
A Note on Obfuscation-based Attacks on Private-coin Evasive LWE

Tzu-Hsiang Huang1, Wei-Hsiang Hung1, Shota Yamada2

1Academia Sinica, Taipei, Taiwan
jimmy@iis.sinica.edu.tw, arniehung@iis.sinica.edu.tw

2National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
yamada-shota@aist.go.jp

Abstract

The evasive learning with errors (evasive LWE) assumption is a new assumption recently introduced
by Wee [Wee22] and Tsabary [Tsa22] independently, as a significant strengthening of the standard
LWE assumption. While the assumption is known to imply various strong primitives including witness
encryption [Tsa22, VWW22], the assumption in the most general case (i.e., the private coin variant) is
considered quite implausible due to the obfuscation based attack mentioned in [Wee22]. This obfuscation
based attack is then later formalized by Vaikuntanathan, Wee, and Wichs [VWW22]. In this note, we
revisit their attack and show that the attack actually does not work by showing a concrete counterexample.
We then show that their attack can be made valid with some modifications. Along the way, we also
improve the counterexample by making it provable. Specifically, our counterexample is valid assuming the
(plain) LWE assumption and the existence of instance-hiding witness encryption, whereas their original
counterexample was dependent on the heuristic assumption of the existence of an ideal obfuscation.

1



Contents

1 Introduction 3

2 Preliminaries 4
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Lattice background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 (Instance-Hiding) Witness Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Counterexample for VWW Obfuscation-based attack 6

4 Witness Encryption Attack 8

2



1 Introduction

The evasive learning with errors (evasive LWE) assumption is a new assumption recently introduced by
Wee [Wee22] and Tsabary [Tsa22] independently, as a significant strengthening of the standard LWE
assumption. This assumption enables various constructions of cryptographic primitives, which are not
known to be possible by assuming the LWE assumption alone for many years. Notably, this includes the
constructions of (optimal) broadcast encryption [Wee22] and witness encryption (WE) [Tsa22]. There are
many subsequent works that use evasive LWE to construct various primitives including multi-authority
ABE [WWW22], multi-input ABE [ARYY23], key-policy ABE for unbounded depth circuits [HLL23],
ciphertext-policy ABE [HLL24], ABE for Turing machines [AKY24a], SNARKs for UP [MPV24], functional
encryption and obfuscation for pseudorandom functionalities [AKY24b, AKY24c, BDJ+24], and succinct
witness encryption [BDJ+24].

The primitives mentioned above, except for succinct witness encryption, can be based on indistinguishability
obfuscation (IO) [GGH+13], which can be constructed from a combination of well-founded assumptions
[JLS21, JLS22, RVV24]. Current IO constructions, however, are vulnerable to quantum computers due
to reliance on bilinear maps [JLS21, JLS22, RVV24] or depend on non-standard assumptions [BDGM20,
GP21, WW21, DQV+21], some of which are broken [HJL21, JLLS23]. The evasive LWE assumption relies
solely on lattices, and thus appears to be post-quantum secure. Furthermore, it circumvents the zeroizing
attacks [Wee21], which are typically applicable to obfuscation candidates. These characteristics make the
evasive LWE assumption a promising starting point for constructing advanced primitives for which we do not
know how to construct without IO, in the post-quantum regime.

The assumption involves a sampler, denoted as Samp, which outputs (S, P, aux). The assumption states
that if (SB + E, SP + E′, aux) ≈c ($, $, aux) holds, then (SB + E, B−1(P), aux) ≈c ($, B−1(P), aux)
should also hold, where B and S are random matrices, E and E′ are short Gaussian distributions, P is
possibly structured matrix, B−1(P) is a short matrix satisfying B ·B−1(P) = P sampled from discrete
Gaussian distribution, and $ stands for a random matrix with the corresponding size.1 Wee [Wee22] discusses
that the assumption may not be valid for all samplers. In more detail, he introduces the concept of public coin
versus private coin versions of the assumption, where the distinction is made based on whether the sampler’s
coin is given to the distinguisher or not. He then notes that the private coin version may suffer from an
"obfuscation-based counterexample." This motivates the research community to rely on the public coin version
of the assumption when it is possible. However, Wee’s paper does not provide any technical explanation
of this obfuscation-based counterexample. A description of the obfuscation-based counterexample is later
given by Vaikuntanthan, Wee, and Wichs [VWW22] (henceforth VWW in the following), who showed a
sampler for which pre-condition distributions are indistinguishable, but the post-condition distributions can
be distinguished efficiently.

