Multi-Client Attribute-Based Unbounded Inner
Product Functional Encryption, and More

Subhranil Duttal, Aikaterini Mitrokotsaf, Tapas Pal*, Jenit Tomy'

TUniversity of St. Gallen, St. Gallen, Switzerland
{subhranil.dutta, katerina.mitrokotsa, jenit.tomy}@unisg.ch
*Karlsruhe Institute of Technology, KASTEL SRL, Karlsruhe, Germany
tapas.pal@kit.edu

March 5, 2025

Abstract

This paper presents the concept of a multi-client functional encryption (MC-FE) scheme for attribute-
based inner product functions (AB-IP), initially proposed by Abdalla et al. [ASIACRYPT’20], in an
unbounded setting. In such a setting, the setup is independent of vector length constraints, allowing
secret keys to support functions of arbitrary lengths, and clients can dynamically choose vector lengths
during encryption. The functionality outputs the sum of inner products if vector lengths and indices
meet a specific relation, and all clients’ attributes satisfy the key’s policy. We propose the following
constructions based on the matrix decisional Diffie-Hellman assumption in a natural permissive setting
of unboundedness:

— the first multi-client attribute-based unbounded IPFE (MC-AB-UIPFE) scheme secure in the stan-
dard model, overcoming previous limitations where clients could only encrypt fixed-length data;

— the first multi-input AB-UIPFE (MI-AB-UIPFE) in the public key setting; improving upon prior
bounded constructions under the same assumption;

— the first dynamic decentralized UIPFE (DD-UIPFE); enhancing the dynamism property of prior
works.

Technically, we follow the blueprint of Agrawal et al. [CRYPTO’23] but begin with a new unbounded
FE called extended slotted unbounded IPFE. We first construct a single-input AB-UIPFE in the standard
model and then extend it to multi-input settings. In a nutshell, our work demonstrates the applicability
of function-hiding security of IPFE in realizing variants of multi-input FE capable of encoding unbounded
length vectors both at the time of key generation and encryption.

Keywords. Inner product functional encryption - Multi-client - Dynamic decentralized - Unbounded -
Attribute-based

Contents

1

Introduction

1.1 OurResults

Technical Overview

2.1 Integrating Unboundedness

Preliminaries

Extended Slotted UIPFE

4.1 Construction
4.2 Security Analysis

5.1 Construction Lo
5.2 Security Analysiso o

6.1 Construction oL
6.2 Security Analysis

Attribute-Based Slotted UIPFE
Multi-Client Attribute-Based UIPFE
Dynamic Decentralized UIPFE

7.1 Construction
7.2 Security Analysis

Multi-Input Attribute-Based UIPFE

A.1 Security against Legitimate Keys
A.2 Security against Any Keys

w

14

19
20
22

37
38
40

50
52
53

57
59
60

1 Introduction

Multi-Party Functional Encryption. Functional encryption (FE) [16,44] is a powerful cryptographic
primitive that enables the computation of a function on encrypted data, departing from the traditional all-
or-nothing approach of public key encryption. Crucially, it reveals only the output of the specified function,
without disclosing any additional information about the underlying data. FE supporting a specific function
class F, issues a secret key SK; associated with a function f € F using a master secret key, computes a
ciphertext CTy associated with a message x. By combining the SK; with CTy, the decryptor learns f(x), but
gains no further insight into the original message x. FE has received significant attention in the literature,
with numerous schemes being proposed to achieve a wide array of functionalities under diverse cryptographic
assumptions [29,30,49,3,5,50].

Initially, FE was defined for the single input setting, i.e., assuming that there is a single encryptor of
the data and a single key generator. However, in realistic applications, data often originates from multiple
sources, and joint computations across this distributed data are frequently necessary—such as for performing
aggregate statistical analyses over data owned by various parties. To capture these more complex and
realistic scenarios, several extensions of FE have been proposed ranging from multi-authority FE [8, 23],
multi-input [31,9,4, 12], multi-client FE [20, 1, 35,12, 39] to decentralized multi-client FE [18,2, 34], and
dynamic decentralized FE [19,12]. To unify and generalize the primitives that enable multi-user functionality
in FE, Agrawal et al. [8] introduced the concept of multi-party functional encryption (MP-FE) that allows
both distributed ciphertexts and distributed keys, specifying how these can be combined to facilitate function
evaluation. In this work, we focus on the following types of MP-FEs:

o Multi-Client FE (MC-FE): MC-FE [31, 18] considers a fixed number of parties or clients, say n,
each with their own inputs xj,Xo,...,X, and allow computing joint functions on their data i.e.,
f(x1,...,%y). In more detail, party 7 encrypts its input x; under a label/timestamp L; to obtain CT;,
a key authority that holds the master secret MSK generates a functional key SK; that enables the
decryptor to compute f(x1,...,X,) from the collection of ciphertexts {CT;};c[,) only if they share the
same label, i.e., L; = L for all i € [n].

o Multi-Input FE (MI-FE): MI-FE [31] generalizes the concept of MC-FE in the sense that MI-FE sets
no restriction on the way that ciphertexts can be combined and allows all possible combinations of
ciphertexts during decryption. An MI-FE scheme in the public key setting with corruption is rather
challenging to construct compared to an MC-FE for the same function class due to the absence of
labels.

Recently, attribute-based extensions of MC-FE and MI-FE (MC-AB-FE, MI-AB-FE) have been pro-
posed in [5, 38, 12] which integrate an additional layer of access control on top of the functionality
already offered by MC-FE and MI-FE. Here, the inputs are associated with clients’ attributes and a
policy is embedded into the secret key such that the decryption recovers the functional value only when
the attributes of all the clients individually satisfy the policy of the secret key.

e Dynamic Decentralized FE (DD-FE): DD-FE [19] is a decentralized variant of FE that enables the local
and independent generation of both ciphertexts and keys, eliminating the need for a central authority.
In a DD-FE, the clients can dynamically join the system without reliance on any central authority,
allowing greater flexibility and autonomy. During the encryption or key generation process, users
can specify a set of participants whose inputs can be combined during decryption to perform joint
computations. Currently, DD-FEs are designed to support linear functions [19] and attribute-weighted
sums computations [12].

A common limitation shared by all these MP-FEs is that the input length for each party, and conse-
quently the size of the functions operating on those inputs, is fixed at the time of setup. This boundedness
significantly restricts the scope of applications for current MP-FE schemes, despite their ability to support
various interesting and useful classes of functions.

Unbounded Functional Encryption. Although there exist several FEs capable of supporting arbitrary
circuits and Turing machines [29,49, 14,11, 33] they currently rely on impractical cryptographic primitives
such as indistinguishability obfuscation or multi-linear maps. In contrast, FE for specific function classes
such as linear and quadratic functions and their variants [3, 10] are built upon well-established, standard
assumptions, making them more feasible for practical use. Unbounded FE (UFE) offers greater flexibility
compared to its bounded counterparts, as it allows the generation of secret keys and ciphertexts for functions
and messages of arbitrary lengths. This makes the setup of UFE independent of any predetermined bound
on function or message lengths, a crucial and essential feature—particularly in the context of MP-FE—as it
enables the parties to encrypt variable-length data during encryption or generate keys for functions of any
size. Moreover, unlike (bounded) FE, where the sizes of all ciphertexts and keys depend on the maximum
bound set for the data/function length during setup, UFE produces input-specific sizes for ciphertexts and
keys. This is a highly desirable property in multi-party settings, as it allows parties to allocate storage sizes
tailored to their specific input requirements.

The concept of unboundedness in single-input FE was concurrently studied by Tomida and Takashima
[47] and Dufour Sans et al. [26] for linear functions called unbounded inner product functional encryption
(UIPFE). A UIPFE generates a secret key SKy for a vector y = (y;)icr, and computes a ciphertext CT for
a vector x € Z*. We adopt the permissive unboundedness property for decryption [26], referred to as “ct-
dominant” in [47], which is considered most practical for real-world applications. For two vectorsy = (y;)icr,
an input to key generation and x = (2;);c[¢ an input to the encryption, we say the permissive unboundedness
condition holds for decryption if Iy, C [¢] and the inner product is defined as ;. 1, Tili- In contrast, strict
unboundedness [26] requires Iy, = [¢] for decryption. Since the permissive case of unboundedness is more
natural, many subsequent works [25,24,46] built UFE for variants of linear and quadratic functions from
standard assumptions. The permissive setting, particularly in multi-input scenarios, better aligns with the
flexible nature of FE, offering finer control over unbounded encrypted vectors.

Recently, Datta and Pal [23] developed UFE for attribute-based linear functions in the multi-authority
setting with distributed secret keys. However, to the best of our knowledge, UFE schemes have yet to be
explored in multi-client or dynamic decentralized settings. In this work, we initiate the study of MC-AB-
UFE, MI-AB-UFE and DD-UFE for specific function classes, thereby enriching the landscape of MP-FEs
and addressing more practical applications.

1.1 Owur Results

In this work, we enrich the domain of multi-input functional encryption schemes for attribute-based linear
functions by introducing unbounded input vector lengths. Specifically, we formalize the concepts of multi-
client attribute-based unbounded IPFE (MC-AB-UIPFE), multi-input attribute-based unbounded IPFE
(MI-AB-UIPFE), and dynamic decentralized unbounded IPFE (DD-UIPFE), where the unboundedness is
naturally defined for practical applications. We also present constructions of these primitives in a selective
corruption model, achieving indistinguishability-based security (IND-security) relying on the matrix DDH
(MDDH) assumption. The attribute-based access control is considered in the key-policy setting, where secret
keys are generated for access structures A realizable by LSSS [32] and ciphertexts are computed under a set
of attributes S. We proceed by defining functionalities and their features.

Multi-Client AB-UIPFE. We design an MC-AB-UIPFE where the number of clients n is fixed in the
setup, and each client is given an encryption key which is independent of the lengths of vectors. The secret
keys are generated by the authority for the tuple (A, (y), = (yk,i)ier,, Jre[n)), the ciphertexts are computed

by the clients corresponding to their attributes Sg, label Ly and chosen vectors x; € ij“, and the decryption
recovers:

JUA, (Y&, Iy, D rein))s (Sky L, Xy £) kefn))
{Zke[n] Yiery, Thitki A (Iy, S [G]) A (A(SK) =) A (L = L), Vk € [n]

1 otherwise

‘ ‘Work H Scheme Parties Input length Function length ‘ Access Control ‘ Label ‘ Corr. ‘ Assumption

[5] MI-AB-IPFE n bnd bnd MSP N/A X DDH
MC-IPFE n bnd bnd N/A v v DDH
(18]
DMC-IPFE n bnd bnd N/A v v SXDH
DDH, LWE,

[1] MC-IPFE n bnd bnd N/A v DCR
[19] DD-IPFE unbd bnd bnd N/A v v DDH
[38] MC-AB-IPFE n bnd bnd LSSS oT v SXDH
[9] MI-QFE n bnd bnd N/A N/A v MDDH
MC-FE for AWS n unbd bnd N/A v v MDDH
[12] MI-AB-FE for AWS n unbd bnd ABP N/A v MDDH
DD-FE for AWS unbd unbd bnd N/A v v MDDH
[45] MC-IPFE n bnd bnd N/A v v MDDH
[40] DMC-IPFE n bnd bnd N/A oT v SXDH
MC-AB-UIPFE n unbd unbd LSSS oT v MDDH
This work MI-AB-UIPFE n unbd unbd LSSS N/A v MDDH
DD-UIPFE unbd unbd unbd N/A v v MDDH

Table 1: Comparison among multi-party FE schemes. Here, DMC means decentralized multi-client; bnd, unbd mean
bounded, unbounded; Assum is a shorthand for assumption; SXDH, LWE, DCR stand for symmetric external Diffie-
Hellman, learning with errors, decision composite residuosity; MSP means monotone span program; Label refers to
the capability of labelling functionality that restricts decryption such that it is allowed only when all labels are equal.
OT means each label can be used once per input; Corr is a shorthand for Corruption.

To the best of our knowledge, this is the first unbounded FE in a multi-input setting where both the size of
functions and messages remain unrestricted during setup. Previously, Nguyen, Phan, and Pointcheval [38]
built an MC-AB-IPFE with bounded vectors, under the same security model and assumption. More recently,
Agrawal, Tomida and Yadav [12] developed an MC-FE for AWS functionality with unbounded slots relying
on the same matrix DDH assumption. However, while their scheme allows encrypting unbounded-length
messages, the size of each slot, and thus the functions operating on them, remains bounded. Our approach
differs since both the function and message vectors in our MC-AB-UIPFE are unbounded. Furthermore,
their MC-FE is not attribute-based, whereas we construct MC-FE for an unbounded attribute-based inner
product functionality. A detailed comparison is provided in Section 2.

Along the way, we design the first single-input AB-UIPFE where n = 1 (and Ly = ¢) under the same as-
sumption, proven secure in the standard model. Our single-input AB-UIPFE is a subclass of attribute-based
unbounded quadratic FE recently built by Tomida [46] where the access control is provided by arithmetic
branching programs (ABP). However, our construction is simpler and more direct than [46], since we only
deal with linear function and LSSS access policies on top of it. Additionally, Tomida’s scheme relies on the
random oracle model (ROM), whereas ours operates in the standard model. Previously, Datta and Pal [23]
constructed a multi-authority AB-UIPFE which essentially implies an AB-UIPFE, but their unboundedness
follows a strict model, while ours adopts the more flexible and natural permissive setting.

Multi-Input AB-UIPFE. We construct the first MI-AB-UIPFE in the public key setting by extending
our MC-AB-UIPFE. Note that an MI-FE scheme in the public key setting with corruption is much more
challenging to construct than an MC-FE scheme due to the absence of labels during decryption. An adversary
can decrypt any combination of ciphertexts in the multi-input setting whereas, in the multi-client setting,
decryption is guaranteed only when all the ciphertexts are computed under the same label or timestamp. In

our MI-AB-UIPFE, the decryption reveals:

f((A7 (Yka ka)ke[n])a (Ska Xk ék)ke[n])
_) ke Ziery, Witk 3 Iy, S [G]) A (AGSK) = 1), Yk € [n]
L otherwise

As mentioned above, our AB-UIPFE functionality differs from the attribute-based AWS functionality (with
unbounded slots) [12]. More importantly, the MI-FE scheme of [12] cannot capture the permissive unbound-
edness even if it supports encrypting unbounded length vectors at each input.

Dynamic Decentralized UTPFE. In the literature, dynamic decentralized FE has been constructed only
for the bounded class of FE schemes such as inner products [19], AWS [12]. In a DD-FE, there is no authority,
clients can dynamically join the system, selecting a set of users Uy during encryption or key generation whose
inputs can be combined during decryption. However, despite this dynamic feature, all clients must agree
on a fixed input length, which limits flexibility. We argue that a truly dynamic system should allow clients
to choose their own input sizes during key generation and encryption. Our notion of dynamic decentralized
unbounded FE (DD-UFE) extends the dynamic nature of conventional DD-FE by removing this limitation.
We construct DD-UFE for linear functions (DD-UIPFE) where the secret keys are generated for the tuple
(v = (yk@)ielyk)keuk,keyv the ciphertexts are computed for the tuple (Ly,xx € Zf,’c,uk,msg), and decryption
outputs:

FU ks Iy, ket sy)s (Db Xy €k) kel meg)

_ Zkeu Zielyk Tk, iYk,i if (u = uk,key = uk,msg) A ((ka - [ﬁk}) A (Lk = L) Vk € Z/[)
1 otherwise

We build our DD-UIPFE using the blueprint of previous works [19,13].

Our primary technical contributions involve the design of an extended slotted unbounded TPFE scheme,
which utilizes the extended functionality to integrate an attribute-based access control layer while leverag-
ing the unbounded slotted feature to facilitate unboundedness and multi-input extensions. A comparative
analysis with existing works is presented in Table 1, and further technical details can be found in Section 2.

Applications of multi-input (attribute-based) UIPFE. Consider a scenario where a research institute
aims to optimize disease diagnosis by utilizing data from multiple medical centers. The k-th center contributes
patient data in the form of an unbounded-length input vector x; representing various medical measurements,
e.g., blood pressure, body temperature, red blood cell count, collected from patients treated at that particular
center. Since the number of patients at each center may vary over time, the length of the input vector x
is unbounded, reflecting real-world unpredictability. Additionally, each medical center is associated with
a weight vector y,, which could represent the importance of certain measurements or the confidence level
assigned to the data, depending on the center’s practices.

Suppose there are n such medical centers. In that case, the goal is to compute the sum defined as
Zke[n] (X, Y1) = Zke[n],ielyk Zk,iYk,i, where both xj,y; are of unbounded length, allowing for dynamic,
varying-length data inputs for each center. For instance, if x; includes blood pressure measurements in
odd indices and body temperature readings in even indices, researchers can perform targeted computations
such as the average blood pressure by selecting the relevant elements of the vectors y,. Let’s assume three
medical centers contribute data as follows: the first center treats three patients, the second four, and the third
five. Their input vectors are X1 = (1711,:612, £ZE13)7X2 = (1’21,.?622, I2371‘24), and X3 = (5631, 32,233, T34, Z‘35),
respectively. If the researcher aims to compute the average of blood pressure measurements (stored in the odd
indices), they would require a secret key for the function (yl = (Y11,%13), Y2 = (Y21, Y23),¥3 = (Y31, Y33, y35))
This would allow the desired permissive inner product computation Zk Zi:odd TriYki- Moreover, if the
number of medical centers is not fixed, i.e., n is also unbounded then DD-UIPFE can be employed in

such a scenario. This example illustrates how MC-UIPFE or DD-UIPFE enables a robust computation of
aggregation statistics and aligns with realistic applications.

Additionally, for more fine-grained access control, each input xj could be associated with an attribute
Sk, and data from a medical center would only be used if it satisfies a specific policy, such as A(Sg) = 1.
For example, the computation might focus on blood pressure measurements for patients treated in the k-th
medical center situated in location/state X}, where the policy A(X}) =1 filters the relevant data. Our MI-
AB-UIPFE or MC-AB-UIPFE allow computing such dynamic aggregates on private data, something beyond
the scope of existing (bounded input) MI(MC)-FEs. More generally, our MP-UFEs support a wide range
of real-world applications, from healthcare to other domains such as financial data aggregation or electricity
consumption analysis. This flexibility makes it ideal for environments where data inputs and policies are
diverse and continuously evolving.

2 Technical Overview

Recap: MC-AB-IPFE of [38]. We begin with a concise overview of the multi-client FE of [38], referred
to as NPP. They provided a construction of MC-AB-IPFE in the key-policy setting using dual pairing vector
spaces (DPVS), a rich mathematical framework introduced by Okamoto and Takashima [43]. At the core
of the MC-AB-IPFE of NPP, there is a single client version: the setup algorithm defines a bound n on the
vector sizes and generates master keys accordingly. The access control part is enforced via the LSSS [15]
policies. During key generation, the authority embeds an access structure A and a vector y € Zj into the
key. The encryption process encodes a vector x € Z; under a set of attribute S to compute a ciphertext. If
attributes in S satisfy A, decryption reveals the inner product (x,y), otherwise nothing is learned about x.

In the multi-client setting, it is assumed that the number of clients is equal to the length of the vectors.
More specifically, the setup algorithm parses the master secret key of the single client scheme into n pieces
to create clients’ encryption keys EK;. It connects the keys using an n-out-of-n secret sharing of a specific
component of the underlying bases of DPVS. The key generation works as before. Each client holds a single
entry of the vector x and encrypts it using EK; under the same attribute set S and a label L. When all
the n ciphertexts are computed with the same label L, the secret key holder can decrypt them together to
(x,y), given that the attributes in S satisfy the access structure. They achieve adaptive indistinguishability-
based security under the SXDH assumption in the ROM. Although NPP demonstrates a blueprint of how to
integrate an access control mechanism to a DPVS-style IPFE scheme and upgrade the single-input version
into a multi-client one, there are a few challenges to face while supporting unbounded length vectors.

Challenges in NPP. Let us now perceive the high-level obstacles that one must overcome in NPP to
support unbounded vector lengths:

e The fact that the clients can encrypt only a single entry of the vector is against the property of
encrypting an arbitrary length vector in each encryption. A trivial way out is to run the same encryption
algorithm for all the entries of the arbitrary length vector. However, it is clear that such an approach
would rather fail because an adversary can easily combine ciphertext components of different vectors
to create a valid ciphertext for an unwanted vector.

e The procedure of connecting the clients’ encryption keys using an n-out-of-n secret sharing strategy
would not work in our setting since the number of clients must not be the same as the lengths of
vectors encrypted by the clients in our setting. Looking ahead, in fact, the number of clients is also
not pre-decided in our DD-UIPFE scheme.

2.1 Integrating Unboundedness

Recall that in an MC-AB-UIPFE, n clients can choose arbitrary lengths of vectors during encryption. Let
us assume that the client k selects a vector x; = (xk’i)ie[gk] along with an attribute set S and computes a
ciphertext CTy. The secret key SK is generated by the authority for a function y = (y;)ke[n) with associated

index sets {Ij}re[n) and an access structure A. Given that Sy satisfies A and I C [{;] for all k € [n], the
decryption recovers the sum of inner product values ken] (XK, yy) if all the ciphertexts are computed under
the same label.

Even without access control, constructing an MC-UIPFE remains challenging. A natural approach might
involve adapting the transformation by Abdalla et al. [1], which extends a single input IPFE to a multi-
client IPFE. One might attempt to replace the underlying single input IPFE using an existing UIPFE [47]
to achieve an MC-UIPFE. However, this approach fails since the encryption algorithm requires the vector
lengths to be known in advance. Specifically, each vector x; is embedded into a larger vector X of length nf
(where ¢ is the vector length) and masked using t, a (n-out-of-n) secret share of 0,,, before applying IPFE
encryption. Therefore, this transformation cannot accommodate dynamic vector lengths, a key feature of
MC-UIPFE. Furthermore, achieving permissiveness—where decryption succeeds only if I C [¢x] for each
k € [n]—is unclear in this setting. Incorporating access control further complicates the process. Previously,
non-generic construction of MC-IPFE [18] generates clients’ encryption keys depending on the vector length
fixed at the time of setup.

Comparison with MC-FE of [12]. A recent work by Agrawal et al. [12], henceforth ATY, builds an
MC-FE scheme for AWS with unbounded slots (FE-AWS) from pairings, originally introduced by Ab-
dalla et al. [7]. FE-AWS generalizes IPFE by allowing an encryptor to encode {x;,z;};cin) where N is
unbounded, x; and z;s are called pubic and private attributes respectively, the key is generated for a func-
tion f which is usually an ABP, and decryption recovers } .. ni(f(x;),2;). In an MC-FE-AWS, each
client encrypts an unbounded-slot input {xy ;, 2z ;};en,], where Ny is unbounded, and decryption recovers
>k Zje[Nk] (fx(Xk,5), 2x,;). The term “unbounded-slot” in FE-AWS is quite different from our definition of
unboundedness in MC-AB-UIPFE. While FE-AWS allows the encryptor to choose an unbounded number of
vectors, both vector sizes and function classes are fixed during setup, meaning the encryption key depends on
these sizes. In contrast, MC-AB-UIPFE allows unbounded message and function vectors, with successful de-
cryption requiring a permissive relation between index sets. Although MC-AB-UIPFE might seem reducible
to MC-FE-AWS by encoding unbounded vectors into AWS slots, verifying the permissive relation between
index sets complicates this approach, making it inapplicable for constructing MC-AB-UIPFE or DD-UIPFE
directly.

Our Approach. Instead of integrating the unboundedness property to existing MC-IPFE or MC-AB-
IPFE, we investigate whether it is possible to upgrade available single input UIPFE [26,47,24] or AB-
UIPFE [23] into the multi-client setting. Along this direction, we use the blueprint of NPP to construct a
single-input FE first, and then upgrade it to the multi-client setting. To build a suitable single-input FE
(without access control) that can later be enriched with an attribute-based access control extension, we follow
the idea of ATY that builds an extended FE-AWS equipped with an additional inner product. Furthermore,
for integrating the unboundedness feature into this framework, we observe that existing works [47,24] used
function-hiding security of the underlying IPFE to realize the permissive case of unboundedness which we
are aiming for. The function-hiding security of IPFE has been independently exploited for achieving the
permissive case of unboundedness [47,24] and multi-client realization of a certain class of FEs [12]. The
former works utilize the function-hiding security to carry out an index-encoding methodology for realizing
the unboundedness property whereas the latter uses it for converting a single-input scheme into a multi-input
scheme without relying on the ciphertext homomorphism property desired in [20]. In this work, we develop
a methodology that demonstrates how function-hiding security of IPFE can be compelled to obtain both of
these properties together for the function class of AB-IP.

Constructing UIPFE of [47] using Slotted IPFE. Our starting point is the UIPFE construction of
Tomida and Takashima [47] which we call TT. Although UIPFE of TT is a direct construction based on
pairing, we can view it as a generic construction based on slotted IPFE (sIPFE) [36,24] which is a hybrid of
a public key IPFE and a secret key function-hiding IPFE. A vector x € Z; in sIPFE is divided into parts
(Xpub, Xpriv) € ZZ"”b X Z;,L”"" such that n = npup + Npriv. While one can encrypt the public part x,., using

the public key through a slotted encryption algorithm, encrypting the whole vector x = (Xpub, Xpriv) Tequires
the knowledge of the master secret key, just like a secret key IPFE, which is done by a normal encryption
algorithm. The ciphertexts obtained by the slotted and normal modes are indistinguishable when x,, is set
to 0y,,,. Hence, we can only hide the private part of the function vector y,;, while y,,, remains public in
the secret key generated for y = (¥ pubs ¥ priv)-

The sIPFE of [36] is built using asymmetric prime-order pairing groups with the pairing operation
e: G1 x Gy = Gp. We denote [a]; by an element ¢g¢ in the group G; and [(aq,...,an)]; by a vector of
group elements (g;*,...,g;") for ¢ € {1,2,T}. Let sIPFE = (iSetup, iKeyGen, iEnc, iSlotEnc, iDec) be a sIPFE
scheme supporting vectors of length 4 = n,,,. We ignore the private slots, which can be added later as those
are required only for security analysis.

Construction 1 (UIPFE from sIPFE) The setup of UIPFE generates (iMPK,iMSK) using iSetup. A
secret key for a vector y = (v;)ier,, and a ciphertext for a vector x = (2;);c[q are computed as

SK: {iSK; < iKeyGen(iMSK, [(ici, i, yi, 1i)]2) tier,
CT: { iCT; « iSIotEnc(iMPK, [[(ﬂ'i, —im,xi,a)]]l) }iE[@]

where r; < Z,, such that Zie ;. 1 = 0. Note that oy, 7; are chosen uniformly at random from Z, to encode
the indices such that the inner product between the encodings vanishes only when they have matching
indices. This index encoding methodology was first introduced by Okamoto and Takashima [42] in the
context of achieving unbounded inner product encryption. If the unboundedness is permissive, i.e. I, C [/],
then decryption works by computing Zz‘ely iDec(iSK;,iCT;) = HZz‘er xyi]T as Zier r; =0.

We use the DDH assumption and the function-hiding security of sIPFE. Since we consider selective
security, the length of the challenge vector is known in advance. Let us denote sk(y;) = (io;, 04, y;,7;) and
ct(x;) = (m;, —im;, x5,). In the following, we will add private slots, indicated by dashed underline, to sk(y;)
and ct(z;) when needed for proving the security discussed in three steps:

1. duplicating secret shares. The secret shares {r;}icr, are copied to a private slot of sk(y;), i.e.,

(0)

%

o, Q)

Sk(y,) — (’io’i,O'Z',yi7Ti7 Fz) s Ct(l‘l(-o)) — (Tl'i, —iT;, T o
with), I, r; = 0. This hybrid is indistinguishable from the original game by the DDH assumption
and the function-hiding security of sIPFE.

2. handling non-permissive keys. We call the secret keys with I, ¢ [¢] as non-permissive keys. For such
keys, the duplicated secret shares {7;};cr,\[g are chosen uniformly at random. We observe that the
inner product between the index encoding parts, i.e. ((m;, —im;), (joj,o;)) is non-zero as ¢ # j. This
produces an extra entropy, sufficient to change the secret shares to random values using the function-
hiding security of sIPFE.

3. statistical shift. In the final step, the secret keys and the ciphertext are changed to a special form as:

Ct(mEO)) A (7Ti7 —7:71'2-’;52(,0) +£7;a,0[, ;‘z)

where &; is sampled uniformly at random from Z,. The indistinguishability follows from the function-
hiding security of sIPFE since the inner product between sk(y;) and ct(xgo)) remains unchanged. Now,
we apply a statistical transformation through & by shifting it as & < & + (mgl) — :EEO))/&. It does
not change the distribution of the secret shares {7; — &vy;} due to the admissibility condition that

(x© y) = (x()y) for all secret keys with I, C [¢]. On the other hand, it changes ct(z”) to ct(2!").

Adding Access Control to UIPFE. As the next step towards our goal, we aim to integrate attribute-
based access control into the UIPFE described above. To achieve this, we leverage the technique of NPP,
which encodes access control within the DPVS structure using an LSSS [15]. An LSSS allows us to secret
share a random element a < Z, depending on an access structure A over an attribute space Att into several
shares (a;);ecList-At(a) sSuch that only an authorized set {att;};cs C Att can recover ¢ = (c;); to reconstruct
ag =Y. jes G- We generically construct an AB-UIPFE by combining an sIPFE, for realizing the access
control part, and a UIPFE, for the inner product computation.

