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Abstract

This paper presents the concept of a multi-client functional encryption (MC-FE) scheme for attribute-
based inner product functions (AB-IP), initially proposed by Abdalla et al. [ASIACRYPT’20], in an
unbounded setting. In such a setting, the setup is independent of vector length constraints, allowing
secret keys to support functions of arbitrary lengths, and clients can dynamically choose vector lengths
during encryption. The functionality outputs the sum of inner products if vector lengths and indices
meet a specific relation, and all clients’ attributes satisfy the key’s policy. We propose the following
constructions based on the matrix decisional Diffie-Hellman assumption in a natural permissive setting
of unboundedness:

– the first multi-client attribute-based unbounded IPFE (MC-AB-UIPFE) scheme secure in the stan-
dard model, overcoming previous limitations where clients could only encrypt fixed-length data;

– the first multi-input AB-UIPFE (MI-AB-UIPFE) in the public key setting; improving upon prior
bounded constructions under the same assumption;

– the first dynamic decentralized UIPFE (DD-UIPFE); enhancing the dynamism property of prior
works.

Technically, we follow the blueprint of Agrawal et al. [CRYPTO’23] but begin with a new unbounded
FE called extended slotted unbounded IPFE. We first construct a single-input AB-UIPFE in the standard
model and then extend it to multi-input settings. In a nutshell, our work demonstrates the applicability
of function-hiding security of IPFE in realizing variants of multi-input FE capable of encoding unbounded
length vectors both at the time of key generation and encryption.

Keywords. Inner product functional encryption · Multi-client · Dynamic decentralized · Unbounded ·
Attribute-based
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1 Introduction

Multi-Party Functional Encryption. Functional encryption (FE) [16, 44] is a powerful cryptographic
primitive that enables the computation of a function on encrypted data, departing from the traditional all-
or-nothing approach of public key encryption. Crucially, it reveals only the output of the specified function,
without disclosing any additional information about the underlying data. FE supporting a specific function
class F , issues a secret key SKf associated with a function f ∈ F using a master secret key, computes a
ciphertext CTx associated with a message x. By combining the SKf with CTx, the decryptor learns f(x), but
gains no further insight into the original message x. FE has received significant attention in the literature,
with numerous schemes being proposed to achieve a wide array of functionalities under diverse cryptographic
assumptions [29,30,49,3, 5, 50].

Initially, FE was defined for the single input setting, i.e., assuming that there is a single encryptor of
the data and a single key generator. However, in realistic applications, data often originates from multiple
sources, and joint computations across this distributed data are frequently necessary—such as for performing
aggregate statistical analyses over data owned by various parties. To capture these more complex and
realistic scenarios, several extensions of FE have been proposed ranging from multi-authority FE [8, 23],
multi-input [31, 9, 4, 12], multi-client FE [20, 1, 35, 12, 39] to decentralized multi-client FE [18, 2, 34], and
dynamic decentralized FE [19,12]. To unify and generalize the primitives that enable multi-user functionality
in FE, Agrawal et al. [8] introduced the concept of multi-party functional encryption (MP-FE) that allows
both distributed ciphertexts and distributed keys, specifying how these can be combined to facilitate function
evaluation. In this work, we focus on the following types of MP-FEs:

• Multi-Client FE (MC-FE): MC-FE [31, 18] considers a fixed number of parties or clients, say n,
each with their own inputs x1,x2, . . . ,xn and allow computing joint functions on their data i.e.,
f(x1, . . . ,xn). In more detail, party i encrypts its input xi under a label/timestamp Li to obtain CTi,
a key authority that holds the master secret MSK generates a functional key SKf that enables the
decryptor to compute f(x1, . . . ,xn) from the collection of ciphertexts {CTi}i∈[n] only if they share the
same label, i.e., Li = L for all i ∈ [n].

• Multi-Input FE (MI-FE): MI-FE [31] generalizes the concept of MC-FE in the sense that MI-FE sets
no restriction on the way that ciphertexts can be combined and allows all possible combinations of
ciphertexts during decryption. An MI-FE scheme in the public key setting with corruption is rather
challenging to construct compared to an MC-FE for the same function class due to the absence of
labels.

Recently, attribute-based extensions of MC-FE and MI-FE (MC-AB-FE, MI-AB-FE) have been pro-
posed in [5, 38, 12] which integrate an additional layer of access control on top of the functionality
already offered by MC-FE and MI-FE. Here, the inputs are associated with clients’ attributes and a
policy is embedded into the secret key such that the decryption recovers the functional value only when
the attributes of all the clients individually satisfy the policy of the secret key.

• Dynamic Decentralized FE (DD-FE): DD-FE [19] is a decentralized variant of FE that enables the local
and independent generation of both ciphertexts and keys, eliminating the need for a central authority.
In a DD-FE, the clients can dynamically join the system without reliance on any central authority,
allowing greater flexibility and autonomy. During the encryption or key generation process, users
can specify a set of participants whose inputs can be combined during decryption to perform joint
computations. Currently, DD-FEs are designed to support linear functions [19] and attribute-weighted
sums computations [12].

A common limitation shared by all these MP-FEs is that the input length for each party, and conse-
quently the size of the functions operating on those inputs, is fixed at the time of setup. This boundedness
significantly restricts the scope of applications for current MP-FE schemes, despite their ability to support
various interesting and useful classes of functions.
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Unbounded Functional Encryption. Although there exist several FEs capable of supporting arbitrary
circuits and Turing machines [29, 49, 14, 11, 33] they currently rely on impractical cryptographic primitives
such as indistinguishability obfuscation or multi-linear maps. In contrast, FE for specific function classes
such as linear and quadratic functions and their variants [3, 10] are built upon well-established, standard
assumptions, making them more feasible for practical use. Unbounded FE (UFE) offers greater flexibility
compared to its bounded counterparts, as it allows the generation of secret keys and ciphertexts for functions
and messages of arbitrary lengths. This makes the setup of UFE independent of any predetermined bound
on function or message lengths, a crucial and essential feature—particularly in the context of MP-FE—as it
enables the parties to encrypt variable-length data during encryption or generate keys for functions of any
size. Moreover, unlike (bounded) FE, where the sizes of all ciphertexts and keys depend on the maximum
bound set for the data/function length during setup, UFE produces input-specific sizes for ciphertexts and
keys. This is a highly desirable property in multi-party settings, as it allows parties to allocate storage sizes
tailored to their specific input requirements.

The concept of unboundedness in single-input FE was concurrently studied by Tomida and Takashima
[47] and Dufour Sans et al. [26] for linear functions called unbounded inner product functional encryption
(UIPFE). A UIPFE generates a secret key SKy for a vector y = (yi)i∈Iy and computes a ciphertext CTx for
a vector x ∈ Zℓ. We adopt the permissive unboundedness property for decryption [26], referred to as “ct-
dominant” in [47], which is considered most practical for real-world applications. For two vectors y = (yi)i∈Iy

an input to key generation and x = (xi)i∈[ℓ] an input to the encryption, we say the permissive unboundedness
condition holds for decryption if Iy ⊆ [ℓ] and the inner product is defined as

∑
i∈Iy

xiyi. In contrast, strict

unboundedness [26] requires Iy = [ℓ] for decryption. Since the permissive case of unboundedness is more
natural, many subsequent works [25, 24, 46] built UFE for variants of linear and quadratic functions from
standard assumptions. The permissive setting, particularly in multi-input scenarios, better aligns with the
flexible nature of FE, offering finer control over unbounded encrypted vectors.

Recently, Datta and Pal [23] developed UFE for attribute-based linear functions in the multi-authority
setting with distributed secret keys. However, to the best of our knowledge, UFE schemes have yet to be
explored in multi-client or dynamic decentralized settings. In this work, we initiate the study of MC-AB-
UFE, MI-AB-UFE and DD-UFE for specific function classes, thereby enriching the landscape of MP-FEs
and addressing more practical applications.

1.1 Our Results

In this work, we enrich the domain of multi-input functional encryption schemes for attribute-based linear
functions by introducing unbounded input vector lengths. Specifically, we formalize the concepts of multi-
client attribute-based unbounded IPFE (MC-AB-UIPFE), multi-input attribute-based unbounded IPFE
(MI-AB-UIPFE), and dynamic decentralized unbounded IPFE (DD-UIPFE), where the unboundedness is
naturally defined for practical applications. We also present constructions of these primitives in a selective
corruption model, achieving indistinguishability-based security (IND-security) relying on the matrix DDH
(MDDH) assumption. The attribute-based access control is considered in the key-policy setting, where secret
keys are generated for access structures A realizable by LSSS [32] and ciphertexts are computed under a set
of attributes S. We proceed by defining functionalities and their features.

Multi-Client AB-UIPFE. We design an MC-AB-UIPFE where the number of clients n is fixed in the
setup, and each client is given an encryption key which is independent of the lengths of vectors. The secret
keys are generated by the authority for the tuple (A, (yk = (yk,i)i∈Iyk

)k∈[n]), the ciphertexts are computed

by the clients corresponding to their attributes Sk, label Lk and chosen vectors xk ∈ Zℓk
p , and the decryption

recovers:

f((A, (yk, Iyk
)k∈[n]), (Sk, Lk,xk, ℓk)k∈[n])

=

{∑
k∈[n]

∑
i∈Iyk

xk,iyk,i if (Iyk
⊆ [ℓk]) ∧ (A(Sk) = 1) ∧ (Lk = L), ∀k ∈ [n]

⊥ otherwise
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Work Scheme Parties Input length Function length Access Control Label Corr. Assumption

[5] MI-AB-IPFE n bnd bnd MSP N/A × DDH

[18]

MC-IPFE n bnd bnd N/A ✓ ✓ DDH

DMC-IPFE n bnd bnd N/A ✓ ✓ SXDH

[1] MC-IPFE n bnd bnd N/A ✓ ✓
DDH, LWE,

DCR

[19] DD-IPFE unbd bnd bnd N/A ✓ ✓ DDH

[38] MC-AB-IPFE n bnd bnd LSSS OT ✓ SXDH

[9] MI-QFE n bnd bnd N/A N/A ✓ MDDH

[12]

MC-FE for AWS n unbd bnd N/A ✓ ✓ MDDH

MI-AB-FE for AWS n unbd bnd ABP N/A ✓ MDDH

DD-FE for AWS unbd unbd bnd N/A ✓ ✓ MDDH

[45] MC-IPFE n bnd bnd N/A ✓ ✓ MDDH

[40] DMC-IPFE n bnd bnd N/A OT ✓ SXDH

This work

MC-AB-UIPFE n unbd unbd LSSS OT ✓ MDDH

MI-AB-UIPFE n unbd unbd LSSS N/A ✓ MDDH

DD-UIPFE unbd unbd unbd N/A ✓ ✓ MDDH

Table 1: Comparison among multi-party FE schemes. Here, DMC means decentralized multi-client; bnd, unbd mean
bounded, unbounded; Assum is a shorthand for assumption; SXDH, LWE, DCR stand for symmetric external Diffie-
Hellman, learning with errors, decision composite residuosity; MSP means monotone span program; Label refers to
the capability of labelling functionality that restricts decryption such that it is allowed only when all labels are equal.
OT means each label can be used once per input; Corr is a shorthand for Corruption.

To the best of our knowledge, this is the first unbounded FE in a multi-input setting where both the size of
functions and messages remain unrestricted during setup. Previously, Nguyen, Phan, and Pointcheval [38]
built an MC-AB-IPFE with bounded vectors, under the same security model and assumption. More recently,
Agrawal, Tomida and Yadav [12] developed an MC-FE for AWS functionality with unbounded slots relying
on the same matrix DDH assumption. However, while their scheme allows encrypting unbounded-length
messages, the size of each slot, and thus the functions operating on them, remains bounded. Our approach
differs since both the function and message vectors in our MC-AB-UIPFE are unbounded. Furthermore,
their MC-FE is not attribute-based, whereas we construct MC-FE for an unbounded attribute-based inner
product functionality. A detailed comparison is provided in Section 2.

Along the way, we design the first single-input AB-UIPFE where n = 1 (and Lk = ϵ) under the same as-
sumption, proven secure in the standard model. Our single-input AB-UIPFE is a subclass of attribute-based
unbounded quadratic FE recently built by Tomida [46] where the access control is provided by arithmetic
branching programs (ABP). However, our construction is simpler and more direct than [46], since we only
deal with linear function and LSSS access policies on top of it. Additionally, Tomida’s scheme relies on the
random oracle model (ROM), whereas ours operates in the standard model. Previously, Datta and Pal [23]
constructed a multi-authority AB-UIPFE which essentially implies an AB-UIPFE, but their unboundedness
follows a strict model, while ours adopts the more flexible and natural permissive setting.

Multi-Input AB-UIPFE. We construct the first MI-AB-UIPFE in the public key setting by extending
our MC-AB-UIPFE. Note that an MI-FE scheme in the public key setting with corruption is much more
challenging to construct than an MC-FE scheme due to the absence of labels during decryption. An adversary
can decrypt any combination of ciphertexts in the multi-input setting whereas, in the multi-client setting,
decryption is guaranteed only when all the ciphertexts are computed under the same label or timestamp. In
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our MI-AB-UIPFE, the decryption reveals:

f((A, (yk, Iyk
)k∈[n]), (Sk,xk, ℓk)k∈[n])

=

{∑
k∈[n]

∑
i∈Iyk

xk,iyk,i if (Iyk
⊆ [ℓk]) ∧ (A(Sk) = 1), ∀k ∈ [n]

⊥ otherwise

As mentioned above, our AB-UIPFE functionality differs from the attribute-based AWS functionality (with
unbounded slots) [12]. More importantly, the MI-FE scheme of [12] cannot capture the permissive unbound-
edness even if it supports encrypting unbounded length vectors at each input.

Dynamic Decentralized UIPFE. In the literature, dynamic decentralized FE has been constructed only
for the bounded class of FE schemes such as inner products [19], AWS [12]. In a DD-FE, there is no authority,
clients can dynamically join the system, selecting a set of users Uk during encryption or key generation whose
inputs can be combined during decryption. However, despite this dynamic feature, all clients must agree
on a fixed input length, which limits flexibility. We argue that a truly dynamic system should allow clients
to choose their own input sizes during key generation and encryption. Our notion of dynamic decentralized
unbounded FE (DD-UFE) extends the dynamic nature of conventional DD-FE by removing this limitation.
We construct DD-UFE for linear functions (DD-UIPFE) where the secret keys are generated for the tuple
(yk = (yk,i)i∈Iyk

)k∈Uk,key
, the ciphertexts are computed for the tuple (Lk,xk ∈ Zℓk

p ,Uk,msg), and decryption
outputs:

f(((yk, Iyk
)k∈Uk,key

), (Lk,xk, ℓk)k∈Uk,msg
)

=

{∑
k∈U

∑
i∈Iyk

xk,iyk,i if (U = Uk,key = Uk,msg) ∧ ((Iyk
⊆ [ℓk]) ∧ (Lk = L) ∀k ∈ U)

⊥ otherwise

We build our DD-UIPFE using the blueprint of previous works [19,13].

Our primary technical contributions involve the design of an extended slotted unbounded IPFE scheme,
which utilizes the extended functionality to integrate an attribute-based access control layer while leverag-
ing the unbounded slotted feature to facilitate unboundedness and multi-input extensions. A comparative
analysis with existing works is presented in Table 1, and further technical details can be found in Section 2.

Applications of multi-input (attribute-based) UIPFE. Consider a scenario where a research institute
aims to optimize disease diagnosis by utilizing data from multiple medical centers. The k-th center contributes
patient data in the form of an unbounded-length input vector xk representing various medical measurements,
e.g., blood pressure, body temperature, red blood cell count, collected from patients treated at that particular
center. Since the number of patients at each center may vary over time, the length of the input vector xk

is unbounded, reflecting real-world unpredictability. Additionally, each medical center is associated with
a weight vector yk, which could represent the importance of certain measurements or the confidence level
assigned to the data, depending on the center’s practices.

Suppose there are n such medical centers. In that case, the goal is to compute the sum defined as∑
k∈[n]⟨xk,yk⟩ =

∑
k∈[n],i∈Iyk

xk,iyk,i, where both xk,yk are of unbounded length, allowing for dynamic,

varying-length data inputs for each center. For instance, if xk includes blood pressure measurements in
odd indices and body temperature readings in even indices, researchers can perform targeted computations
such as the average blood pressure by selecting the relevant elements of the vectors yk. Let’s assume three
medical centers contribute data as follows: the first center treats three patients, the second four, and the third
five. Their input vectors are x1 = (x11, x12, x13),x2 = (x21, x22, x23, x24), and x3 = (x31, x32, x33, x34, x35),
respectively. If the researcher aims to compute the average of blood pressure measurements (stored in the odd
indices), they would require a secret key for the function

(
y1 = (y11, y13),y2 = (y21, y23),y3 = (y31, y33, y35)

)
.

This would allow the desired permissive inner product computation
∑

k

∑
i=odd xkiyki. Moreover, if the

number of medical centers is not fixed, i.e., n is also unbounded then DD-UIPFE can be employed in
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such a scenario. This example illustrates how MC-UIPFE or DD-UIPFE enables a robust computation of
aggregation statistics and aligns with realistic applications.

Additionally, for more fine-grained access control, each input xk could be associated with an attribute
Sk, and data from a medical center would only be used if it satisfies a specific policy, such as A(Sk) = 1.
For example, the computation might focus on blood pressure measurements for patients treated in the k-th
medical center situated in location/state Xk, where the policy A(Xk) = 1 filters the relevant data. Our MI-
AB-UIPFE or MC-AB-UIPFE allow computing such dynamic aggregates on private data, something beyond
the scope of existing (bounded input) MI(MC)-FEs. More generally, our MP-UFEs support a wide range
of real-world applications, from healthcare to other domains such as financial data aggregation or electricity
consumption analysis. This flexibility makes it ideal for environments where data inputs and policies are
diverse and continuously evolving.

2 Technical Overview

Recap: MC-AB-IPFE of [38]. We begin with a concise overview of the multi-client FE of [38], referred
to as NPP. They provided a construction of MC-AB-IPFE in the key-policy setting using dual pairing vector
spaces (DPVS), a rich mathematical framework introduced by Okamoto and Takashima [43]. At the core
of the MC-AB-IPFE of NPP, there is a single client version: the setup algorithm defines a bound n on the
vector sizes and generates master keys accordingly. The access control part is enforced via the LSSS [15]
policies. During key generation, the authority embeds an access structure A and a vector y ∈ Zn

p into the
key. The encryption process encodes a vector x ∈ Zn

p under a set of attribute S to compute a ciphertext. If
attributes in S satisfy A, decryption reveals the inner product ⟨x,y⟩, otherwise nothing is learned about x.

In the multi-client setting, it is assumed that the number of clients is equal to the length of the vectors.
More specifically, the setup algorithm parses the master secret key of the single client scheme into n pieces
to create clients’ encryption keys EKi. It connects the keys using an n-out-of-n secret sharing of a specific
component of the underlying bases of DPVS. The key generation works as before. Each client holds a single
entry of the vector x and encrypts it using EKi under the same attribute set S and a label L. When all
the n ciphertexts are computed with the same label L, the secret key holder can decrypt them together to
⟨x,y⟩, given that the attributes in S satisfy the access structure. They achieve adaptive indistinguishability-
based security under the SXDH assumption in the ROM. Although NPP demonstrates a blueprint of how to
integrate an access control mechanism to a DPVS-style IPFE scheme and upgrade the single-input version
into a multi-client one, there are a few challenges to face while supporting unbounded length vectors.

Challenges in NPP. Let us now perceive the high-level obstacles that one must overcome in NPP to
support unbounded vector lengths:

• The fact that the clients can encrypt only a single entry of the vector is against the property of
encrypting an arbitrary length vector in each encryption. A trivial way out is to run the same encryption
algorithm for all the entries of the arbitrary length vector. However, it is clear that such an approach
would rather fail because an adversary can easily combine ciphertext components of different vectors
to create a valid ciphertext for an unwanted vector.

• The procedure of connecting the clients’ encryption keys using an n-out-of-n secret sharing strategy
would not work in our setting since the number of clients must not be the same as the lengths of
vectors encrypted by the clients in our setting. Looking ahead, in fact, the number of clients is also
not pre-decided in our DD-UIPFE scheme.

2.1 Integrating Unboundedness

Recall that in an MC-AB-UIPFE, n clients can choose arbitrary lengths of vectors during encryption. Let
us assume that the client k selects a vector xk = (xk,i)i∈[ℓk] along with an attribute set Sk and computes a
ciphertext CTk. The secret key SK is generated by the authority for a function y = (yk)k∈[n] with associated
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index sets {Ik}k∈[n] and an access structure A. Given that Sk satisfies A and Ik ⊆ [ℓk] for all k ∈ [n], the
decryption recovers the sum of inner product values

∑
k∈[n]⟨xk,yk⟩ if all the ciphertexts are computed under

the same label.
Even without access control, constructing an MC-UIPFE remains challenging. A natural approach might

involve adapting the transformation by Abdalla et al. [1], which extends a single input IPFE to a multi-
client IPFE. One might attempt to replace the underlying single input IPFE using an existing UIPFE [47]
to achieve an MC-UIPFE. However, this approach fails since the encryption algorithm requires the vector
lengths to be known in advance. Specifically, each vector xk is embedded into a larger vector x̃k of length nℓ
(where ℓ is the vector length) and masked using tk, a (n-out-of-n) secret share of 0nℓ, before applying IPFE
encryption. Therefore, this transformation cannot accommodate dynamic vector lengths, a key feature of
MC-UIPFE. Furthermore, achieving permissiveness—where decryption succeeds only if Ik ⊆ [ℓk] for each
k ∈ [n]—is unclear in this setting. Incorporating access control further complicates the process. Previously,
non-generic construction of MC-IPFE [18] generates clients’ encryption keys depending on the vector length
fixed at the time of setup.

Comparison with MC-FE of [12]. A recent work by Agrawal et al. [12], henceforth ATY, builds an
MC-FE scheme for AWS with unbounded slots (FE-AWS) from pairings, originally introduced by Ab-
dalla et al. [7]. FE-AWS generalizes IPFE by allowing an encryptor to encode {xj , zj}j∈[N ] where N is
unbounded, xj and zjs are called pubic and private attributes respectively, the key is generated for a func-
tion f which is usually an ABP, and decryption recovers

∑
j∈[N ]⟨f(xj), zj⟩. In an MC-FE-AWS, each

client encrypts an unbounded-slot input {xk,j , zk,j}j∈[Nk], where Nk is unbounded, and decryption recovers∑
k

∑
j∈[Nk]

⟨fk(xk,j), zk,j⟩. The term “unbounded-slot” in FE-AWS is quite different from our definition of
unboundedness in MC-AB-UIPFE. While FE-AWS allows the encryptor to choose an unbounded number of
vectors, both vector sizes and function classes are fixed during setup, meaning the encryption key depends on
these sizes. In contrast, MC-AB-UIPFE allows unbounded message and function vectors, with successful de-
cryption requiring a permissive relation between index sets. Although MC-AB-UIPFE might seem reducible
to MC-FE-AWS by encoding unbounded vectors into AWS slots, verifying the permissive relation between
index sets complicates this approach, making it inapplicable for constructing MC-AB-UIPFE or DD-UIPFE
directly.

Our Approach. Instead of integrating the unboundedness property to existing MC-IPFE or MC-AB-
IPFE, we investigate whether it is possible to upgrade available single input UIPFE [26, 47, 24] or AB-
UIPFE [23] into the multi-client setting. Along this direction, we use the blueprint of NPP to construct a
single-input FE first, and then upgrade it to the multi-client setting. To build a suitable single-input FE
(without access control) that can later be enriched with an attribute-based access control extension, we follow
the idea of ATY that builds an extended FE-AWS equipped with an additional inner product. Furthermore,
for integrating the unboundedness feature into this framework, we observe that existing works [47, 24] used
function-hiding security of the underlying IPFE to realize the permissive case of unboundedness which we
are aiming for. The function-hiding security of IPFE has been independently exploited for achieving the
permissive case of unboundedness [47, 24] and multi-client realization of a certain class of FEs [12]. The
former works utilize the function-hiding security to carry out an index-encoding methodology for realizing
the unboundedness property whereas the latter uses it for converting a single-input scheme into a multi-input
scheme without relying on the ciphertext homomorphism property desired in [20]. In this work, we develop
a methodology that demonstrates how function-hiding security of IPFE can be compelled to obtain both of
these properties together for the function class of AB-IP.

Constructing UIPFE of [47] using Slotted IPFE. Our starting point is the UIPFE construction of
Tomida and Takashima [47] which we call TT. Although UIPFE of TT is a direct construction based on
pairing, we can view it as a generic construction based on slotted IPFE (sIPFE) [36,24] which is a hybrid of
a public key IPFE and a secret key function-hiding IPFE. A vector x ∈ Zn

p in sIPFE is divided into parts

(xpub,xpriv) ∈ Znpub
p × Znpriv

p such that n = npub + npriv. While one can encrypt the public part xpub using
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the public key through a slotted encryption algorithm, encrypting the whole vector x = (xpub,xpriv) requires
the knowledge of the master secret key, just like a secret key IPFE, which is done by a normal encryption
algorithm. The ciphertexts obtained by the slotted and normal modes are indistinguishable when xpriv is set
to 0npriv . Hence, we can only hide the private part of the function vector ypriv while ypub remains public in
the secret key generated for y = (ypub,ypriv).

The sIPFE of [36] is built using asymmetric prime-order pairing groups with the pairing operation
e : G1 × G2 → GT . We denote [[a]]i by an element gai in the group Gi and [[(a1, . . . , an)]]i by a vector of
group elements (ga1

i , . . . , gan
i ) for i ∈ {1, 2, T}. Let sIPFE = (iSetup, iKeyGen, iEnc, iSlotEnc, iDec) be a sIPFE

scheme supporting vectors of length 4 = npub. We ignore the private slots, which can be added later as those
are required only for security analysis.

Construction 1 (UIPFE from sIPFE) The setup of UIPFE generates (iMPK, iMSK) using iSetup. A
secret key for a vector y = (yi)i∈Iy , and a ciphertext for a vector x = (xi)i∈[ℓ] are computed as

SK : { iSKi ← iKeyGen(iMSK, [[(iσi, σi, yi, ri)]]2) }i∈Iy

CT : { iCTi ← iSlotEnc(iMPK, [[(πi,−iπi, xi, α)]]1) }i∈[ℓ]

where ri ← Zp such that
∑

i∈Iy
ri = 0. Note that σi, πi are chosen uniformly at random from Zp to encode

the indices such that the inner product between the encodings vanishes only when they have matching
indices. This index encoding methodology was first introduced by Okamoto and Takashima [42] in the
context of achieving unbounded inner product encryption. If the unboundedness is permissive, i.e. Iy ⊆ [ℓ],
then decryption works by computing

∑
i∈Iy

iDec(iSKi, iCTi) = [[
∑

i∈Iy
xiyi]]T as

∑
i∈Iy

ri = 0.
We use the DDH assumption and the function-hiding security of sIPFE. Since we consider selective

security, the length of the challenge vector is known in advance. Let us denote sk(yi) = (iσi, σi, yi, ri) and
ct(xi) = (πi,−iπi, xi, α). In the following, we will add private slots, indicated by dashed underline, to sk(yi)
and ct(xi) when needed for proving the security discussed in three steps:

1. duplicating secret shares. The secret shares {ri}i∈Iy are copied to a private slot of sk(yi), i.e.,

sk(yi)← (iσi, σi, yi, ri, r̃i ) , ct(x
(0)
i )← (πi,−iπi, x(0)i , α, α̃ )

with
∑

i∈Iy
r̃i = 0. This hybrid is indistinguishable from the original game by the DDH assumption

and the function-hiding security of sIPFE.

2. handling non-permissive keys. We call the secret keys with Iy ̸⊂ [ℓ] as non-permissive keys. For such
keys, the duplicated secret shares {r̃j}j∈Iy\[ℓ] are chosen uniformly at random. We observe that the
inner product between the index encoding parts, i.e. ⟨(πi,−iπi), (jσj , σj)⟩ is non-zero as i ̸= j. This
produces an extra entropy, sufficient to change the secret shares to random values using the function-
hiding security of sIPFE.

3. statistical shift. In the final step, the secret keys and the ciphertext are changed to a special form as:

sk(yi)← (iσi, σi, yi, ri, r̃i − ξiyi ) ,

ct(x
(0)
i )← (πi,−iπi, x(0)i + ξiα̃, α, α̃ )

where ξi is sampled uniformly at random from Zp. The indistinguishability follows from the function-

hiding security of sIPFE since the inner product between sk(yi) and ct(x
(0)
i ) remains unchanged. Now,

we apply a statistical transformation through ξi by shifting it as ξi ← ξi + (x
(1)
i − x(0)i )/α̃. It does

not change the distribution of the secret shares {r̃i − ξiyi} due to the admissibility condition that

⟨x(0),y⟩ = ⟨x(1),y⟩ for all secret keys with Iy ⊆ [ℓ]. On the other hand, it changes ct(x
(0)
i ) to ct(x

(1)
i ).
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Adding Access Control to UIPFE. As the next step towards our goal, we aim to integrate attribute-
based access control into the UIPFE described above. To achieve this, we leverage the technique of NPP,
which encodes access control within the DPVS structure using an LSSS [15]. An LSSS allows us to secret
share a random element a0 ← Zp depending on an access structure A over an attribute space Att into several
shares (aj)j∈List-Att(A) such that only an authorized set {atti}i∈S ⊆ Att can recover c = (cj)j to reconstruct
a0 =

∑
j∈S cjaj . We generically construct an AB-UIPFE by combining an sIPFE, for realizing the access

control part, and a UIPFE, for the inner product computation.

Construction 2 (Candidate AB-UIPFE) Let us consider an sIPFE = (iSetup, iKeyGen, iEnc, iSlotEnc,
iDec) and a UIPFE = (uSetup, uKeyGen, uEnc, uDec). The setup of AB-UIPFE samples (iMPK, iMSK),
(uMPK, uMSK) by running iSetup, uSetup respectively. It setsMPK = (iMPK, uMPK),MSK = (iMSK, uMSK).
A secret key corresponding to (y = (yi)i∈Iy ,A) and a ciphertext for (x ∈ Zℓ

p,S) are computed as follows:

SK :
{ iSKj ← iKeyGen(iMSK, [[(jσj , σj , aj · z)]]2) }j∈List-Att(A) ,

uSK ← uKeyGen(uMSK, [[(y, a0 · z)]]2)

CT :
{ iCTj ← iEnc(iMPK, [[(πj ,−jπj , ψ)]]1) }j∈S ,

uCT ← uEnc(uMPK, [[(x, ψ)]]1)

where σj , a0, z, πj , ψ ← Zp. It is easy to observe that the correctness works if the attributes associated with
S satisfy the access structure A and Iy ⊆ [m]. More specifically, the decryption first reconstructs [[a0zψ]]T =∏

j∈S cj · iDec(iSKj , iCTj) and computes [[
∑

i∈Iy
xiyi+a0zψ]]T = uDec(uSK, uCT). Then, it extracts the inner

product value [[
∑

i∈Iy
xiyi]]T . Unfortunately, the scheme is not secure. In an AB-UIPFE, the adversary is

allowed to query secret keys for (y = (yi)i∈Iy ,A) such that either Iy ̸⊆ [m] (non-permissive) or A is not
satisfied by the attributes associated with S (non-accepting). The permissive case of unboundedness can be
handled by the underlying UIPFE. However, to prevent the adversary from extracting any information about
the message vector using the permissive but non-accepting keys, we have to implement a masking strategy
similar to [41,42,38]. In more detail, the masking term is created by first copying the secret value a0 and the
shares (aj)j∈List-Att(A) into additional slots of the secret keys (similar to duplicating secret shares step) and
then randomizing the shares for the case of non-accepting keys (similar to the handling non-permissive keys
step). Although slotted IPFE could allow adding some additional slots for the purpose, the UIPFE does not
endorse modifying slots of the vectors embedded in the keys, since it is not function-hiding. Therefore, the
above construction fails to provide a secure AB-UIPFE.

