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ABSTRACT
Consider a weak analyst that wishes to outsource data collection
and computation of aggregate statistics over a a potentially large
population of (also weak) clients to a powerful server. For flexibility
and efficiency, we consider public-key and non-interactive protocols,
meaning the clients know the analyst’s public key but do not share
secrets, and each client sends at most onemessage. Furthermore, the
final step should be silent, whereby the analyst simply downloads
the (encrypted) result from the server when needed. To capture this
setting, we define a new primitive we call Non-Interactive Verifiable
Aggregation (NIVA). We require both privacy and robustness for a
NIVA protocol to be deemed secure. Namely, our security notion
for NIVA ensures that the clients’ data remains private to both the
server and the analyst, while also ensuring that malicious clients
cannot skew the results by providing faulty data.

We propose a secure NIVA protocol, which we call PEAR (for
Private, Efficient, Accurate, Robust), which can validate inputs
according to any NP validity rule. PEAR is based on a novel combi-
nation of functional encryption for inner-products (Abdalla et al., PKC
2015) and fully-linear probabilistically-checkable proofs (Boneh et al.,
Crypto 2019). We emphasize that PEAR is non-interactive, public-
key, and makes black-box use of the underlying cryptographic
primitives. Additionally, we devise substantial optimizations of
PEAR for practically-relevant validity rules. Finally, we implement
PEAR to show feasibility for such validity rules, conducting a thor-
ough performance evaluation. In particular, we compare PEAR to
two more straightforward or “off-the-shelf” NIVA protocols and
show performance gains, demonstrating the merit of our new ap-
proach. The bottleneck in our protocol comes from the fact that
we require the underlying IPFE scheme to be “unrestricted” over a
large field. As more efficient such schemes are developed, they can
be immediately be plugged into PEAR for further gains.

KEYWORDS
Secure aggregation, Input validation, Inner-product functional en-
cryption, Fully-linear PCPs
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1 INTRODUCTION
1.1 Background and Motivation

Motivating applications. There are numerous applications in
which an ‘analyst’ wishes to conduct a study on a large population
of ‘clients’ to learn aggregate statistics, but input collection from
the clients is too burdensome for the analyst. Therefore, the analyst
wishes to outsource the collection and aggregation of the data to
a (potentially untrusted) ‘server’ who aggregates the inputs and
returns the result to the analyst. Here are some examples:

• Population studies: Suppose that think tanks or policy-
makers wish to collect statistics such as average age, etc.
about a certain segment of the population. The think tank
may not have the intensive computational resources to col-
lect all the survey data, and may choose to outsource this to
the cloud. The cloud server can then collect and aggregate
the data and give the result to the think tank.

• Sensor networks: Suppose a researcher wishes to deploy
sensors to measure the environment (e.g., temperature read-
ings) in some remote setting. Rather than set up their own
network to collect the readings, the researcher can use
a cloud server to collect and aggregate the readings be-
fore providing a summary. Note that as the sensors may
be placed in sensitive locations, privacy of the collected
readings may need to be protected.

• Pharmaceutical research: Pharmaceutical companiesmay
wish to collect statistics about genomic sequences of cer-
tain cohorts of hospital patients. Rather than sending the
data directly, the hospitals may instead upload data to a
server and want to ensure that the pharmaceutical company
only gets aggregate information rather than data about any
individual patient.

• Disease outbreak detection: To help detect disease out-
breaks, disease control centers would like to collect aggre-
gate statistics about symptoms and diagnoses from hospi-
tals’ patient records. Similar to the pharmaceutical research
use-case, aggregating this data requires a server to produce
the aggregate without leaking the individual patient data.

Abstracting away the details of the above examples, we are con-
cerned with outsourcing the learning of aggregate statistics about
sensitive data. Thus, to ensure privacy, we want the clients’ inputs
to remain private from other clients and from the server, as well
as from the analyst (to the extent possible given that the analyst

1
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learns the final result of the computation). In tandem, it is crucial to
defend against data poisoning, where some clients’ data is corrupted
either due to unintentional error or intentional malice, which is
a well-known concern. To address this, we want the server to be
able to verify that the clients’ inputs satisfy some analyst-specified
validity rule before aggregating them. Of course, this validation
check must still preserve the privacy of the inputs.

Crucially for the applications we consider, we want anybody to
be able to provide input to the aggregation – i.e., to serve as a client.
To enable this, we operate in a public key setting where we assume
the clients can obtain the authentic public keys of the analyst and
server, but do not share any secret information with either. To
achieve all of these goals, we propose a new primitive called (public-
key, outsourced) Non-Interactive Validated Aggregation (NIVA). An
overview of the NIVA functionality is given in Figure 1.

Before outlining the performance and security requirements of
NIVA, we wish to highlight one critical design goal.

On the importance of being non-interactive. We require that
all NIVA schemes be non-interactive meaning that each client sends
a single message to the server to provide input for the aggregation
and after validating and aggregating the inputs, the server sends
one message to the analyst. No additional rounds of communication
are allowed either among the clients or between the clients and the
server or analyst.

For the case of client-server communication, such non-interactive
protocols are crucial in settings of low connectivity such as sensor
networks. While client devices may be able to perform local com-
putation, they can only communicate with the server when online
and so need to do so in short bursts without waiting for a response
from the server.

Moreover, by not requiring any interaction NIVA allows for
clients to remain unknown to the server (and analyst) prior to sub-
mitting input. This is critical in settings such as public population
surveys allowing anybody to participate.

We note that this restriction to unknown clients does place some
limitation on the security that can be achieved against a malicious
server. Since the analyst does not know the set of clients, a malicious
server can pretend to be a client adding inputs of its choice into the
aggregation or drop clients who have supplied valid inputs. Similar
to prior work (e.g., [18, 32]), we thus only aim for privacy, but not
integrity, against a malicious server.

For the case of server-analyst interaction, prohibiting commu-
nication between the server and analyst ensures that the analyst
does not need to be online during data collection and only needs to
receive the results, which can be stored for him.

1.2 NIVA Performance Requirements
To achieve the goals outlined above, NIVA has a unique set of
performance requirements that we detail below.

• The analysts’ cost must be independent of the number of
clients. In fact, we require that the analyst not even know
the identity of the clients, thus precluding any sort of secret-
key setup between them.

• We require that each client’s computation and communica-
tion be independent of the number of clients. Moreover, a
client should only send a single message to the server and

have no communication directly with the analyst or other
clients. Thus, clients cannot pre-register before providing
input.

• The server should run the most computationally intensive
component of our protocol, namely validation and aggrega-
tion of the clients’ inputs. Thus, the server’s computation
and communication grows linearly in the number of clients.
But, we require that both of these steps be non-interactive
(i.e., performed locally by the server).
• The validity rule must not depend on the underlying crypto-

graphic tools. This means that when proving the validity of
their inputs, the clients must prove the statement “my input
satisfies the validity equation” rather than “my ciphertext
is an encryption of a valid input.”

1.3 NIVA Security Requirements
To meet the needed security for a secure (outsourced) aggregation
protocol, NIVA must satisfy the following security conditions.

• Amalicious server must not learn the content of the clients’
inputs except for whether or not they satisfy the validity
constraint. Additionally, she should learn nothing about the
final aggregate result unless it is made public by the analyst.
This is true even if she colludes with a subset of the clients.
As discussed previously, we only guarantee integrity (i.e.,
that the analyst gets the correct output) against a semi-
honest server.

• Malicious clients who do not collude with the server must
not be able to get the server to accept any inputs that do not
satisfy the validity rule. This must be true even if all clients
are malicious. That is, we guarantee correctness against
malicious clients. Moreover, malicious clients should not be
able to block or tamper with the input of an honest client.

• A semi-honest analyst, who does not collude with the server
and thus is assumed to not see the clients’ (plaintext) com-
munication with the server, should learn nothing about
individual client inputs other than what is revealed by the
final aggregated information. In particular, he should not
learn which of the clients provided valid or invalid inputs.
In fact, we achieve a somewhat stronger guarantee that as
long as the analyst runs the Setup procedure honestly1, then
security is maintained even against an otherwise malicious
analyst.

1.4 Technical Overview
We propose a NIVA protocol supporting summation, which we call
PEAR (for Private, Efficient, Accurate, Robust). Summation allows
for a wide range of applications, in particular all those supported
by PRIO [19] using their “affine aggregatable encodings.” Moreover,
PEAR achieves all of our desiderata described above. In particular, to
our knowledge it is the first system for non-interactive aggregation
with a single server and input validation where the validity rule
does not depend on the underlying cryptographic primitives.

Intuition. The design of PEAR is based on a novel combination
of additively-homomorphic inner-product functional encryption

1Note that this procedure is run only once before any clients submit their inputs.
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Figure 1: An overview of NIVA functionality.

(IPFE) [1] and fully-linear probabilistically-checkable proofs (FL-
PCPs) [12]. In IPFE, anyone with mpk can encrypt a vector x. Fur-
thermore, a secret key sky associated to a vector y can be generated
using msk. While msk can decrypt ciphertexts as usual, an evalua-
tion algorithm run on ctx and sky yields ⟨x, y⟩ in the clear. Our key
observation is that the verification procedure of an FL-PCP consists
of a secret linear step on the instance x and proof 𝝅 followed by a
non-linear step on the result. As proven by [12], the output of the
linear step is in fact zero-knowledge, allowing for the non-linear
step to be performed in the clear. Thus, to preserve privacy, it is
sufficient to perform the secret linear step under the hood of the
IPFE. Moreover, existing IPFE schemes are additively homomor-
phic (although this property is not usually exploited in prior work),
allowing to then homomorphically sum up the valid input vectors.

However, for this to work with the FL-PCP, we need IPFE sup-
porting “unrestricted” inner-product, without a polynomial upper-
bound on its magnitude. While initial schemes did not have this
property as they recover inner-product in the exponent, we use
a scheme based on class groups by Castagnos et al. [17], which
exploits a subgroup where computing discrete log becomes easy.

Our protocol. In more detail, PEAR works as follows for input-
validity specified by some language L ∈ NP:

(1) The analyst generates keypair (mpk,msk) for IPFE and
publishes mpk. Additionally, he chooses ℓ random vectors
q1, . . . , qℓ (which will serve as FL-PCP query points) and
generates IPFE secret keys 𝑠𝑘1, . . . , skℓ for each of these
vectors, then sends them privately to the server.

(2) On input x𝑖 ∈ L and a witness w𝑖 for x𝑖 , client 𝐶𝑖 gen-
erates an FL-PCP proof 𝝅𝑖 to prove that x𝑖 ∈ L and en-
crypts x𝑖 | |𝝅𝑖 under IPFE public-key mpk to get ciphertext
ct𝑖 , which it sends to the server.

(3) Upon receiving ciphertext ct𝑖 , the server computes IPFE
evaluation on ct𝑖 with each of sk1, . . . , skℓ to perform the
linear step of the FL-PCP verification procedure. Following
this, the server can run the remainder of the procedure
locally to determine whether x ∈ L. If so, the server stores
ct𝑖 and otherwise discards it.

(4) Upon receiving an a priori agreed-upon number (𝑛) of ci-
phertexts, the server uses the additive homomorphism of
the IPFE to aggregate all the valid ciphertexts producing

a single aggregate ciphertext ct𝑎𝑔𝑔 encrypting the corre-
sponding sum, which it then sends to the analyst.

(5) The analyst uses msk to decrypt ct𝑎𝑔𝑔 and recover the re-
sult.

We remark that the above can easily be extended toweighted sum
aggregation assuming the IPFE supports homomorphicmultiplication-
by-constant, as is the case for the scheme of [17].

1.5 Comparison to Other Approaches for NIVA
Here we discuss other more straightforward or “off-the-shelf” ap-
proaches to building a secure NIVA protocol and why our new
approach is superior.

NIVA based on HE+NIZK. A secure NIVA protocol can also be
constructed in a generic manner from additively homomorphic en-
cryption (HE) and non-interactive zero-knowledge proofs (NIZKs)
for languages in NP [22]. The protocol works as follows. Fix an
analyst-specified NP language L. First, the analyst generates a key-
pair (pk, sk) for HE and broadcasts pk. Given input x𝑖 ∈ L with
witness w𝑖 , client 𝐶𝑖 encrypts x𝑖 under pk to get ct′𝑖 and attaches
to it a proof 𝝅𝑖 that ct′𝑖 encrypts a member of L. Upon receiving
ct𝑖 = ct′

𝑖
∥𝝅𝑖 , the server verifies 𝝅𝑖 and discards ct′

𝑖
if this check

fails. The server then homomorphically aggregates the remaining
ct′
𝑖
and sends the result to the analyst, who decrypts it under sk.
However, this protocol is non-blackbox because the statement

proven in ZK depends on the encryption circuit. While it is cer-
tainly possible to design optimized encryption schemes and proofs
to reduce the overhead of these proofs, as done in some prior work
— e.g., [7] — this limits the flexibility of the resulting NIVA protocol
as it is not possible to replace the encryption scheme by a more
efficient one developed down the line without reworking the proof.
In particular, since optimizing performance is not necessarily the
same as optimizing the “proof-cost” of a cryptographic primitive,
improvements in building blocksmay not yield improvements in the
resulting construction. Optimizations to the protocol notwithstand-
ing, to better demonstrate the overhead of the above non-blackbox
solution we implement “an off-the-shelf” version of it based on
Bulletproofs [15] and (the additively-homomorphic version of) El
Gamal encryption [21]. We then compare its performance to PEAR,
demonstrating significant gains. See Section 6 for details.
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NIVA based on FHE+FL-PCP. As another point of comparison, we
consider a secure NIVA protocol based around fully-homomorphic
encryption (FHE) [23]. The idea is that we use an FL-PCP as before
but the entire validation of the ciphertexts and aggregation of the
valid ones is done completely “under the hood” of FHE. Note that
while this approach is black-box in the underlying cryptography, it
does not take advantage of the fact that the output of a “𝐺-gate” in
the validation circuit is ZK and the remainder of the computation
can be done in the clear. Indeed, we demonstrate impracticality of
this FHE-based NIVA protocol for an “off-the-shelf” implementation
of it using the SEAL library [39]. Specifically, verifying the FL-PCP
validation result under the hood of FHE, without client assistance, is
highly expensive, and the server must repeat this task for each client
ciphertext. Our approach is to exponentiate the FL-PCP validation
bit to the size of the plaintext space, ensuring that zero remains
zero while all other values become one, thereby filtering out invalid
ciphertexts by flipping the bit. See Section 6 for further details.