Construction 2 (Candidate AB-UIPFE) Let us consider an sIPFE = (iSetup, iKeyGen,iEnc,iSlotEnc,
iDec) and a UIPFE = (uSetup,uKeyGen,uEnc,uDec). The setup of AB-UIPFE samples (iMPK,iMSK),
(uMPK, uMSK) by running iSetup, uSetup respectively. It sets MPK = (iMPK, uMPK), MSK = (iMSK, uMSK).
A secret key corresponding to (y = (¥:)ier,,A) and a ciphertext for (x € Zf,, S) are computed as follows:

iSK; < iKeyGen(iMSK, [(joj, 05, a; - 2)]2) }jeListat(a)
uSK <+ uKeyGen(uMSK, [(y, ao - 2)]2)

cT - { iCT; <« iEnc(iMPK, [(7}, —jm;, ¥)]1) }jes »
’ uCT « uEnc(uMPK, [(x,%)]1)

SK: {

where 0, a9, z,m;,19 < Zp. It is easy to observe that the correctness works if the attributes associated with
S satisfy the access structure A and I, C [m]. More specifically, the decryption first reconstructs [aozy]r =
[I;es ¢j-iDec(iSK;,iCT;) and computes [[Ziely x;Yi +apz]r = uDec(uSK, uCT). Then, it extracts the inner
product value [>°, . I x;y;]7- Unfortunately, the scheme is not secure. In an AB-UIPFE, the adversary is
allowed to query secret keys for (y = (yi)icr,,A) such that either I, Z [m] (non-permissive) or A is not
satisfied by the attributes associated with S (non-accepting). The permissive case of unboundedness can be
handled by the underlying UIPFE. However, to prevent the adversary from extracting any information about
the message vector using the permissive but non-accepting keys, we have to implement a masking strategy
similar to [41,42,38]. In more detail, the masking term is created by first copying the secret value ag and the
shares (a;);cList-Att(a) into additional slots of the secret keys (similar to duplicating secret shares step) and
then randomizing the shares for the case of non-accepting keys (similar to the handling non-permissive keys
step). Although slotted IPFE could allow adding some additional slots for the purpose, the UIPFE does not
endorse modifying slots of the vectors embedded in the keys, since it is not function-hiding. Therefore, the
above construction fails to provide a secure AB-UIPFE.

Extended Functionality and Function-hiding Security. We now show how to extend the UIPFE
functionality to execute the masking strategy in the above scheme. Looking ahead, we also need to devise a
way to link multiple instances of the UIPFE into a single scheme for building MC-AB-UIPFE. For that, we
use an extended functionality mechanism where the actual functionality is extended to integrate an additional
randomization strategy into the system. In more detail, we need an augmented primitive that supports
encrypting unbounded length vectors and, concurrently, possesses the ability to attach secret random values
to the computation when required during the security analysis. Consequently, the extended functionality
must have enough space for realizing a normal UIPFE whilst it must have an extended possibly bounded space
working like a function-hiding IPFE. At this juncture, we define the notion of extended unbounded slotted
IPFE (esUIPFE) which precisely enables the required extended functionality. More specifically, each vector x
is partitioned into two parts (Xpub, Xpriv) as in a normal slotted IPFE except that the public slot xpp is further
partitioned into two parts (Xupub, Xbpub) Where X,pub is unbounded with an associated index set Ixupub and
Xppub 18 bounded. A secret key is generated for a vector of the form y = (¥,pubs Yopubs Ypriv) € Zpy X Zp* X Zy?
with an associated index set Iyupub, a ciphertext is computed by encrypting a vector X = (Xupub, Xbpubs Xpriv) €
Zf, X Zp* X Zyy* in the normal mode. The decryption reveals Zie[yupub Tupub,iYupub,i +{(Xbpubs Xpriv), (Y bpub» Ypriv))
if Iyupub C [€]. In the slotted mode of encryption, Xy is ignored, similar to a usual slotted IPFE and the
function-hiding security holds only in the private slot.

We note that similar techniques of extending functionality have been used in previous works [7,22,46,12]
in different contexts either for achieving unbounded slot AWS functionality from a single input one [7,

10

22], building (single-input) unbounded quadratic FE using the function-hiding security of IPFE [46] or for
converting the multi-input IPFE of [21] to a multi-client FE-AWS [12]. We emphasize that Tomida [46]
has also considered a notion named unbounded slotted IPFE, however, in his application, the public slot is
completely unbounded (and is not extended by a bounded slot) as the motivation was to support unbounded
quadratic computation, not to connect multiple threads of UIPFE. In this work, we demonstrate another
application of the extended functionality for designing a multi-client unbounded FE.

We build an esUIPFE generically using a sIPFE. The construction follows the idea of utilizing sIPFE
to build UIPFE as in Construction 1. Here, we use the public slots of sIPFE for extending the UIPFE
functionality with an additional inner product computation.

Construction 3 (esUIPFE) The setup of esUIPFE generates (iMPK,iMSK) using iSetup. A secret key
for a vector y = (¥,pub» Ybpubs Ypriv) € Zy X Zp* x Zp? with an associated index set Iy and a ciphertext
for a vector x = (Xupub, Xbpubs Xpriv) € Zf) X Zy' x Z?* are computed as follows:

upub?

Yupub

SK:: { iSK; + |KeyGen(|MSK7 H(iUi, Ois Yupub,is> Tis Ybpub,i» ypriv,i)]]Q) }iGI

CTslot : { iCT; <~ iS|OtEnC(iMPK, [[(ﬂ'i, —1Ty, ZTupub,is O Xbpub)]]l) }ie[l]

CT norm : { iCT; < iEnC(iMSK; [[(71'1’7 —1T, Zupub,is ¥, Xbpub, Xpriv)]]l) }ie[é]

where ypoun = D icr. Yopubsis Ypriv = 2ier, . Ypriv.i @1d CTglor, CThorm refer to the ciphertexts computed
Yupub ’ Yupub ’

in slotted and normal modes respectively. The selective IND-security of our esUIPFE can be argued similarly
to the UIPFE based on the DDH assumption. Upon replacing the UIPFE with esUIPFE in the candidate
Construction 2 of AB-UIPFE, we essentially get a slotted version of AB-UIPFE (AB-sUIPFE). The normal
mode of ciphertext can be ignored in the case of single-client AB-UIPFE which is a public-key primitive
whereas, looking ahead, the normal mode becomes useful while upgrading it into a multi-client FE. We now
describe our AB-sUIPFE that trivially captures AB-UIPFE supporting the same class of policies.

Construction 4 (AB-sUIPFE from esUIPFE) Let us consider an sIPFE = (iSetup, iKeyGen, iEnc, iSlotEnc,
iDec) and an esUIPFE = (eSetup, eKeyGen, eEnc, eSlotEnc,eDec) with n; = 1. The setup of AB-sUIPFE
samples (iIMPK,iMSK), (eMPK,eMSK) by running iSetup, eSetup respectively. It sets MPK = (iMPK,
eMPK), MSK = (iMSK,eMSK). A secret key corresponding to (y = (¥i)ier,,Ypivs A) and a ciphertext
for (x € Zf,, Xpriv, 5) are computed as follows:

{ iSKj — iKeyGen(iI\/ISK, [[(jaj,aj,aj . Z)]]Q) }jeList—Att(A) s
SK: eSK < eKeyGen(eMSK, [(y, a0 - 2, ¥priv)]2)
iCT; <« iSlotEnc(iMPK, [(7;, —jmj, ¥)]1) }jes
eCT <+ eSlotEnc(eMPK, [(x,4)]1)

{ ICTJ — iSIotEnc(iMPK, [[(Wj, —jﬂj,l/})]]l) }jGS N
CThorm eCT + eEnc(eMSK, [(x, v, Xpriv)]1)

CTslot : {

Next, we only analyze the security of CTgot and refer to Sec. 5.2 for a formal and complete proof of security.
The first hybrid switches to eSlotEnc from eEnc for encrypting the challenge message for activating the private
slots. As before, let us denote sk; (A) = (jo;,0;,a;-2),sk(y) = (y,a0-2) and ct;(S) = (7}, —j7mj, 1), ct(x?) =
(x(©),4)). The proof proceeds with the following steps.

1. shifting secret shares to private slots. The secret shares {a; }jeList_Att(A) are shifted to a private slot of
the vectors. The modified vectors will be:

skj(A) < (joj,05,a; -z, aj -2), sk(y) < (v,a0-2, ap-z) ,

ct;(S) < (mj, —jm;,0, ¥), cat(x@) « (x@,0, ¢) .

The indistinguishability is guaranteed by the function-hiding security of sIPFE and esUIPFE.

11

2. adding masking shares. We call the secret keys for which the associated policy is not satisfied by the
attributes of the challenge ciphertext, i.e., A(S) = 0, non-accepting keys. Due to the presence of pri-
vate slots in both the IPFEs, we can apply a masking strategy, adapted from [41,42,38], to disable the
decryption ability of the non-accepting keys in the next step, even when the keys satisfy the permissive
case of the unboundedness. In particular, we change the vectors to

skj(A) < (joj,05,a5 -2, aj -z, a3 -z/v), sk(y) < (v,a0- 2, a0~z agd- 2),

where § = (x(© — x(D) y).

3. handling non-accepting keys. In this step, the masking secret value af, is replaced with a uniformly
chosen value 7o (uncorrelated with a}) only for the keys non-accepting keys. Note that, here we use
the advantage of proving security against a selective adversary that is restricted to sending all the key
queries before getting the challenge ciphertext. This step is information-theoretic because of the fact
that the reconstruction of the secret value of LSSS is possible only if the attributes satisfy the access
structure. Let us write sk(y) = (y,a0 - 2, ao- 2, ad -z) where @ is equal to a, for accepting keys and

ro for non-accepting keys.

4. statistical shift. In the final step, a statistical shifting is performed to the random element 7y as

ry < ro + 1/z¢ for all non-accepting keys. It allows us to change ct(x(o)) into an encoding of
xM as ct(xM) « (xM,0, 1, 9’). The indistinguishability follows from the function-hiding security

of esUTPFE since

xW y) +bag -z + 1Y -2 = xW y) +pag - 2+ 18 - 2+ 6
= (x0y) + a2+ rody’ - 2

holds for all non-accepting keys. On the other hand, for the accepting keys the value of @ remains af,
and hence (ct(x(?)),sk(y)) = (ct(x(})),sk(y)) holds for such keys due to the admissibility condition.

Adding Multiple Clients into the System. As we achieved a single-input AB-UIPFE, the next step
would be to add multiple clients into the system by connecting several encryption algorithms run by the
clients. Recall that in MC-AB-UIPFE, the setup samples a master secret key MSK and encryption keys
{EK% }re[n) for the n clients, each client computes a ciphertext CTy by encrypting a message (xx € Zf,k, Sk)
under a label L, the authority generates a key SK corresponding to a function y = (y)repn with an
associated index set Iy, and an access structure A. Now, decrypting all clients’ ciphertexts together using
the key SK, the following conditions must hold:

(i) The index sets {Iy, }re[n) must satisfy the client-wise permissiveness condition, i.e. Iy, C [/;] for all

k € [n].
(i) All clients’ attributes {S}re[n) must satisfy the access structure A, i.e. A(Sy) =1 for all k € [n].
(#i7) All the ciphertexts CTy must be encrypted under the same label L.

To construct MC-AB-UIPFE, we follow the template of ATY which uses an extended FE to connect multiple
ciphertexts of the FE for AWS functionality. Although their MC-FE achieves stronger security allowing
multiple use of labels, it does not provide any access control. In contrast, we develop an MC-FE scheme for
the AB-UIP functionality that provides access control and supports unbounded data, function sizes, but it
achieves a weaker one-time label security [17,38,1,40]. Concretely, the extended FE of ATY is replaced with
our AB-sUIPFE. We describe our MC-AB-UIPFE as follows.

12

Counstruction 5 (MC-AB-UIPFE from AB-sUIPFE) Let us consider an AB-sUIPFE = (aSetup, aKeyGen,
aSlotEnc, aDec) and a pseudorandom function PRF : {0,1}* — Z* with key space K. The setup samples
(aMPK}, eMSK},) by running aSetup and seedy s < K such that seedy s = seedy: for k, k' € [n]. It sets
EKy = (aMSKy, {seedy. x- }rx). A secret key corresponding to a function ({yy }ren), Iy, ,A) and a ciphertext
for (xi € Z{}, L,S;) are computed as:

SK - { aSK; <+ aKeyGen(aMSKg, [(¥, ?‘Z(,) M2, A) Yren)

CTy: aCT, + aEnc(aMSKy, [(xk, sk, 0)]1,Sk)

where o < Z, and s, = Y, (~1)F <FPRF% (L), If I, C [¢] and A(Sx) = 1 for all k € [n]
then aDec(aSKy,aCTy) returns [[f}ﬂ]T = [Xies,, Tr.iyni + (o, sk)]r and, finally we recover [[yep, [velr =

[[Zke[n]’ielyk Tp,iYk,] T since by definition } -, o1, (e, sp) = 0.

We observe that the clients’ ciphertexts are connected by a n-out-of-n secret sharing of 0 obtained by
PRF keys seedy, . We must put the shares into private slots as it would enable us to modify the structure
of the shares for the honest clients while keeping their distribution intact using the function-hiding security
of AB-sUIPFE. Let us write sk(y;) = (y;, «,0) and ct(x) = (Xx, Sk,0) and, for simplicity of this overview,

assume that all the clients are honest. Then, in the original game, the adversary gets secret keys and
ciphertexts corresponding to the vectors sk(yy), ct(xgco)). In the next hybrid, depending on the security of
the employed PRF, we change s; to a uniformly random s such that Zke[n] S = 0. Then, we change
the vectors to sk(y,) = (yi, @, {a,S;) + ;) and ct(x,(cl)) = (Xg), 0,1) where 0, = <X§€0) - x,(cl),yk>. The

indistinguishability follows from function-hiding security of AB-sUIPFE. Next, we replace {(«,Sy) with a
uniformly random value rj using the MDDH assumption over Go. This implies that r; can absorb d; and,
hence, we can go back to the original vectors sk(y,) = (y;, «,0) and ct(xg)) = (x,(cl), Sk, 0). This concludes

the proof.

From Multi-Client to Multi-Input. We now show how to convert our MC-AB-UIPFE into an MI-AB-
UIPFE in the public-key setting with corruption. At first glance, it seems that if we fix the label of MC-
AB-UIPFE to a unique value, say H(L) = [1]; for all L, then it gives us an MI-AB-UIPFE. Unfortunately,
this is not the case since in MI-AB-UIPFE the adversary can use a secret key to decrypt any combination
of ciphertexts from different slots. Let us consider a toy example of a two-input MI-AB-UIPFE, where
we have two ciphertexts CT1,CT? at the first slot encrypting (S},x}) and (S3,x3) respectively, a single
ciphertext CTy at the second slot encrypting (S2,x2). Now, in our MC-AB-UIPFE, given a secret key SK
for an access structure A such that A(S}) = A(S]) = 1,A(S3) = 0 and a vector (y,,¥,), the adversary
can recover [[Zielyl wiiym + s1]r and [[Eielyl aiiiyu + $1]7, and eventually [[Zielyl (SE%Z — 23 Jyvilr-
This leakage is not permitted in the multi-input FE with the standard security notion [6,21,12]. However,
such a leakage is inevitable if we would have A(Sy) = 0. Since in that case, the adversary can recover the
same value by decrypting (CT1, CT,) and (CTZ,CT,) with the same secret key SK and then subtracting the
results. Therefore, the leakage occurs if the adversary is allowed to query only illegitimate secret keys, which
cannot decrypt any combination of ciphertexts. We say a secret key (A, (yq,...,Yy,)) is illegitimate if the
adversary does not have a ciphertext for S; at slot ¢ such that A(S;) = 1. In other words, the MI-AB-UIPFE
obtained from MC-AB-UIPFE is secure against only legitimate keys which can decrypt any combination
of ciphertexts that the adversary has. To achieve security against any keys, it is necessary to restrict the
adversary in getting the partial values [3 o, kiyki+ sklr, for each k € [n], only when it has a legitimate
key. For this, we use the blueprint of [12] where they additionally utilize a ciphertext-policy ABE along with
an n-out-of-n secret sharing to convert their MI-AB-FE with security against legitimate keys to an MI-AB-
FE secure against any keys. In our setting, we employ the CP-ABE of [37] capturing the predicates realizable
by (monotone) span programs based on the MDDH assumption. The core idea of the transformation is that
each client will receive an additional master secret key of the CP-ABE. At the time of key generation, the

13

secret key of MI-AB-UIPFE (secure against the legitimate keys) is first secret-shared using an n-out-of-n
secret sharing and then each share is encrypted using the CP-ABE under the same access structure. The
secret key consists of all these CP-ABE ciphertexts. The ciphertext of each client additionally contains a
secret key of the CP-ABE computed for their attribute sets. Therefore, reconstruction of the secret key of
the underlying MI-AB-UIPFE (secure against the legitimate keys) from the n shares requires that the access
structure of the key must be satisfied by all the attribute sets present in the ciphertext combination.

The above transformation only achieves an MI-AB-UIPFE in the secret key setting, i.e. security without
corruption. As also mentioned in [12], the limitation arises from the fact that there exist access structures
that never evaluate to 1 (say, non-accepting access structure) and for the transformation to work in the
corruption model the underlying CP-ABE must satisfy the property that the adversary should not be able
to decrypt a ciphertext computed for such non-accepting access structure even if it gains access to the
master secret key. Such a CP-ABE is very hard to construct from standard assumptions, since it implies
witness encryption verifiable by monotone boolean formulae. To circumvent this issue, we use a wildcard
attribute S* that satisfies all access structures realizable by LSSS. The existence of such a wildcard attribute
set will provide no additional information with the leakage of the master secret keys of the CP-ABE which
correspond to the corrupted slots, since the adversary can always decrypt any ciphertexts of those slots.
Moreover, an MI-ABE with corruption generally implies witness encryption [28], which is also the case in
our work. However, we bypass this implication by adding the wildcard attribute set. The use of wildcards
in our setting is motivated by the previous works [28,12]. It is easy to see that our MC-AB-UIPFE supports
such a wildcard by simply setting ¢ = 0 (see Construction 2) when computing a ciphertext for S*.

Dynamic Decentralized UIPFE. We now present the technical details for obtaining a DD-UIPFE.
Our approach builds upon the framework established in [9] and integrates our esUIPFE to facilitate the
dynamic joining of parties into the system, allowing them to encrypt arbitrary-length vectors. At a very
high level, each party joins the system by sampling a PRF seed seed;. Subsequently, they dynamically sample
(iIMPKj, iIMSKy) and (euMPKg, euMSK}) using the PRF with a user set U as input. During key generation,
each party computes a vector [a]s = H({y} },U) using a hash function, encoding it into sk(y;) = (y;, o).

In parallel, each party employs another PRF with input (4, L) to compute vectors s, such that >, ., sx = 0,
encoding these into ct(xy) = (xx, sk). The seed for this PRF is derived using a non-interactive key exchange

protocol. The unbounded nature of the underlying vectors is preserved through the esUIPFE. For further
details and a concrete description of our DD-UIPFE, we refer the reader to Section 7.
A roadmap of our constructions is illustrated in Figure 1.

esUIPFE AB-sUIPFE MC-AB-UIPFE
Sec. 4 Sec. 5 Sec. 6
DD-UIPFE MI-AB-UIPFE
Sec. 7 Appendix A

Figure 1: Roadmap of our constructions. Note that AB-sUIPFE captures AB-UIPFE, and MC(MI)-AB-
UIPFE captures MC(MI)-UIPFE.

3 Preliminaries
Notations. For some prime p, Z, denotes a finite field of order p, and for n € N, the set GL,(Z,) denotes

all n x n invertible matrices with entries from Z,. We indicate the process of random sampling of an element
a from the finite set S by a < S. We use L(S) to denote the set of finite lists of elements from S, and [n] to

14

denote the set {1,...,n}. A bold uppercase letter represents a matrix, e.g., A, while a bold lowercase letter
indicates a vector, e.g., x. The index set of the vector a is denoted by I,. For example, if a = (a1, a3, ag), we
write Iy = {1,3,8}. The concatenation of vectors is denoted by ai||ag||...||a,. The length of a vector a is
denoted by |a|. For any two vectors a = (a;);ecr, and b = (b;);er, with the respective index sets I and Iy,
a permissive relation R is defined as follows: (a,b) € R if and only if I, C I,. The inner product (a,b), in
permissive case is defined as), 1, @ibi. If both the vectors are in same length m, then (a, b) represents the
normal inner product as), elm] a;b;. Consider g, as a generator of the cyclic group G,. If a = (a1, az,...,a,)
is an n-tuple vector, then [a], = (¢**,¢22,...,9°"). For ¢,u € Z,, we represent c[u], = ¢°*. For a matrix
A = (a;j) € GL,(Z,), we define [A], = g”, where exponentiation is carried out component-wise, and
a; represents the i-th row vector of A. A function negl : N — [0,1] is said to be negligible if, for every
¢ € N, there exists a A, € N such that negl(A) < % for all A > A.. Consider two distributions A and B.
Then, A ~; B denotes that the two distributions are statistically indistinguishable, while A =, B represents
computational indistinguishability. If A = B, the two distributions are identically distributed. We discuss
the remaining preliminaries in the following.

Definition 1 (Pairing Groups) A bilinear group G = (p, G1, G2, Gr, g1, g2, €) consists of a prime p, two
multiplicative source groups G1, G2 and a target group G with the order |G| = |G2| = |Gr| = p where
g1, g2 are the generators of the group G; and G respectively. We consider a bilinear map e : G; x Gy = G
that satisfies the following:

— bilinearity: e(g¢, g5) = e(g1,g2)? for all g1 € Gy, 92 € Ga, a,b € Z, and
— non-degeneracy: e(gi, g2) is a generator of Gr.

A bilinear group generator Ggg.gen(1") takes the security parameter A and outputs a bilinear group G =
(p,G1,Ga,Gr, g1, g2, e) with a A-bit prime integer p.

Assumption 1 (Decisional Diffie-Hellman) Let G be a cyclic group of prime order p. We define the
distribution (D, [he]) over G as

fg if b =0

D:(Ga[[l]]v[[f]]a[[gﬂ) for f,g « Zp; he = {h(—Z =1
D =1.

We say that the Decisional Diffie-Hellman (DDH) assumption holds in G if for all PPT adversaries A, there
exists a negligible function negl(+) satisfying the following:

AdEPM () = [PrLA(D, [ho]) = 1] = PrA(D, [lu]) = 1]] < negl(\).

Assumption 2 (Matrix Decisional Diffie-Hellman [27]) Let ¢,k € N such that ¢ > k. We call Dy, a
matrix distribution over the matrices in ZﬁXk if it outputs a full-rank matrix with overwhelming probability.
Without loss of generality, we assume the first £ rows of the matrix A < Dy} form an invertible matrix.
We define the distributions (D;, [ke];) for i € {1,2} over groups G1, G2 in bilinear group G as

Am ifb=0

D; = (G,[A];) for m « Z; kb:{lﬁ_zz F 1
£ =1.

We say that the Matrix Decisional Diffie-Hellman (MDDH) assumption over G; for ¢ € {1,2} holds if for all
PPT adversaries A, there exists a negligible function negl(-) satisfying the following:

AdvMPPH(N\) = |Pr[A(D;, [ko]s) = 1] — Pr[A(D;, [ki]s) = 1]| < negl()).

Definition 2 (Access Structure [38]) Let Att = {att;,...,att,} be a finite set of attributes. An access
structure over Att is a collection A of non-empty subsets of {Att}, i.e., A C 2{A%H\ [p1. A set contained in A

15

is called an authorized, otherwise it is called unauthorized. An access structure A is monotone if S; C So C A
and Sy € A implies So € A. Given a set of attributes S C Att, we write A(S) = 1 if and only if there exists
A C S such that A is authorized. Note that, List-Att(A) is the list of attributes appearing in the access
structure A.

In this paper, we represent the access policies realizable by linear secret sharing schemes (LSSS) which
we define below.

Definition 3 (Linear Secret Sharing Scheme [38]) Let K be a field, d,f € N, and Att be a finite
universe of attributes. A linear secret sharing scheme (LSSS) over K for an access structure A over Att is
specified by a share-generating matrix A € K%f such that for any I C [d], there exists a vector ¢ € K¢
with support I and ¢- A = (1,0, ...,0) if and only if {att; | i € I} € A.

To share a secret s, pick uniformly random values vo,...,vq + K and generate a vector of n shares as
s:=(8,v2,...,04) AT such that the share for attribute att; is the i-th coordinate s; of s. Only an authorized
set {att; | i € I} € A can recover c to reconstruct s by computing ¢-s' =c- (A - (s,vq,...,v4) ") = 5. For
any unauthorized set, reconstructing the secret will result in a uniformly random value.

Definition 4 (Pseudorandom Function) A pseudorandom function (PRF) family F = {PRFS’eed(-)}seede;gprf

with a keyspace Ky, domain & and codomain Y is a function family that consists of functions PRFed .

X — Y. Let Rand be the set of random functions with the same domain X and codomain). Then for all
PPT adversaries A, there exists a negligible function negl(-) satisfying the following:

AVERF (1) = [PrAPTTO () = 1] = PrlA® 0O () = 1]] < negl())
with seed +— K¢ and Rand(-) < Rand.

Definition 5 (Non-Interactive Key Exchange [19]) A non-interactive key exchange (NIKE) scheme
Mhike = (Setup, KeyGen, KeyShared) for shared key space K consists of the following algorithms:

Setup(1*) — PP: The setup algorithm takes as input the security parameter A and outputs the public
parameters PP.

KeyGen(PP) — (PK,SK) : The key generation algorithm takes as input PP and outputs party’s public key
PK and the corresponding secret key SK.

KeyShared(PK,SK) — K : The key shared algorithm takes as input a party’s PK, SK and deterministically
outputs a shared key K € KCs.

Correctness: For all A € N, we require

PP < Setup(1*)
Pr| K;,;=K,;: (PK;,SK;) + KeyGen(PP), (PK;,SK;) < KeyGen(PP) > 1—negl()).
K, ; < KeyShared(PK;, SK;), K, ; < KeyShared(PK;, SK;)

Definition 6 (Security of NIKE) The N,k = (Setup, KeyGen, KeyShared) scheme is secure if for all PPT
adversaries A, there exists a negligible function negl(-) satisfying

Advie(\) =

Pr [Expt;{kE(A,o) - 1} —Pr [Expt;{kE(A, 1) = 1} ‘ < negl()\)

where the experiment Expt(\, 8) is defined for 8 € {0,1} as follows:

16

Expt (), B) :
1: PP < Setup(1?).
2: QQ + o.
3 3 <_AONHonest,Ocor,OReveal,OTest,/g(PP)‘
4: output 3.
ONHonest() :
1: (PK,SK) < KeyGen(PP).

OReveal (PK, PK’) :
1: if (PK,SK) € Q,
output KeyShared(PK’, SK).
2: else if (PK’,SK’) € Q,
output KeyShared(PK, SK’).
Oest,3(PK, PK') :

1. if (PK,SK) ¢ Q or (PK',SK') ¢ Q,

2: Q@ = QU{(PK,SK)}. abort.
3: output PK. 2:if B =0,
Ocorr(PK) : output KeyShared(PK, SK’).
1: if 3(PK, SK) € Q, 3 if 5 =1,
Q= Q\ {(PK,SK)}. output K + ;.
output SK.

Definition 7 (All-or-nothing Encryption [19]) An all-or-nothing encryption (AoNE) scheme Myone =
(Setup, LocalSetup, Enc, Dec) is defined over the message space M = {0,1}¢ x 227 x £ with ¢ € N, key space
K = ¢, identity space ZD and label space £. Note that, AoNE is a class of dynamic decentralized functional
encryption (DDFE) scheme. The scheme consists of the following algorithms:

GlobalSetup(1*) — PP: The global setup algorithm takes as input security parameter A\ and output public
parameter PP.

LocalSetup(PP) — (PKj, MSK}): The local setup algorithm takes as input PP and output the party’s public
key PK} and secret key MSK},. The following two algorithms implicitly take PKj.

Enc(MSKy, (,U, L)) — CT: The encryption algorithm takes as input party’s MSKy, a message x, a user
set U, a label L and outputs the corresponding ciphertext CTy.

Dec({CTr}ictnm) — ¢ V L. This algorithm takes as inputs {CTy}recus,, Where Unmsg € ZD is any set of
users. It outputs either ¢ or L indicating failure.

Correctness: For all A € N,z € {0, I}Z,Z/IMsg € 22P and Lj € L, we require

PP < GlobalSetup(1*)

pr | €= (e (ks (@, Un, L) Yretnsg) = (PKy, SKi) <= LocalSetup(PP)
CTy « Enc(MSKk, (xk,u;ka))
C — Dec({CTk}keuMsg)

>1—negl())

where the function f is defined as follows:

f(€’ {kv (zk’uk’v Lk)}keL{Msg)

(Tk) ket i (%) holds
L otherwise.

The conditions in () define as follows:
— for all k € Unisg, Unmsg = Us,.
— for all ki, ks € UMsg, Lkl = Lkz-

Note that, the KeyGen algorithm is not required and Dec works without the secret key components. The
security definition is the same as Definition 19 except that no queries to Okg(+) are provided to the adversary.