Extended Functionality and Function-hiding Security. We now show how to extend the UIPFE
functionality to execute the masking strategy in the above scheme. Looking ahead, we also need to devise a
way to link multiple instances of the UIPFE into a single scheme for building MC-AB-UIPFE. For that, we
use an extended functionality mechanism where the actual functionality is extended to integrate an additional
randomization strategy into the system. In more detail, we need an augmented primitive that supports
encrypting unbounded length vectors and, concurrently, possesses the ability to attach secret random values
to the computation when required during the security analysis. Consequently, the extended functionality
must have enough space for realizing a normal UIPFE whilst it must have an extended possibly bounded space
working like a function-hiding IPFE. At this juncture, we define the notion of extended unbounded slotted
IPFE (esUIPFE) which precisely enables the required extended functionality. More specifically, each vector x
is partitioned into two parts (xpub,xpriv) as in a normal slotted IPFE except that the public slot xpub is further
partitioned into two parts (xupub,xbpub) where xupub is unbounded with an associated index set Ixupub

and
xbpub is bounded. A secret key is generated for a vector of the form y = (yupub,ybpub,ypriv) ∈ Z∗

p×Zn1
p ×Zn2

p

with an associated index set Iyupub
, a ciphertext is computed by encrypting a vector x = (xupub,xbpub,xpriv) ∈

Zℓ
p×Zn1

p ×Zn2
p in the normal mode. The decryption reveals

∑
i∈Iyupub

xupub,iyupub,i+⟨(xbpub,xpriv), (ybpub,ypriv)⟩
if Iyupub

⊆ [ℓ]. In the slotted mode of encryption, xpriv is ignored, similar to a usual slotted IPFE and the
function-hiding security holds only in the private slot.

We note that similar techniques of extending functionality have been used in previous works [7,22,46,12]
in different contexts either for achieving unbounded slot AWS functionality from a single input one [7,

10



22], building (single-input) unbounded quadratic FE using the function-hiding security of IPFE [46] or for
converting the multi-input IPFE of [21] to a multi-client FE-AWS [12]. We emphasize that Tomida [46]
has also considered a notion named unbounded slotted IPFE, however, in his application, the public slot is
completely unbounded (and is not extended by a bounded slot) as the motivation was to support unbounded
quadratic computation, not to connect multiple threads of UIPFE. In this work, we demonstrate another
application of the extended functionality for designing a multi-client unbounded FE.

We build an esUIPFE generically using a sIPFE. The construction follows the idea of utilizing sIPFE
to build UIPFE as in Construction 1. Here, we use the public slots of sIPFE for extending the UIPFE
functionality with an additional inner product computation.

Construction 3 (esUIPFE) The setup of esUIPFE generates (iMPK, iMSK) using iSetup. A secret key
for a vector y = (yupub,ybpub,ypriv) ∈ Z∗

p × Zn1
p × Zn2

p with an associated index set Iyupub
, and a ciphertext

for a vector x = (xupub,xbpub,xpriv) ∈ Zℓ
p × Zn1

p × Zn2
p are computed as follows:

SK : { iSKi ← iKeyGen(iMSK, [[(iσi, σi, yupub,i, ri,ybpub,i, ypriv,i)]]2) }i∈Iyupub

CTslot : { iCTi ← iSlotEnc(iMPK, [[(πi,−iπi, xupub,i, α,xbpub)]]1) }i∈[ℓ]

CT norm : { iCTi ← iEnc(iMSK, [[(πi,−iπi, xupub,i, α,xbpub, xpriv)]]1) }i∈[ℓ]

where ybpub =
∑

i∈Iyupub
ybpub,i, ypriv =

∑
i∈Iyupub

ypriv,i and CTslot,CTnorm refer to the ciphertexts computed

in slotted and normal modes respectively. The selective IND-security of our esUIPFE can be argued similarly
to the UIPFE based on the DDH assumption. Upon replacing the UIPFE with esUIPFE in the candidate
Construction 2 of AB-UIPFE, we essentially get a slotted version of AB-UIPFE (AB-sUIPFE). The normal
mode of ciphertext can be ignored in the case of single-client AB-UIPFE which is a public-key primitive
whereas, looking ahead, the normal mode becomes useful while upgrading it into a multi-client FE. We now
describe our AB-sUIPFE that trivially captures AB-UIPFE supporting the same class of policies.

Construction 4 (AB-sUIPFE from esUIPFE) Let us consider an sIPFE = (iSetup, iKeyGen, iEnc, iSlotEnc,
iDec) and an esUIPFE = (eSetup, eKeyGen, eEnc, eSlotEnc, eDec) with n1 = 1. The setup of AB-sUIPFE
samples (iMPK, iMSK), (eMPK, eMSK) by running iSetup, eSetup respectively. It sets MPK = (iMPK,
eMPK), MSK = (iMSK, eMSK). A secret key corresponding to (y = (yi)i∈Iy ,ypriv,A) and a ciphertext

for (x ∈ Zℓ
p,xpriv,S) are computed as follows:

SK :
{ iSKj ← iKeyGen(iMSK, [[(jσj , σj , aj · z)]]2) }j∈List-Att(A) ,

eSK ← eKeyGen(eMSK, [[(y, a0 · z, ypriv)]]2)

CTslot :
{ iCTj ← iSlotEnc(iMPK, [[(πj ,−jπj , ψ)]]1) }j∈S ,

eCT ← eSlotEnc(eMPK, [[(x, ψ)]]1)

CTnorm :
{ iCTj ← iSlotEnc(iMPK, [[(πj ,−jπj , ψ)]]1) }j∈S ,

eCT ← eEnc(eMSK, [[(x, ψ, xpriv)]]1)

Next, we only analyze the security of CTslot and refer to Sec. 5.2 for a formal and complete proof of security.
The first hybrid switches to eSlotEnc from eEnc for encrypting the challenge message for activating the private
slots. As before, let us denote skj(A) = (jσj , σj , aj ·z), sk(y) = (y, a0·z) and ctj(S) = (πj ,−jπj , ψ), ct(x(0)) =
(x(0), ψ). The proof proceeds with the following steps.

1. shifting secret shares to private slots. The secret shares {aj}j∈List-Att(A) are shifted to a private slot of
the vectors. The modified vectors will be:

skj(A)← (jσj , σj , aj · z, aj · z ), sk(y)← (y, a0 · z, a0 · z ) ,

ctj(S)← (πj ,−jπj , 0, ψ ), ct(x(0))← (x(0), 0, ψ ) .

The indistinguishability is guaranteed by the function-hiding security of sIPFE and esUIPFE.
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2. adding masking shares. We call the secret keys for which the associated policy is not satisfied by the
attributes of the challenge ciphertext, i.e., A(S) = 0, non-accepting keys. Due to the presence of pri-
vate slots in both the IPFEs, we can apply a masking strategy, adapted from [41,42,38], to disable the
decryption ability of the non-accepting keys in the next step, even when the keys satisfy the permissive
case of the unboundedness. In particular, we change the vectors to

skj(A)← (jσj , σj , aj · z, aj · z, a′jδ · z/v ), sk(y)← (y, a0 · z, a0 · z, a′0δ · z ) ,

ctj(S)← (πj ,−jπj , 0, ψ, ψ′ · v ), ct(x(0))← (x(0), 0, ψ, ψ′ )

where δ = ⟨x(0) − x(1),y⟩.

3. handling non-accepting keys. In this step, the masking secret value a′0 is replaced with a uniformly
chosen value r0 (uncorrelated with a′j) only for the keys non-accepting keys. Note that, here we use
the advantage of proving security against a selective adversary that is restricted to sending all the key
queries before getting the challenge ciphertext. This step is information-theoretic because of the fact
that the reconstruction of the secret value of LSSS is possible only if the attributes satisfy the access
structure. Let us write sk(y) = (y, a0 · z, a0 · z, ãδ · z ) where ã is equal to a′0 for accepting keys and

r0 for non-accepting keys.

4. statistical shift. In the final step, a statistical shifting is performed to the random element r0 as

r′0 ← r0 + 1/zψ′ for all non-accepting keys. It allows us to change ct(x(0)) into an encoding of
x(1) as ct(x(1)) ← (x(1), 0, ψ, ψ′ ). The indistinguishability follows from the function-hiding security

of esUIPFE since

⟨x(1),y⟩+ ψa0 · z + r′0δψ
′ · z = ⟨x(1),y⟩+ ψa0 · z + r0δψ

′ · z + δ

= ⟨x(0),y⟩+ ψa0 · z + r0δψ
′ · z

holds for all non-accepting keys. On the other hand, for the accepting keys the value of ã remains a′0
and hence ⟨ct(x(0)), sk(y)⟩ = ⟨ct(x(1)), sk(y)⟩ holds for such keys due to the admissibility condition.

Adding Multiple Clients into the System. As we achieved a single-input AB-UIPFE, the next step
would be to add multiple clients into the system by connecting several encryption algorithms run by the
clients. Recall that in MC-AB-UIPFE, the setup samples a master secret key MSK and encryption keys
{EKk}k∈[n] for the n clients, each client computes a ciphertext CTk by encrypting a message (xk ∈ Zℓk

p ,Sk)
under a label L, the authority generates a key SK corresponding to a function y = (yk)k∈[n] with an
associated index set Iyk

and an access structure A. Now, decrypting all clients’ ciphertexts together using
the key SK, the following conditions must hold:

(i) The index sets {Iyk
}k∈[n] must satisfy the client-wise permissiveness condition, i.e. Iyk

⊆ [ℓk] for all
k ∈ [n].

(ii) All clients’ attributes {Sk}k∈[n] must satisfy the access structure A, i.e. A(Sk) = 1 for all k ∈ [n].

(iii) All the ciphertexts CTk must be encrypted under the same label L.

To construct MC-AB-UIPFE, we follow the template of ATY which uses an extended FE to connect multiple
ciphertexts of the FE for AWS functionality. Although their MC-FE achieves stronger security allowing
multiple use of labels, it does not provide any access control. In contrast, we develop an MC-FE scheme for
the AB-UIP functionality that provides access control and supports unbounded data, function sizes, but it
achieves a weaker one-time label security [17,38,1,40]. Concretely, the extended FE of ATY is replaced with
our AB-sUIPFE. We describe our MC-AB-UIPFE as follows.
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Construction 5 (MC-AB-UIPFE from AB-sUIPFE) Let us consider an AB-sUIPFE = (aSetup, aKeyGen,
aSlotEnc, aDec) and a pseudorandom function PRF : {0, 1}∗ → Zm

p with key space K. The setup samples
(aMPKk, eMSKk) by running aSetup and seedk,k′ ← K such that seedk,k′ = seedk′,k for k, k′ ∈ [n]. It sets
EKk = (aMSKk, {seedk,k′}k ̸=k′). A secret key corresponding to a function ({yk}k∈[n], Iyk

,A) and a ciphertext

for (xk ∈ Zℓk
p , L,Sk) are computed as:

SK : { aSKk ← aKeyGen(aMSKk, [[( yk, α, 0 )]]2,A) }k∈[n]

CTk : aCTk ← aEnc(aMSKk, [[( xk, sk, 0 )]]1,Sk)

where α ← Zp and sk =
∑

k′ ̸=k(−1)k
′<kPRFseedk′,k(L). If Iyk

⊆ [ℓk] and A(Sk) = 1 for all k ∈ [n]
then aDec(aSKk, aCTk) returns [[vk]]T = [[

∑
i∈Iyk

xk,iyk,i + ⟨α, sk⟩]]T and, finally we recover
∏

k∈[n][[vk]]T =

[[
∑

k∈[n],i∈Iyk
xk,iyk,i]]T since by definition

∑
k∈[n]⟨α, sk⟩ = 0.

We observe that the clients’ ciphertexts are connected by a n-out-of-n secret sharing of 0 obtained by
PRF keys seedk,k′ . We must put the shares into private slots as it would enable us to modify the structure
of the shares for the honest clients while keeping their distribution intact using the function-hiding security
of AB-sUIPFE. Let us write sk(yk) = (yk, α, 0) and ct(xk) = (xk, sk, 0) and, for simplicity of this overview,

assume that all the clients are honest. Then, in the original game, the adversary gets secret keys and

ciphertexts corresponding to the vectors sk(yk), ct(x
(0)
k ). In the next hybrid, depending on the security of

the employed PRF, we change sk to a uniformly random s̃k such that
∑

k∈[n] s̃k = 0. Then, we change

the vectors to sk(yk) = (yk, α, ⟨α, s̃k⟩+ δk) and ct(x
(1)
k ) = (x

(1)
k , 0, 1) where δk = ⟨x(0)

k − x
(1)
k ,yk⟩. The

indistinguishability follows from function-hiding security of AB-sUIPFE. Next, we replace ⟨α, s̃k⟩ with a
uniformly random value rk using the MDDH assumption over G2. This implies that rk can absorb δk and,

hence, we can go back to the original vectors sk(yk) = (yk, α, 0) and ct(x
(1)
k ) = (x

(1)
k , sk, 0). This concludes

the proof.

From Multi-Client to Multi-Input. We now show how to convert our MC-AB-UIPFE into an MI-AB-
UIPFE in the public-key setting with corruption. At first glance, it seems that if we fix the label of MC-
AB-UIPFE to a unique value, say H(L) = [[1]]1 for all L, then it gives us an MI-AB-UIPFE. Unfortunately,
this is not the case since in MI-AB-UIPFE the adversary can use a secret key to decrypt any combination
of ciphertexts from different slots. Let us consider a toy example of a two-input MI-AB-UIPFE, where
we have two ciphertexts CT1

1,CT
2
1 at the first slot encrypting (S11,x

1
1) and (S21,x

2
1) respectively, a single

ciphertext CT2 at the second slot encrypting (S2,x2). Now, in our MC-AB-UIPFE, given a secret key SK
for an access structure A such that A(S11) = A(S21) = 1,A(S2) = 0 and a vector (y1,y2), the adversary
can recover [[

∑
i∈Iy1

x11,iy1,i + s1]]T and [[
∑

i∈Iy1
x21,iy1,i + s1]]T , and eventually [[

∑
i∈Iy1

(x11,i − x21,i)y1,i]]T .
This leakage is not permitted in the multi-input FE with the standard security notion [6, 21, 12]. However,
such a leakage is inevitable if we would have A(S2) = 0. Since in that case, the adversary can recover the
same value by decrypting (CT1

1,CT2) and (CT2
1,CT2) with the same secret key SK and then subtracting the

results. Therefore, the leakage occurs if the adversary is allowed to query only illegitimate secret keys, which
cannot decrypt any combination of ciphertexts. We say a secret key (A, (y1, . . . ,yn)) is illegitimate if the
adversary does not have a ciphertext for Si at slot i such that A(Si) = 1. In other words, the MI-AB-UIPFE
obtained from MC-AB-UIPFE is secure against only legitimate keys which can decrypt any combination
of ciphertexts that the adversary has. To achieve security against any keys, it is necessary to restrict the
adversary in getting the partial values [[

∑
i∈Iyk

xk,iyk,i+ sk]]T , for each k ∈ [n], only when it has a legitimate

key. For this, we use the blueprint of [12] where they additionally utilize a ciphertext-policy ABE along with
an n-out-of-n secret sharing to convert their MI-AB-FE with security against legitimate keys to an MI-AB-
FE secure against any keys. In our setting, we employ the CP-ABE of [37] capturing the predicates realizable
by (monotone) span programs based on the MDDH assumption. The core idea of the transformation is that
each client will receive an additional master secret key of the CP-ABE. At the time of key generation, the
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secret key of MI-AB-UIPFE (secure against the legitimate keys) is first secret-shared using an n-out-of-n
secret sharing and then each share is encrypted using the CP-ABE under the same access structure. The
secret key consists of all these CP-ABE ciphertexts. The ciphertext of each client additionally contains a
secret key of the CP-ABE computed for their attribute sets. Therefore, reconstruction of the secret key of
the underlying MI-AB-UIPFE (secure against the legitimate keys) from the n shares requires that the access
structure of the key must be satisfied by all the attribute sets present in the ciphertext combination.

The above transformation only achieves an MI-AB-UIPFE in the secret key setting, i.e. security without
corruption. As also mentioned in [12], the limitation arises from the fact that there exist access structures
that never evaluate to 1 (say, non-accepting access structure) and for the transformation to work in the
corruption model the underlying CP-ABE must satisfy the property that the adversary should not be able
to decrypt a ciphertext computed for such non-accepting access structure even if it gains access to the
master secret key. Such a CP-ABE is very hard to construct from standard assumptions, since it implies
witness encryption verifiable by monotone boolean formulae. To circumvent this issue, we use a wildcard
attribute S⋆ that satisfies all access structures realizable by LSSS. The existence of such a wildcard attribute
set will provide no additional information with the leakage of the master secret keys of the CP-ABE which
correspond to the corrupted slots, since the adversary can always decrypt any ciphertexts of those slots.
Moreover, an MI-ABE with corruption generally implies witness encryption [28], which is also the case in
our work. However, we bypass this implication by adding the wildcard attribute set. The use of wildcards
in our setting is motivated by the previous works [28,12]. It is easy to see that our MC-AB-UIPFE supports
such a wildcard by simply setting ψ = 0 (see Construction 2) when computing a ciphertext for S⋆.

Dynamic Decentralized UIPFE. We now present the technical details for obtaining a DD-UIPFE.
Our approach builds upon the framework established in [9] and integrates our esUIPFE to facilitate the
dynamic joining of parties into the system, allowing them to encrypt arbitrary-length vectors. At a very
high level, each party joins the system by sampling a PRF seed seedk. Subsequently, they dynamically sample
(iMPKk, iMSKk) and (euMPKk, euMSKk) using the PRF with a user set U as input. During key generation,
each party computes a vector [[α]]2 = H({yk}k,U) using a hash function, encoding it into sk(yk) = (yk, α ).

In parallel, each party employs another PRF with input (U , L) to compute vectors sk such that
∑

k∈U sk = 0,
encoding these into ct(xk) = (xk, sk ). The seed for this PRF is derived using a non-interactive key exchange

protocol. The unbounded nature of the underlying vectors is preserved through the esUIPFE. For further
details and a concrete description of our DD-UIPFE, we refer the reader to Section 7.

A roadmap of our constructions is illustrated in Figure 1.

esUIPFE
Sec. 4

AB-sUIPFE
Sec. 5

DD-UIPFE
Sec. 7

MC-AB-UIPFE
Sec. 6

MI-AB-UIPFE
Appendix A

Figure 1: Roadmap of our constructions. Note that AB-sUIPFE captures AB-UIPFE, and MC(MI)-AB-
UIPFE captures MC(MI)-UIPFE.

3 Preliminaries

Notations. For some prime p, Zp denotes a finite field of order p, and for n ∈ N, the set GLn(Zp) denotes
all n×n invertible matrices with entries from Zp. We indicate the process of random sampling of an element
a from the finite set S by a← S. We use L(S) to denote the set of finite lists of elements from S, and [n] to

14



denote the set {1, . . . , n}. A bold uppercase letter represents a matrix, e.g., A, while a bold lowercase letter
indicates a vector, e.g., x. The index set of the vector a is denoted by Ia. For example, if a = (a1, a3, a8), we
write Ix = {1, 3, 8}. The concatenation of vectors is denoted by a1||a2|| . . . ||an. The length of a vector a is
denoted by |a|. For any two vectors a = (ai)i∈Ia and b = (bi)i∈Ib with the respective index sets Ia and Ib,
a permissive relation R is defined as follows: (a,b) ∈ R if and only if Ib ⊆ Ia. The inner product ⟨a,b⟩p in
permissive case is defined as

∑
i∈Ib

aibi. If both the vectors are in same length m, then ⟨a,b⟩ represents the
normal inner product as

∑
i∈[m] aibi. Consider gι as a generator of the cyclic group Gι. If a = (a1, a2, . . . , an)

is an n-tuple vector, then [[a]]ι = (ga1
ι , ga2

ι , . . . , gan
ι ). For c, u ∈ Zp, we represent c[[u]]ι = gcuι . For a matrix

A = (aij) ∈ GLn(Zp), we define [[A]]ι = gAι , where exponentiation is carried out component-wise, and
ai represents the i-th row vector of A. A function negl : N → [0, 1] is said to be negligible if, for every
c ∈ N, there exists a λc ∈ N such that negl(λ) ≤ 1

λc for all λ > λc. Consider two distributions A and B.
Then, A ≈s B denotes that the two distributions are statistically indistinguishable, while A ≈c B represents
computational indistinguishability. If A ≡ B, the two distributions are identically distributed. We discuss
the remaining preliminaries in the following.

Definition 1 (Pairing Groups) A bilinear group G = (p,G1,G2,GT , g1, g2, e) consists of a prime p, two
multiplicative source groups G1,G2 and a target group GT with the order |G1| = |G2| = |GT | = p where
g1, g2 are the generators of the group G1 and G2 respectively. We consider a bilinear map e : G1×G2 → GT

that satisfies the following:

– bilinearity: e(ga1 , g
b
2) = e(g1, g2)

ab for all g1 ∈ G1, g2 ∈ G2, a, b ∈ Zp and

– non-degeneracy: e(g1, g2) is a generator of GT .

A bilinear group generator GBG.Gen(1λ) takes the security parameter λ and outputs a bilinear group G =
(p,G1,G2,GT , g1, g2, e) with a λ-bit prime integer p.

Assumption 1 (Decisional Diffie-Hellman) Let G be a cyclic group of prime order p. We define the
distribution (D, [[hb]]) over G as

D = (G, [[1]], [[f ]], [[g]]) for f, g ← Zp; hb =

{
fg if b = 0

h← Zp if b = 1.

We say that the Decisional Diffie-Hellman (DDH) assumption holds in G if for all PPT adversaries A, there
exists a negligible function negl(·) satisfying the following:

AdvDDH
A (λ) =

∣∣∣Pr[A(D, [[h0]]) = 1]− Pr[A(D, [[h1]]) = 1]
∣∣∣ ≤ negl(λ).

Assumption 2 (Matrix Decisional Diffie-Hellman [27]) Let ℓ, k ∈ N such that ℓ > k. We call Dℓ,k a
matrix distribution over the matrices in Zℓ×k

p if it outputs a full-rank matrix with overwhelming probability.
Without loss of generality, we assume the first k rows of the matrix A ← Dℓ,k form an invertible matrix.
We define the distributions (Di, [[kb]]i) for i ∈ {1, 2} over groups G1,G2 in bilinear group G as

Di = (G, [[A]]i) for m← Zk
p; kb =

{
Am if b = 0

k← Zℓ
p if b = 1.

We say that the Matrix Decisional Diffie-Hellman (MDDH) assumption over Gi for i ∈ {1, 2} holds if for all
PPT adversaries A, there exists a negligible function negl(·) satisfying the following:

AdvMDDH
A (λ) =

∣∣∣Pr[A(Di, [[k0]]i) = 1]− Pr[A(Di, [[k1]]i) = 1]
∣∣∣ ≤ negl(λ).

Definition 2 (Access Structure [38]) Let Att = {att1, . . . , attn} be a finite set of attributes. An access
structure over Att is a collection A of non-empty subsets of {Att}, i.e., A ⊆ 2{Att} \{ϕ}. A set contained in A
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is called an authorized, otherwise it is called unauthorized. An access structure A is monotone if S1 ⊆ S2 ⊆ A
and S1 ∈ A implies S2 ∈ A. Given a set of attributes S ⊆ Att, we write A(S) = 1 if and only if there exists
A ⊆ S such that A is authorized. Note that, List-Att(A) is the list of attributes appearing in the access
structure A.

In this paper, we represent the access policies realizable by linear secret sharing schemes (LSSS) which
we define below.

Definition 3 (Linear Secret Sharing Scheme [38]) Let K be a field, d, f ∈ N, and Att be a finite
universe of attributes. A linear secret sharing scheme (LSSS) over K for an access structure A over Att is
specified by a share-generating matrix A ∈ Kd×f such that for any I ⊂ [d], there exists a vector c ∈ Kd

with support I and c ·A = (1, 0, ..., 0) if and only if {atti | i ∈ I} ∈ A.

To share a secret s, pick uniformly random values v2, . . . , vd ← K and generate a vector of n shares as
s := (s, v2, . . . , vd) ·A⊤ such that the share for attribute atti is the i-th coordinate si of s. Only an authorized
set {atti | i ∈ I} ∈ A can recover c to reconstruct s by computing c · s⊤ = c · (A · (s, v2, . . . , vd)⊤) = s. For
any unauthorized set, reconstructing the secret will result in a uniformly random value.

Definition 4 (Pseudorandom Function) A pseudorandom function (PRF) family F = {PRFseed(·)}seed∈Kprf

with a keyspace Kprf, domain X and codomain Y is a function family that consists of functions PRFseed :
X → Y. Let Rand be the set of random functions with the same domain X and codomain Y. Then for all
PPT adversaries A, there exists a negligible function negl(·) satisfying the following:

AdvPRFA (λ) = |Pr[APRFseed(·)(λ) = 1]− Pr[ARand(·)(λ) = 1]| ≤ negl(λ)

with seed← Kprf and Rand(·)← Rand.

Definition 5 (Non-Interactive Key Exchange [19]) A non-interactive key exchange (NIKE) scheme
Πnike = (Setup,KeyGen,KeyShared) for shared key space Ks consists of the following algorithms:

Setup(1λ) → PP: The setup algorithm takes as input the security parameter λ and outputs the public
parameters PP.

KeyGen(PP)→ (PK,SK) : The key generation algorithm takes as input PP and outputs party’s public key
PK and the corresponding secret key SK.

KeyShared(PK,SK)→ K : The key shared algorithm takes as input a party’s PK, SK and deterministically
outputs a shared key K ∈ Ks.

Correctness: For all λ ∈ N, we require

Pr

 PP← Setup(1λ)
Ki,j = Kj,i : (PKi,SKi)← KeyGen(PP), (PKj ,SKj)← KeyGen(PP)

Ki,j ← KeyShared(PKi,SKj),Kj,i ← KeyShared(PKj ,SKi)

 ≥ 1− negl(λ).

Definition 6 (Security of NIKE) The Πnike = (Setup,KeyGen,KeyShared) scheme is secure if for all PPT
adversaries A, there exists a negligible function negl(·) satisfying

AdvnikeA (λ) =
∣∣∣Pr [ExptnikeA (λ, 0) = 1

]
− Pr

[
ExptnikeA (λ, 1) = 1

]∣∣∣ ≤ negl(λ)

where the experiment ExptnikeA (λ, β) is defined for β ∈ {0, 1} as follows:
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ExptnikeA (λ, β) :

1: PP← Setup(1λ).
2: Q← ϕ.
3: β′ ← AONHonest,OCor,OReveal,OTest,β (PP).
4: output β′.

ONHonest() :

1: (PK,SK)← KeyGen(PP).
2: Q = Q ∪ {(PK,SK)}.
3: output PK.

OCorr(PK) :

1: if ∃(PK,SK) ∈ Q,
Q = Q \ {(PK,SK)}.
output SK.

OReveal(PK,PK
′) :

1: if (PK,SK) ∈ Q,
output KeyShared(PK′,SK).

2: else if (PK′,SK′) ∈ Q,
output KeyShared(PK,SK′).

OTest,β(PK,PK
′) :

1: if (PK,SK) ̸∈ Q or (PK′,SK′) ̸∈ Q,
abort.

2: if β = 0,
output KeyShared(PK,SK′).

3: if β = 1,
output K ← Ks.

Definition 7 (All-or-nothing Encryption [19]) An all-or-nothing encryption (AoNE) scheme Πaone =
(Setup, LocalSetup,Enc,Dec) is defined over the message spaceM = {0, 1}ℓ× 2ID ×L with ℓ ∈ N, key space
K = ϕ, identity space ID and label space L. Note that, AoNE is a class of dynamic decentralized functional
encryption (DDFE) scheme. The scheme consists of the following algorithms:

GlobalSetup(1λ)→ PP: The global setup algorithm takes as input security parameter λ and output public
parameter PP.

LocalSetup(PP)→ (PKk,MSKk): The local setup algorithm takes as input PP and output the party’s public
key PKk and secret key MSKk. The following two algorithms implicitly take PKk.

Enc(MSKk, (x,U , L)) → CTk: The encryption algorithm takes as input party’s MSKk, a message x, a user
set U , a label L and outputs the corresponding ciphertext CTk.

Dec({CTk}i∈UMsg
) → ζ ∨ ⊥. This algorithm takes as inputs {CTk}k∈UMsg

where UMsg ⊆ ID is any set of
users. It outputs either ζ or ⊥ indicating failure.

Correctness: For all λ ∈ N, x ∈ {0, 1}ℓ,UMsg ∈ 2ID and Lk ∈ L, we require

Pr


PP← GlobalSetup(1λ)

ζ = f(ϵ, {k, (xk,Uk, Lk)}k∈UMsg
) : (PKk,SKk)← LocalSetup(PP)

CTk ← Enc(MSKk, (xk,Uk, Lk))
ζ ← Dec({CTk}k∈UMsg)

 ≥ 1− negl(λ)

where the function f is defined as follows:

f(ϵ, {k, (xk,Uk, Lk)}k∈UMsg
) =

{
(xk)k∈UMsg

if (⋆) holds

⊥ otherwise.

The conditions in (⋆) define as follows:
– for all k ∈ UMsg, UMsg = Uk.
– for all k1, k2 ∈ UMsg, Lk1

= Lk2
.

Note that, the KeyGen algorithm is not required and Dec works without the secret key components. The
security definition is the same as Definition 19 except that no queries to OKG(·) are provided to the adversary.
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Definition 8 (Security of AoNE) The Πaone = (GlobalSetup, LocalSetup,Enc,Dec) is said to be xx-yy-
indistinguishability (xx-yy-IND) secure for xx ∈ {sel, adp}, yy ∈ {sym, asym} if for any security parameter
λ, any PPT adversary A, there exists a negligible function negl such that the following holds

AdvaoneA,xx-yy-IND(λ) =
∣∣∣Pr [ExptaoneA,xx-yy-IND(λ, 0) = 1

]
− Pr

[
ExptaoneA,xx-yy-IND(λ, 1) = 1

] ∣∣∣ ≤ negl(λ)

where the experiment ExptaoneA,xx-yy-IND(λ, β) is defined for β ∈ {0, 1} as follows:

ExptaoneA,xx-yy-IND(λ, β) :

1: PP← GlobalSetup(1λ).
2: β′ ← AOHonGen(·),OCorr(·),OE(·),OLoR,β(·)(PP).
3: Output β′ if condition (∗) is satisfied.
OCorr(k) :

output MSKk.

OHonGen(k) :

output LocalSetup(PP).

OE(k, (xk,Uk, Lk)) :

output Enc(MSKk, (xk,Uk, Lk).

OLoR,β(k, (x
0
k, x

1
k,Uk, Lk)) :

output Enc(MSKk, (x
β
k ,Uk, Lk)).

Let CS,HS be the sets of all inputs k ∈ ID for which the adversary makes queries to the oracles OHonGen(·)
and OCorr(·) respectively. The condition (∗) is that if there exist a subset of identities UMsg ⊆ HS, then it
should satisfy all the following conditions

– f(ϵ, {k, (x0k,Uk, Lk)}k∈UMsg
) = f(ϵ, {k, (x1k,Uk, Lk)}k∈UMsg

).