In this note, we show that the pre-condition distributions given by them are actually distinguishable, as
opposed to their claim. This invalidates their attack against the private-coin evasive LWE, since evasive
LWE only refers to the case where pre-condition distributions are indistinguishable and claims nothing
else otherwise. Nevertheless, we are able to fix their counterexample to offer a new valid counterexample.
Inspired by the recent work by Branco et al. [BDJ+24], we also improve the VWW counterexample by
eliminating the heuristic assumption that ideal obfuscation exists that was used by VWW. Specifically, our
counterexample is provable, showing indistinguishability of the pre-condition by assuming the existence
of instance-hiding WE. Goyal et al. [GKW17] and Wichs et al. [WZ17] obtain instance-hiding WE by

1Multiple variants of this assumption exist. For example, in some variants, B and P are provided to the adversary in both
pre-condition and post-condition in some versions such as [Wee22, ARYY23].
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combining (plain) WE with compute-and-compare obfuscation (a.k.a lockable obfuscation) and also show
that compute-and-compare obfuscation can be constructed from LWE. Additionally, VWW and [BDJ+24]
construct WE from private-coin evasive LWE. Consequently, assuming the hardness of LWE, our work shows
that many variants of private-coin evasive LWE cannot be secure by providing a concrete and provable
counterexample.

We note that [BDJ+24] constructs pseudorandom obfuscation (PRO) based on (a slight variant of)
private-coin evasive LWE and show counter-example against PRO for general samplers. Combination of these
results constitutes counter-example against the variant of private-coin evasive LWE. Our counter-example
is with respect to a different sampler than theirs and would be more direct and simpler in that we do not
have to go through the construction of PRO, which involves the computation of FHE etc. In addition, we
directly refutes the original version of evasive LWE instead of the slight variant (See discussion in Sec 2.4 of
[BDJ+24] for details).

Discussion and Open question Observe that the original VWW attack intends to work even against a
sampler who chooses S independently from anything else (i.e., P and aux). If it works, this is a stronger
attack than what we show in Section 4, since the sampler in our attack uses the information of S to generate
aux. However, as we showed in Section 3, their attack does not work as intended. It remains open to remove
the dependence of aux on S from our attack.

Independent Work Brzsuka, Ünal, and Woo [BÜW24] present several counterexamples to the private coin
evasive LWE, identifying plausible classes of this assumption. Their work overlaps somewhat with ours since
they provide a formal counterexample using ideas similar to ours.2 For example, Lemma 4.1 is similar to
their Lemma 10, and we use a similar Samp as a counterexample in Section 4, compared to their Section 7.
However, all of our proofs differ in some details. We emphasize that these overlapping results are developed
independently and note that our work uniquely includes the specific counterexample against the VWW attack
on the private coin evasive LWE.

2 Preliminaries

2.1 Notations

We use dollar signs $, $′ and $′′ to denote the samples drawn from uniformly random matrices over Zq.
Denote | · | as the maximum absolute value over all entries of a matrix. For a matrix M, we denote (M)i,j

as the i-th row, j-th column entry of M. For two distributions χ and χ′, we denote the statistical distance
between them by ∆(χ, χ′).

2.2 Lattice background

Gaussian Distributions. For an integer m > 0, let DZm,σ be the discrete Gaussian distribution over Zm with
deviation σ > 0.
Gaussian Preimage. Let n, m, q ∈ N and consider a matrix B ∈ Zn×m

q . For all P ∈ Zn×m′
q , we denote

B−1(P, σ) as the Gaussian distribution DZm×m′ ,σ conditioned on B ·B−1(P, σ) = P. We suppress σ when
the context is clear.

2In more detail, one of the authors saw the primary version of [BÜW24] in private circulation before this work is done. However,
the primary version did not contain the part that overlaps with ours.
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Lemma 2.1 ([Reg09], Lemma 2.5). We have Pr[∥x∥∞ > σ
√

m : x← Dm,σ] ≤ 2−2m

Lemma 2.2 ([MR04], Lemma 4.4). For u ∈ Zn
q , it follows Pr[

∥∥B−1(u, σ)
∥∥

∞ >
√

mσ] = negl(n)

Lemma 2.3 ([KYY18], Lemma 6). Let σ > 16
√

log 2m/π and u be any vector in Zn
q . Then, for all but q−n

fraction of A ∈ Zn×m
q , we have

H∞(A−1(u, σ)) ≥ m− 1.

