
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Matchmaker: Fast Secure Inference across Deployment Scenarios
Neha Jawalkar

Indian Institute of Science
India

jawalkarp@iisc.ac.in

Nishanth Chandran
Microsoft Research

India
nichandr@microsoft.com

Divya Gupta
Microsoft Research

India
divya.gupta@microsoft.com

Rahul Sharma
Microsoft Research

India
rahsha@microsoft.com

Arkaprava Basu
Indian Institute of Science

India
arkapravab@iisc.ac.in

Abstract

Secure Two-Party Computation (2PC) enables secure inference with
cryptographic guarantees that protect the privacy of the model
owner and client. However, it adds significant performance over-
head. In this work, we make 2PC-based secure inference efficient
while considering important deployment scenarios.
We observe that the hitherto unconsidered latency of fetching keys
from storage significantly impacts performance, as does network
speed. We design a Linear Secret Sharing (LSS)-based system LSSM
and a Function Secret Sharing (FSS)-based system FSSM for se-
cure inference, optimized for small key size and communication,
respectively. Notably, our highly-optimized and hardware-aware
CPU-based LSSM outperforms prior GPU-based LSS systems by
up to 50×. We then show that the best choice between LSSM and
FSSM depends on the deployment scenario. In fact, under certain
deployments, a combination of LSSM and FSSM can leverage het-
erogeneous processing across CPU and GPU. Such protocol-system
co-design lets us outperform state-of-the-art secure inference sys-
tems by up to 21× (geomean 3.25×).

1 Introduction

Secure inference can be achieved via the cryptographic technique of
secure 2-party computation (2PC). 2PC gives the formal guarantee
that the client learns nothing about the model beyond the inference
output and the model owner learns nothing about the client’s input.
While secure inference is well-explored ([20, 36, 38, 39, 42, 50, 52, 59,
61, 76] and references therein), state-of-the-art systems for secure
inference via 2PC incur large performance overheads that limit
its broad practical applicability. Our goal in this work is to reduce
these overheads to make secure inference more useful.

The fastest systems for secure inference today [38,42,76] use the
preprocessing model, which has two phases. In the offline phase, a
trusted dealer gives input-independent correlated randomness, aka
keys, to the two parties who wish to securely compute a function 𝑓 .
In the online phase parties use these keys to securely compute 𝑓 on
their secret inputs. Works in this model, including ours, focus on
reducing online complexity.

In this work, we analyse and address the performance bottle-
necks of the state-of-the-art (SOTA) 2PC systems for secure infer-
ence when deployed in real scenarios. We make the crucial observa-
tion that while the keys can be large in SOTA systems [38,40,42,76]
– e.g. for a reasonably sized model like VGG16 (batch size of 50),
Orca [38] and CrypTen [42] need keys of size 255 GB and 580 GB,

respectively – evaluation in all prior works make the unreason-
able assumption that keys would be readily available in memory
for fast consumption at inference time. This assumption, however,
does not hold in practical systems serving high-throughput batch
inference queries. In real-world settings, keys must be retrieved
from storage, introducing a significant performance bottleneck. For
instance, using Orca [38], the leading system for convolutional neu-
ral networks (CNNs), we observe that reading keys from storage
incurs a substantial overhead of 9 minutes for a VGG16 model with
a batch size of 50, whereas the online inference time, once the keys
are loaded into memory, is only 20 seconds. This stark discrepancy
highlights the need for a fundamental redesign of 2PC systems to
address the challenges of secure inference at scale.

In particular, we explore how diverse practical deployment sce-
narios affect the performance of secure inferencing platforms and
focus on a holistic protocol-system co-design that delivers signif-
icant speedups across varied scenarios. First, we make a critical
observation that whether the keys are available in memory or must
be fetched from storage significantly impacts the performance of a
secure inferencing service. Moreover, the request arrival rate at the
secure inference service can determine whether the keys can be
found in the memory or must be fetched from the storage. The
request arrival rate often varies widely and can be hard to predict
for any webservice [66, 75], If the requests arrive intermittently,
there is enough slack to fetch the keys into the memory before
computation starts. However, at a high request arrival rate and/or
when many requests come in a burst, the time to fetch keys from
the storage would be in the critical path of execution.

The second factor that dictates performance is the network speed
between the computing parties. The computing parties can reside in
the same datacenter and thus be connected over a fast LAN network.
They can also be located across different parts of the globe and thus
be connected over a slow network, e.g., WAN. While the amount of
communication needed for secure computation varies across pro-
tocols and systems, even the most communication-efficient secure
inference systems [33,38] transmit tens of GBs for reasonably large
inference tasks. Consequently, the speed of the network connecting
the parties has a significant bearing on the performance. 1

We identify four key deployment scenarios, which arise from the
combination of two crucial deployment considerations discussed
above: 1○whether the keys required for the online phase are readily

1While some of the prior works have evaluated their performancewith varying network
speeds, as we show later, variation in network speed alone does not provide much
meaningful insight.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

available in the memory or must be fetched from the storage, and
2○ the network speed between the parties (e.g., LAN vs. WAN).
We show that each of these deployment scenarios exhibits distinct
performance characteristics in the context of secure inference sys-
tems. Furthermore, two of these scenarios open up new avenues
for innovation in system design (see "Hetero" below).

In creating a fast secure inferencing system that is adaptable to
diverse deployment scenarios through protocol-system co-design,
we start by focusing on 2PC protocols under the pre-processing
model. Further, to make discussions concrete, we focus on CNN
inference. However, the techniques proposed are applicable be-
yond CNNs, including transformers (see Appendix K) as well as
to training. While CNNs have two types of layers – linear layers,
e.g., matrix multiplication; and non-linear layers, e.g., ReLU, over
(> 90%) of time in secure inferences is attributable to the non-linear
layers. We, thus, focus on securely computing non-linear layers.
LSS vs FSS. There are two broad classes of cryptographic pro-
tocols that can be used to compute non-linear layers – Linear
Secret Sharing (LSS) [31, 42, 52, 76], and Function Secret Sharing
(FSS) [13, 34, 64]. LSS-based protocols communicate more bytes
and more frequently (rounds) compared to FSS-based protocols.
On the other hand, FSS-based protocols need more compute (AES
calls) and larger keys (storage) compared to LSS-based protocols.
Theoretically, we expect LSS-based protocols to stress the network
and FSS-based protocols to stress the compute and storage. How-
ever, observing this in practice relies on performant implemen-
tations, which, as we will show in Section 7, is not necessarily
true for prior LSS-based systems. Hence, to quantify their differ-
ences under different deployment scenarios, we first create LSS
and FSS-based protocol suites for secure CNN inference (described
later) that beat state-of-the-art in their respective protocol class.
We call these LSSM and FSSM respectively. We notice that, across
different models, LSSM communicates ≈ 2.5× as much as FSSM
over 3× as many rounds, while FSSM needs keys that 25-27× larger
than LSSM’s. Naturally, when the network is slow (e.g., WAN), and
keys are in memory, FSSM beats communication-heavy LSSM by
2.2 − 2.5×. However, when the network is fast (e.g., LAN), and
keys are in storage (previously unexplored), LSSM beats FSSM (and
all prior works) by 18× or more. In short, we demonstrate that
one size (protocol) does not fit all (deployments). One must choose
different protocols for different deployment scenarios.
Hetero. We then discover a hitherto unexplored opportunity to
leverage heterogeneous processing. We notice that in certain deploy-
ment scenarios such as when parties are connected over LAN and
keys are inmemory, or when they are connected overWAN but keys
are in storage, both LSSM and FSSM perform similarly (Figure 2).
Further, computation-heavy FSSM benefits significantly from the
large computational power of Graphics Processing Units (GPUs). In
contrast, LSSM, being inherently communication-heavy, has limited
usefulness of GPUs, once optimized to leverage advanced vector-
ization features of modern CPUs. Thus, while FSSM can leverage
GPU to compute non-linearities, LSSM can rely only on the CPU to
significantly boost the throughput of inference serving. In short,
one could simultaneously harness both CPU and GPU computing,

i.e., heterogenous processing, through carefully matching proto-
cols with hardware capabilities to achieve throughputs that are not
possible to attain using only the CPU or the GPU for computing.
Matchmaker. To ease the burden of manually choosing the right
protocol or a combination thereof, in varying deployment scenarios,
we create a software tool Matchmaker (MM). It uses profile-guided
modeling to automatically divide work across LSSM and FSSM under
any deployment in the true spirit of protocol-system co-design. By
judiciously choosing protocols across all scenarios, MM beats the
state-of-the-art in secure inference (Orca) by up to 21× (Section 7.3).
LSS

M
and FSS

M
. One of our key contributions is the creation of

highly optimized new state-of-the-art LSS and FSS-based protocols,
LSSM and FSSM, that form the backbone of MM. They harness both
protocol and hardware-aware optimizations to attain significant
speedups over their respective state-of-the-art.

We observe that the majority of time in LSS-based non-linear
layers can be attributed to secure comparison. We provide a new
protocol for comparison that leverages the structure of its tree-like
boolean circuit [42, 76] to 1○ use correlated Beaver bit-triples that
reduce key size, and 2○ optimize ANDs at the leaves to reduce com-
munication (Section 3.1). Importantly, LSSM introduces hardware-
aware optimizations to speed up secure comparison. We carefully
harness both vector compute and vector memory instructions on
modern CPUs. Vector instructions allow simultaneous execution
of the same operation (e.g., AND) on different data elements (i.e.,
data parallel). We leverage data parallelism across concurrently ex-
ecuting comparison circuits to fully benefit from the wide vector
instructions (256/512 bits) of today’s CPUs. However, this requires
the reorganization of input data, which, if not performed efficiently,
can eclipse the benefits of vectorizing the compute (ANDs/XORs).
We then observe that input reorganization can be efficiently per-
formed by leveraging vector memory (gather) instructions. Lastly,
protocols in LSSM have been designed to work with small keys
such that even in a fast LAN setting, the time to fetch the keys from
storage to memory can be hidden behind online computation time
once keys are in memory. In particular, the key size of LSSM is up
to 69× smaller than prior LSS-based systems and 29× smaller than
state-of-the-art in secure inference, i.e., Orca. While the key size
can be reduced further using techniques from silent pre-processing
literature, these are known to add significant overhead to online
compute time that would be detrimental [14, 77].

Overall, LSSM beats state-of-the-art LSS-based secure inference
systems by up to 29× in communication (Section 7.1) and by up to
31× in latency even in the well-studied setting of LAN and keys
in memory. Notice that the highly optimized realization of LSSM
using only the CPU leaves the GPU for FSSM, paving the path for
heterogeneous processing.

Finally, we enhance state-of-the-art FSS-based Orca [38] to use a
more efficient comparison scheme [67]. We also incorporate other
optimizations (Section 4) to create our FSS-based secure inference
system FSSM, which is faster than Orca by up to 2.2× (Section 7.1.4).
To summarize, our contributions are:
• An optimized LSS-based inference system, LSSM, that runs non-
linearities on a CPU, and still beats the state-of the-art GPU accel-
erated LSS-based systems by up to 50×. LSSM has 29-69× smaller

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

key size than state-of-the-art, resulting in significant speedups (up
to 50×) in the critical high-throughput deployment.
• Isolating two critical considerations in practical deployments of
secure inference systems – the location of keys (memory or storage)
and network speed, we show that there is no one size fits all protocol
between LSSM and FSSM across deployment scenarios.
• Recognizing the opportunity to leverage heterogeneous processing
by simultaneously running LSSM on the CPU and FSSM on the GPU
to boost performance.
• Matchmaker leverages our insights and automatically picks the
best combination of protocols. MM beats state-of-the-art secure
inference by up to 21× (geomean 3.25×).