– for all k ∈ UMsg, [OLoR,β(k, (x
0
k, x

1
k,Uk, Lk)) is queried or OE(k, (xk,Uk, Lk)) is queried with x0k = x1k =

xk] and [x0k = x1k = xk for k ∈ CS].

– For xx = sel: the adversary first generates the CS set in one shot, then all queries to OLoR,β(·) or OE(·)
oracles should be made.
– For yy = sym: for i ∈ CS, the queries OLoR,β(k, (x

0
k, x

1
k,Uk, Lk)) must satisfy x0k = x1k.

Definition 9 (Slotted Inner-Product Functional Encryption [36]) A slotted inner-product functional
encryption (sIPFE) scheme Πsip = (Setup,KeyGen,Enc,SlotEnc,Dec) is defined over a slot specification
S ′ = S ′pub × S ′priv, where S ′pub = Zn1

p represents the public slot of size n1, and S ′priv = Zn2
p represents the

private slot of size n2. Let G be a bilinear group containing the groups G1,G2,GT of prime order p. The
scheme consists of the following five algorithms:

Setup(1λ, 1n1 , 1n2) → (MSK,MPK): The setup algorithm takes as input security parameter λ and outputs
the master public key MPK and the master secret key MSK.

KeyGen(MSK, [[y]]2) → SK: The key generation algorithm takes as input MSK, a slot vector y ∈ S ′ in the
exponent of the group G2 and outputs the secret key SK.

Enc(MSK, [[x]]1)→ CT: The encryption algorithm takes as inputMSK, the slot vector x ∈ S ′ in the exponent
of the group G1 and outputs the ciphertext CT.

SlotEnc(MPK, [[x]]1) → CT: The slotted encryption algorithm takes as input MPK, the public slot vector
x ∈ S ′pub in the exponent of the group G1 and outputs the ciphertext CT.

Dec(SK,CT)→ [[d]]T ∨ ⊥: The deception algorithm takes as input SK, CT and outputs an element [[d]]T ∈
GT .

Correctness: For all λ ∈ N, and x,y ∈ S ′, we require

Pr

[[d]]T = [[⟨x,y⟩]]T :
(MPK,MSK)← Setup(1λ, 1n1 , 1n2)
SK← KeyGen(MSK, [[y]]2)
CT← Enc(MSK, [[x]]1)

 ≥ 1− negl(λ).
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Slot-mode correctness: For all x ∈ S ′pub, the following distributions are required to be identical:{
(MPK,MSK,CT) : (MPK,MSK)← Setup(1λ, 1n1 , 1n2),CT← Enc(MSK, [[(x,0n2)]]1)

}
,{

(MPK,MSK,CT) : (MPK,MSK)← Setup(1λ, 1n1 , 1n2),CT← SlotEnc(MPK, [[x]]1)
}

Definition 10 (Security of sIPFE) A sIPFE scheme Πsip = (Setup,KeyGen,Enc,SlotEnc,Dec) is said to
be xx-function-hiding-indistinguishability (xx-FH-IND) secure for xx ∈ {sel, adp} if for any security parameter
λ, any PPT adversary A, there exists a negligible function negl such that the following holds

AdvsipA,xx-FH-IND(λ) =
∣∣∣Pr [ExptsipA,xx-FH-IND(λ, 0) = 1

]
− Pr

[
ExptsipA,xx-FH-IND(λ, 1) = 1

]∣∣∣ ≤ negl(λ)

where the experiment ExptsipA,xx-FH-IND(λ, β) is defined for β ∈ {0, 1} as follows:

ExptsipA,xx-FH-IND(λ, β) :

1: (n1, n2)← A(1λ).
2: (MPK,MSK)← Setup(1λ, 1n1 , 1n2).
3: β′ ← AOKG,β(·,·),OE,β(·)(MPK).
4: output β′.

OKG,β(y
(0)
ℓ ,y

(1)
ℓ ) :

output KeyGen(MSK, [[y
(β)
ℓ ]]2).

OE,β(x
(0)
κ ,x

(1)
κ ) :

output Enc(MSK, [[x
(β)
κ ]]1).

Here, (y
(0)
ℓ ,y

(1)
ℓ ) denotes the ℓ-th secret key query and (x

(0)
κ ,x

(1)
κ ) denotes the κ-th encryption query. Let

Qk, Qc be the numbers of queries to OKG,β(·), OE,β(·) oracles respectively and y
(β)
ℓ = (y

(β)
ℓ,pub,y

(β)
ℓ,priv) with

y
(β)
ℓ,pub ∈ S ′pub and y

(β)
ℓ,priv ∈ S ′priv for β ∈ {0, 1}. Then, the following conditions must hold:

[[⟨x(0)
κ ,y

(0)
ℓ ⟩]]T = [[⟨x(1)

κ ,y
(1)
ℓ ⟩]]T for all ℓ ∈ [Qk], κ ∈ [Qc] and y

(0)
ℓ,pub = y

(1)
ℓ,pub for all ℓ ∈ [Qk].

– For xx = sel: Queries to OE,β(·) must be made before any queries to OKG,β(·).
– For xx = adp: Queries to OE,β(·), OKG,β(·) can be made in any order.

4 Extended Slotted UIPFE

In this section, we define the extended slotted unbounded IPFE (esUIPFE) with slot-specification S = Spub×
Spriv where Spub = Z∗

p×Zn1
p and Spriv = Zn2

p represent the elements in the public and private slots respectively.
Let G = (p,G1,G2,GT , g1, g2, e) be a pairing group (see Definition 1) of prime order p.

Definition 11 An esUIPFE scheme Πesi = (Setup,KeyGen,Enc,SlotEnc,Dec), defined over the slot specifi-
cation S = Spub × Spriv, consists of the following five algorithms:

Setup(1λ, 1n1 , 1n2) → (MPK,MSK) : The setup algorithm takes as input the security parameter λ, the
length n1 of the bounded part of Spub, and the length n2 of the Spriv part. It outputs the master public
key MPK and the master secret key MSK.

KeyGen(MSK, [[(y, r,ypriv)]]2, Iy)→ SK : The key generation algorithm takes as input MSK, the slot vector
(y, r,ypriv) ∈ S in the exponent of the group G2 with an associated index set Iy of y. It outputs a
secret key SK.

Enc(MSK, [[(x, z,xpriv)]]1) → CT : The encryption algorithm takes as input MSK and the slot vector
(x, z,xpriv) ∈ S in the exponent of the group G1 where x ∈ Zm

p (say) is an arbitrary length vector. It
outputs a ciphertext CT.

SlotEnc(MPK, [[(x, z)]]1) → CT : The slotted encryption algorithm takes as input MPK and the public-slot
vector (x, z) ∈ Spub in the exponent of the group G1, where x ∈ Zm

p (of arbitrary length). It outputs
a ciphertext CT.
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Dec(SK,CT) → [[d]]T ∨ ⊥ : The decryption algorithm takes as input SK and CT. It either outputs an
element [[d]]T ∈ GT or a special symbol ⊥ indicating failure.

Correctness: For all λ ∈ N, (x, z,xpriv), (y, r,ypriv) ∈ S such that x ∈ Zm
p ,y ∈ Z|Iy|

p , z, r ∈ Zn1
p and

xpriv,ypriv ∈ Zn2
p with R(x,y) = 1, we require

Pr

[[d]]T = [[⟨x,y⟩p + ⟨z, r⟩+ ⟨xpriv,ypriv⟩]]T :
(MPK,MSK)← Setup(1λ, 1n1 , 1n2)
SK← KeyGen(MSK, [[(y, r,ypriv)]]2, Iy)
CT← Enc(MSK, [[(x, z,xpriv)]]1)

 ≥ 1− negl(λ).

Slot-mode correctness: For all (x, z) ∈ Spub, the following distributions must be identical:{
(MPK,MSK,CT) : (MPK,MSK)← Setup(1λ, 1n1 , 1n2),CT← Enc(MSK, [[(x, z,0n2)]]1)

}
,{

(MPK,MSK,CT) : (MPK,MSK)← Setup(1λ, 1n1 , 1n2),CT← SlotEnc(MPK, [[(x, z)]]1)
}
.

Definition 12 (Security of esUIPFE) The Πesi = (Setup,KeyGen,Enc,SlotEnc,Dec) scheme is said to
be xx-function-hiding-indistinguishability (xx-FH-IND)-based secure for xx ∈ {sel, adp} if for any security
parameter λ, any PPT adversary A, there exists a negligible function negl(·) such that the following holds:

AdvesiA,xx-FH-IND(λ) =
∣∣∣Pr [ExptesiA,xx-FH-IND(λ, 0) = 1

]
− Pr

[
ExptesiA,xx-FH-IND(λ, 1) = 1

]∣∣∣ ≤ negl(λ)

where the experiment ExptesiA,xx-FH-IND(λ, β) is defined for β ∈ {0, 1} as follows:

ExptesiA,xx-IND(λ, β)

1: (n1, n2)← A(1λ).
2: (MPK,MSK)← Setup(1λ, 1n1 , 1n2).
3: β′ ← AOKG,β(·,·),OE,β(·)(MPK).
4: output β′.

OKG,β(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) :

1: output

KeyGen(MSK, [[(yℓ, rℓ,y
(β)
ℓ,priv)]]2, Iy).

OE,β({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) :

1: output

Enc(MSK[[(x
(β)
j , z

(β)
j ,x

(β)
priv)]]1).

Here, (yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) denotes the ℓ-th secret key query and {x(β)
κ , z

(β)
κ ,x

(β)
κ,priv}β∈{0,1} denotes the κ-

th encryption query where it must hold that: |x(0)
κ | = |x(1)

κ | = mκ (say). Let Qk, Qc be the numbers of queries

to OKG,β(·), OE,β(·) oracles respectively. Then, for all ℓ ∈ [Qk], κ ∈ [Qc] with R(x(0)
κ ,yℓ) = R(x

(1)
κ ,yℓ) = 1,

it must hold that

[[⟨x(0)
κ ,yℓ⟩p + ⟨z

(0)
κ , rℓ⟩+ ⟨x(0)

κ,priv,y
(0)
ℓ,priv⟩]]T = [[⟨x(1)

κ ,yℓ⟩p + ⟨z
(1)
κ , rℓ⟩+ ⟨x(1)

κ,priv,y
(1)
ℓ,priv⟩]]T .

– For xx = sel: Queries to OE,β(·) must be made before any queries to OKG,β(·).
– For xx = adp: Queries to OE,β(·), OKG,β(·) can be made in any order.

4.1 Construction

Consider Πsip = (iSetup, iKeyGen, iEnc, iSlotEnc, iDec) be a bounded sIPFE with slot-specification S ′ = S ′pub×
S ′priv with S ′pub = Zn1+4

p , S ′priv = Zn2
p ×Z2

p×Zn2
p . We present our esUIPFE scheme Πesi = (Setup,KeyGen,Enc,

SlotEnc,Dec) with Spub = Z∗
p × Zn1

p and Spriv = Zn2
p below. We discuss the bounded sIPFE in Definition 9.

Setup(1λ, 1n1 , 1n2): The setup algorithm takes as input the security parameter λ, the lengths n1, n2 and
executes the following steps:

1. Generates (iMPK, iMSK)← iSetup(1λ, 1n1+4, 12n2+2).
2. Outputs the master public key MPK = iMPK and the master secret key MSK = iMSK.
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KeyGen(MSK, [[(y, r,ypriv)]]2, Iy): The key generation takes input MSK with a vector tuple [[(y, r,ypriv)]]2
and does the following steps:

1. Defines the vector ki,fe as follows:

ki,fe = ( πi(i, 1), yi, si, ri, yi,priv, 0, 0, 0n2 ) ∀i ∈ Iy

where πi, ri ← Zp, si ← Zn1
p ,yi,priv ← Zn2

p such that
∑

i∈Iy
ri = 0,

∑
i∈Iy

si = r,
∑

i∈Iy
yi,priv =

ypriv.
2. Generates iSKi ← iKeyGen(iMSK, [[ki,fe]]2).
3. Outputs the secret key SK = {iSKi}i∈Iy .

Enc(MSK, [[(x, z,xpriv)]]1): The encryption algorithm takes as input MSK, a vector tuple [[(x, z,xpriv)]]1 and
proceeds to do the following steps:

1. Defines the vector ci,fe as follows:

ci,fe = ( σi(1,−i), xi, z, α, xpriv, 0, 0, 0n2 ) ∀i ∈ [m]

where α, σi ← Zp for all i ∈ [m].
2. Generates iCTi ← iEnc(iMSK, [[ci,fe]]1).
3. Outputs the ciphertext CT = {iCTi}i∈[m].

SlotEnc(MPK, [[(x, z)]]1): The slot encryption algorithm takes as input MPK, a vector tuple (x, z) and
performs the following steps:

1. Defines the vector ci,fe as follows:

ci,fe = ( σi(1,−i), xi, z, α ) ∀i ∈ [m]

where α, σi ← Zp for all i ∈ [m].

2. Generates iCTi ← iSlotEnc(iMPK, [[ci,fe]]1).

3. Outputs the ciphertext CT = {iCTi}i∈[m].

Dec(SK,CT): The decryption algorithm takes as input the secret key SK, the ciphertext CT and proceeds
as follows:

1. If Iy ⊆ [m], i.e., R(x,y) = 1, then it computes [[d]]T ←
∏

i∈Iy
iDec(iSKi, iCTi) and returns [[d]]T .

2. Otherwise, it returns ⊥.

Correctness: From the correctness of Πsip with R(x,y) = 1, we have

iDec(iSKi, iCTi) = [[xiyi + ⟨si, z⟩+ ⟨xpriv,yi,priv⟩]]T and
∏
j∈Iy

iDec(iSKi, iCTi) = [[⟨x,y⟩p + ⟨r, z⟩+ ⟨xpriv,ypriv⟩]]T .

Slot-mode correctness: From the slot-mode correctness of Πsip, we have

iEnc(iMSK, [[c′i,fe]]1) ≡ iSlotEnc(iMPK, [[ci,fe]]1)

where c′i,fe = (u||02n2+2) and ci,fe = u such that u ∈ Z4+n1
p .
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4.2 Security Analysis

In Theorem 6, we present the security analysis of our esUIPFE scheme, as described in Construction 4.1.
We will use the following lemma from [24] (adapted in our setting) to handle the non-permissive keys in the
security analysis.

Lemma 1 (Handling Non-permissive Keys [24]) Let Πsip = (iSetup, iKeyGen, iEnc, iSlotEnc, iDec) be a
bounded sIPFE scheme with slot-specification S ′pub = Zn1+4

p , S ′priv = Zn2
p × Z2

p × Zn2
p . For the polynomials

t = t(λ), n = n(λ), with n > t, we define the following vectors

kj = ( πj(j, 1), 0, 0n1 , 0, 0n2 , 0, rj , 0n2 ) ,

kβ
j = ( πj(j, 1), 0, 0n1 , 0, 0n2 , 0, rj + βr̂j , 0n2 ) ∀j ∈ [t+ 1, n] ,

ck′ = ( σk′(1,−k′), 0, 0n1 , 0, 0n2 , 0, α̃k, 0n2 ) ∀k′ ∈ [t] ,

where πj , ρk′ , rj , r̂j , α̃k′ ← Zp, β ← {0, 1}. For any iMSK← iSetup(1λ, 1n1 , 1n2), the distributions {{iSKkj}j∈[n],
{iSKkβ

j
}j∈[t+1,n], {iCTck′}k′∈[t]} for β ← {0, 1} are computationally indistinguishable where

iSKkj
= iKeyGen(iMSK, [[kj ]]2) ∀j ∈ [n] ,

iSKkβ
j
= iKeyGen(iMSK, [[kβ

j ]]2) ∀j ∈ [t+ 1, n] ,

iCTck′ = iEnc(iMSK, [[ck′ ]]1) ∀k′ ∈ [t] .

Theorem 6 Our Πesi scheme achieves sel-FH-IND security as per Definition 12 if DDH assumption holds
in the group G2 and Πsip scheme is sel-FH-IND as per Defintion 10.

Proof. We prove Theorem 6 through a sequence of hybrids. We describe the hybrids below. The values
Qc and Qk represent the number of ciphertext and key generation queries, respectively. We briefly provide
indistinguishability arguments of security hybrids in Fig. 2. We represent the slots using dashed boxes,
which are updated in the subsequent hybrid steps. In the subsequent hybrids, we will only mention the
updated slots.

Hybrid 0. Same as the experiment ExptesiA,sel-FH-IND(λ, 0) where the adversary can query the following:

Encryption queries: On receiving the queries (x
(0)
κ , z

(0)
κ ,x

(0)
κ,priv), (x

(1)
κ , z

(1)
κ ,x

(1)
κ,priv) from the adversary

A, the challenger computes the vectors cκ,i,fe for all κ ∈ [Qc] as follows:

OE,0({x(β)
κ , z(β)κ ,x

(β)
κ,priv}β∈{0,1}) : cκ,i,fe = (σκ,i(1,−i), x(0)κ,i , z

(0)
κ , ακ, x

(0)
κ,priv , ⊥ , ⊥ , ⊥ )

where ακ ← Zp, for all i ∈ [m] and σκ,i ← Zp.

Key Generation queries: On receiving ℓ-th functional query (yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

), compute
the vectors kℓ,i,fe for all i ∈ Iyℓ

as follows:

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe = (πℓ,i(i, 1), yℓ,i, sℓ,i, rℓ,i , y
(0)
ℓ,i,priv , 0 , 0, 0

n2 )

where πℓ,i, rℓ,i ← Zp, sℓ,i ← Zn1
p ,yℓ,i,priv ← Zn2

p such that
∑

i∈Iy
rℓ,i = 0,

∑
i∈Iyℓ

sℓ,i = rℓ,
∑

i∈Iyℓ
yℓ,i,priv =

yℓ,priv.

Hybrid 1. This hybrid is the same as Hybrid 0 except that the vectors cκ,i,fe for all κ ∈ [Qc] are modified
as follows.

OE,0({x(β)
κ , z(β)κ ,x

(β)
κ,priv}β∈{0,1}) : cκ,i,fe : ( x

(0)
κ,i , z(0)κ , x

(0)
κ, priv, 0 , 0 , 0 ) .

The indistinguishability follows from the slot mode correctness of the Πsip.
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Hybrid 0 Hybrid 1 Hybrid 2 Hybrid 3 H3-j-0 H3-j-1

H3-j-2H3-j-3H3-j-4H3-j-5H3-j-6

H3-j-7 H3-j-8 H3-j-9 H3-j-10 H3-j-11

H3-j-12H3-j-13H3-j-14H3-j-15H3-j-16

H3-j-17 H3-j-18 H3-j-19 H3-j-20 H3-j-21

Hybrid 4Hybrid 5Hybrid 6Hybrid 7Hybrid 8

Slot-Corr

−→
FH-IND

−→
Stat

−→ · · · FH-IND

−→

←
−FH-IND

DDH

←−
FH-IND

←−
Stat

←−
FH-IND

←−

←
−FH-IND

Lemma 1

−→
FH-IND

−→
FH-IND

−→
Stat

−→

←
−FH-IND

FH-IND

←−
Lemma 1

←−
FH-IND

←−
FH-IND

←−
Stat

←
−

FH-IND

−→
DDH

−→
FH-IND

−→
FH-IND

−→

··
·

FH-IND

←−
FH-IND

←−
Stat

←−
FH-IND

←−

j ∈ [Qc]

Figure 2: Outline of the security games for Theorem 6. Here, ‘Stat’ means statistically, ‘Slot-Corr’ is a
shorthand for slot mode correctness of Πsip, and ‘FH-IND’ is a shorthand for the function-hiding indistin-
guishability security of Πsip.

Hybrid 2. We modify the vectors kℓ,i,fe for all ℓ ∈ [Qk] as follows.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( rℓ,i, y
(0)
ℓ,i,priv, rℓ,i , y

(1)
ℓ,i,priv ) .

Hybrid 3. In this hybrid, we set rℓ,i = r̃ℓ,i + δr̃′ℓ,i for all ℓ ∈ [Qk] where r̃ℓ,i, r̃
′
ℓ,i, δ ← Zp such that∑

i∈Iyℓ
r̃ℓ,i =

∑
i∈Iyℓ

r̃′ℓ,i = 0.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( r̃ℓ,i + δr̃′ℓ,i ,y
(0)
ℓ,i,priv, r̃ℓ,i + δr̃′ℓ,i ,y

(1)
ℓ,i,priv ) .

Hybrid 4. This hybrid is the same as Hybrid 3 except that the ciphertext queries cκ,i,fe for all κ ∈ [Qc] are
modified as below.

OE,1({x(β)
κ , z(β)κ ,x

(β)
κ,priv}β∈{0,1}) : cκ,i,fe : ( x

(1)
κ,i , z

(1)
κ , 0 , 0, 0, x

(1)
κ,priv ) .
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Hybrid 5. In this hybrid, we modify the following vectors for all ℓ ∈ [Qc] and κ ∈ [Qk].

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( r̃ℓ,i + δr̃′ℓ,i, y
(1)
ℓ,i,priv , r̃ℓ,i + δr̃′ℓ,i, y

(0)
ℓ,i,priv ) ,

OE,1({x(β)
κ , z(β)κ ,x

(β)
κ,priv}β∈{0,1}) : cκ,i,fe : ( x

(1)
κ,i , z

(1)
κ , x

(1)
κ,priv , 0, 0, 0 ) .

Hybrid 6. This hybrid is the same as Hybrid 5 except that all the y
(1)
ℓ,i,priv are replaced with 0 for all ℓ ∈ [Qk].

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( r̃ℓ,i + δr̃′ℓ,i,y
(1)
ℓ,i,priv, r̃ℓ,i + δr̃′ℓ,i, 0 ) .

Hybrid 7. We substitute rℓ,i = r̃ℓ,i + δr̃′ℓ,i for all ℓ ∈ [Qk] in this hybrid.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( rℓ,i ,y
(1)
ℓ,i,priv, rℓ,i ,0 ) .

Hybrid 8. In this last hybrid, we modify the vectors kℓ,i,fe for all ℓ ∈ [Qk].

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( rℓ,i,y
(1)
ℓ,i,priv, 0 ,0 ) .

This hybrid is the same as ExptesiA,sel-FH-IND(λ, 1). Thanks to Lemma 2 to Lemma 9, we can conclude
the proof of Theorem 6.

Lemma 2 Hybrid 1 and Hybrid 2 are computationally indistinguishable if the underlying Πsip scheme is
sel-FH-IND secure.

Proof. Consider a PPT adversary A that can distinguish between Hybrid 1 and Hybrid 2. We can use A
to construct B that can break the sel-FH-IND security of the Πsip scheme as follows. On receiving challenge

messages {x(β)
κ , z

(β)
κ ,x

(β)
κ,priv}β∈{0,1} from A, and the challenger picks the bit b = 0, B computes the following

ciphertext and secret key queries by forwarding them to the challenger as follows.

iCTHybrid 1
κ,i ← iKeyGen(iMSK, [[(σκ,i,−iσκ,i, x(0)κ,i , z

(0)
κ,i , ακ,x

(0)
κ,priv, 0, 0, 0,0)]]1) = iEnc(iMSK, [[x̃

(0)
κ,i ]]1) and

iSKHybrid 1
ℓ,i ← iKeyGen(iMSK, [[(iπi, πℓ,i, yℓ,i, sℓ,i, rℓ,iy

(0)
ℓ,priv, 0, 0, 0,0

n2)]]2) = iKeyGen(iMSK, [[ỹ
(0)
ℓ,i ]]2).

When the challenger picks the bit b = 1, B computes the following vectors and forwards it to the
challenger.

iCTHybrid 2
κ,i ← iKeyGen(iMSK, [[(σκ,i,−iσκ,i, x(0)κ,i , z

(0)
κ,i , ακ,x

(0)
κ,priv, 0, 0, 0,0)]]1) = iEnc(iMSK, [[x̃

(1)
κ,i ]]1) and

iSKHybrid 2
ℓ,i ← iKeyGen(iMSK, [[(iπi, πℓ,i, yℓ,i, sℓ,i, rℓ,iy

(0)
ℓ,priv, rℓ,i, 0, 0,y

(1)
ℓ,i,priv]]2) = iKeyGen(iMSK, [[ỹ

(1)
ℓ,i ]]2).

For all κ ∈ [Qc], ℓ ∈ [Qk], we have

iDec(iSKHybrid 1
ℓ,i , iCTHybrid 1

κ,i ) = [[yℓ,ix
(0)
κ,i + ⟨sℓ,i, z

(0)
κ,i⟩+ ⟨y

(0)
ℓ,priv,x

(0)
κ,priv⟩+ rℓ,iακ]]T

= iDec(iSKHybrid 2
ℓ,i , iCTHybrid 2

j,i ).

B is an admissible adversary for the security of the Πsip scheme. When B samples b = 0, the game is identical
to Hybrid 1 and when b = 1, the game is identical to Hybrid 2. □

Lemma 3 Hybrid 2 and Hybrid 3 are statistically indistinguishable.
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Proof. The distributions

{rℓ,i ← Zp :
∑
i∈Iyℓ

rℓ,i = 0} and {r̃ℓ,i + δr̃′ℓ,i : δ ← Zp,
∑
i∈Iyℓ

(r̃′ℓ,i + δr̃′ℓ,i) = 0,
∑
i∈Iyℓ

r̃ℓ,k =
∑
i∈Iyℓ

r̃′ℓ,i = 0}

are statistically close as
∑

i∈Iyℓ
r̃ℓ,i + δr̃′ℓ,i = 0 with {r̃ℓ,i, r̃′ℓ,i}i∈Iyℓ

, δ uniformly chosen over Zp and satisfies∑
i∈Iyℓ

r̃ℓ,i =
∑

i∈Iyℓ
r̃′ℓ,i = 0. □

Lemma 4 Hybrid 3 and Hybrid 4 are computationally indistinguishable if DDH assumption holds over the
group G2 and Πsip scheme is sel-FH-IND secure.

Proof. We prove the lemma through a sequence of hybrids, namely H3,j for every ciphertext query j ∈ [Qc].
We define H3,0 and H3,Qc

the same as Hybrid 3 and Hybrid 4, respectively. The hybrid H3,j is the same as
H3,j−1 with the following changes to the j-th ciphertext query cj,i,fe.

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}): cj,i,fe : ( σj,i(1,−i), x

(1)
j,i , z

(1)
j , αj , 0 , 0, 0 x

(1)
j,priv ) .

Lemma 5 Hybrid H3,j and H3,j+1 are computationally indistinguishable if DDH assumption holds over the
group G2 and Πsip scheme is sel-FH-IND secure.

Proof. We prove the lemma by introducing several sub-hybrids described as follows.

Hybrid H3,j,0: This hybrid is the same as H3,j−1. We represent the slots using dashed boxes, which are
updated in the subsequent hybrid steps. In the subsequent hybrids, we will only mention the updated
slots.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

): kℓ,i,fe = ( πℓ,i(i, 1), yℓ,i, sℓ,i, r̃ℓ,i + δr̃′ℓ,i , y
(0)
ℓ,i,priv , r̃ℓ,i + δr̃′ℓ,i , 0 , y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}): cj,i,fe = ( σj,i(1,−i), x

(0)
j,i , z

(0)
j , αj , x

(0)
j,priv , 0 , 0 , 0 ) .

Hybrid H3,j,1: In this hybrid, we modify the j-th ciphertext query cj,i,fe as follows.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( r̃ℓ,i + δr̃′ℓ,i,y
(0)
ℓ,i,priv, r̃ℓ,i + δr̃′ℓ,i, 0,y

(1)
ℓ,i,priv ) ,

OE,0( {x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(0)
j,i , z

(0)
j , 0 ,x

(0)
j,priv, αj , 0,0 ) .

We can show the indistinguishability between the hybrids through a reduction to the Πsip security as
in Lemma 2. We know for all ℓ ∈ [Qk], we have

iDec(iSK
H3,j,0

ℓ,i , iCT
H3,j,0

j,i )

= [[yℓ,ix
(0)
j,i + ⟨sℓ,i, z(0)j,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
j,priv⟩+ r̃ℓ,iαj + δr̃′ℓ,iαj ]]T

= iDec(iSK
H3,j,1

ℓ,i , iCT
H3,j,1

j,i ).

Thus, we have the same inner product values in both hybrids.

Hybrid H3,j,2: This hybrid is the same as Hybrid H3,j,1 except the following changes to j-th ciphertext
and all key generation queries ℓ ∈ [Qk].

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( r̃ℓ,i + δr̃′ℓ,i,y
(0)
ℓ,i,priv, αj r̃ℓ,i , αjδr̃

′
ℓ,i ,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(0)
j,i , z

(0)
j , 0,x

(0)
j,priv, 1 , 1 ,0 ) .
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We know for all ℓ ∈ [Qk], we have

iDec(iSK
H3,j,1

ℓ,i , iCT
H3,j,1

j,i )

= [[yℓ,ix
(0)
j,i + ⟨sℓ,i, z(0)j,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
j,priv⟩+ r̃ℓ,iαj + δr̃′ℓ,iαj ]]T

= iDec(iSK
H3,j,2

ℓ,i , iCT
H3,j,2

j,i ).

In case of ι ∈ [Qc], ι < j and ℓ ∈ [Qk],

iDec(iSK
H3,j,1

ℓ,i , iCT
H3,j,1

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ r̃ℓ,iαι + δr̃′ℓ,iαι]]T

= iDec(iSK
H3,j,2

ℓ,i , iCT
H3,j,2

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,1

ℓ,i , iCT
H3,j,1

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ r̃ℓ,iαι + δr̃′ℓ,iαι]]T

= iDec(iSK
H3,j,2

ℓ,i , iCT
H3,j,2

ι,i ).

We have the same inner product values in both hybrids, which can be shown computationally indis-
tinguishable, similar to the proof of Lemma 2.

Hybrid H3,j,3: In this hybrid, we replace αjδ with c← Zp.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( r̃ℓ,i + δr̃′ℓ,i,y
(0)
ℓ,i,priv, αj r̃ℓ,i, cr̃′ℓ,i ,y

(1)
ℓ,i,priv ) .

Claim 1 Hybrid H3,j,2 and Hybrid H3,j,3 are computationally indistinguishable if DDH assumption
holds over the group G2.

Proof. Given an adversary A that can distinguish between the hybrids, we construct an adversary B
that breaks the DDH assumption.

Let B receives a DDH instances (G2, [[f ]]2, [[g]]2, [[hb]]2) where

hb =

{
fg if b = 0

h← Zp if b = 1.

For the secret key vector kℓ,i,fe of Hybrid H3,j,2, B implicitly sets αj = f , δ = g and simulates the
secret key component using the oracle OKG,β as follows:

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( πℓ,i(i, 1), yℓ,i, sℓ,i, r̃ℓ,i + δr̃′ℓ,i, y
(0)
ℓ,i,priv, f r̃ℓ,i, hbr̃

′
ℓ,i, y

(1)
ℓ,i,priv ) .

We know that
(G2, [[f ]]2, [[g]]2, [[fg]]2) ≈c (G2, [[f ]]2, [[g]]2, [[h]]2)

by the DDH assumption. If b = 0, hb = fg, then the adversarial view is the same as H3,j,2. When
b = 1, hb is uniformly chosen from the group G2 and hence the adversarial view is similar to H3,j,3.
Therefore, we have H3,j,2 ≈c H3,j,3 by the DDH assumption. □
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Hybrid H3,j,4: This hybrid is the same as Hybrid H3,j,3 except the following changes.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( r̃ℓ,i + δr̃′ℓ,i,y
(0)
ℓ,i,priv, r̃ℓ,i , r̃

′
ℓ,i ,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(0)
j,i , z

(0)
j , 0,x

(0)
j,priv, αj , c ,0 ) .