17

Definition 8 (Security of AoNE) The M,one = (GlobalSetup, LocalSetup, Enc, Dec) is said to be xx-yy-
indistinguishability (xx-yy-IND) secure for xx € {sel, adp}, yy € {sym, asym} if for any security parameter
A, any PPT adversary A, there exists a negligible function negl such that the following holds

Adva,Tx—yy—lND()‘) = ’Pr [Exptfz,nxex—yy—lND()HO) = 1] —Pr [EXPtff,r;fx-yy-lND(/\a 1) = 1] ‘ < negl())

where the experiment Expt} o, oy inp (), 8) is defined for 8 € {0,1} as follows:

EXPtf:,nxex-yy-lND()‘vﬁ) : OHonGen(k) :
1: PP « GlobalSetup(1*). output LocalSetup(PP).
2 B« AOHonGen(')7OCorr(')7oE(‘)70L0R,ﬂ(')(PP). Oc(k, (g, Uy, Li)) :
3: Output 8’ if condition (x) is satisfied. output Enc(MSKy, (zk, Uy, Lt,).
Ocor (k) : OvLor (K, (20, 21, Uy, L)) :
output MSK. output Enc(MSKy, (arg,lxlk,Lk)).

Let CS,HS be the sets of all inputs k € ZD for which the adversary makes queries to the oracles Opongen ()
and Ocor(-) respectively. The condition () is that if there exist a subset of identities Umsg € HS, then it
should satisfy all the following conditions

— fle,{k, (2, Un, Li) Yhetn,) = fle{k, (2, Un, L) b rctig)-

— for all k € Unsg, [OLor (K, (22, 2}, Uy, Ly)) is queried or Og(k, (xx, Uy, Li)) is queried with 29 = z} =
zg) and [2) =z} =z, for k € CS).

— For xx = sel: the adversary first generates the CS set in one shot, then all queries to Oror,g(-) or Og(+)
oracles should be made.
— For yy = sym: for i € CS, the queries Oror g(k, (29, 2%, Uy, Li)) must satisfy 29 = z}.

Definition 9 (Slotted Inner-Product Functional Encryption [36]) A slotted inner-product functional
encryption (SIPFE) scheme Mg, = (Setup, KeyGen, Enc, SlotEnc, Dec) is defined over a slot specification
S = S X Spiys Where S, = Zj* represents the public slot of size n;, and S,;, = Zp? represents the
private slot of size no. Let G be a bilinear group containing the groups Gi, Gs, G of prime order p. The
scheme consists of the following five algorithms:

Setup(1*,1™,172) — (MSK, MPK): The setup algorithm takes as input security parameter A\ and outputs
the master public key MPK and the master secret key MSK.

KeyGen(MSK, [y]2) — SK: The key generation algorithm takes as input MSK, a slot vector y € S’ in the
exponent of the group Gy and outputs the secret key SK.

Enc(MSK, [x]1) — CT: The encryption algorithm takes as input MSK, the slot vector x € S’ in the exponent
of the group G; and outputs the ciphertext CT.

SlotEnc(MPK, [x]1) — CT: The slotted encryption algorithm takes as input MPK, the public slot vector
X € Séub in the exponent of the group G; and outputs the ciphertext CT.

Dec(SK,CT) — [d]r V L: The deception algorithm takes as input SK, CT and outputs an element [d]r €
Gr.

Correctness: For all A € N, and x,y € §’, we require

(MPK, MSK) « Setup(1*, 1™, 1m2)
Pr |[d]r = [{x,)] : SK « KeyGen(MSK, [y]2) > 1 — negl(\).
CT « Enc(MSK, [x]1)

18

/

Slot-mode correctness: For all x € Spub,

the following distributions are required to be identical:

{(MPK,MSK, CT) : (MPK, MSK) + Setup(1*,1,172), CT + Enc(MSK, [(x,0"2)]1)},
{(MPK, MSK, CT) : (MPK, MSK) + Setup(1*,1™1,12), CT ¢ SlotEnc(MPK, [x]1)}

Definition 10 (Security of sSIPFE) A sIPFE scheme Mg, = (Setup, KeyGen, Enc, SlotEnc, Dec) is said to
be xx-function-hiding-indistinguishability (xx-FH-IND) secure for xx € {sel, adp} if for any security parameter
A, any PPT adversary A, there exists a negligible function negl such that the following holds

Advjp,xx-FH-lND()‘) =

Pr [Bxpt e (A 0) = 1] = Pr [Bxptd (A 1) = 1] | < negl(3)

where the experiment Exptj‘jxx_FH_lND()\, B) is defined for 8 € {0,1} as follows:

Exptf o prmn (A B) : Okas(yy vi")
L (n1,ng) A(1Y), output KeyGen(MSK, [y{”[»).

2: (MPK, MSK) < Setup(1*, 1™, 172). 0) 1)y .
3. ﬁ/(_AOKG,B(‘»')voE,B(‘)(MPK). OEﬁ(X”—’X“)

4: output 3. output Enc(MSK; [[x,(f)]]l).

Here, (yﬁo),yél)) denotes the /-th secret key query and (xﬁ?’,x,&”) denotes the s-th encryption query. Let

Qk, Q. be the numbers of queries to Oke,3(-), O g(-) oracles respectively and yl(zﬁ) = (ygﬁ))ub,yéi)ﬁv) with

yéﬁj)ub € S, and ygé) € S/, for 8 €{0,1}. Then, the following conditions must hold:

priv priv

[,y = [(xD, y)] for all £ € [Q4), € [Qc] and y %y, = y L, for all £ € Q).

— For xx = sel: Queries to Og g(-) must be made before any queries to Okg,a(-).
— For xx = adp: Queries to Og g(-), Oke,3(-) can be made in any order.

4 Extended Slotted UIPFE

In this section, we define the extended slotted unbounded IPFE (esUIPFE) with slot-specification S = Spup X
Spriv Wwhere Spup = Z;‘, X Z;‘l and Spriy = Z;L? represent the elements in the public and private slots respectively.
Let G = (p,G1,G2,Gr, g1, g2,€) be a pairing group (see Definition 1) of prime order p.

Definition 11 An esUIPFE scheme [N = (Setup, KeyGen, Enc, SlotEnc, Dec), defined over the slot specifi-
cation S = Spup X Spriv, consists of the following five algorithms:

Setup(1*,1™,172) — (MPK,MSK) : The setup algorithm takes as input the security parameter), the
length ny of the bounded part of Spup, and the length ny of the Sy part. It outputs the master public
key MPK and the master secret key MSK.

KeyGen(MSK, [(y,T, ¥ piv)]2, Iy) — SK : The key generation algorithm takes as input MSK, the slot vector
(¥,T,¥poriv) € S in the exponent of the group G with an associated index set Iy of y. It outputs a
secret, key SK.

Enc(MSK, [(x,2, Xpriv)]1) — CT : The encryption algorithm takes as input MSK and the slot vector
(X, 2, Xpiv) € S in the exponent of the group Gy where x € Zy' (say) is an arbitrary length vector. It
outputs a ciphertext CT.

SlotEnc(MPK, [(x,2)]1) — CT : The slotted encryption algorithm takes as input MPK and the public-slot
vector (X,z) € Spub in the exponent of the group Gy, where x € Z;* (of arbitrary length). It outputs
a ciphertext CT.

19

Dec(SK,CT) — [d]r V L : The decryption algorithm takes as input SK and CT. It either outputs an
element [d]r € Gr or a special symbol L indicating failure.

Correctness: For all A € N, (x,2,Xpiv), (¥, T, Ypiy) € S such that x € Z'y € ZILIH’ z,r € Z;' and
Xprivs Ypriv € Zp? with R(x,y) = 1, we require

(MPK, MSK) « Setup(1*,1™1,1")
Pr |[d]r = [(x,¥)p + (2, 1) + Xpriv, Ypriu) |7+ SK < KeyGen(MSK, [(y, r,y,i,)]2: Iy) | =1 — negl()).
CT + Enc(MSK, [(x, 2, Xpriv)]1)

Slot-mode correctness: For all (x,2z) € Spub, the following distributions must be identical:

{(MPK,MSK, CT) : (MPK, MSK) < Setup(1*,1™,1"2), CT « Enc(MSK, [(x, z, 0"2)]]1)} ,
{(MPK,MSK, CT) : (MPK, MSK) « Setup(1*,1",1"2), CT < SlotEnc(MPK, [(x,2)]1)} .
Definition 12 (Security of esUIPFE) The M. = (Setup, KeyGen, Enc, SlotEnc, Dec) scheme is said to

be xx-function-hiding-indistinguishability (xx-FH-IND)-based secure for xx € {sel, adp} if for any security
parameter A, any PPT adversary A, there exists a negligible function negl(-) such that the following holds:

Ade wcFranp(A) = |Pr [Exptji,xx—FH-lND()‘vo) = 1} —Pr {Expt.eji,xx-FH-lND()‘a 1) = 1} ’ < negl(A)

where the experiment Exptfii)xx_FH_mD()\, B) is defined for g € {0,1} as follows:

Exptfzi,xx—lND()‘) OKGﬁ (YEa Iy, y% gnvv yygnva Iyl) :
1 (ng,ng) < (1>\) 1: output
2. (MPK, MSK) + Setup(1*, 171, 172). KeyGen(MSK, [(y . re, ¥ o 2, Iy)-
3. B/ AOKG g(-)s OEB()(MPK) (B) (6) (B)
4: output 6/~ ({X ’] ’] pnv}ﬂE{O 1})
1: output
Enc(MSKI(x}”, 2", x)lh).
Here, (y,, re, yE gnv, yglgnv, Iy,) denotes the {-th secret key query and {x,€ 7zf€ﬁ)7 X, pnv}ﬁe{o 1} denotes the x-
th encryption query where it must hold that: |x,.¢ | = |x,.€ | = m,, (say). Let Qg, Q. be the numbers of queries

to Oke,(), Ok () oracles respectively. Then, for all £ € [Qx], k € [Q.] with ’R(x,&o),yé) R(x,&l),yé) =1,
it must hold that

0 0 0 0 1 1 1
[, ye)p + (28 1) + (x y i I = [x vy + (2 re) + (x) v i e

— For xx = sel: Queries to Og g(-) must be made before any queries to Okg,g()-
— For xx = adp: Queries to Og (-), Okg,g(-) can be made in any order.

4.1 Construction

Consider Mg, = (iSetup, iIKeyGen, iEnc, iSlotEnc, iDec) be a bounded sIPFE with slot-specification &’ = S{mb X
Spiy With S = Z"1+4 Spiv = L2 x Zf, X Zyp?. We present our esUIPFE scheme lNes; = (Setup, KeyGen, Enc,

SlotEnc, Dec) with Spub = Zy x Zp* and Spiy = Zy,? below. We discuss the bounded sIPFE in Definition 9.

Setup(1*,1™,12): The setup algorithm takes as input the security parameter), the lengths ny,no and
executes the following steps:

1. Generates (iIMPK,iMSK) <« iSetup(1*, 171+4 1212+2),
2. Outputs the master public key MPK = iMPK and the master secret key MSK = iMSK.

20

KeyGen(MSK, [(y,T, ¥ piv)]2, Iy): The key generation takes input MSK with a vector tuple [(y, 1,y)]2
and does the following steps:

1. Defines the vector k; ¢ as follows:
Kire=(m(,1), v, Si Tiv Yipw» 0, 0, 0") Viely
where my, i <= Ly, Si < Ly Yipry < Ly? such that 32,0 ri =0, 20, 8i =1, D icr Vipiv =
2. }ézg.erates iSK; < iKeyGen(iMSK, [k; fe]2)-
3. Outputs the secret key SK = {iSK; }ic1, .

Enc(MSK, [(x, z, Xpriv)]1): The encryption algorithm takes as input MSK, a vector tuple [(x, z, Xpriv)]1 and
proceeds to do the following steps:

1. Defines the vector c; ¢ as follows:
cire= (04(1,—-9), x4, 2z, & XKpiv, 0, 0, 0") Vie [m]

where «, 0; < Z,, for all i € [m].
2. Generates iCT; < iEnc(iMSK, [c; fe]1)-
3. Outputs the ciphertext CT = {iCT;}ic[m)-

SlotEnc(MPK, [(x,2)]1): The slot encryption algorithm takes as input MPK, a vector tuple (x,z) and
performs the following steps:

1. Defines the vector c; ¢ as follows:
Cire= (o0i(l,—4), =, 2z, a) Vié€[m]

where «, 0; < Z, for all i € [m].
2. Generates iCT; < iSlotEnc(iMPK, [c; fe]1)-
3. Outputs the ciphertext CT = {iCT;};c[m)-

Dec(SK, CT): The decryption algorithm takes as input the secret key SK, the ciphertext CT and proceeds
as follows:

1. If I, C [m], i.e.,, R(x,y) = 1, then it computes [d]r + Hiely iDec(iSK;,iCT;) and returns [d]r.

2. Otherwise, it returns L.

Correctness: From the correctness of g, with R(x,y) = 1, we have

iDec(iSK;,iCT;) = [z;y; + (si,2) + (xpri\,,yi,pri\,)]]T and H iDec(iSK;,iCT;) = [(x,y)p + (r,z) + <xpri\,,ypriv>]]T .
jely

Slot-mode correctness: From the slot-mode correctness of g, we have

iEnc(iMSK, [c! t]1) = iSlotEnc(iMPK, [c;] 1)

i,fe

where ¢} ¢, = (u][0°">7?) and ¢; g = u such that u € Z} .

21

4.2 Security Analysis

In Theorem 6, we present the security analysis of our esUIPFE scheme, as described in Construction 4.1.
We will use the following lemma from [24] (adapted in our setting) to handle the non-permissive keys in the
security analysis.

Lemma 1 (Handling Non-permissive Keys [24]) Let g, = (iSetup, iKeyGen, iEnc, iSlotEnc, iDec) be a
bounded sIPFFE scheme with slot-specification S;,u = Z”1+4 Spriy = Ly? X ZIQ) X Zy?. For the polynomials

priv
t =t(A), n=n(\), with n > t, we define the following vectors
kj:(Wj(jvl)v 0, Om’ 0, 0712’ 0, T, 0") 5
K = (mi(3,1), 0, O™, 0, 0", 0, r;+BF;, 0") Vjec[t+1,n],
Cp/ :(Jk/(lvfk,)v Ov On17 07 0712, Oa aka 0") Vkle [t})

where Ty, i, T, P, 0 4 Ly, B 4 {0,1}. For anyiMSK <« iSetup(1*,1™1,1"2), the distributions {{iSKx, };e(n):
{ISKkﬁ Yie+1,n) 1iCTe,, i} for B+ {0,1} are computationally indistinguishable where

iSKi, = iKeyGen(iMSK, [k;]2) Vj € [n] ,
iSK.» = iKeyGen(iMSK, [k(2) Vj € [t+1,71] ,
iCTe,, =iEnc(iMSK, [ci]1) VK €t] .

Theorem 6 Our Mg scheme achieves sel-FH-IND security as per Definition 12 if DDH assumption holds
in the group Go and Mgy, scheme is sel-FH-IND as per Defintion 10.

Proof. We prove Theorem 6 through a sequence of hybrids. We describe the hybrids below. The values
Q. and @y represent the number of ciphertext and key generation queries, respectively. We briefly provide
indistinguishability arguments of security hybrids in Fig. 2. We represent the slots using dashed boxes,
which are updated in the subsequent hybrid steps. In the subsequent hybrids, we will only mention the
updated slots.

Hybrid 0. Same as the experiment Exptfji,sekFH_,ND()\, 0) where the adversary can query the following:

Encryption queries: On receiving the queries (X,(.;), Z,(.QO)7 Xffz)riv)’ (X(l) Z,(.Ql)7 X,S,z)riv

A, the challenger computes the vectors c, ;. for all x € [Q.] as follows:

) from the adversary

0) | \ 0 \ 0 j‘ r-arTar—Ta
OEyo({Xl(iﬁ)7Zl(€5)7Xl(ﬂﬁ,lzriv}ﬁe{071}) : Cﬁ»iyfe - (0"C Z(]‘ 72) focz ! "(‘1) ! OZH" Xf(-c |):)I‘IV ‘7‘LJ_J" ‘LJ_J" LJ‘)

where o, < Z,, for all i € [m] and oy ; < Z,.

Key Generation queries: On receiving ¢-th functional query (yg,rg,yg gnv,yilgnv,lyz) compute

the vectors kg ; . for all i € Iy, as follows:

o r--n
OKG70(y€7re7yé gnv’yé,lgrlv’ Y[) kflfe - (ﬂ-f 1(7’ 1) y@ Z’Sf 1,\7"41 "‘yé z)prlv "LOJO 077172)

where 7, iy Tei Zpa Se,i < Zp » ¥ e,i,priv Z;:;Lz such that Ziejy Tei = 0, Zig]ye S¢,i = Ty, Ziejyz Ye,ipriv =
yé,pnv

Hybrid 1. This hybrid is the same as Hybrid 0 except that the vectors cy ;s for all x € [Q.] are modified
as follows.

OE,O({XE@B)7Z(B) (ﬁgnv}b’e{o 1}) Cﬁ,i,fe: (1',(3,)” Z,A(»gO)a ng()) i 07 Oa 0) .

priv?

The indistinguishability follows from the slot mode correctness of the [gp.

22

Slot-Corr FH-IND Stat

Hybrid 0 s Hybrid 1 s Hybrid 2 y Hybrid 3 | « Hs_j0 \ Hs_j1

FH-IND Stat FH-IND DDH

Hg_j_(; { H3.j.5 (H3—j—4 < H3-j-3 < H3*j*2

H3 i Lemma 1 H3 P8 FH-IND H[{ 9 FH-IND H3 .10 Stat H[{ 11
- \ -5+ \ 3¢ \ -5 \ 3-j-
FH-IND FH-IND Lemma 1 FH-IND

Hs_j.16 . Hs_j15 ¢ Hs_j14 ¢ Hs_j13 L Hs_j.12

Hybrid 8 | "™ | Hybrid 7 | ,*™ Hybrid 6 | ;""" | Hybrid 5 | ;""" | Hybrid 4

Figure 2: Outline of the security games for Theorem 6. Here, ‘Stat’ means statistically, ‘Slot-Corr’ is a
shorthand for slot mode correctness of lgp, and ‘FH-IND’ is a shorthand for the function-hiding indistin-
guishability security of MNgp.

Hybrid 2. We modify the vectors kg ; ¢ for all £ € [Qy] as follows.

0 1 0 1
OKG@(YZ?rbyg,griv’yé,griv’I)’g) : ke;@fe : (Teis yé,i),priv’ Tei s yzi),priv)

Hybrid 3. In this hybrid, we set r¢; = 7¢; —&—677277; for all £ € [Qg] where 7‘4,2»,F27i,6 < Z, such that
Zielyg e = Eielye 772,:’ =0.

0 1 ~ ~1 0 ~ ~ 1
OKG,O(yfﬂ Te, yg,griv’ yé,griw IYz) : kf,’i,fe : (Teyi + 6702,1’ 7y§,i),priv7 T + (57’2’2» 7yﬁ,i),priv) :

Hybrid 4. This hybrid is the same as Hybrid 3 except that the ciphertext queries ¢y ; fe for all k € [Q.] are
modified as below.

Oea({xP, 2 x) Vseoay) crire: (al), 2z, 0,00, x00)

K K,0) K,priv

23

Hybrid 5. In this hybrid, we modify the following vectors for all £ € [Q.] and & € [Qk].

(. R V) 0
OKG,O(YE? Ty, yé gnw Y 3r|vv Iyz) . kf,i,fe . (Tty =+ 6T27ia YZ,i{priv yTei + 6%717 yg’i)’priv) ’

OEyl({X,‘(ﬁﬁ)’Zf(ﬁﬁ)’x,‘(ﬁﬁ,;riv}BE{oJ}) © Crife: (filz?Zl(ﬁ)’ S[)JFIV ’O O 0) '

Hybrid 6. This hybrid is the same as Hybrid 5 except that all the yé}i{priv are replaced with 0 for all £ € [Qy].

OKG,O (yf’ T¢, yg gr|v7 yé FZ”V’ I)’[) : ké,i,fe : (,’Ff’i + 5%,1” yé,li),priv’ FZ@ + 6%,1‘7 0) '
Hybrid 7. We substitute r; = 77, + 577271» for all £ € [Qy] in this hybrid.

1 1
OKG,O(YZvrlayé g,w,yﬁ gr.v,fyg) Co ke (e 7Y§,i)7priv7 rei,0) .

Hybrid 8. In this last hybrid, we modify the vectors ky ; f for all £ € [Q4].

0 1 1
OKG,O(W,I‘Z,YE; g,.V»YE gr.\,Jy@)i keife: (Te,myzi),p,;w 0,0).

This hybrid is the same as EXptAl,seI-FH-IND()‘v 1). Thanks to Lemma 2 to Lemma 9, we can conclude
the proof of Theorem 6.

Lemma 2 Hybrid 1 and Hybrid 2 are computationally indistinguishable if the underlying Mg, scheme is
sel-FH-IND secure.

Proof. Consider a PPT adversary A that can distinguish between Hybrid 1 and Hybrid 2. We can use A

to construct B that can break the sel-FH-IND security of the Iy, scheme as follows. On receiving challenge

messages {x(ﬁ) sz), ,(fjgnv} pe(0,1} from A, and the challenger picks the bit b = 0, B computes the following

ciphertext and secret key queries by forwarding them to the challenger as follows.
iCTI:’zbrid '« iKeyGen(iMSK, [(0s.4, —iam,xf{OZ, ,(ioz,oz,.i, ,(ioz)riv,0,0,0,0)]]) = iEnc(iMSK, [[xg}]l) and
iSK?iybrid !+ iKeyGen(iMSK, [[(i?‘('i,ﬂg7i,yg7i,Sg@,’/’g’iyé’griv,o,o,0,0“2)]]) = iKeyGen(iMSK, [[yg’z)]]g).

When the challenger picks the bit b = 1, B computes the following vectors and forwards it to the
challenger.

ICTIYP 2 iKeyGen(IMSK, [(0,is —i0s,i 2), 21, ct, X0 11, 0,0,0,0)]1) = iEnc(iMSK, [X\)]1) and

K,1) nz’ K,priv?

iSKYY 2 iKeyGen(IMSK, [(i7m7, Te,i, Ye.i Se,is e, v oivs T2 0, 0,755 i J2) = iKeyGen(iMSK, 76]2).

For all k € [Q.], ¢ € [Qk], we have

iDec(iSKyY™ 1 ICTI) = [yria) + (804, 200) + (¥ s Xeomy) + 7007
_ iDeC(iSnglbrld 27 ICT]}{gb“d 2).

B is an admissible adversary for the security of the lg, scheme. When B samples b = 0, the game is identical
to Hybrid 1 and when b = 1, the game is identical to Hybrid 2. (]

Lemma 3 Hybrid 2 and Hybrid 3 are statistically indistinguishable.

24

Proof. The distributions

{re; < Zy: Z re; =0} and {7y; + 07 ; : 0 Zy, (70 +075,) =0, Z Tog = Z 7 =0

i€ly, €ly, i€ly, 1€ly,

are statistically close as Zz‘er,z Tes+ 5772,i = 0 with {7y, %,i}ielye ,0 uniformly chosen over Z, and satisfies

~ ~
Zie[w Tei = Zielye 7y = 0.

O

Lemma 4 Hybrid 8 and Hybrid 4 are computationally indistinguishable if DDH assumption holds over the

group Gz and Mg, scheme is sel-FH-IND secure.

Proof. We prove the lemma through a sequence of hybrids, namely Hs ; for every ciphertext query j € [Q.].
We define Hs g and H3 . the same as Hybrid 3 and Hybrid 4, respectively. The hybrid Hs ; is the same as

Hs ;j—1 with the following changes to the j-th ciphertext query c;; fe.

OE,O({XE-@ (B) (B) (1) (1)

’ 7 ’] prlv}ﬁE{O 1}) Cjife : (o'jA,i(lv 72‘)’] i zj Qs 0, 0, 0 Xj,priv) .

Lemma 5 Hybrid Hz ; and Hs j11 are computationally indistinguishable if DDH assumption holds over the

group Go and Mg, scheme is sel-FH-IND secure.

Proof. We prove the lemma by introducing several sub-hybrids described as follows.

Hybrid Hj ;o: This hybrid is the same as Hsz ;_;. We represent the slots using dashed boxes, which are
updated in the subsequent hybrid steps. In the subsequent hybrids, we will only mention the updated

slots.
© M) roN iy IS 0 reTTriE e
OkGo(Y e T0: Yo privs Yoprive Iy): Keiee = (meali, 1), e, Se,,«, ‘w i+ 07T }, lyg : p,.vfl, e + 07, | b0 VY0 priv
o A, Lo ik
B . 0 0 - 0 .7 r.a [l
Oeo({x, 27 xE) Yoeory): ciire= (o1, =0), | T(? " 1Z§l) : ragh 1x5]p)r.v b 0, 10, 10
N L E

Hybrid Hj ;1: In this hybrid, we modify the j-th ciphertext query c;;f as follows.

OKG70(yZ? Iy, y; grlv’ yélgrlv’ Iyi) : ké,i,fe : (’I“g i + 67‘@ 7 yE z)prlv’ ’I"g 4 + 67"@ i O yE z)priv) ?

0 0
OE’()({X; ’Zj ’Xj,priv}ﬁe{(),l}): Cjife (x;z)’ 5) 0 X§ gnv’ Q; ,0,0) .

We can show the indistinguishability between the hybrids through a reduction to the Mg, security as

in Lemma 2. We know for all £ € [Qy], we have

iDec(iSKy 7 iCTH27)

= [yearl) + (300 250) + (F§omiys Xy + Tt + 07 051

|Dec(|SKH“" o CTH3 .

Thus, we have the same inner product values in both hybrids.

Hybrid Hj ;2: This hybrid is the same as Hybrid Hs ;i except the following changes to j-th ciphertext

and all key generation queries ¢ € [Q].

(0) (1) . . ~ ~ (0) = =) (1)
OKG,O(yE’rbyZ pr|v7y2 prlv’IYe) : ké’i,fe . (Ty + 6rl,i7yz,i,priv’ QTG ajérf,i 7yZ,i,priv) ’

0 0 0
OE70({X§B)aZ;B) j prlv},BG{O 1}) Cj7i,fe . (x§7i)aZ§')aovxg‘,griw 1 ’ 1 70) .

25

We know for all ¢ € [Qy], we have

iDec(iSKj 27 iCTH27)

di
= [[yf,i$§?¢) + (se,i; Z§?¢)> (0 x4 Ty + 07 o]

£,priv? “*j,priv
= iDec(iSK, 272, iCT, 472,
In case of ¢ € [Q.], ¢ < j and ¢ € [Q4],
iDec(iSKy 27 iCT 27
= [[ye,z-xff} + <Se,i,ZE,1i)> + (yggriv’Xf,lgﬁV) + ?z,z‘O&L + 5772,1'0&]]T
= iDec(iSK, 72, iCT!72).
For all v € [Q.], ¢ > j and £ € [Qy], we also have,
iDec(iSKj 37, iCT, 9"
= Hyl,zxf?z) + <Sg77;, ZE?z)> + <yg)p)riv7 Xf?p)riv> + ?e,iaL + 5?Z,iab]]T

= iDec(iSK; %72, iCT, 272).
We have the same inner product values in both hybrids, which can be shown computationally indis-
tinguishable, similar to the proof of Lemma 2.

Hybrid Hs ;3: In this hybrid, we replace o with ¢ < Z,,.

(0) (1) . . ~ ~ (0) ~ = (1)
OKGxO(yf’r€7y€,priv’y2,priv’IYe) . kl,i,fe . (Tei+ 5r@,i’y€,i,priv’ajré7i’ Cry; ’yf,i,priv) :

Claim 1 Hybrid Hj ;o and Hybrid Hs ;3 are computationally indistinguishable if DDH assumption
holds over the group Gs.

Proof. Given an adversary A that can distinguish between the hybrids, we construct an adversary B
that breaks the DDH assumption.

Let B receives a DDH instances (Ga, [f]2, [g]2, [Fe]2) where

fg if b =0
h1Z, ifb=1.

For the secret key vector kg ;f of Hybrid Hs ;o, B implicitly sets a; = f, 0 = g and simulates the
secret key component using the oracle Okg g as follows:

0 1 . ~ ~1 0 ~ ~7 1
OKG,O(Y/»,1‘1%7}’§7;,;\,,y1(z73riv,]y[)f keife: (mei(i, 1), Yeur Seq, Teit+ 0Ty, }’27;),,,,“,-, TTeis heTy YEJ,?Z-)‘F,,;\,)-

We know that
(G2, [fl2, [g]2: [fal2) =c (Ga, [f2, [g]2. [P]2)

by the DDH assumption. If b = 0,hy = fg, then the adversarial view is the same as H3 ;. When
b =1, hp is uniformly chosen from the group G2 and hence the adversarial view is similar to Hs ; 3.
Therefore, we have Hs ;2 ~. Hs ;3 by the DDH assumption. g

26

Hybrid Hs ;4: This hybrid is the same as Hybrid Hs ; 3 except the following changes.

0 1 ~ 1
OKG,O(yZa I'g,y; grlv7 yé gnw IYe) : ké,i,fe : (’I"z i+ 67"@ IE yZ 1) priv? TZ (e TZ [7}’2 z)pnv) ’

OE,O({XE'B)a Z;B)a g,pr.v}ﬁe{o 1) Cige: (335 27 §°) 07X§0,3r.\,7 aj, ¢,0).
Note that for all key queries £ € [Qy], we have
iDec(iSK} 2, iCT!29:)
= [ye. zx§ 2 + (s¢i 2 ;% + <y§°;,,v, XEOFZ”Q + Friaj + 7y)7
= iDec(iSKy 37, iCTH 2o,
In case of ¢ € [Q.], t < j and ¢ € [Q4],
iDec(iSKj 37, iCT, 39*)
= [yl + (50 2,3) + (Vs Xi i) Tt + 077 0u]r
= |Dec(|SK€j”'4, |CT|:$‘J"4).
For all © € [Q.], ¢ > 7 and £ € [Qy], we also have,

iDec(iSK; 7 iCT}27)
Hyl zxf z) + <sé7i’ ZEOz)> + <yg03nv’ Xg?p)riv> + Fe;iab + 6F2,iab]]T

= iDec(iSKyy*, iCT,).
The indistinguishability follows from the security of the underlying M.