2 Preliminaries

Notation: Let 𝜆 be the computational security parameter. For a
positive integer 𝑛, let 𝑁 = 2𝑛 . We denote the set of 𝑛-bit unsigned
integers by U𝑁 . We denote the set of integers by Z. Arrays are
denoted by boldface, e.g. e, and the 𝑖𝑡ℎ element of e is denoted by
e[𝑖]. We use 0-based indexing for arrays. For a predicate 𝑝 , 1{𝑝} is
an indicator function which returns 1 if 𝑝 is true and 0 otherwise.
We use 𝑥

$← U𝑁 to denote that 𝑥 has been sampled uniformly at
random from U𝑁 .
Operators. For 𝑥 ∈ U𝑁 , we write int𝑛 (𝑥) when we wish to inter-
pret 𝑥 as an 𝑛-bit signed integer in 2’s complement representation.
We use MSB(𝑥) to denote the most significant bit of 𝑥 . For𝑚 > 𝑛,
we use extend(𝑥,𝑚) to denote the operation of prefixing𝑚 − 𝑛 0s
to 𝑥 . We use≫ to mean logical right shift and≫𝐴 to mean arith-
metic right shift. For an array e, we use e ≫ 𝑖 to denote cyclically
rotating the elements of e by 𝑖 places to the right. We denote logical
XOR by ⊕ and logical AND by ∧. We use | | to denote concatenation.
Fixed-point representation. A real number 𝑥 is converted to
fixed-point representationwith bitwidth𝑛 and precision 𝑓 as ⌊𝑥 ·2𝑓 ⌋
mod 𝑁 . A fixed-point number 𝑥 with bitwidth 𝑛 and precision 𝑓 is
converted to a real number as int𝑛 (𝑥)

2𝑓 .

2.1 Linear Secret Sharing (LSS) Schemes

Arithmetic Secret Sharing. For 𝑥 ∈ U𝑁 , arithmetic secret sharing
randomly samples 𝑥0, 𝑥1

$← U𝑁 such that 𝑥0 + 𝑥1 = 𝑥 mod 𝑁 . We
denote the process of secret sharing 𝑥 by share 𝑥 . For 𝑏 ∈ {0, 1},
the share of party 𝑃𝑏 is denoted by 𝑥𝑏 . We refer to the process of
parties exchanging their shares and adding them to recover the
underlying value by reconstruct (𝑥𝑏).
Boolean secret sharing. When 𝑥 ∈ {0, 1} (or when 𝑥 ∈ U2),
we can also get 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 shares, i.e. random bits 𝑥0, 𝑥1 such that
𝑥0 ⊕ 𝑥1 = 𝑥 . Logical XOR is simply addition modulo 2.

2.2 Protocol Structure and Threat Model

2PC with preprocessing.We consider 2PC in the preprocessing
model [10,11,17,26,37], which has been considered by many recent
works on secure inference [33, 38, 76]. In this model, parties 𝑃0
and 𝑃1 with private inputs 𝑥0 and 𝑥1 securely compute, through
a protocol, a publicly known function 𝑓 of their inputs. In the
context of secure neural network inference, 𝑥0 refers to the private
weights of the model, 𝑥1 is the input on which to evaluate the
model, and 𝑓 is the structure of the neural network - however, as

is common in all prior works, 𝑥0 and 𝑥1 will be arithmetic shares
of the private weights and input of the two parties; the function
securely evaluated will then first reconstruct these shares internally
and then compute 𝑓 on it. A protocol Π𝑓 for a function 𝑓 is a pair
of algorithms (Gen𝑓 , Eval𝑓). Gen𝑓 , which depends only on 𝑓 and
not any of the inputs, is run by a trusted dealer in a pre-processing
phase and generates a pair of correlated random strings (also called
keys) denoted by (𝑘 𝑓0 , 𝑘

𝑓

1). Generic or specialized 2PC protocols
can emulate the trusted dealer. In the online phase, the dealer is no
longer involved, and for 𝑏 ∈ {0, 1}, party 𝑃𝑏 runs Eval(𝑏, 𝑘 𝑓

𝑏
, 𝑥𝑏) to

get 𝑓 (𝑥)𝑏 , which is its share of the output 𝑓 (𝑥). We denote the size
of the key per party for Π𝑓 by keysize(Π𝑓), the total number of bits
communicated (by both parties) by comm(Π𝑓), and the number of
rounds of communication by rounds(Π𝑓). In this work, we focus
on the online phase and not on Gen𝑓 .
Security. Our protocols are proven simulation secure in the ide-
al/real paradigm [19, 48], with security proven against one semi-
honest corruption. Informally, security implies that the protocol
computation does not leak anything about 𝑥0 to 𝑃1 (and similarly
about 𝑥1 to 𝑃0) beyond what is implied by the function output,
𝑓 (𝑥0, 𝑥1), as long as 𝑃0 (and similarly 𝑃1) follow the protocol speci-
fication faithfully (semi-honest behaviour). We will construct proto-
cols for various functions in which parties begin the protocol with
secret shares of the inputs to the function and end the protocol
with secret shares of the output to the function. This will allow us
to sequentially compose different protocols. By proving the stand-
alone security of protocols for various functions such as matrix
multiplications, convolutions, ReLU, and so on, and by invoking
the sequential composition theorem [19], we can prove the security
of the entire end-to-end protocol for secure inference. Security of
our standalone protocols can be proved in the hybrid model [19]
following the template in Appendix D.

2.3 Protocols common to LSS and FSS

We consider protocols for 2PC in the pre-processing model based
both on Linear Secret Sharing (LSS) [31] schemes as well as Function
Secret Sharing (FSS) [13, 17] schemes. We now describe existing
protocols for commonly occurring functionalities in secure ML.
These protocols are the same for LSS and FSS-based 2PC protocols.
Boolean to arithmetic secret shares. For 𝑠 ∈ {0, 1}, we define
B2A𝑛 (𝑠) = extend(𝑠, 𝑛) ∈ U𝑁 . It is easy to construct a protocol
ΠB2A
𝑛 = (GenB2A𝑛 , EvalB2A𝑛) that given secret shares of a bit 𝑠 , returns

secret shares of B2A𝑛 (𝑠) (see Appendix B). ΠB2A
𝑛 has keysize 𝑛 and

communicates 2 bits in a single round.
Matrix Multiplications and Convolutions.Matrix multiplica-
tions and convolutions can easily be realized using a generalization
of Beaver triples [10]. For a bilinear function 𝑓 : U𝑝

𝑁
× U𝑞

𝑁
→ U𝑟

𝑁
where 𝑝, 𝑞, 𝑟 are positive integers, the corresponding Beaver-triple
based protocol has keysize (𝑝+𝑞+𝑟) ·𝑛. It communicates 2 · (𝑝+𝑞) ·𝑛
bits in a single round. As a special case, to compute multiplication
of secret-shared inputs 𝑥,𝑦 ∈ U𝑁 , we require a key of size 3𝑛
and 2𝑛 bits of communication in a single round. To compute AND
of secret shared bits, we require a key of size 3 bits and 2 bits of
communication in a single round.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Select. The functionality select𝑛 : U𝑁 × {0, 1} → U𝑁 takes
as input an 𝑛-bit value 𝑥 and a selector bit 𝑠 and returns 𝑠 · 𝑥 .
Orca [38] provides a protocol Πselect

𝑛 = (Genselect𝑛 , Evalselect𝑛) to se-
curely realize select𝑛 . It has keysize 3𝑛 and communicates 2𝑛 + 2
bits in a single round. For completeness, we present Πselect

𝑛 =

(Genselect𝑛 , Evalselect𝑛) in Appendix C.

2.4 Secure CNN Inference

Convolutional Neural Network (CNN) inference makes use of two
kinds of operations – linear operations, e.g., convolutions and ma-
trix multiplications, and non-linear operations, e.g., ReLU and Max-
pool. While plaintext MLworks over floating-point numbers, secure
ML works over fixed-point numbers for efficiency [38, 45, 52, 61].
Fixed-point numbers with bitwidth 𝑛 can easily be mapped to the
set of 𝑛-bit unsigned integers (U𝑁). Thus, linear operations can
be computed using the protocols outlined in Section 2.3. However,
when linear operations multiply two𝑛-bit fixed-point numbers with
precision 𝑓 , this results in a product with precision 2𝑓 . To return
to precision 𝑓 , we require a truncation operation, which drops the
last 𝑓 bits. Truncation is a non-linear operation. CNNs also contain
non-linear activations such as ReLU. For fixed-point numbers 𝑥,𝑦,
ReLU(𝑥) = 𝑥 · 1{𝑥 > 0}, and we compute max(𝑥,𝑦) required in
Maxpool as ReLU(𝑥 − 𝑦) + 𝑦. Non-linear operations have different
protocols across LSS and FSS, and we focus on these.
Network-level optimizations for fixed-point CNNs. Orca [38]
showed how to change the architecture of fixed-point CNNs such
that underlying functionality is identical to the original CNN, but
the cost of computing it securely is reduced. At a high level, Orca
is efficient because it works over bitwidths smaller than the fixed-
point bitwidth 𝑛 wherever possible and reuses the output of expen-
sive computations by fusing functionalities. We refer the reader
to [38] for details. As a result of applying Orca’s optimizations to
our models, we require LSS and FSS-based protocols for a new fused
functionality ReLU-Extend, which takes an (𝑛 − 𝑓)-bit number 𝑥
as input and returns ReLU(𝑥) in 𝑛-bits as output.

3 LSS
M
: Optimized LSS for Matchmaker

As discussed in Section 2.4, we focus on computing non-linear
functionalities. Towards this, we first describe our novel LSS-based
protocol for the Millionaires’ problem [79] i.e., comparison on se-
cret inputs (Section 3.1). We use this as a building block for the
various ML functionalities outlined in the previous section. One
of our key contributions is the first secure LSS-based protocol for
stochastic truncation (Section 3.2). We also provide the first secure
LSS-based protocols for the other non-linear functionalities defined
in Orca [38]. To save space, we delegate these to Appendices E-
G. Notably, we provide new plaintext logic for the functionality
ReLU-Extend, which improves over Orca’s logic by needing fewer
comparisons (Appendix G).

In Section 3.3, we discuss how we efficiently implement our
protocol for the Millionaires’ problem by using vectorization to
accelerate computation on CPUs without needing to rely on GPUs
unlike prior work [42, 76]). We build an end-to-end system for
secure inference based on our LSS-based protocols and efficient
CPU-based comparison and call it LSSM. In Section 7.1, we compare

the performance of LSSM with state-of-the-art systems based on
LSS, Piranha [76] and CrypTen [42]. We show that LSSM is better
by at least an order of magnitude in latency and communication.

3.1 Millionaires’ and Wrap

In theMillionaires’ problem, 𝑃0 and 𝑃1 have secret inputs 𝑥,𝑦 ∈ U𝑁 ,
respectively, and wish to compute boolean shares of Lt𝑛 (𝑥,𝑦) =
1{𝑥 < 𝑦}. To compute Lt𝑛 , we construct a tree-like boolean cir-
cuit with AND and XOR gates. While our circuit follows that of
Cryptflow2 [61] and others [30], we compute the AND and XOR
gates using protocols in the preprocessing model (Section 2.3). Let
𝑥 = 𝑥1 | |𝑥0 and 𝑦 = 𝑦1 | |𝑦0 be such that 𝑥0, 𝑦0 are ⌈𝑛2 ⌉-bit strings and
𝑥1, 𝑦1 are ⌊𝑛2 ⌋-bit strings. Then,

1{𝑥 < 𝑦} = 1{𝑥1 < 𝑦1} ⊕ 1{𝑥1 = 𝑦1} ∧ 1{𝑥0 < 𝑦0}
1{𝑥 = 𝑦} = 1{𝑥1 = 𝑦1} ∧ 1{𝑥0 = 𝑦0}

Using these relations recursively, we can reduce comparison and
equality on 𝑛-bit strings to comparisons and equality on smaller
strings, resulting in a tree-like circuit of depth ⌈log𝑛⌉. When 𝑥,𝑦 ∈
{0, 1} (the base level of the recursion), we have,

1{𝑥 < 𝑦} = (𝑥 ⊕ 1) ∧ 𝑦; 1{𝑥 = 𝑦} = 𝑥 ⊕ 𝑦 ⊕ 1

Overall, for𝑛-bit comparisons, we obtain a boolean circuit with≈ 3𝑛
AND gates and depth ⌈log𝑛⌉, where 𝑛 AND gates are at the leaf
level to compute 1{𝑥𝑖 < 𝑦𝑖 } for each input bit. We further optimize
this circuit before realizing it with pre-processed bit-triples.