Note that for all key queries ℓ ∈ [Qk], we have

iDec(iSK
H3,j,3

ℓ,i , iCT
H3,j,3

j,i )

= [[yℓ,ix
(0)
j,i + ⟨sℓ,i, z(0)j,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
j,priv⟩+ r̃ℓ,iαj + r̃′ℓ,ic]]T

= iDec(iSK
H3,j,4

ℓ,i , iCT
H3,j,4

j,i ).

In case of ι ∈ [Qc], ι < j and ℓ ∈ [Qk],

iDec(iSK
H3,j,3

ℓ,i , iCT
H3,j,3

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ r̃ℓ,iαι + δr̃′ℓ,iαι]]T

= iDec(iSK
H3,j,4

ℓ,i , iCT
H3,j,4

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,3

ℓ,i , iCT
H3,j,3

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ r̃ℓ,iαι + δr̃′ℓ,iαι]]T

= iDec(iSK
H3,j,4

ℓ,i , iCT
H3,j,4

ι,i ).

The indistinguishability follows from the security of the underlying Πsip.

Hybrid H3,j,5 : We modify the vector cj,i,fe in this hybrid as follows.

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}): cj,i,fe : ( x

(0)
j,i , z

(0)
j , 0, x

(0)
j,priv, αj , α̃j + δαj , 0 ) ,

where α̃j , δ ← Zp. The hybrids H3,j,4 and H3,j,5 are statistically indistinguishable as the distributions
of {c : c← Zp} and {α̃j + δαj : α̃j , δ ← Zp} are statistically close.

Hybrid H3,j,6: We modify the queries as below.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( r̃ℓ,i + δr̃′ℓ,i,y
(0)
ℓ,i,priv, r̃ℓ,i + δr̃′ℓ,i , r̃

′
ℓ,i,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(0)
j,i , z

(0)
j , 0x

(0)
j,priv, αj , α̃j ,0 ) .

Note that for all key queries ℓ ∈ [Qk], we have

iDec(iSK
H3,j,5

ℓ,i , iCT
H3,j,5

j,i )

= [[yℓ,ix
(0)
j,i + ⟨sℓ,i, z(0)j,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
j,priv⟩+ r̃ℓ,iαj + δr̃′ℓ,iαj + r̃′ℓ,iα̃j ]]T

= iDec(iSK
H3,j,6

ℓ,i , iCT
H3,j,6

j,i ).
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In case of ι ∈ [Qc], ι < j and ℓ ∈ [Qk],

iDec(iSK
H3,j,5

ℓ,i , iCT
H3,j,5

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ r̃ℓ,iαι + δr̃′ℓ,iαι]]T

= iDec(iSK
H3,j,6

ℓ,i , iCT
H3,j,6

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,5

ℓ,i , iCT
H3,j,5

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ r̃ℓ,iαι + δr̃′ℓ,iαι]]T

= iDec(iSK
H3,j,6

ℓ,i , iCT
H3,j,6

ι,i ).

The indistinguishability follows from the security of the underlying Πsip.

Hybrid H3,j,7: This hybrid is the same as Hybrid H3,j,6 except the following changes.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( rℓ,i,y
(0)
ℓ,i,priv, 0 , r̃

′
ℓ,i,y

(1)
ℓ,i,priv) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(0)
j,i , z

(0)
j , αj ,x

(0)
j,priv, 0 , α̃j ,0 ) .

For the j-th ciphertext query and key queries ℓ ∈ [Qk], we have

iDec(iSK
H3,j,6

ℓ,i , iCT
H3,j,6

j,i )

= [[yℓ,ix
(0)
j,i + ⟨sℓ,i, z(0)j,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
j,priv⟩+ r̃ℓ,iαj + δr̃′ℓ,iαj + r̃′ℓ,iα̃j ]]T

= [[yℓ,ix
(0)
j,i + ⟨sℓ,i, z(0)j,i ⟩+ rℓ,iαj + ⟨y(0)

ℓ,priv,x
(0)
j,priv⟩+ r̃′ℓ,iα̃j ]]T

= iDec(iSK
H3,j,7

ℓ,i , iCT
H3,j,7

j,i ).

In case of ι ∈ [Qc], ι < j and ℓ ∈ [Qk],

iDec(iSK
H3,j,6

ℓ,i , iCT
H3,j,6

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,7

ℓ,i , iCT
H3,j,7

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,6

ℓ,i , iCT
H3,j,6

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,7

ℓ,i , iCT
H3,j,7

ι,i ).

The indistinguishability follows from the security of the underlying Πsip.

Hybrid H3,j,8: We modify the key vectors for the cases where Iyℓ
⊈ [m] as follows. We denote it as case

(II) where r′ℓ,i ← Zp.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

): kℓ,i,fe(II) : ( rℓ,i, y
(0)
ℓ,i,priv, 0, r′ℓ,i , y

(1)
ℓ,i,priv ) .
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We use the following lemma to prove the indistinguishability between the hybrid Hybrid H3,j,7 and
Hybrid H3,j,8,

Claim 2 Hybrid H3,j,7 and Hybrid H3,j,8 are computationally indistinguishable if Lemma 1 holds over
groups G1 and G2.

Proof. From Lemma 1 over the vectors kℓ,i,fe(I), kℓ,i,fe(II) and cj,i,fe, H3,j,7 and H3,j,8 are computa-
tionally close. □

Hybrid H3,j,9: This hybrid is the same as Hybrid H3,j,8 except the following changes. Note that, the
kℓ,i,fe(I) and kℓ,i,fe(II) represent the secret keys corresponding to Iyℓ

⊆ [m] and Iyℓ
⊈ [m], respectively.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(I) : ( rℓ,i,y
(0)
ℓ,i,priv, 0, r̃

′
ℓ,i − ξj,iyℓ,i ,y

(1)
ℓ,i,priv ) ,

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(II) : ( rℓ,i,y
(0)
ℓ,i,priv, 0, r

′
ℓ,i − ξj,iyℓ,i ,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(0)
j,i + ξj,iα̃j , z

(0)
j , αj ,x

(0)
j,priv, 0, α̃j ,0 ) ,

where ξj,i ← Zp. For Iyℓ
⊆ [m], ℓ ∈ [Qk], we have

iDec(iSK
H3,j,8

ℓ,i , iCT
H3,j,8

j,i )

= [[yℓ,ix
(0)
j,i + ⟨sℓ,i, z(0)j,i ⟩+ rℓ,iαj + ⟨y(0)

ℓ,priv,x
(0)
j,priv⟩+ r̃′ℓ,iα̃j ]]T

= [[yℓ,ix
(0)
j,i + yℓ,iξj,iα̃j + ⟨sℓ,i, z(0)j,i ⟩+ rℓ,iαj + ⟨y(0)

ℓ,priv,x
(0)
j,priv⟩+ r̃′ℓ,iα̃j − ξj,iyℓ,iα̃j ]]T

= iDec(iSK
H3,j,9

ℓ,i , iCT
H3,j,9

j,i )

and when Iyℓ
̸⊆ [m],

iDec(iSK
H3,j,8

ℓ,i , iCT
H3,j,8

j,i )

= [[yℓ,ix
(0)
j,i + ⟨sℓ,i, z(0)j,i ⟩+ rℓ,iαj + ⟨y(0)

ℓ,priv,x
(0)
j,priv⟩+ r′ℓ,iα̃j ]]T

= [[yℓ,ix
(0)
j,i + yℓ,iξj,iα̃j + ⟨sℓ,i, z(0)j,i ⟩+ rℓ,iαj + ⟨y(0)

ℓ,priv,x
(0)
j,priv⟩+ r′ℓ,iα̃j − ξj,iyℓ,iα̃j ]]T

= iDec(iSK
H3,j,9

ℓ,i , iCT
H3,j,9

j,i ).

For queries ι ∈ [Qc], ι < j and ℓ ∈ [Qk],

iDec(iSK
H3,j,8

ℓ,i , iCT
H3,j,8

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,9

ℓ,i , iCT
H3,j,9

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,8

ℓ,i , iCT
H3,j,8

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,9

ℓ,i , iCT
H3,j,9

ι,i ).

The indistinguishability follows from the security of the underlying Πsip scheme.
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Hybrid H3,j,10: In this hybrid, we modify the vectors kℓ,i,fe for all ℓ ∈ [Qk] where ηj ← Zn1
p and χj,i =

⟨x(0)
j,priv,y

(0)
j,i,priv⟩−⟨x(1)

j,priv,y
(1)
j,i,priv⟩

α̃j
.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(I) : ( rℓ,i,y
(0)
ℓ,i,priv, 0, r̃′ℓ,i − ξj,iyℓ,i − ⟨ηj , sℓ,i⟩+ χj,i ,y

(1)
ℓ,i,priv ) ,

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(II) : ( rℓ,i,y
(0)
ℓ,i,priv, 0, r

′
ℓ,i − ξj,iyℓ,i − ⟨ηj , sℓ,i⟩+ χj,i ,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : (x

(0)
j,i + ξj,iα̃j , z

(0)
j + ηjα̃j , αj 0n2 , 0, α̃j , x

(1)
j,priv ) .

In cases where Iyℓ
⊆ [m], we have

iDec(iSK
H3,j,9

ℓ,i , iCT
H3,j,9

j,i )

= [[yℓ,ix
(0)
j,i + yℓ,iξj,iα̃j + ⟨sℓ,i, z(0)j,i ⟩+ rℓ,iαj + ⟨y(0)

ℓ,priv,x
(0)
j,priv⟩+ r̃′ℓ,iα̃j − ξj,iyℓ,iα̃j ]]T

= [[yℓ,ix
(0)
j,i + yℓ,iξj,iα̃j + ⟨sℓ,i, z(0)j,i ⟩+ ⟨sℓ,i,ηjα̃j⟩+ rℓ,iαj + r̃′ℓ,iα̃j − ξj,iyℓ,iα̃j

− α̃j⟨ηj , sℓ,i⟩+ χj,iα̃j + ⟨y(1)
ℓ,priv,x

(1)
j,priv⟩]]T

= iDec(iSK
H3,j,10

ℓ,i , iCT
H3,j,10

j,i ).

The non-permissive case follows the same. When Iyℓ
̸⊆ [m],

iDec(iSK
H3,j,9

ℓ,i , iCT
H3,j,9

j,i )

= [[yℓ,ix
(0)
j,i + yℓ,iξj,iα̃j + ⟨sℓ,i, z(0)j,i ⟩+ rℓ,iαj + ⟨y(0)

ℓ,priv,x
(0)
j,priv⟩+ r′ℓ,iα̃j − ξj,iyℓ,iα̃j ]]T

= [[yℓ,ix
(0)
j,i + yℓ,iξj,iα̃j + ⟨sℓ,i, z(0)j,i ⟩+ ⟨sℓ,i,ηjα̃j⟩+ rℓ,iαj + r′ℓ,iα̃j − ξj,iyℓ,iα̃j

− α̃j⟨ηj , sℓ,i⟩+ χj,iα̃j + ⟨y(1)
ℓ,priv,x

(1)
j,priv⟩]]T

= iDec(iSK
H3,j,10

ℓ,i , iCT
H3,j,10

j,i ).

For ι ∈ [Qc], ι < j and ℓ ∈ [Qk], we have

iDec(iSK
H3,j,9

ℓ,i , iCT
H3,j,9

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,10

ℓ,i , iCT
H3,j,10

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,9

ℓ,i , iCT
H3,j,9

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,10

ℓ,i , iCT
H3,j,10

ι,i ).

The indistinguishability follows from the security of the underlying Πsip scheme.

Hybrid H3,j,11: This hybrid is the same as the previous hybrid except the following changes where R̃′
ℓ,i, R

′
ℓ,i ←

Zp,
∑

i∈Iyℓ
R̃′

ℓ,i = 0, and set ξj,i = ξ′j,i +
x
(1)
j,i−x

(0)
j,i

α̃j
and ηj = η′

j +
z
(1)
j −z

(0)
j

α̃j
.
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OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(I) : ( rℓ,i,y
(0)
ℓ,i,priv, 0, R̃

′
ℓ,i − ξj,iyℓ,i − ⟨η′

j , sℓ,i⟩ ,y
(1)
ℓ,i,priv ) ,

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(II) : (rℓ,i,y
(0)
ℓ,i,priv, 0, R

′
ℓ,i − ξj,iyℓ,i − ⟨η′

j , sℓ,i⟩ ,y
(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i + ξ′j,iα̃j , z

(1)
j + η′

jα̃j , αj ,0
n2 , 0, α̃j ,x

(1)
j,priv ) .

We know that

x
(0)
j,i + ξj,iα̃j = x

(0)
j,i + (ξ′j,i +

x
(1)
j,i − x

(0)
j,i

α̃j
)α̃j = x

(1)
j,i + ξ′j,iα̃j

z
(0)
j + ηjα̃j = z

(0)
j + (η′

j +
z
(1)
j − z

(0)
j

α̃j
)α̃j = z

(1)
j + η′

jα̃j

r̃′ℓ,i − ξj,iyℓ,i − ⟨ηj , sℓ,i⟩+ χj,i

= r̃′ℓ,i − (ξ′j,i +
x
(1)
j,i − x

(0)
j,i

α̃j
)yℓ,i − ⟨η′

j +
z
(1)
j − z

(0)
j

α̃j
, sℓ,i⟩+

⟨x(0)
j,priv,y

(0)
j,i,priv⟩ − ⟨x

(1)
j,priv,y

(1)
j,i,priv⟩

α̃j

= r̃′ℓ,i − ξ′j,iyℓ,i − ⟨η′
j , sℓ,i⟩+

(x
(0)
j,i − x

(1)
j,i )yℓ,i + ⟨z

(0)
j − z

(1)
j , sℓ,i⟩+ ⟨x(0)

j,priv,y
(0)
j,i,priv⟩ − ⟨x

(1)
j,priv,y

(1)
j,i,priv⟩

α̃j

= r̃′ℓ,i − ξ′j,iyℓ,i − ⟨η′
j , sℓ,i⟩+

∆ℓ,j,i

α̃j

≈s R̃
′
ℓ,i − ξ′j,iyℓ,i − ⟨η′

j , sℓ,i⟩

where ∆ℓ,j,i = (x
(0)
j,i − x

(1)
j,i )yℓ,i + ⟨z

(0)
j − z

(1)
j , sℓ,i⟩+ ⟨x(0)

j,priv,y
(0)
j,i,priv⟩ − ⟨x

(1)
j,priv,y

(1)
j,i,priv⟩. As

∑
i∈Iyℓ

∆ℓ,j,i =

⟨x(0)
j − x

(1)
j ,yℓ⟩p+

∑
i∈Iyℓ

⟨z(0)j − z
(1)
j , sℓ,i⟩+

∑
i∈Iyℓ

(⟨y(0)
ℓ,i,priv,x

(0)
j,priv⟩ − ⟨y

(1)
ℓ,i,priv,x

(1)
j,priv⟩) = 0 from the se-

curity definition, we have ∆ℓ,j,i/α̃j + r̃′ℓ,i statistically close to R̃′
ℓ,i. Similarly,

r′ℓ,i − ξj,iyℓ,i − ⟨ηj , sℓ,i⟩+ χj,i ≈s R̃
′
ℓ,i − ξ′j,iyℓ,i − ⟨η′

j , sℓ,i⟩.

This is a statistical modification.

Hybrid H3,j,12: In this hybrid, we modify the following vectors,

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(I) : ( rℓ,i,y
(0)
ℓ,i,priv, 0, R̃

′
ℓ,i − ξj,iyℓ,i ,y

(1)
ℓ,i,priv ) ,

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(II) : ( rℓ,i,y
(0)
ℓ,i,priv, 0, R

′
ℓ,i − ξj,iyℓ,i ,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i + ξ′j,iα̃j

, z
(1)
j , αj ,0

n2 , 0, α̃j ,x
(1)
j,priv ) .

For Iyℓ
⊆ [m] and ℓ ∈ [Qk], we have

iDec(iSK
H3,j,12

ℓ,i , iCT
H3,j,12

j,i )

= [[yℓ,ix
(1)
j,i + yℓ,iξ

′
j,iα̃j + ⟨sℓ,i, z(1)j,i ⟩+ ⟨sℓ,i,η

′
jα̃j⟩+ rℓ,iαj + R̃′

ℓ,iα̃j − ξj,iyℓ,iα̃j

− α̃j⟨ηj , sℓ,i⟩+ ⟨y
(1)
ℓ,priv,x

(1)
j,priv⟩]]T

= [[yℓ,ix
(1)
j,i + yℓ,iξ

′
j,iα̃j + ⟨sℓ,i, z(1)j,i ⟩+ rℓ,iαj + R̃′

ℓ,iα̃j − ξj,iyℓ,iα̃j + ⟨y(1)
ℓ,priv,x

(1)
j,priv⟩]]T

= iDec(iSK
H3,j,13

ℓ,i , iCT
H3,j,13

j,i ).
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The non-permissive case follows the same. When Iyℓ
̸⊆ [m],

iDec(iSK
H3,j,12

ℓ,i , iCT
H3,j,12

j,i )

= [[yℓ,ix
(1)
j,i + yℓ,iξ

′
j,iα̃j + ⟨sℓ,i, z(1)j,i ⟩+ ⟨sℓ,i,η

′
jα̃j⟩+ rℓ,iαj +R

′
ℓ,iα̃j − ξj,iyℓ,iα̃j

− α̃j⟨ηj , sℓ,i⟩+ ⟨y
(1)
ℓ,priv,x

(1)
j,priv⟩]]T

= [[yℓ,ix
(1)
j,i + yℓ,iξ

′
j,iα̃j + ⟨sℓ,i, z(1)j,i ⟩+ rℓ,iαj +R

′
ℓ,iα̃j − ξj,iyℓ,iα̃j + ⟨y(1)

ℓ,priv,x
(1)
j,priv⟩]]T

= iDec(iSK
H3,j,13

ℓ,i , iCT
H3,j,13

j,i ).

For ι ∈ [Qc], ι < j and ℓ ∈ [Qk], we have

iDec(iSK
H3,j,12

ℓ,i , iCT
H3,j,12

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,13

ℓ,i , iCT
H3,j,13

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,12

ℓ,i , iCT
H3,j,12

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,13

ℓ,i , iCT
H3,j,13

ι,i ).

The indistinguishability follows from the security of the underlying Πsip scheme.

Hybrid H3,j,13: This hybrid is the same as Hybrid H3,j,12 except the following changes.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(I) : ( rℓ,i,y
(0)
ℓ,i,priv, 0, R̃′

ℓ,i ,y
(1)
ℓ,i,priv ) ,

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe(II) : ( rℓ,i,y
(0)
ℓ,i,priv, 0, R

′
ℓ,i ,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i , z

(1)
j , αj ,0

n2 , 0, α̃j ,x
(1)
j,priv ) .

When Iyℓ
⊆ [m], we have

iDec(iSK
H3,j,12

ℓ,i , iCT
H3,j,12

j,i )

= [[yℓ,ix
(1)
j,i + yℓ,iξ

′
j,iα̃j + ⟨sℓ,i, z(1)j,i ⟩+ rℓ,iαj + R̃′

ℓ,iα̃j − ξj,iyℓ,iα̃j + ⟨y(1)
ℓ,priv,x

(1)
j,priv⟩]]T

= [[yℓ,ix
(1)
j,i + ⟨sℓ,i, z(1)j,i ⟩+ rℓ,iαj + R̃′

ℓ,iα̃j + ⟨y(1)
ℓ,priv,x

(1)
j,priv⟩]]T

= iDec(iSK
H3,j,13

ℓ,i , iCT
H3,j,13

j,i ).

The non-permissive case also follows similarly. For Iyℓ
̸⊆ [m],

iDec(iSK
H3,j,12

ℓ,i , iCT
H3,j,12

j,i )

= [[yℓ,ix
(1)
j,i + yℓ,iξ

′
j,iα̃j + ⟨sℓ,i, z(1)j,i ⟩+ rℓ,iαj +R

′
ℓ,iα̃j − ξj,iyℓ,iα̃j + ⟨y(1)

ℓ,priv,x
(1)
j,priv⟩]]T

= [[yℓ,ix
(1)
j,i + ⟨sℓ,i, z(1)j,i ⟩+ rℓ,iαj +R

′
ℓ,iα̃j + ⟨y(1)

ℓ,priv,x
(1)
j,priv⟩]]T

= iDec(iSK
H3,j,13

ℓ,i , iCT
H3,j,13

j,i ).
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For ι ∈ [Qc], ι < j and ℓ ∈ [Qk], we have

iDec(iSK
H3,j,12

ℓ,i , iCT
H3,j,12

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,13

ℓ,i , iCT
H3,j,13

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,12

ℓ,i , iCT
H3,j,12

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ rℓ,iαι]]T

= iDec(iSK
H3,j,13

ℓ,i , iCT
H3,j,13

ι,i ).

The indistinguishability follows from the security of the underlying Πsip scheme.

Hybrid H3,j,14: Except for the following changes, this hybrid is the same as Hybrid H3,j,13.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( rℓ,i,y
(0)
ℓ,i,priv, 0, R̃′

ℓ,i ,y
(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i , z

(1)
j , αj ,0

n2 , 0, α̃j ,x
(1)
j,priv ) .

Claim 3 Hybrid H3,j,13 and Hybrid H3,j,14 are computationally indistinguishable if Lemma 1 holds
over groups G1 and G2.

Proof. From Lemma 1 over the vectors kℓ,i,fe(I), kℓ,i,fe(II) and cj,i,fe, H3,j,13 and H3,j,14 are computa-
tionally close. □

Hybrid H3,j,15: We set the value rℓ,i = R̃ℓ,i + δR̃′
ℓ,i and modify the rest of the vectors as follows.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( R̃ℓ,i + δR̃′
ℓ,i ,y

(0)
ℓ,i,priv, R̃ℓ,i + δR̃′

ℓ,i , R̃
′
ℓ,i,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i , z

(1)
j , 0 ,0n2 , αj , α̃j ,x

(1)
j,priv ) .

For all ℓ ∈ [Qk] have

iDec(iSK
H3,j,14

ℓ,i , iCT
H3,j,14

j,i )

= [[yℓ,ix
(1)
j,i + ⟨sℓ,i, z(1)j,i ⟩+ rℓ,iαj + R̃′

ℓ,iα̃j + ⟨y(1)
ℓ,priv,x

(1)
j,priv⟩]]T

= [[yℓ,ix
(1)
j,i + ⟨sℓ,i, z(1)j,i ⟩+ R̃ℓ,iαj + δR̃′

ℓ,iαj + R̃′
ℓ,iα̃j + ⟨y(1)

ℓ,priv,x
(1)
j,priv⟩]]T

= iDec(iSK
H3,j,15

ℓ,i , iCT
H3,j,15

j,i ).

For ι ∈ [Qc], ι < j and ℓ ∈ [Qk], we have

iDec(iSK
H3,j,14

ℓ,i , iCT
H3,j,14

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ rℓ,iαι]]T

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ R̃ℓ,iαι + δR̃′

ℓ,iαι]]T

= iDec(iSK
H3,j,15

ℓ,i , iCT
H3,j,15

ι,i ).
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For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,14

ℓ,i , iCT
H3,j,14

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ rℓ,iαι]]T

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ R̃ℓ,iαι + δR̃′

ℓ,iαι]]T

= iDec(iSK
H3,j,15

ℓ,i , iCT
H3,j,15

ι,i ).

The indistinguishability follows from the security of the underlying Πsip scheme.

Hybrid H3,j,16: This hybrid is the same as Hybrid H3,j,15 except the following changes.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( R̃ℓ,i + δR̃′
ℓ,i,y

(0)
ℓ,i,priv, R̃ℓ,i , R̃

′
ℓ,i,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i , z

(1)
j , 0,0n2 , αj , α̃j + δαj ,x

(1)
j,priv ) .

For all key queries ℓ ∈ [Qk], we have

iDec(iSK
H3,j,15

ℓ,i , iCT
H3,j,15

j,i )

= [[yℓ,ix
(1)
j,i + ⟨sℓ,i, z(1)j,i ⟩+ R̃ℓ,iαj + R̃′

ℓ,iδαj + R̃′
ℓ,iα̃j + ⟨y(1)

ℓ,i,priv,x
(1)
j,priv⟩]]T

= iDec(iSK
H3,j,16

ℓ,i , iCT
H3,j,16

j,i ).

For ι ∈ [Qc], ι < j and ℓ ∈ [Qk], we have

iDec(iSK
H3,j,15

ℓ,i , iCT
H3,j,15

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ R̃ℓ,iαι + δR̃′

ℓ,iαι]]T

= iDec(iSK
H3,j,16

ℓ,i , iCT
H3,j,16

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,15

ℓ,i , iCT
H3,j,15

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ R̃ℓ,iαι + δR̃′

ℓ,iαι]]T

= iDec(iSK
H3,j,16

ℓ,i , iCT
H3,j,16

ι,i ).

Thus, the hybrids are computationally indistinguishable by the security of the Πsip.

Hybrid H3,j,17: We set c = α̃j + δαj as the distributions {c : c← Zp} and {α̃j + δαj : α̃j , δ, αj ← Zp} are
statistically close. Thus, this modification is a statistical change.

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i , z

(1)
j , 0,0n2 , αj , c ,x

(1)
j,priv ) .

Hybrid H3,j,18: This hybrid is the same as Hybrid H3,j,17 except the following changes.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( R̃ℓ,i + δR̃′
ℓ,i,y

(0)
ℓ,i,priv, αjR̃ℓ,i , cR̃

′
ℓ,i ,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i , z

(1)
j , 0,0n2 , 1 , 1 ,x

(1)
j,priv ) .
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For all key queries ℓ ∈ [Qk], we have

iDec(iSK
H3,j,17

ℓ,i , iCT
H3,j,17

j,i )

= [[yℓ,ix
(1)
j,i + ⟨sℓ,i, z(1)j,i ⟩+ R̃ℓ,iαj + R̃′

ℓ,ic+ ⟨y
(1)
ℓ,i,priv,x

(1)
j,priv⟩]]T

= iDec(iSK
H3,j,18

ℓ,i , iCT
H3,j,18

j,i ).

For ι ∈ [Qc], ι < j and ℓ ∈ [Qk], we have

iDec(iSK
H3,j,17

ℓ,i , iCT
H3,j,17

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ R̃ℓ,iαι + δR̃′

ℓ,iαι]]T

= iDec(iSK
H3,j,18

ℓ,i , iCT
H3,j,18

ι,i ).

For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,17

ℓ,i , iCT
H3,j,17

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ R̃ℓ,iαι + δR̃′

ℓ,iαι]]T

= iDec(iSK
H3,j,18

ℓ,i , iCT
H3,j,18

ι,i ).

The indistinguishability follows from the security of the underlying scheme Πsip.

Hybrid H3,j,19: This hybrid is the same as Hybrid H3,j,18 except the following changes.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( R̃ℓ,i + δR̃′
ℓ,i,y

(0)
ℓ,i,priv, αjR̃ℓ,i, δαjR̃

′
ℓ,i ,y

(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i , z

(1)
j , 0,0n2 , 1, 1,x

(1)
j,priv ) .

We can show that Hybrid H3,j,18 and Hybrid H3,j,19 are computationally indistinguishable through a
DDH reduction similar to the proof of Claim 1.

Hybrid H3,j,20: This hybrid is the same as Hybrid H3,j,19 except the following changes.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : (R̃ℓ,i + δR̃′
ℓ,i,y

(0)
ℓ,i,priv, R̃ℓ,i + δR̃′

ℓ,i , 0 ,y
(1)
ℓ,i,priv) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i , z

(1)
j , 0,0n2 , αj , 0 ,x

(1)
j,priv) .

For all key queries ℓ ∈ [Qk], we have

iDec(iSK
H3,j,19

ℓ,i , iCT
H3,j,19

j,i )

= [[yℓ,ix
(1)
j,i + ⟨sℓ,i, z(1)j,i ⟩+ R̃ℓ,iαj + R̃′

ℓ,iδαj + ⟨y(1)
ℓ,i,priv,x

(1)
j,priv⟩]]T

= iDec(iSK
H3,j,20

ℓ,i , iCT
H3,j,20

j,i ).

For ι ∈ [Qc], ι < j and ℓ ∈ [Qk], we have

iDec(iSK
H3,j,19

ℓ,i , iCT
H3,j,19

ι,i )

= [[yℓ,ix
(1)
ι,i + ⟨sℓ,i, z(1)ι,i ⟩+ ⟨y

(1)
ℓ,priv,x

(1)
ι,priv⟩+ R̃ℓ,iαι + δR̃′

ℓ,iαι]]T

= iDec(iSK
H3,j,20

ℓ,i , iCT
H3,j,20

ι,i ).
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For all ι ∈ [Qc], ι > j and ℓ ∈ [Qk], we also have,

iDec(iSK
H3,j,19

ℓ,i , iCT
H3,j,19

ι,i )

= [[yℓ,ix
(0)
ι,i + ⟨sℓ,i, z(0)ι,i ⟩+ ⟨y

(0)
ℓ,priv,x

(0)
ι,priv⟩+ R̃ℓ,iαι + δR̃′

ℓ,iαι]]T

= iDec(iSK
H3,j,20

ℓ,i , iCT
H3,j,20

ι,i ).

The hybrids Hybrid H3,j,19 and Hybrid H3,j,20 are indistinguishable from the security of the underlying
Πsip scheme.

Hybrid H3,j,21: This hybrid is the same as Hybrid H3,j,20 except the following changes.

OKG,0(yℓ, rℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

) : kℓ,i,fe : ( R̃ℓ,i + δR̃′
ℓ,i,y

(0)
ℓ,i,priv, R̃ℓ,i + δR̃′

ℓ,i, 0,y
(1)
ℓ,i,priv ) ,

OE,0({x(β)
j , z

(β)
j ,x

(β)
j,priv}β∈{0,1}) : cj,i,fe : ( x

(1)
j,i , z

(1)
j , αj ,0

n2 , 0 , 0,x
(1)
j,priv ) .

For all key queries ℓ ∈ [Qk], we have

iDec(iSK
H3,j,20

ℓ,i , iCT
H3,j,20

j,i )

= [[yℓ,ix
(1)
j,i + ⟨sℓ,i, z(1)j,i ⟩+ R̃ℓ,iαj + R̃′

ℓ,iδαj + ⟨y(1)
ℓ,i,priv,x

(1)
j,priv⟩]]T

= iDec(iSK
H3,j,21

ℓ,i , iCT
H3,j,21

j,i ).

We can show the indistinguishabilty between Hybrid H3,j,20 and Hybrid H3,j,21 through a reduction to
the security of the underlying scheme Πsip.

It holds that H3,j,21 ≈s Hybrid H3,j as R̃ℓ,i, R̃
′
ℓ,i can be replaced by r̃ℓ,i,r̃

′
ℓ,i, respectively . This is a

statistical change as R̃ℓ,i and r̃ℓ,i are statistically close as
∑

i∈Iyℓ
R̃ℓ,i =

∑
i∈Iyℓ

r̃ℓ,i = 0. Similarly, the

distributions R̃′
ℓ,i and r̃

′
ℓ,i are also statistically close.

This completes the proof of Lemma 4. □

Lemma 6 Hybrid 4 and Hybrid 5 are computationally indistinguishable if the underlying scheme Πsip is
function-hiding.

The security follows from the fact that for all ciphertext queries κ ∈ [Qc] and key queries ℓ ∈ [Qk], we have

iDec(iSKHybrid 4
ℓ,i , iCTHybrid 4

κ,i )

= [[yℓ,ix
(1)
κ,i + ⟨sℓ,i, z

(1)
κ,i⟩+ r̃ℓ,iακ + δr̃′ℓ,iαj + ⟨y(1)

ℓ,priv,x
(1)
κ,priv⟩]]T

= iDec(iSKHybrid 5
ℓ,i , iCTHybrid 5

κ,i ).