1.6 Adding Differential Privacy
As our protocol is described above, the analyst learns nothing about
clients’ inputs except what is revealed by the output. Of course,
this does not necessarily suffice to guarantee the privacy of clients’
inputs since the output may reveal information about such inputs.

A standard way to guarantee that the output of the aggregation
does not reveal too much about the individual inputs is to guarantee
differential privacy (DP) [20]. We can add DP to PEAR in the typical
case that input-validity checks for bounded norm, by simply having
the server and the clients each add Laplacian noise to the final
aggregation that is tuned to this maximum value. The server can
add noise homomorphically, while the clients can add noise in
the clear. Since the server and the clients each add their noise
independently, this protocol achieves DP wrt. either of them. Since
we see DP as being largely orthogonal to the design of our protocol,
we do not elaborate on it further in the remainder of the paper.

1.7 Performance Evaluation
We implement PEAR using the unrestricted IPFE scheme by Castag-
nos et al. [17] and the FL-PCP by Boneh at al. [12]. We construct two
validation circuits: one for verifying whether an input is a binary
number and another for ensuring that the 𝐿2 norm of an input vec-
tor is bounded. We benchmark PEAR and compare against a naive
approach that combines off-the-shelf additively-homomorphic en-
cryption with non-interactive zero-knowledge proofs of cipher-
text validity as described earlier. In terms of client runtime, PEAR
achieves a speedup of 4.5× to 20×, while for server runtime, it
achieves a speedup of 1.2× to 3.6×. The server-side speedup could
be significantly improved if the performance of the unrestricted
IPFE scheme were comparable to that of restricted IPFE schemes,
such as the optimized one proposed by Kim et al. [30]. We leave
the development of a more efficient unrestricted IPFE scheme as an
intriguing open problem.We also compare PEARwith the approach
of using FHE with FL-PCP and observe that its server runtime for
the binary number validation is 20× to over 100× slower.

2 RELATEDWORK

Secure Aggregation. Secure aggregation, introduced by [11], al-
lows a server to privately sum the inputs of a potentially large num-
ber of clients. These protocols use secret-shared masks between
clients to enable efficient aggregation, without verifying validity of
inputs. In SA, the server learns the sum; there is no separate analyst.
Since then, various works have also considered how to extend these
protocols to build verifiable secure aggregation as in our setting.
In the single-server setting, various protocols have been proposed
that require several rounds of communication between the server
and clients [7, 18, 32]. Another line of work shows how to achieve
secure aggregation in a multi-server setting relying on (interac-
tive) secure computation between the servers [3, 6, 13, 19, 37, 40].
There is also another line of work that adds additional roles to some
distinguished clients and necessitates additional communication
between any client and these distinguished ones. An example is
the committee-based setting of [8, 28, 31]. In comparison, PEAR
does not require that any of the clients be known to anyone else. In
Table 1, we compare PEAR against popular single-server, verifiable
SA protocols. Here 𝑛 is number of clients.

Scheme PEAR ACORN [7] RoFL [32] EiFFeL [18]
Number
of rounds 1 ≥ 5 ≥ 5 ≥ 5

Mal. clients
threshold 𝑛 − 1 𝑛/3 𝑡 neighbors (𝑛 − 1)/3

Client comp O(1) O(log𝑛) O(log𝑛) O(log𝑛)
Server comp O(𝑛) O(𝑛 log𝑛) O(𝑛) O(𝑛2)
Proof system FL-PCP Bulletproofs Bulletproofs SNIP

Key
setup public pairwise pairwise pairwise

Table 1: Comparing our NIVA protocol PEAR to SA protocols with
input validation.

Of course, compared to existing single-server, verifiable SA proto-
cols, PEAR operates in a setting where there is an additional analyst,
who is separate from the server. Besides being natural from an ap-
plication standpoint, we chose this modification because there are
fundamental limitations to the security of such non-interactive pro-
tocols when the server learns the aggregation result herself. Even
without public keys, the server can perform a so-called ’residual
attack’ if it corrupts clients. In a residual attack, the server locally
re-runs the protocol many times, changing the corrupted clients’
inputs each time, to learn more and more about other clients’ in-
puts. In our public-key setting the limitations are even more severe,
because the server does not need to corrupt any clients to run such
attacks. By having separate server and analyst we simply avoid such
issues. Note that [28] (which does not consider input validation)
avoids them by having a committee in addition to a server.

Efficient Zero-Knowledge Proofs. Our protocol crucially relies
on efficient non-interactive zero-knowledge (NIZK) proofs to prove
validity of the clients’ inputs. Zero-knowledge proofs were origi-
nally introduced by Goldwasser et al. [24] with the non-interactive
variant introduced by Feige et al. [22]. Since then, a number of
works (e.g. [5, 15, 25, 29, 33, 36]) have investigated how to make
such proofs shorter and more efficient. In PEAR, we require proofs

4
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that allow proving validity of an input unknown to the verifier. For
this purpose, we build off of the work of Boneh et al. [12], who
consider proofs over secret-shared inputs.

Inner Product Functional Encryption (IPFE). Another crucial
tool for our construction is inner-product functional encryption
(IPFE) which allows computing the inner product between an en-
crypted vector and a vector in the (functional) evaluation key. IPFE
was first introduced by Abdalla et al. [1], who showed simple con-
structions based on DDH and LWE. Further variants of IPFE were
given by e.g. [2, 4, 10]. In PEAR, we use the IPFE scheme due to
Castagnos et al. [17] based on the hard subgroupmembership (HSM)
assumption in certain class groups. Importantly for us, this IPFE
scheme is unrestricted in that it allows efficient evaluation when an
inner product may output an arbitrary field element, rather than
restricting the output to small set that can be brute-forced. This is
needed for compatibility with the FL-PCP.

3 PRELIMINARIES
3.1 Notation and Conventions
If v is a vector then |v| is its length (the number of its coordinates)
and v[𝑖] is its 𝑖-th coordinate. Strings are identifiedwith vectors over
{0, 1}, so that |𝑍 | denotes the length of a string 𝑍 and 𝑍𝑖 denotes
its 𝑖-th bit. By 𝜀 we denote the empty string or vector. By 𝑥 ∥𝑦 we
denote the concatenation of strings 𝑥,𝑦. For two vectors x, y of the
same length over the same field, we denote their inner-product by
⟨x, y⟩ = ∑

𝑖∈[ |x |] x𝑖 · y𝑖 .
If 𝑆 is a finite set, then |𝑆 | denotes its size. If X is a finite set, we

let 𝑥 ←$ X denote picking an element of X uniformly at random and
assigning it to 𝑥 . Algorithms may be randomized unless otherwise
indicated. Running time is the worst case, which for an algorithm
with access to oracles means across all possible replies from the
oracles. We use ⊥ (bot) as a special symbol to denote rejection, and
it is assumed to not be in {0, 1}∗.

A function 𝜈 : N → N is negligible if for every positive poly-
nomial 𝑝: N → R there is a 𝜆𝑝 ∈ N such that 𝜈(𝜆) ≤ 1/𝑝(𝜆) for
all 𝜆 ≥ 𝜆𝑝 . “PT” stands for “polynomial time,” whether for ran-
domized or deterministic algorithms. By 1𝜆 we denote the unary
representation of the integer security parameter 𝜆 ∈ N.

Games. We use the code-based game-playing framework of BR [9].
By Pr[G ⇒ 𝑦] we denote the probability that the execution of
game G results in this output being 𝑦. In games, integer variables,
set variables, boolean variables, and string variables are assumed
initialized, respectively, to 0, ∅, false, and ⊥. For an adversary A
playing game G, we may write another adversary B in the same
format as G, with the understanding that B runs this game withA.

3.2 Fully-Linear PCP Proof Systems

Binary relations. For 𝑑,ℎ ∈ N, let R ⊆ F𝑑 × Fℎ be a binary
relation over a finite field F. Additionally, let R𝑝 ⊆ F𝑑𝑝 × Fℎ𝑝 be a
family of binary relations over finite fields F𝑝 parameterized by the
field size 𝑝 . For simplification, we drop the subscript 𝑝 once it is
fixed. We define the corresponding language LR such that x ∈ LR
if and only if there exists an w ∈ Fℎ such that (x,w) ∈ R. We also
define an associated arithmetic circuit𝐶R over the field F such that

Variable name Meaning
𝜆 security parameter
x input instance vector
𝑑 input instance vector length
w witness vector
ℎ witness vector length
𝝅 proof vector
𝑚 proof length
q FL-PCP query
ℓ number of FL-PCP queries

Table 2: Notation used throughout the paper.

𝐶R (x,w) = 0 if and only if (x,w) ∈ R. A message x ∈ LR is a
valid message. We stress that in our notation if 𝐶R outputs 0 that
means the input is valid, and any non-zero value means the input
is invalid.

Syntax. The following definition is adapted from [12]. A fully
linear probabilistically checkable proof system (FL-PCP) for R
over F with proof length𝑚 and query complexity ℓ is a tuple of
algorithms ΠR = (ProofGen,Query,Decision) where the prover
runs the ProofGen algorithm and the verifier runs theQuery and
Decision algorithms described below. Additionally, all algorithms
also have an implicit input auxwhich contains relevant information
about the corresponding relation R.

• Setup(1𝜆, F): On input a unary encoding of the security
parameter 1𝜆 and a field F st |F|∈ Ω(2𝜆), it updates the
internal state.

• ProofGen(1𝜆, x,w): On input a unary encoding of the se-
curity parameter 1𝜆 , an instance x, and its witness w, the
proof generation algorithm outputs a proof 𝝅 ∈ F𝑚 .

• Query(1𝜆, 1𝑑 ): On input a unary encoding of the security
parameter 1𝜆 and the length of an input instance 1𝑑 , the
query algorithm outputs ℓ queries q1, . . . , qℓ ∈ F𝑑+𝑚 and
state information st.

• Decision(st, 𝑎1, . . . , 𝑎ℓ ): On input state information st and ℓ
scalar values 𝑎1, . . . , 𝑎ℓ ∈ F, the decision algorithm outputs
a bit 𝑏.

Without loss of generality, we assume that the state of the query
algorithm consists of the coins of the algorithm. Thus, the query
algorithm can also bewritten as (q1, . . . , qℓ )←QueryR (1𝜆, 1𝑑 ; stΠ).

The above algorithms satisfy the following properties:

Completeness. For all (x,w) ∈ R, the verifier accepts a valid proof.
Formally, an FL-PCP ΠR satisfies completeness if for all 𝜆, 𝑑 ∈ N
and all (x,w) ∈ R:

Pr[Decision(st, ⟨(x| |𝝅 ), q1⟩, . . . , ⟨(x| |𝝅 ), qℓ ⟩)⇒ 1] = 1 ,

where the probability is over

𝝅 ←$ ProofGen(1𝜆, x,w) ; (q1, . . . , qℓ , st)←$ Query(1𝜆, 1𝑑 ) .

Soundness. For all (x,w) ̸∈ R, the verifier does not accept any
proof. Formally, a FL-PCP ΠR satisfies 𝛾-soundness for a function
𝛾 (·) if for all 𝜆, 𝑑 ∈ N and all x∗ ̸∈ LR and a 𝝅∗ ∈ F𝑚 :

Pr[Decision(st, ⟨(x∗ | |𝝅∗), q1⟩, . . . , ⟨(x∗ | |𝝅∗), qℓ ⟩)⇒ 1] ≤ 𝛾 (𝜆)
5
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where the probability is over (q1, . . . , qℓ , st)←$ Query(1𝜆, 1𝑑 ).

Strong HVZK. Intuitively, the strong honest-verifier zero knowl-
edge (HVZK) property states that the verifier does not learn any-
thing about the instance x other than if x ∈ LR . A fully-linear PCP
ΠR satisfies strong HVZK if there exists a simulator 𝑆Π,R such that
for all (x,w) ∈ R and 𝜆, 𝑑 ∈ N, the distribution of 𝑆Π,R (1𝜆, 1𝑑 ) is
identical to the following:

(st, ⟨(x| |𝝅 ), q1⟩, . . . , ⟨(x| |𝝅 ), qℓ ⟩), (q1, . . . , qℓ )

where (q1, . . . , qℓ , st)←$ Query(1𝜆, 1𝑑 ) and𝝅 ←$ ProofGen(1𝜆, x,w).