Lemma 2.4 (Leftover hash lemma, [Reg09]). For a random variable x over Zm
q with min-entropy h, the

statistical distance between (a, ⟨a, x⟩) and (a, u) is less than
√

qm/2h for a $← Zm
q and u

$← Zq.

Lemma 2.5 (Lattice Trapdoor, [MP11]). There is an efficient algorithm GenTrap(1n, 1m, q) outputs
A ∈ Zn×m

q and a trapdoor T such that the distribution of A is statistically negl(n)-close to uniform.
Moreover, there is an efficient algorithm Invert that with overwhelming probability over all random choices,
do the following:

• Let b⊤ = s⊤A + e⊤ ,where s ∈ Zn
q is arbitrary, and e← DZm,αq for 1/α ≥

√
n log q · r with some

r = ω(
√

log n). The deterministic algorithm Invert(T, A, b) outputs s and e.

Definition 2.6 (Learning with Errors, [Reg09]). Let n, m, q, σ ∈ N. The LWEn,m,q,σ assumption states that

(A, s⊤A + e⊤) ≈c (A, c)

where
A← Zn×m

q , s← Zn
q , e← DZm,σ, c← Zm

q

We rely on the LWE assumption with subexponential modulus-to-noise ratio, i.e., q/σ ≤ 2nδ , for some δ > 0.

Definition 2.7 (Private-coin Evasive LWE [VWW22]). Let Samp be a PPT algorithm that on input 1λ,
outputs

S ∈ Zn′×n
q , P ∈ Zn×t

q , aux ∈ {0, 1}∗.

We define the following advantage functions:

AdvP re
A0

:= Pr[A0(SB + E, SP + E′, aux) = 1]− Pr[A0(C, C′, aux) = 1]
AdvP ost

A1
:= Pr[A1(SB + E, D, aux) = 1]− Pr[A1(C, D, aux) = 1],

where

(S, P, aux)← Samp(1λ)
B← Zn×m

q , E← DZn′×m,σ, E′ ← DZn′×t,σ′

C← Zn′×m
q , C′ ← Zn′×t

q , D← B−1(P, σ).

We say that the evasive LWE assumption holds if for every PPT Samp there exists some polynomial poly(·)
such that for every PPT A1, there exists another PPT A0 such that

AdvP re
A0 ≥ AdvP ost

A1 /poly(λ)− negl(λ).

Lemma 2.8 (Noise Flooding). Let χ← DZ,σ and t ∈ Z. We have that

∆(χ, χ + t) ≤
√

π

2 ·
∥t∥
σ

.
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2.3 (Instance-Hiding) Witness Encryption

Definition 2.9 (Witness Encryption[GGSW13]). A witness encryption scheme for an NP language L (with
corresponding witness relation R) consists of the following two PPT algorithms:

• Enc(1λ, x, m): takes as input the security parameter 1λ, an instance x ∈ L and a message m ∈ {0, 1}∗,
and outputs a ciphertext ct.

• Dec(ct, w): takes as input a ciphertext ct and a witness w, and outputs a message m or the symbol ⊥.

These algorithms satisfy the following properties:

• Correctness. For any λ, m ∈ {0, 1}poly(λ) and x ∈ L s.t. R(x, w) holds,

Pr
[
Dec(Enc(1λ, x, m), w)

]
= 1− negl(λ).

• Soundness. For any PPT D there exists a negligible function negl(·) s.t. for any x /∈ L, m0 and m1 ∈
{0, 1}poly(λ), ∣∣∣Pr[D(Enc(1λ, x, m0)) = 1]− Pr[D(Enc(1λ, x, m1)) = 1]

∣∣∣ = negl(λ).

We call it instance-hiding witness encryption if it additionally satisfies the following:

• Instance-hiding. For any PPT D there exists a negligible function negl(·) s.t. for any x0, x1 /∈ L and
m ∈ {0, 1}poly(λ),∣∣∣Pr[D(Enc(1λ, x0, m)) = 1]− Pr[D(Enc(1λ, x1, m)) = 1]

∣∣∣ = negl(λ).