First, we observe that the AND gates at the leaf, that is, at the
base of the recursion, take secret values known to each of the parties
respectively as input and not secret shares of them. Hence, we can
optimize our protocol for AND so the key size required per leaf
node is 2 bits, and the communication required is 2 bits in 1 round.
Second, for recursion steps, both comparison and equality need one
ANDgate each. However, one of the inputs to the ANDgates is same,
and hence, we can generate correlated beaver triples2 as {𝑢, 𝑣1,𝑤1}
and {𝑢, 𝑣2,𝑤2} such that𝑤1 = 𝑢 ∧ 𝑣1 and𝑤2 = 𝑢 ∧ 𝑣2. We also save
on online communication and need 6 bits of total communication
per internal node compared to 8 bits needed naively. Finally, we
skip computing the equalities on the rightmost path in the tree on
the least significant chunks of values (as these are never used).

We design our comparison circuit to reduce the size of the corre-
lated randomness (keys) required to compute it securely. A practical
deployment consideration drives this – we noticed that previously
proposed LSS-based frameworks suffer significant slowdownswhen
they must fetch keys from storage in the critical path of computing
(Section 7.1). Thus, we strive to design LSSM to have small keys.
We avoid using circuits with many input AND gates, e.g., the one
in ABY2.0 [56], which slightly lower communication but at the
cost of a much larger key. For 64-bit comparison, ABY2.0 reduces
communication by 20% but has 2× larger keys.
We summarize the cost of our Millionaire’s protocol below.

Theorem 1. There exists a protocolΠ𝐿Mill
𝑛 = (Gen𝐿Mill

𝑛 , Eval𝐿Mill
𝑛)

that securely computes Lt𝑛 with keysize(Π𝐿Mill
𝑛) = 7𝑛 − 2⌈log𝑛⌉,

comm(Π𝐿Mill
𝑛) = 8𝑛−2⌈log𝑛⌉−2 and rounds(Π𝐿Mill

𝑛) = ⌈log𝑛⌉+1.

2CryptFlow2 [61] made similar observation in 2PC context to reduce the cost of OTs.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Stochastic Truncate-Reduce Π𝐿stTR
𝑛,𝑓

Gen𝐿stTR
𝑛,𝑓

:

1: 𝑟
$← U2𝑓 ; share 𝑟

2: 𝑤 = extend(wrap𝑓 (𝑟0, 𝑟1), 𝑛 − 𝑓)
3: share𝑤
4: (𝑘wrap0 , 𝑘

wrap
1) ← Gen𝐿wrap

𝑓

5: (𝑘B2A0 , 𝑘B2A1) ← GenB2A
𝑛−𝑓

6: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑟𝑏 | |𝑘
wrap
𝑏
| |𝑘B2A

𝑏
| |𝑤𝑏

Eval𝐿stTR
𝑛,𝑓
(𝑏, 𝑘𝑏 , 𝑥𝑏) :

1: Parse 𝑘𝑏 as 𝑟𝑏 | |𝑘
wrap
𝑏
| |𝑘B2A

𝑏
| |𝑤𝑏

2: 𝑧𝑏 = 𝑥𝑏 mod 2𝑓
3: 𝑦𝑏 = 𝑧𝑏 + 𝑟𝑏 mod 2𝑓

4: 𝑣 (𝑏) = TR(𝑥𝑏 , 𝑓) + extend(wrap𝑓 (𝑧𝑏 , 𝑟𝑏), 𝑛 − 𝑓)
5: 𝑝𝑏 ← Eval𝐿wrap

𝑓
(𝑏, 𝑘wrap

𝑏
, 𝑦𝑏)

6: 𝑝′
𝑏
← EvalB2A

𝑛−𝑓 (𝑏, 𝑘
B2A
𝑏

, 𝑝𝑏)
7: return 𝑧𝑏 = 𝑣 (𝑏) + 𝑝′

𝑏
−𝑤𝑏

Figure 1: LSS-based protocol for stTR𝑛,𝑓

Wrap. In subsequent protocols, we use Millionaires’ protocol to
compute thewrap bit which checks if the private input 𝑥 ∈ U𝑁 of 𝑃0
and the private input 𝑦 ∈ U𝑁 of 𝑃1 are such that 𝑥 +𝑦 > 2𝑛 −1 over
Z. Formally, for 𝑥,𝑦 ∈ U𝑁 we define the functionality wrap𝑛 (𝑥,𝑦)
that reduces to Lt𝑛 as follows:

wrap𝑛 (𝑥,𝑦) = 1{𝑥 + 𝑦 > 2𝑛 − 1} = Lt𝑛 (2𝑛 − 1 − 𝑥,𝑦)
Thus, LSS-based protocol for wrap𝑛 , denoted by Π𝐿

wrap
𝑛 =

(Gen𝐿wrap𝑛 , Eval𝐿wrap𝑛), is simply Π𝐿Mill
𝑛 with (2𝑛 −1−𝑥) as 𝑃0’s in-

put and𝑦 as 𝑃1’s input. We provide security proofs for our protocols
for Millionaire’s and Wrap in Appendix D.

3.2 Stochastic truncations

Truncations are used to reduce the scale of fixed-point values to
avoid overflows after a multiplication operation. Prior works have
used two kinds of truncations - faithful and stochastic. In stochastic
truncations, the output is rounded up or down with a probability
depending on the value of the truncated part. Prior works using
LSS, such as Piranha [76], and CrypTen [42], used fast local op-
erations to emulate stochastic truncations that have been shown
to be insecure [47]. Orca [38] provided a secure FSS-based proto-
col for stochastic truncation. We provide the first secure protocol
for LSS-based stochastic truncations. We need two kinds of opera-
tions to reduce the scale of fixed-point values – stochastic trunca-
tion (bitwidth-preserving) and stochastic truncate-reduce (bitwidth-
reducing). We describe our protocol for stochastic truncate-reduce.
Orca showed that stochastic truncation can be computed as sto-
chastic truncate-reduce followed by signed-extension (Lemma 2
in [38]). Following the same, Appendix F.2 details how we build
stochastic truncation based on our stochastic truncate-reduce.

3.2.1 Stochastic Truncate-reduce. Let truncate-reduce, TR𝑛,𝑓 , be a
functionality that drops the lower 𝑓 bits of an 𝑛-bit value, i.e., for
𝑥 ∈ U𝑁 , TR𝑛,𝑓 (𝑥) = (𝑥 ≫ 𝑓) mod 2𝑛−𝑓 ∈ U2𝑛−𝑓 .

Definition 1. For 𝑥 ∈ U𝑁 , 𝑧 = 𝑥 mod 2𝑓 , stochastic truncate-
reduce by 𝑓 , denoted by stTR𝑛,𝑓 (𝑥) is defined as

stTR𝑛,𝑓 (𝑥) =
{
TR𝑛,𝑓 (𝑥) with probability 1 − 𝑧 · 2−𝑓

TR𝑛,𝑓 (𝑥) + 1 with probability 𝑧 · 2−𝑓

Equivalently, stochastic truncate-reduce of 𝑥 can be computed
by first sampling 𝑡 that is 1 with probability 𝑧 · 2−𝑓 and 0 otherwise.
Then stTR𝑛,𝑓 (𝑥) = TR𝑛,𝑓 (𝑥) + 𝑡 . Moreover, for a random 𝑟 ∈ U2𝑓 ,
𝑡 ≡ 1{𝑧 + 𝑟 > 2𝑓 − 1} = wrap𝑓 (𝑧, 𝑟). This is because there are
exactly 𝑧 values of 𝑟 for which 𝑧 + 𝑟 > 2𝑓 − 1.

To compute stochastic truncate reduce securely, we prove the
following lemma3 in Appendix F.1:

Lemma 1. Let 𝑥0, 𝑥1, 𝑥 ∈ U𝑁 be such that 𝑥 = (𝑥0 + 𝑥1) mod 𝑁

and 𝑟0, 𝑟1, 𝑟 ∈ U2𝑓 be such that 𝑟 = (𝑟0 + 𝑟1) mod 2𝑓 . Let 𝑧 = 𝑥

mod 2𝑓 , and, for 𝑏 ∈ {0, 1}, let 𝑧𝑏 = 𝑥𝑏 mod 2𝑓 and 𝑦𝑏 = 𝑧𝑏 + 𝑟𝑏
mod 2𝑓 . Then,

TR𝑛,𝑓 (𝑥) = TR𝑛,𝑓 (𝑥0) + TR𝑛,𝑓 (𝑥1) + wrap𝑓 (𝑧0, 𝑧1) over Z

wrap𝑓 (𝑧, 𝑟) = wrap𝑓 (𝑧0, 𝑟0) + wrap𝑓 (𝑧1, 𝑟1) + wrap𝑓 (𝑦0, 𝑦1)
− wrap𝑓 (𝑧0 + 𝑧1) − wrap𝑓 (𝑟0 + 𝑟1) over Z

Hence, it follows that, over Z,

stTR𝑛,𝑓 (𝑥) = TR𝑛,𝑓 (𝑥0) + wrap𝑓 (𝑧0, 𝑟0)
+ TR𝑛,𝑓 (𝑥1) + wrap𝑓 (𝑧1, 𝑟1)
− wrap𝑓 (𝑟0, 𝑟1) + wrap𝑓 (𝑦0, 𝑦1)

In the final expression for stTR, the sum of the first two terms
can be computed locally by 𝑃0, while the sum of the third and fourth
terms can be computed locally by 𝑃1. For an 𝑟 ∈ U2𝑓 known to
the dealer, 𝑤 = extend(wrap𝑓 (𝑟0, 𝑟1), 𝑛 − 𝑓) is computed by the
dealer and secret shared between the two parties. In the online
phase, parties run Π𝐿

wrap
𝑓

to compute shares of 𝑝 = wrap𝑓 (𝑦0, 𝑦1)
and subsequently ΠB2A

𝑛−𝑓 to compute shares of 𝑝′ = extend(𝑝, 𝑛− 𝑓).
We describe our protocol in Figure 1 and summarize its cost below.

Theorem 2. Π𝐿stTR
𝑛,𝑓

realizes stTR𝑛,𝑓 securely with comm(Π𝐿stTR
𝑛,𝑓
)

= comm(Π𝐿wrap
𝑓
) + 2, keysize(Π𝐿stTR

𝑛,𝑓
) = keysize(Π𝐿wrap

𝑓
)+

keysize(ΠB2A
𝑛−𝑓) + 𝑛, and rounds(Π𝐿

stTR
𝑛,𝑓
) = rounds(Π𝐿wrap

𝑓
) + 1.

3.3 Accelerating Comparison on CPU

We observe that the practical usefulness and performance poten-
tial of even a well-designed cryptographic protocol may remain
unrealized without a holistic system design. Here, we demonstrate
how the structure of LSSM’s computation can effectively harness
the wide vectorization capabilities [3, 4] of modern CPUs through
a careful protocol-system co-design.

A majority of the computational cost for non-linear operations
such as ReLU can be attributed to secure comparison. For exam-
ple, when securely computing 1M 64-bit ReLUs on the CPU, both
CrypTen [42] and MP-SPDZ [40] spend more than 90% of their

3This lemma is inspired from Lemma 1 in Orca [38] for FSS-based protocols but needs
to be modified to work with LSS.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

time on secure comparison. We describe how we map the struc-
ture of secure comparison to harness vector compute and memory
instructions on the CPU.
Structure of computation for secure comparison. Consider
comparing two 𝑛-bit numbers 𝑥,𝑦 ∈ U𝑁 . For 𝑖 ∈ {0, · · · , 𝑛 − 1}
and 𝑥𝑖 , 𝑦𝑖 ∈ {0, 1}, parse 𝑥,𝑦 as 𝑥 = 𝑥0 | |𝑥1 | | · · · | |𝑥𝑛−1 and 𝑦 =

𝑦0 | |𝑦1 | | · · · | |𝑦𝑛−1. We recall that comparison has two high-level
computations, less-than and equality. To compute equality, we start
at the leaf level by computing equality of 1-bit inputs, then go up
the comparison tree to compute equality of 2-bit inputs, then 4-bit
inputs, and so on. For 𝑖 ∈ {0, · · · , 𝑛−1}, define 𝑒𝑖 = 1{𝑥𝑖 = 𝑦𝑖 }. After
computing 1-bit equality, we get (shares of) a tightly-packed (𝑛−1)-
bit vector ®𝑒 = 𝑒1 | |𝑒2 | | · · · | |𝑒𝑛−1. At the next level, we compute 2-bit
equality as 𝑒1 ∧ 𝑒2, 𝑒3 ∧ 𝑒4, etc.
Effectively harnessing vector instructions for the above computa-
tion structure is challenging. A typical way to efficiently compute
on a CPU is to process values that lie close together in the memory
at the same time. This preserves memory access locality and thus,
benefits from the CPU’s deep cache hierarchy. However, computing
on neighboring bits in the above-mentioned computation structure
while also leveraging vectorization poses two challenges.
Challenge 1○ Insufficient parallelism in a single comparison.