3.3 Inner-Product Functional Encryption

Syntax. A public-key inner product functional encryption IPFE
scheme is a tuple of algorithms IPFE = (Setup, KeyGen, Encrypt,
Eval, Decrypt) described as follows:

• Setup(1𝜆, 1𝑑 ): On input unary encodings of security pa-
rameter 𝜆 and dimension 𝑑 , the setup algorithm outputs
a master public key mpk (in particular containing 𝑑 and
description of F), a master secret key msk.

• KeyGen(msk, y): On input a master secret key msk and a
function y ∈ F𝑑 , the key generation algorithm outputs a
functional decryption key sky.

• Encrypt(mpk, x): On input a master public key mpk and
a message x ∈ F𝑑 , the encryption algorithm outputs a
ciphertext ctx.

• Eval(sky, ctx): On input a functional decryption key sky,
and a ciphertext ctx, the evaluation algorithm outputs a
string 𝑧 ∈ F or a special symbol ⊥.

• Decrypt(msk, ctx): On input a master secret key msk and a
ciphertext ctx, the decryption algorithm outputs a message
x ∈ F𝑑 or a special symbol ⊥.

We use standard notions of correctness and security for IPFE which
are provided in appendix A.

Additive Homomorphism. We use the notion of additive homo-
morphism given in [14]. We say that IPFE is additively homomor-
phic if it has an additional algorithm IPFE.Add as follows such that
Add(mpk, ctx1 , ctx2 ): On inputs a master public key mpk and two
ciphertexts ctx1 , ctx2 , the Add algorithm outputs a ciphertext ct.
Moreover, the following ciphertexts are identically distributed for
all 𝜆, 𝑑 ∈ N, and all x1, x2 ∈ F𝑑 : Add(mpk, Enc(pk, x1), Enc(pk, x2))
and Enc(pk, x1 + x2), where (pk,msk) ←$ Setup(1𝜆, 1𝑑 ). Note that
this means that the ciphertexts output by Add are compact in size.
For notational convenience, byAdd(mpk, ct1, . . . , ct𝑛) wemean that
the Add algorithm is run repeatedly to generate a single cipher-
text. It is easy to check that existing IPFE schemes are additively
homomorphic.

Unrestricted. We say that IPFE is unrestricted if its evaluation
algorithm runs in polynomial time (PT). The IPFE schemes proposed
in [1, 4] are not PT because they recover the inner product in the
exponent. As a result, they restrict the message space so that the
number of possible inner product values remains sufficiently small.
The lattice-based IPFE scheme proposed in [4] (though over a small

field) and the hard subgroup membership (HSM)-based scheme
in [17] (which we use in our implementation) are unrestricted.

Henceforth, we assume that IPFE is always unrestricted.

Preimage sampleability. The inner product function is preimage
sampleable as defined in [34]. This means that given a set of 𝑛
vectors (x1, . . . , x𝑛) and their inner product values 𝑎1, . . . , 𝑎𝑛 with
some unknown vector y, we can compute the vector y by solving
the system of linear equations given that at least one such vector
y exists. Free variables in the system can be assigned arbitrarily.
This is used in our security games as an algorithm VecSamp that
inputs ((x1, 𝑎1), . . . , (x𝑛, 𝑎𝑛)) and outputs a consistent vector v. Note
that this is a property of the inner product function and, therefore,
applies to any inner-product functional encryption scheme.

4 NON-INTERACTIVE VALIDATED
AGGREGATION

4.1 Syntax and Correctness

Syntax. A non-interactive validated aggregation (NIVA) protocol
for a relation R ⊆ F𝑑 × Fℎ for a field F and 𝑑,ℎ, 𝑛 ∈ N, is a protocol
consisting of three kinds of participants: an analyst, a server and 𝑛
clients and a tuple of algorithmsNIVAR = (Setup, Encrypt,Validate,
Aggregate, Decrypt) defined as follows:

• Setup(1𝜆, 1𝑑 ): On input unary encodings of the security
parameter 𝜆 and an input length 𝑑 , the setup algorithm
outputs a public key mpk, a master secret key msk, and a
validation key vk.

• Encrypt(mpk, x,w): On input a public key mpk, an input
x, and a witness w, the encryption algorithm outputs a
ciphertext ct.

• Validate(vk, ct): On input a validation key vk and a cipher-
text ct, the validation algorithm outputs a bit 𝑏.

• Aggregate(mpk, {ct𝑗 } 𝑗∈[𝑛]): On input a master public key
mpk and a set of ciphertexts {ct𝑗 } 𝑗∈[𝑛] for some 𝑛 ∈ N, the
aggregation algorithm outputs an aggregated ciphertext
ct𝑎𝑔𝑔 .

• Decrypt(msk, ct): On input a master secret key msk and a
ciphertext ct, the decryption algorithm outputs y ∈ F𝑑 .

The protocol, which is also depicted in Fig. 1, is described next.

• The analyst runs the Setup algorithm and sends (mpk, vk)
to the server and keepsmsk to itself. In addition, the server
sends mpk to each client when they join the system.

• Each client runs the Encrypt algorithm using the mpk and
its input-witness pair (x,w) and sends the resulting ct to
the server.

• The server upon receiving some number of ciphertexts from
clients, runs the Validate algorithm on each ciphertext and
discards invalid ones.

• The server uses the Aggregate algorithm to aggregates the
𝑛 valid ciphertexts where 𝑛 is less than or equal to the
number of clients. Then, the server sends the aggregate
ciphertext ctagg to the analyst when requested.

• The analyst decrypts the aggregate ciphertext using the
Decrypt algorithm and its msk.
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Correctness. We require validation correctness meaning that for
all 𝜆, 𝑑, ℎ ∈ 𝑁 and all (x,w) ∈ R

Pr[Validate(vk, Encrypt(mpk, x,w))⇒ 1] = 1

where (mpk,msk, vk) ←$ Setup(1𝜆, 1𝑑 ) and the probability is over
the coins of the Setup and Encrypt algorithms. We say that NIVAR
has aggregation error 𝛾 if for all 𝜆, 𝑛 ∈ N, all (x1,w1), . . . , (x𝑛,w𝑛) ∈
R:

Pr

[
Decrypt

(
msk,Aggregate(mpk, {ct𝑗 } 𝑗∈[𝑛])

)
=

∑︁
𝑗∈[𝑛]

x𝑗

]
≥ 1−𝛾 (𝜆)

where (mpk,msk, vk)←$ Setup(1𝜆, 1𝑑 ), ct𝑗 ←$ Encrypt(mpk, x𝑗 ,w𝑗 )
for all 𝑗 ∈ [𝑛], and the probability is over the coins of the Setup
and Encrypt algorithms.

4.2 Security

Privacy against a malicious server.We define an indistinguishability-
based notion of privacy for NIVAR via the game in Figure 2. Here,
an adversary receives a master public key and a validation key
and has access to an encryption oracle. The adversary is modeled
after a malicious server. She must make encryption queries with
valid message and witness pairs. Then, she receives ciphertexts for
the left or the right tuple and wins the game if she can determine
whether the left or the right tuples are being encrypted. Note that
we do not consider privacy of invalid inputs as that is equivalent to
a malicious client. Formally, for an adversary A, for every 𝜆, 𝑑 ∈ N
we let its ind-advantage be:

Advind
NIVA,A (𝜆, 𝑑) = 2 · Pr[Gind

NIVA,A (𝜆, 𝑑)⇒ 1] − 1.

We say thatA is valid if every encryption query ((x0,w0), (x1,w1))
comprises of valid message-witness pair i.e., (x0,w0), (x1,w1) ∈
R. Intuitively, a malicious server should not be able to get any
information about honest client data except for their validity status
even when deviating from the protocol.

Game Gind
NIVA,A (𝜆,𝑑)

Initialize(1𝜆, 1𝑑 ):
1 𝑏←$ {0, 1}
2 (mpk,msk, vk)←$ Setup(1𝜆, 1𝑑 )
3 Return (mpk, vk)

EncO
(
(x0,w0), (x1,w1)

)
:

4 ct←$ Encrypt(mpk, x𝑏 ,w𝑏 )
5 Return ct

Finalize(𝑏′):
6 Return (𝑏 = 𝑏′)

Figure 2: Game defining NIVA privacy against the server.

Privacy against the Analyst. We also define a notion of privacy
against the analyst for NIVAR via the game in Figure 3. An adver-
sary submits two sets of inputs such that the valid inputs in each
set have the same sum and receives an aggregated ciphertext and a
master secret key. The adversary is modeled after a semi-honest an-
alyst. The adversary wins the game if he can determine whether the

left or the right set of inputs are validated and aggregated. Formally,
for an adversary A, for every 𝜆, 𝑑 ∈ N, we let its ind-advantage be:

Advanalyst-ind
NIVA,A (𝜆, 𝑑) = 2 · Pr[Ganalyst-ind

NIVA,A (𝜆, 𝑑)⇒ 1] − 1.

We say thatA is valid if her submission ((x0
𝑖
,w0

𝑖
)𝑖∈[𝑛], (x1

𝑖
,w1

𝑖
)𝑖∈[𝑛])

is such that the following holds:∑︁
𝑖∈𝑛: x0

𝑖
∈LR

x0
𝑖 =

∑︁
𝑖∈𝑛: x1

𝑖
∈LR

x1
𝑖 .

We say thatNIVAR is analyst-private if for all𝑑 ∈ N,Advind
NIVA,A (·, 𝑑)

is negligible for all valid PT A.
We want to capture the idea that an analyst does not get any

information about the individual client data including the number
of valid inputs or validity status of individual data points and only
receives the aggregated result of valid inputs.

Game Ganalyst-ind
NIVA,A (𝜆,𝑑)

Initialize((x0
𝑖
,w0

𝑖
)𝑖∈[𝑛], (x1

𝑖 ,w
1
𝑖 )𝑖∈[𝑛]):

1 𝑏←$ {0, 1}; 𝑆 ← ∅
2 (mpk,msk, vk)←$ Setup(1𝜆, 1𝑑 )
3 For 𝑖 ∈ [𝑛] :
4 ct𝑖 ← Encrypt(mpk, x𝑏

𝑖
,w𝑏

𝑖
)

5 If Validate(vk, ct𝑖 ) : 𝑆 ← 𝑆 ∪ {ct𝑖 }
6 ct𝑏 ← Aggregate(mpk, 𝑆)
7 Return (msk, ct𝑏 )

Finalize(𝑏′):
8 Return (𝑏 = 𝑏′)

Figure 3: Game defining NIVA privacy against the analyst.

Integrity. We define a notion of integrity for NIVAR via the game
in Figure 4. An adversary on receiving a master public key and
has access to a validate oracle. The adversary is modeled after
a malicious client. She submits ciphertexts to the validate oracle
and receives a bit indicating if the ciphertext verified or not. The
adversary submits a final ciphertext and wins the game if this
ciphertext encrypts an invalid instance but passes the validity check.
Concretely, for an adversary A, for every 𝜆, 𝑑 ∈ N we let its int-
advantage be:

Advint
NIVA,A (𝜆, 𝑑) = Pr[Gint

NIVA,A (𝜆, 𝑑)⇒ 1].

A PT adversary is valid if she submits a ct such that size of ct is
|Encrypt(mpk, v)| where |v|= 𝑑 +𝑚.

We say that a NIVAR scheme has integrity if the advantage of
any valid PT adversary is negligible in the security parameter 𝜆.

Intuitively, we want to capture the fact that it is difficult for
malicious clients to get their invalid ciphertexts accepted and aggre-
gated with valid ciphertexts even if they know the validity status
of previous ciphertexts.

4.3 Reusability in FL-PCPs

Reusable soundness. First, we define an extension of soundness
for FL-PCPs that we call reusable soundness, which involves reusing
the verifier’s queries across multiple proofs. Intuitively, this prop-
erty states that reusing the state and queries of the FL-PCP across
multiple proofs does not significantly degrade the soundness of the
protocol, which will be important in our application.
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Game Gint
NIVA,A (𝜆,𝑑)

Initialize:
1 (mpk,msk, vk)←$ Setup(1𝜆, 1𝑑 )
2 Returnmpk

ValidateO(ct):
3 Return Validate(vk, ct)

Finalize(ct∗):
4 If Validate(vk, ct∗) :
5 y∗ ← Decrypt(msk, ct∗)
6 If𝐶R (y∗) ̸= 0: Return 1
7 Return 0

Figure 4: Game defining NIVA integrity.

For 𝜆, 𝑑 ∈ N and an adversaryA interacting with the game given
in Figure 5, we let its reusable soundness advantage be as follows:

Advreuse-sound
Π,A (𝜆, 𝑑) = Pr[Greuse-sound

NIVA,A (𝜆, 𝑑)⇒ 1] .

We say that ΠR satisfies 𝛾-reusable soundness if for all adver-
saries making 𝑄 RepeatO queries, and all 𝜆, 𝑑 ∈ N its reusable-
soundness advantage is bounded as follows:

Advreuse-sound
Π,A (𝜆, 𝑑) ≤ 𝛾 (𝜆,𝑄) .

The FL-PCP of Boneh et al. [12], BBG+, and our optimized FL-
PCP in Section 5 fulfill this property, which we prove in the appen-
dix B.1.

