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Abstract—Cryptographic proofs allow researchers to provide
theoretical guarantees on the security that their constructions
provide. A proof of security can completely eliminate a class
of attacks by potential adversaries. Human fallibility, however,
means that even a proof reviewed by experts may still hide flaws
or outright errors. Proof assistants are software tools built for
the purpose of formally verifying each step in a proof, and as
such have the potential to prevent erroneous proofs from being
published and insecure constructions from being implemented.
Unfortunately, existing tooling for verifying cryptographic proofs
has found limited adoption in the cryptographic community, in
part due to concerns with ease of use. We present ProofFrog:
a new tool for verifying cryptographic game-hopping proofs.
ProofFrog is designed with the average cryptographer in mind,
using an imperative syntax similar to C for specifying games and
a syntax for proofs that closely models pen-and-paper arguments.
As opposed to other proof assistant tools which largely operate by
manipulating logical formulae, ProofFrog manipulates abstract
syntax trees (ASTs) into a canonical form to establish indistin-
guishable or equivalent behaviour for pairs of games in a user-
provided sequence. We also detail the domain-specific language
developed for use with the ProofFrog proof engine, the exact
transformations it applies to canonicalize ASTs, and case studies
of verified proofs. A tool like ProofFrog that prioritizes ease of
use can lower the barrier of entry to using computer-verified
proofs and aid in catching insecure constructions before they are
made public.

Index Terms—cryptography, game-hopping, proof verification

I. INTRODUCTION

Computer-aided cryptography aims to increase confidence
in the correctness of cryptographic constructions. The subject
can be broadly categorized into three approaches: verifying
implementation-level security, verifying functional correctness
and efficiency, and verifying design-level security [1]. Design-
level security tooling can then be further divided into those
which work in the computational model versus those which
work in the symbolic model. Tools such as ProVerif [2] and
Tamarin [3] operate in the symbolic model where theorems
are proved assuming atomic data and black-box cryptographic
primitives; such proofs can be more amenable to verification
but also provide weaker security guarantees due to the ide-
alized model. In contrast, the computational model, which
is the focus of this paper, can be less idealized as the
underlying representation of data is considered and primitives
are modelled as explicit probabilistic algorithms.

One technique for proving theorems in the computational
model is game hopping [4], [5]. Game hopping proofs define
security properties via games played between a challenger
and an adversary, where the security property is satisfied so
long as no probabilistic polynomial-time adversary can achieve
a win condition with a non-negligible probability. A game-
hopping proof uses a sequence of games and “hops” from
one game to the next by making small changes to the game’s
definition, where each change alters the output distribution by
a negligible (possibly zero) amount. This technique can help
bound the probability of an adversary winning the initial game
by gradually changing the game into an “unwinnable” game
or one in which the adversary’s probability of success is easy
to calculate.

Tools for game hopping-proofs. There are a variety of tools
that exist for the verification of game-hopping proofs. We
now review two of the more prominent (EasyCrypt [6] and
CryptoVerif [7]) as well as others.

EasyCrypt [6] utilizes an imperative language for specifying
games and a formula language for specifying probabilistic
relational Hoare logic judgments which define security proper-
ties. Actually writing a proof in EasyCrypt requires the use of
their “tactic” language which allows one to manipulate game
syntax and apply logical rules to manipulate the formula being
proved. EasyCrypt itself is very expressive; it allows a user to
prove very general statements, but at the cost of complexity.
The tactic language applies manipulations at a fine level of
detail, where even simple axioms, such as associativity of
group operations, must be explicitly applied each time they
are used. In addition, EasyCrypt proofs can also be difficult to
read, since it can be unclear what formula each tactic is being
applied to unless one steps through the proof interactively in
an editor.

CryptoVerif [7] leans in the opposite direction: rather than
focusing on expressiveness, it focuses on automation. It allows
users to specify games via a process calculus syntax akin to
that of functional programming languages. Proofs can often
be discovered automatically by the proof engine, but it also
supports an interactive mode where a user can explicitly
specify which game transformations they want applied if the
proof engine fails to automatically discover a proof. Similarly
to EasyCrypt, security properties are also expressed as logical



formulae, except in CryptoVerif these formulae are internal
rather than user-defined, and are verified by an internal equa-
tional prover rather than manually by the user.

In addition to the tools previously mentioned, a number
of other tools exist in a variety of languages for different
frameworks. EasyUC [8] formalizes universal composability
— an alternative model outside of the game-based approach
— within EasyCrypt. SSProve [9] formalizes state-separating
proofs — which attempt to structure game-based proofs more
modularly — within Coq. Squirrel [10] develops a higher-
order logic based on the computationally complete symbolic
attacker framework. CryptHol [11] formalizes cryptographic
arguments in Isabelle/HOL. Finally, some efforts have been
made to formalize protocols such as TLS in F* [12], which
is a language that works both as a proof assistant as well as
a general-purpose programming language.

Contributions. This paper introduces ProofFrog1: a new tool
for verifying cryptographic game-hopping proofs. ProofFrog
takes a novel approach in that it focuses purely on high-level
manipulations of games as abstract syntax trees (ASTs) instead
of working at the level of logical formulae. Treating games as
ASTs allows us to leverage techniques from compiler design
and static analysis to prove output equivalence of games,
thereby allowing us to demonstrate the validity of hops in
a game sequence. The main technique used in our engine
is to take pairs of game ASTs and perform a variety of
transformations in an attempt to coerce the two ASTs into
canonical forms, which can then be compared. If the canonical
forms are identical then the two games are equivalent and
our proof engine can assert the validity of the hop. These
transformations are performed to the AST with little user
guidance, which makes writing a proof in many cases as
simple as just specifying which reductions are being leveraged.
This approach also extends to hybrid arguments [13] which
rely on a bounded induction through a sequence of related
reductions. ProofFrog verifies hybrid arguments by ensuring
equivalence of ASTs for each hop within the induction and
for the boundary conditions at both ends.

ProofFrog also targets ease of use: although it implements a
domain-specific language that a user must learn, the language
has an imperative C-like syntax that should be comfortable for
the average cryptographer. The proof syntax is intentionally
designed for improved readability by closely mimicking that
of a typical pen-and-paper proof. Throughout ProofFrog’s
development we assembled a corpus of proofs from The Joy
of Cryptography [14] which were easily translated into Proof-
Frog’s syntax with minimal changes. ProofFrog also supports
type checking functionality to reject ill-formed reductions with
clear explanations of why they are invalid. Beyond its use
as a general proof verification tool, we foresee ProofFrog
being useful as an educational tool for beginners learning
cryptographic proofs.

1The implementation of ProofFrog is available at https://github.com/
ProofFrog/ProofFrog, example files are available at https://github.com/
ProofFrog/examples

The approach of canonicalizing ASTs does have some
limitations; it can be difficult for ProofFrog to reason about
long-term state in games, resulting in potential simplifications
being missed, and limiting the class of games and schemes
which ProofFrog can successfully reason about. In addition,
our work does not provide any formal proofs of correctness
for the transformations ProofFrog uses or for the correctness
of the engine’s implementation. ProofFrog is not alone in
requiring user trust however, previously mentioned tools such
as EasyCrypt and CryptoVerif also rely on their own trusted
computing base.

The rest of the paper proceeds as follows. Section II
discusses necessary background. In Section III and Figure 1,
we provide a high-level overview of ProofFrog’s approach,
accompanied by a worked example proof in Listings 1 to 3.
In Section IV we discuss the preprocessing and postprocessing
steps ProofFrog uses on every proof it parses. Section V
provides a detailed view into ProofFrog’s strategies for canon-
icalizing abstract syntax trees. Section VI elaborates on other
features included as part of ProofFrog. Finally, Section VII
presents case studies and Section VIII concludes with discus-
sion and avenues for future work.