As is shown in [GKW17, WZ17], witness encryption without instance-hiding property can be converted into
instance-hiding witness encryption using the compute-and-compare obfuscation (a.k.a lockable obfuscation),
which can be constructed from the LWE assumption.

3 Counterexample for VWW Obfuscation-based attack

We show that the VWW obfuscation-based attack on private-coin evasive LWE (Definition 2.7) fails.3
Specifically, we invalidate the precondition by constructing a distinguisher that separates the two distributions
induced by the attack sampler in the precondition.

We present a hard-to-decompose lemma that will be used later in this section.

Lemma 3.1 (Hard-to-Decompose Lemma). Let k, m, n ∈ N and m > n, for any P ∈ Zn×m
q

Pr
[
∃ S0 ∈ Zk×n

q s.t. |S0P−U| ≤ ϵ : U← Zk×m
q

]
≤ qk×n × (2ϵ + 1)k×m

qk×m
.

3Although we use Definition 2.7, obfuscation-based attacks apply to general private-coin evasive LWE variants, since the attacks
only use SB + E and B−1(P) to invalidate the post-condition.
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Proof.

Pr
[
∃S0 ∈ Zk×n

q s.t. |S0P−U| ≤ ϵ : U← Zk×m
q

]
= Pr

[
∃M ∈ Img(P)s.t.|M−U| ≤ ϵ : U← Zk×m

q

]
≤
|Img(P)| ×

∣∣∣{A ∈ Zk×m
q : |A| ≤ ϵ}

∣∣∣
|Zk×m

q |

≤ qk×n × (2ϵ + 1)k×m

qk×m
,

where we denote the image of P as Img(P) = {S0P : ∀S0 ∈ Zk×n
q }. The last inequality holds since the

size of the image is less than or equal to the size of the domain.

Recall that in VWW obfuscation-based attack, Samp on input 1λ outputs S ∈ Z2m×n
q , P ∈ Zn×2m

q and
aux ∈ {0, 1}∗, where

S← Z2m×n
q , (P, T)← GenTrap(1n, 12m, q), aux← Obf(ΠP,T)

such that Obf is an ideal obfuscation, T is a trapdoor of P and ΠP,T is the program shown as follows:

Algorithm 1 ΠP,T

Input: C ∈ Z2m×m
q , D ∈ Zm×2m

q

Use T to solve S0 s.t. |C ·D− S0 ·P| < ϵ
if |D| < ϵ′ and S0 exists then

return 1
else

return 0
end if

We show that the precondition of the evasive LWE instantiated by Samp does not hold.

Theorem 3.2. There is a PPT distinguisher D s.t. AdvP re
D ≥ non-negl(λ).

Proof. We set the parameters for evasive LWE as follows:

n, m = poly(λ)
n′ = t = 2m (VWW attack parameters)
m = O(n log q), σ′ = αq, 1/α ≥

√
n log q · ω(

√
log n) (trapdoor inversion)

ϵ = λσ2m, ϵ′ =
√

λσ′ (Gaussian tail bounds)
q = 2(2ϵ + 1)2, (hard-to-decompose lemma)

where σ denotes any parameter that satisfies the LWE assumption (Definition 2.6). Additionally, we assume
without loss of generality that log q ∈ N to simplify the gadget matrix decomposition. In Algorithm 2, we
present a distinguisher D against the precondition distributions. We then argue that D has high advantage for
distinguishing the precondition distributions.
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Algorithm 2 Precondition Distinguisher D
Input: M1 ∈ Z2m×m

q , M2 ∈ Z2m×2m
q , aux ∈ {0, 1}∗

Let R ∈ Z2m×2m
q be the matrix that matches M2 in the first (m/ log q) rows and consists of zeros in the

remaining entries.
Decompose R into matrices C ∈ Z2m×m

q and D ∈ Zm×2m
q s.t.

C =
[
I(m/ log q) ⊗ g⊺

0

]
, g⊺ =

[
1, 21, ..., 2log q−1

]
,

and D is a zero-one matrix where CD = R. Note that such D can be constructed by replacing each Zq

element in R with a binary vector representing the Zq element. Each binary vector is ordered such that its
least significant bit is at the top, leading to its most significant bit at the bottom.
return aux(C, D).