Game Greuse-sound
Π,A (𝜆,𝑑)

Initialize:
1 (q1, . . . , qℓ , st)←$ Query(1𝜆, 1𝑑 )

RepeatO(x∥𝝅 ):
2 For 𝑖 ∈ [ℓ] : 𝑎𝑖 ← ⟨(x∥𝝅 ), q𝑖 ⟩
3 𝑏 ← Decision(st, 𝑎1, . . . , 𝑎ℓ )
4 Return 𝑏

Finalize(x∗ ∥𝝅∗):
5 If x∗ ∈ R: Return ⊥
6 For 𝑖 ∈ [ℓ] : 𝑎∗𝑖 ← ⟨(x∗ ∥𝝅∗), q𝑖 ⟩
7 𝑏∗ ← Decision(st, 𝑎∗1, . . . , 𝑎

∗
ℓ )

8 Return 𝑏∗

Figure 5: Game defining reusable soundness property for FL-PCP.

Reusable zero-knowledge. We also define a corresponding ex-
tension of strong HVZK for FL-PCP that we call reusable strong
HVZK using the games in Figure 6. Intuitively, the property states
that reusing the state and queries of the FL-PCP across multiple
instances of proofs does not reveal any information about valid
input instances.

For 𝜆, 𝑑 ∈ N and an adversary A interacting with the game
given in Figure 6, we let its reusable strong HVZK advantage be as
follows:

Advrshvzk
Π,A (𝜆, 𝑑) = Pr[Grshvzk-1

Π,A (𝜆, 𝑑)⇒ 1]−Pr[Grshvzk-0
Π,A,S (𝜆, 𝑑)⇒ 1] .

We say that ΠR satisfies reusable strong HVZK if for all ad-
versaries and all 𝜆, 𝑑 ∈ N its reusable strong HVZK advantage is
negligible in 𝜆.

The FL-PCPs BBG+ and our optimized FL-PCP in Section 5 fulfill
this property, which we prove in the appendix B.2.

Game Grshvzk-1
Π,A (𝜆,𝑑)

Initialize:
1 (q1, . . . , qℓ , st)←$ Query(1𝜆, 1𝑑 )
2 Return st

RepeatO(x,w):
3 𝝅 ←$ ProofGen(1𝜆, x,w)
4 For 𝑖 ∈ [ℓ] : 𝑎𝑖 ← ⟨(x | |𝝅 ), q𝑖 ⟩
5 Return (𝑎1, . . . , 𝑎ℓ )

Finalize(𝑏):
6 Return 𝑏

Game Grshvzk-0
Π,A,S (𝜆,𝑑)

Initialize:
1 st←$ 𝑆1(1𝜆, 1𝑑 )
2 Return st

RepeatO (x,w):
3 (𝑎1, . . . , 𝑎ℓ )←$ 𝑆2(1𝜆, 1𝑑 , st)
4 Return (𝑎1, . . . , 𝑎ℓ )

Finalize(𝑏):
5 Return 𝑏

Figure 6: Games defining reusable strong honest-verifier zero knowl-
edge property for FL-PCP.

4.4 PEAR: Our Black-Box NIVA Protocol
As discussed in the Introduction, a NIVA protocol that is non-
blackbox in the underlying cryptography can be constructed from
homomorphic encryption and NIZK. We now present our black-box
solution.

Construction. Let ∆ = (Setup,KeyGen, Encrypt, Eval,Decrypt)
be an additively-homomorphic IPFE scheme. Let R𝑝 be a family of
relations over finite fields F𝑝 parameterized by the order 𝑝 , a prime.
Let ΠR =(ProofGen, Query, Decision) be an FL-PCP system for a
2 relation R𝑝 ⊆ F𝑑𝑝 × Fℎ𝑝 . We define the associated NIVA protocol
NIVAR[∆,ΠR] = (Setup, Encrypt, Validate, Aggregate, Decrypt).
Henceforth, we denote it by PEAR and describe it belowwith formal
details given in Figure 7.

• During setup, the analyst runs the IPFE setup algorithm and
generates query vectors for the FL-PCP. Next, the analyst
generates function keys for the queries and sends the IPFE
public key along with the verification key—consisting of
the function keys and a state—to the server. The master
secret key for IPFE is retained by the analyst.

• During encryption, a client generates a proof for its mes-
sage and witness with respect to the validation circuit of
the relation. The client then encrypts the message, con-
catenated with its proof, using the IPFE public key that is
broadcasted by the server, and sends the resulting cipher-
text to the server.

• During validation, the server receives a ciphertext and eval-
uates the inner product of the ciphertext with each query
vector. It then runs the decision algorithm of the FL-PCP
using the state of the query algorithm and the computed
inner product values.

• During aggregation, the server combines 𝑛 valid cipher-
texts using IPFE’s homomorphic addition algorithm. Fur-
thermore, it homomorphically adds a mask to the second
component of the ciphertexts to obscure the sum of the
proofs. The server then sends the aggregate ciphertext to
the analyst.

• Upon receiving an aggregate ciphertext, the analyst de-
crypts it using the IPFE master secret key.

2We only support relations over finite fields of prime order because the IPFE scheme
we use is over fields of prime order.
2mpk has the description of F
3following the syntax of ∆ as in section 3.3
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Setup(1𝜆, 1𝑑 ):

1 (mpk,msk)← ∆.Setup(1𝜆, 1𝑑 )
2 ΠR .Setup(1𝜆,mpk) 2

3 (q1, . . . , qℓ , stΠ)← ΠR .Query(1𝜆, 1𝑑 )
4 For 𝑗 ∈ [ℓ] :
5 skq𝑗 ← ∆.KeyGen(msk, q𝑗 )

6 vk←
(
{skq𝑗 } 𝑗 ∈[ℓ], stΠ

)
7 Return (mpk,msk, vk)

Encrypt(mpk, x,w):

8 𝝅 ←$ ΠR .ProofGen(1𝜆, x,w)
9 ct←$ ∆.Encrypt(mpk, (x∥𝝅 )) 3

10 Return ct

Validate(ct, vk):

11

(
{skq𝑗 } 𝑗 ∈[ℓ], stΠ

)
← vk

12 For 𝑗 ∈ [ℓ] :
13 𝑎 𝑗 ← ∆.Eval(skq𝑗 , ct)
14 𝑏 ← ΠR .Decision (stΠ, 𝑎1, . . . , 𝑎ℓ )
15 Return 𝑏

Aggregate(mpk, ct1, . . . , ct𝑛 ):

16 r←$ F𝑚

17 ct𝑛+1 ← ∆.Encrypt(mpk, (0𝑑 ∥r))
18 If 𝑛 = 0 : Return ct𝑛+1
19 ctagg ← ∆.Add(mpk, ct1, . . . , ct𝑛+1)
20 Return ctagg

Decrypt(msk, ct):

21 y← ∆.Decrypt(msk, ct)
22 Return y[1 : 𝑑]

Figure 7: PEAR: Our NIVA construction.

Correctness. PEAR is validation correct which follows from per-
fect evaluation correctness of the IPFE ∆ and completeness of the
FL-PCP ΠR .

PEAR also has aggregation error 𝛾 (𝜆) = 0 which follows from
additive homomorphism and perfect evaluation correctness of the
IPFE ∆.

Privacy against a malicious server. We show that PEAR is pri-
vate against a malicious server under the indistinguishability-based
security notion defined in Section 4.2.

Theorem 1. Let PEAR be as given in Fig. 7. Then PEAR is an
ind-secure NIVA protocol if the IPFE scheme ∆ is ind-secure and the
FL-PCP protocol ΠR satisfies reusable strong HVZK. Namely, for any
adversary A, there exists an adversary B such that:

Advind
PEAR,A (𝜆, 𝑑) ≤ Advind

IPFE,B (𝜆, 𝑑) .

The running-time of B is about the same as A.

We prove the above theorem in a game-playing format. The first
game is the privacy against the server game of NIVA. In the second
game, we swap the vector that is encrypted with IPFE with an-
other vector that has the same inner product values using a vector
sampling algorithm. This is possible because inner-product is a
pre-image sampleable function. An adversary that can distinguish
between these two games can break indistinguishability-based se-
curity of the IPFE scheme. After that, we swap the query vector
generated during the setup procedure with queries generated by a
reusable strong honest-verifier zero-knowledge simulator for the

FL-PCP. The inner product values generated during each encryp-
tion are also replaced with outputs from the simulator. Here, these
two games are indistinguishable because of the reusable strong
honest-verifier zero-knowledge property of the FLPCP. A formal
proof of the theorem including the hybrid games and the adversary
is provided in Appendix C.

Privacy against the analyst. Privacy of PEAR against the ana-
lyst follows directly from the property of the underlying IPFE ∆ that
homomorphically aggregated ciphertexts are distributed identically
to freshly generated ones.

Integrity. The integrity of PEAR follows directly from reusable
soundness of the underlying FL-PCP as defined in 3.2. We summa-
rize it in the following theorem.

Theorem 2. Let PEAR be as constructed in Fig. 7. Then, PEAR is
an int-secure NIVA protocol. Formally, for any adversary A for all
𝜆, 𝑑 ∈ 𝑁 :

Advint
PEAR,A (𝜆, 𝑑) ≤ 𝛾 (𝜆)

where 𝛾 (·) is the reusable soundness error of ΠR .

5 OPTIMIZED FL-PCP FOR
CONJUCTION-OF-PREDICATES

5.1 Conjunction-of-Predicates Relations
A common structure of an input validity check in practice involves
verifying that the input satisfies multiple predicates at once. Namely,
let R ⊆ F𝑑 × Fℎ for 𝑑,ℎ ∈ N. Let 𝐶1, . . . ,𝐶𝑘 be arithmetic circuits
and define

RAND[𝐶1, . . . ,𝐶𝑘 ](x,w) = (𝐶1(x,w) = 0) ∧ . . . ∧ (𝐶𝑘 (x,w) = 0)
which we call a conjunction-of-predicates relation 3. For simplicity,
we assume that each 𝐶𝑖 has input length 𝑑 + ℎ. We give two main
examples of such relations before discussing our optimization of
the FL-PCP of [12] for them.

Binary validation. We first consider the binary validation re-
lation which checks that an input is a binary vector. Formally,
RBV(x) = 1 if for all 𝑖 ∈ [𝑑], 𝑥𝑖 ∈ {0, 1} where ℎ = 0. This
relation does not use the witness. Then there exist arithmetic
circuits 𝐶1, . . . ,𝐶𝑑 such that RBV = RAND[𝐶1, . . . ,𝐶𝑑 ], namely
𝐶𝑖 (x) = 𝑥𝑖 · (𝑥𝑖 − 1) for all 𝑖 ∈ [𝑑].

𝐿2-Norm bound validation.We next consider the𝐿2-norm bound
validation relation parameterized by 𝑏 ∈ N such that 22𝑏 < |F|/𝑑 ,
which checks that the square of an input vector’s 𝐿2-norm over the
integers is bounded by 22𝑏 . Note that it would not suffice to simply
check the 𝐿2-norm over the field because of potential wrap-around.
To ensure that there is no wrap-around we need to check that each
component of the input x is bounded by 2𝑏 . (Thus, the trivial bound
on the square of the 𝐿2-norm is 𝑑 · 22𝑏 , but we check that it is
actually much less; furthermore, our approach generalizes to any
bound that is a power of two.) A simple way to check this, and the
aforementioned bound on the square of the 𝐿2-norm, is to look at
their binary decomposition. Specifically, if the decomposition of
𝑥𝑖 has at most 𝑏 bits, then 𝑥𝑖 < 2𝑏 . Thus, for our 𝐿2-norm bound
validation we provide these binary decompositions as witnesses.
3What follows later as𝐶R is the same as the𝐶𝑖 for some 𝑖 ∈ 𝑘 here.
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Namely, for input x ∈ F𝑑 , let witness w = (u, v) ∈ F𝑑𝑏 × F2𝑏 the
𝐿2-norm bound validation relation RNBV[𝑏](x,w) = 1 if:

(1) u and v are binary vectors.
(2) u = (u1∥. . . ∥u𝑑 ) is a vector of binary decompositions of the

components of x where each u𝑖 is of length 𝑏.
(3) v is the binary representation of ∥x∥22

Observe that our witness𝑤 has length ℎ = 𝑑𝑏 + 2𝑏. Again, we claim
that RNBV[𝑏] = RAND[𝐶1, . . . ,𝐶𝑘 ] for 𝑘 = ℎ + 𝑑 + 1 for arithmetic
circuits 𝐶1, . . . ,𝐶𝑘 . The circuits are as follows:

(1) For 𝑗 ∈ [ℎ] : 𝐶 𝑗 (x,w) = 𝑤 𝑗 · (𝑤 𝑗 − 1).
(2) For 𝑖 ∈ [𝑑] : 𝐶ℎ+𝑖 = 𝑥𝑖 −

(∑𝑏
𝑗=1 u𝑖 ·𝑏+𝑗 · 2𝑗−1

)
.

(3) 𝐶ℎ+𝑑+1 =
(∑𝑑

𝑖=1 𝑥
2
𝑖

)
−

(∑2𝑏
𝑗=1 v𝑗 · 2

𝑗−1
)
.

