4s at depth 7. The reason is that
multiplication depth determines the number of sequential homomorphic multi-
plications that can be performed before bootstrapping is required [14]. As the
depth increases:

– Noise Growth. Each multiplication amplifies noise, requiring frequent relin-
earisation and rescaling, which are computationally expensive [7].

–
– Exponentially Larger Ciphertexts. Higher-depth computations require larger

ciphertext modulus values to maintain correctness, increasing memory and
computation costs [35].

–
– Bootstrapping Overhead. If the noise exceeds the threshold, a bootstrapping

step is needed, which further increases execution time [34,36].

These findings emphasise the need for optimisation strategies, including ci-
phertext packing, bootstrapping, and hardware acceleration, to improve the fea-
sibility of encrypted machine learning in real-world applications.

Limitations and Future Work While the proposed approach demonstrates
promising results, certain limitations must be addressed to enhance its practical
applicability. The most significant challenge lies in the high computational cost
of homomorphic encryption, which leads to substantial execution time overhead.
This limitation poses a significant barrier to real-time applications, particularly
in scenarios where rapid inference is required. Furthermore, the large memory
footprint associated with ciphertext storage presents scalability concerns, espe-
cially for deployment on resource-constrained devices.

The increased computational burden can be attributed to the underlying
complexity of homomorphic encryption operations, which involve polynomial
arithmetic over large integer rings [7]. The reliance on number-theoretic trans-
forms (NTTs) for polynomial multiplication introduces an inherent O(nlogn)
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O(nlogn) computational cost, while the quadratic complexity of matrix-vector
operations within SVM classification further compounds execution time [14].
Additionally, the trade-off between multiplication depth and accuracy, dictated
by the hardness of the Ring Learning With Errors (RLWE) problem, influences
both performance and security [27].

To mitigate these challenges, future research should explore hardware accel-
eration techniques, such as leveraging GPUs and FPGAs, to enhance computa-
tional efficiency [37]. Additionally, optimising encryption parameterssuch as ring
dimension size and coefficient modulus selectioncan significantly reduce latency
and memory consumption [7]. Exploring alternative cryptographic schemes, such
as hybrid encryption approaches (Typically, it merges a fast symmetric encryp-
tion scheme with a secure asymmetric encryption scheme to balance efficiency
and security), may further improve the feasibility of encrypted machine learning
in real-world applications [38].

7 Conclusion

The usage of homomorphic encryption within machine learning provides great
hope for privacy-aware learning. Unfortunately, it will come with an overhead of
processing. This paper shows that using an extracted SVM model provides an
excellent method of creating a model which can then be used to process data.
In order to understand the key parameters which affect performance, the paper
evaluates multiplication depth, scale size, first modulus size, security level, batch
size, and ring dimension, along with two different SVM models, SVM-Poly and
SVM-Linear. Overall, the results show that the two main parameters which affect
performance are the ring dimension and the modulus size, and that SVM-Poly
and SVM-Linear show similar performance levels.

8 Appendix A

In applying our SVM implementation, we can use sklearn to train the model
Here:

import pandas as pd

import numpy as np

from sklearn.svm import SVC

# Load the data

X_train =pd.read_csv(’data/credit_approval_train.csv’)

X_test =pd.read_csv(’data/credit_approval_test.csv’)

y_train =pd.read_csv(’data/credit_approval_target_train.csv’)

y_test =pd.read_csv(’data/credit_approval_target_test.csv’)

# Model Training

print("---- Starting Models Training ----")
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print("Starting SVM Linear")

svc_linear =SVC(kernel=’linear’)

svc_linear.fit(X_train, y_train.values.ravel())

print("SVM Linear Completed")

svc_poly =SVC(kernel=’poly’,degree=3,gamma=2)

svc_poly.fit(X_train, y_train.values.ravel())

print("SVM Poly Completed")

print("---- Model Training Completed! ----")

decision_function =svc_linear.decision_function(X_test)

ytestscore =decision_function[0]

decision_function_poly =svc_poly.decision_function(X_test)

ytestscore_poly =decision_function_poly[0]