Hybrid Hj ;5 : We modify the vector c; ;. in this hybrid as follows.

0 0 0 =
OE,O({Xgﬁ)?zgﬁ) EBP)HV}QE{O 1}) Cjife * (.51)’ Z§')7 07 X;,griv’ Qj, aj + 6aj , 0))

where oj,0 < Zp. The hybrids Hs ;4 and Hs ;5 are statistically indistinguishable as the distributions
of {c:c+ Zy} and {&; + doj : @j,0 < Z,} are statistically close.

Hybrid Hs ;¢: We modify the queries as below.

1 ~ ~1 0 ~ ~ 1
OKG,O(Yg, Ty, y§ grlw yg grlv’ I)’e) : k€7i;fe : (Tt + 57"2) yé z) priv’ 7t + (57’277: ’TZ A yg 1) priv) ?

0 0 0 ~
OE70({X§‘B)’Z;‘B)’Xj,priv}BE{O,l}): Cjife - (l‘; 7,)’ 5) 0x S;zrlw Qj, | O ;0) :

Note that for all key queries £ € [Qy], we have
iDec(iSK} 3%, iCTH27%)

= [ye,i\? + (50,6250) + (¥t X\ oy} + T 05 + 07 vy + 7 85]

= iDec(iSK;37°, iCTH 270,

27

In case of ¢ € [Q.], t < j and ¢ € [Q4],
iDec(iSK} %®, iCTHE)
= Lyl + (00 0)) + (9 g Xy T + 07 seu e
|Dec(|SK£ 8:9:6 |CTH3 799,
For all ¢ € [Q.], ¢ > 7 and £ € [Qy], we also have,
|Dec(|SKZf] ’ |CTH3 7%
= Lyl + (50623 + (Vs Xein) Tt + 077 00]r
= iDec(iSK; %7, iCT, 27°).
The indistinguishability follows from the security of the underlying MNg;p.

Hybrid Hj; ;7: This hybrid is the same as Hybrid Hs ;¢ except the following changes.

1 1
OKG,O (y€7 re, yg gr|v7 yE gnw Iyi) : ké,i,fe : (7‘4 2] yé 7.) priv’ 0 TZ 29 yé z) pnv))

0 ~
OE,O({X‘gﬂ)vZ;ﬂ)v §Bp)nv}ﬁ€{0 1}) Cjife * ($§71)7Z‘§‘)7 a5 7x§ gm,? 0 7aj70) .

For the j-th ciphertext query and key queries ¢ € [Q], we have

iDec(iSK} 37, iCTH27)

= [[yf ngoz) + <SZ 2 501,)> + <y20;zr|v7 X§03r|v> + ;Z R + 5;:2 iaj + FZzaNJ]]T
0 0

Hyé ’L:E() + <S£ Z’ S 1)> + Teyiaj + <Y§ ;3r|v7 Xg gr|v> + T.Z zaj]]T

= |Dec(|SKf’t°L?'J*7, |CT:§’J'=7),
In case of ¢ € [Q.], ¢t < j and £ € [Qy],
|Dec(|SK;'j 19,6 CTH3 70)
= [[W,ixf,li) + <S€,iaZE,1i)> + <y21|3r|v7xglp)nv> + 1o]
= iDec(iSK; 47, iCT, 277).
For all « € [Qc], ¢ > j and £ € [@y], we also have,
iDec(iSK} 37, iCTH27)
= loe ZCEE Z) + (st 2 El)> + <y§0[2rIV’XE?p)riv> +reio]r
|Dec(|SK£3 9.7 CTH3 iy,

The indistinguishability follows from the security of the underlying M.

Hybrid Hz ;s: We modify the key vectors for the cases where Iy, ¢ [m] as follows. We denote it as case
(I) where 7 ; < Zj,.

1 0 = 1
OKG,O (yb Ty, Y§ gnw y% 3r.va Iyé> ki,i,fe(l |) : (Te,is yzimiw 0, T’Z’i) Yé 1) priv)

28

We use the following lemma to prove the indistinguishability between the hybrid Hybrid Hs ;7 and
HybI‘ld H3J‘7g7

Claim 2 Hybrid Hs ;7 and Hybrid H3 ; s are computationally indistinguishable if Lemma 1 holds over
groups G; and Gs.

Proof. From Lemma 1 over the vectors kg ; (1), keife(ll) and c;; e, Hs ;7 and Hs ;s are computa-
tionally close. O

Hybrid Hj ;9: This hybrid is the same as Hybrid Hs ;g except the following changes. Note that, the
kyife(l) and kg ; e (1) represent the secret keys corresponding to Iy, C [m] and Iy, € [m], respectively.

OKG,O(}%féaYE?griwa,lgriwIye) ©okeige(h) s (Wﬂ’yg)i),priwov i — &5,iYe,i ’yé,li),priv)
@KG,O(}%féaYE?griwyg,lgriwlye) bokeage(ll) s (W,ivyg?i),privvov F@,z‘ — &jiYe,i 7yé,1i),priv)
OE,O({XEB)aZgﬂ)»xg-@riv}ﬁe{&l})1 Cite: (23 + &0 ,Z§-°),aj,x§f’3,iv,0ﬂj,0) s
where §;; < Zy. For Iy, C [m], £ € [Qy], we have
iDec(iSKy 7% iCTH27)
= [yeiy) + (sei2f)) + reic + (Vs X o) + 72,51

0 ~ 0 0 0 —~ ~
= [yeiz®) + yei€i.id; + (80, 200) + reay + <y§,3m, X;-,gm + 70,05 — &,iYe,i 0T

= iDeC(iSKZ?M’ iCTH31J\9)

jié
and when Iy, Z [m],

iDec(iSK'Zj’j'S, iCT 398)

gt
0 0 0 0 o~
= [[yeﬂfgf + (e, Z§,3> + ety + <y§,3rivvx§,3rav> + 7 05]T

0 ~ 0 0 0) —~ ~
[[yw%‘;,i) + Ye,i&5,i0 + (Se,i Z§',i)> +reia; + <Y§,3raw X§,3r1v> + 705 — &,iY0,i0] T

= iDec(iSK; 37", iCTH 207,

For queries ¢ € [Q.], ¢ < j and ¢ € [Qk],

iDec(iSK,' %7, iCT,'25)
= [ues,) + (8002, + (Vv Xilp) + g0l

= iDec(iSKz‘:‘j'Q, iCT':?*JVg)_
For all v € [Qcl, ¢ > j and £ € [Qy], we also have,
iDec(iSK} %%, iCT)
= [yeiz) + (304, 27) + (¥ iy X mi) + Peiculr

= iDec(iSK;37°,iCT, 272,

The indistinguishability follows from the security of the underlying g, scheme.

29

Hybrid Hs ;10: In this hybrid, we modify the vectors ky; . for all £ € [Qr] where n; < Zy* and x;,; =

(x (0) (0) Y—(x (1) (1))

G.oriv>Y 4, priv Gopriv>Y 4, priv

)

a;
1 0 ~7 1
OKG,O(YZ7 Te, yé 3rlv7 yé grlv’ IYZ) : kf,i’er) : (Te,i y;,i),priw 07 Té,i _ fj,iyé,i — <n]7 Sé,i> + X 7yg,i),priv))
1 0 =
Okeo(YerTe, ¥y, 3,.V,y§ g,.v,Iyg) s keige(I) 0 (re,i,yéj,priv, 0, Tp; — &5iYei — (Mj,800) + Xjsi Vo
8 8 8 . 0) 0 ~ ~ 1
OE7O({X§)7 5) g p)rlv}5€{0 1}) Cjjife * ((+ g] Za]’ 5) + leaj) Qg 0" 70’ Qj, X;',griv

In cases where I, C [m], we have

ec (.SK'};’ S0 CTH)
() (0) (0) A -

IIyl Lxg 7 + Ye, L§J la] <Sé7 7,0 > + Te,i 0 + <y€ ,priv’? Xj pr|v> + 7‘(7105] g]vlyéﬂaj]]T

= [, zxj) b yeibady + (80,2)> + (80,1, M;05) + o0 + T .05 — &y

1 1
- aj <,’7]7 Se>i> + Xj”iaj + <yé gnw X§ grlv”]T

= iDec(iSK; 371, iCTH271).
The non-permissive case follows the same. When I, Z [m],

iDec(iSKZgﬂ'»g, iCTJHj*“’)

((0) (0)

_ ~ ~
Tei0 + Y ¢, priv> X],prlv> + TpiCj — gj:iyl,iaj]]'f

0 _
= [[yz,ix;,ﬁ + Ye,i&5,i0 + (Se,i J Z>
0 _

= [[yé,ix;yi) + Ye,i§5,i0 + (Se,i, J
(

|
+ <SZ z7n7a3> + 7y Ko7 +Tg Zaj gj,iyf,i&j
)

1

- aj <nj’ Se7i> + Xj;iaj + <y2 ,priv? j,pr|v>]]T

= iDec(iSK; 371, iCT 2710,
For ¢ € [Q.], ¢« < j and /¢ € [Qg], we have
iDec(iSKy 27 iCT}27")

[[yé zxf 1) -+ <SE ir %L El)> + <yé1,3rlva XE,lp)riv> + rf,iaL]]T
= |Dec(|SK?3,J,1o, ICTE?MO).
Forall ¢ € [Qc], ¢ > j and £ € [@4], we also have,
iDec(iSK; 37, iCT}"%7?)
[[y[ZxE Z) + <S€ % E 1)> + <yg03rlva XE?p)riv> + ’I"ZyiOZL]]T
= IDeC(ISK'Z?J,m, ICT':?J'JO).

The indistinguishability follows from the security of the underlying s, scheme.

Hybrid Hs ;11: This hybrid is the same as the previous hybrid except the following changes where é@w E;,i —

~ M __(0) 2D, (O
;L) ! —x
Ly, Zielw Ry ; =0, and set §;; = it i %0 and n; = 77] I M

Oé

30

0 1 0 > 1
OKG,O(yb Iy, Y§ [.Zrlv’ yé gnvv Iyg) : kf,i,fe(l) : (Te,i7y§,i)7priva 07 Rz,i - gj,il/é,i - <n/j7 Sg,i> aY,g7i)7priv))

1 —/ 1
Oke.0(YerTe, ¥} 3r.V7Y§ Q,N,Iye) s keie(l) s (reay) l)pm,ao Ry —&iyei — (' 5804) ,YE,i)ypriv)

1 ~ 1 ~ n ~ 1
Oeo({x\, 2" <) Vocony) cire (@l +€La;, 27 +n0';a; a;,0m,0,6,,x 0)

We know that

() (0) 2l = al) 1)
i T8t =) + (& + %)aj =, +&0;
J
® 0
0 zZ. 7 — 7 _
”+m%—z()+(nj+7j = I)a,; = ()+n Q5
J

Tpi — §jiYei — <nja Se.i) + Xji
20 x(O) 1 _ O ((0) (0)) —((1) (1))

z z X5 orivy Y Y
— (¢]7 _ /'_|_ J _ J Sp.) + J,priv jlpr|v~ 4,priv? & j,i,priv
2,3 (5],2 aj)yéz <77] a, s Z,z> &,
(0) (1) (0) (1) (0) (0) (1) (1)
=70 — & avei — (' j,804) + (@50 =)yei + (2" — 2 ’SU>~+ (X5 privs ¥ jispriv) — (X privs ¥ i, priv)
Qj

- AYRY

= ré,i - fg,iyé,i - <"7,j75£,i> + =
Qj

N E;,i - f;',iyéi - <77,j7 Se,i)
0 0 1 0 0 1 1
Where A[NI (§z) g)yé i + <Z_§) - Z§<)’ S€71> + <X§ p)rlv’ Y§ 1,) pr|v> <X§ p)r|v7 yg z)prlv> AS ZiEIye A@,j,i =
0 [1 0 0 1 1
<X§') ()’ YZ> +Zz€] < O ()7 Sf,i> +Zielw (<y2 z) priv’ Xg gr|v> <y2 z) priv’ X§ gr|v>) = 0 from the se-
curity deﬁmtlon, we have ANy jif &j + 77 ; statistically close to Ré,i' Similarly,

i = &jayei — (Mjisei) + Xgi s Ry — &avei — ('j,804)-

This is a statistical modification.

Hybrid Hj ;12: In this hybrid, we modify the following vectors,

1 0 D 1
OKG’O(yf’ T¢, yé ;3r|v7 yé gnw IY() : kf’i’fe(l) : (Te,i yzi),privﬂ 07 Rz,i — £j7iyZ,i 7y2,i),priv) ’
1 0 -/ 1
OKG70(y€7 Ty, Y§ pznv’ yg grlw IYtz) : kfﬂlvfe(”) o Te,is yéi{priv’ 0, Rl,i — &jiYei ’ygﬂ‘),priv)
1 1 ~ 1
OE,O({XE,B), 5,8) ;ﬁp)nv}ﬂE{O 1}) Cjife (57) + 5_7 i Z§') y Qs OnQa 07 Qj, Xg’,griv)

For Iy, C [m] and £ € [Q], we have

iDec(iSKj 2712, iCT %912)

= [yea’?) +yei€) 85 + (sei,250) + (S0, M}85) + regas + Ry a5 — € iyeidis

~ 1
-Gy <77]’ Sf,i> + <y§ gnw X, pr|v>]]T
_ (1) Ny e s R — £ G (1) (1)
= [yeiz;; +yei€; Qs + (sei,25,7) + ooy + Ry 05 — §ayeacj + X; oriv) T

Ye ,priv? g, priv
—iD -SKH3,j,13 -CTHs,J,ls
= iDec(i 0 CT).

31

The non-permissive case follows the same. When I, Z [m],
iDec(iSK 2712, iCT4012)
1 ~ 1 ~ =~ ~
= [[yul’gl) + ye,i§§,¢aj + (se4, z§,2> + (s¢,i, 71;'043'> +reiag + By 0 — &G iy

~ 1 1
— Q5 <773a Sé,i> + <Y§’griva X;,grivﬂ]T

1 B) L) 1 1
[[?/e,ﬂgvi) + ye,i&j 05 + (se,i z§.ﬂ.)> +reiaj + Ry o — &G ayeia + <Yé,griv’ X;,,zrivﬂ]:r
= iDec(iSK}2 o1, iCTha2),

For v € [Q], ¢ < j and ¢ € [Qy], we have

. -cwHs.j,12 - Hs. j,12
iDec(iSK, 37**,iCT, 77™)

= Hyf,le,lz) + <S€’i7ZE,1i)> + <y§,1griv7xf,1p)riv> + rf,iaL]]T

= iDec(iSKZi{mls, iCTEjJ\lB)
For all « € [Q], ¢+ > j and £ € [Qy], we also have,

iDec(iS|»('£'7fl§,a:127 iCTBf‘j”)

) [[yl’ixf?i) N <Se,¢,zf?i)> + <y§?l3fiv’xf?p)riv> +reion]r

T

The indistinguishability follows from the security of the underlying g, scheme.

Hybrid Hs ;13: This hybrid is the same as Hybrid Hs ;12 except the following changes.

0 1 0 > 1
OKG,O(yZarévyégrivvyzgriva[)'g) : ke,i,fe(l) : (T@,i’ygﬂj),privaoa RZ’Z‘ 7y§,i),priv))

0 1 . _/ 1
OKG,O(ye,re,y;’griwyg’griwlyl) : k@,i,fb(”) : (T@,ivyé,i),privvoa Rl,i 7yzi)’priv))
1 1 " 1
OE7O({X§B)’ Z;m’xgvﬂp)“v}ﬁe{oal}) foCige ¢ (33§’,i) ,ZE) a;,0",0, aj,xﬁ,ﬁrav) -
When Iyz < [m]7 we have
iDec(iSK} %12, iCT!212)
- [[ye,ix;li) + Yea&;i05 + (Se., z§-,”> +reiag + Ry 05 — &ayeid; + <Yz(e,1;3rivv Xg',lgrivﬂ]T
1 1 0) 1
N [[yf,il';i) + (s z§ﬂ?> + reiaj + Ry o + <Y§,griv, X§',;3riv>]]T
= iDeC(iSK;‘j’j’lS’ ICT:L;.JB)
The non-permissive case also follows similarly. For Iy, Z [m],
iDeC(iSKZ?.J’J?’ ICT?j]m)
1 N) L) l 1
B [[y“xg’i) a0 + (sei, zg,i)> +reiaj+ Ry o — &G ayeia + <y§,3rav, X;‘,griv”]T

1 1 -/ —~ 1 1
lyeict’) + (s06,287) + resy + By a5 + (yV o, x\0)

= iDec(iSK; 471 iCT 2719,

Jst

32

For v € [Q], ¢ < j and ¢ € [Qy], we have

iDec(iSKj 3712 iCT}#1%)

IIyZ zxf z) + <Sé7i’ Z511)> + <yg [2HV’ Xglp)rlv> + re;iab]]T

= |Dec(|SK£jwj,13’ iCTE?MS)'
For all » € [Qc], ¢ > j and £ € [Qx], we also have,

iDec(iSKj 3712 iCT}#1%)
IIyZ fo 1) <Sg i, 2 1(7)> + <y§0|2nv7 Xfop)nv> + rziiaL]]T

— iDec(iSK}9, iCTH241%),

The indistinguishability follows from the security of the underlying Mg, scheme.

Hybrid Hsj ;14: Except for the following changes, this hybrid is the same as Hybrid Hs j 13.

1 = 1
OKG,O(YZ,I'Z,Yé 3r.\,7}’§ gr.v,fy[)i kpige: (7”22,y§ Z)pm,,U Ry, 7}’§,i),pri\,)

1 1 n ~ 1
OEO({ (B)7 ;B)ﬂ jpnv}ﬁe{o 1}) C]'ai’fe: (() ()7 j’O Q,O,Olj,X(-)) .

J i J 7, priv
Claim 3 Hybrid Hs ;13 and Hybrid Hs ;14 are computationally indistinguishable if Lemma 1 holds

over groups G; and Gs.

Proof. From Lemma 1 over the vectors k¢ ; fe(l), ke fe(Il) and c;; fe, Hs ;13 and Hs ;14 are computa-
tionally close. O

Hybrid Hj ;15: We set the value rp; = JN%M + 5E21 and modify the rest of the vectors as follows.

OKG,O (yZa ry, Y,é gn\,) yé gn\,? Iy;) : kf,i,fe : (E@ 7 aF 5§2 i ;y(o‘) H E@ [+ 6&2’1 7R27ia y(l) i))

£,1,priv? £,1,priv
OEO({X(‘[B) () (/3)
’ J

2 X Yactony) t e (2200, 0m L)

]z’] ,CYJ,OZJ,ij”V
For all ¢ € [Qy] have

iDec(iSKj 371, iCT!2711)

= e + (s ;2> 72,005 R 5+ (3 i X i) I
[[yf zxglz) + <SZ inZ j i > + Re 40 + 5RZ i + RZ 1aJ <y§1|3nv’ X;13r|v>]]T

= iDec(iSK; 471 iCT 277,

For v € [Q.], ¢ < j and ¢ € [Qy], we have

iDec(iSKZj,j,m’ iCTH?’JXM)
= [[yé,il'fli) + (80, 2 E}) + (yglgnvjx(’lp)ﬁv> + sl
IIyZ fo 1) M <SE ks El)> + <y§1[2r|v7 W > + RZ i, + 5RE ’LaLH

X, ,priv
= iDec(iSK;37 iCT 7%,

33

For all ¢ € [Q.], ¢ > j and £ € [Qy], we also have,

iDec(iSK;'j’J‘,m7 iCTH?’JKM)
— Tese® + (500,29} + (50 xOh) + resnlr

= [yeia') + (s04,2) + <y1(;0,3r.va fognv> + Reso, + 0By ,00]r
= |Dec(|SK'Z;,J,157 |CT|:Z"J"15).

The indistinguishability follows from the security of the underlying Mg, scheme.

Hybrid Hj ;16: This hybrid is the same as Hybrid Hs ;15 except the following changes.

1 53 D 0 D 1
OKG O(yé’ Ty, yé grlw yg gnv’ Iyi) : ké7i;fe : (Ré % + 5R2 (2l yg,i),priv7 Re % R((2l yg z) priv))

1 1 n 1
OEO({X ’ 35)7 jprIV}Be{O 1}) Cjife : (51)7 5) 0 0") Qs a] +5a]) gp)riv) .

For all key queries £ € [Qg], we have

iDec(iSKj 2 71%, iCT %91%)
= [yeia') + (sei,2')) + Rejay + Ry 00y + Ry a5 + (y0) i XS0)
= iDec(iSK}2 7%, iCT 010).
For ¢ € [Q.], ¢+ < j and ¢ € [Qy], we have
iDec(iSKy 37%iCT} 2717
[[yl zxf z) <Sg “ Elz)> + <yglgr|v’ Elgr|v> + Rl it + 5RZ 1aL]]
= |Dec(|SK£j’J'167 |CTLH§"J"16).
For all ¢ € [Q.], ¢ > 7 and £ € [Qy], we also have,
iDec(iSKy 7% iCT}#71°)
= [[yz,szi) + <S€ 2 EO’L)> + <y2013r|v’ Eop)rlv> + R@ i + 5R€ zabﬂ
= iDec(iSK}2 7, iCT 7).

Thus, the hybrids are computationally indistinguishable by the security of the [Ngp.

Hybrid Hs ;17: We set ¢ = &; + da; as the distributions {c: ¢ <+ Z,} and {&; + da; : o, 8, o < Z,} are
statistically close. Thus, this modification is a statistical change.

¢! n 1
OE,O({X;B),Z;B),Xgﬁ,),iv}ﬁe{o,l})3 Cjife: (52, g) ,0,0", i, ¢ ,xg._’griv) .

Hybrid Hj ; 15: This hybrid is the same as Hybrid Hs ;17 except the following changes.

0 1 ~ 1
OKG,O(yév Ty, yé griv’ yg griw I)’e) : kzii7fe : (Re i + 5RZ 27y2 z)pr|v7 OZij’i) CR% i 7yg ’L) priv) ’

OE,O({X§'ﬁ)7 §ﬁ) G Yscrony): s (22 0,0m 1, 1 xM)

)]prlv 7507 j 7,priv

34

For all key queries ¢ € [Qy], we have

iDec(iSKj 717, iCT %917)
= [[ye iﬂf;li) + <se isZ §»1i)> + Ez i+ E;lc + <y§12 priv? Xglg,,vﬂ]:r
|Dec(|SK€ s |CTH3 718,
For v € [Q], ¢ < j and ¢ € [Qy], we have
iDec(iSKy 717, iCT}#717)
= [yeinl) + (500, 20)) + (Vs X i) + B+ 0R) 0]

= iDec(iSK}2 7 iCT 7).
For all © € [Q.], t > 7 and £ € [Qy], we also have,
iDec(iSKy 717, iCT}#717)
= Ly + (00050) + s Xipn) + Bejer +0R; o]

£,priv? X, ,priv

|Dec(|SK£3 918 |CTH3 718y,
The indistinguishability follows from the security of the underlying scheme [lgp.

Hybrid Hj ;19: This hybrid is the same as Hybrid Hs ;15 except the following changes.

1 o o 0 s D 1
OKG,O(YE? ry, yg gnw Y§ gnvv I}'g) : kf,i,fe : (R@ i + 6R2 i Y§ 7,) priv? OZJRZ [5a]R2’z 7y§,i),priv) 5

OE,O({XE‘B) @ X\ }ﬁe{o 1}) Cjife: (@ (1)) ,0,0™,1,1 xM) .

9] I]prlv]z’] L]pnv

We can show that Hybrid Hj ;15 and Hybrid Hs ;19 are computationally indistinguishable through a
DDH reduction similar to the proof of Claim 1.

Hybrid Hs j20: This hybrid is the same as Hybrid Hs ;19 except the following changes.

OKQo(yZ? T, Y§ p)rlv’ yglrzrlw IYZ) : ké,i,fe : (Ee it 5}’%2) ygoi) priv? E@ i+ 5E2 Y 0 7yé,1i),priv) ’

¢! n 1
Oeo({x{?, 2\, gﬁp)nv}ﬁe{o W e (23,2007 ay 07X§ 3r.v) :

For all key queries £ € [Qy], we have

iDec(iSK} 37, iCT’,*s,uww)
1 1 1
= [[yf,ix;7i) + <Sz 2] i > + Rf 0+ Rl l(saj <yé Z) priv? Xg gr|v>]]T

= iDec(iSKZ?J,QO’ ICT:?,1,2O)'
For ¢ € [Q.], ¢t < 7 and £ € [Qy], we have
iDeC(iSKH?"j*lg’ iCTH‘o_‘,j,lg)
IIyZ le 1) + <SE iy 511)> + <y§1|3r|v? Elgr|v> + RZ i, + 5R£ zOZLH

Hs, j,20 Hs j 20
= iDec(iSK, 77, iCT 37*").

35

For all ¢ € [Q.], ¢ > j and £ € [Qy], we also have,

iDec(iSK, 37 iCT} 2717
[[yl sz z) + <sZ “ Eoz)> + <yé0;3nv’ Eop)r|v> + RZ it + 5RZ 10‘L]]
= |Dec(|SKZ§’J’2“7 |CT3§'j’2°).
The hybrids Hybrid Hs ;19 and Hybrid Hs ; 20 are indistinguishable from the security of the underlying
Msip scheme.

Hybrid Hs j21: This hybrid is the same as Hybrid Hs ;20 except the following changes.

0 = = 0 = = 1
Oka O(ylv Ty, Y§ gnva YE gr.vv Iye) : kl,i,fe : (Rf it 6R2,i7 yé,z’{privv RE i+ 5R2,i7 0, Yg7i),priv) 5

1 1 n 1
({X(ﬂ)7 _gﬂ)7 gﬁp)nv}ﬁe{o 1}) cj,i,fe: (§1)7Z§)3 a] 70 2 0 07X‘§ gnv) N

For all key queries ¢ € [Qy], we have
iDec(iSKj 272, iCT %920)

= [yeiytd + (e 203) + R + By 00 + (343 s X5) I

= iDec(iSK; 372! iCT 4021),
We can show the indistinguishabilty between Hybrid Hs ;20 and Hybrid Hs ;21 through a reduction to
the security of the underlying scheme [gp.
It holds that Hs j o1 ~, Hybrid Hs; as Ry, E;l can be replaced by 77,7 ;, respectively . This is a
statistical change as R, ; and 7 ; are statistically close as), I, Rpi=3 ¢ I, 7¢; = 0. Similarly, the

distributions ﬁgl and 77 ; are also statistically close.

This completes the proof of Lemma 4. O
Lemma 6 Hybrid 4 and Hybrid 5 are computationally indistinguishable if the underlying scheme [gp, is

function-hiding.

The security follows from the fact that for all ciphertext queries x € [Q.] and key queries £ € [Qg], we have

iDec(iSK; Y™ 4 iCT 3P %)

= lyesil) - (st 2,0]) + Traon + 07305 + (¥ i o) I

= iDec(iSK; Y™ 2 iCT, P4 %),
The reduction follows the same approach as proof of Lemma 2 on indistinguishability between Hybrid 1 and
Hybrid 2.
Lemma 7 Hybrid 5 and Hybrid 6 are computationally indistinguishable if the underlying scheme [, is
function-hiding.

The security follows from the security of [N, scheme. For all ciphertext queries k € [Q.] and key queries
¢ € [Qy], we have

iDec(iSKHYbrid 57 iCTI:?;brid 5)
1 ~ .)

[ve, m() 4 (sei, zf/bj) + Frian + 0T ;o + <y§ grlv’X£ ;HVH]T

= IDec(|SK?j’brid 6’ iCTE’)Z{brid 6)

The reduction is similar to the proof of Lemma 2.

36

Lemma 8 Hybrid 6 and Hybrid 7 are statistically indistinguishable.

Proof. The distributions

{rei < Zyp Z rei =0} and {7y; + 07 : Z (7. +07p,;) =0, Z Tok = Z 7y, =0}

i€ly, i€ly, i€ly, i€ly,

o aq S s S ; .

are statistically close as Ziel” Te + (57““ =0 and {7, 'I"&,L-}le[yz ,0 are uniformly chosen over Z,, satisfying
~ ~

Zielye Tei = Zielyé 7y = 0. O

Lemma 9 Hybrid 7 and Hybrid 8 are computationally indistinguishable if the underlying scheme Mg, is
function-hiding.

Proof. We prove the lemma through a reduction to the underlying IPFE scheme [g, similar to the proof
of Lemma 2. For all x € [Q.], ¢ € [Qk], we have

. . Hybrid 7 . Hybrid 7
iDec(iSK,; JCTY)

1 1 1 1
= [yeixl) + (860, 200) + rricu + (¥ i X I

. . Hybrid 8 . Hybrid 8
= iDec(iSK, ; JCT,S)-

Thus, by Lemma 2 to Lemma 9, we show that Exptfiisd_FH_,ND()\, 0) and ExptfjiseLFH_,ND(/\, 1) are compu-
tationally indistinguishable and our [l scheme achieves sel-FH-IND security as per Definition 12. O
This completes the proof of Theorem 6. (]

5 Attribute-Based Slotted UIPFE

In this section, we define the notion of attribute-based slotted unbounded IPFE (AB-sUIPFE) with the slot-
specification & = Spub X Spriv, Where Spup, = Z;; and Spriy = Z;}Z’ represent the elements in the public and private
slots, respectively. The attribute-set space is denoted as A7 T, and the access policy space is represented by
P. Let G = (p,G1,Ga,Gr, g1, g2, €) be a pairing group (see Definition 1) of prime order p.