If M2 = SP + E′, then the non-zero entries of CD consist of the first (m/ log q) rows of SP + E′. By
the property of lattice trapdoors (Lemma 2.5), the corresponding S0, which contains the first (m/ log q) rows
of S, can be inverted using the trapdoor T and P with overwhelming probability. Moreover, D is a matrix of
zeros and ones, we have

Pr
[
|D| < ϵ′] = Pr

[
|D| <

√
λσ′

]
= 1.

Furthermore, by Lemma 2.1 and the union bound,

Pr [|C ·D− S0 ·P < ϵ] ≥ Pr
[
|E′| < λσ2m

]
≥ 1− negl(λ).

Thus, D outputs 1 with overwhelming probability.
However, if M2 is uniformly random, then the first (m/ log q) rows in R = CD are uniformly random.

We have

Pr [∃S0 s.t. |C ·D− S0 ·P| < ϵ]

≤ Pr
[
∃S′ ∈ Z(m/ log q)×m

q s.t. |U− S′P| ≤ ϵ : U← Z(m/ log q)×2m
q

]
≤ q(m/ log q)×m × (2ϵ + 1)(m/ log q)×2m

q(m/ log q)×2m

= 2−(m/ log q)×m

= negl(λ).

The first inequality holds because the norm of a matrix is greater or equal to the norm of its sub-matrix.
The second inequality holds by Lemma 3.1.

Therefore,D outputs 1 with negligible probability. Thus,D distinguishes the two cases with overwhelming
probability.

4 Witness Encryption Attack

In this section, we provide an attack against a private-coin variant of evasive LWE based on instance-hiding
witness encryption (Definition 2.9) and the LWE assumption with subexponential modulus-to-noise ratio
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(Definition 2.6). Our result demonstrates that the assumption does not hold for all samplers in general.
Furthermore, our attack is provable in the sense that its success follows from the LWE assumption and the
existence of instance-hiding witness encryption. This improves the VWW attack, which relies on the heuristic
assumption that the ideal obfuscation exists.

We start by presenting a hard-to-decompose lemma that will be used later in the section.

Lemma 4.1 (Hard-to-decompose Lemma). Let m, n ∈ N and m > n.

Pr
[
∃(C, D) ∈ Zm×n

q × Zn×m
q s.t. |CD−U| < ϵ : U← Zm×m

q

]
≤ (qm×n)2 × (2ϵ + 1)m×m

qm×m
.

Proof.

Pr
[
∃ (C, D) ∈ Zm×n

q × Zn×m
q s.t. |CD−U| < ϵ : U← Zm×m

q

]
= Pr

[
∃M ∈ S s.t. |M−U| ≤ ϵ : U← Zk×m

q

]
, where S = {CD : (C, D) ∈ Zm×n

q × Zn×m
q }

≤
|S| ×

∣∣∣{A ∈ Zm×m
q : |A| ≤ ϵ}

∣∣∣
|Zm×m

q |

≤ (qm×n)2 × (2ϵ + 1)m×m

qm×m
.

Theorem 4.2. Assuming LWE with subexponential modulus-to-noise ratio (Definition 2.6) and instance-hiding
witness encryption (Definition 2.9), there is a sampler with respect to which the private-coin evasive LWE
does not hold.

Proof. We set the parameters as follows:

n′ = t = 5m, q = (2ϵ + 1)2 (hard-to-decompose lemma)
m = O(n log q) (lattice trapdoor)

σ = σ′′ = λω(1)σ′ (noise flooding)

ϵ = λσ2m +
√

λσ′′, (Guassian tail bounds)

where σ denotes any parameter that satisfies the LWE assumption (Definition 2.6). We specify a sampler
Samp that invalidates the private-coin evasive LWE.

Algorithm 3 Samp
Input: 1λ

S← Z5m×n
q

P← Zn×5m
q

E′′ ← DZ5m×5m,σ′′

r ← {0, 1}λ
aux←WE.Enc(1λ, SP + E′′, r)||r
return S, P, aux

The corresponding NP relationR for the witness encryption scheme is defined as follows: Let X ∈ Z5m×5m
q

and w ∈ Z5m×m
q × Zm×5m

q ,

R (X, w = (C, D)) = 1 ⇐⇒ |C ·D−X| < ϵ.
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Precondition holds. We show that the precondition holds under the LWE assumption and the instance-hiding
property of the witness encryption scheme.