II. BACKGROUND

Like [5], [14], we consider games to be packages of code
that provide oracle methods to an adversary A, which is
simply a program that can call the provided oracle methods
and outputs a bit b ∈ {0, 1}. A pair of games GL, GR given
in a security definition will differ in their behaviour, and the
adversary’s goal is to determine whether they are interacting
with GL or GR. We use the notation G ◦ A to denote the
composition of an adversary with a game, where composition
simply means using the code of G’s oracles to answer A’s
queries. In such a case, we call G the “challenger” to the
adversary A. We use the notation Pr[G ◦ A → b′] to denote
the probability that adversary A outputs bit b′ when given
access to G’s oracles.

Definition 1: The distinguishing advantage of an adversary
A for two games GL and GR is defined as:

Adv(A, GL, GR) = |Pr[GL ◦ A → 1]− Pr[GR ◦ A → 1]|

Definition 2: Two games GL and GR are interchangeable
(denoted GL ≡ GR) if and only if for every adversary A:

Adv(A, GL, GR) = 0

Definition 3: A function f(λ) is negligible if for every
polynomial p there exists an N such that for all λ > N ,
f(λ) < 1

p(λ)

Definition 4: Two games GL and GR are indistinguishable
(with notation GL

∼∼∼ GR) if and only if for all proba-
bilistic polynomial-time adversaries A, Adv(A, GL, GR) is
negligible. Both the running time of A and the distinguishing
advantage are calculated with respect to a security parameter

https://github.com/ProofFrog/ProofFrog
https://github.com/ProofFrog/ProofFrog
https://github.com/ProofFrog/examples
https://github.com/ProofFrog/examples


λ which is provided as input to the adversary A and the games
GL and GR in unary.2

Note that although we only consider security definitions
encoded as pairs of indistinguishable games, this restriction
does not exclude security properties typically defined as win-
lose games, such as unforgeability of a signature scheme or
message authentication code. Any security definition predi-
cated on achieving some win condition can be easily translated
into a pair of games which are identical apart from a differ-
ing CheckWin oracle. One game’s CheckWin oracle will
actually perform the computation to check the win condition
whereas the other will always return false; the adversary can
distinguish between this pair of games if and only if they can
achieve the win condition.

III. HIGH LEVEL BEHAVIOUR

To utilize ProofFrog, a user implements their security
definitions, cryptographic constructions, and proofs in the
ProofFrog domain-specific language, which has a C- or Java-
like syntax (see Appendix C). ProofFrog parses these inputs,
and processes them as shown in in Fig. 1 to assess the validity
of the proof.

In this section, we walk through an example of this domain
specific language encoding a proof that a symmetric encryp-
tion scheme satisfying CPA$ security (ciphertexts are indis-
tinguishable from random, under a chosen plaintext attack) is
also CPA-secure (semantic security (a.k.a., indistinguishability
of ciphertexts) under a chosen plaintext attack).
Defining the primitive. Listing 1 shows the primitive
SymEnc representing a symmetric encryption scheme. The
SymEnc primitive defines internal types Key, Message, and
Ciphertext based on the parameters the SymEnc primitive
is instantiated with, and provides interfaces for the KeyGen,
Enc and Dec methods.
Defining the security property. Listing 2 shows pairs of
games for the CPA$ and CPA security properties. The CPA
security definition defines games named Left and Right,
while the CPA$ security definition defines games named Real
and Random. The CPA games each initialize a long-term
key k from their provided SymEnc scheme, and provide an
oracle Eavesdrop which takes two messages mL and mR and
returns the encryption of mL with k in the Left game and
the encryption of mR with k in the Right game. The Real
CPA$ game initializes a long-term key k from its provided
SymEnc scheme and provides an oracle CTXT which takes a
message m and returns the encryption of m with k, whereas
the Random game omits any initialization, instead simply
returning a random ciphertext whenever its CTXT oracle is
called.
Stating the theorem and proof. Listing 3 contains a re-
ductionist proof which demonstrates that a symmetric en-
cryption scheme which satisfies the CPA$ security property

2ProofFrog is actually agnostic to whether security notions are modeled
asymptotically (polynomial-time adversaries with negligible success probabil-
ity) or concretely (t-time adversarties with ϵ success probability), and simplyly
accumulates the advantage loss incurred with each hop of the proof.

also satisfies the CPA security property. The proof file lists
two reductions that are used in the sequence of games. A
proof consists of a let section, which details the variables,
primitives, and schemes to be used in the proof, an assume
section, which details what indistinguishability assumptions
will be used in the proof, a theorem section, which states
which security definition is to be proved, and a proof section.
The proof section lists a sequence of steps, starting with one
game in the security definition and ending with the other. Each
step consists of either a game, a reduction composed with a
game, or a block of games used in an inductive argument.
Checking a proof. ProofFrog will iterate through the steps of
the proof and check that each step is either indistinguishable
or interchangeable with its neighbours. If all these checks
pass then ProofFrog accepts, otherwise it rejects and indicates
which step could not be verified.

To verify indistinguishability between pairs of games,
ProofFrog will simply check that the two games are listed as
indistinguishable by assumption in the proof file. Otherwise,
ProofFrog will verify that the two games are interchangeable.
To do so, it attempts to coerce each game into a canonical
form, such that interchangeability can be established via
syntactic equivalence. Coercing each game into a canonical
form typically requires composing a game and a reduction
into a single game, then applying transformations to the ASTs
so that ASTs can be appropriately compared. In addition,
ProofFrog will rewrite its parameters in terms of those defined
in the proof.

In Section IV, we will explain preprocessing and post-
processing steps applied to the games in a proof to prepare
them for canonicalization; we also give specific examples with
reference to the proof given in Listing 3. Then in Section V,
we examine the transformations used to coerce an abstract
syntax tree into a canonical form.

IV. PREPROCESSING AND POSTPROCESSING STEPS

When verifying a proof, ProofFrog will attempt to demon-
strate that hops without reductions are interchangeable and
that hops with reductions are indistinguishable by some listed
assumption. For the CPA$ =⇒ CPA example of Listing 3,
ProofFrog’s objective is to verify that the hops from step 1 to
step 2, step 3 to step 4, and step 5 to step 6 are all between
interchangeable games, and that the hops from step 2 to step 3
and from step 4 to step 5 are indistinguishable by assumption.
Typically, verifying interchangeability will require at least
some canonicalizing transformations, however this proof is
simple enough to be verified simply using only the engine’s
preprocessing and postprocessing steps.

A. Verifying Indistinguishability

ProofFrog judges two steps in a hop listed in the games
section of the proof file to be indistinguishable if all of the
following conditions are satisfied:

1) Both steps in the hop use a reduction.
2) The steps are identical apart from changing which game

the reduction is composed with.