The reduction follows the same approach as proof of Lemma 2 on indistinguishability between Hybrid 1 and
Hybrid 2.

Lemma 7 Hybrid 5 and Hybrid 6 are computationally indistinguishable if the underlying scheme Πsip is
function-hiding.

The security follows from the security of Πsip scheme. For all ciphertext queries κ ∈ [Qc] and key queries
ℓ ∈ [Qk], we have

iDec(iSKHybrid 5
ℓ,i , iCTHybrid 5

κ,i )

= [[yℓ,ix
(1)
κ,i + ⟨sℓ,i, z

(1)
κ,i⟩+ r̃ℓ,iακ + δr̃′ℓ,iακ + ⟨y(1)

ℓ,priv,x
(1)
κ,priv⟩]]T

= iDec(iSKHybrid 6
ℓ,i , iCTHybrid 6

κ,i )

The reduction is similar to the proof of Lemma 2.
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Lemma 8 Hybrid 6 and Hybrid 7 are statistically indistinguishable.

Proof. The distributions

{rℓ,i ← Zp :
∑
i∈Iyℓ

rℓ,i = 0} and {r̃ℓ,i + δr̃′ℓ,i :
∑
i∈Iyℓ

(r̃′ℓ,i + δr̃′ℓ,i) = 0,
∑
i∈Iyℓ

r̃ℓ,k =
∑
i∈Iyℓ

r̃′ℓ,i = 0}

are statistically close as
∑

i∈Iyℓ
r̃ℓ,i + δr̃′ℓ,i = 0 and {r̃ℓ,i, r̃′ℓ,i}i∈Iyℓ

, δ are uniformly chosen over Zp satisfying∑
i∈Iyℓ

r̃ℓ,i =
∑

i∈Iyℓ
r̃′ℓ,i = 0. □

Lemma 9 Hybrid 7 and Hybrid 8 are computationally indistinguishable if the underlying scheme Πsip is
function-hiding.

Proof. We prove the lemma through a reduction to the underlying IPFE scheme Πsip similar to the proof
of Lemma 2. For all κ ∈ [Qc], ℓ ∈ [Qk], we have

iDec(iSKHybrid 7
ℓ,i , iCTHybrid 7

κ,i )

= [[yℓ,ix
(1)
κ,i + ⟨sℓ,i, z

(1)
κ,i⟩+ rℓ,iακ + ⟨y(1)

ℓ,priv,x
(1)
κ,priv⟩]]T

= iDec(iSKHybrid 8
ℓ,i , iCTHybrid 8

κ,i ).

Thus, by Lemma 2 to Lemma 9, we show that ExptesiA,sel-FH-IND(λ, 0) and ExptesiA,sel-FH-IND(λ, 1) are compu-
tationally indistinguishable and our Πesi scheme achieves sel-FH-IND security as per Definition 12. □

This completes the proof of Theorem 6. □

5 Attribute-Based Slotted UIPFE

In this section, we define the notion of attribute-based slotted unbounded IPFE (AB-sUIPFE) with the slot-
specification S = Spub×Spriv, where Spub = Z∗

p and Spriv = Zn2
p represent the elements in the public and private

slots, respectively. The attribute-set space is denoted as AT T , and the access policy space is represented by
P. Let G = (p,G1,G2,GT , g1, g2, e) be a pairing group (see Definition 1) of prime order p.

Definition 13 An AB-sUIPFE scheme Πasi = (Setup,KeyGen,Enc,SlotEnc,Dec), defined over the slot-
specification S = Spub × Spriv, consists of the following five algorithms:

Setup(1λ, 1n2)→ (MPK,MSK): The setup algorithm takes as input the security parameter λ, and the length
n2 of the Spriv part. It outputs the master public key MPK and the master secret key MSK.

KeyGen(MSK, [[(y,ypriv)]]2, Iy,A)→ SK: The key generation algorithm takes as input MSK, the slot vector
(y,ypriv) ∈ S in the exponent of the group G2 with the associated index set Iy of y and an access
structure A ∈ P. It outputs a secret key SK.

Enc(MSK, [[(x,xpriv)]]1,S)→ CT: The encryption algorithm takes as input MSK, the slot vector (x,xpriv) ∈ S
in the exponent of the group G1, where x ∈ Zm

p (of arbitrary length) and an attribute set S ∈ AT T .
It outputs the ciphertext CT.

SlotEnc(MPK, [[x]]1,S) → CT: The slot encryption algorithm takes as input MPK, the public slot vector
x ∈ Spub in the exponent of the group G1, where x ∈ Zm

p (of arbitrary length) and an attribute set
S ∈ AT T . It outputs the ciphertext CT.

Dec(SK,CT)→ [[d]]T ∨ ⊥: The decryption algorithm takes as input SK, CT and outputs either a decrypted
value [[d]]T ∈ GT or a symbol ⊥ indicating failure.
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Correctness: For all λ ∈ N, (x,xpriv), (y,ypriv) ∈ S such that x ∈ Zm
p ,y ∈ Z|Iy|

p and xpriv,ypriv ∈ Zn2
p with

A(S) = 1 ∧R(x,y) = 1, we require

Pr

[[d]]T = [[⟨x,y⟩p + ⟨xpriv,ypriv⟩]]T :
(MPK,MSK)← Setup(1λ, 1n2)
SK← KeyGen(MSK, [[(y,ypriv)]]2, Iy,A)
CT← Enc(MSK, [[(x,xpriv)]]1,S)

 ≥ 1− negl(λ).

Slot-mode correctness: For all x ∈ Spub, the following distributions must be identical:{
(MPK,MSK,CT) : (MPK,MSK)← Setup(1λ, 1n2),CT← Enc(MSK, [[(x,0n2)]]1,S)

}
,{

(MPK,MSK,CT) : (MPK,MSK)← Setup(1λ, 1n2),CT← SlotEnc(MPK, [[x]]1,S)
}
.

Definition 14 (Security of AB-sUIPFE) The Πasi = (Setup,KeyGen,Enc,SlotEnc,Dec) scheme is said
to be xx-function-hiding-indistinguishability (xx-FH-IND)-based secure for xx ∈ {sel, adp} if for any security
parameter λ, any PPT adversary A, there exists a negligible function negl(·) such that the following holds

AdvasiA,xx-FH-IND(λ) =
∣∣∣Pr [ExptasiA,xx-FH-IND(λ, 0) = 1

]
− Pr

[
ExptasiA,xx-FH-IND(λ, 1) = 1

] ∣∣∣ ≤ negl(λ)

where the experiment ExptasiA,xx-FH-IND(λ, β) is defined for β ∈ {0, 1} as follows:

ExptasiA,xx-FH-IND(λ, β) :

1: n2 ← A(1λ).
2: (MPK,MSK)← Setup(1λ, 1n2).
3: β′ ← AOKG,β(·),OE,β(·)(MPK).
4: output β′.

OKG,β(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) :

output KeyGen(MSK, [[(yℓ,y
(β)
ℓ,priv)]]2, Iyℓ

,A).

OE,β({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) :

output Enc(MSK, [[(x
(β)
κ ,x

(β)
κ,priv)]]1,Sκ).

Here, (yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) denotes the ℓ-th secret key query and (x
(β)
κ ,x

(β)
κ,priv,Sκ)β∈{0,1} denotes the

κ-th encryption queries where |x(0)
κ | = |x(1)

κ | = mκ (say). Let Qk, Qc be the numbers of queries to OKG,β(·)
and OE,β(·) oracles respectively. Then for all ℓ ∈ [Qk], κ ∈ [Qc] with R(x(0)

κ ,yℓ) = R(x(1)
κ ,yℓ) = 1, and

A(Sκ) = 1, it must holds that

[[⟨x(0)
κ ,yℓ⟩p + ⟨x

(0)
κ,priv,y

(0)
ℓ,priv⟩]]T = [[⟨x(1)

κ ,yℓ⟩p + ⟨x
(1)
κ,priv,y

(1)
ℓ,priv⟩]]T .

– If xx = sel: Queries to OE,β(·) must be made before any queries to OKG,β(·).
– If xx = adp: Queries to OKG,β(·), OE,β(·) can be made in any order.

5.1 Construction

Consider Πsip = (iSetup, iKeyGen, iEnc, iSlotEnc, iDec) be a bounded sIPFE scheme with S ′pub = Z3
p, S ′priv = Z4

p

and Πesi = (eSetup, eKeyGen, eEnc, eSlotEnc, eDec) be an esUIPFE scheme with S ′′pub = Z∗
p × Zp, S ′′priv =

Zn2
p ×Z3

p×Zn2
p . We present an AB-sUIPFE scheme Πasi = (Setup,KeyGen,Enc,SlotEnc,Dec) with Spub = Z∗

p,
Spriv = Zn2

p for LSSS access structure. We discuss bounded sIPFE and LSSS access structure in Definitions
9 and 3 respectively.

Setup(1λ, 1n2): The setup algorithms takes as input the security parameter λ, private slot length n2 and
executes the following steps:

1. Generates (iMPK, iMSK)← iSetup(1λ), (eMPK, eMSK)← eSetup(1λ, 12n2+3).1

2. Outputs the master public keyMPK = (iMPK, eMPK) and the master secret keyMSK = (iMSK, eMSK).

1Here, we note that n1 = 1.
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KeyGen(MSK, [[(y,ypriv)]]2, Iy,A): The key generation algorithm takes as input MSK, the slot vector (y =
(yi)i∈Iy ,ypriv) in the exponent power of G2, an access structure A and does the following steps:

1. Samples a0 ← Zp then use the secret sharing scheme based on A to create the shares (aj)j∈List-Att(A)
of a0.

2. Defines the vectors kab,j and kfe as follows:

kab,j = ( πj(j, 1), aj · z, 0, 0, 0, 0 ) ∀j ∈ List-Att(A) ,
kfe = ( y, a0 · z, ypriv, 0, 0, 0, 0n2 )

where πj ← Zp for all j ∈ List-Att(A) and z ← Zp.
3. Generates iSKab,j ← iKeyGen(iMSK, [[kab,j ]]2), eSKfe ← eKeyGen(eMSK, [[kfe]]2, Iy).
4. Outputs the secret key SK =

(
{iSKab,j}j∈List-Att(A), eSKfe

)
.

Enc(MSK, [[(x,xpriv)]]1,S): The encryption algorithm takes as input MSK, slot vector (x = (xi)i∈[m],xpriv)
in the exponent power of G1, an attribute set S and performs the following:

1. Defines the vectors cab,j and cfe as follows:

cab,j = ( σj(1,−j), ψ, 0, 0, 0, 0 ) ∀j ∈ S ,
cfe = ( x, ψ, xpriv, 0, 0, 0, 0n2 )

where σj ← Zp for all j ∈ S and ψ ← Zp.
2. Generates iCTab,j ← iEnc(iMSK, [[cab,j ]]1), eCTfe ← eEnc(eMSK, [[cfe]]1).
3. Outputs the ciphertext CT = ({iCTab,j}j∈S, eCTfe).

SlotEnc(MPK, [[x]]1,S): The slot encryption algorithm takes as input MPK, public slot vector x = (xi)i∈[m]

in the exponent power of G1, attribute set S and does the following:

1. Defines the vectors cab,j and cfe as follows:

cab,j = ( σj(1,−j), ψ ) ∀j ∈ S ,
cfe = ( x, ψ )

where σj ← Zp for all j ∈ S and ψ ← Zp.
2. Generates iCTab,j ← iSlotEnc(iMPK, [[cab,j ]]1), eCTfe ← eSlotEnc(eMPK, [[cfe]]1).

3. Outputs the ciphertext CT = ({iCTab,j}j∈S, eCTfe).

Dec(SK,CT): The decryption algorithm takes as input SK, CT and proceeds as follows:

1. If there exists A ⊆ S and A ∈ A, then compute the reconstruction vector c = (cj)j for the LSSS
corresponding to A. Next, use the decryption algorithms of Πsip and Πesi to compute the following.

[[µj ]]T ← iDec(iSKab,j , iCTab,j) ∀j ∈ A and

[[µ]]T =
∏
j∈A

cj [[µj ]]T , [[ν]]T ← eDec(eSK, eCT)

Finally, it returns [[d]]T where [[d]]T = [[ν]]T · ([[µ]]T )−1.

2. Otherwise, it returns ⊥.

Correctness: From the correctness of Πsip and Πesi, with R(x,y) = 1 and A(S) = 1, using a0 =
∑

j∈A cjaj ,
we have

iDec(iSKab,j , iCTab,j) = [[ψzaj ]]T and
∏
j∈A

cj [[ψzaj ]]T = [[ψza0]]T , (1)

eDec(eSKfe, eCTfe) = [[⟨x,y⟩p + a0zψ]]T = [[⟨x,y⟩P + a0zψ]]T . (2)

From Equations 1 and 2, we compute [[d]]T = [[⟨x,y⟩p]]T .
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Slot-mode Correctness: From the slot-mode correctness of Πesi, we have

eEnc(eMSK, [[u||02n2+3]]1) ≡ eSlotEnc(eMPK, [[u]]1)

for all u ∈ Z∗
p × Zp. Thus, we have slot-mode correctness for Πasi.

5.2 Security Analysis

In Theorem 7, we present the security analysis of our AB-sUIPFE scheme, as described in Construction 5.1.
We use the following masking lemma for the security analysis of our AB-sUIPFE.

Lemma 10 (Modified Masking Lemma) Let A be an LSSS-realizable over a set of attributes Att ⊆ Zp.
Let List-Att(A) be the list of attributes appearing in A and |List-Att(A)| = P. Let S ⊆ Att be a set of attributes.
For two random integers a0, a

′
0 ← Zp, we construct the random labelling (aj)j∈List-Att(A) ← Λa0

(A) and
(a′j)j∈List-Att(A) ← Λa′

0
(A). Consider Πsip = (iSetup, iKeyGen, iEnc, iSlotEnc, iDec) be an bounded sIPFE with

slot-specification S ′pub = Z3
p, S ′priv = Z4

p and Πesi = (eSetup, eKeyGen, eEnc, eSlotEnc, eDec) be an esUIPFE

scheme with slot-specification S ′′pub = Z∗
p × Zp, S ′′priv = Zn2

p × Z3
p × Zn2

p . We define the following vectors:

kβ
j = ( πj(j, 1), 0, ajz, 0, 0, β · a′jyz/vj ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, ψ, 0, 0, β · τvjx ) ∀j ∈ S ,

kβ
root = ( 0⋆, 0, 0n2 , a0z, 0, β · a′0yzi, 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , ψ, 0, β · τx, 0n2 ) ,

where x, y ∈ Zp and σj , πj , vj , τ, ψ ← Zp. Here, 0⋆ represents an unbounded length vector containing
all zeros. Then for all (iMPK, iMSK) ← iSetup(1λ), (eMPK, eMSK) ← eSetup(1λ, 12n2+3) and the DDH
assumption holds in G2, the distributions {iSKkβ

j
}j∈List-Att(A), {iCTcβ

j
}j∈S, {eSKkβ

root
}, {eCTcβ

root
} for β ← {0, 1}

are computationally indistinguishable where

iSKkβ
j
= iKeyGen(iMSK, [[kβ

j ]]2) ∀j ∈ List-Att(A) ,

iCTcβ
j
= iEnc(iMSK, [[cβj ]]1) ∀j ∈ S ,

eSKkβ
root

= eKeyGen(eMSK, [[kβ
root]]2) ,

eCTcβ
root

= eEnc(eMSK, [[cβroot]]1) .

This modified version of the Masking Lemma is adapted to our setting, originally proposed in [38].

Proof. We present the proof of our modified Masking Lemma 10 using the adversaries of Πsip and Πesi

schemes. In the following, we propose several hybrids to show the distributions are computationally indis-
tinguishable.

Hybrid 0: The ciphertext and the secret key components are generated for the challenge bit β = 0 using
the following vectors:

kβ
j = ( πj(j, 1), 0, ajz, 0, 0 0 ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, ψ, 0, 0 0 ) ∀j ∈ S ,

kβ
root = ( 0⋆, 0, 0n2 , a0z, 0, 0, 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , ψ, 0, 0, 0n2 ) ,

where iSKkβ
j
= iKeyGen(iMSK, [[kβ

j ]]2); iCTcβ
j
= iEnc(iMSK, [[cβj ]]1); eSKkβ

root
= eKeyGen(eMSK, [[kβ

root]]2)

and eCTcβ
root

= eEnc(eMSK, [[cβroot]]1).
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Hybrid 1: Same as Hybrid 0 except that the secret key vector kβ
root is modified as follows:

kβ
root = ( 0⋆, 0, 0n2 , (a0 + xyb)z , 0, 0, 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , ψ, 0, 0, 0n2 ) ,

where a0, z, b ← Zp and x, y ∈ Zp. Due to choice of a0, b and z uniformly chosen from Zp, Hybrid 0
and Hybrid 1 are statistically indistinguishable.

Hybrid 2: Same as Hybrid 1 except that the secret key vector kβ
j is modified as follows:

kβ
j = ( πj(j, 1), 0, (aj + xybdj)z , 0, 0, 0 ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, ψ, 0, 0, 0 ) ∀j ∈ S ,

where (aj)j ← Λa0(A), (dj)j ← Λ1(A), b ← Zp and x, y ∈ Zp. The statistical indistinguishability
between the hybrids follows from Claim 4.

Claim 4 Let (bj)j ← Λb0(A), (dj)j ← Λ1(A). Then for x, y ∈ Zp, b ← Zp, and a0 = b0 + xyb, the
following holds

D ((aj)j , a0) ≈s D ((bj + xybdj)j , b0 + xyb) where (aj)j ← Λa0
(A).

Proof. By the linearity property of the linear secret sharing scheme,

(bj + xybdj)j ≡ (bj)j + (xybdj)j ≡ (bj)j + xyb(dj)j ≡ (bj)j + xyb(dj)j

≈s Λb0(A) + xybΛ1(A) ≡ Λb0(A) + Λxyb(A) ≡ Λb0+xyb(A)

Thus, (bj + xybdj)j ≈s Λb0+xyb and from the claim, we know that (aj)j ← Λa0
(A) and a0 = b0 + xyb.

Thus, then (Λa0(A), a0) ≡ (Λb0+xyb(A), b0 + xyb) ≈s ((bj + xybdj)j , b0 + xyb). □

Hybrid 3: This hybrid is the same as Hybrid 2 except that all the secret key and the ciphertext vectors
are modified as follows:

kβ
j = ( πj(j, 1), 0, ajz , 0, ybdjz , 0 ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, ψ, 0, ψx , 0 ) ∀j ∈ S ,

kβ
root = ( 0⋆, 0, 0n2 , a0z , 0, ybz , 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , ψ, 0, ψx , 0n2 ) .

The indistinguishability follows from the function-hiding property of the underlying Πsip and Πesi

schemes.

Hybrid 4: Same as Hybrid 3 except that all the secret key and the ciphertext vectors are modified as
follows:

kβ
j = ( πj(j, 1), 0, ψajz , 0, ψybdjz , 0 ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, 1 , 0, x , 0 ) ∀j ∈ S ,

kβ
root = ( 0⋆, 0, 0n2 , ψa0z , 0, ψybz , 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , 1 , 0, x , 0n2 ) .

The indistinguishability follows from the function-hiding property of the underlying Πsip and Πesi

schemes.
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Hybrid 5: Same as Hybrid 4 except that all the secret key vectors are modified as follows:

kβ
j = ( πj(j, 1), 0, ψajz, 0, hydjz , 0 ) ∀j ∈ List-Att(A) ,

kβ
root = ( 0⋆, 0, 0n2 , ψa0z, 0, hyz , 0n2 ) ,

where h← Zp. The indistinguishability follows from Claim 5.

Claim 5 Hybrid 4 and Hybrid 5 are computationally indistinguishable if the DDH assumption holds
over the group G2.

Proof. Let us assume that the challenger obtains an instance (G2, [[ψ]]2, [[b]]2, [[ub]]2) of DDH assumption
over the group G2 where

ub =

{
ψb if b = 0,

h← Zp if b = 1.

The challenger uses the DDH instance to traverse from Hybrid 4 to Hybrid 5.

Using the instances, the reduction sample πj , z from Zp and generates the secret keys components

kb
j and kb

root as follows:

kb
j = ( πj(j, 1), 0, ψajz, 0, ub · ydjz, 0 ) ∀j ∈ List-Att(A) ,

kb
root = ( 0⋆, 0, 0n2 , ψa0z, 0, uβyz, 0n2 ) .

To generate the ciphertext components, the reduction samples σj ← Zp, x ∈ Zp and compute

cbj = ( σj(1,−j), 0, 1, 0, x, 0 ) ∀j ∈ S ,

cbroot = ( 0⋆, 0, 0n2 , 1, 0, x, 0n2 ) .

According to the DDH assumption, we have

(G2, [[ψ]]2, [[b]]2, [[ψb]]2) ≈c (G2, [[ψ]]2, [[b]]2, [[h]]2).

If b = 0, uβ = [[ψb]]2, then the adversarial view is the same as Hybrid 4; otherwise for b = 1, ub is
randomly chosen from the group G2 and hence the adversarial view is similar to Hybrid 5. Thus, we
have Hybrid 4 ≈c Hybrid 5 via the DDH assumption. □

Hybrid 6: Same as Hybrid 5 except that all the secret key vectors are modified as follows:

kβ
j = ( πj(j, 1), 0, ψajz, 0, (ĥ+ bψ)ydjz , 0 ) ∀j ∈ List-Att(A) ,

kβ
root = ( 0⋆, 0, 0n2 , ψa0z, 0, (ĥ+ bψ)yz , 0n2 ) ,

where h = ĥ + bψ. As h, b and ψ were uniformly chosen from Zp, it can be concluded that ĥ ← Zp.
Thus, Hybrid 5 and Hybrid 6 are statistically indistinguishable.

Hybrid 7: Same as Hybrid 6 except that all the secret key and the ciphertext vectors are modified as
follows:

kβ
j = ( πj(j, 1), 0, (aj + xybdj)z , 0, ĥydjz , 0 ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, ψ , 0, x, 0 ) ∀j ∈ S ,

kβ
root = ( 0⋆, 0, 0n2 , (a0 + xyb)z , 0, ĥyz , 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , ψ , 0, x, 0n2 ) .

The indistinguishability follows from the function-hiding property of the underlying Πsip and Πesi

schemes.
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Hybrid 8: Same as Hybrid 7 except that all the secret key and the ciphertext vectors are modified as
follows:

kβ
j = ( πj(j, 1), 0, ajz , 0, a′0ydjz , 0 ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, ψ, 0, τx , 0 ) ∀j ∈ S ,

kβ
root = ( 0⋆, 0, 0n2 , a0z , 0, a′0yz , 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , ψ, 0, τx , 0n2 ) ,

where aj = aj + xybdj , ĥ = a′0τ such that a′0 and τ are uniformly chosen from Zp. The statistical
indistinguishability follows from the uniformly choice of a′0 and τ from Zp.

Hybrid 9: Same as Hybrid 8 except that the ciphertext vector cβj is modified as follows:

kβ
j = ( πj(j, 1), 0, ajz, 0, a′0ydjz, 0 ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, ψ, 0, τx, τxvj ) ∀j ∈ S ,

kβ
root = ( 0⋆, 0, 0n2 , a0z, 0, a′0yz, 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , ψ, 0, τx, 0n2 ) .

The indistinguishability follows from the function-hiding property of the underlying Πsip scheme.

Hybrid 10: Same as Hybrid 9 except that all the secret key and the ciphertext vectors are modified as
follows:

kβ
j = ( πj(j, 1), 0, ajz, 0, 0 , a′0ydjz/vj ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, ψ, 0, τx, τxvj ) ∀j ∈ S ,

kβ
root = ( 0⋆, 0, 0n2 , a0z, 0, a′0yz, 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , ψ, 0, τx, 0n2 ) .

The indistinguishability follows from the function-hiding property of the underlying Πsip scheme and
Lemma 1.

Hybrid 11: Same as Hybrid 10 except that the secret key vectors kβ
j are modified as follows:

kβ
j = ( πj(j, 1), 0, ajz, 0, 0, a′jyz/vj ) ∀j ∈ List-Att(A) ,

cβj = ( σj(1,−j), 0, ψ, 0, τx, τxvj ) ∀j ∈ S ,

kβ
root = ( 0⋆, 0, 0n2 , a0z, 0, a′0yz, 0n2 ) ,

cβroot = ( 0⋆, 0, 0n2 , ψ, 0, τx, 0n2 ) ,

where a′j = a′0dj . The statistical indistinguishability follows as (a′j)j ← Λa′
0
(A) and (dj)j ← Λ1(A).

This hybrid is the same as the distribution corresponding to the challenge bit β = 1. □

Theorem 7 Our Πasi scheme achieves sel-FH-IND security as per Definition 14 if the underlying schemes
Πsip and Πesi are sel-FH-IND secure as per Definitions 10 and 12, respectively.

Proof. We prove Theorem 7 through a sequence of hybrids. We represent the number of encryption and key
generation queries by Qc and Qk, respectively. We briefly provide indistinguishability arguments of security
hybrids in Fig. 3.

Hybrid 0. Same as the experiment ExptasiA,sel-FH-IND(λ, 0) where the adversary can query the following oracles.
We represent the slots using dashed boxes, updated in the following hybrids. In the subsequent hybrids,
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Hybrid 0 Hybrid 1 Hybrid 2 Hybrid 3 Hybrid 4

Hybrid 4-µ-1Hybrid 4-µ-2Hybrid 4-µ-3Hybrid 4-µ-4Ĥ4-η-0

Ĥµ-η-1 Ĥµ-η-2 Ĥµ-η-3 Ĥµ-η-4 Ĥµ-η-5 Ĥµ-η-6

Hybrid 4-(µ+ 1)-1Hybrid 5Hybrid 6

Slot-Corr

−→
of Πsip, Πesi

FH-IND

−→
of Πsip

FH-IND

−→
of Πesi

FH-IND

−→
of Πesi ··· Lemma 10

Stat

←−

µ ∈ [Qc]

η ∈ [Qk]

FH-IND

←−
of Πesi

Lemma 10

←−· · ·

←
−FH-IND of Πsip

Lemma 10

−→ Stat

−→
FH-IND

−→
of Πsip

FH-IND

−→
of Πesi

Inf theo

−→

←
−

Identical

· · ·
FH-IND

←−
of Πesi

Figure 3: Outline of the security games for Theorem 7. Here, ‘Stat’ means statistically, ‘Inf theo’ is a
shorthand for information-theoretically, ‘Slot-Corr’ is a shorthand for slot mode correctness and ‘FH-IND’
is a shorthand for function-hiding indistinguishability security.

we will only refer to the updated slots.

Encryption queries: On receiving the encryption queries of the form ({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) with

the attribute set Sκ ∈ AT T and challenge vectors (x
(0)
κ ,x

(1)
κ ) of length mκ with (x

(0)
κ,priv,x

(1)
κ,priv) of

length n2 from the adversary A, the challenger computes the vectors cκ,ab,j for j ∈ Sκ and vector cκ,fe
and simulates the ciphertexts as follows:

OE,0({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) : cκ,ab,j = ( σκ,j(1,−j), ψκ, ⊥, ⊥, ⊥, ⊥ ) ∀j ∈ Sκ ,

OE,0({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) : cκ,fe = ( x

(0)
κ , ψκ, x

(0)
κ,priv, ⊥, ⊥, ⊥, ⊥ ) ,

where ψκ, σκ,j ← Zp.

Key Generation queries: On receiving ℓ-th functional query with access structure A, and key vec-

tors (yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv), the challenger samples aℓ,0 ← Zp, generate shares (aℓ,j)j∈List-Att(A) ← Λaℓ,0

(A)
and computes the vectors kℓ,ab,j for j ∈ List-Att(A) and kℓ,fe as follows:

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,ab,j = ( πℓ,j(j, 1), aℓ,j · zℓ, 0, 0, 0, 0 ) ∀j ∈ List-Att(A) ,

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe = ( yℓ, aℓ,0 · zℓ, y
(0)
ℓ,priv, 0, 0, 0, 0n2 ) ,

where zℓ, πℓ,j ← Zp.

Hybrid 1. For all κ ∈ [Qc] , the vectors cκ,ab,j∀j ∈ Sκ and cκ,fe are modified as follows.

OE,0({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) : cκ,ab,j : ( ψκ, 0 , 0 , 0 , 0 ) ∀j ∈ Sκ ,

OE,0({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) : cκ,fe : ( x(0)

κ , ψκ, x
(0)
κ,priv, 0 , 0 , 0 , 0n2 ) .
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The slot-mode correctness of the underlying schemes Πesi and Πsip guarantees that Hybrid 0 and Hybrid
1 are identically distributed.

Hybrid 2. The vectors kℓ,ab,j , cκ,ab,j are modified for all ℓ ∈ [Qk] and κ ∈ [Qc] as follows.

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,ab,j : ( aℓ,jzℓ , 0, 0, 0 ) ∀j ∈ List-Att(A) ,

OE,0({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) : cκ,ab,j : ( 0 , ψκ , 0, 0, 0 ) ∀j ∈ Sκ .

Hybrid 3. For all ℓ ∈ [Qk] and κ ∈ [Qc], the vectors kℓ,fe, cκ,fe are modified as follows.

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe : ( y
(0)
ℓ,priv, aℓ,0 · zℓ , 0, 0, 0n2 ) ,

OE,0({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) : cκ,fe : ( x(0)

κ , 0 , x
(0)
κ,priv, ψκ , 0, 0, 0n2 ) .

Hybrid 4. This hybrid is similar to Hybrid 3 except that the vectors kℓ,fe for all ℓ ∈ [Qk] are modified as
follows.

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe : ( y
(0)
ℓ,priv, aℓ,0 · zℓ, 0, 0, y

(1)
ℓ,priv ) .

Hybrid 5. For all κ ∈ [Qc], we modify the following vectors.

OE,1({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) : cκ,fe : ( x

(1)
κ , 0, 0n2 , ψκ, 0, 0, x

(1)
κ,priv ) .

Hybrid 6. For all ℓ ∈ [Qk] and κ ∈ [Qc], the vectors kℓ,fe, cκ,fe are modified as follows:

OKG,1(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe : ( y
(1)
ℓ,priv , aℓ,0 · zℓ, 0, 0, y

(0)
ℓ,priv ) ,

OE,1({x(β)
κ ,x

(β)
κ,priv}β∈{0,1},Sκ) : cκ,fe : ( x(1)

κ , 0, x
(1)
κ,priv , ψκ, 0, 0, 0n2 ) .

Now, we can go back to ExptasiA,sel-IND(λ, 1) similar to the transformation from Hybrid 0 to Hybrid 4.

Lemma 11 Hybrid 1 and Hybrid 2 are computationally indistinguishable if the underlying scheme Πsip is
function-hiding.

Proof. We prove the above lemma by contradiction. Consider a PPT adversary A that can distinguish
between the hybrids. We can use A to construct B that can break the sel-FH-IND security of Πsip. On
receiving key generation queries and encryption queries from A, B generates the vectors eSK and eCT on
their own as they have access to master secret key eMSK of the Πesi scheme. B computes the rest of the
vectors {iSKℓ,ab,j}j∈List-Att(A) for all ℓ ∈ [Qk] by forwarding to the Πsip challenger. For all ℓ ∈ [Qk], κ ∈ [Qc]
the vectors {iSKℓ,ab,j}j∈List-Att(A) and {iCTκ,ab,i}i∈Sκ

when the challenger samples b = 0 are computed as
follows:

iSKHybrid 1
ℓ,ab,j ← iKeyGen(iMSK, [[(πℓ,j(j, 1), aℓ,j · zℓ, 0, 0, 0, 0)]]2) = iKeyGen(iMSK, [[ỹ

(0)
ℓ,j ]]2) and

iCTHybrid 1
κ,ab,i ← iEnc(iMSK, [[(σκ,i(1,−i), ψκ, 0, 0, 0, 0)]]1) = iEnc(iMSK, [[x̃

(0)
κ,i ]]1).