SB + E, SP + E′, WE.Enc(1λ, SP + E′′, r)||r ≈s SB + E, SP + E′, WE.Enc(1λ, SP + E′ + E′′, r)||r
≈c $, $′, WE.Enc(1λ, $′ + E′′, r)||r
≈c $, $′, WE.Enc(1λ, $′′, r)||r
≈c $, $′, WE.Enc(1λ, SP + E′′, r)||r.

The first equation holds because by Lemma 2.1, |E′| <
√

λσ′ with overwhelming probability. Conditioned
on this event happens, by Lemma 2.8, the statistical distance between arbitrary entry (i, j) in E′′ and E′ + E′′

is bounded by

∆
((

E′′)
i,j , (E′ + E′′)i,j

)
≤

√
π

2 ·
σ′√λ

σ′′ =
√

π

2 ·
σ′√λ

λω(1)σ′ = negl(λ).

Therefore, by the union bound, the overall statistical distance between E′′ and E′ + E′′ is also negligible.
The second equation holds by invoking the LWE assumption (Definition 2.6). The third equation holds

because by Lemma 4.1, the probability that there is a witness w = (C, D) that decomposes a uniformly
random instance $′ + E′′ is given by

Pr
[
∃C, D s.t.

∣∣CD− ($′ + E′′)
∣∣ < ϵ

]
≤ (q5m×m)2 × (2ϵ + 1)5m×5m

q5m×5m
= (2ϵ + 1)−(5m×m) = negl(λ).

Therefore, by the instance-hiding property of the witness encryption scheme (Definition 2.9), we can
switch the instance $′ +E′′ to another hard-to-decompose random matrix $′′ except with negligible probability.
The last equation holds again by the LWE assumption .

Postcondition is false. We proceed to show a distinguisher in Algorithm 4 that breaks the postcondition
with non-negligible advantage.

Algorithm 4 Postcondition Distinguisher D
Input: M1 ∈ Z5m×m

q , M2 ∈ Zm×5m
q , aux ∈ {0, 1}∗

parse aux as ct||r
if WE.Dec(ct, (M1, M2)) = r then

return 1
else

return 0
end if

10



If M1 = SB + E, then the probability that the distiguisher D outputs 1 is given by

Pr
[
D((SB + E), B−1(P), aux) = 1

]
≥ Pr

[∣∣∣(SB + E) ·B−1(P)− (SP + E′′)
∣∣∣ < ϵ

]
− negl(λ)

= Pr
[∣∣∣E ·B−1(P)−E′′

∣∣∣ < ϵ
]
− negl(λ)

≥ Pr
[∣∣∣E ·B−1(P)

∣∣∣ +
∣∣E′′∣∣ < ϵ

]
− negl(λ)

≥ Pr
[∣∣∣E ·B−1(P)

∣∣∣ < λσ2m ∧
∣∣E′′∣∣ <

√
λσ′′

]
− negl(λ)

≥ 1− negl(λ),
where the first inequality holds by the correctness of witness encryption scheme (Definition 2.9), the third
inequality follows by the triangle inequality, and the last inequality holds by the union bound and Lemma 2.2.

Whereas if M1 is uniformly random, the probability that the distiguisher D outputs 1 is given by

Pr
[
D($, B−1(P), WE.Enc(1λ, SP + E′′, r)||r) = 1

]
≤ Pr

[
D($, B−1(P), WE.Enc(1λ, $′, r)||r) = 1

]
+ negl(λ)

≤ Pr
[
D($, B−1(P), WE.Enc(1λ, $′, 0)||r) = 1

]
+ negl(λ)

= Pr
[
WE.Dec(WE.Enc(1λ, $′, 0)) = r

]
+ negl(λ)

= 2−λ + negl(λ)
= negl(λ),

where the first inequality follows by the LWE assumption. The second inequality holds because by the
hard-to-decompose lemma (Lemma 4.1), $′ is a no instance except with negligible probability, and by
the soundness of WE (Definition 2.9), switching the underlying plaintext from r to a fixed string 0 is
indistinguishable. The fourth equation holds since r is independent of WE.Dec(WE.Enc(1λ, $′, 0)).

Thus, the distinguisher D separates the postcondition with non-negligible advantage

AdvP ost
D ≥ 1− negl(λ),

invalidating the evasive LWE assumptions.
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