Fig. 1. ProofFrog’s algorithm for checking indistinguishability or interchangeability of two hops in a game-hopping proof



Primitive SymEnc(Set M, Set C, Set K) {
Set Message = M;
Set Ciphertext = C;
Set Key = K;
Key KeyGen();
Ciphertext Enc(Key k, Message m);
Message Dec(Key k, Ciphertext c);

}

Listing 1: ProofFrog definition of SymEnc primitive

Game Real(SymEnc E) {
E.Key k;
Void Initialize() {
k = E.KeyGen();

}
E.Ciphertext CTXT(E.Message m) {
return E.Enc(k, m);

}
}
Game Random(SymEnc E) {

E.Key k;
Void Initialize() {
k = E.KeyGen();

}
E.Ciphertext CTXT(E.Message m) {
E.Ciphertext c <- E.Ciphertext;
return c;

}
}
export as CPA$;

Game Left(SymEnc E) {
E.Key k;
Void Initialize() {
k = E.KeyGen();

}
E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {
return E.Enc(k, mL);

}
}
Game Right(SymEnc E) {

E.Key k;
Void Initialize() {
k = E.KeyGen();

}
E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {
return E.Enc(k, mR);

}
}
export as CPA;

Listing 2: ProofFrog definitions of CPA$ (left) and CPA (right) security games for symmetric encryption

Reduction R1(SymEnc E1) compose CPA$(E1) against CPA(E1).Adversary {
E1.Ciphertext Eavesdrop(E1.Message mL, E1.Message mR) {
return challenger.CTXT(mL);

}
}
Reduction R2(SymEnc E2) compose CPA$(E2) against CPA(E2).Adversary {

E2.Ciphertext Eavesdrop(E2.Message mL, E2.Message mR) {
return challenger.CTXT(mR);

}
}
proof:
let:

Set MessageSpace;
Set CiphertextSpace;
Set KeySpace;
SymEnc E = SymEnc(MessageSpace, CiphertextSpace, KeySpace);

assume:
CPA$(E);

theorem:
CPA(E);

games:
CPA(E).Left against CPA(E).Adversary; // Step 1
CPA$(E).Real compose R1(E) against CPA(E).Adversary; // Step 2
CPA$(E).Random compose R1(E) against CPA(E).Adversary; // Step 3
CPA$(E).Random compose R2(E) against CPA(E).Adversary; // Step 4
CPA$(E).Real compose R2(E) against CPA(E).Adversary; // Step 5
CPA(E).Right against CPA(E).Adversary; // Step 6

Listing 3: ProofFrog proof that a CPA$-secure symmetric encryption scheme is CPA-secure



3) The two games the reduction is composed with in the
two steps are the pair of games in a security definition.

4) This security definition appears in the assume section
of the proof with identical parameters.

For example, the second hop in Listing 3,
from CPA$(E).Real compose R1(E) to
CPA$(E).Random compose R1(E) satisfies all four of
these criteria, and hence is a valid hop by indistinguishability.

On the other hand, if anything else changes in the
step, e.g, the reduction being used, the reduction’s param-
eters, the challenger’s parameters, etc., or, if the security
definition does not appear in the assumptions section,
then this step cannot be assumed by indistinguishability
and must be checked for interchangeability. For exam-
ple, the hop from CPA$(E).Random compose R1(E) to
CPA$(E).Random compose R2(E) must be checked for
interchangeability because the reduction being applied is not
the same in each step.

B. Verifying Interchangeability

To validate interchangeability, ProofFrog transforms steps
involving reductions into single games, so that the AST can be
simplified into a canonical form and then compared. Validating
a hop like CPA(S).Left to CPA$(E).Real compose
R1(E) (step 1 to step 2 in Listing 3) requires taking the
definitions of CPA$(E).Real and R1(E) and composing
them into a single game.

Before performing composition, the
InstantiationTransformer will create copies of
definitions that are parameterized and replace references to
these parameters with values that are defined in the proof’s
let section. As an example, consider the definition SymEnc
E = SymEnc(MessageSpace, CiphertextSpace,
KeySpace). ProofFrog will associate with the value E
a copy of the SymEnc primitive AST, where any internal
references to the parameters in the SymEnc definition
(i.e. M, C, K) are replaced with MessageSpace,
CiphertextSpace, and KeySpace respectively. The
InstantiationTransformer is also applied for game
and reduction definitions: the value CPA(E).Left is
associated with the CPA left game AST. This AST may
also refer to type fields of E such as E.Key which are
rewritten with their associated definitions in the let section.
When all references to parameters have been rewritten
in terms of variables defined in the let section, these
definition copies have their parameters removed. The
InstantiationTransformer helps ensure consistency
in parameterized variables across ASTs: for example, two
games may both be parameterized with a SymEnc parameter
named E, but if the steps instantiate the games with two
different schemes, then it would be a mistake to compare the
ASTs as equal just because the parameter name is the same.
Creating the Inlined Game. The
InstantiationTransformer alone is enough to
prepare a game AST representing CPA(E).Left. The task
of composing CPA$(E).Real and R1(E) into a single

game, which we call the inlined game, remains. To do so,
we use the AST associated with R1(E) as a base to modify,
since R1(E) already defines the oracles that the adversary
would expect when interacting with a single game.

The first step is to combine states together: each field
included in the AST associated with CPA$(E).Real and the
AST associated with R1(E) should be included in the inlined
game. Variable renaming is undertaken to ensure no conflicts:
if both the reduction and the challenger have a field k, it could
be ambiguous which field is being referred to in the inlined
game. To avoid conflicts, each field f from the challenger
is renamed to challenger@f, and any references to the
field in the challenger AST are rewritten accordingly before
composition. The @ symbol is not permitted in variable names,
so these names are guaranteed to be conflict-free.

The second step is to combine Initialize methods
together. Games have Initialize methods with empty pa-
rameters and the option to return a value which is given to the
adversary. A reduction can access this state from the challenger
by accepting a parameter in its Initialize method; For
the inlined game to compare identically to a regular game,
ProofFrog must ensure its Initialize method is parame-
terless. When combining the challenger’s and the reduction’s
Initialize methods together, ProofFrog will automatically
insert a call to challenger.Initialize() as the first
statement in the reduction’s Initialize method. If the
reduction’s Initialize method takes in a parameter, Proof-
Frog will also create a local variable to capture the return value
of challenger.Initialize() with the same name as
the parameter, which ensures that the remaining statements
function as expected. This transformation to the reduction’s
Initialize method ensures that when ProofFrog begins
inlining challenger method calls, the inlined game will consist
of an Initialize method with no parameters, and method
signatures that match those expected by the adversary.

Finally, to actually create the inlined game AST, ProofFrog
must remove any calls to challenger oracles inside the reduc-
tion. ProofFrog uses a method inlining strategy to achieve this.
The InlineTransformer searches each method in the re-
duction to find the first function call expression to a challenger
oracle. It then uses the InstantiationTransformer
to create a copy of the challenger oracle’s AST where the
parameters have been replaced with the arguments provided to
the call. Additionally, the InlineTransformer performs
renaming of local variables in the challenger oracle’s AST
by prefixing them with the oracle name and the @ symbol,
so as to avoid conflicts when inlining the code into the
reduction’s method. If the reduction calls the oracle solely
for its side effects, then the transformation is completed
by replacing the function call with the statements from
the modified oracle AST. On the other hand, if the result
of the challenger oracle call is saved to a local variable,
then the InlineTransformer will replace the challenger
function call expression in the reduction’s method with the
expression found in the return statement of the oracle body,
and then remove the associated return statement from the



oracle before inserting the prior statements into the reduction.
For simplicity, ProofFrog assumes that return statements are
only placed as the final statement for any challenger oracles.
The InlineTransformer repeats this process of inlining
oracle calls until there are none left in any methods of the
inlined game AST.

After completing each of these steps—combining the
states of the challenger and the reduction, combining the
Initialize methods, and inlining any challenger calls—
the inlined game AST is now a complete representation of the
behaviour of CPA$(E).Real compose R1(E), written
as a single game. From here, canonicalizing transformations
would typically be applied to simplify the AST representations
of both CPA(E).Left and CPA$(E).Real compose
R1(E). However, none of the steps in this proof require any
canonicalizing transformations.

We now discuss the final postprocessing step necessary for
verifying all steps in this proof.