Definition 13 An AB-sUIPFE scheme M, = (Setup,KeyGen, Enc,SlotEnc, Dec), defined over the slot-
specification S = Spyp X Spriv, consists of the following five algorithms:

Setu p(l)‘7 1"2) — (MPK, MSK): The setup algorithm takes as input the security parameter A, and the length
ngy of the Spriy part. It outputs the master public key MPK and the master secret key MSK.

KeyGen(MSK, [(y, ¥ priv)]2; Iy, A) — SK: The key generation algorithm takes as input MSK, the slot vector
(Y,ypri\,) € S in the exponent of the group Go with the associated index set I, of y and an access
structure A € P. It outputs a secret key SK.

Enc(MSK, [(x, Xpriv)]1,S) — CT: The encryption algorithm takes as input MSK, the slot vector (x, Xpriv) € S
in the exponent of the group Gy, where x € Z* (of arbitrary length) and an attribute set S € ATT.
It outputs the ciphertext CT.

SlotEnc(MPK, [x]1,S) — CT: The slot encryption algorithm takes as input MPK; the public slot vector
X € Spub in the exponent of the group Gy, where x € Z7 (of arbitrary length) and an attribute set
S € ATT. It outputs the ciphertext CT.

Dec(SK,CT) — [d]r V L: The decryption algorithm takes as input SK, CT and outputs either a decrypted
value [d]r € Gr or a symbol L indicating failure.

37

Correctness: For all A € N, (x,Xpriv), (¥, Ypriv) € S such that x € Z7"y € Z]L[y‘ and Xpriy, ¥ priy € Z? with
A(S) =1 AR(x,y) =1, we require

(MPK, MSK) « Setup(1*,1"2)
Pr | [dlr = [(%,¥)p + (priv: Ypr) 7 = SK ¢ KeyGen(MSK, [(y, Ypi)I2. Iy, A) | > 1 — negl()).
CT «+ Enc(MSK, [(x, Xpriv)]1,S)

Slot-mode correctness: For all x € Sy, the following distributions must be identical:

{(MPK, MSK, CT) : (MPK, MSK) + Setup(1*,172), CT + Enc(MSK, [(x,0")];,5)},
{(MPK, MSK, CT) : (MPK, MSK) + Setup(1*,1"2), CT + SlotEnc(MPK, [x]1,S)} .

Definition 14 (Security of AB-sUIPFE) The [, = (Setup, KeyGen, Enc, SlotEnc, Dec) scheme is said
to be xx-function-hiding-indistinguishability (xx-FH-IND)-based secure for xx € {sel, adp} if for any security
parameter A, any PPT adversary A, there exists a negligible function negl(-) such that the following holds

Ade sox-FHAND (A) = ‘Pr [Expt?ji,xx-FH-lND()‘vo) = 1} —Pr {Exptfzi,xx-FH-lND(Aa 1) = 1} ‘ < negl(})

where the experiment Exptfji’xx_FH_lND()\, B) is defined for 8 € {0,1} as follows:

EXpthixx-FH-IND(A7B) : OKG,ﬁ(}%ﬁ 3r.v,>’§1gr.v,1yw&) :

1: g+ A(1Y). output KeyGen(MSK, [(y,, y\°))2, Iy, A).
2: (MPK, MSK) — Setup(l)‘, 1”2), (B) 4 IZ pnv Ye

3. B« AOKG,ﬂ(-),OE,ﬁ(')(MPK)' Og,s({xx npnv}ﬁe{o 1}75)

4 output 5 output Enc(MSK; [[(x,.ﬂ),x£7priv)]]1,sﬁ)

Here, (y,, yg gnv, yglgnv, Iy,, A) denotes the (-th secret key query and (X,.6 ,X

(0)| (1)| _

(8)

K,priv?

Sk)sefo,1} denotes the
k~th encryption queries where |x |x my (say). Let Qg, Q. be the numbers of queries to Okg g(+)

and Ok g(-) oracles respectively. Then for all ¢ € [Qx],k € [Q.] with R(x,(go),ye) = R(x,({l),yg) = 1, and
A(S,) = 1, it must holds that

0
[, vy + x y i Mz =[x,y + (x0T

— If xx = sel: Queries to Og g(-) must be made before any queries to Okg,a(-).
—If xx = adp: Queries to Okg g(-), Og,g(-) can be made in any order.

5.1 Construction

Consider Mg, = (iSetup, iKeyGen, iEnc, iSlotEnc, iDec) be a bounded sIPFE scheme with Sl’J Z3 S = Z4

priv
and [Mesi = (eSetup, eKeyGen, eEnc, eSlotEnc, eDec) be an esUIPFE scheme with S, = Z X Zp, S;l)/rlv =
Zy? X Zg x Zy?. We present an AB-sUIPFE scheme MN,5; = (Setup, KeyGen, Enc, SlotEnc, Dec) With Spub =
Spriv = Zy,? for LSSS access structure. We discuss bounded sIPFE and LSSS access structure in Deﬁnitions

9 and 3 respectively.
Setup(1*,172): The setup algorithms takes as input the security parameter A, private slot length ny and
executes the following steps:

1. Generates (iMPK,iMSK) « iSetup(1*), (eMPK, eMSK) <« eSetup(1*, 1272+3) 1
2. Outputs the master public key MPK = (iMPK, eMPK) and the master secret key MSK = (iMSK, eMSK).

1Helre7 we note that n1 = 1.

38

KeyGen(MSK, [(y, ¥ priv)]2; Iy, A): The key generation algorithm takes as input MSK, the slot vector (y =
(Yi)iery s ypriv) in the exponent power of Go, an access structure A and does the following steps:

1. Samples ag < Z, then use the secret sharing scheme based on A to create the shares (a;) JeList-Att(A)
of ag.
2. Defines the vectors k,p, ; and ke as follows:

ko, =(mi(,1), aj-z 0, 0, 0, 0) Vj € List-Att(A) ,
kfe = (Yy, ag - 2, yprivﬂ Oa 0, 07 0”2)

where 7; < Z,, for all j € List-Att(A) and z + Z,,.
3. Generates iSK,p ; < iKeyGen(iMSK, [Kab,;]2), eSKfe < eKeyGen(eMSK, [k]2, Iy).
4. Outputs the secret key SK = ({iSKab_;}jelist-att(a) €SKre)-

Enc(MSK, [(x,Xpriv)]1,S): The encryption algorithm takes as input MSK, slot vector (x = (2i)ie[m], Xpriv)
in the exponent power of Gi, an attribute set S and performs the following;:

1. Defines the vectors cap ; and cr as follows:

Cab,j = (Jj(lﬂ _j)v P, 0, 0, 0, 0) Vj e S,
Cfe = (X, '(/]a Xprivs 0; 07 O, 0"?)

where 0 < Z, for all j € S and ¢ + Z,.
2. Generates iCT,p ; < iEnc(iMSK, [cap ;]1),eCTse <— eEnc(eMSK, [cre]1)-
3. Outputs the ciphertext CT = ({iCTab; }jes, eCTre).

SlotEnc(MPK, [x]1,S): The slot encryption algorithm takes as input MPK, public slot vector x = (2;);e[m]
in the exponent power of G1, attribute set S and does the following:
1. Defines the vectors c,p ; and cr as follows:

Cab,j = (Uj(17_j)7 1/)) vj € S)
(0

Cfe = (X,

where 0 < Z, for all j € S and ¢ « Z,.
2. Generates iCT,p ; iSlotEnc(iMPK, [cap,;]1), €CTre < eSlotEnc(eMPK, [cre]1).
3. Outputs the ciphertext CT = ({iCTap ;}jes,eCTre).

Dec(SK, CT): The decryption algorithm takes as input SK, CT and proceeds as follows:

1. If there exists A C S and A € A, then compute the reconstruction vector ¢ = (¢;); for the LSSS
corresponding to A. Next, use the decryption algorithms of Mg, and Mesi to compute the following.

[[,Uj]]T — iDec(iSKab,j, iCTabJ) Vj e A and
[W]r = H ¢iluilr, [vlr < eDec(eSK,eCT)
jeA
Finally, it returns [d]z where [d]r = [v]r - ([u]7) " .
2. Otherwise, it returns L.

Correctness: From the correctness of Mg, and Meg;, with R(x,y) = 1 and A(S) =1, using ap = >,

jea iy,
we have

iDec(iSKap, j,iCTab ;) = [za;]r and [¢;[vza;]r = [¢za0lr (1)
€A
eDec(eSKfe, eCTe) = [(x,¥)p + aozz/ze]]T =[(x,y)p + aoz¢]r . (2)

From Equations 1 and 2, we compute [d]r = [(X,¥)]7-

39

Slot-mode Correctness: From the slot-mode correctness of N, we have
eEnc(eMSK, [u|[02"273];) = eSlotEnc(eMPK, [u],)

for all u € Zj, x Zp. Thus, we have slot-mode correctness for M.

5.2 Security Analysis

In Theorem 7, we present the security analysis of our AB-sUIPFE scheme, as described in Construction 5.1.
We use the following masking lemma for the security analysis of our AB-sUIPFE.

Lemma 10 (Modified Masking Lemma) Let A be an LSSS-realizable over a set of attributes Att C Z,.
Let List-Att(A) be the list of attributes appearing in A and |List-Att(A)| = P. Let S C Att be a set of attributes.
For two random integers ag,ay < Z,, we construct the random labelling (aj)jeList_Att(A) — Ao (A) and
(a})jeList-ate(a) < Aay(A). Consider M, = (iSetup, iKeyGen, iEnc, iSlotEnc, iDec) be an bounded sIPFE with
slot-specification S, = 73, S.,;, = Z;, and T = (eSetup, eKeyGen, eEnc, eSlotEnc, eDec) be an esUIPFE

scheme with slot-specification Sy, = Zn X Lp, Sy, = Ly)* % Zg X Zy?. We define the following vectors:

kK = mi(5,1), 0, aj2, 0, 0, B-ajyz/v;) Vj € List-Att(A) ,
(UJ(L _j)7 0) wa 07 0> 6 CTU;T) VJ €S s

k?oot = (0*7 Oa 077,27 apz, 07 6 : af)yzi» 0"2))

choot = (0*7 Oa On27 ¢7 0) B CTX, 02))

where x,y € Z, and 0;,7j,v;,T,¢¥ < Zp. Here, 0 represents an unbounded length vector containing
all zeros. Then for all (IMPK,iMSK) <« iSetup(1?), (eMPK,eMSK) <« eSetup(1*,1%2"2%3) and the DDH
assumption holds in Ga, the distributions {iSK, s} jepist-ae(a), {iCT s }jes, {€SKye },{eCT s } for 8 < {0,1}
J J root root
are computationally indistinguishable where
iSK, 2 = iKeyGen(iMSK, [k7]2) Vj € List-Att(A)
iCT s = iEnc(iMSK, [c/]1) Vies,
J
eSKkiot = eKeyGen(eMSK, [[kf)ot]]g) ,
eCTs = eEnc(eMSK, [c2.]1) -

This modified version of the Masking Lemma is adapted to our setting, originally proposed in [38].

Proof. We present the proof of our modified Masking Lemma 10 using the adversaries of Mg, and Mes
schemes. In the following, we propose several hybrids to show the distributions are computationally indis-
tinguishable.

Hybrid 0: The ciphertext and the secret key components are generated for the challenge bit 5 = 0 using
the following vectors:

kg = (T(j(j) 1)7 07 ajz, Oa
Cj = (Uj(1> _j)7 07 ¢a Ou
k,li)ot :(0*7 07 07127 apz, 07 07 0"))
sz)ot :(0*7 07 07127 1/% 07 07 0712) 9

) Vj € List-Att(A)

0 0
0 0) vjeS,

where iSK s = iKeyGen(iMSK, [[kg@]b);ic—rc‘? = iEnc(iMSK, [[c?]]l);eSKkB . eKeyGen(eMSK, [[ki‘)tk)
and eCT s = eEnc(eMSK, [[Cfiot]]l)-

40

Hybrid 1: Same as Hybrid 0 except that the secret key vector k’ﬁ,ot is modified as follows:

Kioe =(0% 0, 0", (ag+ayb)z, 0, 0, 0"),
chot =(0%, 0, 0", b, 0, 0, 0"),

where ag, 2,b < Z,, and z,y € Z,. Due to choice of ag,b and z uniformly chosen from Z,, Hybrid 0
and Hybrid 1 are statistically indistinguishable.

Hybrid 2: Same as Hybrid 1 except that the secret key vector k? is modified as follows:

k! =(m(1), 0, (aj+aybdj)z, 0, 0, 0) Vje List-Att(A) ,
7= ai(t,=h), 0, ¥, 0, 0, 0) vjes,

where (a;); < Aq(A),(dj); < A1(A),b < Z, and z,y € Z,. The statistical indistinguishability
between the hybrids follows from Claim 4.

C

Claim 4 Let (b;); < Ay (A),(d;); < Ai(A). Then for z,y € Zj,, b + Zp, and ag = by + xyb, the
following holds

D ((aj);,a0) ~s D ((bj + zybd;);, bo + xyb) where (a;); = Aag(A).
Proof. By the linearity property of the linear secret sharing scheme,

(bj +zybd;); = (b); + (xybd;); = (by); + zyb(ds); = (b;); + 2yb(d;);
s Moo (A) + 2ybA1(A) = Apy (A) + Ayyp(A) = Apgtayn(A)
Thus, (b; + zybd;); =5 Apy+zys and from the claim, we know that (a;); <= Aq, (A) and ag = by + zybd.
Thus, then (Aq,(A), a0) = (Apgtays(A), bo + zyb) =4 ((b; + xzybd;);, bo + zyb). O

Hybrid 3: This hybrid is the same as Hybrid 2 except that all the secret key and the ciphertext vectors
are modified as follows:

k! =(m(1), 0, @z, 0, yhdjz, 0) Vje€List-Att(A)

] =(oj(1,-4), 0, w, 0, gz, 0) vjies .

kg)ot = (0*) 07 Onga apz , 0) ybz) 0”2))
cré)ot = (0*5 Oa 0n27 ¢> 0; ¢$) On2) .

The indistinguishability follows from the function-hiding property of the underlying [, and MM
schemes.

Hybrid 4: Same as Hybrid 3 except that all the secret key and the ciphertext vectors are modified as

follows:

K] =(m(.1), 0, vajz, 0, wyybdjz, 0) Vje€ List-Att(A)

CJ@ = (Uj(la _j)a Ov 1 9 Oa z, 0) VJ € S)

klﬁ)ot = (0*7 07 0n27 ¢GOZ 5 03 ’I/beZ) 0"))

Crﬁoot = (0*7 07 0712, 1 ’ 07 Z , 0n2) .
The indistinguishability follows from the function-hiding property of the underlying [g, and MM
schemes.

41

Hybrid 5: Same as Hybrid 4 except that all the secret key vectors are modified as follows:
k! =(m(.1), 0, vajz, 0, hydiz, 0) Vje List-Att(A)
k2. =(0%, 0, 0™, 4agz, 0, hyz, 0),

where h < Z,. The indistinguishability follows from Claim 5.

Claim 5 Hybrid 4 and Hybrid 5 are computationally indistinguishable if the DDH assumption holds
over the group Go.

Proof. Let us assume that the challenger obtains an instance (Ga, [¢]2, [0]2, [us]2) of DDH assumption
over the group G, where
{wb if b =0,
Up =

h+<17Z, ifb=1.
The challenger uses the DDH instance to traverse from Hybrid 4 to Hybrid 5.

Using the instances, the reduction sample 7;, 2z from Z, and generates the secret keys components
k? and k©, as follows:

k' =(m(1), 0, vajz, 0, u ydjz, 0) Vje List-Att(A)
koot =(0% 0, 0", gagz, 0, ugyz 0").
To generate the ciphertext components, the reduction samples o; < Z,, x € Z, and compute
c? =(o;(1,-5), 0, 1, 0, =, 0) VjeSs,
e =(0% 0, 02, 1, 0, z, 0™).
According to the DDH assumption, we have
(Ga, [¥]2, [b]2, [¥b]2) =c (Ga, [1]2, [b]2, [A]2)-

If b =0, ug = [¢b]2, then the adversarial view is the same as Hybrid 4; otherwise for b = 1, uy is
randomly chosen from the group G5 and hence the adversarial view is similar to Hybrid 5. Thus, we
have Hybrid 4 ~, Hybrid 5 via the DDH assumption.]

Hybrid 6: Same as Hybrid 5 except that all the secret key vectors are modified as follows:
K] =(m(1), 0, vajz 0, (h+bpydiz, 0) Vje List-Att(A)
Kot =(0% 0, 0", dapz, 0, (h+bpyz, 0™),

where h = h + by. As h,b and v were uniformly chosen from Z,, it can be concluded that h o« L.
Thus, Hybrid 5 and Hybrid 6 are statistically indistinguishable.

Hybrid 7: Same as Hybrid 6 except that all the secret key and the ciphertext vectors are modified as
follows:

k? (m(1), 0, (a;+=zybd;)z, O, }L\ydjz, 0) Vje List-Att(A) |,
C_f = (O—j(]-,fj)a 07 1/)) 0, €, 0) V] € S)

kf)ot = (0*? 0) 077,2’ (ao + xyb)z) 07 /};yz) 0"))
Cg)ot = (0*7 0) 0n27 ¢) Oa ,'L'7 0n2) .

The indistinguishability follows from the function-hiding property of the underlying [lg, and [Me
schemes.

42

Hybrid 8: Same as Hybrid 7 except that all the secret key and the ciphertext vectors are modified as
follows:

k? =(my1), 0, ajz, 0, agyd;z, 0) Vje List-Att(A) ,
¢ =(os(L,=j), 0, W, 0, &, 0) Vj€s,
k?oot = (O*a 07 071,27 apz , 07 a6yz) 02))

Crﬁoot = (0*7 07 0n27 1/}a 07 T, 0n2) 9

where a; = a; + ocybdjﬁ = a{7 such that af and 7 are uniformly chosen from Z,. The statistical
indistinguishability follows from the uniformly choice of af, and 7 from Z,,.

Hybrid 9: Same as Hybrid 8 except that the ciphertext vector cf is modified as follows:

8
kj
c

(m(,1), 0, ajz, 0, agydjz, 0) Vje List-Att(A) ,
=(o;(1,=4), 0, v, 0, 7Tz, TIV;) Vjes
Koo =(0% 0, 0™, apz, 0, ajyz, 0"),

cerOOt = (0*7 07 0n27 1/}5 07 T Onz) .

(O oY

)

The indistinguishability follows from the function-hiding property of the underlying N, scheme.

Hybrid 10: Same as Hybrid 9 except that all the secret key and the ciphertext vectors are modified as
follows:
k! =(w1, 0, a2, 0, 0, apydjz/v;) V€ List-Att(A) |
cf =(o;(1,-4), 0, v, 0, 7z, TLU;) VjieS,
kK’ . =(0%, 0, 0™, apz, O, apyz, 0™),
C?c)ot = (0*7 Oa 07’7,27 ¢a 0) TI, O’ﬂz) .

The indistinguishability follows from the function-hiding property of the underlying [Ngp, scheme and
Lemma 1.

Hybrid 11: Same as Hybrid 10 except that the secret key vectors k? are modified as follows:

k? =(m@1, 0, ajz, 0, 0, ajyz/v;) Vje List-Att(A) ,
(Uj(17 _j)7 07 1% Oa T, TXV;) v.] €S y

kfbot = (0*7 07 01’7/27 apz, 07 a{)yza 02))

Eoot = (0*7 07 0“2’ ¢a 07 TI, 0n2) ’

where a); = agd;. The statistical indistinguishability follows as (a’); <= A4y (A) and (d;); < Ai(A).
This hybrid is the same as the distribution corresponding to the challenge bit g = 1. O

Theorem 7 Our M,y scheme achieves sel-FH-IND security as per Definition 1 if the underlying schemes
Msip and Mesi are sel-FH-IND secure as per Definitions 10 and 12, respectively.

Proof. We prove Theorem 7 through a sequence of hybrids. We represent the number of encryption and key
generation queries by Q. and Qy, respectively. We briefly provide indistinguishability arguments of security

hybrids in Fig. 3.

Hybrid 0. Same as the experiment Exptfji’sd_FH_,ND()\, 0) where the adversary can query the following oracles.
We represent the slots using dashed boxes, updated in the following hybrids. In the subsequent hybrids,

43

Slot-Corr FH-IND FH-IND FH-IND

Hybrid 0 | — | Hybrid1 |—| Hybrid 2 | —| Hybrid 3 | — | Hybrid 4

of Mgy, Megj of Mgy of N of Meg;

Hy o

FH-IND\L of Msip

FH-IND

R Lemma 10 . Stat R FH-IND . } . Inf theo R
Hypa — Hyn-s — Hyns — Hyna L Hyys > Hyne
of Mgy esi
7 € [Qx] l Identical
FH-IND
Hybrid 6 | €<——| Hybrid 5 | « -+ |Hybrid 4-(u+ 1)-1
f Mesi

Figure 3: Outline of the security games for Theorem 7. Here, ‘Stat’ means statistically, ‘Inf theo’ is a
shorthand for information-theoretically, ‘Slot-Corr’ is a shorthand for slot mode correctness and ‘FH-IND’
is a shorthand for function-hiding indistinguishability security.

we will only refer to the updated slots.

Encryption queries: On receiving the encryption queries of the form ({X(B) X, prlv} Be{0,1}, Sk) with

the attribute set S, € AT T and challenge vectors (x,({),x,(.il)) of length m, with (x g')ariv,xg,riv) of

length ny from the adversary A, the challenger computes the vectors c, b ; for j € S, and vector cy fe
and simulates the ciphertexts as follows:

(> A o) . r- -7 r - - r - -1 .
o 00 o= oyt fia} 153 D0 03 01 wes
Ok o({x”, %! va}ﬂem 1S = (x0Tt i,)o,.v,l rL L L L)

T oy Xapivit) T

where ¥, 0 j < Zyp.

Key Generation queries: On receiving ¢-th functional query with access structure A, and key vec-

tors (y@yéognv,yglgnv) the challenger samples ay o < Zj, generate shares (as ;) eList-Ate(a) < Nago(A)

and computes the vectors kg ,p ; for j € List-Att(A) and kg as follows:

0 1 . r-7 r-1 r-a r. . .
OG0 (Yo Yo Yo Iy)+ ke = (moy(3,1), asy - 2, 101 0] o o]) Vj € List-Att(A) ,
© . _ 0 T oTe o
Ok6,0(Y e Yo prive Y prive Lyes &) kofe = (Yo ago - 2, L)i{pj.vi | 0,010,010, LQ"f v

where z¢, T j < Zp.

Hybrid 1. For all k¥ € [Q] , the vectors ¢ ab,;Vj € S, and ¢, fe are modified as follows.

OE 0({X(ﬂ) Xffr),riv}ﬁe{o 1}75) ¢ Ckab,j - (wfm 0) 0) 0) 0) V.j € SH y
OE 0({X(ﬁ) n pr|v}ﬁ€{0 1}75) . Cli,fe : (/(10)7 ¢m Xf{??)riv’ 0 B 0) 0) 0"2) .

44

The slot-mode correctness of the underlying schemes [N and [Ng, guarantees that Hybrid 0 and Hybrid
1 are identically distributed.

Hybrid 2. The vectors kg ap j, Cx.ab,; are modified for all £ € [Q] and k € [Q.] as follows.

OKG,O(yZ’y‘g’ogrivayg,lgriwlywA): ké,ab,j: (Qp.j2¢ , 07 07 0) vj € LISt_Att(A) 5

Oeo({x?,x) Vse1013:5:) 1 Cabyz (0, e, 0, 0, 0) VjeS, .
Hybrid 3. For all £ € [Qg] and & € [Q.], the vectors kg fe, €y fe are modified as follows.

OKG,O(ybyé?grivﬂyé’lgrivv—[ywA): k[,fe: (yg)griva ag,0 - 2¢ 0, 0, 0"))
OE,O({X;(-cﬁ)aX;(f;riv}BE{O,l}’SK): Cr.fe (Xf(-co)a 0, X(O) Yy, 0, 0, 0").

K,priv?

Hybrid 4. This hybrid is similar to Hybrid 3 except that the vectors ke s for all £ € [Qy] are modified as
follows.

Omo(ye,yﬁ?griv,yé}g,iv,IywA) Cokege yxzm,, ago-ze, 0, 0, yﬁ,lgriv) -
Hybrid 5. For all k € [Q.], we modify the following vectors.
O ({x, %) Y se(01):S0) + Core: (x50, 0, 0", ., 0, 0, x(o).
Hybrid 6. For all £ € [Qg] and k € [Q.], the vectors kg fe, €y fe are modified as follows:

0 1 1 0
OKG,l(ylvy§73rivayg7griv,1ygaA): k[,fe: (yfg;riv’ apo 20, Oa 07 yé,griv) 9

O 1 (xP,xP) N oe011:50) et (xP, 0, xU0 L w0, 0, 0%).

K,priv ?

Now, we can go back to Exptfji’sa_,ND()\, 1) similar to the transformation from Hybrid 0 to Hybrid 4.

Lemma 11 Hybrid 1 and Hybrid 2 are computationally indistinguishable if the underlying scheme Mgy is
function-hiding.

Proof. We prove the above lemma by contradiction. Consider a PPT adversary A that can distinguish
between the hybrids. We can use A to construct B that can break the sel-FH-IND security of Mg,. On
receiving key generation queries and encryption queries from A, B generates the vectors eSK and eCT on
their own as they have access to master secret key eMSK of the e scheme. B computes the rest of the
vectors {iSKy ab,j}jcList-ate(a) for all £ € [Qg] by forwarding to the Mg, challenger. For all £ € [Q4], & € [Q.]
the vectors {iSK¢ap,j}jeList-ate(a) and {iCT, api}ies, when the challenger samples b = 0 are computed as
follows:

iSKSE !« iKeyGen(iMSK, [(e, (j, 1), ag - 2¢.0,0,0,0)]2) = iKeyGen(iMSK, [¥{)]2) and
T ¢« ENC(iMSK, [(0,i (1, =), ¥, 0,0,0,0)]1) = iEnc(iMSK, [X)]).

K,ab,i
In the case of challenger sampling b = 1, the vectors are computed as follows:
iISK;LH! ? iKeyGen(iMSK, [(m,j(5,1), ar - e, a,j - 2¢,0,0,0)]2) = iKeyGen(iMSK, [¥\)]2) and
iCTIVMY 2 < ENC(iMSK, [(0,i(1, —i), 0, ¥, 0,0,0)]1) = iEnc(iMSK, [Z\)]1).

K,ab,i

45

For all queries i € S, j € List-Att(A), we have

. . Hybrid 1 . Hybrid 1
|Dec(|SK“b,j ,|CTH7ab7i)

={mej O+ Tej Oni-—i+ s ar;- 2]r

- . Hybrid 2 . Hybrid 2
= iDec(iSK, 3" “iCT, %p " 7).

Thus, B is an admissible adversary for the security of the [, scheme. Thus, the advantage of A in
distinguishing between Hybrid 1 and Hybrid 2 is the same as the advantage in distinguishing between the
experiments Expt’y . g np (A, 0) and Expt? ernp (A 1) O

Lemma 12 Hybrid 2 and Hybrid 3 are computationally indistinguishable if the underlying scheme Mg is
function-hiding.

Proof. We consider a PPT adversary A that can distinguish between the hybrids. We use A to construct B
against the selective security of the underlying lMes; scheme. In particular, if an adversary A can distinguish
the hybrids, a PPT adversary B exists that can break the selective function-hiding security of the [N scheme.

For the encryption queries from A, B generates {iCT b ;};es,. on their own as it has access to iMSK.
The vectors eCT, for k € [Q.] are computed by querying the challenger.

eCTHYPrId 2 o eEnc(eMSK, [(x\?), 4y, x” " 0,0,0, 0"2)]1) = eEnc(eMSK, [[35(0)]]1) and

K,priv? K
eCTHYPrid 3 o oEnc(eMSK, [(x(?, 0, ngz)riv, ¥,0,0,0")]1) = eEnc(eMSK, [[iﬁl)]]l).

The algorithm B computes {iSKgap,;}jeList-ate(a) themselves from iMSK. Then, B computes the key
vectors eSK, by forwarding it to the challenger.

eSK?ybrid ? eKeyGen(eMSK, [(y,, ago - 2, yg)griVO, 0,0,0™)]2) = eKeyGen(eMSK, [[?éo)]]g) and
eSK?berid P eKeyGen(eMSK, [(yy, ac,0 - ze, yéo) ago - 2¢,0,0,0")]2) = eKeyGen(eMSK, [[?él)]]g).

,priv’

We know that for I, C [m,],

Hybrid 2 i
eDec(eSK}YPr4 ? eCTHybrid 2

0 0
= [[<Xf(£0)7 y€>1) =+ dj"? tago 2 + <XE;,2)riv7 y§,griv>]]T

= eDec(eSK?ybrld 3 eCTEyb’rld 3).

Therefore, B is an admissible adversary for .5 scheme. Thus, the advantage of A in distinguishing be-
tween Hybrid 2 and Hybrid 3 is the same as the advantage in distinguishing between the experiments
Exptj:sel—FH—lND(A? 0) and EXptj‘,seLFH—lND(A’ 1) I:l

Lemma 13 Hybrid 8 and Hybrid 4 are computationally indistinguishable if the underlying scheme lNeg is
function-hiding.
The proof proceeds the same way as that of Lemma 12.