Vector instructions operate over 128, 256, or even 512-bit inputs. 𝑛
is typically much smaller (e.g. 39), so even at the leaf level of the
tree, we cannot generate enough AND/XORs to fully exploit the
hardware. It reduces further as we go up the tree.
Challenge 2○ Reorganizing input layout. Since ®𝑒 is a tightly
packed bit-vector, while computing 2-bit equality as 𝑒1 ∧ 𝑒2, 𝑒3 ∧
𝑒4, etc, we are computing local ANDs of adjacent bits that are
stored in the same register. Vector (compute) instructions require
the left and right operands of the ANDs to be stored in separate
registers. So if we are to compute 𝑒1 ∧ 𝑒2, 𝑒3 ∧ 𝑒4, etc. via the same
vector AND, we need to reorganize the input and separate the odd
and even elements of ®𝑒 . This reorganization requires conditional
execution whereby the even and odd bits of ®𝑒 are treated differently.
Such irregular execution is expensive as it deters leveraging vector
memory instructions for reorganizing. To quantify this cost, we
implemented this reorganization and found that it took > 75% of
the total time of secure comparison, severely limiting the benefit of
any subsequent vectorization of computation (of ANDs/XORs).
Our technique. Since fully harnessing vector instructions within
a comparison circuit is difficult, we instead vectorize across com-
parisons. In secure ML, many thousands of secure comparisons are
performed in parallel (e.g., for ReLU). We exploit this to vectorize
comparison. Consider computing 𝑀 comparisons of 𝑛-bit num-
bers. This requires computing𝑀 copies of our comparison circuit.
Instead of collecting ANDs from within a comparison for vector-
ization (e.g. 𝑒1 ∧ 𝑒2 and 𝑒3 ∧ 𝑒4), we club corresponding ANDs from
multiple comparisons together. For equality, instead of computing
𝑒1 ∧ 𝑒2 and 𝑒3 ∧ 𝑒4 via the same vector AND, we compute 𝑒1 ∧ 𝑒2
from different comparisons via the same vector AND. To enable this,
we first perform a bit-decomposition that clubs the 1𝑠𝑡 bit of 𝑀
inputs together, then the 2𝑛𝑑 bit, then the 3𝑟𝑑 bit, and so on. After
bit-decomposition, instead of computing ®𝑒 = 𝑒1 | |𝑒2 | | · · · | |𝑒𝑛−1 as a
tightly-packed bit-vector, we instead compute 𝑒1 for all𝑀 compar-
isons as a tightly-packed bit-vector. The same holds for 𝑒2. While

computing 2-bit equality, we compute 𝑒1∧𝑒2 for all𝑀 comparisons
together. This computation can be vectorized as-is without needing
reorganization. Additionally, there are at least𝑀 local AND/XORs
for all levels of equality (from 1-bit to 𝑛-bit). Since𝑀 is very large,
this allows enough parallelism to leverage vector instructions.

Unfortunately, even though this would vectorize the compute in
the comparison circuit, bit decomposition is expensive. As in Chal-
lenge 1○), the overhead of reorganization of the inputs (here, bit
decomposition) can eclipse the benefits of vectorizing the compute
(ANDs/XORs). We then observe that decomposing bits corresponds
to transposing a bit-matrix. For𝑀 𝑛-bit comparisons, we think of
each party’s input as an𝑀 × 𝑛 bit-matrix, which we transpose to
get an 𝑛 × 𝑀 bit-matrix. Fortunately, unlike the costly reorgani-
zation that would have been necessary for vectorization within
a comparison, transpose is a uniform operation – it affects each
bit in the same way without conditionals. Hence, transpose lends
itself well to vectorized memory and compute instructions. Each
CPU thread computes the transpose of a 32 × 32 sub-matrix. The
size of the sub-matrix is chosen for better cache locality. For ef-
ficiently reading sub-matrices from memory, we use vector load
instructions (_mm256_i32gather_epi32). We then vectorize the
computation of the transpose using vector shift and XOR instruc-
tions (_mm256_sllv_epi32, _mm256_xor_si256). These optimiza-
tions limit the time for the transpose to < 4% of the total time.

In summary, it is imperative to vectorize both the computation
of the circuit and the input reorganization to efficiently perform
secure comparisons on a CPU. While we focused on comparison,
these observations apply to other circuits too.
Whynot use aGPU?Our vectorized comparison is communication-
bound even on a fast LAN. For example, to process 1M 64-bit com-
parisons, 28 ms of 35 milliseconds total, i.e., 80% of the time is
spent on communication. This fraction is even higher on a slow
WAN. GPUs can only accelerate computation and not communica-
tion. Thus, deploying a GPU cannot speed up our vectorized secure
comparison by > 25%. When executing LSS-based protocols for
non-linear layers, our efficient comparison ensures that 52 − 65%
of the time is spent on communication even on the CPU.

3.4 Key compression

Prior works [33, 38, 76] have assumed that keys are always avail-
able in memory (DRAM). However, in a practical deployment, if
inference requests arrive rapidly or arrive in bursts, keys may need
to be fetched from storage to the memory before the secure com-
putation can proceed. Even though LSS keys are small relative to
FSS, the time to read them from storage is still 3.6-4.5× more than
the time required for computation when the parties are connected
over LAN. To further reduce the size of LSS keys to improve end-to-
end latency, we compress them using well-known Pseudorandom
Function (PRF)-based techniques. Let 𝐹 be a PRF. The dealer shares
PRF keys 𝑘0, 𝑘1 with parties 𝑃0, 𝑃1 in the offline phase. The dealer
then avoids explicitly sending each party its entire key. Instead, for
𝑏 ∈ {0, 1}, party 𝑃𝑏 makes PRF calls that are identical to the ones
made by the dealer to generate a part of its key in the online phase.
We illustrate how this works for Beaver bit-triples in Appendix H.
With this optimization, the key size reduces by 4.6×, 4×, up to 3.7×
and up to 3.9× in Millionaires’/Wrap, ReLU/Maxpool, stochastic

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

truncate-reduce, and in ReLU-extend, respectively. Note that we
trade a smaller key for slightly more online computation in the
form of PRF calls. However, this computational overhead is small
(10-16%) compared to the large reduction in key size (4.5-5.5×).

4 FSS
M
: Improving FSS-based Orca

Orca [38] is the state-of-the-art in secure CNN inference in the
2PC with pre-processing model and is based on Function Secret
Sharing [15–17]. We improve on Orca using ideas from our LSS-
based protocols in Section 3 and improved FSS-based comparison
from Grotto [67]. We refer to the resulting FSS-based 2PC as FSSM
and provide an empirical comparison with Orca in Section 7.1.4.
We demonstrate that FSSM has keys that are 7-8% smaller, requires
up to 2.3× lower communication and is up to 2.2× faster.

In FSSM, we use the same model-level optimizations as Orca. We
need protocols for stochastic truncate-reduce/truncations, ReLU,
ReLU-Extend, and Maxpool. In Orca [38], each of these protocols
relied on secure comparisons, that were realized using Distributed
Comparison Functions (DCF) [16]. We make four improvements in
FSSM over Orca. 1○ In FSSM, we rely on Distributed Point Function
(DPF)-based comparisons as suggested in Grotto [67]. While this
switch can result in lower keysize and > 2× reduction in compute,
it can only support output group Gout = {0, 1}. All protocols in
Orca except ReLU-Extend require a single-bit output from secure
comparison and hence, for those, this switch is easy to make. 2○
Building on our ideas for LSS-based ReLU-Extend, we design a new
protocol for DPF-based ReLU-Extend where we only require com-
parisons with one-bit outputs. 3○ We reduce the communication
of stochastic truncate-reduce by 𝑓 from 2𝑛 to 𝑛 + 𝑓 bits by hav-
ing one party reconstruct only a part of the input. 4○ We extend
Orca [38] to support packing for non-power-of-2 bitwidths. This
reduces communication for models, e.g., ResNet50, that requires a
bitwidth of 37 to preserve accuracy. Due to space constraints, we
defer the details of our FSS-based protocols to Appendix I.

5 A case for Matchmaker

In Section 7, we quantitatively establish that LSSM and FSSM out-
perform prior LSS and FSS-based secure inference systems, respec-
tively, thanks to optimizations in Sections 3 and 4. Further, current
literature suggests that FSS-based protocols [38] always outperform
LSS-based protocols [42,76]. However, when comparing LSSM with
FSSM, we notice that this notion could be misplaced.

We make a novel observation that one protocol does not fit all
(deployments). There are two primary considerations in deploy-
ments: whether the keys are available in memory or in storage,
and whether the parties are connected via a fast LAN or a slow

Model
Batch=50

Key size (GB) Comm (GB) Rounds
LSSM FSSM LSSM FSSM LSSM FSSM

ResNet-18 2.02 54
(27×)

6.2
(2.6×) 2.4 381

(3.3×) 116

ResNet-50 9.1 246
(27×)

26
(2.4×) 11 932

(3.3×) 279

VGG-16 9.5 236
(25×)

27
(2.5×) 11 362

(3.1×) 107

Table 1: Comparing LSS
M

and FSS
M

on batch inference.

WAN. Before the online computation starts, keys are written to
the storage in the pre-processing step. If the incoming requests are
spread sparsely over time, there could be enough slack to fetch the
keys from storage to the memory before the computation starts.
However, at a high and/or bursty request arrival rate, keys must
first be fetched from storage to memory in the critical path of the
execution. Further, the computing parties (servers) may be hosted
on the same datacenter and, thus, connected over a high-speed LAN.
Parties could also be geographically distributed across datacenters
or even continents, connected over slow WAN.

LSSM and FSSM have inherently different characteristics. While
FSSM has lower communication and fewer rounds, it needs a much
larger key size compared to LSSM. Hence, when parties are con-
nected over WAN and keys reside in memory, FSSM enjoys an ad-
vantage over LSSM. On the other hand, when parties are connected
over LAN and keys are in storage, LSSM can be more efficient.

Inspired by this, we quantitatively compare LSSM and FSSM
under four different deployment scenarios for batch inference for
three models (sub-figures) in Figure 2. For each deployment sce-
nario, there are two bars – heights of the bars representing runtimes
with LSSM and FSSM, respectively (lower is better). The runtimes
in seconds are also mentioned at the top of each bar. The lower of
the LSSM or FSSM inference time for a given deployment scenario
is circled green, indicating the preferred protocol for the given
scenario. Further, Table 1 lists the communication and key size for
LSSM and FSSM to help us analyze the reported runtimes.
WAN, keys in memory (W/M). Here, FSSM outperforms LSSM by
∼ 2.5× across the models. This is expected; Table 1 shows that LSSM
communicates about 2.5×more and has about 3×more rounds than
FSSM. The runtime of LSSM is dominated by communication, e.g.,
in VGG-16 inference, LSSM spends 98% of its time communicating.
LAN, keys in storage (L/S). Here, we notice the opposite perfor-
mance characteristics. LSSM outperforms FSSM by ∼ 19×. FSSM
must fetch keys that are 25 − 27× larger than those required by
LSSM (Table 1). Thus, FSSM’s runtime is dominated by key fetch
time. Further, the fast LAN connection makes the time spent in
communicating a much smaller fraction of the overall computation
time for LSSM, unlike when the connection was over WAN.
LAN, keys in memory (L/M). FSSM is slightly faster than LSSM across
the board. While FSS-based Orca [38] was observed to beat LSS-
based CrypTen by 8 − 25× in this setting, we notice that, FSSM,
which beats Orca, is only 20 − 40% faster than LSSM. This because
of our optimizations in LSSM (Section 3).
WAN, keys in storage (W/S). Here, there is little to choose between
LSSM and FSSM. Their runtimes are within 3-10% of the other. LSSM
suffers due to high communication, while FSSM suffers from the
time it takes to fetch keys from storage.
Opportunity to leverage heterogeneous processing: It is ap-
parent that when the network is fast (LAN) but the keys are in
memory or when the network is slow (WAN) but the keys are in
storage, choosing LSS or FSS may not make a significant difference.
We observe that most of the computations (up to 97%) under both
LSSM and FSSM are attributable to non-linear layers such as ReLU
and MaxPool. These layers are computed on the CPU in the case
of LSS. Thanks to our careful hardware-aware optimizations in