Normalizing Field and Variable Names. The inlined
game AST and the AST for CPA(E).Left do not
compare as identical after preprocessing, because variable
names are mismatched. The inlined game uses the vari-
able name challenger@k for its long-term key whereas
CPA(E).Left simply uses k. To address this issue, Proof-
Frog normalizes the names of the fields for all games and
the names of the variables for all oracles contained within
each game. Each field’s name is converted to fieldx, where
x is an index representing the order of occurrence when
traversing the oracles of the game AST. Variables are renamed
similarly. This canonicalization of variables is enough for
CPA(E).Left and the inlined game AST to match iden-
tically. These preprocessing and postprocessing actions are
enough to validate all interchangeability steps in this proof.

V. TRANSFORMATIONS

While the preprocessing and postprocessing actions previ-
ously described were enough to verify the proof in Listing 3,
more complex proofs may require more additional simplifi-
cation techniques to assess interchangeability of games. This
section will detail the various transformations used by Proof-
Frog to validate interchangeability of games3. For explana-
tory purposes, we have grouped these transformations into
three broad categories: expression level transformations, which
rewrite expressions in simpler forms, variable level transfor-
mations, which concern the manipulation of variables with
multiple representations into a single form, and statement level
transformations, which concern the ordering, simplification,
and removal of statements or blocks within the program.

A. Expression Level Transformations

Symbolic Computation. SymPy — a library developed for
symbolic computation and computer algebra in Python [15] —
is used in ProofFrog for simplifying mathematical expressions.

3For an alternative presentation where transformations are discussed in the
context of the proofs they were developed for, see the accompanying thesis.

For an expression to be eligible, it must be an addition,
subtraction, multiplication, or division operation applied to
two values. These values must either be integers, or variables
with an integer type. For each variable encountered with an
integer type, ProofFrog will create a corresponding SymPy
symbol. Then, when an expression like lambda + lambda
is encountered, the same SymPy symbol is produced for both
variables, which allows SymPy to simplify to a value like
2 * lambda. Variables with differing names will produce
differing symbols which SymPy will not collapse. If an eligible
expression can be simplified, we then convert the SymPy AST
into the equivalent ProofFrog AST, and replace the expression
node with a simplified node. This transformation is mainly
used in ProofFrog to canonicalize the length parameterizations
for BitStrings, but can also simplify numerical expressions
when relevant.

Simplified Not Operations. Consider an oracle f which
returns some equality check A == B. A reduction may wish
to use the negation of this equality check by calling !f().
Inlining yields the expression !(A == B), which is canoni-
calized to A != B.

User Assumptions. In addition to its automatic transforma-
tions, ProofFrog allows users to specify assumptions between
hops that can aid the engine in canonicalization. These as-
sumptions take the form of boolean statements about game
variables. If a particular expression in the game is identical to
a provided assumption, then the value can be directly replaced
with true. Otherwise, ProofFrog will delegate to Z3, a sat-
isfiability modulo theories (SMT) solver used extensively for
static analysis of programs which can in many cases determine
whether logical formulae are satisfiable or unsatisfiable [16].
The user assumption will be converted to a Z3 formula to
determine if any expressions are provably true or false under
this assumption.

When evaluating a formula, Z3 will produce one of three
results: a satisfying assignment to the variables, a certificate
that the formula is unsatisfiable, or unknown. There are two
cases in which we can simplify an expression e by using an
assumption a. First, if a =⇒ e is a tautology, then since a is
assumed to be true, we must have that e is true as well. Second,
if a ∧ e is a contradiction (unsatisfiable, in Z3 parlance) then
since a is assumed to be true, we must have that e is false.
Since Z3 does not have the ability to evaluate tautologies, we
can instead use Z3 to evaluate ¬(a =⇒ e). If this formula is
unsatisfiable, we can directly replace e with true. Otherwise,
we can evaluate a∧e, and replace e with false if Z3 deems
the formula unsatisfiable. The use of Z3 allows us to replace
some conditionals directly with boolean values which can aid
in further simplification of games.

Allowing user-specification of assumptions does add some
risk, as it is possible for a user to specify a false assumption
and cause ProofFrog to come to an invalid conclusion. Any
proofs that utilize user-specified assumptions would require a
reader to check each assumption used and come to their own
conclusion about the assumption’s correctness.

https://uwspace.uwaterloo.ca/items/6fa92b56-5432-465b-ba0e-6364fd05e301


B. Variable Level Transformations

Copy Propagation. Copy propagation is a technique used
in compiler optimizations to reduce redundant computations.
Some compiler transformations can introduce variables which
are direct copies of others; copy propagation acts to remove
such direct copies, replacing them with the original defini-
tion where possible to improve run-time performance [17,
Chapter 9.1.5]. A few of ProofFrog’s transformations similarly
introduce copies of variables, such as method inlining. If a
method g returns a variable x and another method f contains
the statement y = g();, then inlining will result in the
statements of g followed by the statement y = x;. The
variable y is redundant as it will contain the same value as
x for its entire lifetime. The copy propagation technique is
repurposed in ProofFrog for canonicalizing ASTs instead of
improving run-time performance. The engine searches in code
blocks for direct copies: those which define a new variable
(say, b) from an already existing variable (say, a) in the same
scope. If the original variable a is never again used for the
duration of its scope, then b “took over” the value of a from
that point onwards. As a result, ProofFrog can remove the
assignment to the variable b and rename any of its usages to
a. This transformation preserves the behaviour of the code,
while removing unnecessary duplicated variables.

Verbose Tuple Elimination. ProofFrog supports tuple types
to allow for multiple return values from methods or oracles.
However, during the process of inlining, tuples may become
“verbose”, in that expressions may appear in the form

[t[0], t[1], ..., t[n]]

instead of simply t. Verbose tuples can appear when an oracle
takes in multiple arguments and packages them into a tuple. If
a reduction calling this oracle passes the individual values of
a tuple, then inlining yields a verbose tuple expression. Proof-
Frog detects verbose tuple expressions where each indexed
value is a constant integer and rewrites the expression to just
use the tuple itself.

Tuple Expansion. This transformation takes tuples and
rewrites them in terms of individual variables. For example,
a tuple like Int * Int t = [a, b] would be rewritten
into two individual statements: Int t@0 = a; and Int
t@1 = b;. For a particular tuple to be eligible for expansion,
it must satisfy two conditions:

1) Whenever an element of the tuple is read or written to,
the index used must be a constant integer.

2) Whenever the tuple itself is assigned, the value must
also be a tuple AST node.

If either of these are violated, the tuple will not be expanded
by ProofFrog.

For each tuple that is considered eligible, the transformer
will perform the following transformations:

1) Rewrite t = [v0, v1, ..., vn] into n + 1
statements: t@0 = v0; t@1 = v1; ... t@n =
vn;.

2) Rewrite t[i] where i is a constant integer into t@i
3) Rewrite any usages of t itself into [t@0, t@1,

..., t@n].
Each of these transformations will apply for the entirety of

t’s scope. This yields a new AST that has identical behaviour
to the original, except t has been removed.
Slice Simplification. ProofFrog provides a BitString type
parameterized by its length, as well as concatenation and
slice operations to manipulate BitStrings. Some reductions
result in situations like the following:

BitString<lambda> a <- BitString<lambda>;
BitString<lambda> b <- BitString<lambda>;
BitString<2 * lambda> r = a || b;
BitString<lambda> x = r[0 : lambda];
BitString<lambda> y = r[lambda : 2*lambda];

The values x and y are directly extracted from r and will
maintain the same values as a and b. To handle such cases,
ProofFrog searches for assignments to variables that are the
concatenation of two bitstrings (say r = a || b). Then, the
transformer searches subsequent statements in that block for
a statement satisfying a few conditions:

• The statement must create a new variable (say x) as the
result of a slice of r.