In the case of challenger sampling b = 1, the vectors are computed as follows:

iSKHybrid 2
ℓ,ab,j ← iKeyGen(iMSK, [[(πℓ,j(j, 1), aℓ,j · zℓ, aℓ,j · zℓ, 0, 0, 0)]]2) = iKeyGen(iMSK, [[ỹ

(1)
ℓ,j ]]2) and

iCTHybrid 2
κ,ab,i ← iEnc(iMSK, [[(σκ,i(1,−i), 0, ψk, 0, 0, 0)]]1) = iEnc(iMSK, [[x̃

(1)
κ,i ]]1).
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For all queries i ∈ Sκ, j ∈ List-Att(A), we have

iDec(iSKHybrid 1
ℓ,ab,j , iCTHybrid 1

κ,ab,i )

= [[πℓ,j · j · σκ,i + πℓ,j · σκ,i · −i+ ψκ · aℓ,j · zℓ]]T
= iDec(iSKHybrid 2

ℓ,ab,j , iCTHybrid 2
κ,ab,i ).

Thus, B is an admissible adversary for the security of the Πsip scheme. Thus, the advantage of A in
distinguishing between Hybrid 1 and Hybrid 2 is the same as the advantage in distinguishing between the
experiments ExptsipA,sel-FH-IND(λ, 0) and ExptsipA,sel-FH-IND(λ, 1). □

Lemma 12 Hybrid 2 and Hybrid 3 are computationally indistinguishable if the underlying scheme Πesi is
function-hiding.

Proof. We consider a PPT adversary A that can distinguish between the hybrids. We use A to construct B
against the selective security of the underlying Πesi scheme. In particular, if an adversary A can distinguish
the hybrids, a PPT adversary B exists that can break the selective function-hiding security of the Πesi scheme.

For the encryption queries from A, B generates {iCTκ,ab,j}j∈Sκ on their own as it has access to iMSK.
The vectors eCTκ for κ ∈ [Qc] are computed by querying the challenger.

eCTHybrid 2
κ ← eEnc(eMSK, [[(x(0)

κ , ψκ,x
(0)
κ,priv, 0, 0, 0,0

n2)]]1) = eEnc(eMSK, [[x̃(0)
κ ]]1) and

eCTHybrid 3
κ ← eEnc(eMSK, [[(x(0)

κ , 0,x
(0)
κ,priv, ψκ, 0, 0,0

n2)]]1) = eEnc(eMSK, [[x̃(1)
κ ]]1).

The algorithm B computes {iSKℓ,ab,j}j∈List-Att(A) themselves from iMSK. Then, B computes the key
vectors eSKℓ by forwarding it to the challenger.

eSKHybrid 2
ℓ ← eKeyGen(eMSK, [[(yℓ, aℓ,0 · zℓ,y

(0)
ℓ,priv0, 0, 0,0

n2)]]2) = eKeyGen(eMSK, [[ỹ
(0)
ℓ ]]2) and

eSKHybrid 3
ℓ ← eKeyGen(eMSK, [[(yℓ, aℓ,0 · zℓ,y

(0)
ℓ,priv, aℓ,0 · zℓ, 0, 0,0

n2)]]2) = eKeyGen(eMSK, [[ỹ
(1)
ℓ ]]2).

We know that for Iyℓ
⊆ [mκ],

eDec(eSKHybrid 2
ℓ , eCTHybrid 2

κ )

= [[⟨x(0)
κ ,yℓ⟩p + ψκ · aℓ,0 · zℓ + ⟨x(0)

κ,priv,y
(0)
ℓ,priv⟩]]T

= eDec(eSKHybrid 3
ℓ , eCTHybrid 3

κ ).

Therefore, B is an admissible adversary for Πesi scheme. Thus, the advantage of A in distinguishing be-
tween Hybrid 2 and Hybrid 3 is the same as the advantage in distinguishing between the experiments
ExptesiA,sel-FH-IND(λ, 0) and ExptesiA,sel-FH-IND(λ, 1). □

Lemma 13 Hybrid 3 and Hybrid 4 are computationally indistinguishable if the underlying scheme Πesi is
function-hiding.

The proof proceeds the same way as that of Lemma 12.

Lemma 14 Hybrid 4 and Hybrid 5 are computationally indistinguishable if the underlying schemes Πsip,Πesi

are function-hiding.

Proof. We prove the lemma 14 through a sequence of hybrids. We define the hybrids for every µ ∈ [Qc]
below. The Hybrid 4-0-4 ≡ Hybrid 4 and Hybrid 4-Qc-4 ≡ Hybrid 5.

Hybrid 4-0-4. We can observe that Hybrid 4-0-4 is the same as Hybrid 4. We provide descriptions of the
oracle below. We represent the slots using dashed boxes, updated in the subsequent hybrids to prove
the indistinguishability between Hybrid 4 and Hybrid 5. In the sub-hybrids, we will only mention the
updated slots.
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OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,ab,j = ( πℓ,j(j, 1), aℓ,j · zℓ, aℓ,jzℓ, 0, 0 , 0, ) ∀j ∈ List-Att(A) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,ab,j = ( σµ,j(1,−j), 0, ψµ, 0, 0 , 0, ) ∀j ∈ Sµ ,

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe= ( yℓ, aℓ,0 · zℓ, y
(0)
ℓ,priv, aℓ,0 · zℓ, 0 , 0, y

(1)
ℓ,priv ) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,fe = ( x

(0)
µ , 0, x

(0)
µ,priv ψµ, 0 0, 0n2 ) .

Hybrid 4-µ-1. This hybrid is similar to Hybrid 4-(µ-1)-4 except the vectors cµ,ab,j , cµ,fe,kℓ,ab,j ,kℓ,fe for
ℓ ∈ [Qk] are modified as follows. The vectors cκ,ab,j , cκ,fe for κ ∈ [Qc] \ {µ} are the same as in
Hybrid 4-(µ-1)-4. In the following, kℓ,fe(I) and kℓ,fe(II) represent the key components corresponding to
A(Sµ) = 1 and A(Sµ) = 0 respectively.

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,ab,j : ( a′ℓ,jδℓzℓ/vµ,j ) ∀j ∈ List-Att(A) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,ab,j : ( τµvµ,j ) ∀j ∈ Sµ ,

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe(I) : ( a′ℓ,0δℓzℓ ) ,

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe(II) : ( r′ℓ,0δℓzℓ ) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,fe : ( x(0)

µ , x
(0)
µ,priv, τµ , 0n2 ) .

where a′ℓ,0, vµ,j , τµ, r
′
ℓ,0 ← Zp, (a′ℓ,j)j∈List-Att(A) ← Λa′

ℓ,0
(A) with δℓ = ⟨x(1)

µ ,yℓ⟩p + ⟨x(1)
µ,priv,y

(1)
ℓ,priv⟩ −

⟨x(0)
µ ,yℓ⟩p − ⟨x

(0)
µ,priv,y

(0)
ℓ,priv⟩. The indistinguishability between Hybrid 4-(µ-1)-4 and Hybrid 4-µ-1 is

proven in Claim 7.

Hybrid 4-µ-2. We modify the vector kℓ,fe(II) for all ℓ ∈ [Qk] as following where r′′ℓ,0 = r′ℓ,0 +
1

zℓτµ
.

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe(II) : ( r′′ℓ,0δℓzℓ ) .

Claim 6 Hybrid 4-µ-1 and Hybrid 4-µ-2 are statistically indistinguishable.

Proof. The following distributions

{r′ℓ,0 : r′ℓ,0 ← Zp} and {r′ℓ,0 +
1

zℓτµ
: r′ℓ,0, zℓ, τµ ← Zp}

are statistically indistinguishable as r′ℓ,0, zℓ and τµ are uniformly distributed over Zp. Thus, r
′
ℓ,0+

1
zℓτµ

is also uniformly distributed over Zp. Therefore, Hybrid 4-µ-1 and Hybrid 4-µ-2 are statistically
indistinguishable. □

Hybrid 4-µ-3. This hybrid is the same as Hybrid 4-µ-2 except the vectors kℓ,fe, cµ,fe. The modification is
as follows:

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe(I) : ( a′ℓ,0δℓzℓ ) ,

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe(II) : ( r′ℓ,0δℓzℓ ) ,

OE,1({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,fe : ( x

(1)
µ , 0n2 , τµ, x

(1)
µ,priv ) .

Hybrid 4-µ-2 and Hybrid 4-µ-3 are computationally indistinguishable if the underlying scheme Πesi is
function-hiding. The proof follows similar to Lemma 12 as we know that for A(Sµ) = 1,
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eDec(eSKHybrid 4-µ-2
ℓ , eCTHybrid 4-µ-2

µ )

= [[⟨x(0)
µ ,yℓ⟩p + ⟨x

(0)
µ,priv,y

(0)
ℓ,priv⟩+ ψµ · aℓ,0 · zℓ + τµ · a′ℓ,0 · zℓ · δℓ]]T

= [[⟨x(1)
µ ,yℓ⟩p + ψµ · aℓ,0 · zℓ + ⟨x(1)

µ,priv,y
(1)
ℓ,priv⟩+ τµ · a′ℓ,0 · zℓ · δℓ]]T

= eDec(eSKHybrid 4-µ-3
ℓ , eCTHybrid 4-µ-3

µ )

as [[⟨x(0)
µ ,yℓ⟩ + ⟨x

(0)
µ,priv,y

(0)
ℓ,priv⟩]]T = [[⟨x(1)

µ ,yℓ⟩ + ⟨x
(1)
µ,priv,y

(1)
ℓ,priv⟩]]T from the security definition. In case

of A(Sµ) = 0,

eDec(eSKHybrid 4-µ-2
ℓ , eCTHybrid 4-µ-2

µ )

= [[⟨x(0)
µ ,yℓ⟩p + ⟨x

(0)
µ,priv,y

(0)
ℓ,priv⟩+ ψµ · aℓ,0 · zℓ + τµ · r′′ℓ,0 · zℓ · δℓ]]T

= [[⟨x(0)
µ ,yℓ⟩p + ⟨x

(0)
µ,priv,y

(0)
ℓ,priv⟩+ ψµ · aℓ,0 · zℓ + τµ · (r′ℓ,0 +

1

zℓτµ
) · zℓ · δℓ]]T

= [[⟨x(0)
µ ,yℓ⟩p + ⟨x

(0)
µ,priv,y

(0)
ℓ,priv⟩+ ψµ · aℓ,0 · zℓ + τµ · r′ℓ,0 · zℓ · δℓ + δℓ]]T

= [[⟨x(1)
µ ,yℓ⟩p + ⟨x

(1)
µ,priv,y

(1)
ℓ,priv⟩+ ψµ · aℓ,0 · zℓ + τµ · r′ℓ,0 · zℓ · δℓ]]T

= eDec(eSKHybrid 4-µ-3
ℓ , eCTHybrid 4-µ-3

µ )

as δℓ = ⟨x(1)
µ ,yℓ⟩p + ⟨x(1)

µ,priv,y
(1)
ℓ,priv⟩ − ⟨x

(0)
µ ,yℓ⟩p − ⟨x

(0)
µ,priv,y

(0)
ℓ,priv⟩. In case of κ < µ and κ ∈ [Qc], we

have
eDec(eSKHybrid 4-µ-2

ℓ , eCTHybrid 4-µ-2
κ )

= [[⟨x(1)
κ ,yℓ⟩p + ⟨x

(1)
κ,priv,y

(1)
ℓ,priv⟩+ ψκ · aℓ,0 · zℓ]]T

= eDec(eSKHybrid 4-µ-3
ℓ , eCTHybrid 4-µ-3

κ )

and for κ > µ and κ ∈ [Qc], we have

eDec(eSKHybrid 4-µ-2
ℓ , eCTHybrid 4-µ-2

κ )

= [[⟨x(0)
κ ,yℓ⟩p + ⟨x

(0)
κ,priv,y

(0)
ℓ,priv⟩+ ψκ · aℓ,0 · zℓ]]T

= eDec(eSKHybrid 4-µ-3
ℓ , eCTHybrid 4-µ-3

κ ).

Thus, the advantage of A in distinguishing between Hybrid 4-µ-2 and Hybrid 4-µ-3 is the same as the
advantage in distinguishing between the experiments ExptesiA,sel-FH-IND(λ, 0) and ExptesiA,sel-FH-IND(λ, 1).

Hybrid 4-µ-4. This hybrid is the same as Hybrid 4-µ-3 except for the following changes.

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,ab,j : ( 0 ) ∀j ∈ List-Att(A) ,

OE,1({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,ab,j : ( 0 ) ∀j ∈ Sµ ,

OKG,0(yℓ,y
(0)
ℓ,priv,y

(1)
ℓ,priv, Iyℓ

,A) : kℓ,fe : ( 0 ) ,

OE,1({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,fe : ( x(1)

µ , 0n2 , 0 , x
(1)
µ,priv ) .

The proof of indistinguishability follows the same way as Claim 7.

Claim 7 Hybrid 4-(µ−1)-4 and Hybrid 4-µ-1 are computationally indistinguishable if Lemma 10 holds over
the groups G1 and G2 and Πsip,Πesi are function-hiding IPFE schemes.
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Proof. We prove claim 7 through a sequence of hybrids Ĥµ−1,η,ω for η ∈ [Qk] and ω ∈ [6]. We define

Ĥµ−1,1,0 as Hybrid 4-(µ-1)-4 and Ĥµ−1,Qk,6 as Hybrid 4-µ-1. In the following, we explicitly present the

hybrid Ĥµ−1,1,0 once again, and then proceed to define the intermediate hybrids below. We represent the
slots that are updated in the subsequent hybrids using dashed boxes. In the sub-hybrids, we will only
mention the updated slots.

Ĥµ−1,1,0: This is the same as Hybrid 4-(µ-1)-4. For η = 1, the ciphertexts and the secret keys components
are given below:

OKG,0(yη,y
(0)
η,priv,y

(1)
η,priv, Iyη

,A) kη,ab,j = ( πη,j(j, 1), aη,j · zη, aη,jzη, 0, 0 , 0 ) ∀j ∈ List-Att(A) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) cµ,ab,j = ( σµ,j(1,−j), 0, ψµ, 0, 0 , 0 ) ∀j ∈ Sµ ,

OKG,0(yη,y
(0)
η,priv,y

(1)
η,priv, Iyη

,A) kη,fe = ( yη, aη,0 · zη, y
(0)
η,priv, aη,0 · zη, 0 , 0 , y

(1)
η,priv ) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) cµ,fe = ( x

(0)
µ , 0, x

(0)
µ,priv ψµ, 0, 0 0n2 ) .

Ĥµ−1,η,1: In case of η = 1, sample τµ, vµ,j ← Zp for all j ∈ Sµ. In other cases, this hybrid is the same as

Ĥµ−1,η−1,5.
OE,0({x(β)

µ ,x
(β)
µ,priv}β∈{0,1},Sµ) : cµ,ab,j : ( τµvµ,j , 0 ) ∀j ∈ Sµ ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,fe : ( τµ , 0 ) .

The indistinguishability proof follows similar to the proofs of Lemma 11 and Lemma 12. It follows
from the fact that for all ℓ ∈ [Qk], κ ∈ [Qc],

eDec(eSK
Ĥµ−1,1,0

ℓ , eCT Ĥµ−1,1,0
κ )

= [[⟨x(0)
κ ,yℓ⟩p + ⟨x

(0)
κ,priv,y

(0)
ℓ,priv⟩+ ψκ · aℓ,0 · zℓ]]T

= eDec(eSK
Ĥµ−1,1,1

ℓ , eCT Ĥµ−1,1,1
κ )

and for all queries i ∈ Sκ, j ∈ List-Att(A), we have

iDec(iSK
Hybrid Ĥµ−1,1,0

ℓ,ab,j , iCT
Hybrid Ĥµ−1,1,0

κ,ab,i )

= [[πℓ,j · j · σκ,i + πℓ,j · σκ,i · −i+ ψκ · aℓ,j · zℓ]]T

= iDec(iSK
Hybrid Ĥµ−1,1,1

ℓ,ab,j , iCT
Hybrid Ĥµ−1,1,1

κ,ab,i ).

Ĥµ−1,η,2: This is the same as Ĥµ−1,η,1 except for the changes below. Generate the vectors as follow-

ing where a′η,0, v
′
η,j , τ

′
η ← Zp, (a

′
η,j)j∈List-Att(A) ← Λa′

η,0
(A) with δη = ⟨x(1)

µ ,yη⟩p + ⟨x(1)
µ,priv,y

(1)
η,priv⟩ −

⟨x(0)
µ ,yη⟩p − ⟨x

(0)
µ,priv,y

(0)
η,priv⟩.

OKG,0(yη,y
(0)
η,priv,y

(1)
η,priv, Iyη

,A) : kη,ab,j : ( 0, a′η,jδηzη/v
′
η,j ) ∀j ∈ List-Att(A) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,ab,j : ( τµvµ,j , τ

′
ηv

′
η,j ) ∀j ∈ Sµ ,

OKG,0(yη,y
(0)
η,priv,y

(1)
η,priv, Iyη

,A) : kη,fe : ( 0, a′η,0δηzη ) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,fe : ( τµ, τ

′
η ) .

Claim 8 Ĥµ−1,1,1 and Ĥµ−1,1,2 are computationally indistinguishable if Lemma 10 holds over the
groups G1 and G2.

49



Proof. We prove the above lemma through a reduction to the Lemma 10 with vectors kη,ab,j , cµ,ab,j ,

kη,fe, cµ,fe set to kβ
j , c

β
j ,k

β
root, c

β
root, respectively. The variables in the masking lemma are set as x = 1

and y = δη. □

Ĥµ−1,η,3: For all j ∈ Sµ, set v′η,j = vµ,j and τ ′η = τµ . This is a statistical modification.

Ĥµ−1,η,4: We modify the vectors kη,ab,j , cµ,ab,j , kη,fe, cµ,fe as below. All the other vectors remain the same

as in Ĥµ−1,η,3.

OKG,0(yη,y
(0)
η,priv,y

(1)
η,priv, Iyη

,A) : kη,ab,j : ( a′η,jδηzη/vj , 0 ) ∀j ∈ List-Att(A) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,ab,j : ( τµvµj , 0 ) ∀j ∈ Sµ ,

Ĥµ−1,η,3 and Ĥµ−1,η,4 are computationally indistinguishable if the underlying schemes Πsip are function-
hiding. The proof is similar to the proofs of Lemma 11.

Ĥµ−1,η,5: We modify the vectors kη,fe, cµ,fe as below. All the other vectors remain the same as in Ĥµ−1,η,4.

OKG,0(yη,y
(0)
η,priv,y

(1)
η,priv, Iyη

,A) : kη,fe : ( a′η,0δηzη , 0 ) ,

OE,0({x(β)
µ ,x

(β)
µ,priv}β∈{0,1},Sµ) : cµ,fe : ( τµ, 0 ) .

Ĥµ−1,η,4 and Ĥµ−1,η,5 are computationally indistinguishable if the underlying scheme Πesi are function-
hiding. The proof is similar to the proofs of Lemma 12.

Ĥµ−1,η,6: This is the same as Ĥµ−1,η,5 except that when A(Sµ) = 0, we define the key vector kη,fe(II) as

following where r′η,0 ← Zp. This hybrid is information-theoretically indistinguishable from Ĥµ−1,η,5.

OKG,0(yη,y
(0)
η,priv,y

(1)
η,priv, Iyη

,A) : kη,fe(II) : ( r′η,0δηzη , 0 ) .

Note that for η ∈ [Qk], Ĥµ−1,η,6 ≡ Ĥµ−1,η+1,1 and Ĥµ−1,Qk,6 ≡ Hybrid 4-µ-1 by the definition of

Ĥµ−1,η,6 and Hybrid 4-µ-1, respectively. This completes the proof of Claim 7. □

This concludes the proof of Lemma 14. □

Lemma 15 Hybrid 5 and Hybrid 6 are computationally indistinguishable if the underlying scheme Πesi is
function-hiding.

The proof follows the same way as that of Lemma 12.

This completes the proof of Theorem 7. □

6 Multi-Client Attribute-Based UIPFE

In this section, we define the multi-client unbounded FE (MC-UFE) scheme over the key space K, message
spaceM and label space L for functionality f : (K∗)n × (M∗ × L)n → Z having n users in the system.

Definition 15 An MC-UFE scheme Πmcf = (Setup,KeyGen,Enc,Dec) consists of following four algorithms:

Setup(1λ, n) → ({EKk}k∈[n],MSK): The algorithm takes as input security parameter λ, total number of
users in the system n and outputs encryption keys EKk for each user k ∈ [n] and the master secret key
MSK.
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KeyGen(MSK, (Keyk,j)j∈Ik,k∈[n])→ SK: The key generation algorithm takes as input MSK, and a key space
object (Keyk,j)j∈Ik,k∈[n] with the associated index sets Ik. It outputs a secret key SK.

Enc(EKk, (Msgk,j)j∈I′
k
, Lk)→ CTk: The algorithm takes as input k-th party’s EKk, a message (Msgk,j)j∈I′

k

with the associated index set I ′k and a label Lk. It outputs a ciphertext CTk.

Dec(SK, {CTk}k∈[n]) → ζ ∨ ⊥: This algorithm takes as input SK, {CTk}k∈[n] and outputs either ζ or the
special symbol ⊥ indicating failure.

Correctness: For all λ ∈ N, (Keyk,j)j∈Ik,k∈[n] ∈ (K∗)n, and for all k ∈ [n] (Msgk,j)j∈I′
k
∈M∗, Lk ∈ L, we

have

Pr

 ζ = f((Keyk,j)j∈Ik,k∈[n],
{(Msgk,j)j∈I′

k
, Lk}k∈[n])

:

(EKk,MSK)← Setup(1λ, n)
SK← KeyGen(MSK, (Keyk,j)j∈Ik,k∈[n])
CTk ← Enc(EKk, (Msgk,j)j∈I′

k
, Lk)

ζ ← Dec(SK, {CTk}k∈[n])

 ≥ 1− negl(λ)

if for all k1, k2 ∈ [n], Lk1
= Lk2

.

Definition 16 (Security of MC-UFE) The Πmcf = (Setup, KeyGen,Enc,Dec) is said to be xx-yy-
indistinguishability (xx-yy-IND) secure for xx ∈ {sel, adp}, yy ∈ {any, pos+} if for any security parameter λ,
any PPT adversary A, there exists a negligible function negl(·) such that the following holds

Advmcf
A,xx-yy-IND(λ) =

∣∣∣Pr [Exptmcf
A,xx-yy-IND(λ, 0) = 1

]
− Pr

[
Exptmcf

A,xx-yy-IND(λ, 1) = 1
] ∣∣∣ ≤ negl(λ)

where the experiment Exptmcf
A,xx-yy-IND(λ, β) is defined for β ∈ {0, 1} as follows:

Exptmcf
A,xx-yy-IND(λ, β) :

1: ({EKk}k∈[n],MSK)← Setup(1λ, n).
2: β′ ← AOCorr(·),OKG(·),OE(·),OLoR,β(·)(1λ, n).
3: Output β′ if condition (∗) is satisfied.
OCorr(·) :

output EKk.

OKG((Keyk,j)j∈Ik,k∈[n]) :

output KeyGen(MSK, (Keyk,j)j∈Ik,k∈[n]).

OE(k, (Msgk,j)j∈I′
k
, Lk) :

output Enc(EKk, (Msgk,j)j∈I′
k
, Lk).

OLoR,β(k, (Msg0k,j ,Msg1k,j)j∈I′
k
, Lk) :

output Enc(EKk, (Msgβk,j)j∈I′
k
, Lk).

Let CS be the set of all inputs k ∈ [n] for which A makes queries to OCorr(·) and HS = [n] \ CS. The
condition (∗) is that if there exist two messages satisfying

f({k, (Keyk,j)j∈Ik}k∈[n], {k, (Msg0k,j)j∈I′
k
, Lk}k∈[n]) ̸= f({k, (Keyk,j)j∈Ik}k∈[n], {k, (Msg1k,j)j∈I′

k
, Lk}k∈[n])

then at least one of the following should not hold

• for all k ∈ [n], [OLoR,β(k, (Msg0k,j ,Msg1k,j)j∈I′
k
, Lk) is queried or OE(k, (Msgk,j)j∈I′

k
, Lk) with (Msg0k,j =

Msg1k,j = Msgk,j)j∈I′
k
is queried] or [(Msg0k,j = Msg1k,j = Msgk,j)j∈I′

k
and k ∈ CS].

• OKG(·) was queried on (Keyk,j)j∈Ik,k∈[n].

– If xx = sel: Queries to OLoR,β(·),OCorr(·),OE(·) must be made in one shot before any queries to OKG(·).
– If yy = pos: for any user k ∈ [n] and L ∈ L, if Qk,L > 0, then for any user k′ ∈ HS, Qk′,L > 0 where
Qk,L denotes the number of ciphertext queries to the oracles OLoR,β(·) in of the form (k, ∗, ∗, L). In other
words, for any label, either the adversary makes no left-right encryption query or makes at least one left-right
encryption query for each k′ ∈ HS.

In the one-time label security, all the queries to the OLoR,β(·) oracle should be in one label L and no
queries to the OE(·) oracle will be possible with the same label L.
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Definition 17 (MC-UFE for AB-IP) A multi-client attribute-based UIPFE (MC-AB-UIPFE) is a par-
ticular class of MC-UFE where K∗ = Z∗

p × P, and M∗ = Z∗
p × AT T such that P and AT T represent the

access policy and attribute spaces respectively. The function f is defined as follows: for the message com-
ponents Msgk = (xk,Sk) ∈ M∗, the key components Key = (yk,A)k∈[n] ∈ (K∗)n and xk,yk are associated
with the index sets Ik and I ′k,

f((Keyk,j)j∈Ik,k∈[n], {(Msgk,j , Lk)j∈I′
k
}k∈[n]) =

{∑
k∈[n]⟨xk,yk⟩p if following conditions holds

⊥ otherwise.

The conditions in (⋆) define as follows:

– R(xk,yk) = 1 ∧ A(Sk) = 1 for all k ∈ [n].
– for all k1, k2 ∈ [n], Lk1

= Lk2
.

6.1 Construction

Consider Πasi = (aSetup, aKeyGen, aEnc, aSlotEnc, aDec) be an AB-sUIPFE scheme with slot-specification
Spriv = Zm̃+1

p , Spub = Z∗
p and PRFseed : L → Zm̃

p be a family of pseudorandom function with seed ∈ Kprf

where Kprf,L be pseudorandom key space and the label space for any security parameter λ. Note that,
our proposed MC-AB-UIPFE only involves the aEnc algorithm to encrypt the slot-specified message vector
using a corresponding master secret key. In the following, we present our MC-AB-UIPFE scheme Πmcai =
(Setup,KeyGen,Enc,Dec) for LSSS access structure. We discuss the PRF and the LSSS access structure in
Definitions 4 and 3, respectively.

Setup(1λ, n): The setup algorithm takes the security parameter λ with the total number of user n in the
system as input and executes the following steps:

1. Generates (aMPKk, aMSKk)← aSetup(1λ, 1m̃+1) for all k ∈ [n].
2. Samples seedk,ι ← Kλ for all k, ι ∈ [n] with seedk,ι = seedι,k for ι < k.
3. Outputs encryption key EKk = (aMSKk, {seedι,k}ι ̸=k) and the master secret keyMSK = {aMSKk}k∈[n].

KeyGen(MSK,y = (yk)k∈[n], {Iyk
}k∈[n],A): The key generation algorithm takes as input MSK, the access

structure A and a key vector y = (y1 ∥ y2 ∥ · · · ∥ yn) where each yk is associated with the index set
Iyk

for all k ∈ [n]. It works as follows:

1. Samples α← Zm̃
p .

2. Generates aSKk ← aKeyGen(aMSKk, [[(yk,α, 0)]]2, Iyk
,A) for all k ∈ [n].

3. Outputs the secret key SK = {aSKk}k∈[n].

Enc(EKk,xk, L,Sk): The encryption algorithm takes as input k-th user’s EKk, a message vector xk =
(xk,i)i∈[mk] of an arbitrary length mk, a label L with an attribute set Sk and proceeds to do the
following steps:

1. Computes sk =
∑

ι ̸=k(−1)ι<kPRFseedι,k(L).
2. Generates aCTk ← aEnc(aMSKk, [[(xk, sk, 0)]]1,Sk).
3. Outputs the ciphertext CTk = aCTk.

Dec(SK, {CTk}k∈[n]): The decryption algorithm takes as input SK, CTk and performs the following steps:

1. Returns either [[d]]T ←
∏

k∈[n] aDec(aSKk, aCTk) or ⊥.

Correctness: If R(xk,yk) = 0∨A(Sk) = 0 for any k ∈ [n], outputs ⊥. Otherwise, from the correctness of
Πasi, we have

aDec(aSKk, aCTk) = [[⟨xk,yk⟩p + ⟨sk,α⟩]]T . (3)
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From Equation 3, we compute

[[d]]T =
∏
k∈[n]

aDec(aSKk, aCTk) = [[
∑
k∈[n]

⟨xk,yk⟩p + ⟨sk,α⟩]]T = [[
∑
k∈[n]

⟨xk,yk⟩p]]T .

6.2 Security Analysis

In Theorem 8, we present the security analysis of our MC-AB-UIPFE scheme, as described in Construction
6.1.

Theorem 8 Our Πmcai scheme achieves selective indistinguishability (sel-IND) security as per Definition 16
if the underlying Πasi is selectively secure as per Definition 14 and the MDDH assumption holds in G.

Proof. Suppose A be a PPT adversary against the sel-FH-IND security of our MC-AB-UIPFE scheme. We
construct an algorithm B for breaking underlying Πmcai scheme that uses A as a subroutine. Let {PRFseed} :
Lλ → Zm̃

p be a family of pseudorandom function. In the following, we consider a series of hybrids to prove
Theorem 8. We provide a brief indistinguishable arguments of security hybrids in Fig. 4.

Hybrid 0 Hybrid 1 Hybrid 2

Hybrid 3Hybrid 4Hybrid 5Hybrid 6

FH-IND

−→
FH-IND

−→

−→

MDDH

Stat

←−
MDDH

←−
FH-IND

←−
Figure 4: Outline of the security games for Theorem 8. Here, ‘Stat’ means statistically, and ‘FH-IND’ is a
shorthand for the function-hiding indistinguishability security of Πasi.

Hybrid 0. This hybrid is the same as the real security game where the challenge ciphertext is the encryption
for the challenge bit β = 0 as described in Definition 16 of sel-pos-IND security model. In the following,
we describe the oracles that the adversary A can queried during the security experiment. We represent
the slots using dashed boxes, which are updated in the following hybrid steps.

– Corruption queries: The adversary A first submits the corrupted users set C to the challenger B
and returns each encryption keys EKk corresponding to the user index k ∈ C.

– Left or right oracle queries: On receiving the µ-th query tuple to the oracle OLoR,β(·) for the

tuple (k,x
(0)
µ,k,x

(1)
µ,k, L,Sµ,k) with k ∈ HS, the challenger simulates the challenge ciphertext as

given below.