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

124

6 5.1

125

51

114

3.8

114

0

40

80

120

W/M L/S L/M W/S

Ti
m

e
(s

)
ResNet-18LSS FSS

(a) ResNet-18

505

29 25

507

221

521

18

521

0

150

300

450

W/M L/S L/M W/S

Ti
m

e
(s

)

ResNet-50LSS FSS

(b) ResNet-50

488

26 21

479

215

503

17

503

0

150

300

450

W/M L/S L/M W/S

Ti
m

e
(s

)

VGG16LSS FSS

(c) VGG16

Figure 2: One protocol does not suit all deployment scenarios – a quantitative analysis. To enhance readability, we use W/L to

denote WAN/LAN, and M/S to denote that keys are in memory/storage, e.g. W/M denotes WAN with keys in memory.

realizing LSSM (Section 3), it does not have to rely on the GPU,
unlike prior works [76]). This frees the GPU when computing these
non-linear layers using LSSM. On the other hand, FSSM, like prior
work [38], relies on a GPU to accelerate computation. It leaves the
CPU idle. Since the hardware requirements of the two kinds of
protocols complement each other, it presents an opportunity to
deploy both simultaneously for computing non-linear layers. This
opens up a first-of-its-kind opportunity to leverage heterogeneous
processing (simultaneous processing on CPU and GPU) to improve
the throughput of secure inference.
Summary:We are the first to establish that different deployment
scenarios suit different protocols. 1○WAN, keys inmemory: FSSM is
the preferred choice. 2○ LAN, keys in storage: LSSM is the preferred
choice. 3○ For LAN, keys in memory and WAN, keys in storage:
deploy LSSM and FSSM simultaneously with heterogeneous process-
ing. Thus, we must match a protocol or a combination of protocols
with a given deployment scenario – we need a matchmaker.

6 Design and Implementation of Matchmaker

Our tool, Matchmaker (MM), has two primary components. 1○ Op-
timized implementations of LSS- and FSS-based protocols. They are
designed to be concurrently executed on the CPU and the GPU. 2○
Profile-guided modeling to decide the distribution of work between
LSS and FSS for minimizing the latency of batch inference.

6.1 Optimized LSS
M
and FSS

M

One of our contributions is the optimized implementation of LSS-
based protocols on the CPU. The cornerstone of this component
is the carefully vectorized implementation of secure comparison
(Π𝐿Mill). Additionally, to reduce communication overheads, we craft
efficient routines to tightly pack and unpack group elements into
and from bit-strings. This is especially useful when group elements
have non-powers-of-2 bitwidths, e.g. 37. Our packing routine is
used to tightly pack group elements before communicating them
over the network. Our unpacking routine is used to store them
in standard data types so they can be used in computation later.
Transmitting tightly packed group elements significantly reduces
communication overheads, e.g., by 15% for ResNet-50.

Besides reducing communication overheads, (un-) packing rou-
tines play a crucial role in key compression for LSS. We use AES-128
in counter mode as our PRF for compressing keys and accelerate
it on the CPU with AES-NI [2] instructions. AES-128 generates
a string of pseudorandom bits. These bits sometimes need to be

interpreted as pseudorandom group elements with non-power-of-2
bitwidths, e.g. 20, 37, etc., in our protocols for matrix multiplication,
convolution, and select. Tightly-packed non-powers-of-2 bitwidths
cannot be used directly in computation. Thus, efficiently unpacking
group elements with non-power-of-2 bitwidths from an AES-128
generated bit-string and storing them in standard data types is
needed before they can be computed upon.

Our implementation of FSS-based protocols is built atop Orca
[38] and SIGMA [33]. It extends them with ≈ 3000 additional lines
of C++/CUDA code. We borrow the code for linear layers from
Orca [38], and code for Distributed Point Functions (DPFs) and
packing and unpacking non-power-of-2 bitwidths on the GPU from
SIGMA [33]. We also write new GPU kernels for our new FSS-based
protocols, e.g., for stochastic truncate-reduce and ReLU-Extend.

Our implementation allows concurrent execution of LSS-based
and FSS-based protocols through multi-threading. Further, the lin-
ear layers for both LSS and FSS are computed on the same GPU
concurrently. We use CUDA streams [1] to execute GPU kernels
for LSS and FSS concurrently.

6.2 Profile-guided work distribution

The second component of MM is a profile-guided model to decide
which protocols or their combination to use for computing non-
linear layers under a given deployment scenario. The model takes
the neural network architecture, batch size 𝐵, and the location
of keys (in DRAM or in storage) as input. It outputs a fraction 𝑥 ,
0 ⩽ 𝑥 ⩽ 1, such that ⌊𝑥 · 𝐵⌋ images are to be computed with LSSM.
We call this fraction 𝑥 MM’s configuration. The dealer uses 𝑥 to
generate keys. Subsequently, parties use 𝑥 to correctly parse the
dealer-generated keys and use them for secure computation.

Let 𝑡𝐿𝑆𝑆 and 𝑡𝐹𝑆𝑆 denote the time taken by LSSM and FSSM,
respectively, to securely compute inference of 𝐵 images while run-
ning alone. Let 𝑘𝐿𝑆𝑆 and 𝑘𝐹𝑆𝑆 be the time to read LSSM keys and
FSSM keys for inference of 𝐵 images from storage, respectively.
Let 𝑦 be some MM configuration. The time to read keys from stor-
age at configuration 𝑦 is given by 𝑦 · 𝑘𝐿𝑆𝑆 + (1 − 𝑦) · 𝑘𝐹𝑆𝑆 . The
computation for the current batch and the reading of the keys
for the next batch happen concurrently. Thus, the time for infer-
ence of 𝐵 images when keys are in storage becomes the largest
of the time to read keys, LSSM runtime and FSSM runtime, i.e.
max(𝑦 ·𝑘𝐿𝑆𝑆 + (1−𝑦) ·𝑘𝐹𝑆𝑆 , 𝑦 · 𝑡𝐿𝑆𝑆 , (1−𝑦) · 𝑡𝐹𝑆𝑆). We want to out-
put 𝑥 = argmin𝑦 max(𝑦 ·𝑘𝐿𝑆𝑆 + (1−𝑦) ·𝑘𝐹𝑆𝑆 , 𝑦 ·𝑡𝐿𝑆𝑆 , (1−𝑦) ·𝑡𝐹𝑆𝑆).
Solving this requires finding the minimum of the maximum of three

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Model PyTorch Fixed-point [𝑛, 𝑓]
ResNet-18 69.76 69.41 [32, 10]
ResNet-50 80.34 80.33 [37, 12]
VGG16 71.59 71.59 [32, 12]

Table 2: Accuracy of ImageNet-scale models. For fixed-point

accuracy, 𝑛 represents bitwidth and 𝑓 represents scale.

lines in the interval [0, 1]. We fill in the values of 𝑡𝐿𝑆𝑆 , 𝑡𝐹𝑆𝑆 , 𝑘𝐿𝑆𝑆
and 𝑘𝐹𝑆𝑆 by running inference of 𝐵 images with LSSM and FSSM,
respectively. When keys are in memory, we set 𝑘𝐿𝑆𝑆 = 𝑘𝐹𝑆𝑆 = 0.
Impact of network contention in heterogeneous processing:

While LSSM and FSSM computations for non-linearities use separate
processors, the CPU and the GPU, respectively, they still share the
network when both run concurrently to harness heterogeneous pro-
cessing. We use fq_codel [5] as the queuing discipline in Linux’s
network stack to limit contention, but it still plays a crucial role
in the runtimes. Consequently, we noticed that it is possible that
MM’s configuration 𝑥 , derived from the aforementioned equation,
may lead to sub-optimal performance in practice.

Toward this, we take a two-step process to refine MM’s con-
figuration. We first determine if heterogeneous processing may
yield a significant speedup under a given deployment scenario. If
yes, we refine MM’s configuration 𝑥 to 𝑥∗ that takes empirically
observed network contention into account. Specifically, we first
(theoretically) estimate the expected runtime at MM configuration
𝑥 , yielded by the profiling-guided optimization equation described
above. If this estimated runtime is at least 30% (tunable parameter)
smaller than the lower of the LSS or FSS’s runtime, then we consider
that heterogeneous processing can yield substantial benefits and
proceed on to estimate network contention as follows.

We run LSS and FSS together at configuration 𝑥 and estimate the
degraded bandwidth 𝐵𝑊𝐿𝑆𝑆 and 𝐵𝑊𝐹𝑆𝑆 experienced by LSS and
FSS at 𝑥 . We then estimate 𝑡 ′

𝐿𝑆𝑆
and 𝑡 ′

𝐹𝑆𝑆
, the time it would take for

LSS and FSS to run secure inference on 𝐵 images with bandwidth
𝐵𝑊𝐹𝑆𝑆 and 𝐵𝑊𝐿𝑆𝑆 . We compute 𝑥∗= argmin𝑦 max(𝑦 · 𝑘𝐿𝑆𝑆 + (1 −
𝑦) · 𝑘𝐹𝑆𝑆 , 𝑦 · 𝑡 ′𝐿𝑆𝑆 , (1 − 𝑦) · 𝑡

′
𝐹𝑆𝑆
) as the final MM configuration.

7 Evaluation

We provide empirical evidence to justify the following claims.
• LSSM beats state-of-the-art LSS-based systems using GPUs,

CrypTen [42] and Piranha [76], by upto 50× (Section 7.1). LSSM
beats CPU-only MP-SPDZ by up to 1492×.

• FSSM beats state-of-the-art FSS-based system, Orca [38], by upto
2.2× (Section 7.1.4).

• MM beats the state-of-the-art in secure inference systems, Orca
by up to 21× by judiciously leveraging LSSM and/or FSSM as
appropriate in a given deployment (Section 7.3).

Evaluation setup. We use two servers to run two parties. Each
server has an NVIDIA RTX A6000 GPU with 48GB of onboard
memory (GDDR6). The GPU is connected to an AMD Epyc 7742
processor via a 16-lane PCIe-4 interconnect with 32GBps bandwidth.
It has nearly 1TB of DRAM and is connected to two Seagate Exos
10TB disks configured as RAID0, which deliver about 400-500MBps
bandwidth. This is close to the bandwidth delivered by SATA SSDs.
Our servers are connected by a 9.7Gbps LAN with 0.05ms RTT.
We simulate a slower WAN network with 225Mbps bandwidth

and 60ms RTT using tc command in Linux for throttling. In all
experiments, LSSM is run with 8 CPU threads.
Datasets and Benchmarks. Since a single inference can leave
the GPU under-utilized, we focus on batch inference where the
task is to label a set of images. We evaluate secure inference on
the ImageNet dataset which has 224 × 224 × 3 images and 1000
classes [27]. We use three ImageNet models (used previously by
Orca [38]) – ResNet-18, ResNet-50, and VGG-16 which have 11.7M,
25.5M, and 138M parameters, respectively.
Fixed-point parameters. We run our LSS baselines CrypTen [42]
and Piranha [76] with fixed-point bitwidth 𝑛 = 64 and scale 𝑓 = 24.
Since both CrypTen and Piranha use (insecure) local truncations4
that only provide probabilistic correctness, the use of large bitwidth
is necessary for correctness. Like Orca [38] and MP-SPDZ [40], our
protocol for truncation is secure and does not have correctness
errors. This allows us to work over minimal bitwidths that suffice
for preserving model accuracy. In particular, we use fixed-point
parameters [𝑛, 𝑓] = [32, 10], [37, 12], [32, 12] from Orca [38] for
ResNet-18, ResNet-50 and VGG-16, respectively. We use these to
evaluate Orca, MP-SPDZ, LSSM and FSSM. Table 2 shows that our
fixed-point models match PyTorch (floating-point) accuracy. Fur-
ther details about model architectures can be found in Appendix J.

7.1 LSS
M
and FSS

M
: The new state-of-the-art

We first empirically substantiate our claim that LSSM and FSSM
are the new state-of-the-art LSS and FSS-based secure inferencing
systems, respectively.We notice that no prior LSS-based systems real-
ized the theoretical promise of small key size of LSS-based protocols. In
fact, the existing LSS-based systems have keys larger than even the
FSS-based ones (which in theory are expected to have larger keys
in order to reduce communication). With the introduction of LSSM,
we fix this gap between theoretical expectation and actual system
behavior through a series of protocol and system optimizations
(Section 3). This is critical in making LSSM performant when keys
are in storage; an important scenario that was previously ignored.