5.2 Overview of Our Optimization

Existing FL-PCP. To explain our optimization, we first describe
some details of BBG+, [12]’s FL-PCP and why it does not directly
support conjunction-of-predicates relations optimally. Recall that
their construction works on arithmetic circuits containing many
instances of the same sub-circuit, where each sub-circuit takes 𝐿
inputs and has one output. These sub-circuits are called “𝐺-gates”.
The construction guarantees that there exists an FL-PCPwith strong
HVZK for the arithmetic circuit CR .

The idea of the FL-PCP is that the prover computes 𝐶(x,w) and
enumerates all the inputs and outputs of the𝐺-gates as interpolated
polynomials. The verifier checks that the polynomials are correctly
generated by evaluating them at a uniform random point, which
can be done via inner-product. The construction is provided in full
Iin Fig. 14 for completeness and further details can be found in [12].

Supporting conjuction-of-predicates. AsBBG+ workswith arith-
metic circuits, it does not directly support conjunctions-of-predicates
relations in an efficient manner. Although, a boolean AND gate can
be simulated by an arithmetic circuit in principle because both com-
putational models are complete, this incurs a significant blowup in
the circuit size. A slightly better idea is to modify BBG+ by letting
the output of each 𝐶𝑖 be the output of a 𝐺-gate, and having the
prover reveal the output of the last 𝑘 𝐺-gates, corresponding to
the outputs of 𝐶𝑖 (x,w), instead of just the last 𝐺-gate. Note that
since the output of 𝐶𝑖 (x,w) on valid inputs is equal to 0 for all
𝑖 ∈ [𝑘], revealing the output of these 𝑘 gates instead of just one
is still zero knowledge. On the other hand, if the input is invalid,
zero knowledge is not required to hold. We omit details since this
is not our final construction. Indeed, the problem is that revealing
the output of the last 𝑘 𝐺-gates requires 𝑘 additional linear queries
by the verifier, which in our NIVA construction corresponds to 𝑘
decryptions under the IPFE, a very expensive operation.

Our Optimization. To describe our optimization, we first observe
that the verifier computes an affine transformations on the proof,
thus it is possible to take linear combinations of these transforma-
tions to compute a linear combination of the output of the trans-
formations. Thus, we could compute ∑𝑘

𝑖=1𝐶𝑖 (x,w) using a single
linear query by simply adding up the queries that compute each
𝐶𝑖 (x,w). However, as previously stated it does not suffice to check
that ∑𝑘

𝑖=1𝐶𝑖 (x,w) is equal to 0.

Our main observation is that checking that a random linear com-
bination of 𝐶𝑖 (x,w) equals to 0, where the randomness is chosen
by the verifier allows to use just one query while ensuring sound-
ness with overwhelming probability. In more detail, the verifier
computes ∑𝑘

𝑖=1𝜓𝑖 ·𝐶𝑖 (x,w) and checks that it is equal to 0, where
𝜓𝑖 ←$ F. It is unlikely for this sum to be equal to 0 when 𝐶𝑖 (x,w)
are not all equal to 0 individually. Finally, note that this sum can in-
deed be computed by a linear query equal to a weighted sum of the
linear queries that compute 𝐶𝑖 (x,w). We stress that this check only
requires opening the output of this one value, instead of having to
open all 𝑘 𝐺-gates as proposed earlier.

We note that for the naive method of opening the last 𝑘 𝐺-gates,
the total query size and decision time increase quadratically with
the input length. This quadratic growth happens because more
𝐺-gates must be opened as the input length increases 4, and each
query becomes longer. In contrast, our optimization results in a
linear increase in both total query size and decision time. It requires
only a single query to recover the random linear combination of
all the 𝐺-gates, with only the query length growing as the input
length increases.

5.3 Details of the Optimized FL-PCP
We now give our optimized FL-PCP in detail, which we denote by
Π′ = (ProofGen,Query,Decision), in Fig. 8. We show below that it
fulfills completeness, soundness, and strong honest-verifier zero-
knowledge properties. For simplicity, assume that the output of the
last 𝑘 𝐺-gates are the outputs of𝐶1, . . . ,𝐶𝑘 . Here, the verifier wants
to check that 𝐶𝑖 (x,w) = 0 for each 𝑖 ∈ [𝑘]. Since all the coefficients
of the polynomial 𝑝 are a part of the proof vector, the verifier can
compute 𝑝(𝑖) for any 𝑖 by taking the inner product of the coefficient
vector with the following vector: (𝑖0, 𝑖1 . . . 𝑖𝑑𝑒𝑔) where 𝑑𝑒𝑔 is the
degree of 𝑝 . To compute ∑𝑘

𝑖=1𝜓𝑖 · 𝐶𝑖 (x,w) the verifier computes∑𝑘
𝑖=1𝜓𝑖 · 𝑝(𝑀 − 𝑖 + 1) using the query vector on line 19 of Fig. 8.
While we assume that the output of each 𝐶𝑖 is the output of a

𝐺-gate, we can also accommodate circuits that consist only of affine
gates. In particular, in our 𝐿2-norm bound validation, circuits that
check if a binary decomposition is correct are affine circuits. Since
the output of this type of circuit is not the output of a𝐺-gate, it can-
not be revealed using polynomial evaluation. However, its output
is simply a linear query on the instance-proof vector. We show that
this modified version of FL-PCP satisfies Completeness, Soundness,
and Strong honest-verifier zero-knowledge in the Appendix D.

6 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of PEAR.5 For
the underlying unrestricted IPFE scheme, we utilize the construc-
tion from [17], which we refer to asCLT. Details of this construction
are provided in Appendix E for completeness. We implement cir-
cuits for the Binary Validation RBV and 𝐿2-Norm Bound Validation
RNBV relations as previously defined in Section 5.1.

We establish a baseline for comparison using the straightforward
NIVA protocol based on additively homomorphic encryption (HE)
combined with a non-interactive zero-knowledge proof of knowl-
edge (NIZK). Recall that in this approach, the client encrypts their
4increase in input length is inclusive of the increase in depth
5We will open-source our implementation upon publication.
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ProofGen(1𝜆, x,w):

1 Evaluate𝐶1(x,w), . . . ,𝐶𝑘 (x,w)
2 For 𝑖 ∈ [𝐿] :
3 f[𝑖][0]←$ F
4 For 𝑗 ∈ [𝑀] :
5 f[𝑖][𝑗]← 𝑖𝑡ℎ input to the 𝑗𝑡ℎ 𝐺-gate
6 Use polynomial interpolation for 𝑖 ∈ [𝐿] as follows:
7 {(𝑗, f[𝑖][𝑗])}𝑀

𝑗=0 to compute 𝑓𝑖
8 𝑝 ← 𝐺 (𝑓1, . . . , 𝑓𝐿 )
9 Let c𝑝 be the coefficients of 𝑝

10 𝝅 ← (w | |f[1][0] . . . f[𝐿][0] | |c𝑝 )
11 Return 𝝅

Query(1𝜆, 1𝑑 ):

12 𝑟 ←$ F\[𝑀]
13 Compute linear queries for polynomial evaluation as

follows:
14 compute 𝝀 to evaluate 𝑝(𝑟 )
15 For 𝑖 ∈ [𝐿] : compute 𝝀𝑖 to evaluate 𝑓𝑖 (𝑟 )
16 𝝍←$ F𝑘

17 q1 ← 𝝀
18 q2, . . . , q𝐿 ← 𝝀1, . . . ,𝝀𝐿

19 q𝐿+1 ←
(
0𝑑+ℎ+𝐿 | |∑𝑘

𝑖=1𝜓𝑖 · 𝑖0, . . . ,
∑𝑘

𝑖=1𝜓𝑖 · 𝑖𝑑𝑒𝑔
)

20 st← (𝑟,𝝍)
21 Return (q1, . . . , q𝐿+1, st)

Decision(st, 𝑎1, . . . , 𝑎𝐿+1):

22 If 𝑎1 = 𝐺 (𝑎2, . . . , 𝑎𝐿 ) and 𝑎𝐿+1 = 0: Return 1
23 Return 0

Figure 8: Optimized FL-PCP for Conjunction-of-Predicates.

plaintexts with the HE scheme and uses the NIZK to prove that the
ciphertext is well-formed and satisfies the required constraints. The
client then sends both the ciphertext and the proof to the server,
who verifies the proof and aggregates the validated ciphertexts. In
the following discussion, we refer to this approach as NIZK+HE.

On FHE+FL-PCP. We also attempted to compare PEAR with a sec-
ond “off-the-shelf” NIVA protocol based on FHE+FL-PCP, where
FL-PCP validation is performed under the hood of FHE. Recall
that the FL-PCP decision algorithm computes a 𝐺-gate and com-
pares the output with another value, denoting their difference as
𝑡 . The decision algorithm determines the proof is valid if 𝑡 = 0.
It is straightforward for IPFE to check the value of 𝑡 as it obtains
the value in the clear. However, checking the same for the FHE
approach is significantly more challenging, since the server does
not interact with the client. We take the approach of exponentiating
the FHE ciphertext of 𝑡 to the order of the plaintext space to obtain
a bit, where a zero bit indicates “valid”. We then flip the bit and use
it to multiply the corresponding ciphertext to enable aggregation
without decrypting the intermediate result.

We implement this approach using the BFV scheme from the
SEAL library [39], written in C++. The FL-PCP scheme should
operate over a 128-bit field; however, the BFV scheme in SEAL
naively supports a plaintext modulus of at most 260. Although
longer integers could be managed by initializing multiple schemes
and concatenating their ciphertexts, we omit this step and instead
use a smaller plaintext size of 260 for BFV to provide it with some
advantage and demonstrate that PEAR already offers a significant
speedup while also uses a much larger field. For the RBV relation,
the server runtime of the FHE+FL-PCP approach is 20× to over 100×

slower than that of PEAR in our experiments. Therefore, we exclude
the FHE+FL-PCP approach from our detailed analysis below.

Implementation setup. We implement PEAR in Sage [38], which
uses a C backend, leveraging the PARI/GP library [26] to provide
robust support of ideal class groups (for the CLT scheme). It also
supports efficient polynomial computations over a field (for the FL-
PCP). For theNIZK+HE approach, we use Bulletproofs and ElGamal
implementations from the Tongsuo library [35], also written in C.
We assume a network latency of 30 ms and a bandwidth of 100
Mbps. All experiments were conducted on a cloud server equipped
with an Intel Xeon Platinum 8160 CPU (96 cores, 2.10 GHz) and 64
GB of DDR4 memory, running Ubuntu 22.04.

6.1 Server-Side Optimizations
We introduce server-side optimizations to PEAR tailored to the
relations we consider and to the IPFE scheme CLT. We observe that,
for both the RBV and RNBV relations, the 𝐺-gate used is a single
multiplication gate. Additionally, to recover the inner product 𝑟 of
a ciphertext ctx and a function key sky, CLT.Eval first computes 𝑔𝑟 ,
where 𝑔 is a generator of a group. It then uses a trapdoor to take
the discrete logarithm and recover the exponent, a process that
remains significantly more expensive than basic group operations
such as multiplication and exponentiation.

However, to validate the FL-PCP proof, recovering the exact
values of 𝑓1(𝑟 ) and 𝑓2(𝑟 ) is unnecessary; the goal is simply to verify
that their product equals 𝑝(𝑟 ). This can be done by instead checking
that 𝑔𝑓1(𝑟 )·𝑓2(𝑟 ) equals 𝑔𝑝(𝑟 ). However, at least in the CLT scheme,
there is no direct way to compute 𝑓1(𝑟 ) · 𝑓2(𝑟 ) in the exponent. Thus,
we first recover the value of 𝑓1(𝑟 ) as described above. Then during
the decryption of 𝑓2(𝑟 ), we skip the final step of using the trapdoor
to take the discrete logarithm and compute (𝑔𝑓2(𝑟 ))𝑓1(𝑟 ) to obtain
𝑔𝑓1(𝑟 )·𝑓2(𝑟 ). Similarly, when decrypting 𝑝(𝑟 ), we skip the discrete
logarithm step and just retrieve 𝑔𝑝(𝑟 ), then check equality of the
resulting group elements. This optimization avoids two trapdoor
discrete logarithm computations per input validation.

Another server-side optimization applies to the aggregation
step. In the aggregation step of PEAR, we are only interested in
the aggregate value of the first part of the input vectors. In the
IPFE CLT, a ciphertext ct of a vector (x∥𝝅 ) consists of components
(ct0, ct1, . . . , ct𝑑+𝑚) where 𝑑 + 𝑚 is the length of (x∥𝝅 ). Here, ct0
is the randomness used during encryption and ct𝑖 is a function of
ct0 and x𝑖 . Thus, instead of adding the entire vectors, we can input
the components (ct0, ct1, . . . , ct𝑑 ) to CLT.Add. This optimization
reduces both server runtime and bandwidth.

Figure 9: Client runtimes.
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Figure 10: Server runtimes.

Figure 11: Analyst runtimes.

6.2 PEAR Evaluation
We benchmark the performance of PEAR and NIZK+HE with the
RBV and RNBV validations. For the RNBV relation, we assume that
each 𝑥𝑖 is bounded by 210, and the 𝐿2-norm is bounded by 220.