# Saving Results

np.savetxt("models/weights.txt", svc_linear.coef_)

np.savetxt("models/intercept.txt", svc_linear.intercept_)

np.savetxt("data/ytestscore.txt", [ytestscore])

np.savetxt("models/dual_coef.txt", svc_poly.dual_coef_)

np.savetxt("models/support_vectors.txt", svc_poly.support_vectors_)

np.savetxt("models/intercept_poly.txt", svc_poly.intercept_)

np.savetxt("data/ytestscore_poly.txt", [ytestscore_poly])

This splits the input data into training and test data. The training data
is then used to train the model with a linear and a polynomial SVM training
model. It then outputs the model with a number of weights and intercept values.
Next, we can run our homomorphic encryption method and take the training
data (x), the weights, and the bias for processing [here]:

pt_x =cc.MakeCKKSPackedPlaintext(x)

pt_weights =cc.MakeCKKSPackedPlaintext(weights.tolist())

pt_bias =cc.MakeCKKSPackedPlaintext([intercept])

These values remain as plaintext values. We can then encrypt the training
data with the public key [here]:

ct_x =cc.Encrypt(keys.publicKey, pt_x)

We then create an inner product with the cipher training data and the weights
[here]:

ct_res =cc.EvalInnerProduct(ct_x, pt_weights,n)

An example of implementing a dot product is here. The output is then the
multiplication (inner product) of the cipher values of the training data and the
weights. Next, we can mask out the first value with:

mask =[0] *n
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mask[0] =1

pt_mask =cc.MakeCKKSPackedPlaintext(mask)

ct_res =cc.EvalMult(ct_res, pt_mask)

Then we add the bias:

ct_res =cc.EvalAdd(ct_res, pt_bias)

Finally, we can decrypt the resultant value with the private key:

result =cc.Decrypt(ct_res, keys.secretKey)

9 Appendix B

The model training process was executed using the following command to train
and save the model weights. The encrypted model files were subsequently used
for inference:

python model_training.py

Upon execution, the following output was produced:

---- Starting Models Training ----

Starting SVM Linear

SVM Linear Completed

Starting SVM Poly

SVM Poly Completed

---- Model Training Completed! ----

All results saved successfully!

The dataset required for training is located in the data/ directory. However,
to regenerate the dataset, the following command was executed:

python get_data.py

The script selected the following features:

Total number of features in dataset: 4

Selected: [’sepal length (cm)’, ’sepal width (cm)’, ’petal length (cm)’, ’petal width (cm)’]

The original dataset contained 150 samples with 4 features:

Original data shape: (150, 4)

Features: [’sepal length (cm)’, ’sepal width (cm)’, ’petal length (cm)’, ’petal width (cm)’]

Standardisation was applied, producing the following results:
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Standardisation results:

sepal length (cm): mean=-0.000, std=1.003

sepal width (cm): mean=-0.000, std=1.003

petal length (cm): mean=-0.000, std=1.003

petal width (cm): mean=-0.000, std=1.003

The dataset was then split into training and testing sets:

Data processing completed successfully!

Saved files:

Training samples: 120

Testing samples: 30

Number of selected features: 4

These experiments provide insights into the trade-offs between security and
computational efficiency in privacy-preserving machine learning. The execution
of encrypted inference using

encrypted_svm_linear.py

produced the following output:

---- Testing OpenFHE Encryption ----

Original data: [1.5, 2.0, 3.5]

Decrypted values (real part): [1.4999997346263885, 1.9999997120806627, 3.499999428471009]

---- Running Encrypted Linear SVM ----

Avg Encrypted SVM Accuracy: 0.9667

Avg Non-Encrypted SVM Accuracy: 0.9667

Avg Encrypted Time: 0.2029 sec

Avg Non-Encrypted Time: 0.0002 sec
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