We compare LSSM against three LSS-based systems –CrypTen [42],
MP-SPDZ [40] and Piranha [76]. CrypTen and MP-SDPZ support
ImageNet-scale models, while Piranha only supports smaller mod-
els for the MNIST and CIFAR-10 datasets5. For uniformity, we only
consider ImageNet-scale models here. We compare briefly against
Piranha in Section 7.1.3 and defer a detailed analysis to Appendix A.
We compare FSSM against FSS-based state-of-the-art Orca.

Table 3 reports key size (GB), communication (GB), and runtimes
(s) for all four scenarios – LAN with keys in memory (K/M) and
storage (K/S), and WAN with keys in memory (K/M) and storage
(K/S). Each of the three models have five rows in the table – one
for each of MP-SPDZ, CrypTen, Orca, LSSM and FSSM.

7.1.1 Comparing LSS
M
with CrypTen. We first detail how LSSM

fares against CrypTen when parties are connected over LAN and
keys are in memory. We then examine how runtime changes when
keys must be fetched from storage.
Keys in memory (K/M).When keys are inmemory, LSSM’s speedups
over CrypTen (11-31×) closely mirror improvements over CrypTen
4 [47] proved that local truncations are insecure.
5These datasets have 49-192× smaller images than the images in ImageNet and thus
require simpler models.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Model Framework Keysize (GB) Comm (GB) LAN, K/M (s) LAN, K/S (s) WAN, K/M (s) WAN, K/S (s)

ResNet18

MP-SPDZ 950 1350 8250 8250 - -
CrypTen 138 179 142 298 3012 3012
Orca 58 3.3 5 123 66 123
LSS

M 2 6.2 5.1 6 124 125
FSS

M 54 2.4 3.8 114 51 114

ResNet50

MP-SPDZ 2600 3900 11900 11900 - -
CrypTen 264 343 286 582 5728 5728
Orca 265 25 28 561 477 561
LSS

M 9.1 26 25 29 505 507
FSS

M 246 11 18 521 221 521

VGG16

MP-SPDZ 8450 11750 38050 38050 - -
CrypTen 580 744 646 1278 13386 13386
Orca 255 16 23 543 290 543
LSS

M 9.5 27 21 26 488 479
FSS

M 236 11 17 503 215 503
Table 3: Comparing MP-SPDZ, CrypTen, Orca, LSS

M
and FSS

M
on inference benchmarks with batch 50. MP-SDPZ only supports

batch 1 so we multiply reported metrics by 50. - indicates that MP-SPDZ did not finish running even after one day.

in communication (13-29×). Even though CrypTen relies on GPU,
LSSM’s vectorized implementation of Π𝐿Mill on the CPU makes
the compute efficient, enabling a reduction in communication over
CrypTen to be reflected in end-to-end speedups.

LSSM lowers communication over CrypTen in three ways. 1○ The
optimized implementation of Π𝐿Mill communicates tightly-packed
bits (Section 3.3). While CrypTen computes a boolean circuit similar
to LSSM for comparison, it wastefully communicates 64 bits per
party for each level of a single 64-bit comparison even though the
number of bits halves at each successive level of the tree (circuit).
2○ LSSM uses optimal fixed-point bitwidth 𝑛 for all benchmarks. As
discussed earlier, while CrypTen is forced to use large bitwidth (64)
for correctness due to probabilistically correct truncation, LSSM
can use much smaller bitwidths, e.g., 32 for VGG-16 (see paragraph
on “Fixed-point parameters”). This reduces communication since
the number of bits communicated is linear in bitwidth. 3○ LSSM
leverages the benefits of Orca’s network-level optimizations that
enable even smaller bitwidths for non-linear functions. For example,
Maxpool uses comparison over (𝑛 − 𝑓) bits instead of 𝑛 bits. For
VGG-16, we use 𝑛 = 32 and 𝑓 = 12. Thus, LSSM computes Maxpool
over 20 bits instead of 64 bits as in CrypTen.
Keys in storage (K/S). CrypTen assumes that keys are always in
memory. To simulate its performance when keys are in storage,
we instrumented CrypTen’s code to measure the size of the key
material used.We thenmeasured the time taken to read that amount
of key material from the storage in our server. We report the larger
of the key read time and the online compute time as the expected
runtime of CrypTen when keys are in storage.

As noted in Table 3, CrypTen needs large keys ranging from
138-580 GB. This is even larger than FSS-based Orca, contrary to
the theoretical expectation that LSS-based protocols should need
smaller keys than FSS-based ones. Mirroring its inefficiencies in
communication, CrypTen uses the same amount of key material
for each level of the comparison tree, amplifying key size by 8×.
Further, as is the case with communication, CrypTen’s inability to
use smaller bitwidth increases the size of its key. Consequently,
the time to read keys eclipses the online compute time, making
inference ∼ 2× slower than when keys are in memory (LAN, K/M).

Thanks to bit packing (Section 3.3), and key compression (Sec-
tion 3.4), LSSM’s keys are 30-70× smaller than CrypTen’s. Crucially,
they are also 27-29× smaller than FSS-based Orca’s, as one would
expect following theory. The de-compression of keys during online
computation only adds 10-16% overhead. Thus, LSSM’s speedup
over CrypTen increases to 20-50×when keys were in storage versus
11-31× when keys were in memory.
Comparison in WAN.Over a slow network, both Crypten and LSSM

are bottlenecked by communication, as expected. LSSM’s speedup
over CrypTen reflects its improvement over CrypTen in communi-
cation (11-28×). This is independent of the location of the keys.

7.1.2 Comparing LSS
M

with MP-SPDZ. We compare LSSM and
MP-SPDZ when parties are connected on LAN, since MP-SPDZ
does not finish running over WAN even after one day. MP-SPDZ
does not support batch inference for the evaluated models. Thus,
we report all its metrics for a single inference multiplied by the
batch size (here, 50) in Table 3. To estimate key size, we use the
output of MP-SPDZ’s online phase to collect the amount of key
material used (e.g., Beaver triples). We convert this to bytes (GBs)
by assuming that bits and all ring elements (even ones with non-
power-of-2 bitwidths) are tightly packed. We present this key size
in Table 3. We measure the time it would take to read that much
data from our storage and report the larger of the key read and
online time as time in LAN when keys are on storage (LAN, K/S).
As Table 3 shows, we improve over MP-SPDZ by 271− 1492× in the
LAN setting. LSSM’s improvement mainly stems from MP-SPDZ’s
inefficient implementation of linear layers and Maxpool. MP-SPDZ
uses one Beaver triple for each multiplication while multiplying
matrices, which amplifies the compute, communication, and key
size. Moreover, it is a CPU-only framework. Hence, its local compu-
tation for linear layers is significantly slower than LSSM’s (which
uses the GPU for linear layers but CPU for non-linear). Using one
triple per multiplication makes MP-SPDZ’s keys 217 − 384× larger
and its communication 149 − 438× higher.

7.1.3 Comparing LSS
M

with Piranha. LSSM reduces keysize by
4.5-11× and improves performance by 1.8-7.7× over Piranha on Pi-
ranha’s benchmarks. It does so while ensuring end-to-end security,

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

0
10
20
30
40

T KR T T KR T T KR T

K/M K/S K/M K/S K/M K/S

ResNet-18 ResNet-50 VGG16

Ti
m

e
(s

)

Comm. Crypto compute Comm. pack/unpack
Key expansion After compression Before compression

5.95.1

2421 2121

4.6

18

112 82

25 29

Figure 3: Breakdown of LSS
M
’s runtime under LAN. K/M

denotes keys in memory and K/S denotes keys in storage. T

denotes online time. KR denotes key read time from storage.

unlike Piranha. Further, Piranha only supports smaller models for
MNIST and CIFAR-10 datasets, which limits headroom for speedups.
Due to differences in benchmarks, we defer a detailed comparison
with Piranha to Appendix A.

7.1.4 Comparing FSS
M
with Orca. We detail how FSSM improves

upon state-of-art for FSS-based inferencing systems, Orca [38] when
keys are in memory. FSSM’s optimized FSS protocols with bit pack-
ing beat Orca’s communication by 1.4-2.3× (Table 3). This is bene-
ficial in the slow WAN, where communication directly impacts per-
formance. On LAN, FSSM’s lower compute needs (> 2×, Section 4)
and smaller keys (by 7-8%) help it outperform Orca by 1.3-1.5×.
Interestingly, while key size does not affect LSSM when keys are
in memory, it has an impact on FSSM. This is because FSSM uses
GPUs for non-linear layers and needs to move large FSS keys from
CPU to GPU memory over the PCIe.

When keys are in storage, both FSSM and Orca are bottlenecked
by the key read time, irrespective of whether the parties are con-
nected over the LAN or WAN. FSSM marginally speeds up over
Orca (7-8%) due to smaller key size.
Orca is best amongst prior works. From the table, we notice that
Orca outperforms prior secure inferencing systems, such as MP-
SPDZ, and CrypTen, for all models and under all deployment scenar-
ios. Thus, in Section 7.3, we will compare Matchmaker, our secure
inference system, with Orca.

7.2 Performance breakdown of LSS
M
and FSS

M

We break down LSSM and FSSM’s runtimes for a deeper analysis.
Performance Breakdown of LSSM. We first consider the case when
parties are connected over LAN 6 in Figure 3. We consider two
scenarios: keys in memory (K/M) and keys in storage (K/S).

K/M has a single stacked bar per model, which provides a break-
down of online time (T). We report the time spent on communica-
tion (blue), cryptographic (protocol) computation (orange), commu-
nication packing and unpacking (green) and key expansion (yellow).
K/S has two stacked bars. The first bar shows the key read time
from storage (KR). The dark purple bar shows the actual key read
time in LSSM, and the light purple colored extension shows what
the key read time would have been, without key compression. This
6We do not provide a breakdown when parties are connected over WAN since more
than 95% time there is spent on communicating due to slow network.

captures the benefit of key compression. The second bar shows a
breakdown of online time. The numbers above all the bars denote
the total time for the corresponding bar in seconds.

From the T bars for both K/M and K/S, we see that LSSM spends
> 50% of time on communication (blue stack), even with a fast LAN
network. It spends 58-65% of time on communication when keys are
in memory and 51-58% when keys are in storage. This demonstrates
that after an optimized implementation on the CPU, there is little
room for further optimizing the computation of non-linear layers 7,
e.g., by using a GPU. It is already communication-bound.

Next, we notice that LSSM pays 10-16% performance overhead for
expanding the compressed keys when keys are in storage (yellow
stack on the T bar for K/S). However, without compression, the time
to read the keys from storage (total height of KR bars under K/S)
would have eclipsed the compute time (T bars under K/M). This
would have slowed down LSSM by 3.6-4.5× when keys are in the
storage (difference between heights of KR and T, K/M bars). Finally,
communication packing and unpacking take up a small fraction
(< 4%) of overall execution time across all models and settings.
Performance Breakdown of FSSM. In the LAN, once FSSM optimizes
the heavy FSS computation on the GPU, a majority of the time is
spent on moving (large) FSS keys from host (CPU) memory to GPU
memory. Across all models, FSSM spends 60% of it time on CPU-
GPU data transfer, 30% of its time on communication, and only 10%
of its time on actual computation. In the WAN, FSSM spends more
than 90% of its time on communication.

7.3 Putting It All Together: Matchmaker under

different deployment scenarios

Recall that a primary contribution of our work is Matchmaker (MM),
which automatically chooses LSSM, FSSM, or a combination of both,
as appropriate, for a given deployment scenario. We demonstrate
this unique adaptability of MMby reporting its performance against
the state-of-the-art secure inferencing system, Orca [38] under four
diverse deployment scenarios – LAN with keys in memory/storage,
and WAN with keys in memory/storage.

Table 4a reports the performance of MM and Orca under the
four deployment scenarios while 4b reports the relevant secondary
metrics such as key size and communication.

In Table 4a, each scenario has three sub-columns – the first two
list the time (in seconds) that it takes for Orca and MM to execute in
that given scenario, while the last column shows the configuration
chosen by MM. Specifically, it reports the fraction of non-linearities
executed with LSSM. MM uses FSSM for the rest. For example, an
entry 0.42 means that MM uses LSSM for secure computation of
42% of the non-linearities and uses FSSM for the remaining 58%.