OLoR,β(k,x
(0)
µ,k,x

(1)
µ,k, L,Sµ,k) : aCT

(0)
µ,k = aEnc( aMSKk, [[( x

(0)
µ,k, sk, 0 )]]1 Sµ,k ) ,

where CT
(0)
µ,k = aCT

(0)
µ,k, sk =

∑
ι ̸=k(−1)ι<kPRFseedι,k(L) and the µ-th challenge messages {(x(0)

µ,k,

x
(1)
µ,k)}k∈[n] of length mk for each user k ∈ [n].

– Encryption oracle queries: As dictated in the security Definition 16, the adversary can only query
with respect to any label L′( ̸= L) for k ∈ [n] and the messages {xµ′,k}k∈[n] with an attribute set
Sµ′,k and generates the ciphertext as given below.

OE(k,xk, L
′,S′k) : aCTµ′,k = aEnc( aMSKk, [[(xµ′,k, s′µ′,k, 0)]]1 S′µ′,k ) ,

where CTµ′,k = aCTµ′,k and s′k =
∑

ι̸=k(−1)ι<kPRFseedι,k(L′).
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– Key generation queries: For the ℓ-th functional key corresponding to the access structure A and
the key vector yℓ = (yℓ,k)k∈[n] with each non-empty index set Iyℓ,k

for all k ∈ [n], the simulator
generates the secret key components SKℓ,k as in the following.

OKG(yℓ, {Iℓ,k}k,A) : aSKℓ,k = aKeyGen( aMSKk, [[( yℓ,k, αℓ, 0 )]]2, Iyℓ,k
, A ) ,

where SKℓ = {aSKℓ,k}k with αℓ ← Zp.

Hybrid 1. This game is the same as Hybrid 0 except that the generated challenge ciphertext and the secret
key components using the oracles OLoR,β(·) and OKG(·) are modified as follows.

OLoR,β(k,x
(0)
µ,k,x

(1)
µ,k, L,Sµ,k) : aCT

(0)
µ,k = aEnc( aMSKk, [[(x

(0)
µ,k, 0 , 1 )]]1, Sµ,k ) ,

OKG(yℓ, {Iℓ,k}k,A) : aSKℓ,k = aKeyGen( aMSKk, [[(yℓ,k, αℓ, ⟨αℓ, sk⟩ )]]2, Iyℓ,k
, A ) .

Hybrid 2. This game is the same as Hybrid 1 except that the generated challenge ciphertext and the secret
key components for A(Sµ,k) = 1 ∧ k ∈ HS using the oracles OLoR,β(·) and OKG(·) are modified below.

OLoR,β(k,x
(0)
µ,k,x

(1)
µ,k, L,Sµ,k) : aCT

(1)
µ,k = aEnc( aMSKk, [[( x

(1)
µ,k , 0, 1)]]1, Sµ,k ) ,

OKG(yℓ, {Iℓ,k}k,A) : aSKℓ,k = aKeyGen( aMSKk, [[(yℓ,k, αℓ, ⟨αℓ, sk⟩ +δ1,ℓ,k )]]2, Iyℓ,k
, A ) ,

where δ1,ℓ,k = ⟨x(0)
1,k − x

(1)
1,k,yℓ,k⟩p and (x

(0)
µ,k, ,x

(1)
µ,k) is the pair of challenge messages in the µ-th query

to OLoR,β(·) of the form (k, ∗, ∗, ∗, L) for k ∈ HS.

Hybrid 3. This game is the same as Hybrid 2 except that challenge ciphertext and the secret key compo-
nents for A(Sµ,k) = 1 ∧ k ∈ HS are generated as follows.

OKG(yℓ, {Iℓ,k}k,A) : aSKℓ,k = aKeyGen( aMSKk, [[(yℓ,k, αℓ, vℓ,k+ δ1,ℓ,k)]]2, Iyℓ,k
, A ) ,

where δ1,ℓ,k = ⟨x(0)
1,k − x

(1)
1,k,yℓ,k⟩p and

∑
k∈HS vℓ,k +

∑
k∈CS⟨αℓ, sk⟩ = 0.

Hybrid 4. This game is the same as Hybrid 3 except that the generated challenge ciphertext and the secret
key components for A(Sµ,k) = 1 ∧ k ∈ HS using the oracles OLoR,β(·) and OKG(·) are given below.

OKG(yℓ, {Iℓ,k}k,A) : aSKℓ,k = aKeyGen( aMSKk, [[(yℓ,k, αℓ, vℓ,k )]]2, Iyℓ,k
, A ) ,

where
∑

k∈HS vℓ,k +
∑

k∈CS⟨αℓ, sk⟩ = 0.

Hybrid 5. This game is the same as Hybrid 4 except that the generated challenge ciphertext and the secret
key components for A(Sµ,k) = 1 using the oracles OLoR,β(·) and OKG(·) are given below.

OKG(yℓ, {Iℓ,k}k,A) : aSKℓ,k = aKeyGen( aMSKk, [[(yℓ,k, αℓ, ⟨αℓ, sk⟩ )]]2, Iyℓ,k
, A ) ,

where sk =
∑

ι̸=k(−1)ι<kPRFseedι,k(L) such that
∑

k∈[n] sk = 0.

Hybrid 6. This game is the same as Hybrid 5 except that the generated challenge ciphertext and the secret
key components for A(Sµ,k) = 1 using the oracles OLoR,β(·) and OKG(·) are given below.

OLoR,β(k,x
(0)
µ,k,x

(1)
µ,k, L,Sµ,k) : aCT

(1)
µ,k = aEnc( aMSKk, [[(x

(1)
µ,k, sk , 0 )]]1, Sµ,k ) ,

OKG(yℓ, {Iℓ,k}k,A) : aSKℓ,k = aKeyGen( aMSKk, [[(yℓ,k, αℓ, 0 )]]2, Iyℓ,k
, A ) ,
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where sk =
∑

ι̸=k(−1)ι<kPRFseedι,k(L). This hybrid is the same as the real security game with sel-IND
model for β = 1 in Definition 16. Thanks to Lemma 16 to Lemma 21, we can conclude the proof of
Theorem 8.

Lemma 16 Hybrid 0 and Hybrid 1 are computationally indistinguishable if the underlying scheme Πasi is
function-hiding.

Proof. We consider a PPT adversary A against sel-FH-IND security of the MC-AB-UIPFE scheme. We use
A to construct an adversary B against the sel-FH-IND security of the underlying Πasi scheme. In particular,
we show that if A is able to break the sel-FH-IND security of MC-AB-UIPFE, then there is a PPT adversary
B which will break the selective function-hiding security of the Πasi scheme.

For µ-th ciphertext and the for all aCTµ,k’s that the adversary obtains as a reply to the query of the form

OLoR,β(k,x
(0)
µ,k,x

(1)
µ,k, L,Sµ,k) and all components aSKk’s for all k ∈ [n] ∧R(x(0)

µ,k,yℓ,k) = 1, that it obtains as
a reply to the query of the form OKG(yℓ, {Iℓ,k}k,A).

In Hybrid 0, the challenger replies Πasi components using the oracles OLoR,β(·) and OKG(·) as follows:

aCTHybrid 0
µ,k ← aEnc(aMSKk, [[(x

(0)
µ,k, sk, 0]]1,Sµ,k) = aEnc(aMSKk, [[x̃

(0)
µ,k]]1,Sµ,k) and

{aSKHybrid 1
ℓ,k ← aKeyGen(aMSKk, [[(yℓ,k,αℓ, 0)]]2, Iyℓ,k

,A) = aKeyGen(aMSKk, [[ỹ
(0)
ℓ,k]]2, Iyℓ,k

,A)}k∈[n].

In Hybrid 1, the challenger replies Πasi components using the oracles OLoR,β(·) and OKG(·) as follows:

aCTHybrid 1
µ,k ← aEnc(aMSKk, [[(x

(0)
µ,k, 0, 1)]]1,Sµ,k) = aEnc(aMSKk, [[x̃

(1)
µ,k]]1,Sµ,k) and

{aSKHybrid 1
ℓ,k ← aKeyGen(aMSKk, [[(yℓ,k, αℓ, ⟨αℓ, sk⟩)]]2, Iyℓ,k

,A) = aKeyGen(aMSKk, [[ỹ
(1)
ℓ,k]]2, Iyℓ,k

,A)}k∈[n]

where x̃
(b)
µ,k = (x

′(b)
µ,k ,x

(b)
µ,priv) with x

′(0)
µ,k = x

(0)
µ,k = x

′(1)
µ,k ,x

(0)
µ,priv = (sk, 0),x

(1)
µ,priv = (0, 1) and ỹ

(b)
ℓ,k = (yℓ,k,y

(b)
ℓ,priv)

with y
(0)
ℓ,priv = (αℓ, 0),y

(1)
ℓ,priv = (αℓ, ⟨αℓ, sk⟩). Now, we have to show that

aDec(aSKHybrid 0
ℓ,k , aCTHybrid 0

µ,k ) = aDec(aSKHybrid 1
ℓ,k , aCTHybrid 1

µ,k ) for all k ∈ [n],R(x(0)
µ,k,yℓ,k) = 1

holds for all key queries that made by B. Using aDec for k ∈ [n],R(x(0)
k ,yℓ,k) = 1, we get

aDec(eSKHybrid 0
ℓ,k , aCTHybrid 0

µ,k )

= [[⟨x
′(1)
µ,k ,yℓ,k⟩p + ⟨αℓ, sk⟩+ 0]]T

= [[⟨x
′(1)
µ,k ,yℓ,k⟩p + ⟨x

(0)
µ,k,y

(0)
ℓ,priv⟩]]T

= [[⟨x
′(1)
µ,k ,yℓ,k⟩p +αℓ · 0 + 1 · ⟨αℓ, sk⟩]]T

= [[⟨x
′(1)
µ,k ,yℓ,k⟩p + ⟨x

(1)
µ,k,y

(1)
ℓ,priv⟩]]T

= aDec(aSKHybrid 1
ℓ,k , aCTHybrid 1

µ,k ) for all k ∈ [n],R(x(0)
µ,k,yℓ,k) = 1.

Therefore, B is an admissible adversary for the sel-IND security game of Πasi. Thus, the advantage of A in
distinguishing between Hybrid 0 and Hybrid 1 is exactly the same as the advantage in distinguishing between
the experiments ExptasiA,sel-FH-IND(λ, 0) and ExptasiA,sel-IND(λ, 1). This completes the proof of Lemma 16. □

Lemma 17 Hybrid 1 and Hybrid 2 are computationally indistinguishable if the underlying scheme Πasi is
function-hiding.

Proof. The proof follows similarly as Lemma 16 using the function-hiding security of Πasi scheme. We
consider a PPT adversary A against sel-pos-IND security of the MC-AB-UIPFE scheme. We use A to
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construct an adversary B against the security of the underlying Πasi scheme. In particular, we show that if
A is able to break the sel-pos-IND security of MC-AB-UIPFE, then there is a PPT adversary B which will
break the selective function-hiding security of the Πasi scheme.

For µ-th ciphertext and the for all aCTµ,k’s that the adversary obtains as a reply to the query of the

form OLoR,β(k,x
(0)
µ,k,x

(1)
µ,k, L,Sµ,k) and all components aSKk’s for all k ∈ [n] ∧R(x(b)

µ,k,yℓ,k) = 1, b = 1, 2 that
it obtains as a reply to the query of the form OKG(yℓ, {Iℓ,k}k,A).

In Hybrid 1, the challenger replies Πasi components using the oracles OLoR,β(·) and OKG(·) as follows:

aCTHybrid 1
µ,k ← aEnc(aMSKk, [[(x

(0)
µ,k, 0, 1)]]1,Sµ,k) = aEnc(aMSKk, [[x̃

(1)
µ,k]]1,Sµ,k) and

{aSKHybrid 1
ℓ,k ← aKeyGen(aMSKk, [[(yℓ,k, αℓ, ⟨αℓ, sk⟩)]]2, Iyℓ,k

,A) = aKeyGen(aMSKk, [[ỹ
(1)
ℓ,k]]2, Iyℓ,k

,A)}k∈[n]

In Hybrid 2, the challenger replies Πasi components using the oracles OLoR,β(·) and OKG(·) as follows:

aCTHybrid 2
µ,k ← aEnc(aMSKk, [[(x

(1)
µ,k, 0, 1)]]1,Sµ,k) = aEnc(aMSKk, [[x̃

(1)
µ,k]]1,Sµ,k) and

{aSKHybrid 2
ℓ,k ← aKeyGen(aMSKk, [[(yℓ,k, αℓ, ⟨αℓ, sk⟩+ δ1,ℓ,k)]]2, Iyℓ,k

,A) = aKeyGen(aMSKk, [[ỹ
(1)
ℓ,k]]2, Iyℓ,k

,A)}k∈[n]

where x̃
(b)
µ,k = (x

′(b)
µ,k ,x

(b)
µ,priv) with x

′(0)
µ,k = x

(0)
µ,k;x

′(1)
µ,k = x

(1)
µ,k,x

(0)
µ,priv = (0, 1),x

(1)
µ,priv = (0, 1) and ỹ

(b)
ℓ,k =

(yℓ,k,y
(b)
ℓ,priv) with y

(0)
ℓ,priv = (αℓ, ⟨αℓ, sk⟩),y(1)

ℓ,priv = (αℓ, ⟨αℓ, sk⟩+ δ1,ℓ,k). Now, we have to show that

aDec(aSKHybrid 1
ℓ,k , aCTHybrid 1

µ,k ) = aDec(aSKHybrid 2
ℓ,k , aCTHybrid 2

µ,k ) for k ∈ [n],R(x(b)
µ,k,yℓ,k) = 1, b = 1, 2

holds and all key queries that made by B. From the admissible conditions of MCAB-UIPFE scheme and
function-hiding security of Πasi for each user k, we get the following constraints:

⟨x(β)
µ,k,yℓ,k⟩p − ⟨x

(β)
1,k ,yℓ,k⟩p = ⟨x(0)

µ,k,yℓ,k⟩p − ⟨x
(0)
1,k,yℓ,k⟩p for all µ ∈ [Qc,k,L];β = 1, 2 (4)

where (x
(0)
µ,k,x

(1)
µ,k) are the µ-th challenge ciphertext query to the OLoR,β(·) oracle with the label L for the user

k ∈ [n]. The above inclusion follows from the fact that the adversary can learn ⟨x(β)
µ,k,yℓ,k⟩p − ⟨x

(β)
1,k ,yℓ,k⟩p

from challenge queries whenever A(Sµ,k) = 1. It was observed in [6]. Using aDec for k ∈ [n],R(x(0)
k ,yℓ,k) = 1,

we get

aDec(eSKHybrid 1
ℓ,k , aCTHybrid 1

µ,k )

= [[⟨x
′(0)
µ,k ,yℓ,k⟩p + 0 + ⟨αℓ, sk⟩]]T

= [[⟨x
′(0)
µ,k ,yℓ,k⟩p + ⟨x

(0)
priv,y

(0)
ℓ,priv⟩]]T

= [[⟨x
′(1)
µ,k ,yℓ,k⟩p + 1 · ⟨αℓ, sk⟩+ δ1,µ,k]]T from Equation 4

= [[⟨x
′(1)
µ,k ,yℓ,k⟩p + ⟨x

(1)
priv,y

(1)
ℓ,priv⟩]]T

= aDec(aSKHybrid 1
ℓ,k , aCTHybrid 1

µ,k ) for all k ∈ [n],R(x(0)
µ,k,yℓ,k) = 1.

□

Lemma 18 Hybrid 2 and Hybrid 3 are computationally indistinguishable if the MDDHm̃ assumption holds
over the bilinear group G.

Proof. We would like to prove that

{[[αℓ]]2, {[[⟨αℓ, sk⟩]]2}k∈HS}ℓ∈Q[Key]
≈c {[[αℓ]]2, {[[vℓ,k]]2}k∈HS}ℓ∈Q[Key]

(5)
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where Q[Key] is the number of secret key queries by the adversary to the oracle OKG(·). For k ∈ HS, αℓ ← Zm̃
p ,

sk ← Zm̃
p such that∑
k∈HS

sk +
∑
ι∈CS

(−1)ι<kPRFseedι,k(L) = 0 =⇒
∑

k∈HS

vℓ,k +
∑
ι∈CS
⟨(−1)ι<kPRFseedι,k(L), sι⟩ = 0.

The above indistinguishability of Equation 5 can be shown using the following MDDHm̃ instances:

{[[A]]2, [[At1]]2, [[At2]]2, . . . [[Atd]]2} ≈c {[[A]]2, [[r1]]2, [[r2]]2, . . . [[rd]]2} (6)

where d > 1, m ∈ N and c ∈ Zm̃
p , A← Zm×m̃

p and t1, t2, . . . , td ← Zm̃
p satisfying

∑
ȷ∈[d] tȷ = c, which implies∑

ȷ∈[d] rȷ = Ac. Thus the above relation in Equation 6 can be written as

{[[A]]2, [[At1]]2, [[At2]]2, . . . , [[Ac−
∑

ȷ∈[d−1]

Amȷ]]2} ≈c {[[A]]2, [[r1]]2, [[r2]]2, . . . , [[Ac−
∑

ȷ∈[d−1]

rȷ]]2}

using the similar d− 1 folds MDDHm̃ assumption, we get that

{[[A]]2, [[At1]]2, [[At2]]2, . . . , [[Atd−1]]2} ≈c {[[A]]2, [[r1]]2, [[r2]]2, . . . , [[rd−1]]2}

□

Lemma 19 Hybrid 3 and Hybrid 4 are identically distributed.

Proof. From the admissibilty condition of the MC-AB-UIPFE, we have∑
k∈HS

⟨x(0)
1,k,i,yℓ,k,i⟩p =

∑
k∈HS

⟨x(1)
1,k,i,yℓ,k,i⟩p .

In both Hybrid 3 and Hybrid 4, {vℓ,k}k∈HS and {vℓ,k + δ1,ℓ,k}k∈HS are randomly distributed over Zp. Also,
note that ∑

k∈HS

vℓ,k =
∑

k∈HS

vℓ,k + δ1,ℓ,k = −
∑
k∈CS

⟨αℓ, sk⟩ ,

Therefore, Hybrid 3 ≡ hybrid 4. □

Lemma 20 Hybrid 4 and Hybrid 5 are computationally indistinguishable if the MDDHm̃ assumption holds
over the bilinear group G.

Proof of the above Lemma follows similarly as Lemma 18.

Lemma 21 Hybrid 5 and Hybrid 6 are computationally indistinguishable if the underlying scheme Πasi is
function-hiding.

Proof of the above lemma follows similarly as Lemma 16.

This completes the proof of Theorem 8. □

7 Dynamic Decentralized UIPFE

In this section, we define the dynamic decentralized unbounded FE (DD-UFE) scheme over key space K,
message spaceM, and set of identities ID for functionality f : L(ID×K∗)×L(ID×M∗)→ Z where L(S)
to denote the set of finite lists of elements from S.

Definition 18 A DD-UFE scheme Πddf = (GlobalSetup, LocalSetup, KeyGen,Enc,Dec) consists of following
five algorithms:

57



GlobalSetup(1λ) → PP: The global setup algorithm takes as input security parameter λ and outputs a
public parameter PP. Those parameters are implicit arguments to all the other algorithms.

LocalSetup(PP)→ (PKk,MSKk): The local setup algorithm takes as input public parameter PP and outputs
a local public parameter PKk and a master secret key MSKk for k ∈ ID. The following three algorithms
implicitly take PKk.

KeyGen(MSKk, {(Keyk,j)j∈Ik}k) → SKk: The key generation algorithm takes as input MSKk, and a key
space object (Keyk,j)j∈Ik with the associated index set Ik. It outputs a private key SKk.

Enc(MSKk, (Msgk,j)j∈I′
k
)→ CTk: The encryption algorithm takes as inputMSKk, and a message (Msgk,j)j∈I′

k

with the associated index set I ′k. It outputs a ciphertext CTk.

Dec({SKk}k∈UKey
, {CTk}k∈UMsg

)→ ζ ∨ ⊥: The decryption algorithm takes as input {SKk}k∈UKey
, {CTk}k∈UMsg

where UKey,UMsg ⊆ ID are any sets. It outputs either ζ or a special symbol ⊥ indicating failure.

Correctness: For all λ ∈ N, UKey,UMsg ⊆ ID, {k, (Keyk,j)j∈Ik}i∈UKey
∈ L(ID×K∗), {k, (Msgk,j)j∈I′

k
}i∈UMsg

∈
L(ID ×M∗), the following must hold

Pr

 ζ = f
(
{k, (Keyk,j)j∈Ik}k∈UKey

,
{k, (Msgk,j)j∈I′

k
}k∈UMsg

) :

PP← GlobalSetup(1λ)
(PKk,MSKk)← LocalSetup(PP)
SKk ← KeyGen(MSKk, {(Keyk,j)j∈Ik}k)
CTk ← Enc(MSKk, (Msgk,j)j∈I′

k
)

ζ ← Dec({SKk}k∈UKey
, {CTk}k∈UMsg

)

 ≥ 1− negl(λ).

Definition 19 (Security of DD-UFE) The Πddf = (GlobalSetup, LocalSetup, KeyGen,Enc,Dec) is said to
be xx-yy-indistinguishability (xx-yy-IND) (xx ∈ {sel, adp}, yy ∈ {sym, asym}) secure if for any security
parameter λ, any PPT adversary A, there exists a negligible function negl such that the following holds

AdvddfA,xx-yy-IND(λ) =
∣∣∣Pr [ExptddfA,xx-yy-IND(λ, 0) = 1

]
− Pr

[
ExptddfA,xx-yy-IND(λ, 1) = 1

] ∣∣∣ ≤ negl(λ)

where the experiment ExptddfA,xx-yy-IND(λ, β) is defined for β ∈ {0, 1} as follows:

ExptddfA,xx-yy-IND(λ, β) :

1: PP← GlobalSetup(1λ).
2: β′ ← AOHonGen(·),OCorr(·),OKG(MSK,·),OE(·),OLoR,β(·)(PP).
3: Output β′ if condition (∗) is satisfied.
OCorr(k) :

output MSKk.

OHonGen(k) :

output PKk.

OKG({(Keyk,j)j∈Ik}k) :
output KeyGen(MSKk, (Keyk,j)j∈Ik).

OE(k, (Msgk,j)j∈I′
k
) :

output Enc(MSKk, (Msgk,j)j∈I′
k
).

OLoR,β(k, (Msg0k,j ,Msg1k,j)j∈I′
k
) :

output Enc(MSKk, (Msgβk,j)j∈I′
k
).

Let Q, CS be the sets of all inputs k ∈ ID for which the adversary makes queries to the oracles OHonGen(·)
and OCorr(·) respectively, and HS = Q\ CS. The condition (∗) is that if there exist two subsets of identities
UKey,UMsg ⊆ Q satisfying

f({k, (Keyk,j)j∈Ik}k∈UK
, {k, (Msg0k,j)j∈I′

k
}k∈UMsg

) ̸= f({k, (Keyk,j)j∈Ik}k∈UKey
, {k, (Msg1k,j)j∈I′

k
}k∈UMsg

)

then at least one of the following should not hold:

• for all k ∈ UMsg, [OLoR,β(k, (Msg0k,j ,Msg1k,j)j∈I′
k
) or OE(k, (Msgk,j)j∈I′

k
) with (Msg0k,j = Msg1k,j =

Msgk,j)j∈I′
k
is queried] or [(Msg0k,j = Msg1k,j = Msgk,j)j∈I′

k
and k ∈ CS].
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• for all k ∈ UKey, [OKG(k, (Keyk,j)j∈Ik) is queried] or [k ∈ CS].

– For xx = sel: Generates the CS set in one shot before queries to all oracles OLoR,β(·) or OE(·) or OKG(·).
– For yy = sym: for i ∈ CS, the queries OLoR,β(k, (Msg0k,j ,Msg1k,j)j∈I′

k
) must satisfy Msg0k,j = Msg1k,j .

Definition 20 (DD-UFE for IP) A dynamic decentralized unbounded IPFE (DD-UIPFE) is a particular
class of DD-UFE where ID = {0, 1}∗,K∗ = Z∗

p, andM∗ = Z∗
p×L such that L represents the label space. The

function f is defined as follows: for the message components Msgk = (xk, Lk) ∈ M∗, the key components
Keyk = ({yk}k) ∈ K∗ and xk and yk are associated with the index sets Ik and I ′k,

f({k, (Keyk,j)j∈Ik}UKey
, {k, (Msgk,j)j∈I′

k
}UMsg

) =

{∑
k∈U ⟨xk,yk⟩p if (⋆) holds

⊥ otherwise.

The conditions in (⋆) define as follows:

– UMsg = UKey = U and for all k ∈ U , UKey,k = UMsg,k = U .
– R(xk,yk) = 1 for all k ∈ U .
– for all k1, k2 ∈ U , Lk1 = Lk2 .

7.1 Construction

Let Πesi = (eSetup, eKeyGen, eEnc, eSlotEnc, eDec) be an esUIPFE with Spub = Z∗
p,Spriv = Zm+1

p considering
n1 = 0 and n2 = m + 1, and Πaone = (aoGlobalSetup, aoLocalSetup, aoEnc, aoDec) be an AoNE scheme,
Πnike = (nSetup, nKeyGen, nKeyshared) be a NIKE scheme, PRFseed

1 : 2ID × L → Zm
p ,PRF

seed
2 : 2ID → Zm

p be
the families of PRF functions with the key space Kprf1 ,Kprf2 respectively, ID be the identity space and a hash
function H : {0, 1}∗ → Gm

2 is treated as the random oracle. We discuss AoNE, NIKE, PRF in Definitions
7, 5 and 4, respectively. Note that, our proposed DD-UIPFE only involve the eEnc algorithm to encrypt
the slot-specified message vector using corresponding master secret key. We present our DD-UIPFE scheme
Πddi = (GlobalSetup, LocalSetup, KeyGen,Enc,Dec) in following.

GlobalSetup(1λ): The setup algorithm takes input the security parameter λ and executes the following steps:

1. Generates nPP← nSetup(1λ), aoPP← aoSetup(1λ).
2. Outputs the public parameter PP = (nPP, aoPP).

LocalSetup(PP): The local setup algorithm takes input PP with a user identity k ∈ ID, and runs the
following steps:

1. Generates (nPKk, nSKk)← nKeyGen(nPP), (aoPKk, aoSKk)← aoKeyGen(aoPP).

2. Chooses seedk,2 ← Kprf2 .
3. Outputs the public key PKk = (nPKk, aoPKk) and the master secret keyMSKk = (nSKk, aoSKk, seedk,2)

for k ∈ ID.

KeyGen(MSKk, {yk = (yk,ι)ι∈Iyk
, Iyk
}k∈UKey,k

): The key generation algorithm takes as input MSKk and
Keyk = ({yk}k, {Iyk

}k,UKey,k) and performs the following steps:

1. Computes rtk ← PRF
seedk,2

2 (UKey,k).
2. Runs (eMPKk, eMSKk)← eSetup(1λ, rtk).
3. Computes eSKk ← eKeyGen(eMSKk, [[(yk,α, 0)]]2, Iyk

) with H({yk}k,UKey,k) = [[α]]2.
4. Generates aoCTk ← aoEnc(aoSKk, (eSKk,UKey,k, {yk}k)).
5. Outputs the secret key SKk = (aoCTk,UKey,k, {yk}k, Lk).

Enc(MSKk,xk = (xk,i)i∈[mk],UMsg,k, Lk): The encryption algorithm takes as input MSKk, and Msgk =
(xk,UMsg,k, Lk) and proceeds as follows:

1. Runs (eMPKk, eMSKk)← eSetup(1λ, rtk) where rtk ← PRF
seedk,2

2 (UMsg,k).
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2. Generates seedk,ν ← nKeyShared(nSKk, nPKν) for all ν ∈ UMsg,k \ {k}.
3. Computes sk =

∑
ν∈UMsg,k\{k}(−1)

ν<kPRF
seedk,ν,1

1 (UMsg,k, Lk).

4. Generates aoCTk ← aoEnc(aoSKk, (eCTk,UMsg,k, Lk)) where eCTk ← eEnc(eMSKk, [[(xk, sk, 0)]]1).
5. Outputs the ciphertext CTk = (aoCTk,UMsg,k, Lk).

Dec({SKk}k∈UKey
, {CTk}k∈UMsg

): The decryption algorithm takes as input {SKk}k∈Ukey
, {CTk}k∈UMsg

such
that U = UKey = UMsg and performs the following steps:

1. For all k ∈ U , computes eS̃Kk ← aoDec(aoCTk) and eC̃Tk ← aoDec(aoCT′
k).

2. Generates [[ξk]]T ← eDec(eS̃Kk, eC̃Tk) for all k ∈ U .
3. Outputs [[d]]T =

∏
k∈U [[ξk]]T

4. If eDec returns ⊥, outputs ⊥.

Correctness: Firstly, we observe that if UKey = UMsg = U , Lk = LMsg for all k ∈ U , where LMsg is any
label in L and {yk = (yk,ι)ι∈Iyk

, Iyk
}k∈UKey,k

is same in all the ciphertexts input to the decryption algorithm,
then

– From Πaone correctness, we have eSKfe,k = eS̃Kfe,k, eCTfe,k = eC̃Tfe,k, for all k ∈ U .

– For all k ∈ U , the computation H({yk}k,UKey,k) = [[α]]2 remains same.

From the correctness of Πnike, we have seedk,ν = seedν,k and
∑

k∈U sk = 0. Now applying the correctness of
Πesi with R(xk,yk) = 1 for all k ∈ U , we get

eDec(eS̃Kk, eC̃Tk) = [[⟨xk,yk⟩p + ⟨sk,α⟩]]T for all k ∈ U .

Therefore, [[d]]T =
∏
k∈U

[[⟨xk,yk⟩p + ⟨sk,α⟩]]T = [[
∑
k∈U

⟨xk,yk⟩p]]T .

7.2 Security Analysis

In Theorem 9, we present the security analysis of our DD-UIPFE scheme, as described in Construction 7.1.

Theorem 9 Our Πddi scheme achieves sel-sym-IND security as per the Definition 20 if PRF1,PRF2 are
pseudo-random functions, Πnike and Πaone are IND-secure protocols and Πesi is function-hiding.

Proof. We prove the above theorem through a sequence of hybrids. We describe the hybrids below. We
represent the slots that are updated in the subsequent hybrids using dashed boxes.

Hybrid 0: This game is the same as ExpddiA,sel-IND(λ, 0). The adversary A has access to the following oracles.

– Corruption queries: The adversary A submits the corrupted user index k ∈ ID to challenger B
and the challenger returns keys MPKk,MSKk corresponding to the user k.

– Left or right oracle queries: On receiving index k ∈ ID, identity set UMsg, label LMsg and

the challenge messages {x(0)
k ,x

(1)
k }k∈UMsg

of length mk, the challenger simulates the challenge

ciphertexts CT
(0)
k = (aoCTk,UMsg,k, LMsg) using the following component:

OLoR,β(k,x
(0)
k ,x

(1)
k ,UMsg, LMsg) : eCT

(0)
k = eEnc( eMSKk, [[( x

(0)
k , sk , 0 )]]1 )

where aoCTk ← aoEnc(aoMSKk, (eCT
(0)
k ,UMsg, LMsg)), sk =

∑
ν∈UMsg,k\{k}(−1)

ν<kPRF
seedk,ν,1

1 (UMsg,k, LMsg).
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– Encryption oracle queries: On receiving index k ∈ ID, message vector xk, identity set UMsg,k and
label LMsg, the challenger generates the queried ciphertexts CTk = (aoCTk,UMsg,k, L

′
Msg) using the

following component:

OE(k,xk,UMsg, L
′
Msg) : eCT′

k = eEnc( eMSKk, [[(xk, s′k, 0)]]1 )

where aoCTk ← aoEnc(aoMSKk, (eCT
′
k,UMsg, L

′
Msg)) and and s′k =

∑
ν∈UMsg,k\{k}(−1)

ν<kPRF
seedk,ν,1

1

(UMsg,k, L
′
Msg).