• The statement must slice out exactly one of the previously
defined variables (either a or b) from r.

• No changes should have been made to the original
variable (a or b) or the concatenated variable r between
the creation of r and the the creation of x.

If all of these conditions are satisfied, then ProofFrog will
instead assign x directly to the value that was sliced out of it,
whether that is a or b.
Duplicated Field Removal. Inlining reductions may result in
duplicated fields: for example, if a game generates a public
key during initialization and returns this value to a reduction,
then the inlined game will contain two fields storing the same
public key. To detect duplicated fields, ProofFrog will begin
under the assumption that all pairs of fields (f1, f2) with
the same type are duplicates. It will then iterate through
each block attempting to pair statements that modify either
f1 or f2 with a subsequent statement assigning the other
field the same value. Assume without loss of generality that
ProofFrog encounters the statement f1 = e;, where e is
some expression. ProofFrog will iterate through subsequent
statements for one of two conditions:

1) f2 = f1;, where neither f2 nor f1 have been used
in any intermediate statements between f1 = e; and
f2 = f1;.

2) f2 = e;, where e does not contain a function call,
neither f2 nor f1 have been used, and none of the
variables in e have been modified in any intermediate
statements between f1 = e; and f2 = e;.

If neither of these conditions can be satisfied, then f1 and f2
are deemed not duplicates, and the next pair is inspected. On
the other hand, if these conditions are satisfied each time f1



or f2 is modified, then f1 and f2 are duplicates, and each
subsequent statement that was found is denoted as a “matched
statement”. ProofFrog then transforms the AST by removing
f2’s definition in the game’s list of fields, replacing all uses
of f2 with f1, and removing all matched statements from the
AST.

C. Statement Level Transformations

Statement Sorting. Two ASTs may have identical outputs
with differing statement orderings. For example, in the fol-
lowing code block, the order of the variable declarations can
be swapped without changing the behaviour of the program.

x = 1;
y = 2;
return x + y;

Inlining games into reductions can result in situations like
this, where the two ASTs have identical output but the act of
writing a reduction forces a particular ordering of statements
which differs from the game in the next hop. To handle
such cases, ProofFrog canonicalizes ordering of statements.
ProofFrog’s strategy to ensure that interchangeable ASTs
have identical statement orderings is achieved via creating a
dependency graph for each block followed by a topological
sorting of the statements. While the topological sort cannot
guarantee a canonical ordering of statements for every block,
it has proven effective for the suite of proofs it has been
tested upon. ProofFrog will consider a statement s in a block
to depend on a prior statement t if any of the following
conditions are satisfied:

1) If s is a return statement or contains a return statement
in a nested block and t is a return statement or contains
a return statement in a nested block, then s depends on
t.

2) If s is a return statement or contains a return statement
in a nested block and t assigns to a field, then s depends
on t.

3) If s references a variable a and t also references a,
then s depends on t.

The first point is a dependence as reordering statements
which contain returns (if-statements, for example), could
result in a different return value if both statements evaluate
to true. The second point is a dependence because returning
before assigning to fields could alter the results of later oracle
calls. Finally, the third point is a dependence as reordering
statements could change the values of variables and hence the
output of an oracle.

The dependency graph is then utilized in Algorithm 1 to
sort the statements inside a block. First, a depth-first traversal
of the dependency graph starting from the first non-nested
return statement is used to create a list of statements.
The neighbor nodes are traversed according to the order of
appearance of variables in the current node’s corresponding
statement. Assuming that the two games contain an identical
list of statements up to variable renaming, then the traversal

will produce the same ordering of statements for both games.
This step provides a well-defined ordering between statements
in situations where dependencies do not, such as between
the statements x = 1; and y = 2; in our short example
above. We then use Kahn’s algorithm to topologically sort
the list of statements created by the traversal according to the
dependency graph [18]. Our implementation of the loop in line
15 uses the statement ordering from the depth-first traversal,
so if Khan’s algorithm does not otherwise prefer one statement
over another, they will be enqueued according to the depth-first
traversal ordering. This provides additional constraints on the
canonical ordering with a lower priority than the dependency
graph. This approach yields a canonical ordering of statements
for any block that contains a return statement.

Algorithm 1 Topological Sort
Require: The block’s final statement is a return statement

1: visited_statements = empty stack
2: Generate dependency graph G for the block
3: Perform depth first traversal according to G starting with

the return statement. Push to visited_statements
for each statement visited.

4: kahn_queue = empty queue
5: sorted_statements = empty list
6: while visited_statements is not empty do
7: Pop s from visited_statements
8: if s has no dependencies in G then
9: Enqueue statement to kahn_queue

10: end if
11: end while
12: while kahn_queue is not empty do
13: Dequeue s from kahn_queue
14: Append s to sorted_statements
15: for each edge (r, s) in G do
16: Remove (r, s) in G
17: if r has no out-edges then
18: Enqueue r to kahn_queue
19: end if
20: end for
21: end while
22: return sorted_statements

There are some limitations with this approach; mainly, if
the block does not end with a return statement, then there is
no clear statement from which the traversal should originate.
A block like { a = 1; b = 2; }, which depends on
variables declared outside of the block, can only be canonically
reordered with further context that a block-level analysis
cannot provide. Furthermore, it is possible that statements
may differ while still being interchangeable: for example, a
game that contains the statement return a + b will have
a different traversal than one with the statement return
b + a. Different traversals will result in different statement
orderings which would prevent the ASTs from becoming
identical, even though the behaviour of each statement is the
same. Hence, statements still require canonicalization on an



individual level or else the sorting procedure is ineffective.
Nevertheless, this sorting approach suffices for all proofs that
were implemented as part of ProofFrog’s test suite.
Unreachable Code Elimination. After performing inlin-
ing, it may be possible to determine that some code is
unreachable. For example, in the following code block, if
challenger.f() simplifies to the condition x <= 0 then
all subsequent statements are unreachable:

if (x > 0) {
return 1;

}
if (challenger.f(x)) {

return 2;
}
...

Determining that subsequent statements are unreachable re-
quires reasoning about when the disjunction of if-statements
with unconditional returns forms a tautology. For this task,
ProofFrog also delegates to Z3; the algorithm is described in
Algorithm 2.

The goal is to determine at which point in a block a return
statement will definitely have been reached. Essentially, we
build up a formula f which is a disjunction of all conditions
so far that would have caused a return. If we ever encounter
an if-statement with an else branch where all blocks have an
unconditional return, then we know that all statements after
this point are unreachable. Otherwise, we take the current
if or else-if condition and convert it into a Z3 formula for
use. If Z3 can reason directly about the types and operations
inside the condition (for example, integers and operations over
integers), then these are encoded directly in the Z3 formula.
However, with ProofFrog allowing abstract user-defined types,
there may be conditions using types and operations that Z3
cannot reason about. Nevertheless, since the condition in an
if-statement is guaranteed to return a boolean, we can map
the condition itself, in its entirety, to a boolean in Z3. Each
condition can therefore be mapped to a Z3 formula, and if its
corresponding if-statement contains an unconditional return,
then we add it to f ’s ongoing disjunction. The list l is used
to keep track of the prior conditions in an if/else-if statement:
for the current condition c in a chain of if/else-if conditions
to cause a return, we must have that c is true while all prior
conditions were false.