Client performance. In Figure 9, client runtimes are split into
two components: proof generation time and encryption time. The
proof generation time for PEAR is significantly shorter than for
NIZK+HE, primarily because the FL-PCP proof generation operates
solely over the field.While the most computationally expensive step
is interpolating polynomials over the field, we optimize this process
to 𝑂(𝑛 log𝑛) using the Fast Fourier Transform [27]. In contrast,
Bulletproof’s proof generation involves elliptic curve operations,
which are inherently slower. On the other hand, encryption time for
PEAR is slower than that of NIZK+HE. This is because in the case
of the former the plaintext to be encrypted is longer, as it includes a
proof and witness. However, since proof generation time dominates
the client’s computation, PEAR still achieves a speedup of 4.5× to
20× in client computation time compared to the NIZK+HE method.

Server performance. In Figure 10, the server’s runtime is split
into validation time and aggregation time. We note that validation
time forNIZK+HE is larger since this requires verifying correctness
of encryption as well as validity of the input. However, the relative
cost of this decreases as the validity circuit grows. The reported
aggregation time corresponds to adding two ciphertexts. In both
approaches, aggregation time is independent of the circuit complex-
ity, depending only on the input length. Overall, PEAR achieves a
performance speedup of 1.2× to 3.6× in server computation time.

Analyst performance. Figure 11 presents the analyst’s runtime
which consists of running the setup procedure and decrypting the
aggregated result. For PEAR, the Setup time is longer because it
also involves executingCLT.KeyGen to generate queries for FL-PCP
proof validation. Note that for both of these approaches, however,
the runtime of the analyst is independent of the number of clients,
which may be the dominating term in practice. Moreover, if more

efficient unrestricted IPFE is developed in future work, it can be im-
mediately plugged into our protocol to make the analyst’s runtime
much smaller, likely outperforming that for NIZK+HE.

Figure 12: Total runtimes.

Overall Protocol. Figure 12 illustrates the total runtime of the
protocol. The client time corresponds to a single client generating
a proof for the RBV relation and encrypting data with an input
length of 100. The server time is measured with 100 participating
clients, where selectivity refers to the percentage of valid client
ciphertexts. Regardless of selectivity, the overall communication
time remains constant. Under our network setting of 30 ms latency
and 100 Mbps bandwidth, the analyst in both PEAR and NIZK+HE
can retrieve the aggregated results within 40 ms. When running the
entire protocol, server time dominates the total runtime; specifically,
for both PEAR and NIZK+HE, server time contributes to over 99%
of the total runtime. Hence, the overall speedup PEAR achieves is
similar to the speedup it achieves in server time. We stress that
our server runtime can be trivially reduced by parallel processing
(as ciphertext validation and aggregation are independent across
clients), which is not reflected in our experiments.

7 CONCLUSION
We have shown the first instantiation of a NIVA protocol based
on IPFE and FL-PCP. Our result shows basic feasibility for this
primitive and demonstrates that, with further optimizations of the
underlying primitives, this can become practical for real-world use.

A number of open questions remain for further extensions of this
primitive. We only consider the setting where the server is semi-
honest. It is an open question if one can build a non-interactive,
black-box protocol where the server is allowed to be malicious.
A particularly challenging case is guaranteeing integrity when a
malicious server may collude with an input client.

A second open question to consider is whether we can remove
the analyst instead providing output directly to the server. This
seems difficult to achieve in the non-interactive setting since the
server could mix and match ciphertexts to learn more information
about the messages, i.e., so called residual attacks. Handling residual
attacks in a non-interactive setting where server and malicious
clients collude remains an interesting open question.
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where (mpk,msk)←$ IPFE.Setup(1𝜆, 1𝑑 ),
(2) Decryption correctness:

Pr[IPFE.Decrypt(msk, IPFE.Encrypt(mpk, x)) = x] = 1

for all 𝜆, 𝑑 ∈ N, (pk,msk, pp)←$ IPFE.Setup(1𝜆, 1𝑑 ), x ∈ F𝑑 .
The probability is taken over the coins of the encryption
algorithm.

Security. The ipfe-ind game is defined in Figure 13.

Game Gind
IPFE,A

Initialize(1𝜆, 1𝑑 ):
1 𝑏←$ {0, 1}
2 (mpk,msk)←$ IPFE.Setup(1𝜆, 1𝑑 )
3 𝑉 ← ∅ ; 𝑊 ← ∅
4 Returnmpk

KeyGenO(y):
5 𝑉 ← 𝑉 ∪ {y}
6 sky ← IPFE.KeyGen(msk, y)
7 Return sky

EncO(x0, x1):
8 𝑊 ←𝑊 ∪ {(x0, x1)}
9 ctx𝑏 ←$ IPFE.Encrypt(mpk, x𝑏 )

10 Return ctx𝑏
Finalize(𝑏′):
11 if ∃ y ∈ 𝑉 and (x0, x1) ∈𝑊 such that:
12 ⟨y, x0 ⟩ ≠ ⟨y, x1 ⟩
13 then return 0
14 return (𝑏′ = 𝑏)

Figure 13: Indistinguishability-based security game for IPFE.

We consider a multi-challenge setting. For an adversaryA inter-
acting with the experiment in Figure 13, the advantage is defined
as follows:

Advind-multi
IPFE,A (𝜆) = 2 · Pr[Gind

IPFE,A (𝜆)⇒ 1] − 1 .

B REUSABILITY OF BBG+

B.1 Soundness
Lemma 1. The FL-PCP BBG+, satisfies 𝛾-reusable soundness as

defined in Section 4.3 where

𝛾 ≤ 𝑄(𝑑 + 1)
|F|−(𝑀 +𝑄𝑑)

and𝑄 is the number of queries made toRepeatO,𝑀 is the number
of 𝐺-gates in the validation circuit, and 𝑑 is the arithmetic degree of
the gate 𝐺 .

Proof. We include BBG+ here for completeness in Figure 14.
We omit specifics of the QueryVecs algorithm for simplification.
Here R is a relation such that 𝐶R is the corresponding validation
circuit that consists of G-gates with in-degree 𝐿. Additionally, let
ℓ = 𝐿 + 2 be the query complexity.

We present the reusable soundness game modified to include
a bad flag in Figure 15. The modifications are given in red. First,
we show that the bad flag is set to 1 with negligible probability.
Then, we show that if the bad flag is not set to 1 when we reach the
Finalize procedure, any adversary A has a negligible advantage
using arguments similar to the proof of soundness of BBG+.

FL-PCP ΠR

ProofGen(1𝜆, x,w):

1 For 𝑖 ∈ [𝐿] :
2 𝑧𝑖 ←$ F
3 Run𝐶R (x,w)
4 Define 𝑓1, . . . , 𝑓𝐿 such that:
5 𝑓𝑖 (𝑗 ) is the 𝑖𝑡ℎ input to the 𝑗𝑡ℎ G-gate
6 𝑧𝑖 is the constant term of 𝑓𝑖
7 Define 𝑝 = 𝐺 (𝑓1, . . . , 𝑓𝐿 )
8 Define c𝑝 vector of coefficients of 𝑝
9 Return (w, z, c𝑝 )

Query(1𝜆, 1𝑑 ):

10 st←$ F\[𝑀]
11 (q1, . . . , qℓ )←QueryVecs(st,𝐶R ,𝐺 )
12 Return (q1, . . . , qℓ , st)

Decision(st, 𝑎1, . . . , 𝑎ℓ ):

13 If𝐺 (𝑎1, . . . , 𝑎ℓ−2) = 𝑎ℓ−1 and 𝑎ℓ = 0:
14 Return 1
15 Else: Return 0

Figure 14: Fully Linear PCP BBG+ [12].

Game Greuse-sound
Π,A (𝜆,𝑑)

Initialize:
1 st←$ F \ [𝑀]; bad← 0
2 (q1, . . . , qℓ )←QueryVecs(st,𝐶R ,𝐺 )

RepeatO(x∥𝝅 ):
3 For 𝑖 ∈ [ℓ] : 𝑎𝑖 ← ⟨(x∥𝝅 ), q𝑖 ⟩
4 If𝐺 (𝑎1, . . . , 𝑎ℓ−2) = 𝑎ℓ−1 and 𝑎ℓ = 0 : 𝑏 ← 1
5 ELse 𝑏 ← 0
6 bad← CheckBadEvent(st, x∥𝝅 )
7 Return 𝑏

Finalize(x∗ ∥𝝅∗):
8 If x∗ ∈ R: Return ⊥
9 For 𝑖 ∈ [ℓ] : 𝑎∗𝑖 ← ⟨(x∗ ∥𝝅∗), q𝑖 ⟩

10 If𝐺 (𝑎∗1, . . . , 𝑎
∗
ℓ−2) = 𝑎∗ℓ−1 and 𝑎∗ℓ = 0 : 𝑏∗ ← 1

11 Else 𝑏∗ ← 0
12 Return 𝑏∗

CheckBadEvent(st, x∥𝝅 ):
13 Compute polynomial 𝑝 −𝐺 (𝑓1, . . . , 𝑓ℓ−2) from x∥𝝅
14 If 𝑝 −𝐺 (𝑓1, . . . , 𝑓ℓ−2) is not identically zero:
15 Compute roots of the polynomial as 𝑟1, . . . , 𝑟𝑑
16 If there exists 𝑖 ∈ [𝑑] such that 𝑟𝑖 = st: Return 1
17 Else: Return 0

Figure 15: Game defining reusable soundness property for BBG+.
Modifications to include a bad flag are given in red.

First, we analyze the input (x∗∥𝝅∗) to the Finalize procedure.
A valid input to this procedure must contain an input x∗ such that
x∗ ̸∈ R. We parse 𝝅∗ as w∗∥𝑧∗1, . . . 𝑧

∗
𝐿
∥c𝑝∗ where:

(1) w∗ is the witness for x∗.
(2) 𝑧∗1, . . . , 𝑧

∗
𝐿
are some constants.

(3) c𝑝∗ is a vector of coefficients of a polynomial 𝑝∗.
For (x∗∥𝝅∗), let 𝑓 ∗1 , . . . , 𝑓

∗
ℓ−2 and 𝑝∗ be the polynomials purported

to be associated with the input and output wires of the evaluation
of CR (x∗∥w∗). Additionally, let 𝑎∗

𝑖
be equal to ⟨(x∗∥𝝅∗), q𝑖 ⟩ for each

𝑖 ∈ [ℓ].
If the Finalize procedure outputs 1 when x∗ ̸∈ R, this means

that both𝐺(𝑎∗1, . . . , 𝑎
∗
ℓ−2) = 𝑎∗

ℓ−1 and 𝑎
∗
ℓ

= 0. However, since there
14
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does not exist a witness w∗ such that C(x∗,w∗) = 0, it must be
that 𝑝∗ represented by the coefficient vector c𝑝∗ is not the same as
𝐺(𝑓 ∗1 , . . . , 𝑓

∗
ℓ−2). Hence, 𝑝∗−𝐺(𝑓 ∗1 , . . . , 𝑓

∗
ℓ−2) is not an identically zero

polynomial and the state value st must be a root of this polynomial.
Next, consider the queries made to the RepeatO procedure.

Note that in theRepeatO oracle, we do not impose a restriction on
whether the submitted x𝑖 must be in R. The adversary can submit
any combination of valid and invalid input x, witness w, and proof
𝝅 . However, the adversary can only get more information about
the state st if the polynomial 𝑝∗ −𝐺(𝑓 ∗1 , . . . , 𝑓

∗
ℓ−2) is not identically

zero similar to the case of the Finalize procedure discussed above.
Additionally, we can assume that an adversary submits queries such
that this polynomial has distinct roots (including roots of polyno-
mials corresponding to previous queries) to maximize information
gain.
Claim: The probability of bad flag being set to 1 when we reach
the Finalize procedure is given as follows:

Pr[bad = 1 at Finalize] ≤ 𝑄𝑑

|F|−(𝑀 +𝑄𝑑)

where the probability is taken over the coins of the Initialize
procedure.

The bad flag is set to 1 when we reach the Finalize procedure
if for at least one 𝑗 ∈ [𝑄], the state st is a root of the polynomial
𝑝 𝑗 −𝐺(𝑓 𝑗1 , . . . , 𝑓

𝑗

ℓ−2) corresponding to the 𝑗 th query (x𝑗 ∥𝝅 𝑗 ) made
by the adversary A to the RepeatO oracle. The probability of
this event can be calculated as follows:

Pr[bad = 1 at Finalize] =
∑︁
𝑗∈[𝑁 ]

Pr[bad = 1 for the first time at 𝑗]

=
∑︁
𝑗∈[𝑄]

(Pr[bad = 0 at 𝑗 − 1] · Pr[bad = 1 at 𝑗])

=
∑︁
𝑗∈[𝑄]

(∏
𝑘< 𝑗

(
1 − 𝑑

|F|−(𝑀 + 𝑘𝑑)

)
· 𝑑

|F|−(𝑀 + 𝑗𝑑)

)
≤

∑︁
𝑗∈[𝑄]

𝑑

|F|−(𝑀 + 𝑗𝑑)

≤ 𝑄𝑑

|F|−𝑀 −𝑄𝑑 .

The third equality follow from the fact that at query 𝑗 , the prob-
ability that the state is a root of the corresponding polynomial
𝑝 𝑗 −𝐺(𝑓 𝑗1 , . . . , 𝑓

𝑗

ℓ−2) is given by 𝑑
|F |−(𝑀+𝑗𝑑) .

Claim: For an adversary A, the following holds:

Pr[Greuse-sound
Π,A (𝜆, 𝑑)⇒ 1|bad = 0 at Finalize] ≤ 𝑑

|F|−(𝑀 +𝑄𝑑)

where 𝑄 is the total number of queries made to the RepeatO
oracle and the probability is taken over the coins of the Initialize
procedure.