Lemma 14 Hybrid 4 and Hybrid 5 are computationally indistinguishable if the underlying schemes Mg, MNesi
are function-hiding.

Proof. We prove the lemma 14 through a sequence of hybrids. We define the hybrids for every p € [Q,]
below. The Hybrid 4-0-4 = Hybrid 4 and Hybrid 4-Q.-4 = Hybrid 5.

Hybrid 4-0-4. We can observe that Hybrid 4-0-4 is the same as Hybrid 4. We provide descriptions of the
oracle below. We represent the slots using dashed boxes, updated in the subsequent hybrids to prove
the indistinguishability between Hybrid 4 and Hybrid 5. In the sub-hybrids, we will only mention the
updated slots.

46

OKGA,O(Y@-YEU;.V Yoo Iy At ke = (w1, aesz. ang, 0, 0, 0,) Vj € List-Att(A) ,
. . .
OE‘O({X/I X ,prlv}fiE{O,l}-S}i) Cocpaby = (0 ou(l,—j), 0, Y, 0, 0, 0,) Vji€Su,
0 1 0 1 1
Oke U(YhYE p,.v Y; FZW A kefe= (o ago - 2, y§7,3,iv, aco-z;, 104 0, yf, ;W)
-- -1 r----0
3 0 0 N . r - P al
Oeo({x” %Y scro1y:Su) 0 Cure = (ﬁ)vj 0, Xl e 1010, (0™)
Lo —— 4

Hybrid 4-p-1. This hybrid is similar to Hybrid 4-(u-1)-4 except the vectors ¢, ab. i, Cp fes Ko ab,j, Ke e for
€ [Qk] are modified as follows. The vectors € abj,Crfe for © € [Q.] \ {p} are the same as in
Hybrid 4-(u-1)-4. In the following, ky (1) and kg s (Il) represent the key components corresponding to

A(S,) =1 and A(S,) = 0 respectively.
Ok60(Ye: Yemiv Yo Iy &) ¢ Keavg o (@ 002/vuy) Vi € List-Att(A)
O o({x?D,x Y se013:50) © Cuabyt (Tubuy) Vi€S,
Ok (Yo ¥y, ;.V,yélp,.v,fye,A): kere(l) 1 (1 apgdeze),
Ok6.0(Yer Yiomiv: Yomiv Iy) 0 el s (mhodeze)

0 2
0({X(ﬂ) ;,Lpnv}ﬁe{o 1}7S): Cpife * (x (0)7 XEL’E),]\,; Tu s 0") :

where aj o, V5, Tus T = Lp, (0) jetiseann) < Aay (A) with 6, = x oy + xUy By~

riv> Y £, priv
14,p P
(xf?),yg) (xiolrlv,yéogrlv> The indistinguishability between Hybrid 4-(u-1)-4 and Hybrid 4-p-1 is

proven in Claim 7.

Hybrid 4-p-2. We modify the vector ky e(ll) for all £ € [Q] as following where 17y =1} ; + L

ZgT“
KG,O(Yng prive Y €,privy Ly s) kege(ll) s (Ty, 00022) -
Claim 6 Hybrid 4-u-1 and Hybrid 4-pu-2 are statistically indistinguishable.

Proof. The following distributions
/ / / 1 /
{reo 7o < Zp}t and {ryo + o 700020 Ty 4 Ly}
o

are statistically indistinguishable as Te s 2¢ and 7, are uniformly distributed over Z,. Thus, Te 0o+ Z”
”

is also uniformly distributed over Z,. Therefore, Hybrid 4-u-1 and Hybrid 4-u-2 are statistically
indistinguishable. O

Hybrid 4-p-3. This hybrid is the same as Hybrid 4-p-2 except the vectors ky fe, €, fe. The modification is
as follows:

OKG,o(yg,yE‘fg,iv,yﬁ}gﬁv,Iye,A) kere(l): (apodeze),
OkG0 (Ve Yoo Yoo Iy)+ Kere(I) = (7hoeze)

1 " 1
OEJ({X;(?)’X;(f;):riv}ﬁe{o,l}7slt) ©Cpufe (XEL)) 0" s T XEL,?ariv) .

Hybrid 4-p-2 and Hybrid 4-p-3 are computationally indistinguishable if the underlying scheme lNgg; is
function-hiding. The proof follows similar to Lemma 12 as we know that for A(S,) =1,

47

eDeC(eSKHybrld 4-p-2 eCTHybrld 4—u—2)

=[x, y0)p + (K ¥V Uy a0 2+ T g 2 Sl

ﬂ< (l)ayf> + ’l/},u : G‘LO T2 + < ()r|v7y§)r|v> + Tll af ,0 2 55]]T
H,p ;P

Hybrid 4-4-3 i
= eDec(eSKe ybrid &= ,GCTEyb“d 4-p- 3)

as [(x\, y,) + (x/&ol)mv,yfgm)}]T =[xy, + <xf}2,nv,yglgr,v>]]T from the security definition. In case
of A(S,) = 0,

Hybrid 4- —2 rid 4-p-
eDec(eSK,” ® CTHyb d d-p 2)
0 0
= [[<X(O)’YZ>P + < l(l/z)l'lv’yé gr|v> + wl’« 10,0 Ze + T~ TZO TR 65]]:’1

1
= L0y + O3 Vi) + Y as0 - 2+ T (g +) 2 8l
I

= [, 30 + (X Vi) + W aro 26+ T g - e - 0+ Sl

[K /(4,1)’y€> + <X;(412)r|v7y§ pr|v> + wl’« TG0 2 + T~ T‘é,O I 65]]71

H id 4-p- o
eDeC(eSKZ ybrid 4-pu 7eCTSybmd 4-p 3>

as 54 = <X§L1)’ye>17 + <X;(le)r|v’y§1gnv> - <XELO)7yZ>P - <X;(102)r|v7yg0|3rlv> In case of < K and K € [QC]’ we
have

eDec(eS KHybrid 4—u—2 C-I—Hybrid 4-;1,-2)
1
= [(x ,&1),Yg> + <x£ z)nv7y23“v> - a0 - 2T
= eDec(eSK?ybrid 4-p-3 , eCTEybrid 4—/,1,-3)

and for k > p and k € [Q.], we have

eDec(eS K?Ybrid dep-2, C—I—Hybrid 4—u-2)
=[x y,), + <X202mv, O+ b ano - 2]
= eDeC(eSK?ybrid 4-p-8 o CHybrid 43y,

Thus, the advantage of A in distinguishing between Hybrid 4-1-2 and Hybrid 4--3 is the same as the
advantage in distinguishing between the experiments Expt' ¢ pynp (A, 0) and Expt% o grnp (N, 1)-

Hybrid 4-p-4. This hybrid is the same as Hybrid 4-p-3 except for the following changes.

(0) (1)

OKG O(yéayg anaY[priv? yea kf,ab,j . (0) v] € LiSt'Att(A))

A)
Ok 1({X/L X, pr,\,}ge{o 13:Su) ¢ Cuaby: (0) VjeS, ,
OKG,O(yev}'é ,Z,N,yﬁlpr.w vo) kee: (0),

)i cufe: (x(om0, xM) .

n ,priv

OEyl({foB)7 /L pI’IV}BE{O 1}’ w) -
The proof of indistinguishability follows the same way as Claim 7.

Claim 7 Hybrid 4-(u—1)-4 and Hybrid 4-u-1 are computationally indistinguishable if Lemma 10 holds over
the groups G; and G2 and [, e are function-hiding IPFE schemes.

48

Proof. We prove claim 7 through a sequence of hybrids I;I“,an for n € [Qk] and w € [6]. We define
ﬁu—l,l,o as Hybrid 4-(p-1)-4 and ﬁu_LQk,ﬁ as Hybrid 4-p-1. In the following, we explicitly present the
hybrid H u—1,1,0 once again, and then proceed to define the intermediate hybrids below. We represent the

slots that are updated in the subsequent hybrids using dashed boxes. In the sub-hybrids, we will only
mention the updated slots.

ﬁ#,l’l,oz This is the same as Hybrid 4-(u-1)-4. For n = 1, the ciphertexts and the secret keys components
are given below:

OKG o ©

Y Y, Prlv’y£7 priv? yn A) kyab,j = (Tn,j (4, 1), Ap,j* Zny A2y, 0, LOJ’ LOJ) Vj € List-Att(A)
B . r.A A)
{X(X(J pnv}ﬁe{U 1}7 u) Cpab,j = (Ju,j(lv 7])’ 07 wu’ 07 LOJ‘ LOJ‘) V] S Su 5
") ©) ol ol v@
OKG O(yn yn pr|v7 yn priv? y ’) kn,fe = (yn’ An,0 * Zn, yr/ priv’ aTbO 2 ‘LOJ" ‘LOJ" yn priv) ’
0 0 FoaoT n
Oeol{xi X peroay:Su) Cure= (X, 0. X e 100 (0] 0)

ﬁufl,n,ﬁ In case of n = 1, sample 7,,v,,; < Zy, for all j € S,,. In other cases, this hybrid is the same as

Hy14-15 .
OE,O({X(ﬁ)vXﬁfp))riv}ﬁe{o,l}’SM): Cuabyi: (Tuuj, 0) Vi€S, ,

O o({x?D, x Y se013.50) ¢ Cure: (T, 0) .

The indistinguishability proof follows similar to the proofs of Lemma 11 and Lemma 12. It follows
from the fact that for all £ € [Qx], k € [Q.],

eDeC(eSKI:I”_l’l’O7 eCT H}A,—l,l,o)

= [, ¥2)o + (X0 Vi) + - aro - 2l
= eDec(eSKZ “*l'l’l,eCTHH“*l’l’l)

and for all queries i € Sy, j € List-Att(A), we have

Hybrid HH 1,1,0 Hybrid HH 1,1,0
|Dec(|SKZ abj CTH ab.i)

=lmej-d-onit T Oni-—i+Pu-ar;-zlr

o Hybrid HM 1,1,1 Hybrid H“ 1,1,1
|Dec(|SKé ab.j CT,@ ab.i).

ﬁu 1,n,2¢ This is the same as H.ufl,n,l except for the changes below. Generate the vectors as follow-
. 1 1 1
lng where 0’7107 77]77-7] — Zpa (a%,j)jEList—Att(A) — Aa;yo (A) with 577 = <XL)7YT]> + < ,Sz)r|V7YE7 2mv> -
(0) (0) (0)
<X,U« ’Yn> <X/J. priv’ yn pr|v>

OG0 (Y Yo Vo Iy, A) + kpany o (0, aly 8,2 /00 5) Vi € List-Att(A)

OE70({X(’8) MprIV}BE{O 1}’5) : Cu,ab7j : (TuVp,j5> Tnvnj) VJ € SH ’
OKG’O(yn’y; 2)r|v7y7(7 |)3r|v7lyn A) kn,fe: (07 a;7,0677z77) ’

OE70({X(ﬁ) Hpr.v}ﬂe{o 1}7S) O Cpfe s (Tus TrI]) .

Claim 8 H u—1,1,1 and H u—1,1,2 are computationally indistinguishable if Lemma 10 holds over the
groups G; and Gs.

49

Proof. We prove the above lemma through a reduction to the Lemma 10 with vectors Ky ab, j, Cp,ab,js
k), fe; Cp fe set to k]@ , cf , kfiot, cﬁot, respectively. The variables in the masking lemma are set as x = 1

and y = dy,. O

H, _1,3: Forall jeS,, set v

o 7 T I
mi = Un,j and 7, =7, . This is a statistical modification.

H, 1,42 Wemodify the vectors ky) ab, j, Cpjab,js Ki fe, Cu e as below. All the other vectors remain the same
as in H,_1 4,3

OKG,O(yn,y;?;riv,yle’griv,fyn,A): Ky ab,j : (aﬁ?,j&]zn/vj , 0) Vj e List-Att(A) |

B . . ;
Oo({x(X i} peqo1:Su) + Cuab = (Tuviss 0) ViES,
H u—1,n,3 and H 1—1,n,4 are computationally indistinguishable if the underlying schemes [, are function-

hiding. The proof is similar to the proofs of Lemma 11.

H, 1,52 Wemodify the vectors ky, fe, c,, fe as below. All the other vectors remain the same as in]EI#_L,,A.
0 1
OKG,O(ymy;’;riv,Y;,grivaIyn,A) Do ke (a%yoénzn ;0),
B
OE,O({X/(E):X,g7griv}ﬁe{0,1}a Su) P Cufet (Tu, 0) -

H u—1,n,4 and H u—1,7,5 are computationally indistinguishable if the underlying scheme [Nes; are function-
hiding. The proof is similar to the proofs of Lemma 12.

IA{H,L%@‘,: This is the same as]:]ufl,n’S except that when A(S,) = 0, we define the key vector k, ¢ (ll) as

following where 7";]70 < Zyp. This hybrid is information-theoretically indistinguishable from H =115

OKG,O(ymys,)l)griv’ygll,;)yrivvIYW’A): ky () (7';,,05712’717 0).

Note that for n € [Qk], Hu 146 = Hu_1,+11 and H, 1 g, 6 = Hybrid 4-p-1 by the definition of

H, 1,6 and Hybrid 4-p-1, respectively. This completes the proof of Claim 7. |
This concludes the proof of Lemma 14. O

Lemma 15 Hybrid 5 and Hybrid 6 are computationally indistinguishable if the underlying scheme [Ngg is
function-hiding.

The proof follows the same way as that of Lemma 12.

This completes the proof of Theorem 7. O

6 Multi-Client Attribute-Based UIPFE

In this section, we define the multi-client unbounded FE (MC-UFE) scheme over the key space K, message
space M and label space £ for functionality f : (K*)™ x (M* x £L)™ — Z having n users in the system.

Definition 15 An MC-UFE scheme M, = (Setup, KeyGen, Enc, Dec) consists of following four algorithms:

Setup(1*,n) — ({EKk }re[n), MSK): The algorithm takes as input security parameter A, total number of
users in the system n and outputs encryption keys EKy, for each user k € [n] and the master secret key
MSK.

50

KeyGen(MSK, (Keyy, ;)jer, kefn)) — SK: The key generation algorithm takes as input MSK, and a key space
object (Keyk,j)jelk’ke[n] with the associated index sets Ij. It outputs a secret key SK.

Enc(EKg, (Msgy, ;)jer;, L) — CTy: The algorithm takes as input k-th party’s EKy, a message (Msgy, ;)jer;
with the associated index set Ij, and a label L. It outputs a ciphertext CTy,.

Dec(SK, {CTx }rem)) — ¢ V L: This algorithm takes as input SK, {CTy }1e[n) and outputs either ¢ or the
special symbol | indicating failure.

Correctness: For all A € N, (Key,, ;)jer, kefn) € (K*)", and for all k € [n] (Msg, ;)jer;, € M*, Ly € L, we
have

(EKk, MSK) « Setup(1*,n)
¢ = f((Keyy j)jen kem), . SK < KeyGen(MSK, (Keyy, ;) e, kefn])
{(Msgk,j)jEI{C?Lk}kE[n]) ’ CT},C — EnC(EKIw(MSgk7j),jeI,’C7Lk)
C — Dec(SK7 {CT}g}ke[n])

Pr > 1 — negl(A)

if for all k1, ke € [n], Ly, = Ly,.

Definition 16 (Security of MC-UFE) The My = (Setup, KeyGen, Enc,Dec) is said to be xx-yy-
indistinguishability (xx-yy-IND) secure for xx € {sel, adp},yy € {any, pos™} if for any security parameter A,
any PPT adversary A, there exists a negligible function negl(-) such that the following holds

Advﬂi{x—yy-lND(}‘) = ‘Pr |:Expt:2(,:j(x—yy—lND(>‘70) = 1] —Pr |:Expt./nzl(,:j(x—yy—lND(>‘7 1) = 1:| ‘ < negl(A)

where the experiment Exptz"ffcx_yy_|ND()\7 B) is defined for g € {0,1} as follows:

EXpt.T\(,:fcx-yy-lND()Vﬁ) : OKG((Keyk,j)jelk,ke[n]) :
1: ({EKk}kE[n(], MSK) « Setup(1*,n). output KeyGen(MSK, (Key,, ;)jcr, ken])-
2 B AOcr().0k().0e().Ours() (14). Ok(k, (Msgy, ;)jer;» Lk) :
3: Output ' if condition (x) is satisfied.

Ocon() output Enc(EKy, (Msgy, ;)jer;, Lk)-

Corr(") * 0 1 .

T output EKy. Ovor,5(k, (Msgy, ;, Msgy, ;)jer; s L) :
output Enc(EK, (Msgfd)je[];,Lk).

Let CS be the set of all inputs k € [n] for which A makes queries to Ocon () and HS = [n] \ CS. The
condition (*) is that if there exist two messages satisfying

F(k, (Keyy j)jen ke {6, (Msgp)jer s Litwem) 7 F({k, (Keyy, j)jen Yeemn) {k: (Msgy) jers Liren))
then at least one of the following should not hold

e forall k € [n], [OLor,g(k, (Msg%j, Msg,lc,j)jel;c,Lk) is queried or Og(k, (Msgk,j)jelé,Lk) with (Msg%j =
Msg,lw- = Msg,w-)je]; is queried] or [(Msg%j = Msg,lw = Msg,w-)j,g;c and k € CS].
e Okg() was queried on (Keyy ;)jcr, keln]-

— If xx = sel: Queries to OLor,g(+), Ocore(-), O(-) must be made in one shot before any queries to Okg(+).
—If yy = pos: for any user k € [n] and L € L, if Qk,r > 0, then for any user k' € HS, Q.1 > 0 where
Q,1, denotes the number of ciphertext queries to the oracles Oior g(-) in of the form (k,x,%,L). In other
words, for any label, either the adversary makes no left-right encryption query or makes at least one left-right
encryption query for each k' € HS.

In the one-time label security, all the queries to the Oior g(+) oracle should be in one label L and no
queries to the Og(+) oracle will be possible with the same label L.

51

Definition 17 (MC-UFE for AB-IP) A multi-client attribute-based UIPFE (MC-AB-UIPFE) is a par-
ticular class of MC-UFE where K* = Z; x P, and M* = Z; x ATT such that P and ATT represent the
access policy and attribute spaces respectively. The function f is defined as follows: for the message com-
ponents Msg; = (xx,Sk) € M*, the key components Key = (y;, A)refn) € (K*)™ and xi,y;, are associated
with the index sets Ij, and I},

f((Keyk,j)jEIk,ke[n]a {(Msgk,jv Lk)jEI{C }ke[n]) =

2 ken] Xk Yi)p if following conditions holds
L otherwise.

The conditions in () define as follows:

- R(xk,¥) =1 ANA(Sg) =1 for all k € [n].
— for all ki, ks € [n], Lk1 = Lk2~

6.1 Construction

Consider M,5 = (aSetup, aKeyGen, aEnc, aSlotEnc,aDec) be an AB-sUIPFE scheme with slot-specification
Spriv = Z]T“, Spub = Zy, and PRFsd . £ ZzT be a family of pseudorandom function with seed € Ky
where Ky, £ be pseudorandom key space and the label space for any security parameter A. Note that,
our proposed MC-AB-UIPFE only involves the aEnc algorithm to encrypt the slot-specified message vector
using a corresponding master secret key. In the following, we present our MC-AB-UIPFE scheme MM =
(Setup, KeyGen, Enc, Dec) for LSSS access structure. We discuss the PRF and the LSSS access structure in
Definitions 4 and 3, respectively.

Setup(1*,n): The setup algorithm takes the security parameter A\ with the total number of user n in the
system as input and executes the following steps:
1. Generates (aMPKy,aMSK},) < aSetup(1*,1™+1) for all k € [n].
2. Samples seedy, , < K for all k,¢ € [n] with seedy , = seed, j for ¢ < k.
3. Outputs encryption key EK}, = (aMSKy, {seed, 1. },«x) and the master secret key MSK = {aMSKy } rc[r)-

KeyGen(MSK,y = (y)ren)> { Iy, treln), A): The key generation algorithm takes as input MSK, the access
structure A and a key vector y = (y; || yo || - || ¥,,) where each y, is associated with the index set
Iy, for all k € [n]. It works as follows:

1. Samples a + ZgL.
2. Generates aSKy, <+ aKeyGen(aMSKy, [(y, o, 0)]2, Iy, , A) for all k € [n].
3. Outputs the secret key SK = {aSKy, }re[n)-

Enc(EKy,xk, L,Sk): The encryption algorithm takes as input k-th user’s EKy, a message vector x; =
(Tk,i)icim,) Of an arbitrary length my, a label L with an attribute set S and proceeds to do the
following steps:

1. Computes si = Z#k(—l)KkPRFseed“’“(L).
2. Generates aCTy, < aEnc(aMSKy, [(xk, sk, 0)]1, Sk)-
3. Outputs the ciphertext CTy = aCTy.

Dec(SK, {CTx}repn): The decryption algorithm takes as input SK, CTy and performs the following steps:
L. Returns either [d]r <][}, aDec(aSK,aCTy) or L.

Correctness: If R(xy,y;) =0V A(S;) =0 for any k € [n], outputs L. Otherwise, from the correctness of
M.si, we have

aDec(aSKg,aCTy) = [(xk, Yi)p + (Sk,)] . (3)

52

From Equation 3, we compute

[dlr =] aDec(aSKi,aCTw) = [(xk,¥a)p + (sks @l = [D (xi, ¥adplr -

ke(n]

6.2 Security Analysis

ken]

k€n

]

In Theorem 8, we present the security analysis of our MC-AB-UIPFE scheme, as described in Construction

6.1.

Theorem 8 Our My scheme achieves selective indistinguishability (sel-IND) security as per Definition 16
if the underlying MNys is selectively secure as per Definition 14 and the MDDH assumption holds in G.

Proof. Suppose A be a PPT adversary against the sel-FH-IND security of our MC-AB-UIPFE scheme. We
construct an algorithm B for breaking underlying M,c; scheme that uses A as a subroutine. Let {PRFseEd} :
Ly — Zg’ be a family of pseudorandom function. In the following, we consider a series of hybrids to prove
Theorem 8. We provide a brief indistinguishable arguments of security hybrids in Fig. 4.

Hybrid 6

FH-IND

%

Hybrid 0

Hybrid 5

FH-IND

—

MDDH

%

Hybrid 1

Hybrid 4

FH-IND

—

Stat

%

Hybrid 2

iMDDH

Hybrid 3

Figure 4: Outline of the security games for Theorem 8. Here, ‘Stat’ means statistically, and ‘FH-IND’ is a
shorthand for the function-hiding indistinguishability security of IN,g;.

Hybrid 0. This hybrid is the same as the real security game where the challenge ciphertext is the encryption
for the challenge bit 5 = 0 as described in Definition 16 of sel-pos-IND security model. In the following,
we describe the oracles that the adversary A can queried during the security experiment. We represent
the slots using dashed boxes, which are updated in the following hybrid steps.

— Corruption queries: The adversary A first submits the corrupted users set C to the challenger B
and returns each encryption keys EKj corresponding to the user index k € C.

— Left or right oracle queries: On receiving the u-th query tuple to the oracle Oior g(-) for the

0
tuple (k, XL}C,

given below.

OLor,s(k, x©)

ko

where CT?) = aCT®,

Xk

1)

Xk

wok?

(1) L, Su,k) :

.
aCT) = aEnc(aMSK, [(x{),!

1 r
| 1Sk, 10
| S

L

L -4

L,S,) with k € HS, the challenger simulates the challenge ciphertext as

])]]1 Smk)’

Sp = Z#k(—l)KkPRFseed“’“(L) and the p-th challenge messages {(XSL,

xf}}ﬂ)}ke[n] of length my, for each user k € [n].

— Encryption oracle queries: As dictated in the security Definition 16, the adversary can only query
with respect to any label L'(# L) for k € [n] and the messages {X,/ k}re[n) With an attribute set
S,k and generates the ciphertext as given below.

Ok (k,xy, L', S},) :

where CT ., = aCT v x and sj, = 37, (—1)*<FPRF*x (1Y),

53

aCT, = aknc(aMSKy, [(xuk, S O

W)

— Key generation queries: For the ¢-th functional key corresponding to the access structure A and
the key vector y, = (¥,)ren) With each non-empty index set Iy, , for all k& € [n], the simulator
generates the secret key components SKy j as in the following.

Oxa(Ye {Iektn:A) 1 aSKep = aKeyGen(aMSKy, [(yeri [asl [0)]e, Iy,,, A),

L_o_-_41

where SK,; = {aSK&k}k with ay < L.

Hybrid 1. This game is the same as Hybrid 0 except that the generated challenge ciphertext and the secret
key components using the oracles Oior g(-) and Okg(-) are modified as follows.

OLors(k,x), x 1, L,Suk) : aCTV) = aBnc(aMSK, [(x\). 0,)], Suk)
OKG(Y@ {IZ,k}ky) . aSK@,k - aKeyGen(aMSKk7 [[(y[ykv Oy, <afvsk>)]]27 Iy[,k7 A) .

Hybrid 2. This game is the same as Hybrid 1 except that the generated challenge ciphertext and the secret
key components for A(S, ;) = 1 Ak € HS using the oracles Oior g(-) and Okg(-) are modified below.

OLora(k, X\ X0 L,S,p) : aCT!) = aBnc(aMSK;, [(x{}. o, D], Suk)
Okc(ye; Lo br, A) aSKyr = aKeyGen(aMSKy, [(yor, e (ou,sk) $01ek 2 Iy,,, A

where 01 ¢ = <X§0,)c - xg ,)C, Yor)p and (x LOL, ,xM) %) is the pair of challenge messages in the p-th query

to OLor,5(+) of the form (k, *, *,*7L) for k € HS.

Hybrid 3. This game is the same as Hybrid 2 except that challenge ciphertext and the secret key compo-
nents for A(S, x) = 1 ANk € HS are generated as follows.
Ok(yo {1}k, A) 1 aSKe = aKeyGen(aMSKy, [(yer oo, vek+o1en)l2, Iy, A),

where 01,0k = <X§?I)c - XSI)@J&QI’ and 32y o5 Vek + D pecs{ar,sk) =0.

Hybrid 4. This game is the same as Hybrid 3 except that the generated challenge ciphertext and the secret
key components for A(S, ;) =1 Ak € HS using the oracles Oior s(-) and Okg(-) are given below.

Okc(Yes {Ie,k 3k, A) 1 aSKep = aKeyGen(aMSKy, [(yer oo ek)2 Iy,,, A),

where >) <35 Ve k + D pecs{aes sk) = 0.

Hybrid 5. This game is the same as Hybrid 4 except that the generated challenge ciphertext and the secret
key components for A(S,, ;) = 1 using the oracles Oior g(-) and Okg(-) are given below.

OKG(Y@’{I[,k}kHA) : aSKf,k = aKeyGen(aMSKk‘v ”t(yZJw Oy, <afvsk>)]]27 Iyg’k7 A))
where s;, = Eb¢k(—1)L<kPRFseed"’k(L) such that Zke[n] s = 0.
Hybrid 6. This game is the same as Hybrid 5 except that the generated challenge ciphertext and the secret
key components for A(S, ;) = 1 using the oracles Oor g(-) and Okg(-) are given below.

0)
OLor g (k, xftk, Hk,LS k) aCTL{L: aEnc(aMSKg, [(x uk’ sk, 0)li, Sur),

OKg(yé,{Ig,k}k,) aSKM: aKeyGen(aMSKk, [[(ygk, Qy, O)ﬂg, Iy["k, A),

54

))

where sj, = Z#k(—l)KkPRFseed“’“(L). This hybrid is the same as the real security game with sel-IND
model for 8 = 1 in Definition 16. Thanks to Lemma 16 to Lemma 21, we can conclude the proof of
Theorem 8.

Lemma 16 Hybrid 0 and Hybrid 1 are computationally indistinguishable if the underlying scheme Mg is
function-hiding.

Proof. We consider a PPT adversary A against sel-FH-IND security of the MC-AB-UIPFE scheme. We use
A to construct an adversary B against the sel-FH-IND security of the underlying M, scheme. In particular,
we show that if A is able to break the sel-FH-IND security of MC-AB-UIPFE, then there is a PPT adversary
B which will break the selective function—hiding security of the [, scheme.

For p- th ciphertext and the for all aCT, ;’s that the adversary obtains as a reply to the query of the form

Ovor g (k, Xu k, Lk’ L,S,) and all components aSK}’s for all k € [n] A R(xiﬁ?ﬂ,ym) =1, that it obtains as

a reply to the query of the form Oke(yy, {Iek}k, A).
In Hybrid 0, the challenger replies M,s components using the oracles O\or g(-) and Okg(+) as follows:

aCTHybrid 0 aEnc(aMSKy, [[(xiggwsk, 0[1,Su,k) = aEnc(aMSKy;, [x,,. L]]l, S,.k) and

{aSKHybrld Lo aKeyGen(aMSK, [(y x> @, 0)]2, Iy/z,wA) = aKeyGen(aMSKy, [[yé ,2}]27 Iy, s A)}eem
In Hybrid 1, the challenger replies M,s components using the oracles OLor g(-) and Okg(-) as follows:

aCTIP9 Y aEnc(aMSKy, [(x\), 0, 1)1, S k) = aEnc(aMSKy, [£\)]1,S,.) and
{aSKJYPM ! o aKeyGen(aMSKy, [(y ., oz, (e, si))]2. Iy, , . A) = aKeyGen(aMSKy, [74)]2, Iy, &) brepm)

(b)
wk — u ko p,priv ok s N ppriv ,u pnv - (0 1) and y yé k: - (YZ Jo Yo prlv)
(0)

with y, o, = (eu, 0),yé’1griv = (o, <ag7sk)). Now, we have to show that
Hybrid 0 Hybrid 0 Hybrid 1 Hybrid 1 0
aDec(aSK&Z ,aCT“,“fC)= aDec(aSK&Z ,aCT“,“,;) forall ke [n]7R(xL7L,yM) =1
holds for all key queries that made by B. Using aDec for k € [n], R(xfco), Yor) =1, we get

Hybri Hybri
aDec(eSK ybrid o aCT#ykbrld 0)

=[x HkaYZk + (a, sg) + 0]

Vo +
0

=[x, yere + X0y T

= [(x ,uk’YZk> +ap-0+1-(ag,se)]r

1 1
7[[(uk’y2k> +< L,L7y§gnv>ﬂ

= aDec(aSKE%brld 1,:11CTlIiy,:”rld Y for all k € [n],R(xL?L,yg,k) =1.