– Key generation oracle queries: For ℓ-th functional key corresponding to the access structure
A, index k ∈ ID, key vector yℓ = (yℓ,k)k∈UKey

, the challenger generates the secret key SKℓ,k =
(aoCTℓ,k, ,UKey, {yℓ,k}k) using the following components:

OKG(k, {yℓ,k}k,UKey) : eSKℓ,k = eKeyGen( eMSKk, [[(yℓ,k, αℓ , 0 )]]2 )

Here, aoCTℓ,k ← aoEnc(aoMSKk, (eSKℓ,k,UKey, {yℓ,k}k)) and H({yℓ,k}k,UKey,k) = [[αℓ]]2.

Hybrid 1: In this hybrid, we modify the incomplete LoR queries. The queries of the form (k,x
(0)
k ,x

(1)
k ,UMsg,

LMsg) to oracles OLoR,β(·) or OKG(·) is said to be incomplete with respect to (UMsg, LMsg) if there exists

an index k′ ∈ UMsg∩HS such that no OE(k
′,xk′ ,UMsg, L

′
Msg) or OLoR,β(k

′,x
(0)
k′ ,x

(1)
k′ ,UMsg, LMsg) queries

are made. In case of such incomplete queries, the challenge ciphertext CT
(0)
k = (aoCTk,UMsg,k, LMsg)

is computed as follows:

aoEnc(aoMSKk, ( 0 ,UMsg, LMsg))→ aoCTk.

The indistinguishability follows from the security of the Πaone.

Hybrid 2 We handle incomplete key queries in this game. A key query (k, {yℓ,k}k∈UKey
,UKey) is said

to be incomplete if there exists an k′ ∈ UKey ∩ HS such that there is no key query of the form
(k′, {yℓ,k}k∈UKey

,UKey). For all incomplete key queries, the secret key SKℓ,k = (aoCTℓ,k, ,UKey,k, {yℓ,k}k)
are computed as follows:

aoEnc(aoMSKk, ( 0 ,UKey, {yℓ,k}k∈UKey
))→ aoCTℓ,k.

The indistinguishability follows from the security of Πaone.

Hybrid 3: This game is the same as the experiment ExpddiA,sel-IND(λ, 1) for the challenge bit β = 1. The chal-

lenger generates the challenge ciphertext CT
(0)
k = (aoCTk,UMsg,k, LMsg) using the following component:

OLoR,β(k,x
(0)
k ,x

(1)
k ,UMsg, LMsg) : eCT

(1)
k = eEnc( eMSKk, [[( x

(1)
k , sk, 0)]]1 )

where sk =
∑

ν∈UMsg,k\{k}(−1)
ν<kPRF

seedk,ν,1

1 (UMsg,k, LMsg).

Lemma 22 Hybrid 2 and Hybrid 3 are computationally indistinguishable if the MDDHm assumption holds
over the bilinear group G.

Proof. We prove the above lemma through a series of hybrids. Let qu be the total number of ID-sets with
complete LoR queries. Let {U1, · · · ,Uqu} be some fixed ordering of the ID sets with an upper bound Qu on

qu. We define the sub-hybrids H̃0
ϱ as follows,

61



H̃0
ϱ : For ϱ ∈ [Qu]∪ {0}, this is the same as Hybrid 2 except that for every complete LoR query, for k ∈ HS,

the challenger sets

OLoR,β(k,x
(0)
k ,x

(1)
k ,UMsg, LMsg) : eCT

(0)
k =

eEnc( eMSKk, [[( x
(1)
k , sk, 0)]]1 ) if UMsg ∈ {U1, · · · ,Uϱ}

eEnc( eMSKk, [[(x
(0)
k , sk, 0)]]1 ) if UMsg ∈ {Uϱ+1, · · · ,Uqu} .

Consider Uϱ = {⊥} for ϱ > qu. Observe that, Hybrid 2 ≡ H̃0
0 and H̃0

Qu
≡ Hybrid 3. In the following, we

show that H̃0
ϱ−1 ≈c H̃

0
ϱ.

Claim 9 For ϱ ∈ [Qu], H̃
0
ϱ−1 and H̃0

ϱ are computationally indistinguishable.

Proof. To show this, assume L1
Uϱ
, · · · , Lv

Uϱ
be the labels queried on the ID set Uϱ and QL be the upper

bound on v. We introduce a series of hybrids H̃0
ϱ−1,ϑ where ϑ ∈ [QL] based on the complete query of the

form (⋆, ⋆, ⋆,Uϱ, ⋆).

H̃0
ϱ−1,ϑ : For ϑ ∈ [QL], this is the same as H̃0

ϱ−1 except that for every complete query of the form

(k,x
(0)
k ,x

(1)
k ,Uϱ, L) to the OLoR,β(·), for k ∈ HS, the challenger sets

OLoR,β(k,x
(0)
k ,x

(1)
k ,Uϱ, L) : eCT

(0)
k =

eEnc( eMSKk, [[( x
(1)
k , sk, 0)]]1 ) if L ∈ {L1

Uϱ
, · · · , Lϑ

Uϱ
}

eEnc( eMSKk, [[(x
(0)
k , sk, 0)]]1 ) if L ∈ {Lϑ+1

Uϱ
, · · · , LQL

Uϱ
} .

We define another hybrid H̃0
ϱ−1,0 ≡ H̃0

ϱ−1. Observe that H̃0
ϱ−1,QL

≡ H̃0
ϱ. We have to prove H̃0

ϱ−1,ϑ−1 ≈c H̃
0
ϱ−1,ϑ

to complete the cycle of hybrids.

Claim 10 For ϑ ∈ [QL], H̃
0
ϱ−1,ϑ−1 and H̃0

ϱ−1,ϑ are computationally indistinguishable.

Proof. We define the identity set UHS
ϱ = HS ∩ Uϱ = {u1, . . . , uw} with Qw as upper bound on w. In the

following, we consider the sequence of hybrids H
0

η for (η ∈ [Qw]∪{0}) based on the each complete encryption

query of the form (uk,x
(0)
uk ,x

(1)
uk ,Uϱ, Lϑ

U ) and each complete secret key query of the form (uk, {yk}k∈Uϱ ,Uϱ).

H
0

η for (η ∈ [Qw] ∪ {0}): Same as hybrid H̃0
ϱ−1,ϑ−1 except for all users uk ∈ UHS

ϱ , satisfying Iyℓ,uk
⊆ [muk

],

the queried key and the LoR ciphertext components corresponding to the underlying Πesi scheme are changed
as follows:

OKG(uk, {yk}k∈Uϱ
,Uϱ) : eSKℓ,uk

=

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ, 0)]]2, Iyℓ,uk
) if k < w

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ,
∑

ι∈[η] δuι,LUϑ
ϱ
)]]2, Iyℓ,uk

) if k = w
,

OLoR,β(uk,x
(0)
k ,x

(1)
k ,Uϱ, Lϑ

U ) : eCT
(0)
k =


eEnc( eMSKuk

, [[( x
(1)
uk , suk

, 0)]]1 ) if k ≤ η
eEnc( eMSKuk

, [[(x
(0)
uk , suk

, 0)]]1 ) if η < k < w

eEnc( eMSKuk
, [[(x

(0)
uk , suk

, 1 )]]1 ) if k = w

where δuι,LUϑ
ϱ
= ⟨x1,(1)

uι ,yℓ,uι
⟩− ⟨x1,(0)

uι ,yℓ,uι
⟩ and the superscript 1 represent the first LoR queries are of the

form (uι, ⋆, ⋆,Uϱ, Lϑ
Uϱ
). From the admissibility conditions of the Πddi, we have

– Let Qc,uι,Uϱ,LUϑ
ϱ

be the number of the ciphertext queries of the form (uι, ⋆, ⋆,Uϱ, Lϑ
Uϱ
) and consider

δuι,LUϑ
ϱ
= ⟨xτ,(1)

uι ,yℓ,uι
⟩ − ⟨xτ,(0)

uι ,yℓ,uι
⟩ for all τ ∈ [Qc,uι,Uϱ,LUϑ

ϱ
].
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– Also
∑

uι∈UHS
ϱ

δuι,LUϑ
ϱ
= 0.

From the function-hiding security of Πesi, we have H
0

0 ≈c H̃0
ϱ−1,ϑ−1. In both the hybrids, the complete key

queries for the tuple (uw, {yℓ,k}k∈Uϱ
,Uϱ) is of the form

OKG(uw, {yℓ,k}k∈Uϱ
,Uϱ) : eSKℓ,uk

= eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ, 0)]]2, Iyℓ,uk
)

and the complete ciphertext queries (uw,x
(0)
uw ,x

(1)
uw ,Uϱ, Lϑ

Uϱ
) is of the form

OLoR,β(uw,x
(0)
uw ,x

(1)
uw ,Uϱ, Lϑ

Uϱ
) : eCT

(0)
k =

{
eEnc( eMSKuw

, [[(x
(0)
uw , suw

, 1)]]1 ) in H
0

0

eEnc( eMSKuw
, [[(x

(0)
uw , suw

, 0)]]1 ) in H̃0
ϱ−1,ϑ−1.

Thus, the indistinguishability follows from function-hiding argument of the underlying Πesi scheme.

By similar arguments, we can show that H
0

Qw
≈c H̃

0
ϱ−1,ϑ. To complete the cycle between all the subsequent

hybrids, we now show H
0

η−1 ≈c H
0

η through the following claim.

Claim 11 For all η ∈ [Qw], the hybrids H
0

η−1 and H
0

η are computationally indistinguishable.

Proof. To show the indistinguishability of the above hybrids for η ∈ [Qw], we define the following series of

hybrids namely H
0

η−1,1 to H
0

η−1,7.

H
0

η−1,1: For every complete challenge query to the oracle OLoR,β(·), uniformly choose seeduw,uη
← K2 sat-

isfying seeduw,uη = seeduη,uw instead of generating these using nKeyShared algorithm.

For uw, uη ∈ HS, from the security of Πnike, we have

A
(
{nSKℓ,k}k∈CS , seeduw,uη

← nKeyShared
)
≈c A

(
{nSKℓ,k}k∈CS : seeduw,uη

← K2

)
Thus, the indistinguishability of hybrids H

0

η−1 and H
0

η−1,1 follows the security of Πnike.

H
0

η−1,2: The vectors suη , suw are modified in this hybrid as follows:

suη
=

∑
i∈Uϱ,k/∈{uη,uw}

(−1)k<uηPRF
seeduη,k,1

1 (Uϱ, Lϑ
Uϱ
) + tuη,uw

,

suw
=

∑
k∈Uϱ,k/∈{uη,uw}

(−1)k<uwPRF
seeduw,k,1

1 (Uϱ, Lϑ
Uϱ
) − tuη,uw

,

where tuη,uw
← Zm

p . The indistinguishability follows from the security of PRF1.

H
0

η−1,3: The secret key and the ciphertext components corresponding to the complete queries for the user
uk ∈ HS for k ∈ {η, w} with R(xuk

,yℓ,uk
) = 1 are modified as follows.

OKG(uk, {yk}k∈Uϱ
,Uϱ) : eSKℓ,uk

=

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ, −⟨αℓ, tuη,uw⟩ )]]2, Iyℓ,uk
) if k = η

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ,
∑

ι∈[η−1] δuι,LUϑ
ϱ
+⟨αℓ, tuη,uw

⟩ )]]2, Iyℓ,uk
) if k = w

,

OLoR,β(uk,x
(0)
k ,x

(1)
k ,Uϱ, Lϑ

U ) : eCT
(0)
k =

eEnc( eMSKuk
, [[(x

(0)
uk , suk

+ tuη,uw
, 1 )]]1 ) if k = η

eEnc( eMSKuk
, [[(x

(0)
uk , suk

− tuη,uw 1)]]1 ) if k = w.
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The indistinguishability follows from the function-hiding security of Πesi scheme. Since forR(xk,yℓ,k) =
1, k = η, we have

eDec(eSK
H

0
η−1,2

ℓ,k , eCT
H

0
η−1,2

k ) = [[⟨x(0)
uk
,yℓ,uk

⟩+ ⟨αℓ, suk
⟩]]T

= [[⟨x(0)
uk
,yℓ,uk

⟩+ ⟨αℓ, suk
+ tuη,uw

⟩ − ⟨αℓ, tuη,uw
⟩]]T

= eDec(eSK
H

0
η−1,3

ℓ,k , eCT
H

0
η−1,3

k ).

For R(xk,yℓ,k) = 1, k = w, we have

eDec(eSK
H

0
η−1,2

ℓ,k , eCT
H

0
η−1,2

k ) = [[⟨x(0)
uk
,yℓ,uk

⟩+ ⟨αℓ, suk
⟩+

∑
ι∈[η−1]

δuι,LUϑ
ϱ
]]T

= [[⟨x(0)
uk
,yℓ,uk

⟩+ ⟨αℓ, suk
− tuη,uw⟩+

∑
ι∈[η−1]

δuι,LUϑ
ϱ
+ ⟨αℓ, tuη,uw⟩]]T

= eDec(eSK
H

0
η−1,3

ℓ,k , eCT
H

0
η−1,3

k ).

H
0

η−1,4: Same as the previous hybrid except that the secret key components corresponding to the complete
key queries for k ∈ {η, w} with R(xuk

,yℓ,uk
) = 1 is modified as follows.

OKG(uk, {yk}k∈Uϱ ,Uϱ) : eSKℓ,uk
=

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ, − tuη,uw
)]]2, Iyℓ,uk

) if k = η

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ,
∑

ι∈[η−1] δuι,LUϑ
ϱ

+ tuη,uw )]]2, Iyℓ,uk
) if k = w.

For the complete key queries of the form (⋆,Uϱ, Lϑ
Uϱ
) associated with the key vectors {{y1

k}k∈UKey
,

{y2
k}k∈UKey

, · · · , {yQkey

k }k∈UKey
}, we replace value ⟨αℓ, tuη,uw⟩ with a random tuη,uw ← Zp where {α1,

. . . ,αQkey} be the set of corresponding hash values generated by hashH over the key vectors {{y1
k}k∈UKey

,

{y2
k}k∈UKey

, · · · , {yQkey

k }k∈UKey
}. Here, we consider Qkey be the maximum number of key queries by the

adversary A. The indistinguishability follows from MDDHm assumption over the bilinear group G.

H
0

η−1,5: Same as the previous hybrid except that the secret key components corresponding to the complete
key queries for k ∈ {η, w} with R(xuk

,yℓ,uk
) = 1 is modified as follows.

OKG(uk, {yk}k∈Uϱ
,Uϱ) : eSKℓ,uk

=

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ, − t′uη,uw
− δuη,LUϑ

ϱ
)]]2, Iyℓ,uk

) if k = η

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ,
∑

ι∈[ η ]
δuι,LUϑ

ϱ
+ t′uη,uw

)]]2, Iyℓ,uk
) if k = w

where we implicitly set t′uη,uw = tuη,uw + δuη,LUϑ
ϱ
. As tuη,uw is distributed uniformly random over Zp,

the hybrids are statistically indistinguishable.

H
0

η−1,6: The secret key and the ciphertext components corresponding to the complete queries for the user
uk ∈ HS for k = η with R(xuk

,yℓ,uk
) = 1 are modified as follows.

OKG(uk, {yk}k∈Uϱ
,Uϱ) : eSKℓ,uk

=

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ, −t′uη,uw
)]]2, Iyℓ,uk

) if k = η

eKeyGen( eMSKuk
, [[(yℓ,uk

, αℓ,
∑

ι∈[η] δuι,LUϑ
ϱ
+ t′uη,uw

)]]2, Iyℓ,uk
) if k = w

,

OLoR,β(uk,x
(0)
k ,x

(1)
k ,Uϱ, Lϑ

U ) : eCT
(1)
k =

eEnc( eMSKuk
, [[( x

(1)
uk , suk

+ tuη,uw
, 1, )]]1 ) if k = η

eEnc( eMSKuk
, [[(x

(0)
uk , suk

− tuη,uw , 1)]]1 ) if k = w
.

The indistinguishability follows from the function-hiding security of Πesi.
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Now, we undo the changes in the previous hybrids to get to hybrid H
0

η. Therefore, Claim 11 holds. □

This also concludes the proof of Claim 10 and Claim 9. □ □

We reach Hybrid 3 when we loop over η ∈ [Qw]. Hence, Lemma 22 holds. □
This completes the proof of Theorem 9. □
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A Multi-Input Attribute-Based UIPFE

In the section, we mainly focus on the multi-input unbounded FE (MI-UFE) which is a particular form of
MC-UFE assuming all the clients use the same label. Thus the syntax of MI-UFE follows from the Definition
15 by ignoring the encryption algorithm from MC-UFE. Subsequently, we discuss the standard security of MI-
UFE in Definition 21 and later we instantiate MI-UFE over attribute-based IPFE with wildcard attributes
in Definition 22.
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Definition 21 (Security for MI-UFE) The MI-UFE scheme Πmif = (Setup,KeyGen,Enc,Dec) is said to
be xx-indistinguishability (xx-IND) (xx ∈ {sel, adp}) secure if for any security parameter λ, any PPT adver-
sary A, there exists a negligible function negl such that the following holds

Advmif
A,xx-IND(λ) =

∣∣∣Pr [Exptmif
A,xx-IND(λ, 0) = 1

]
− Pr

[
Exptmif

A,xx-IND(λ, 1) = 1
] ∣∣∣ ≤ negl(λ)

where the experiment Exptmif
A,xx-IND(λ, β) is defined for β ∈ {0, 1} as follows:

Exptmif
A,xx-IND(λ, β) :

1: (PP,EKk,MSK)← Setup(1λ, n).
2: β′ ← AOCorr(·),OKG(·),OE(·),OLoR,β(·)(PP).
3: Output β′ if condition (∗) is satisfied.
OCorr(k) :

output MSKk.

OKG({(Keyk,j)j∈Ik}k) :
output KeyGen(MSK, (Keyk,j)j∈Ik).

OE(k, (Msgk,j)j∈I′
k
) :

output Enc(EKk, (Msgk,j)j∈I′
k
).

OLoR,β(k, (Msg0k,j ,Msg1k,j)j∈I′
k
) :

output Enc(EKk, (Msgβk,j)j∈I′
k
).

Let CS be the sets of all inputs k ∈ ID for which the adversary makes queries to the oracles OCorr(·) and
HS = [n] \ CS. The condition (∗) is that if there exist two messages satisfying

f({k, (Keyk,j)j∈Ik}k∈[n], {k, (Msg0k,j)j∈I′
k
}k∈[n]) = f({k, (Keyk,j)j∈Ik}k∈[n], {k, (Msg1k,j)j∈I′

k
}k∈[n]).

• for all k ∈ [n], [OLoR,β(k, (Msg0k,j ,Msg1k,j)j∈I′
k
) or OE(k, (Msgk,j)j∈I′

k
) with (Msg0k,j = Msg1k,j = Msgk,j)j∈I′

k

is queried] or [(Msg0k,j = Msg1k,j = Msgk,j)j∈I′
k
and k ∈ CS].

• for all k ∈ [n], [OKG(k, (Keyk,j)j∈Ik) is queried] or [k ∈ CS].

– If xx = sel: Queries to OCorr(·) and OE(·) in one shot. That is, adversary submits (CS, k,x(0)
k ,x

(1)
k ) and

obtains the response ({EKk}, {Enc(EKk,x
(β))}). Only after the one-shot query, the adversary can query

OKG(·) oracle.

Definition 22 (MI-UFE for AB-IP) A multi-input attribute-based UIPFE (MI-AB-UIPFE) is a class of
MI-UFE where K∗ = Z∗

p×P, andM∗ = Z∗
p×AT T ∪{⋄} such that P and AT T represent the access policy

and attribute spaces, respectively. Here, {⋄} represents the wildcard attributes. The function f is defined as
follows: for the message components Msgk = (xk,Sk) ∈M∗, the key components Key = (y = {yk}k,A) ∈ K∗

and xk,yk are associated with the index sets Ik and I ′k,

f({k, (Keyk,j)j∈Ik}k∈[n], {k, (Msgk,j)j∈I′
k
}k∈[n]) =

{∑
k∈[n]⟨xk,yk⟩p if (⋆) holds

⊥ otherwise.

The conditions in (⋆) is define as follows:

– (R(xk,yk) = 1 ∧ A(Sk) = 1 for all k ∈ [n]) ∨ A(⋄) = 1.

Definition 23 (Security of Weak MI-AB-UIPFE) We say that an MI-AB-UIPFE scheme is secure
against legitimate keys if the scheme is secure against adversaries that satisfy the condition defined below in

addition to the conditions defined in Definition 21. Let (CS, {k, (x(0)
µ,k,x

(1)
µ,k,Sµ,k)}µ∈[Qc,k],k∈[n], {yℓ,Aℓ}ℓ∈[Qkey])

be the query of the adversary, where Qkey is the number of queries to OKG(·) and Qc,k be the numbers of
queries of the forms of (k, ∗, ∗) to the OLoR,β(·) oracle. For ℓ ∈ [Qkey], we say that the key components (yℓ,Aℓ)
is legitimate if for all k ∈ HS, there must exists µ′

k ∈ [Qc,k] such that Aℓ(Sµ′
k
) = 1. In security against

legitimate keys, (yℓ,Aℓ) must be legitimate for all ℓ ∈ [Qkey]. In contrast, we say that an MI-AB-UIPFE
satisfies security against any keys if the scheme is secure against adversaries that follows just the condition
defined in Definition 21.
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A.1 Security against Legitimate Keys

In this section, we analyze the MI-AB-UIPFE scheme in the context of legitimate keys. Due to the weak secu-
rity model, we refer this scheme as weak MI-AB-UIPFE. This construction is inspired by the MC-AB-UIPFE
scheme from the Construction 6.1, where we assume sk = 1 = (1, 1, . . . , 1), generated from label L. The
detailed construction is provided below.

A.1.1 Construction

Consider Πasi = (aSetup, aKeyGen, aEnc, aSlotEnc, aDec) be an AB-sUIPFE scheme with Spub = Z∗
p, Spriv =

Zm̃+1
p . Note that, our proposed weak MI-AB-UIPFE scheme only involves the aEnc algorithm to encrypt

the slot-specified message vector using a corresponding master secret key. In the following, we present our
weak MI-AB-UIPFE scheme Πwmiai = (Setup,KeyGen,Enc,Dec) for LSSS access structure.

Setup(1λ, n): The setup algorithm takes the security parameter λ with the total number of user n in the
system as input and executes the following steps:

1. Generates (aMPKk, aMSKk)← aSetup(1λ, 1m̃+1) for all k ∈ [n].
2. Outputs k-th party’s encryption key EKk = aMSKk for k ∈ [n] and the master secret key MSK =
{aMSKk}k∈[n].

KeyGen(MSK,y = (yk)k∈[n], {Iyk
}k,A): The key generation algorithm takes as input MSK, the access

structure A and a key vector y = (y1 ∥ y2 ∥ · · · ∥ yn) where each yk is associated with the index set
Iyk

for all k ∈ [n]. It does as follows:

1. Samples r1, r2, . . . , rn ← Zm̃
p such that

∑
k∈[n] rk = 0.

2. Generates aSKk ← aKeyGen(aMSKk, [[(yk, rk, 0)]]2, Iyk
,A) for all k ∈ [n].

3. Outputs the secret key SK = {aSKk}k∈[n].

Enc(EKk,xk,Sk): The encryption algorithm takes as input EKk, a message vector xk = (xk,i)i∈[mk] with an
attribute set Sk and proceeds as following:

1. Generates aCTk ← aEnc(aMSKk, [[(xk,1, 0)]]1,Sk) where 1 = (1, 1, . . . , 1) ∈ Zm̃
p .

2. Outputs the ciphertext CTk = aCTk.

Dec(SK, {CTk}k∈[n]): The decryption algorithm takes as input SK, {CTk}k∈[n] and performs the following
steps:

1. Returns [[d]]T ←
∏

k∈[n] aDec(aSKk, aCTk) or ⊥.

Correctness: If there exists any k ∈ [n] such that R(xk,yk) = 0∨A(Sk) = 0 , output ⊥. Otherwise, from
the correctness of Πasi, we have

aDec(aSKk, aCTk) = [[⟨xk,yk⟩p + ⟨rk,1⟩]]T for all k ∈ [n]. (7)

From Equation 7, we compute

[[d]]T =
∏
k∈[n]

aDec(aSKk, aCTk) = [[
∑
k∈[n]

⟨xk,yk⟩p + ⟨rk,1⟩]]T = [[
∑
k∈[n]

⟨xk,yk⟩p]]T .

A.1.2 Security

Theorem 10 Our Πwmiai scheme achieves sel-FH-IND security against legitimate keys as per Definition 23
if the underlying Πasi is sel-FH-IND secure as per Definition 14.
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(Proof Sketch). In the instantiation of the MC-UFE security from Definition 16, over AB-UIPFE with one-
label security, it is observed that all OLoR,β(·) oracle queries for each honest user k ∈ HS must occur at the
same label, and no further OE(·) oracle queries can be made at the same label L. Consequently, for each
honest user k, the adversary A can submit multiple challenge ciphertext queries to the OLoR,β(·) oracle. The
security constraints ensure that the queried secret keys of the form (yℓ,Aℓ) must satisfy the admissibility
condition whenever Aℓ(Sµ,k) = 1 for all k ∈ HS where µ is the number of challenge ciphertext query to the
OLoR,β(·) with the label L.

If we consider this security in the context of MI-AB-UIPFE, then we have to ignore the label, and the
secret key query of the form {(yℓ,Aℓ)}ℓ∈[Qkey] will satisfy∑

k∈HS

⟨x(0)
µ,k,yℓ,k⟩p =

∑
k∈HS

⟨x(1)
µ,k,yℓ,k⟩p whenever Aℓ(Sµ,k) = 1 for all k ∈ HS

with the constraints (∗) of Definition 16 for all µ ∈ [Qc,k]. Due to the admissible conditions and the multiple
challenge ciphertext query to the OLoR,β(·) oracle, we can compute

µ′ = min
{
µ ∈ [Qc,k] :

( ∑
k∈HS

⟨x(0)
µ,k,yℓ,k⟩p =

∑
k∈HS

⟨x(1)
µ,k,yℓ,k⟩p

)
∀k ∈ HS

}
= min

{
µ ∈ [Qc,k] : Aℓ(Sµ,k) = 1 ∀k ∈ HS

}
From this above inclusion, it can concluded that for all k ∈ HS, and all the secret key query, there exist a
µ′-th ciphertext query to the OLoR,β(·) oracle in of the form (k, ∗, ∗) such that Aℓ(Sµ′,k) = 1 holds. Thus the
above MI-AB-UIPFE scheme is secure against legitimate keys. □

A.2 Security against Any Keys

A.2.1 Construction

Let Πwmiai = (wSetup, wKeyGen, wEnc, wDec) be a weak MI-AB-UIPFE scheme with wildcard attribute and
the security against legitimate keys as per Definition 23, Πabe = (abSetup, abKeyGen,abEnc, abDec) be a CP-
ABE scheme of Lin and Luo [37] (as ABPs capture monotone span programs) for LSSS access structure and a
secret sharing scheme Πss = (Share, Rec). Then, the MI-AB-UIPFE scheme Πmiai = (Setup,KeyGen,Enc,Dec)
for LSSS access structure is constructed as follows achieves security against any keys.

Setup(1λ, 1n): The setup algorithm takes as input the security parameter λ, the number of user n and
executes the following steps:

1. Generates (wPP, {wEKk}k∈[n],wMSK)← wSetup(1λ, 1n).

2. For all k ∈ [n], generates (abMPKk, abMSKk)← abSetup(1λ).

3. Outputs the public parameter PP = (wPP, {abMPKk}k∈[n]), the encryption key EKk = (wEKk, abMSKk)
and the master secret key MSK = wMSK.

KeyGen(MSK,y = (yk)k∈[n], {Iyk
}k,A): The key generation algorithm takes input as MSK, the access

structure A and a key vector y = (y1 ∥ y2 ∥ · · · ∥ yn) where each yk is associated with the index set
Iyk

for all k ∈ [n]. It works as follows:

1. Generates wSK← wKeyGen(wMSK,y,A).
2. Generates (σ1, . . . , σn)← Share(wSK, n) where σk = {σk,i}i∈Iyk

.

3. Compute abCTk ← {abCTk,i = abEnc(abMPKk, σk,i,A)}i∈Iyk
for all k ∈ [n].

4. Outputs the secret key SK = {abCTk}k∈[n].

71



Enc(EKk,xk,Sk): The encryption algorithm takes as input the k-th encryption key EKk, a message vector
xk = (xk,i)i∈[mk] with an attribute set Sk and proceeds to do the following steps:

1. Generates wCTk ← wEnc(wEKk,xk,Sk) and abSKk ← abKeyGen(abMSKk,Sk).

2. Outputs the ciphertext CTk = (wCTk, abSKk).

Dec(SK, {CTk}k∈[n]) : The decryption algorithm takes input the secret key SK, the ciphertext {CTk}k and
proceeds as follows:

1. If there exists k ∈ [n] such that A(Sk) = 0, then outputs ⊥ .
2. Otherwise, computes σ′

k ← {σ′
k,i = abDec(abSKk, abCTk,i)}i∈Iyk

for k ∈ [n].

3. Computes wSK′ ← Rec(σ′
1, . . . , σ

′
n).

4. Computes [[d]]T ← wDec(wSK′, {wCTk}k∈[n]).

Correctness: From the correctness of Πabe for wildcard attributes, σ′
1, . . . , σ

′
n are vaild shares of wmiSK,

and from the correctness of the Πwmiai, we get

[[d]]T = [[
∑
k∈[n]

⟨xk,yk⟩p]]T whenever A(Sk) = 1 for all k ∈ [n].

A.2.2 Security Analysis

In Theorem 11, we present the security analysis of MI-AB-UIPFE against any keys, as described above.

Theorem 11 Our Πmiai scheme achieves sel-IND security against any keys as per Definition 21 if Πwmiai has
security against legitimate keys, Πabe is selectively secure, and Πss scheme is secure.

Proof. To prove the security against any keys of the scheme provided in Section A.2 , we consider the
following series of hybrids.

Hybrid 0. Same as real hybrid. We consider a secret key as an illegitimate key if all the combinations of
the challenge ciphertexts decrypt to ⊥. More explicitly, for each illegitimate secret key corresponding
to (y = (yk)k∈[n],A), there exist k′ ∈ HS such that A(Sk′) = 0 where Sk′ is the associated attribute
set of ciphertext query for the honest slot k′.

Hybrid 1. Same as Hybrid 0 except the responses of the illegitimate secret key queries. The abCTk′ in SK
is now generated as

abCTk′,i ← abEnc(abMPKk′ , 0m ,A)

where m is the bit-length of the each share σ′
k,is. Due to the CP-ABE security of Lin and Luo [48]

Πabe scheme, hybrid 0 and hybrid 1 are computationally indistinguishable.

Hybrid 2. Same as Hybrid 1 except the responses of the illegitimate secret key queries. The secret shares
σk’s are now generated as

σk = {σk,i ← {0, 1}m}i∈Iyk
.

Due to the security of Πss scheme, the hybrid 1 and hybrid 2 are identically distributed.
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Hybrid 3. Same as Hybrid 1 except the responses of the challenge ciphertexts. For all the ciphertext
queries, the challenger replies

Enc(EKk, x
(1)
k ,Sk).

The indistinguishability follows directly from the security of Πwmiai scheme.

Thus, by the above hybrids, we see that the adversary has no information about the challenge bit β. This
completes the proof of Theorem 11. □
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