From Table 4a, we observe that MM always outperforms Orca
under all deployment scenarios demonstrating MM’s adaptability.
It speeds up secure inferencing by 1.3-21× depending upon the
scenario. MM’s greatest improvement over Orca (over 20×) comes
under LAN when keys are in storage. This is expected – Orca’s FSS-
based protocol with large keys is bottlenecked by time to read the
keys from storage. MM, instead, deploys LSSM under this scenario
that uses 27-29× smaller keys than Orca (Table 4b) and is also not
constrained by communication overheads due to a fast LAN.
7Note that linear layers always execute on GPUs.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Model
Batch=50

LAN, keys in mem. LAN, keys in storage WAN, keys in mem. WAN, keys in storage

Orca MM MM
config. Orca MM MM

config. Orca MM MM
config. Orca MM MM

config.

ResNet-18 5
(2×) 2.5 0.44 123

(21×) 5.9 1 66
(1.3×) 50 0 123

(1.8×) 70 0.42

ResNet-50 28
(2.3×) 12.4 0.40 561

(19×) 29 1 477
(2.2×) 220 0 561

(1.9×) 300 0.44

VGG-16 23
(2×) 11.4 0.44 543

(21×) 26 1 290
(1.4×) 209 0 543

(1.9×) 293 0.44

(a) Performance of MM compared to Orca. We report the runtime in seconds. MM config. denotes fraction of non-linearities run with LSS
M
.

Model
Batch=50

Keysize (GB) Comm (GB)

Orca MM Orca MM
LAN, keys
in mem.

LAN, keys
in storage

WAN, keys
in mem.

WAN, keys
in storage

LAN, keys
in mem.

LAN, keys
in storage

WAN, keys
in mem.

WAN, keys
in storage

ResNet-18 58 34 2 54 32 3.3 4.1 6.2 2.4 4
ResNet-50 265 146 9.1 246 142 25 17.1 26 11 17.7
VGG-16 255 149 9.5 236 137 16 18.1 27 11 18.1

(b) Keysize and communication of Orca and MM in different settings.

Table 4: Comparing Matchmaker (MM) with Orca (state-of-the-art) under different deployment scenarios.

On the other extreme, when keys are in memory and the network
is slow (i.e., in the WAN), MM correctly chooses to deploy FSSM
since deploying LSSM would have made it hamstrung by commu-
nication overheads. Here, MM’s improvements over Orca [38] are
exactly the improvements of FSSM over Orca (1.3-2.2×).

In two scenarios, MM employs novel heterogeneous processing.
i.e. runs LSSM and FSSM simultaneously on the CPU and the GPU,
respectively. When the keys are in memory and the network is fast
(LAN), both LSSM and FSSM perform similarly (Section 5). While
FSSM uses GPU for secure computation of non-linearities, MM
simultaneously deploys LSSM on the CPU to increase the inference
throughput. Table 4a reports 40-44% of non-linearities are computed
using LSSM while FSSM is responsible for the rest.

MM also employs heterogeneous processing when keys are in
storage and the parties are connected over WAN. While FSSM may
seem like the best choice in WAN due to its low communication,
it needs large amounts of keys. For example, it takes 503 seconds
to read FSS keys for VGG16 from storage, while the compute takes
215 seconds. On the other hand, LSSM needs just 21 seconds to
read (compressed) LSS keys for VGG16, but needs 479 seconds to
compute. MM then judiciously partitions the work for securely
computing non-linearities between LSSM and FSSM to strike a fine
balance between computation time and the key read time such that
both are roughly equal. It does so automatically without manual in-
tervention, thanks to its profile-guided modeling (Section 6.2). MM
improves performance by 1.8-1.9× over Orca under this scenario.

Table 4b also captures how MM trades off keys size and commu-
nication overhead based on the deployment scenario. Notice that
while the key size and amount of communication remain the same
for Orca across the deployment scenarios, for MM changes as it
adapts to different deployment scenarios. For example, under LAN
and when keys are in storage, FSSM slightly increases the amount of
communication over Orca (up to 87%) but significantly lowers the
amount of keys needed (by 26-29×). Thanks to a fast LAN network,
a slight increase in the amount of communication has little impact
on performance but needing to fetch much smaller amounts of keys
from the slow storage helps performance. On the other hand, when

the parties are connected over WAN and keys are in memory, MM
prioritizes limiting the communication. In summary, MM adapts to
the characteristics of the given deployment scenario.

8 Related work

Secure Inference/2PC with preprocessing. SecureML [52] intro-
duced the problem of secure inference in the preprocessing model.
Following a long line of works [34, 39, 63, 64], GPU-accelerated
Piranha [76] and CrypTen [42] are the state-of-the-art in LSS-based
secure inference of CNNs with preprocessing. GForce [53] and Del-
phi [50] also use GPUs but rely on trainingMPC-friendlyMLmodels.
MP-SPDZ [6, 40] and ABY2.0 [7, 56] implement LSS-based 2PC pro-
tocols with preprocessing on CPUs. Orca [38] and SIGMA [33] build
upon prior FSS works [17, 34, 64, 67, 71] and are the state-of-the-art
secure inference systems for CNNs and LLMs, respectively.
Secure Inference/2PC without preprocessing. The 2-party se-
cure CNN inference (without preprocessing) is a well-studied prob-
lem [36, 39, 50, 52, 53, 60, 61]. They use different techniques, e.g.,
oblivious transfer and/or homomorphic encryption, that are natu-
rally more expensive than works with preprocessing. Works such
as [9, 24, 35, 49, 55] consider secure LLM inference. Some of these
works modify the underlyingML algorithm to bemore 2PC-friendly.
They [50, 53, 55] also accelerate computation using GPUs.
Secure ML under other models. Finally, several works have also
considered secure computation of ML algorithms amongst > 2
parties [23, 25, 28, 41, 42, 44, 51, 57, 68, 72, 74, 81]. Due to a different
setup, the performance of these protocols are incomparable to 2PC
protocols in the preprocessing model. A few works have also ex-
plored malicious secure 2/MPC for ML [20, 46, 51, 74, 81]. We leave
the exploration of such protocols in our context to future work.
Other privacy/security approaches. Another approach to secure
inference is via Trusted Execution Environments (TEEs) that make
assumptions on the hardware to provide security [32, 54, 58, 69, 70].
Works on Federated learning [43] and those that improve the secu-
rity/privacy guarantees in federated learning [12, 62, 65, 78] aim to
limit the amount of information shared between the participants

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

during ML training while works on differential privacy [8, 73] pro-
vide privacy guarantees to individual data records in the training
data. Both these lines of works are orthogonal to secure computa-
tion of training algorithms and are further inapplicable to inference.
Modeling-based protocol selection. Prior works [18, 21, 22] con-
sidered using modeling to select the protocol best suited to a given
deployment scenario. However, these works did not consider the
preprocessing model and neither did they consider GPU accelera-
tion. Furthermore, they also do not consider simultaneously execut-
ing different protocols with varying performance characteristics.

References

[1] CUDA Streams. https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-
simplify-concurrency/.

[2] Intel Advanced Encryption Standard Instructions . https://www.intel.com/
content/www/us/en/developer/articles/technical/advanced-encryption-
standard-instructions-aes-ni.html.

[3] Intel Advanced Vector Extensions 512. https://www.intel.com/content/www/us/
en/architecture-and-technology/avx-512-overview.html.

[4] Intrinsics for Intel Advanced Vector Extensions. https://www.intel.com/content/
www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intrinsics-
for-intel-advanced-vector-extensions.html.

[5] Linux FQ_CoDel . https://man7.org/linux/man-pages/man8/tc-fq_codel.8.html.
[6] Multi-Protocol SPDZ: Versatile framework for multi-party computation, 2019.
[7] MOTION2NX – A Framework for Generic Hybrid Two-Party Computation and

Private Inference with Neural Networks. https://github.com/encryptogroup/
MOTION2NX, 2022.

[8] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016.

[9] Y. Akimoto, K. Fukuchi, Y. Akimoto, and J. Sakuma. Privformer: Privacy-
preserving transformer with mpc. In EuroS&P, 2023.

[10] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO, ’91.

[11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT, 2011.

[12] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
danMcMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical
secure aggregation for privacy-preserving machine learning. In Bhavani Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1175–1191. ACM,
2017.

[13] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant
Kumar, and Mayank Rathee. Function secret sharing for mixed-mode and fixed-
point secure computation. In EUROCRYPT, 2020.

[14] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round ot extension and silent non-interactive
secure computation. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’19, page 291–308, New York, NY, USA,
2019. Association for Computing Machinery.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In EUROCRYPT,
2015.

[16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In CCS, 2016.

[17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing
via function secret sharing. In TCC, 2019.

[18] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and
Thomas Schneider. HyCC: Compilation of Hybrid Protocols for Practical Secure
Computation. In CCS, 2018.

[19] Ran Canetti. Security and Composition of Multiparty Cryptographic Protocols. J.
Cryptology, 2000.

[20] Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana Obbattu, and Akash
Shah. SIMC: ML Inference Secure Against Malicious Clients at Semi-Honest Cost.
In USENIX Security Symposium, 2022.

[21] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. Ezpc: Programmable and efficient secure two-party computation for
machine learning. In IEEE European Symposium on Security and Privacy, EuroS&P
2019, Stockholm, Sweden, June 17-19, 2019, pages 496–511. IEEE, 2019.

[22] Edward Chen, Jinhao Zhu, Alex Ozdemir, Riad S. Wahby, Fraser Brown, and
Wenting Zheng. Silph: A framework for scalable and accurate generation of
hybrid mpc protocols. In 2023 IEEE Symposium on Security and Privacy (SP), pages
848–863, 2023.

[23] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song, and
Sameer Wagh. Maliciously secure matrix multiplication with applications to
private deep learning. In ASIACRYPT, 2020.

[24] Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang,
Haoyi Zhou, Jianxin Li, and Furu Wei. THE-X: privacy-preserving transformer
inference with homomorphic encryption. In ACL, 2022.

[25] Anders Dalskov, Daniel E. Escudero, and Marcel Keller. Fantastic four: Honest-
majority four-party secure computation with malicious security. IACR Cryptol.
ePrint Arch., 2020:1330, 2020.

[26] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of
boolean circuits using preprocessing. In TCC, 2013.

[27] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. In CVPR, 2009.

13

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intrinsics-for-intel-advanced-vector-extensions.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intrinsics-for-intel-advanced-vector-extensions.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intrinsics-for-intel-advanced-vector-extensions.html
https://man7.org/linux/man-pages/man8/tc-fq_codel.8.html
https://github.com/encryptogroup/MOTION2NX
https://github.com/encryptogroup/MOTION2NX

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

[28] Ye Dong, Wen jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong
Huang, Cheng Hong, Tao Wei, and Wenguang Chen. Puma: Secure inference of
llama-7b in five minutes, 2023.

[29] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
Improved primitives for MPC over mixed arithmetic-binary circuits. In CRYPTO,
2020.

[30] Juan Garay, Berry Schoenmakers, and José Villegas. Practical and secure solutions
for integer comparison. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public
Key Cryptography – PKC 2007, pages 330–342, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[31] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. In STOC, 1987.

[32] Jinnan Guo, Peter R. Pietzuch, Andrew Paverd, and Kapil Vaswani. Trustworthy
AI using confidential federated learning: Federated learning and confidential
computing are not competing technologies. ACM Queue, 22(2), 2024.

[33] Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya
Gupta, Ashish Panwar, and Rahul Sharma. Sigma: Secure gpt inference with
function secret sharing. In Proc. Priv. Enhancing Technol., 2024.

[34] Kanav Gupta, Deepak Kumaraswamy, Nishanth Chandran, and Divya Gupta.
Llama: A low latency math library for secure inference. In PETS, 2022.

[35] Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei
Zhang. Iron: Private inference on transformers. In NeurIPS, 2022.

[36] Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean
and fast secure two-party deep neural network inference. In USENIX Security
Symposium, 2022.

[37] Yuval Ishai, Eyal Kushilevitz, SigurdMeldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In
TCC, 2013.

[38] N. Jawalkar, K. Gupta, A. Basu, N. Chandran, D. Gupta, and R. Sharma. Orca:
Fss-based secure training and inference with gpus. In 2024 IEEE Symposium on
Security and Privacy (SP), pages 62–62, Los Alamitos, CA, USA, may 2024. IEEE
Computer Society.