Therefore, B is an admissible adversary for the sel-IND security game of M,g. Thus, the advantage of A in
distinguishing between Hybrid 0 and Hybrid 1 is exactly the same as the advantage in distinguishing between
the experiments Expt®y' s pnp (X, 0) and Expt's inp (A, 1). This completes the proof of Lemma 16. O

Lemma 17 Hybrid 1 and Hybrid 2 are computationally indistinguishable if the underlying scheme MMy is
function-hiding.

Proof. The proof follows similarly as Lemma 16 using the function-hiding security of .5 scheme. We
consider a PPT adversary A against sel-pos-IND security of the MC-AB-UIPFE scheme. We use A to

55

construct an adversary B against the security of the underlying IN,s; scheme. In particular, we show that if
A is able to break the sel-pos-IND security of MC-AB-UIPFE, then there is a PPT adversary B which will
break the selective function-hiding security of the .5 scheme.

For p-th ciphertext and the for all aCT,, ’s that the adversary obtains as a reply to the query of the

form O\ or sk, Xu k, ;L,L S,,k) and all components aSKy,’s for all k € [n] A R(x L)k,yg) =1,0=1,2 that

it obtains as a reply to the query of the form Okc(y,, {Ie.k }i, A).
In Hybrid 1, the challenger replies ,s components using the oracles O\or g(-) and Okg(-) as follows:

aCTIP™ ! ¢ aEnc(aMSKy, [(x), 0.)1, ,.6) = 2Enc(aMSKy, [R{11]1.S,10) and

{aSKHybrld - aKeyGen(aMSKy, [(y, 5, ae, (e, si))]2, Iyz,kaA) = aKeyGen(aMSK, ﬂye k]]% Yor? A)bkem
In Hybrid 2, the challenger replies .5 components using the oracles Opor g(-) and Okg(-) as follows:

aCTEﬁCbrid % « aEnc(aMSKy, [[(. k,O D)]1,Su.k) = aEnc(aMSK, [[x“ kﬂl, k) and
{aSK?Zbrid 2 aKeyGen(aMSKG, [(y ., e, (cue, sk) + 01.0.1)]2, yM,A) = aKeyGen(aMSKg, [[?1(51,2]]2, Iyg,k,vA)}ke[n]

where %) = (x40, x(,,) with x,Q = x(ix Y = xx0 = (0,1),x,, = (0,1) and §{) =
(Yé,k,}’;i),riv) with yg)griv = (ay, (ag,sk>),y§’griv = (e, (o, 8k) + 61.0%). Now, we have to show that

aDec(aSK}yPrid 1,aCTE¥€brid ') = aDec(aSK}yPrid 2,aCTE3;cbrid %) forke [n],R(xLli),C,yzlk) =1,b=1,2

holds and all key queries that made by B. From the admissible conditions of MCAB-UIPFE scheme and
function-hiding security of N, for each user k, we get the following constraints:

0 0
O yers — L yers = 00 yon)s — 0 vy forall g€ [Qeprlf=1,2 (4)

where (XESL, X;(};c

k € [n]. The above inclusion follows from the fact that the adversary can learn <xfﬁj 1173’4 wlp — (xgﬁ ,3,yz’ &)p

) are the p-th challenge ciphertext query to the Oior g(-) oracle with the label L for the user

from challenge queries whenever A(S,, ;) = 1. It was observed in [6]. Using aDec for k € [n], R(XECO), Yer) =1,
we get _ _
aDec(eS KHybrld 17 aCTH};Cbnd 1)

= [(x Mk,}’zzc +0+ (ag,si)]r

o
= [(x Hk,ym + (xO v O e
b+

- [[< o k’YE k 1- (g, sk) + 01,.k]r from Equation 4

1 1
=[x yens + X0y i

= aDec(aSK; "™ 1 aCTIP 4) for all k € [n], R(x\), v x) = 1.
(|

Lemma 18 Hybrid 2 and Hybrid 8 are computationally indistinguishable if the MDDHz, assumption holds
over the bilinear group G.

Proof. We would like to prove that

{[exelos {[{ees sk)]2} kens b eeQue e {level2, {[ve k]2t kens teeque, (5)

56

where Q[key] is the number of secret key queries by the adversary to the oracle Okg(-). For k € HS, ay + Z]T,
S Zz’? such that

D skt D (FUIPRPFEML) =0 =) vt Y (<) PR (L) s,) = 0.

keHS LeCS kEHS LeCS

The above indistinguishability of Equation 5 can be shown using the following MDDH; instances:
{[A]2, [Ati]2, [Ata]s, . .. [Ata]2} ~c {[Al2, [r1]2, [ra]e, . . - [ra]2} (6)

where d > 1, m € Nand c € Z?, A+ Zg”m and t1,ta,...,tg Z;;ﬁ satisfying Ege[d] t, = c, which implies
r, = Ac. us the above relation in Equation 6 can be written as
s€1d) T Ac. Th he ab lation in E ion 6 b i

{[Al2, [Ati]o, [Ats]s, .. [Ac— D Amyla} = {[Al2, [r1]5 [ro]2, .- [Ac = > rlo}
J€[d—1] 7€[d—1]

using the similar d — 1 folds MDDH; assumption, we get that

{[A]2, [At1]2, [Ata]a, ..., [Ata—1]2} ~c {[Al2, [r1]2, [r2]2, - - -, [ra-1]2}

Lemma 19 Hybrid 3 and Hybrid 4 are identically distributed.
Proof. From the admissibilty condition of the MC-AB-UIPFE, we have

0 1
Z <Xg,l)€,i7y€,k,i>;n = Z <X§,I)c,i7yf,k,i>,’0 :

keHS keHS

In both Hybrid 3 and Hybrid 4, {vsx tkens and {ve i + 01,0,k frens are randomly distributed over Z,. Also,

note that
S vk= > vik+oee=— Y (ansk)
kEHS keHS kecs
Therefore, Hybrid 3 = hybrid 4. |

Lemma 20 Hybrid 4 and Hybrid 5 are computationally indistinguishable if the MDDHz assumption holds
over the bilinear group G.

Proof of the above Lemma follows similarly as Lemma 18.

Lemma 21 Hybrid 5 and Hybrid 6 are computationally indistinguishable if the underlying scheme lNyg is
function-hiding.

Proof of the above lemma follows similarly as Lemma 16.

This completes the proof of Theorem 8. O

7 Dynamic Decentralized UIPFE

In this section, we define the dynamic decentralized unbounded FE (DD-UFE) scheme over key space K,
message space M, and set of identities ZD for functionality f : L(ZD x K*) x L(ZD x M*) — Z where L(S5)
to denote the set of finite lists of elements from S.

Definition 18 A DD-UFE scheme My4r = (GlobalSetup, LocalSetup, KeyGen, Enc, Dec) consists of following
five algorithms:

57

GlobalSetup(1*) — PP: The global setup algorithm takes as input security parameter A and outputs a
public parameter PP. Those parameters are implicit arguments to all the other algorithms.

LocalSetup(PP) — (PK, MSKy): The local setup algorithm takes as input public parameter PP and outputs
a local public parameter PKj, and a master secret key MSKy, for k € ZD. The following three algorithms
implicitly take PKp.

KeyGen(MSKy, {(Keyy, ;)jer, }x) — SKi: The key generation algorithm takes as input MSKj, and a key
space object (Keyk’j)jgk with the associated index set Ii. It outputs a private key SK.

Enc(MSKy, (Msgy, ;)jer;) — CTy: The encryption algorithm takes as input MSKy,, and a message (Msgy, ;) jer/
with the associated index set I;. It outputs a ciphertext CTy.

Dec({SKk } ketiee s {CTk rettns) — ¢ V L: The decryption algorithm takes as input {SKp }retse,» {CTr }rctiug
where Ukey, Umsg € ID are any sets. It outputs either ¢ or a special symbol L indicating failure.

Correctness: Forall A € N, Ukey,Unsg € ZD, {k, (Key,w»)jelk Yicte, € LITDXK), {k, (MSgk,j)jeI,g}ieuMsg €
L(ZD x M*), the following must hold

PP < GlobalSetup(1*)
(PKg, MSKy) «+ LocalSetup(PP)
= F({k, (Key,, .); :
Pr ¢ {f]f{('\’/l(sgeygj)j,e}{k }keusey : SKj + KeyGen(MSK, {(Keyk,j)jelk}k) > 1 — negl(X).
’ kg /I S kU CTy < Enc(MSKg, (Msgy, ;)jerr)
¢ « Dec({SKk } kettee s 1CTk } kctneg)

Definition 19 (Security of DD-UFE) The My = (GlobalSetup, LocalSetup, KeyGen, Enc, Dec) is said to

be xx-yy-indistinguishability (xx-yy-IND) (xx € {sel, adp}, yy € {sym, asym}) secure if for any security
parameter A, any PPT adversary A, there exists a negligible function negl such that the following holds

Advi{i,fxx-yy-lND()‘) = ‘PI {Expt%i(x-yy-lND()VO) = 1:| —Pr {Expt%i(x-yy-lND()V 1) = 1:| ‘ < negl()\)

where the experiment Exptfffxx_yy_|ND()\7 B) is defined for 5 € {0, 1} as follows:

Exptcjf,;x—yy—lND(A’B) : OKG({(Keyk,j)jelk}k) :
1: PP < GlobalSetup(1*). output KeyGen(MSKy, (Keyy, ;)jer,)-
2§ ACmen()-Ocr) OuclMSK.).O). Cusns() (PP, O (k, (Mg) ey) :
. /] e . te o e 2 J
3: Output 8 if condition () is satisfied. output Enc(MSK, (Msg,_)jer;)-

OCorr(k) : 0 L
"~ output MSKj. OLor,5(k, (Msgy, ;, Msgy, ;) jer;) :
Orongen (k) : output Enc(MSKy., (Msg}, ,)jer;)-

output PKj.

Let Q,CS be the sets of all inputs k € ZD for which the adversary makes queries to the oracles Onongen(*)
and Ocorr(+) respectively, and HS = Q\ CS. The condition (x) is that if there exist two subsets of identities
Ukey,Unsg € Q satisfying

Sk, (Keyy) jen bretse {k: (Msgl) jer Yretns) 7 F({E, (Keyy, j)jer et s {6y (MSgL ;) jer; et
then at least one of the following should not hold:

o for all £ € Unmsg, [OLOR’g(k,(Msggﬁj,Msg}c,j)je]é) or OE(k,(Msgk’j)jg;C) with (Msg%’j = Msg,lm- =
Msgy, ;)jer; is queried] or [(Msgg’j = Msg,lwﬂ = Msg,, ;)jer; and k € CS].

58

o for all k € Ukey, [Okc(k, (Keyy ;)jer,) is queried] or [k € CS].

— For xx = sel: Generates the CS set in one shot before queries to all oracles Opor g(+) or Og(-) or Okg(+).
— For yy = sym: for i € CS, the queries Oior g(k, (Msgg’j, I\/Isg,lc)j)jelé) must satisfy I\/Isgg)j = Msg,lc)j.

Definition 20 (DD-UFE for IP) A dynamic decentralized unbounded IPFE (DD-UIPFE) is a particular
class of DD-UFE where 7D = {0, 1}*, K* = Ly, and M* = Z; x L such that £ represents the label space. The
function f is defined as follows: for the message components Msg, = (xj, Ly) € M*, the key components
Key, = ({yr}x) € £* and x; and y,, are associated with the index sets I;, and I,

S eew Xk yi)p if () holds
1 otherwise.

f({F, (Keyk,j)jefk }uKey7 {k, (MSgk,j)jeI,; }Z/IMsg) = {

The conditions in () define as follows:

- uMsg = uKey =U and for all k € L{, Z/lKey,k = uMsg,k =U.
- R(xk,y;) =1foral keld.
— for all ki,ko €U, Lkl = Lk2.

7.1 Construction

Let Mesi = (eSetup, eKeyGen, eEnc, eSlotEnc, eDec) be an esUIPFE with Spup = Z, Spriv = Z;”“ considering
ny = 0 and no = m + 1, and Myone = (aoGlobalSetup, aoLocalSetup, aoEnc, aoDec) be an AoNE scheme,
Myike = (nSetup, nKeyGen, nKeyshared) be a NIKE scheme, PRFF : 277 x £ — zy, PRF : 27D _, Zy' be
the families of PRF functions with the key space Ky, , Kprf, respectively, ZD be the identity space and a hash
function H : {0,1}* — G is treated as the random oracle. We discuss AoNE, NIKE, PRF in Definitions
7, 5 and 4, respectively. Note that, our proposed DD-UIPFE only involve the eEnc algorithm to encrypt
the slot-specified message vector using corresponding master secret key. We present our DD-UIPFE scheme
Mygi = (GlobalSetup, LocalSetup, KeyGen, Enc, Dec) in following.

GlobalSetup(1*): The setup algorithm takes input the security parameter A and executes the following steps:

1. Generates nPP < nSetup(1*),a0PP « aoSetup(1*).
2. Outputs the public parameter PP = (nPP, aoPP).

LocalSetup(PP): The local setup algorithm takes input PP with a user identity k¥ € ZD, and runs the
following steps:

1. Generates (nPKy, nSKy) + nKeyGen(nPP), (aoPKy, aoSKy) + aoKeyGen(aoPP).

2. Chooses seedy 2 < Kpr, -

3. Outputs the public key PKj, = (nPKy, aoPK}) and the master secret key MSKj, = (nSKj, aoSKj, seedy, 2)
for k € ID.

KeyGen(MSKy, {y), = (Uk.)ery, s Iy, theti,,)t The key generation algorithm takes as input MSKj and
Key,, = ({¥r}xs {1y, &> Ukey,k) and performs the following steps:

seedy 2

1. Computes rt;, < PRF; (Ukey,)-

2. Runs (eMPK,,eMSK}) < eSetup(1*, rty,).

3. Computes eSK}, <— eKeyGen(eMSKy, [(yy, e, 0)]2, Iy,) with H({y; }x, Ukey,x) = [e]2.
4. Generates aoCTy < aoEnc(aoSKy, (eSKy, Ukey.k, {¥ i }r))-

5. Outputs the secret key SKy = (a0CT g, Ukey, ks 1Y }or L)

Enc(MSKg, X = (%k,i)ic[my) Umsg.k» Lx): The encryption algorithm takes as input MSKj, and Msg, =
(xk,Z/lMSgJ€7 L) and proceeds as follows:

1. Runs (eMPKy, eMSK},) < eSetup(1*, rt;,) where rt;, < PRFY™? (Unisg.r)-

59

2. Generates seedy, «— nKeyShared(nSKj, nPK,) for all v € Upeg,i \ {k}.

3. Computes s; = ZueuMsg,k\{k}(—1)”<kPRFSieedk‘”’1(Z/IMsg,k, Ly).

4. Generates aoCTy, <— aoEnc(aoSKy, (eCTy, Unmisg,k, Li:)) where eCTy, < eEnc(eMSKy, [(xk, sk, 0)]1).
5. Outputs the ciphertext CTj = (aoCTy, Unmsg, ks Li)-

Dec({SKk } kettee s 1CTk hettn,): The decryption algorithm takes as input {SKg}rerse,» {CTr}rctn, Such
that U = Ukey = Umsg and performs the following steps:
1. For all k € U, computes eSKj, < aoDec(aoCTy) and eCT), aoDec(aoCT}).
. Generates [¢x]r < eDec(eSKy,eCTy,) for all k € U.

. Outputs [d]r = [[,cp/[éx]T
. If eDec returns L, outputs L.

=~ N

Correctness: Firstly, we observe that if Ukey = Umsg = U, L, = Lmsg for all k& € U, where Ly is any
label in £ and {y, = (ykw)LGka s Iy, Yhetike, . 15 same in all the ciphertexts input to the decryption algorithm,
then

— From MM,one correctness, we have eSKe j = eS/P_(\f;, eCTe = eC/:I'\f;C, for all k € U.
— For all k € U, the computation H({y, }x,Ukey,x) = [a]2 remains same.

From the correctness of Iy, we have seedy, , = seed, , and Zkeu s = 0. Now applying the correctness of
Mesi with R(xg,y,) =1 for all k € U, we get

eDec(eSKy, eCTy) = [(Xk, ¥1)p + (86,)] for all k € U.

Therefore7 [[dIIT = H [kaa yk>P + <Ska Ol>]]T = [[Z <Xk5 Yk>pﬂT'
keu keu
7.2 Security Analysis

In Theorem 9, we present the security analysis of our DD-UIPFE scheme, as described in Construction 7.1.

Theorem 9 Our My scheme achieves sel-sym-IND security as per the Definition 20 if PRFy, PRFs are
pseudo-random functions, Mnike and Myone are IND-secure protocols and Meg; is function-hiding.

Proof. We prove the above theorem through a sequence of hybrids. We describe the hybrids below. We
represent the slots that are updated in the subsequent hybrids using dashed boxes.

Hybrid 0: This game is the same as E><p‘jﬂise|_|ND()\7 0). The adversary A has access to the following oracles.
— Corruption queries: The adversary 4 submits the corrupted user index k € ZD to challenger B
and the challenger returns keys MPKy, MSKj corresponding to the user k.

— Left or right oracle queries: On receiving index k € ID, identity set Umsg, label Lysg and
the challenge messages {x,go),x,(cl)}keuMsg of length my, the challenger simulates the challenge
ciphertexts CT,(CO) = (aoCT, Unmsg,k» Lvsg) using the following component:

Ouor,p(k, x ;) Unasg, Lasg) - eCT)” = eEnc(eMSKy, [(x, s [0)])

Iy
_

where aoCTy, < aoEnc(aoMSKy, (ECT](:),UMSQ Lvsg)), sk = ZueuMsg,k\{k}(71)U<kPRFS1€edk'V’1(UMsg,k, Lsg)-

60

— Encryption oracle queries: On receiving index k¥ € ZD, message vector Xy, identity set Upmsg, i and
label Lysg, the challenger generates the queried ciphertexts CTj = (aoCT, Unmsg, ks Lf\,lsg) using the
following component:

Ok (k, Xk, Unisg, Linsg) - eCT, = eEnc(eMSKy, [(xk, s, O)]1)

where aoCTy, +— aoEnc(aoMSKy, (eCT},, Unmsgs Liysg)) and and sj, = >
(uMsg,k:a L;\ASg)-
— Key generation oracle queries: For /-th functional key corresponding to the access structure

A, index k € ID, key vector y, = (¥, 1) ket the challenger generates the secret key SKy; =
(a0CT ¢ ks ;Ukey; {1 1 1) using the following components:

vEUMSsg, k \{k}

~

(’)Kg(k,{y&k}k,UKey): eSKM: eKeyGen(eMSKk, [[(y&k, [:a%j, [OJ‘)]]Q)

Here7 aoCTM — aoEnc(aoMSKk, (eSK[’k,Z/[Key, {yf,k}k)) and H({yz’k}k,uKey’k) = [[az]]g.

Hybrid 1: In this hybrid, we modify the incomplete LoR queries. The queries of the form (k, x,(co), Xg),l/{Msg,
Lsg) to oracles Opor g(+) or Okg(-) is said to be incomplete with respect to (Umsg, Lmsg) if there exists
an index k' € Unsg NHS such that no O (K, Xk, Unsg, Lf\,,sg) or OLor gk, x,(c(,)), x,(Cl,),Z/{MSg, Lsg) queries

are made. In case of such incomplete queries, the challenge ciphertext CT;CO) = (aoCTy, Unsg, ks Lvsg)
is computed as follows:

aoEnc(aoMSKy, (0 ,Umsg, Livsg)) — aoCTy.

The indistinguishability follows from the security of the M,one.

Hybrid 2 We handle incomplete key queries in this game. A key query (k,{y,}rcti, Ukey) is said
to be incomplete if there exists an k' € Ukey N HS such that there is no key query of the form
(ks {¥ 0,1} k€ltkey» Ukey)- For all incomplete key queries, the secret key SKy x = (a0CTy k, , Ukey, ks {¥ 0.1} &)
are computed as follows:

aoEnc(aoMSKy,, (0, Ukey, {¥ ¢ 1 fretike,)) — 30CT g 1.

The indistinguishability follows from the security of Mone.

Hybrid 3: This game is the same as the experiment Expffjsd_,ND()\, 1) for the challenge bit 8 = 1. The chal-

lenger generates the challenge ciphertext CT;O) = (a0CT g, Unmsg,k» Lisg) using the following component:
OLor 3k, %\ X\ Unieg, Litsg) : eCT) = eEnc(eMSKy, [(x”, s, 01)

where s, = 3 (—1)?<FPRF* " (Unteg k1, Lvsg)-

I/EUMsgﬁk\{k}
Lemma 22 Hybrid 2 and Hybrid 3 are computationally indistinguishable if the MDDH,, assumption holds
over the bilinear group G.

Proof. We prove the above lemma through a series of hybrids. Let ¢, be the total number of ID-sets with
complete LoR queries. Let {1, ,U,, } be some fixed ordering of the ID sets with an upper bound @, on

qu- We define the sub-hybrids HY as follows,

61

v seedy, .,
(—1)v<kPRF;**%

-

0
H) : For ¢ € [Q,]U {0}, this is the same as Hybrid 2 except that for every complete LoR query, for k € HS,
the challenger sets

(1) i e
OLoR,B(k7XI(gO)7X§ql>7uMsg7LMsg) : eCT;ﬂ()) = eEnC(eMSKp, [[()ilg) y Sk, 0)]]1) ?f Z’lMSg € {ulv 72/{9}
eEnc(eMSKy, [(x;’, sk, 01) if Unsg € {Upt1, - ,Ug, } -
Consider U, = {L} for ¢ > gq,. Observe that, Hybrid 2 = ﬁg and ﬁ% = Hybrid 3. In the following, we

show that IZI(;A R ﬁg.

Claim 9 For ¢ € [Q.], ﬁg—1 and ﬁg are computationally indistinguishable.

Proof. To show this, assume Li{g, e ,L}j{Q be the labels queried on the ID set U, and Q);, be the upper

bound on v. We introduce a series of hybrids ITIS_M9 where ¥ € [@Q1] based on the complete query of the
form (x, %, %, Uy, *).

ﬁg%ﬁ : For ¥ € [Qr], this is the same as ﬁg_l except that for every complete query of the form
(k:,xéo),xg),ug,L) to the Olor g(-), for k € HS, the challenger sets

eEnc(eMSKy, [(x{) . sp, 01) ifLe{Ll . L)}

OLor (b, x\ x\V 14, L) eCT =
° BTk g eEnc(eMSKy, [(x\”), si, O)) ifLe{Ly™ - L3"} .

We define another hybrid ﬁg—l,o = ﬁg_l. Observe that ﬁg—l,QL = ﬁg. We have to prove ﬁgfl’ﬁfl . ﬁgq,ﬂ
to complete the cycle of hybrids.

Claim 10 For 9 € [Qy], 131271,1971 and ﬁgq,ﬁ are computationally indistinguishable.

Proof. We define the identity set Ll;"s =HSNU, = {u1,...,uy} with Q,, as upper bound on w. In the

following, we consider the sequence of hybrids ﬁg for (n € [Q,]U{0}) based on the each complete encryption

query of the form (ug, xEPQ, XS},C),Z/{Q, LY) and each complete secret key query of the form (uy, {¥rtreu,,Uy).

ﬁ?, for (n € [Qw] U {0}): Same as hybrid ﬁgq,ﬁq except for all users uj, € UM, satisfying Iy, . S Imul,

the queried key and the LoR ciphertext components corresponding to the underlying les; scheme are changed
as follows:

eKeyGen(eMSK,,, [(¥ru,> @ 02, Iy, ..) itk <w
Oke(ur, {yrtueu,, Up) © €SKpa, = KevG MSK P I ifk=w °
eney en(€ Uk [[(yé,ukv Qy, ZLE[’I‘]] uL,Lug)]]27 Yo uy) IR=w

eEnc(eMSK,,, [(xglk) , Su, O]) ifk<np
0 _(1 0
OLoR,B(UkaX;)7X§<;)7U97LZ) : eCT;)= eEnc(eMSK,,, [[(xg?7 Sup, 001) ifn<k<w
eEnc(eMSK,,, [[(xq(&), Sue, 1)) ifk=w

where 5“L7Lug = (X}L’L(l),y&m) — (x}jL(O), Y¢.,) and the superscript 1 represent the first LoR queries are of the

form (u,, *,*, Uy, Lg{g). From the admissibility conditions of the MNgq;, we have

- Let Qcu, 1,1, be the number of the ciphertext queries of the form (wy, *, *, Z/IQ,LZQ) and consider
e

Ou, Ly = e yoa) — xDyp,,) forall 7 Qe tt Ly]-

62

— Also Zu GU’HS 5u’_’ Mﬁ =0.

From the function-hiding security of [N, we have ﬁg R ﬁgq,ﬁfr In both the hybrids, the complete key
queries for the tuple (ww, {yy xtreu, U,) is of the form

Ok (U, {y&k}keug,ug) : eSKy, = eKeyGen(eMSK,,, [[(ye,uk7 ay, 0)]e, Iye’uk)
and the complete ciphertext queries (u,, xfﬁj,xg{j,u@, LZ@) is of the form

0 . =0
0) _(1) L{Q,ng): eCT;@)_{eEnc(eMSK,,,, (xq(hl),, Su,, 1)]1) inH,

[
OLo Uaw y Ktgy y Ky ~
Lo,s eEnc(eMSK,,,, [[(ngj, Su,s 01) inHY |5 .

Thus, the indistinguishability follows from functlon hiding argument of the underlying [N scheme.
By similar arguments we can show that HQ . HO_ 1,9- To complete the cycle between all the subsequent

hybrids, we now show Hn_l S H77 through the following claim.

Claim 11 For all 5 € [@,,], the hybrids ﬁ?,—1 and ﬁz are computationally indistinguishable.

Proof. To show the indistinguishability of the above hybrids for n € [Q,,], we define the following series of
. =0 —0

hybrids namely H, _, ; to H, _; 7.

HSVLI: For every complete challenge query to the oracle Oior g(-), uniformly choose seedy,, u, + K2 sat-

isfying seedy,, u, = seedy, ., instead of generating these using nKeyShared algorithm.

For u.,u, € HS, from the security of Mgk, we have
A({nSKM}kEc&seeduw,u" <« nKeyShared) . A({HSKf,k}kecs : seeduw,,n — ’Cz)

Thus, the indistinguishability of hybrids ﬁ271 and ﬁgfm follows the security of Mpike.

=0
H,_ ¢ The vectors sy, , sy, are modified in this hybrid as follows:

Sun _ Z ()k<u"PRFseedun Sk, 1(]/{9’ LZ@) =F tun,uw 3
€Uy kg {un,uw}
sue = D (CDFTPRETT U LY) by,

keUy kg {un,uw}

where Sy Z;”. The indistinguishability follows from the security of PRF;.

—0 . . .
H,_; 3: The secret key and the ciphertext components corresponding to the complete queries for the user

uy, € HS for k € {n,w} with R(xy,,y,,,) = 1 are modified as follows.

eKeyGen(EMSKUM [[(YZ,ukﬂ Qy, <a£, >)HZv Ye,uy) ifk=n

Oke(uk, {yireu, Us) : €SKeu, = . 7
kSke o k eKeyGen(eMSK.,, [(¥ru,> <, ZLe[nfl]o“mLug (e, tuyua))2, Ly,) fk=w

eEnc(eMSKy,, [(x\, Sup + tuyuws 1)1) ifk=n

OLor.s(u ,x“,x(),Z/{,Lﬂ . eCTO =
Lo, 11k, X k o L) k eEnc(eMSK,,, [[(ng)k)7 Supl — buyue D]) ifk=w.

63

The indistinguishability follows from the function-hiding security of Mesi scheme. Since for R(xx,y, ;) =
1,k =n, we have

Sl "
eDec(eSK, %, eCT,." %) = [(x{), yp,) + (e, 80,1

[[< g)k)aYE uk> + <afvsuk + tumuw> - <a€atun,uw>ﬂT

?,—13 ﬁ?y—l.?»
= eDec(eSK, i 7%,eCT, " "").

For R(xx,ysx) = 1,k = w, we have

" ﬁo_l
eDec(eSK, 1 "?,eCT," %) = [(x0),y,) + (arsu,) + > du,.L L]
Lt€[n—1]

= [[<X£33a§’£,uk> + (o, Su;, — un,um Z Ou, L w9 alvtun,ume
Le[n 1]

770 770
= eDec(eSKzZ’l’?’, eCTZI”’l’S).

—0 . . .
H,_; 4: Same as the previous hybrid except that the secret key components corresponding to the complete

key queries for k € {n,w} with R(xu,,y,,,,) = 1 is modified as follows.

eKeyGen(eMSK,,, [(¥ru, < — tuyuy)2, L) ifk=n

Yeup

Oke (U, {yrtreu, Up) © €SKeuy, = i
(s {yibre o) k eKeyGen(eMSKy,, [(¥u,. @, ZLG[”,H%“L%, + tuyuw)2, Iy, ..) ifk=w.