Finally, the var_version_map assigns a version number
to each variable, which our Z3 formula conversion uses when
mapping values like c in S to Z3 booleans. If we encounter
c in S followed by !(c in S), then these should map
into a Z3 boolean and the negation of that same Z3 boolean.
On the other hand, if c or S have been assigned to in
between these two expressions, then we cannot guarantee
that the operation c in S would have the same value in
each expression, hence we must map them to different Z3
variables. We ensure that after processing each statement the
var_version_map is updated for any variables that may
have changed by incrementing each assigned variable’s version

Algorithm 2 Remove Unreachable Code
1: Assign f to an empty Z3 formula
2: Collect all variable names used in the block
3: Initialize var_version_map as a map from variable

names to integers, all set to 0
4: for each statement s in block’s statements do
5: if s is not an if-statement then
6: Increment versions of each variable assigned to in

s in the var_version_map
7: continue
8: end if
9: if s contains an else branch and all blocks have

unconditional returns then
10: return all statements up to and including s
11: end if
12: l := empty list of Z3 formulas
13: for each condition c in s’s conditions do
14: Convert c into a Z3 formula c using the

var_version_map
15: if c’s associated block contains an unconditional

return then
16: f := f ∨ (¬l0 ∧ ¬l1 ∧ ... ∧ ¬ln ∧ c), where n

is the length of l
17: end if
18: Push c onto l
19: end for
20: Increment versions of each variable assigned to in s

in the var_version_map
21: if Z3 deems ¬f unsatisfiable then
22: return all statements up to and including s
23: end if
24: end for
25: return unchanged block

number. This ensures that future conversions from AST to Z3
formula will use different Z3 variables as necessary. Then, to
determine if the formula is a tautology, we use Z3 to evaluate
if the negation is unsatisfiable. If ¬f is unsatisfiable, then
some condition would have caused a return, and all statements
afterwards are unreachable.

Branch Elimination. User assumptions may result in branches
with trivial conditions like if (true) or if (false)
which can be further simplified. When encountering if-
statements where the truth values of the conditions are explic-
itly known, ProofFrog takes the following steps for canonical-
ization:

• A branch where the condition is false has its condition
and associated block removed. If there are no else-if
or else branches, then the if-statement can be removed
entirely.

• A branch where the condition is true has all subsequent
else-if and else blocks removed.

• If the first condition in an if-statement is true, then
the if-statement in its entirety can be replaced with the



contents of the if-statement’s first block.
• If all prior conditions have been determined to be false,

and only an else block remains, the if-statement is
replaced with the contents of the else block.

Unnecessary Field Removal. After removing branches, it
is possible that some fields used in the program become
unnecessary in that they cannot effect the output of any
oracle’s return statement. Whenever this is the case we can
remove the field and any statements that reference the field
without changing the game’s overall behaviour. ProofFrog
achieves this by walking through the statements in a block
in reverse, maintaining a list of necessary variables which
is initially empty. All variables used in return statement are
added to this list. In addition, whenever a variables from this
is assigned to, all variables used in the computation are also
added to the necessary variable list. Finally, when handling
nested blocks such as if-statements, any variables mentioned in
the conditions are treated as necessary and the process begins
recursively on all nested blocks. ProofFrog will concatenate
necessary variable lists after walking through all the methods
defined in a game; any field that does not appear in this
list can be deemed unnecessary. After collecting the list of
unnecessary fields, ProofFrog will remove each field from
the game’s AST and remove any statements that the field
occurs in. In the case of nested statements like if-statements,
the transformer will remove at the highest level of specificity
possible. For example, if the field is part of a condition, that
condition and associated block are removed. Whereas, if the
field only appears in one of the if-statement’s blocks, then just
that statement from that block will be removed.
Branch Collapsing. Removing unnecessary fields can result
in if-statements where multiple conditions execute the same
block of code; in such cases ProofFrog will ensure that a
repeated block of code only appears once. The transformer
applies the following AST manipulations:

• Two adjacent if or else-if conditions with the same block
can be collapsed into one block, where the new condition
is the logical disjunction of the previous two conditions.

• If an if/else-if condition is adjacent to an else block
which executes the same block of code, then that if/else-
if condition and its associated block can be removed, and
collapsed into the else block.

• If all conditions within an if-statement execute the same
block of code b, and the if-statement contains an else
clause, then the entire statement can be transformed into
if (true) { b }.

Each of these manipulations only apply so long as the boolean
conditions in question do not contain function calls. If a condi-
tion contains a function call, then it may have side effects, and
hence collapsing multiple blocks together could change the
behaviour of the program. Assuming that the conditions do not
contain function calls, then the first transformation preserves
behaviour because the block will be executed if either of
the two conditions are satisfied. The second transformation
preserves behaviour because in both cases, the block will be

executed if all prior conditions are evaluated to be false.
Finally, the third transformation preserves behaviour because
in either representation, the if-statement will always execute
the block b.

VI. OTHER FUNCTIONALITIES

A. Induction Arguments

In the basic example given in Listing 3, ProofFrog simply
checks each pair of games listed in the sequence for in-
terchangeability or indistinguishability. More complex proofs
may require hybrid arguments involving a variable number of
games each of which is parameterized by a counter. ProofFrog
supports this via an induction block. In order to verify
a hybrid argument in an induction block, ProofFrog will
proceeds as follows.

First, it will verify the base case of the induction. To do
so, ProofFrog will create an AST corresponding to the first
game in the block where the induction variable is substituted
with its starting value. This AST, after applying the standard
canonicalization procedures, must be interchangeable with the
AST created from the game immediately prior to the induction.

Next, ProofFrog will check that each pair of games listed
inside the induction block are indistinguishable or inter-
changeable. For these checks, the induction counter variable i
is left untouched when instantiating the games, since the hop
should verify for a general i value. ProofFrog will then check
the inductive step: it will ensure that the last game in the block
(instantiated with induction variable i) is interchangeable with
the first game in the block instantiated with i + 1.

Finally, ProofFrog will check the ending case of the induc-
tion. To do so ProofFrog will create an AST corresponding
to the last game in the block where the induction variable
is substituted with its ending value. This AST must be
interchangeable with the AST created from the game listed
immediately after the induction. Often, the ending value will
be defined in the let section (say, q) with an explicit
assumption that the adversary makes less than q calls to the
game’s oracles. Verifying each of these hops is what allows
ProofFrog to ensure the correctness of a hybrid argument. The
source code for a proof using an induction argument (described
informally in Section VII-B) is given in Appendix B.

B. Condition Equivalence

ProofFrog also supports a method to verify hops outside
of direct AST comparison. If two ASTs differ solely with
respect to the conditions in their if-statements, then ProofFrog
will attempt to use Z3 to check equivalence between any if-
statements with differing conditions. To do so, it will attempt
to create Z3 formulas for each pair of differing conditions c1
and c2. If either condition uses types unsupported by Z3, then
the attempt will immediately abort and the hop (and hence the
overall proof) will be rejected. If Z3 formulas can be created
for the conditions c1 and c2, then ProofFrog will use Z3 to
evaluate the formula ¬(c1 == c2). If this formula is deemed
unsatisfiable, then we can conclude that c1 and c2 are actually
equivalent, and move on to the next condition. Otherwise,



if the formula is satisfiable, or Z3 deems the satisfiability
unknown, then the hop is rejected. If all conditions are deemed
equivalent by Z3, then we conclude the hop is valid, even
though the ASTs are not strictly equivalent. This additional
logic surrounding equivalence of conditions has been useful
when verifying some steps in proofs using hybrid arguments.

C. Type Checking

ProofFrog also supports type checking functionality to
ensure that user-written proofs are well-formed. While the
ProofFrog language does not have a formal semantics defined,
the type checking ensures basic properties of correctness
including but not limited to:

• Variable definition before use.
• Correct typing of operators.
• Correct typing and arity of function arguments.
• Game hops and reductions providing and using the ex-

pected oracles.
• Operations on BitString types such as slicing and

concatenation accounting for the length parameterization.
Even when ProofFrog cannot verify a user’s proof via its

automatic canonicalizations, it can still be of use in checking
that a proof is syntactically and semantically well-formed.