In gameGreuse-sound
Π,A , when the output is 1 the state value st is the

root of the polynomial 𝑝∗−𝐺(𝑓 ∗1 , . . . , 𝑓
∗
ℓ−2) corresponding to x∗∥𝝅∗,

as previously established. From the construction of the game, we
know that st is sampled uniformly at random from the set F\[𝑀]. If
the bad flag is 0, then the adversary did not find the state st during
one of its RepeatO queries. In more detail, there does not exist a
query (x𝑗 ∥𝝅 𝑗 ) to the RepeatO oracle such that the state st is a

root of the corresponding polynomial 𝑝 𝑗 −𝐺(𝑓 𝑗1 , . . . , 𝑓
𝑗

ℓ−2). Thus,
using similar arguments as the proof of soundness of BBG+ and
the Schwartz-Zippel lemma, the probability of this event is given
by 𝑑
|F |−(𝑀+𝑄𝑑) .
Finally, combining the two scenarios of the value of bad at

Finalize, we get that the soundness parameter 𝛾 is 𝑄(𝑑+1)
|F |−(𝑀+𝑄𝑑) as

claimed. □

Remark B.1. The FL-PCP described in Section 5 and Fig. 8 satisfies
reusable soundness the proof of which is identical to the above proof.

B.2 Strong Honest-Verifier Zero-Knowledge
Lemma 2. BBG+ satisfies reusable strong HVZK as defined in

Section 4.3.

Proof. In order to prove that BBG+ satisfies reusable strong
HVZK, we first provide a simulator SΠ,R = (S1,S2) in Figure 16.
Then, we show that when using this simulator, the output of the
two experiments are identically distributed.

Simulator S
S1(1𝜆, 1𝑑 ):
1 𝑟 ←$ F\[𝑀]
2 st← 𝑟

3 Return st

S2(1𝜆, 1𝑑 , st):
4 If st ̸∈ F\[𝑀]:
5 Return ⊥
6 𝑎1, . . . , 𝑎ℓ−2←$ F
7 𝑎 ← 𝐺 (𝑎1, . . . , 𝑎ℓ−1) ∈ F
8 Return (𝑎1, . . . , 𝑎ℓ−2, 𝑎, 0) ∈ Fℓ+1

Figure 16: Simulator for reusable strong HVZK for BBG+.

The output of the Initialize procedure in the gameGrshvzk-1
Π,A being

distributed identically to that in the game Grshvzk-0
Π,A follows from

the fact that the output state st is sampled uniformly at random
from the same domain F \ [𝑀] in both games.

Next, we want to show that the responses from the Repeat oracle
are also identically distributed in both games. This can be done
using an argument similar to the one made in the proof of zero-
knowledge in BBG+. First, we recall that an honest verifier samples
𝑟 in order to check that the polynomials 𝑝 and 𝐺(𝑓1, . . . , 𝑓ℓ−2) are
constructed correctly by evaluating them at 𝑟 using query vec-
tors q1, . . . , qℓ . Among (𝑎1, . . . , 𝑎ℓ−2, 𝑎ℓ−1, 𝑎ℓ ), 𝑎ℓ = 0 and 𝑎ℓ−1 =
𝐺(𝑎1, . . . , 𝑎ℓ−2) in the output of both games when x ∈ R. Since
these values are identical, it suffices to show that the distribution
of (𝑎1, . . . , 𝑎ℓ−2) is identical in the two games.

Here, (𝑎1, . . . , 𝑎ℓ−2) in the game Grshvzk-0
Π,A simulates the values

(𝑓1(𝑟 ), . . . , 𝑓ℓ−2(𝑟 )) in the game Grshvzk-1
Π,A . For every 𝑖 ∈ [ℓ − 2], 𝑓𝑖 (𝑟 )

can be written in terms of the Lagrange interpolating polynomials:

𝑓𝑖 (𝑟 ) = 𝜆0(𝑟 ) · 𝑓𝑖 (0) +
𝑀∑︁
𝑗=1

𝜆 𝑗 (𝑟 ) · 𝑓𝑖 ( 𝑗 ) .

When 𝑟 ̸∈ [𝑀], the value of the zero-th interpolating polynomial
𝜆0(𝑟 ) is non-zero. We also know that each 𝑓𝑖 (0) is sampled uniformly
from F in the ProofGen algorithm for each query (x,w). Thus,

15
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𝜆0(𝑟 )· 𝑓𝑖 (0) is uniform random and the distribution of 𝑓𝑖 (𝑟 ) is uniform
random as well.

On the other hand, the simulator in S2 samples 𝑎1, . . . , 𝑎ℓ−2 ∈ F
uniformly at random. Therefore, the distribution of (𝑎1, . . . , 𝑎ℓ−2)
is identical in the two games.

Hence, the responses from the Repeat oracle are identically dis-
tributed in both games and the advantage of any adversary is 0. □

Remark B.2. The FL-PCP described in Section 5 and Figure 8 satis-
fies reusable strong HVZK, the proof of which is identical to the above
except that S1 also samples an additional vector 𝝍←$ F𝑘 and returns
it as part of its output.

C PEAR PROOF OF PRIVACY
Here we prove Theorem 1 showing that PEAR is private against
a malicious server. Let A be an adversary against the privacy of
PEAR. Consider the game sequence in Fig. 17. The differences be-
tween consecutive games are highlighted in red. The first game
G1
PEAR,A is the indistinguishability game from Fig. 2. In the second

game G2
PEAR,A , instead of encrypting (x𝑏 ∥𝝅 ), we compute its inner

product with each query vector, sample a vector v∗ that has the
same inner products with the query vectors, and encrypt that vector
instead. The transition between these two games is justified using
security of the IPFE scheme ∆ and preimage sampleability of the
inner product functionality. Next, in game G3

PEAR,A,S , we use the
FL-PCP simulator to generate the inner product values and sample
a vector that has these inner products with the query vectors. This
game is independent of the bit 𝑏.

The following lemmas correspond to the games:

Lemma 3. For all 𝜆, 𝑑 ∈ N, there exists an adversary B such that:

Pr[G1
PEAR,A (𝜆, 𝑑)⇒ 1]−Pr[G2

PEAR,A (𝜆, 𝑑)⇒ 1] = Advind
IPFE,B (𝜆, 𝑑) .

Lemma 4. There exists a simulator SΠ such that the following
equation holds:

Pr[G2
PEAR,A (𝜆, 𝑑)⇒ 1] = Pr[G3

PEAR,A,S (𝜆, 𝑑)⇒ 1] .

Finally, we can see that in game Pr[G3
PEAR,A,SΠ

(𝜆)], the output
of the game is independent of the bit 𝑏. Thus,

Pr[G3
PEAR,A,S (𝜆, 𝑑)⇒ 1] =

1
2
.

Next, we combine this fact with the lemmas as follows:

Pr[Gind
PEAR,A (𝜆)⇒ 1] = Pr[G1

PEAR,A (𝜆)⇒ 1]

=
(
Pr[G1

PEAR,A (𝜆)⇒ 1] − Pr[G2
PEAR,A (𝜆)⇒ 1]

)
+ Pr[G2

PEAR,A (𝜆)⇒ 1]

= Advind
IPFE,B (𝜆, 𝑑) + Pr[G2

PEAR,A (𝜆)⇒ 1]

= Advind
IPFE,B (𝜆, 𝑑) + Pr[G3

PEAR,A,S (𝜆)⇒ 1]

= Advind
IPFE,B (𝜆, 𝑑) +

1
2
.

Finally,

Advind
PEAR,A (𝜆, 𝑑) = 2 · Pr[Gind

PEAR,A (𝜆)⇒ 1] − 1

= Advind
IPFE,B (𝜆, 𝑑) .

Now, it suffices to prove Lemmas 3 and 4.

Proof of Lemma 3. First, consider adversary B provided in Fig.
18. The adversary simulates the encryption oracle for the adversary
A by generating both messages (x𝑏 | |𝝅 ) and v∗ corresponding to
the two games and making an IPFE encryption query with them.
By inspection, we can see that when B has its challenge bit bit = 0,
it perfectly simulates game G1

PEAR,A in Fig. 17.
On the other hand, by definition of VecSamp, the inner products

of vector v∗ with every vector q𝑗 is equal to the inner products of
vector (x𝑏 | |𝝅 ) with every q𝑗 satisfying the validity requirement of
the encryption oracle. Here we use preimage sampleability of the
inner product function in the VecSamp to compute the vector v∗.
Thus, when B has its challenge bit bit = 0, it perfectly simulates
G2
PEAR,A for A. Finally,

Pr[G1
PEAR,A (𝜆, 𝑑)⇒ 1]−Pr[G2

PEAR,A (𝜆, 𝑑)⇒ 1] = Advind
IPFE,B (𝜆, 𝑑) .

□

Proof of Lemma 4. The difference between games G2
PEAR,A

and G3
PEAR,A,SΠ

is in the generation of the state stΠ and the in-
ner product values 𝑎1, . . . , 𝑎ℓ . The existence of a simulator SΠ,R =
(S1,S2) whose output is identically distributed to the real state stΠ
and inner product values 𝑎1, . . . , 𝑎ℓ is guaranteed by the reusable
strong HVZK property when the input instances are valid. Thus, if
the distribution of these values is identical, then the output of the
games is also identical for any adversary A. Hence,

Pr[G2
PEAR,A (𝜆, 𝑑)⇒ 1] = Pr[G3

PEAR,A,S (𝜆, 𝑑)⇒ 1].

□

D FL-PCP OPTIMIZATION PROOFS
Here, we show that this modified version of the FL-PCP instance
satisfies Completeness, Soundness, and Strong honest-verifier zero-
knowledge.

Claim D.1. (Completeness.) Π′ is complete. That is, for all (x,w) ∈
R, the verifier always accepts the proof. More precisely, for all (x,w) ∈
R, Pr[Decision(st, 𝑎1, . . . , 𝑎𝐿+1)⇒ 1] = 1 where
𝝅 ←$ ProofGen(1𝜆, x,w), (q1, . . . , q𝐿+1, st)←$ Query(1𝜆, 1𝑑 ), and
𝑎𝑖 ← ⟨(x, 𝝅 ), q𝑖 ⟩ for all 𝑖 ∈ [𝐿 + 1]. The probability is taken over the
coins of the ProofGen andQuery algorithms.

Proof. First, we know that by construction of the output polyno-
mial 𝑝 , if the prover honestly generates the polynomials 𝑓1, . . . , 𝑓𝐿, 𝑝 ,
then the first 𝐿 linear checks pass. Additionally, we can see that if
𝑥𝑖 ∈ R, then for all 𝑖 ∈ [𝑘] : 𝐶𝑖 (x,w) = 0. Hence, 𝜓𝑖 · 𝐶𝑖 (x,w) = 0
for any𝜓𝑖 , and thus the sum always equals 0 as required. □

Claim D.2. (Soundness.) Π′ is sound. More precisely, for (x,w) ∈
F𝑑 ×Fℎ , for any claimed proof 𝝅 such that |𝝅 |= |ProofGen(1𝜆, x,w)|,
(q1, . . . , q𝐿+1, st)←$ Query(1𝜆, 1𝑑 ), and 𝑎𝑖 ← ⟨(x, 𝝅 ), q𝑖 ⟩ for all 𝑖 ∈
[𝐿 + 1] if Decision(st, 𝑎1, . . . , 𝑎𝐿+1) outputs 1, then (x,w) ̸∈ R with

probability at most deg𝐺
|F |−𝑀 + 1

|F | . The probability is taken over the
coins of the ProofGen andQuery algorithms.
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Game G1
PEAR,A (𝜆,𝑑)

Initialize(1𝜆, 1𝑑 ):
1 𝑏←$ {0, 1}
2 (mpk,msk)← ∆.Setup(1𝜆, 1𝑑 )
3 (q1, . . . , qℓ , stΠ)← ΠR .Query(1𝜆, 1𝑑 )
4 For 𝑗 ∈ [ℓ] :
5 skq𝑗 ← ∆.KeyGen(msk, q𝑗 )

6 vk←
(
{skq𝑗 } 𝑗 ∈[ℓ], stΠ

)
7 Return (mpk, vk)

EncO((x0,w0), (x1,w1)):
8 𝝅 ←$ ΠR .ProofGen(1𝜆, x𝑏 ,w𝑏 )
9 ct←$ ∆.Encrypt(mpk, (x𝑏 ∥𝝅 ))

10 return ct

Finalize(𝑏′):
11 return (𝑏 = 𝑏′)

Game G2
PEAR,A (𝜆,𝑑)

Initialize(1𝜆, 1𝑑 ):
1 𝑏←$ {0, 1}
2 (mpk,msk)← ∆.Setup(1𝜆, 1𝑑 )
3 (q1, . . . , qℓ , stΠ)← ΠR .Query(1𝜆, 1𝑑 )
4 For 𝑗 ∈ [ℓ] :
5 skq𝑗 ← ∆.KeyGen(msk, q𝑗 )

6 vk←
(
{skq𝑗 } 𝑗 ∈[ℓ], stΠ

)
7 Return (mpk, vk)