For the complete key queries of the form (*,UQ,L}Z) associated with the key vectors {{y} }retice,
{Y%}kewey? e 7{ygkey}keumy}, we replace value (e, ty, u,) with a random ty, 4, < Z, where {al,
., a%e } be the set of corresponding hash values generate ash H over the key vectors ke €Uk,
Qi) be the set of ponding hash values generated by hash H over the key vect Vi) ket

{yi}keuKey, e ,{ygkey}keuKey}. Here, we consider Qxey be the maximum number of key queries by the
adversary A. The indistinguishability follows from MDDH,,, assumption over the bilinear group G.

—0 . . .
H,_, 5: Same as the previous hybrid except that the secret key components corresponding to the complete

key queries for k € {n, w} with R(Xuy,,¥,,,,) = 1 is modified as follows.

eKeyGen(eMSKy,, [(¥ru,, o, = Gy = 5umLug Nes Ly,) ifk=n

Oke(ur, {¥ptreu, Up) : €SKp o, =)
o iz eKeyGen(eMSK,,, [(¥ru, ZLGW](F%LM? + a2y Ly,) ifk=w

where we implicitly set ¢y, u, = tu,,u, +90 As ty, u, is distributed uniformly random over Z,,

u,,,Lug .

the hybrids are statistically indistinguishable.

—0 . . .
H, _ g: The secret key and the ciphertext components corresponding to the complete queries for the user

uy, € HS for k = n with R(xu,,¥,.,) = | are modified as follows.

eKeyGen(eMSKukv H(y&ukv Qy, un Wy)}]% Yo u) ifk=n

Ok (ks {Yrtreu, Us) © eSKyy, = i
({ k} e Q) . eKeyGeh(eMSKukv [[(yf,uk? Qy, ELE[U] (suk M\y +fun nu)]]z’ Yeu) ifk=w ’

eEnC(eMSKU}c? II(x7(llk) s Suy + tun,uw7 17)ﬂl) lf k= n

(’)LOR,g(uk,x<),X() L{ ,Lﬁ) . eCT(U =
¥ F o F eEnc(eMSK,,, [[(XEPB, Su, — buyuws D) ifk=w

The indistinguishability follows from the function-hiding security of ;.

64

Now, we undo the changes in the previous hybrids to get to hybrid ﬁ?]. Therefore, Claim 11 holds. O
This also concludes the proof of Claim 10 and Claim 9. O (]
We reach Hybrid 3 when we loop over 7 € [@.,,]. Hence, Lemma 22 holds. O
This completes the proof of Theorem 9. (]

Acknowledgements. The first author acknowledges partial support from the Swiss Government Excellence
Scholarship (ESKAS) under Personal ESKAS-No: 2024.0100. We also extend our gratitude to the anonymous
reviewers for their valuable comments and suggestions.

References

[1]

[10]

Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product functional
encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASTACRYPT 2019, Part ITI. LNCS, vol. 11923, pp.
552-582. Kobe, Japan (Dec 8-12, 2019). doi:10.1007/978-3-030-34618-8_19

Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-product functional
encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 128-157. Beijing,
China (Apr 14-17, 2019). doi:10.1007/978-3-030-17259-6_5

Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner
products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733-751. Gaithersburg, MD, USA (Mar 30 —
Apr 1, 2015). doi:10.1007/978-3-662-46447-2_33

Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner
products: Function-hiding realizations and constructions without pairings. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 597-627. Santa Barbara, CA, USA (Aug 19-23,
2018). doi:10.1007/978-3-319-96884-1 20

Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-grained
access control. In: Moriai, S., Wang, H. (eds.) ASTACRYPT 2020, Part III. LNCS, vol. 12493, pp.
467-497. Daejeon, South Korea (Dec 7-11, 2020). doi:10.1007/978-3-030-64840-4_16

Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from
pairings. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 601—
626. Paris, France (Apr 30 — May 4, 2017). doi:10.1007/978-3-319-56620-7_21

Abdalla, M., Gong, J., Wee, H.: Functional encryption for attribute-weighted sums from k-Lin. In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 685-716. Santa
Barbara, CA, USA (Aug 17-21, 2020). doi:10.1007/978-3-030-56784-2_23

Agrawal, S., Goyal, R., Tomida, J.: Multi-party functional encryption. In: Nissim, K., Waters, B.
(eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 224-255. Raleigh, NC, USA (Nov 8-11, 2021).
doi:10.1007/978-3-030-90453-1_8

Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption: Stronger security,
broader functionality. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS, vol. 13747, pp.
711-740. Chicago, IL, USA (Nov 7-10, 2022). doi:10.1007/978-3-031-22318-1_25

Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333-362.
Santa Barbara, CA, USA (Aug 14-18, 2016). doi:10.1007/978-3-662-53015-3_12

65

https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-030-90453-1_8
https://doi.org/10.1007/978-3-031-22318-1_25
https://doi.org/10.1007/978-3-662-53015-3_12

[11]

[12]

[13]

Agrawal, S., Maitra, M., Vempati, N.S., Yamada, S.: Functional encryption for Turing machines with
dynamic bounded collusion from LWE. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV.
LNCS, vol. 12828, pp. 239-269. Virtual Event (Aug 16-20, 2021). doi:10.1007/978-3-030-84259-8_9

Agrawal, S., Tomida, J., Yadav, A.: Attribute-based multi-input FE (and more) for attribute-weighted
sums. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part IV. LNCS, vol. 14084, pp.
464-497. Santa Barbara, CA, USA (Aug 20-24, 2023). doi:10.1007/978-3-031-38551-3_15

Agrawal, S., Yadav, A., Yamada, S.: Multi-input attribute based encryption and predicate encryption.
In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 590-621. Santa
Barbara, CA, USA (Aug 15-18, 2022). doi:10.1007/978-3-031-15802-5_21

Ananth, P.V., Sahai, A.: Functional encryption for Turing machines. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016-A, Part I. LNCS, vol. 9562, pp. 125-153. Tel Aviv, Israel (Jan 10-13, 2016).
doi:10.1007/978-3-662-49096-9_6

Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Technion - Israel Insti-
tute of Technology, Israel (1996), https://technion.primo.exlibrisgroup.com/permalink/972TEC_
INST/q1j950/alma990021768270203971

Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: Ishai, Y. (ed.)
TCC 2011. LNCS, vol. 6597, pp. 253-273. Providence, RI, USA (Mar 28-30, 2011). doi:10.1007/978-3-
642-19571-6_16

Cho, C., Doéttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivious transfer
and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp.
33-65. Santa Barbara, CA, USA (Aug 20-24, 2017). doi:10.1007/978-3-319-63715-0_2

Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client functional
encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASTACRYPT 2018, Part II. LNCS, vol.
11273, pp. 703-732. Brisbane, Queensland, Australia (Dec 2—-6, 2018). doi: 10.1007/978-3-030-03329-3_24

Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dynamic decentralized functional
encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp.
747-775. Santa Barbara, CA, USA (Aug 17-21, 2020). doi:10.1007/978-3-030-56784-2_25

Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client functional encryption
with repetition for inner product (2018), https://eprint.iacr.org/2018/1021

Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner product functional
encryption from the k-Linear assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS,
vol. 10770, pp. 245-277. Rio de Janeiro, Brazil (Mar 25-29, 2018). doi:10.1007/978-3-319-76581-5_9

Datta, P., Pal, T.: (Compact) adaptively secure FE for attribute-weighted sums from k-lin. In: Tibouchi,
M., Wang, H. (eds.) ASTACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 434-467. Singapore (Dec 6-10,
2021). doi:10.1007/978-3-030-92068-5_15

Datta, P., Pal, T.: Decentralized multi-authority attribute-based inner-product FE: Large universe and
unbounded. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp. 587-621.
Atlanta, GA, USA (May 7-10, 2023). doi:10.1007/978-3-031-31368-4 21

Datta, P., Pal, T., Takashima, K.: Compact FE for unbounded attribute-weighted sums for logspace
from SXDH. In: Agrawal, S., Lin, D. (eds.) ASTACRYPT 2022, Part I. LNCS, vol. 13791, pp. 126-159.
Taipei, Taiwan (Dec 5-9, 2022). doi:10.1007/978-3-031-22963-3_5

66

https://doi.org/10.1007/978-3-030-84259-8_9
https://doi.org/10.1007/978-3-031-38551-3_15
https://doi.org/10.1007/978-3-031-15802-5_21
https://doi.org/10.1007/978-3-662-49096-9_6
https://technion.primo.exlibrisgroup.com/permalink/972TEC_INST/q1jq5o/alma990021768270203971
https://technion.primo.exlibrisgroup.com/permalink/972TEC_INST/q1jq5o/alma990021768270203971
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-56784-2_25
https://eprint.iacr.org/2018/1021
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-030-92068-5_15
https://doi.org/10.1007/978-3-031-31368-4_21
https://doi.org/10.1007/978-3-031-22963-3_5

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Dowerah, U., Dutta, S., Mitrokotsa, A., Mukherjee, S., Pal, T.: Unbounded predicate inner product
functional encryption from pairings. Journal of Cryptology 36(3), 29 (Jul 2023). doi:10.1007/s00145-
023-09458-2

Dufour Sans, E., Pointcheval, D.: Unbounded inner-product functional encryption with succinct keys.
In: Deng, R.H., Gauthier-Umana, V., Ochoa, M., Yung, M. (eds.) ACNS 19. LNCS, vol. 11464, pp.
426-441. Bogota, Colombia (Jun 5-7, 2019). doi:10.1007/978-3-030-21568-2_21

Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J.: An algebraic framework for Diffie-Hellman
assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129-147.
Santa Barbara, CA, USA (Aug 18-22, 2013). doi:10.1007/978-3-642-40084-1_8

Francati, D., Friolo, D., Malavolta, G., Venturi, D.: Multi-key and multi-input predicate encryption
from learning with errors. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part III. LNCS, vol.
14006, pp. 573-604. Lyon, France (Apr 23-27, 2023). doi:10.1007/978-3-031-30620-4_19

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability
obfuscation and functional encryption for all circuits. In: 54th FOCS. pp. 40—49. IEEE Computer Society
Press, Berkeley, CA, USA (Oct 2629, 2013). doi:10.1109/FOCS.2013.13

Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushile-
vitz, E., Malkin, T. (eds.) TCC 2016-A, Part IT. LNCS, vol. 9563, pp. 480-511. Tel Aviv, Israel (Jan 10—
13, 2016). doi:10.1007/978-3-662-49099-0_18

Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F., Sahai, A., Shi, E., Zhou, H.: Multi-
input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 578-602, Copenhagen, Denmark, (May 11-15, 2014). doi:10.1007/978-3-642-55220-5_32

Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control
of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006. pp.
89-98. ACM Press, Alexandria, Virginia, USA (Oct 30 — Nov 3, 2006). doi:10.1145/1180405.1180418,
available as Cryptology ePrint Archive Report 2006/309

Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Khuller,
S., Williams, V.V. (eds.) 53rd ACM STOC. pp. 60-73. ACM Press, Virtual Event, Italy (Jun 21-25,
2021). doi:10.1145/3406325.3451093

Li, Y., Wei, J., Guo, F., Susilo, W., Chen, X.: Robust decentralized multi-client functional en-
cryption: Motivation, definition, and inner-product constructions. In: Guo, J., Steinfeld, R. (eds.)
ASTACRYPT 2023, Part V. LNCS, vol. 14442, pp. 134-165. Guangzhou, China (Dec 4-8, 2023).
doi:10.1007/978-981-99-8733-7_5

Libert, B., Titiu, R.: Multi-client functional encryption for linear functions in the standard model from
LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASTACRYPT 2019, Part III. LNCS, vol. 11923, pp. 520-551.
Kobe, Japan (Dec 8-12, 2019). doi:10.1007/978-3-030-34618-8_18

Lin, H., Luo, J.: Compact adaptively secure ABE from k-Lin: Beyond NC' and towards NL. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 247-277. Zagreb,
Croatia (May 10-14, 2020). doi:10.1007/978-3-030-45727-3_9

Lin, H., Luo, J.: Succinct and adaptively secure ABE for ABP from k-Lin. In: Moriai, S., Wang, H.
(eds.) ASTACRYPT 2020, Part III. LNCS, vol. 12493, pp. 437-466. Daejeon, South Korea (Dec 7-11,
2020). doi:10.1007/978-3-030-64840-4 15

Nguyen, K., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with fine-grained access
control. In: Agrawal, S., Lin, D. (eds.) ASTACRYPT 2022, Part I. LNCS, vol. 13791, pp. 95-125. Taipei,
Taiwan (Dec 5-9, 2022). doi:10.1007/978-3-031-22963-3 4

67

https://doi.org/10.1007/s00145-023-09458-2
https://doi.org/10.1007/s00145-023-09458-2
https://doi.org/10.1007/978-3-030-21568-2_21
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-031-30620-4_19
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-981-99-8733-7_5
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-030-64840-4_15
https://doi.org/10.1007/978-3-031-22963-3_4

[39]

[42]

[43]

[44]

[46]

[47]

A

Nguyen, K., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with public inputs and
strong security. Cryptology ePrint Archive, Paper 2024/740 (2024), https://eprint.iacr.org/2024/
740

Nguyen, K., Pointcheval, D., Schadlich, R.: Decentralized multi-client functional encryption with strong
security. Cryptology ePrint Archive (2024), https://eprint.iacr.org/2024/764

Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the de-
cisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191-208. Santa
Barbara, CA, USA (Aug 15-19, 2010). doi:10.1007/978-3-642-14623-7_11

Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In:
Wang, X., Sako, K. (eds.) ASTACRYPT 2012. LNCS, vol. 7658, pp. 349-366. Beijing, China (Dec 2-6,
2012). doi:10.1007/978-3-642-34961-4_22

Okamoto, T., Takashima, K.: Dual pairing vector spaces and their applications. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 98-A (1), 3-15 (2015). doi:10.1587/ TRANSFUN.E98.A.3

O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive (2010), https:
//eprint.iacr.org/2010/556

Shi, E., Vanjani, N.: Multi-client inner product encryption: Function-hiding instantiations without
random oracles. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp.
622—651. Atlanta, GA, USA (May 7-10, 2023). doi:10.1007/978-3-031-31368-4_22

Tomida, J.: Unbounded quadratic functional encryption and more from pairings. In: Hazay, C., Stam,
M. (eds.) EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 543-572. Lyon, France (Apr 23-27, 2023).
doi:10.1007/978-3-031-30620-4_18

Tomida, J., Takashima, K.: Unbounded inner product functional encryption from bilinear maps. In:
Peyrin, T., Galbraith, S. (eds.) ASTACRYPT 2018, Part II. LNCS, vol. 11273, pp. 609-639. Brisbane,
Queensland, Australia (Dec 2-6, 2018). doi:10.1007/978-3-030-03329-3 21

Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure
realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 53-70. Taormina, Italy (Mar 6-9, 2011). doi:10.1007/978-3-642-19379-8 4

Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gen-
naro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 678-697. Santa Barbara,
CA, USA (Aug 16-20, 2015). doi:10.1007/978-3-662-48000-7_33

Wee, H.: Functional encryption for quadratic functions from k-lin, revisited. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 210-228. Durham, NC, USA (Nov 16-19, 2020).
doi:10.1007/978-3-030-64375-1_8

Multi-Input Attribute-Based UIPFE

In the section, we mainly focus on the multi-input unbounded FE (MI-UFE) which is a particular form of
MC-UFE assuming all the clients use the same label. Thus the syntax of MI-UFE follows from the Definition
15 by ignoring the encryption algorithm from MC-UFE. Subsequently, we discuss the standard security of MI-
UFE in Definition 21 and later we instantiate MI-UFE over attribute-based IPFE with wildcard attributes
in Definition 22.

68

https://eprint.iacr.org/2024/740
https://eprint.iacr.org/2024/740
https://eprint.iacr.org/2024/764
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1587/TRANSFUN.E98.A.3
https://eprint.iacr.org/2010/556
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-031-31368-4_22
https://doi.org/10.1007/978-3-031-30620-4_18
https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-030-64375-1_8

Definition 21 (Security for MI-UFE) The MI-UFE scheme [M;¢ = (Setup, KeyGen, Enc, Dec) is said to
be xx-indistinguishability (xx-IND) (xx € {sel, adp}) secure if for any security parameter A, any PPT adver-
sary A, there exists a negligible function negl such that the following holds

AdV,T\i,fxx-lND(/\) = ‘Pr {EXPt,nii,;x-lND(A70) = 1} —Pr {EXptzi,fxx-lND(/\ 1) = 1} ‘ < negl(A)

where the experiment Expt:l{ifxx_,,\,D()\7 B) is defined for 8 € {0,1} as follows:

ExptT\i)fXXJND()\,B) : Orc({(Keyy ;)jer tr)
1: (PP, EK}, MSK) « Setup(1*,n). output KeyGen(MSK, (Key,, ;)jer,)-
92 ﬁ/ . AOCorr(')VOKG(')yoE(')voLoR,/j(')(PP). OE(k.’ (Msgk.j)jél,;) .
3: Output 8’ if condition (x) is satisfied. :

output Enc(EKj, (MSgk,j)jEIL)'
OLor,5(k, (Msgy, ;. Msgi,j)jel,g) :
output Enc(EKp, (Msggﬁj)jel,;)

OCorr (k) :
output MSKy.

Let CS be the sets of all inputs k € ZD for which the adversary makes queries to the oracles Ocor(+) and
HS = [n] \ CS. The condition (x) is that if there exist two messages satisfying

Tk, (Keyy j)jen brem> {6, (Msg)) e Yeem) = F({k, (Keyy ;) en Yoepm) {k (Msgy, ;) jer: brein)-

o forallk € [n], [Oor sk, (Msgp, ;, Msgj. ;)jer,) or Oe(k, (Msgy, ;)jer,) with (Msgy ; = Msg;, ; = Msgy, ;)jer
is queried] or [(Msg%j = Msg,lwz = Msg;, ;)jer; and k € CS].

e for all k € [n], [Okc(k, (Keyy, ;)jer,) is queried] or [k € CS].

— If xx = sel: Queries to Ocorr(-) and Og(+) in one shot. That is, adversary submits (CS, k,xlio),xlgl)) and

obtains the response ({EKy}, {Enc(EKy,x(?)}). Only after the one-shot query, the adversary can query
Oke(+) oracle.

Definition 22 (MI-UFE for AB-IP) A multi-input attribute-based UIPFE (MI-AB-UIPFE) is a class of
MI-UFE where £* = Zy x P, and M* = Zy x ATT U{o} such that P and AT T represent the access policy
and attribute spaces, respectively. Here, {¢} represents the wildcard attributes. The function f is defined as
follows: for the message components Msg;, = (xx, Si) € M*, the key components Key = (y = {y, }x,A) € £*
and xy,y;, are associated with the index sets I, and I},

2 kefn) Xk Yi)p if (x) holds

F({k, (Keyy ;) jer, Yremls 1k, (Msgy,) jer; Yeein)) = {L otherwise.

The conditions in (*) is define as follows:
- (R(xk,y,) =1ANA(Sg) =1forall k € [n]) V A(o) = 1.

Definition 23 (Security of Weak MI-AB-UIPFE) We say that an MI-AB-UIPFE scheme is secure
against legitimate keys if the scheme is secure against adversaries that satisfy the condition defined below in
addition to the conditions defined in Definition 21. Let (CS, {k, (XL%7 xf}}c, Spk) YuelQenl ke 1V e Ar}eciQu,])
be the query of the adversary, where Qye, is the number of queries to Okg(+) and Q. be the numbers of
queries of the forms of (k, %, *) to the OLor g(+) oracle. For £ € [Qkey], we say that the key components (y,, As)
is legitimate if for all k € HS, there must exists pj € [Qc,k] such that Ay(S,;) = 1. In security against
legitimate keys, (y,,A¢) must be legitimate for all £ € [Qyey]. In contrast, we say that an MI-AB-UIPFE
satisfies security against any keys if the scheme is secure against adversaries that follows just the condition

defined in Definition 21.

69

A.1 Security against Legitimate Keys

In this section, we analyze the MI-AB-UIPFE scheme in the context of legitimate keys. Due to the weak secu-
rity model, we refer this scheme as weak MI-AB-UIPFE. This construction is inspired by the MC-AB-UIPFE
scheme from the Construction 6.1, where we assume s, = 1 = (1,1,...,1), generated from label L. The
detailed construction is provided below.

A.1.1 Construction

Consider MM, = (aSetup, aKeyGen, aEnc, aSlotEnc, aDec) be an AB-sUIPFE scheme with Spup = Loy, Spriv =
Z?‘H. Note that, our proposed weak MI-AB-UIPFE scheme only involves the aEnc algorithm to encrypt

the slot-specified message vector using a corresponding master secret key. In the following, we present our
weak MI-AB-UIPFE scheme Mymiai = (Setup, KeyGen, Enc, Dec) for LSSS access structure.

Setup(1*,n): The setup algorithm takes the security parameter A with the total number of user n in the
system as input and executes the following steps:

1. Generates (aMPK},aMSK},) < aSetup(1*,1™+1) for all k € [n].
2. Outputs k-th party’s encryption key EKy = aMSKj, for k£ € [n] and the master secret key MSK =
{aMSKy biepn)-

KeyGen(MSK,y = (¥i)ken)> {1y, tx,A): The key generation algorithm takes as input MSK, the access
structure A and a key vector y = (y; || yo || - || ¥,,) where each y, is associated with the index set
Iy, for all k € [n]. It does as follows:

1. Samples r1,rs3,...,r, < Zj‘ such that Zke[n] r; = 0.
2. Generates aSKy, < aKeyGen(aMSKy, [(y, Tk, 0)]2, Iy, , A) for all k € [n].
3. Outputs the secret key SK = {aSKy, }ren)-

Enc(EK, Xk, Sk): The encryption algorithm takes as input EKy, a message vector Xy = (o,i)ic[m,] With an
attribute set Sy and proceeds as following:

1. Generates aCTy, + aEnc(aMSK, [(xx,1,0)]1,Sk) where 1= (1,1,...,1) € Z7".
2. Outputs the ciphertext CT; = aCTy.

Dec(SK, {CTx }repm)): The decryption algorithm takes as input SK, {CTg}refn) and performs the following
steps:

1. Returns [d]r < [];e}, aDec(aSKy,aCTy) or L.

Correctness: If there exists any k € [n] such that R(x,y,) = 0V A(S;) =0, output L. Otherwise, from
the correctness of IM,s, we have

aDec(aSKy,aCTy) = [(xk, ¥i)p + (tk, 1))z for all k € [n]. (7)

From Equation 7, we compute

[d]r = J] aDec(aSKy,aCTx) = [Y (xk,yi)p + (oo, Dlr = [Y (%, vyl

keln] ke[n] ke[n]

A.1.2 Security

Theorem 10 Our Mymiai scheme achieves sel-FH-IND security against legitimate keys as per Definition 23
if the underlying Mg is sel-FH-IND secure as per Definition 1.

70

(Proof Sketch). In the instantiation of the MC-UFE security from Definition 16, over AB-UIPFE with one-
label security, it is observed that all Ojor g(-) oracle queries for each honest user k¥ € HS must occur at the
same label, and no further Og(-) oracle queries can be made at the same label L. Consequently, for each
honest user k, the adversary A can submit multiple challenge ciphertext queries to the Oior g(-) oracle. The
security constraints ensure that the queried secret keys of the form (yg, Ay) must satisfy the admissibility
condition whenever Ay(S,) =1 for all £ € HS where 1 is the number of challenge ciphertext query to the
OLOR)/J)(') with the label L.

If we consider this security in the context of MI-AB-UIPFE, then we have to ignore the label, and the
secret key query of the form {(y,, A¢)}ic(q,.,) Will satisfy

Z <X;(,33c7yf,k>17 = Z (xﬁ?@,y&k% whenever Ay(S, ;) =1 for all k € HS
keEHS kEHS

with the constraints (x) of Definition 16 for all i € [Q.,x]. Due to the admissible conditions and the multiple
challenge ciphertext query to the Oior g(-) oracle, we can compute

4 = min {M € [Qe : (Sy =D <XL{3€,y¢,k>p> Vk € ”HS}

kEHS keHS
— min {u € [Qon) : Ae(Spp) = 1 ¥k € 7—[8}

From this above inclusion, it can concluded that for all £ € HS, and all the secret key query, there exist a
p'-th ciphertext query to the Opor g(-) oracle in of the form (k, *, %) such that Ay(S,) = 1 holds. Thus the
above MI-AB-UIPFE scheme is secure against legitimate keys.]

A.2 Security against Any Keys
A.2.1 Construction

Let Mymiai = (wSetup, wKeyGen, wEnc, wDec) be a weak MI-AB-UIPFE scheme with wildcard attribute and
the security against legitimate keys as per Definition 23, M,pe = (abSetup, abKeyGen,abEnc, abDec) be a CP-
ABE scheme of Lin and Luo [37] (as ABPs capture monotone span programs) for LSSS access structure and a
secret sharing scheme [Ny = (Share, Rec). Then, the MI-AB-UIPFE scheme M. = (Setup, KeyGen, Enc, Dec)
for LSSS access structure is constructed as follows achieves security against any keys.

Setup(1*,17): The setup algorithm takes as input the security parameter A, the number of user n and
executes the following steps:

1. Generates (WPP, {wEK}; }e[n], WMSK) < wSetup(1*,17).

2. For all k € [n], generates (abMPKj,,abMSK},) < abSetup(1?).

3. Outputs the public parameter PP = (WPP, {abMPK }1.c[,), the encryption key EKj, = (WEK}, abMSKj,)
and the master secret key MSK = wMSK.

KeyGen(MSK,y = (¥i)ken)> {1y, tx,A): The key generation algorithm takes input as MSK, the access
structure A and a key vectory = (y; || ¥2 || -+ || ¥,,) where each y, is associated with the index set
I, for all k € [n]. It works as follows:

1. Generates wSK + wKeyGen(wMSK,y, A).

2. Generates (01,...,0,) < Share(wSK,n) where oy, = {Uk,i}ielyk.

3. Compute abCTy, «— {abCTy,; = abEnc(abMPKk,akyi,A)}ielyk for all k € [n].
4. Outputs the secret key SK = {abCTy}repn)-

71

Enc(EKy,xg,Sk): The encryption algorithm takes as input the k-th encryption key EKy, a message vector
X = (Th,i)icim,) With an attribute set Sj and proceeds to do the following steps:

1. Generates wCTy, < wEnc(WEKg, xi, Si) and abSKj, < abKeyGen(abMSKj, S.).
2. Outputs the ciphertext CTy = (WCTy, abSKy,).

Dec(SK, {CTk }rem)) : The decryption algorithm takes input the secret key SK, the ciphertext {CTy}; and
proceeds as follows:

1. If there exists k € [n] such that A(Sg) = 0, then outputs L .
2. Otherwise, computes oy, < {0}, ; = abDec(abSKy, abCTy ;) }ier,, for k € [n].

3. Computes wSK' « Rec(d/,...,0%).

v n

4. Computes [d]7 < wDec(WSK', {wCT .} kefn])-

Correctness: From the correctness of Mype for wildcard attributes, of, ..., o}, are vaild shares of wmiSK,
and from the correctness of the Mymiai, we get

[dlr = [[Z (XK, ¥i)plr whenever A(S;) =1 for all k € [n].
ke(n]

A.2.2 Security Analysis
In Theorem 11, we present the security analysis of MI-AB-UIPFE against any keys, as described above.

Theorem 11 Our Myiai scheme achieves sel-IND security against any keys as per Definition 21 if Mymiai has
security against legitimate keys, MNape 15 selectively secure, and lNgs scheme is secure.

Proof. To prove the security against any keys of the scheme provided in Section A.2 , we consider the
following series of hybrids.

Hybrid 0. Same as real hybrid. We consider a secret key as an illegitimate key if all the combinations of
the challenge ciphertexts decrypt to L. More explicitly, for each illegitimate secret key corresponding
to (y = (¥)kem); A), there exist &' € HS such that A(Sy/) = 0 where Sy is the associated attribute
set of ciphertext query for the honest slot &’.

Hybrid 1. Same as Hybrid 0 except the responses of the illegitimate secret key queries. The abCTy, in SK

is now generated as
abCTy ; < abEnc(abMPK,/, 0™ | A)

where m is the bit-length of the each share oy ;s. Due to the CP-ABE security of Lin and Luo [48]
Mape scheme, hybrid 0 and hybrid 1 are computationally indistinguishable.

Hybrid 2. Same as Hybrid 1 except the responses of the illegitimate secret key queries. The secret shares
or’s are now generated as

o = {Uk,i — {0,]'}m}ielyk .

Due to the security of N scheme, the hybrid 1 and hybrid 2 are identically distributed.

72

Hybrid 3. Same as Hybrid 1 except the responses of the challenge ciphertexts. For all the ciphertext
queries, the challenger replies

Enc(EKp, x,(cl) ,Sk)-

The indistinguishability follows directly from the security of MNymiai scheme.

Thus, by the above hybrids, we see that the adversary has no information about the challenge bit 5. This
completes the proof of Theorem 11. |

73

	Introduction
	Our Results

	Technical Overview
	Integrating Unboundedness

	Preliminaries
	Extended Slotted UIPFE
	Construction
	Security Analysis

	Attribute-Based Slotted UIPFE
	Construction
	Security Analysis

	Multi-Client Attribute-Based UIPFE
	Construction
	Security Analysis

	Dynamic Decentralized UIPFE
	Construction
	Security Analysis

	Multi-Input Attribute-Based UIPFE
	Security against Legitimate Keys
	Security against Any Keys