VII. CASE STUDIES

This section describes some of the more challenging proofs
which ProofFrog was able to verify in The Joy of Cryptogra-
phy [14] and the techniques the engine uses during verification.
A more complete list containing formalized primitives, secu-
rity definitions, and verified proofs is given in Appendix A.

A. CCA security of Encrypt-then-MAC

The encrypt-then-MAC (EtM) construction builds a CCA-
secure symmetric encryption scheme from a CPA-secure sym-
metric encryption scheme and a secure message authentication
code (MAC). EtM’s encryption algorithm consists of encrypt-
ing the message with the CPA-secure scheme and then tagging
this ciphertext with the MAC, and the decryption algorithm
simply verifies the tag before decrypting the ciphertext. The
indistinguishability-style security definition for MACs consists
of a real game with oracles GetTag and CheckTag which
allow one to tag a message and check whether a tag is valid
for a given message respectively, and a fake game where the
CheckTag oracle returns true if and only if the message
had previously been provided to GetTag; an adversary could
only distinguish between these two games by forging a MAC.

At a high level, the proof argues that since the MAC is
unforgeable, EtM’s decryption algorithm would be neglibly
different by just returning false for all queries. From there,
a reduction to the CPA-security of the underlying scheme
completes the proof. Along with the standard transformations
such as statement sorting, copy propagation, and tuple expan-
sion, this proof applies the less frequent transformations which
detect duplicated fields and unreachable code. After applying
a reduction to the MAC’s fake security game when generating
and checking tags, the proof engine is able to detect that the

set used for maintaining which ciphertexts have been returned
from the encryption oracle and the set used for maintaining
which messages have been tagged have identical values. Then,
the decryption oracle is guarded by two checks: it returns
null if the ciphertext was returned from the encryption oracle
or if the tag was not generated through the getTag oracle.
Since these sets are the same, the decryption oracle always
returns null, and all code after these guards is unreachable.
Removing this unreachable code then allows the proof engine
to verify the reduction to CPA-security.

B. One-Time Secrecy implies CPA security

This proof demonstrates that if a public-key encryption
scheme has one-time-secrecy then it is CPA-secure. ProofFrog
leverages its support for induction arguments (Section VI-A) to
verify this proof. At a high level, the proof consists of hopping
through q games, where in game i the first i queries return
the left ciphertext, and the remaining queries return the right
ciphertext. Game i hops to game i+1 by reducing to the one-
time-secrecy indistinguishability property in the (i+1)st oracle
response. Since the adversary makes polynomially many calls,
q is polynomially bounded and hence this series of reductions
still gives the adversary negligible distinguishing advantage.
In addition to the use of the inductive argument and the
standard transformations, this proof necessitates the use of the
branch elimination, unnecessary fields, and branch collapsing
transformations. These transformations allow us to verify the
“ramp-on” and “ramp-off” conditions of the induction. The
initial left and right CPA games contain no branching what-
soever, whereas all the intermediate games require branching
and internal counters to determine whether the left or right
message should be encrypted. To verify the hop from the left
CPA game to the first intermediate game, we supply ProofFrog
with the assumption that the internal counter of queries will
never be negative, from which it can eliminate the branches
and fields handling any encryptions of the right ciphertext;
similar techniques apply when verifying the hop from the last
intermediate game to the right CPA game. The source code
for this proof is given in Appendix B.

VIII. DISCUSSION AND FUTURE WORK

We are aware that ProofFrog is yet another proof verification
tool in an already crowded ecosystem. In addition, while
ProofFrog approaches verification with different techniques
and a different philosophy from other tools, there may be
an understandable apprehension for practitioners to adopt an
unproven engine. One interesting avenue for future work
would be an export functionality that encodes ProofFrog’s
transformations into more established engines. This function-
ality could serve to unify some of the disparate tooling within
the community, provide stronger confidence in ProofFrog
itself, and allow ProofFrog to function as a simpler front-end
interface to more complex tools.

Another potential future avenue for work would be to
expand the variety of examples that ProofFrog has been
tested on. There is a substantial gap between the complexity



of proofs in textbooks versus those presented in research
papers. It would be worthwhile to investigate which classes
of cryptographic papers have proofs or proof steps that could
be handled by the transformations developed for ProofFrog.

Even without attempting to verify a game-hopping proof,
there may also be value in a user-friendly tool for specifying
cryptographic definitions, games, and reductions in an acces-
sible domain-specific language and being able to apply type-
checking like in Section VI-C.

ACKNOWLEDGEMENTS

We would like to thank Wendy Lu for providing feedback
on ProofFrog’s usability and for formalizing many of the
examples given in Appendix A. Thanks also goes to Karolin
Varner for some helpful discussions throughout ProofFrog’s
development. D.S. was supported by Natural Sciences and
Engineering Research Council of Canada (NSERC) Discovery
grant RGPIN-2022-03187.

REFERENCES

[1] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao,
and B. Parno, “SoK: Computer-aided cryptography,” in 2021 IEEE
Symposium on Security and Privacy. San Francisco, CA, USA: IEEE
Computer Society Press, May 24–27, 2021, pp. 777–795.

[2] B. Blanchet, “Modeling and verifying security protocols with the applied
pi calculus and ProVerif,” Foundations and Trends in Privacy and
Security, vol. 1, pp. 1–135, 10 2016.

[3] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The Tamarin prover
for the symbolic analysis of security protocols,” in Computer Aided
Verification, N. Sharygina and H. Veith, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 696–701.

[4] V. Shoup, “Sequences of games: a tool for taming complexity in
security proofs,” Cryptology ePrint Archive, Report 2004/332, 2004.
[Online]. Available: https://eprint.iacr.org/2004/332

[5] M. Bellare and P. Rogaway, “The security of triple encryption and
a framework for code-based game-playing proofs,” in Advances in
Cryptology – EUROCRYPT 2006, ser. Lecture Notes in Computer
Science, S. Vaudenay, Ed., vol. 4004. St. Petersburg, Russia: Springer,
Berlin, Heidelberg, Germany, May 28 – Jun. 1, 2006, pp. 409–426.
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APPENDIX

A. List of Primitive and Proof Case Studies in ProofFrog

The following primitives, security definitions, and proofs
have been included in the ProofFrog example files.

Primitives and Associated Security Definitions.
• Symmetric Encryption Schemes [14, Definition 2.1]

– Correctness [14, Definition 2.2]
– One-Time Uniform Ciphertexts [14, Definition 2.5]
– One-Time Secrecy [14, Definition 2.6]
– CPA-security [14, Definition 7.1]
– CPA$-security [14, Definition 7.2]
– CCA-security [14, Definition 9.1]
– CPA$-security [14, Definition 9.2]

• Pseudorandom Generators (PRGs) and security [14, Def-
inition 5.1]

• Pseudorandom Functions (PRFs) and security [14, Defi-
nition 6.1]

• Message Authentication Codes (MACs) [14, Definition
10.1] and security [14, Definition 10.2]

• Public Key Encryption Schemes [14, Chapter 15]
– Correctness [14, Chapter 15]
– One-Time Secrecy [14, Definition 15.4]
– CPA-security [14, Definition 15.1]
– CPA$-security [14, Definition 15.2]

Completed Proofs.
• A symmetric encryption scheme that encrypts twice with

a one-time-pad using independent keys has one-time
uniform ciphertexts. [14, Claim 2.13].