EncO((x0,w0), (x1,w1)):
8 𝝅 ←$ ΠR .ProofGen(1𝜆, x𝑏 ,w𝑏 )
9 For 𝑖 ∈ [ℓ]: 𝑎𝑖 ← ⟨(x𝑏 | |𝝅 ), q𝑖 ⟩

10 v∗ ← VecSamp((q1, 𝑎1, ) . . . , (qℓ , 𝑎ℓ ))
11 ct←$ ∆.Encrypt(mpk, v∗)
12 return ct

Finalize(𝑏′):
13 return (𝑏 = 𝑏′)

VecSamp((y1, 𝑎1), . . . , (yℓ , 𝑎ℓ )):
14 Let v∗ ∈ F𝑑+𝑚

15 Solve the system of linear equations for v∗ :
16 (y1 ∥ . . . ∥yℓ )⊤ · v∗ = (𝑎1 ∥ . . . ∥𝑎ℓ )
17 return v∗

Game G3
PEAR,A,S (𝜆,𝑑)

Initialize(1𝜆, 1𝑑 ):
1 𝑏←$ {0, 1}
2 (mpk,msk)← ∆.Setup(1𝜆, 1𝑑 )
3 stΠ←$ S1(1𝜆, 1𝑑 )
4 (q1, . . . , qℓ )← ΠR .Query(1𝜆, 1𝑑 ; stΠ)
5 For 𝑗 ∈ [ℓ] :
6 skq𝑗 ← ∆.KeyGen(msk, q𝑗 )

7 vk←
(
{skq𝑗 } 𝑗 ∈[ℓ], stΠ

)
8 Return (mpk, vk)

EncO((x0,w0), (x1,w1)):
9 (𝑎1, . . . , 𝑎ℓ )←$ S2(1𝜆, 1𝑑 , stΠ)
10 v∗ ← VecSamp((q1, 𝑎1, ) . . . , (qℓ , 𝑎ℓ ))
11 ct←$ ∆.Encrypt(mpk, v∗)
12 return ct

Finalize(𝑏′):
13 return (𝑏 = 𝑏′)

VecSamp((y1, 𝑎1), . . . , (yℓ , 𝑎ℓ )):
14 Let v∗ ∈ F𝑑+𝑚

15 Solve the system of linear equations for v∗ :
16 (y1 ∥ . . . ∥yℓ )⊤ · v∗ = (𝑎1 ∥ . . . ∥𝑎ℓ )
17 return v∗

Figure 17: Games for proof of privacy for Theorem 1.
Changes between consecutive games are depicted in red.

Adversary BKeyGenO′(·),EncO′(·,·)(1𝜆, 1𝑑 ,mpk)

Initialize:
1 𝑏←$ {0, 1}
2 (q1, . . . , qℓ , stΠ)←$ ΠR .Query(1𝜆, 1𝑑 )
3 For 𝑗 ∈ [ℓ] :
4 sk𝑞𝑗 ← KeyGenO′(q𝑗 )

5 vk←
(
{skq𝑗 } 𝑗 ∈[ℓ], stΠ

)
6 Return (mpk, vk)

EncO((x0,w0), (x1,w1)):
7 𝝅 ← ΠR .ProofGen(1𝜆, x𝑏 ,w𝑏 )
8 For 𝑖 ∈ [ℓ]: 𝑎𝑖 ← ⟨(x𝑏 | |𝝅 ), q𝑖 ⟩
9 v∗ ← VecSamp((q1, 𝑎1), . . . , (qℓ , 𝑎ℓ ))

10 ct←$ EncO′((x𝑏 ∥𝝅 ), v∗)
11 return ct

Finalize(𝑏′):
12 return (𝑏 = 𝑏′)

VecSamp((y1, 𝑎1), . . . , (yℓ , 𝑎ℓ )):
13 Let v∗ ∈ F𝑑+𝑚

14 Solve the system of linear equations for v∗ :
15 (y1 ∥ . . . ∥yℓ )⊤ · v∗ = (𝑎1 ∥ . . . ∥𝑎ℓ )
16 return v∗

Figure 18: IND adversary for privacy proof for PEAR.

Proof. Using the soundness argument ofBBG+, by the Schwartz-
Zippel Lemma, we know that the probability that
𝑝(𝑟 ) −𝐺(𝑓1(𝑟 ), . . . , 𝑓𝐿(𝑟 )) = 0 for 𝑟 ←$ F\[𝑀] is equal to deg𝐺

|F |−𝑀 .
Next, consider the probability that:

𝑘∑︁
𝑖=1
(𝜓𝑖 ·𝐶𝑖 (x,w)) = 0

where at least one of the 𝐶𝑖 (x,w) ̸= 0. This probability can be
computed as follows:

Pr

[
𝜓𝑘 ·𝐶𝑘 (x,w) = −

𝑘−1∑︁
𝑖=1

𝜓𝑖 ·𝐶𝑖 (x,w)| 𝜓𝑖 ←$ F ∀𝑖 ∈ [𝑘 − 1]

]
=

1
|𝐹 | .

Thus, with probability 1
|F | ,

∑𝑘
𝑖=1𝜓𝑖 ·𝐶𝑖 (x,w) = 0, when (x,w) ̸∈ R.

The verifier accepts when (x,w) ̸∈ R with the total probability at
most deg𝐺

|F |−𝑀 + 1
|F | . □

Claim D.3. (Strong honest-verifier zero-knowledge.) Π′ is SHVZK.
More precisely, there exists a simulator 𝑆 such that for all (x,w) ∈ R
and 𝜆, 𝑑 ∈ N, the distribution of 𝑆(1𝜆, 1𝑑 ) is identical to the following:

(st, ⟨(x| |𝝅 ), q1⟩, . . . , ⟨(x| |𝝅 ), q𝐿+1⟩), (q1, . . . , q𝐿+1))

where (q1, . . . , q𝐿+1, st)←$ Query(1𝜆, 1𝑑 ) and𝝅 ←$ ProofGen(1𝜆, x,w).

Proof. Note that the queries of the verifier are determined by
the state of the verifier and the circuits. So, it suffices to simu-
late (st, 𝑓1(𝑟 ), . . . , 𝑓𝐿(𝑟 ), ⟨(x, 𝜋 ), q𝐿+1⟩). The required simulator 𝑆 is as
follows:

(1) 𝑟 ←$ F\[𝑀].
(2) 𝝍←$ F𝑘 .
(3) 𝑎1, . . . , 𝑎𝐿←$ F.
(4) st← (𝑟, 𝝍)
(5) Return (st, 𝑎1, . . . , 𝑎𝐿, 0) ∈ F𝐿+𝑘+1.

The distribution of 𝑟, 𝑎1, . . . , 𝑎𝐿 sampled in the simulator is identical
to the distribution of 𝑟, 𝑓1(𝑟 ), . . . , 𝑓𝐿(𝑟 ) in the real interaction. This
argument closely resembles the proof of strong honest verifier
zero knowledge for the FL-PCP given in BBG+. All the values are
uniform random in their respective domains.
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Next, we know that an honest verifier samples the vector 𝝍 uni-
formly from F, thus the query vector q𝐿+1 is identically distributed
to the real (𝐿 + 1)-st query.

Finally, when x is valid, the final linear query outputs 0, thus the
final output of the simulator is also perfect.

Hence, the simulator’s entire output is identically distributed to
the real interaction and Π′ satisfies the SHVZK property. □

E UNRESTRICTED IPFE
The IPFE scheme must be unrestricted because the FL-PCP proto-
col’s Query algorithm needs to sample random query vectors to
verify the input. This scheme is proposed in [17] based on class
groups, which we describe below. CLT operates within a DDH-hard
group containing a DL-easy subgroup, meaning that there exists a
polynomial time algorithm capable of solving discrete logarithm
problem in this subgroup. Let Gen be the group generator. We spec-
ify that on inputs two parameters 𝜆 and 𝜇, Gen outputs a tuple
(𝑝, 𝑠, 𝑔, 𝑓 , 𝑔𝑝 ,𝐺, 𝐹,𝐺𝑝 ) where, the set (𝐺, ·) is a cyclic group of order
𝑝𝑠 , 𝑠 is an integer, 𝑠 is an upper bound of 𝑠 , 𝑝 is a 𝜇-bit prime, and
gcd(𝑝, 𝑠) = 1. The set 𝐺𝑝 = {𝑥𝑝 , 𝑥 ∈ 𝐺} is the subgroup of order 𝑠
of𝐺 , and 𝐹 is subgroup of order 𝑝 of𝐺 , so that𝐺 = 𝐹 ×𝐺𝑝 . Finally
𝑓 , 𝑔𝑝 and 𝑔 = 𝑓 · 𝑔𝑝 are generators of 𝐹 , 𝐺𝑝 and 𝐺 , respectively.
Since the discrete logarithm problem is easy in 𝐹 , we let Solve be a
deterministic polynomial time algorithm that solves the discrete
logarithm problem in 𝐹 .

Let x, y ∈ Z𝑑𝑝 , we present the construction based on the HSM
assumption in Figure 19, and demonstrate that it is additively homo-
morphic. In [17], CLT.KeyGen is designed as a stateful algorithm,

CLT.Setup(1𝜆, 1𝜇 , 1𝑑 ):

1 (𝑝, 𝑠, 𝑓 , 𝑔𝑝 ,𝐺, 𝐹,𝐺𝑝 )←$ Gen(1𝜆, 1𝜇 )
2 s = (𝑠1, . . . , 𝑠𝑑 )←$ D
3 For 1 ≤ 𝑖 ≤ 𝑑 :
4 ℎ𝑖 = 𝑔

𝑠𝑖
𝑝

5 mpk← (𝑝, 𝑠, 𝑓 , 𝑔𝑝 , {ℎ𝑖 }𝑖∈[𝑑])
6 msk← s
7 Return (mpk,msk)

CLT.KeyGen(msk, y):

8 s← msk
9 sky = ⟨s, y⟩

10 Return sky

CLT.Encrypt(mpk, x):

11 𝑟 ←$ D𝑝

12 ct0 ← 𝑔𝑟𝑝
13 For 1 ≤ 𝑖 ≤ 𝑑 :
14 ct𝑖 = 𝑓 x𝑖 · ℎ𝑟

𝑖

15 Return (ct0, ct1, . . . , ct𝑑 )

CLT.Eval(mpk, ctx, sky):

16 (ct0, ct1, . . . , ct𝑑 )← ctx
17 ct =

(∏𝑑
𝑖=1 ct

y𝑖
𝑖

)
· ct−sky0

18 Return Solve(ct)

CLT.Decrypt(msk, ctx):

19 (ct0, ct1, . . . , ct𝑑 )← ctx
20 s← msk
21 For 1 ≤ 𝑖 ≤ 𝑑 :
22 x𝑖 ← Solve(ct𝑖 · ct−s𝑖0 )
23 Return (x1, . . . , x𝑑 )

CLT.Add(ctx1 , ctx2 ):

24 (ct1,0, ct1,1, . . . , ct1,𝑑 )← ctx1
25 (ct2,0, ct2,1, . . . , ct2,𝑑 )← ctx2
26 For 0 ≤ 𝑖 ≤ 𝑑 :
27 ct𝑖 = ct1,𝑖 · ct2,𝑖
28 Return (ct0, ct1, . . . , ct𝑑 )

Figure 19: Unrestricted IPFE construction instantiated byHSM in [17]

ensuring that keys cannot be queried for vectors that are linearly
dependent over Z𝑑𝑝 but independent over Z𝑑 . In our usage scenario,
the analyst generates all inputs to CLT.KeyGen at once and can in-
dependently verify them before invoking CLT.KeyGen. Hence the
statefulKeyGen is not necessary. Furthermore, we demonstrate that
the scheme possesses the desired additive homomorphism prop-
erty, as described in Section 3.3, enabling the server to aggregate
ciphertexts and output their sum.

Additive Homomorphism of CLT. For all 𝜆, 𝜇, 𝑑 ∈ N, x1, x2 ∈ Z𝑑𝑝 ,
and (mpk,msk)←$ CLT.Setup(1𝜆, 1𝜇 , 1𝑑 ), we let
ctx1 ← CLT.Encrypt(mpk, x1), ctx2 ← CLT.Encrypt(mpk, x2), and
ct ← CLT.Add(ctx1 , ctx2 ). We then have that ct0 = 𝑔

𝑟1+𝑟2
𝑝 , ct𝑖 =

𝑓 𝑥1,𝑖+𝑥2,𝑖ℎ
𝑟1+𝑟2
𝑖

for 1 ≤ 𝑖 ≤ 𝑑 . Since 𝑟1 and 𝑟2 are randomly sam-
pled, CLT.Add(ctx1 , ctx2 ) is computationally indistinguishable from
CLT.Encrypt(mpk, x1 + x2).

Instantiation details. As shown in [17], in practice, the distribu-
tions D and D𝑝 can be implemented from the output of Gen more
efficiently. Let D𝜎 represents the discrete Gaussian distribution
overZwith parameter𝜎 centered at 0.We chooseD = D

𝑠 ·𝑝 ·
√
𝜆
, and

D𝑝 = D
𝑠 ·
√
𝜆
. The CLT scheme is instantiated using class groups of

imaginary quadratic fields. We refer to [16, 17] for a full description
of the implementation. We set both 𝜆 the security parameter and 𝜇

the size of prime 𝑝 to 128. This results in the hidden order group𝐺𝑝

having 924-bit elements and those in 𝐺 having 2084-bit elements.
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