• If a symmetric encryption scheme has one-time uniform
ciphertexts, then it has one-time secrecy. [14, Theorem
2.15]

https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2017/753
https://eprint.iacr.org/2021/088
https://joyofcryptography.com


• If a symmetric encryption scheme Σ has one-time se-
crecy, then a symmetric encryption scheme which en-
crypts by returning a pair of ciphertexts (c1, c2) where
ci = Σ.Enc(ki,m) also has one-time secrecy. [14, Exer-
cise 2.13]

• A symmetric encryption scheme Σ has one-time secrecy
if and only if an encryption of a provided message with
a one-time key is indistinguishable from an encryption
of a random message with a one-time key. [14, Exercise
2.14]

• A symmetric encryption scheme Σ has one-time secrecy
if and only if the ciphertext pair (cL, cR) is indistinguish-
able from the ciphertext (cR, cL) where mL and mR are
encrypted with one-time keys. [14, Exercise 2.15]

• The Pseudo-OTP symmetric encryption scheme which
uses a secure pseudo-random generator G to encrypt
messages as G(k) ⊕ m provides one-time secrecy. [14,
Claim 5.4]

• A length-tripling PRG which, when given a seed s, uses
a length-doubling PRG G to compute x ∥ y = G(s),
u ∥ v = G(y) and returns x ∥ u ∥ v is secure assuming
G’s security. [14, Claim 5.5]

• Given a length-tripling PRG G, a PRG H which, when
given a seed s, computes x ∥ y ∥ z = G(s) and returns
G(x) ∥ G(z) is secure. [14, Exercise 5.8.a]

• Given a length-tripling PRG G, a PRG H which, when
given a seed s, computes x ∥ y ∥ z = G(s) and returns
x ∥ y is secure. [14, Exercise 5.8.b]

• Given a length-tripling PRG G, a PRG H which, when
given a seed s, computes x = G(s), y = G(0λ) and
returns x⊕ y is secure. [14, Exercise 5.8.e]

• Given a length-tripling PRG G, a PRG H which, when
given a seed sL ∥ sR, computes x = G(sL), y = G(sR)
and returns x⊕ y is secure. [14, Exercise 5.8.f]

• Given a length-doubling PRG G, a PRG H which, when
given a seed s, computes x ∥ y = G(s), w = G(y) and
returns (x⊕ y) ∥ w is secure. [14, Exercise 5.10]

• If a symmetric encryption scheme is CPA$-secure, then
it is also CPA-secure. [14, Claim 7.3]

• A symmetric encryption scheme has CPA security if and
only if encryptions of provided messages using the same
key are indistinguishable from encryptions of random
messages using the same key. [14, Exercise 7.13]

• If a symmetric encryption scheme is CCA$-secure, then
it is also CCA-secure. [14, Exercise 9.6]

• If Σ is a CPA-secure symmetric encryption scheme
and M is a secure MAC, then the encrypt-then-MAC
construction is CCA-secure. [14, Claim 10.10]

• If a public-key encryption scheme has one-time secrecy,
then it is also CPA-secure. [14, Claim 15.5]

• If Σsym is a one-time-secret symmetric-key encryption
scheme and Σpub is a CPA-secure, then hybrid encryption
which generates a one-time symmetric key, encrypts the
symmetric key under Σpub, encrypts the message under
the one-time symmetric key, and returns the pair of ci-
phertexts is a CPA-secure public-key encryption scheme.

[14, Claim 15.9]
• If ΣS and ΣT are symmetric encryption schemes, where

ΣT has one-time uniform ciphertexts, then the encryption
scheme Σ which encrypts a message first with ΣS , and
then encrypts the resulting ciphertext with ΣT , also has
one-time uniform ciphertexts.

• If ΣS and ΣT are symmetric encryption schemes, where
ΣT is CPA$-secure, then the encryption scheme Σ which
encrypts a message first with ΣS , and then encrypts the
resulting ciphertext with ΣT , is also CPA$-secure.

B. Induction Argument Source Code

The one-time secrecy definition for public key encryption
schemes is given in Listing 4. The source code for the proof
that a one-time secret public key encryption scheme is also
CPA$-secure is given in Listing 5. The primitive source code
for the public key encryption scheme and the CPA$ security
definition are omitted for brevity.

C. Notes on Syntax

The syntax of ProofFrog is highly similar to C or
Java. The grammar files Primitive.g4, Scheme.g4,
Game.g4, and Proof.g4 can be found in the reposi-
tory https://github.com/ProofFrog/ProofFrog/tree/main/proof
frog/antlr. Additional notes helpful for understanding the ex-
amples provided in this paper include:

• The <- operation denotes uniform random sampling.
• The syntax challenger. is used for challenger oracle

calls.
• A type T? represents an optional type which can contain

the value null or a value of type T.

https://github.com/ProofFrog/ProofFrog/tree/main/proof_frog/antlr
https://github.com/ProofFrog/ProofFrog/tree/main/proof_frog/antlr


import 'examples/Primitives/PubKeyEnc.primitive';

Game Left(PubKeyEnc E) {
E.PublicKey pk;
E.SecretKey sk;
Int count;

E.PublicKey Initialize() {
E.PublicKey * E.SecretKey k = E.KeyGen();
pk = k[0];
sk = k[1];
count = 0;
return pk;

}

E.Ciphertext? Challenge(E.Message mL, E.Message mR) {
E.Ciphertext? result = None;
count = count + 1;
if (count == 1) {

result = E.Enc(pk, mL);
}
return result;

}
}

Game Right(PubKeyEnc E) {
E.PublicKey pk;
E.SecretKey sk;
Int count;

E.PublicKey Initialize() {
E.PublicKey * E.SecretKey k = E.KeyGen();
pk = k[0];
sk = k[1];
count = 0;
return pk;

}

E.Ciphertext? Challenge(E.Message mL, E.Message mR) {
E.Ciphertext? result = None;
count = count + 1;
if (count == 1) {

result = E.Enc(pk, mR);
}
return result;

}
}

export as OneTimeSecrecy;

Listing 4: One-time secrecy security definition for public key encryption schemes.



import 'examples/Primitives/PubKeyEnc.primitive';
import 'examples/Games/PubKeyEnc/CPA.game';
import 'examples/Games/PubKeyEnc/OneTimeSecrecy.game';

Reduction R(PubKeyEnc E, Int h) compose OneTimeSecrecy(E) against CPA(E).Adversary {
Int count;
E.PublicKey pk;
E.PublicKey Initialize(E.PublicKey one_time_pk) {
pk = one_time_pk;
count = 0;
return pk;

}
E.Ciphertext Challenge(E.Message mL, E.Message mR) {
count = count + 1;
if (count < h) {

return E.Enc(pk, mR);
} else if (count == h) {

return challenger.Challenge(mL, mR);
} else {

return E.Enc(pk, mL);
}

}
}

proof:

let:
Set MessageSpace;
Set CiphertextSpace;
Set PubKeySpace;
Set SecretKeySpace;
Int q;
PubKeyEnc E = PubKeyEnc(MessageSpace, CiphertextSpace, PubKeySpace, SecretKeySpace);

assume:
OneTimeSecrecy(E);
calls <= q;

theorem:
CPA(E);

games:
CPA(E).Left against CPA(E).Adversary;
assume R(E, 1).count >= 1;
assume OneTimeSecrecy(E).Left.count == 1;
induction(i from 1 to q) {
OneTimeSecrecy(E).Left compose R(E, i) against CPA(E).Adversary;
OneTimeSecrecy(E).Right compose R(E, i) against CPA(E).Adversary;
assume OneTimeSecrecy(E).Left.count == 1;
assume OneTimeSecrecy(E).Right.count == 1;

}
assume R(E, q).count < q + 1;
assume OneTimeSecrecy(E).Right.count == 1;
CPA(E).Right against CPA(E).Adversary;

Listing 5: Proof that a one-time-secret public key encryption scheme is also CPA-secure.
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