[39] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A
low latency framework for secure neural network inference. In USENIX Security
Symposium, 2018.

[40] Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In
CCS, 2020.

[41] Marcel Keller and Ke Sun. Secure quantized training for deep learning. In ICML,
2022.

[42] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubhabrata Sengupta, Mark
Ibrahim, and Laurens van der Maaten. CrypTen: Secure multi-party computation
meets machine learning. In NeurIPS, 2021.

[43] Jakub Konečný, Brendan McMahan, and Daniel Ramage. Federated optimization:
Distributed optimization beyond the datacenter. CoRR, abs/1511.03575, 2015.

[44] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT: super-fast
and robust privacy-preserving machine learning. In USENIX Security Symposium,
2021.

[45] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. CrypTFlow: Secure tensorflow inference. In IEEE S&P,
2020.

[46] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada
Popa. Muse: Secure inference resilient to malicious clients. In USENIX Security
Symposium, 2021.

[47] Yun Li, Yufei Duan, Zhicong Huang, Cheng Hong, Chao Zhang, and Yifan Song.
Efficient 3PC for Binary Circuits with Application to Maliciously-Secure DNN
Inference. In USENIX Security Symposium, 2023.

[48] Yehuda Lindell. How to simulate it – a tutorial on the simulation proof technique.
Tutorials on the Foundations of Cryptography, 2017.

[49] Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Kui Ren, Cheng Hong,
TaoWei, andWenguang Chen. Bumblebee: Secure two-party inference framework
for large transformers. In NDSS 2025, 2025.

[50] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. Delphi: A cryptographic inference service for neural networks.
In USENIX Security Symposium, 2020.

[51] Payman Mohassel and Peter Rindal. ABY3: A Mixed Protocol Framework for
Machine Learning. In CCS, 2018.

[52] Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable Privacy-
Preserving Machine Learning. In IEEE S&P, 2017.

[53] Lucien K. L. Ng and Sherman S. M. Chow. Gforce: Gpu-friendly oblivious and
rapid neural network inference. In USENIX Security Symposium, 2021.

[54] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine
learning on trusted processors. In Thorsten Holz and Stefan Savage, editors, 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016, pages 619–636. USENIX Association, 2016.

[55] Q. Pang, J. Zhu, H. Möllering, W. Zheng, and T. Schneider. Bolt: Privacy-
preserving, accurate and efficient inference for transformers. In 2024 IEEE Sym-
posium on Security and Privacy (SP), pages 133–133, Los Alamitos, CA, USA, may
2024. IEEE Computer Society.

[56] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. ABY2.0:
Improved Mixed-Protocol secure Two-Party computation. In USENIX Security
Symposium, 2021.

[57] Arpita Patra and Ajith Suresh. Blaze: Blazing fast privacy-preserving machine
learning. In NDSS, 2020.

[58] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and
Raluca Ada Popa. Visor: Privacy-preserving video analytics as a cloud service. In
USENIX Security Symposium, 2020.

[59] Deevashwer Rathee, Anwesh Bhattacharya, Rahul Sharma, Divya Gupta, Nis-
hanth Chandran, and Aseem Rastogi. SecFloat: Accurate Floating-Point meets
Secure 2-Party Computation. In IEEE S&P, 2022.

[60] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta,
Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. SIRNN: A math library
for secure inference of RNNs. In IEEE S&P, 2021.

[61] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. CrypTFlow2: Practical 2-Party Secure
Inference. In CCS, 2020.

[62] M. Rathee, C. Shen, S. Wagh, and R. Popa. Elsa: Secure aggregation for federated
learning with malicious actors. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 1961–1979, Los Alamitos, CA, USA, may 2023. IEEE Computer Society.

[63] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure compu-
tation framework for machine learning applications. In ASIACCS, 2018.

[64] Théo Ryffel, David Pointcheval, and Francis Bach. ARIANN: Low-interaction
privacy-preserving deep learning via function secret sharing. In PETS, 2022.

[65] Sinem Sav, Apostolos Pyrgelis, Juan Ramón Troncoso-Pastoriza, David Froelicher,
Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. POSEIDON:
privacy-preserving federated neural network learning. In NDSS, 2021.

[66] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and optimizing the serverless
workload at a large cloud provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218. USENIX Association, July 2020.

[67] Kyle Storrier, Adithya Vadapalli, Allan Lyons, and Ryan Henry. Grotto: Screaming
fast (2+ 1)-pc for Z2𝑛 via (2, 2)-dpfs. Cryptology ePrint Archive, Paper 2023/108,
2023.

[68] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. Cryptgpu: Fast privacy-
preserving machine learning on the GPU. In IEEE S&P, 2021.

[69] Florian Tramèr and Dan Boneh. Slalom: Fast, verifiable and private execution of
neural networks in trusted hardware. In ICLR, 2019.

[70] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted execution
environments on gpus. In Andrea C. Arpaci-Dusseau and Geoff Voelker, editors,
13th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages 681–696. USENIX Association,
2018.

[71] Sameer Wagh. Pika: Secure Computation using Function Secret Sharing over
Rings. PoPETs, 2022.

[72] Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-party secure
computation for neural network training. PoPETs, 2019.

[73] Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. Dp-
cryptography: Marrying differential privacy and cryptography in emerging ap-
plications. Commun. ACM, 2021.

[74] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek
Mittal, and Tal Rabin. Falcon: Honest-majority maliciously secure framework for
private deep learning. PoPETs, 2021.

[75] AoWang, Shuai Chang, Huangshi Tian, HongqiWang, Haoran Yang, Huiba Li, Rui
Du, and Yue Cheng. FaaSNet: Scalable and fast provisioning of custom serverless
container runtimes at alibaba cloud function compute. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 443–457. USENIX Association, July
2021.

[76] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. Piranha: A GPU Platform
for Secure Computation. In USENIX Security Symposium, 2022.

[77] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In CCS, 2020.

[78] Yuchen Yang, Bo Hui, Haolin Yuan, Neil Gong, and Yinzhi Cao. PrivateFL: Accu-
rate, differentially private federated learning via personalized data transformation.
In 32nd USENIX Security Symposium (USENIX Security 23), pages 1595–1612, Ana-
heim, CA, August 2023. USENIX Association.

[79] Andrew C. Yao. Protocols for secure computations. In FOCS, 1982.
[80] Edouard Yvinec, Arnaud Dapogny, and Kevin Bailly. To fold or not to fold: a

necessary and sufficient condition on batch-normalization layers folding, 2022.
[81] Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica. Helen:

Maliciously secure coopetitive learning for linear models. In IEEE S&P, 2019.
[82] Victor Quétu Van-Tam Nguyen Enzo Tartaglione Zhu Liao, Nour Hezbri. Till the

layers collapse: Compressing a deep neural network through the lenses of batch
normalization layers.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Boolean to Arithmetic ΠB2A
𝑛

GenB2A𝑛 :

1: 𝑡
$← {0, 1}

2: 𝑡 ′ = extend(𝑡, 𝑛)
3: share 𝑡 ′

4: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑡 ′
𝑏

EvalB2A𝑛 (𝑏, 𝑘𝑏 , 𝑠𝑏) :
1: Parse 𝑘𝑏 as 𝑡 ′

𝑏
2: 𝑡𝑏 = 𝑡 ′

𝑏
mod 2; 𝑠𝑏 = 𝑠𝑏 ⊕ 𝑡𝑏

3: 𝑠 ← reconstruct (𝑠𝑏)
4: 𝑠′ = extend(𝑠, 𝑛)
5: return 𝑧𝑏 = 𝑏 · 𝑠′ + (1 − 2𝑠′) · 𝑡 ′

𝑏

Figure 4: Protocol for B2A𝑛

A Comparing LSS
M
with Piranha

Datasets. We perform secure inference on the MNIST and CIFAR-
10 datasets. MNIST is a 10-class dataset with 28 × 28 images and
10 classes. CIFAR-10 is also a 10-class dataset, but has 32 × 32 × 3
images (≈ 4× as large as MNIST).
Benchmarks. Piranha uses twoMNIST-scale models – P-SecureML
and P-LeNet, and two CIFAR-10-scale models – P-AlexNet and P-
VGG16. Piranha modifies plaintext models, e.g. by replacing Max-
pool with Averagepool, so we use the prefix P to separate them
from the corresponding floating-point plaintext models. The ac-
curacy of these models for our choice of fixed-point parameters
(𝑛 = 64, 𝑓 = 24) can be found in Figure 5 in [76].
Performance. Table 5a compares the performance of LSSM with
Piranha in all four settings – in the LAN when keys are in mem-
ory/storage, and in the WAN when keys are in memory/storage.
We provide keysize, communication and rounds in Table 5b to help
with analysis. We split our analysis into two parts.
LAN, keys in memory/storage. LSSM is 2.9−6.3× faster than Piranha
when keys are in memory, mirroring improvement in communica-
tion. Notably we are faster than Piranha and communicate 2 − 6×
less data while employing a more expensive (but secure) protocol for
stochastic truncation. Our lower communication can be attributed
to two sources. First, our efficient implementation of Π𝐿Mill (Sec-
tion 3.3) that communicates tightly packed bits. Piranha computes
a comparison circuit similar to ours, but embeds each bit of the
comparison input into a Byte, and then treats the Bytes as logical
bits. This amplifies communication by 8×. Second, we apply Orca’s
network-level optimizations to Piranha’s networks.

Piranha does not faithfully generate keys and write them to
storage. It assumes that keys are always in memory. To simulate
keys in storage, we instrument its code to output the size of the
preprocessing material used. We then measure the time it takes to
read that much data from our disk. We report Piranha’s expected
runtime as the larger of disk read and online compute. Table 5a
shows that LSSM is 2.4 − 7.7× faster than Piranha when keys are
on disk. For smaller networks P-SecureML, P-LeNet and P-AlexNet
(< 4 million parameters), Piranha’s runtime degrades only slightly
(1 − 1.2×) from having to read keys from disk. LSSM is able to hide
keyread behind online time, but online time itself is 1.08 − 1.3×

larger than when keys are in memory since key expansion is in the
critical path. LSSM suffers slightly more than Piranha when keys are
in storage for smaller networks, so its improvement over Piranha
decreases slightly to 2.4− 4.3× compared to the case when keys are
in memory. For P-VGG16, which is a larger network (∼ 15 million
parameters), Piranha takes 1.7× longer to read keys from disk than
online computation. LSSM’s keysize-specific optimizations keep
keyread time smaller than online time and key expansion costs
relatively low (1.4× longer online time compared to when keys are
in memory). Thus, LSSM’s improvement over Piranha increases to
7.7× for P-VGG16, compared to 6.3× when keys are in memory.
WAN, keys in memory/storage. In the slow WAN, LSSM and Pi-
ranha are bottlenecked by communication and rounds, regardless
of where the keys are located. LSSM’s improvement over Piranha
in performance (1.8 − 4.1×) mostly mirrors its improvement over
Piranha in communication (2.2 − 4.5×). The only anomaly is P-
SecureML. Here, we see the impact of LSSM’s muted improvement
over Piranha in rounds (1.4 − 1.7×), arising from its use of secure
stochastic truncation. Rounds do not impact performance when
the network is fast (LAN), but they do impact performance in the
WAN when the amount of data being communicated is small (tens
of MBs). Both Piranha and LSSM communicate very little data for
P-SecureML. Consequently, LSSM spends 1.2 seconds on rounds,
which makes up 92% of its runtime. Piranha spends 1.98 seconds on
rounds (86% of its runtime). Since the time for rounds dominates,
LSSM’s improvement over Piranha for P-SecureML closely mirrors
its improvement over Piranha in rounds (1.7×).

B Boolean shares to arithmetic shares

We rely on the following observation (which was also made in
Orca [38]). For 𝑠, 𝑡 ∈ {0, 1} such that 𝑠 = 𝑠 ⊕ 𝑡 and 𝑠′ = extend(𝑠, 𝑛),
𝑡 ′ = extend(𝑡, 𝑛), 𝑠′ = extend(𝑠, 𝑛),

B2A𝑛 (𝑠) = extend(𝑠, 𝑛)
= 𝑠′ − 𝑡 ′ + 2 · 1{𝑠 < 𝑡}
= 𝑠′ − 𝑡 ′ + 2 · (1 − 𝑠′) · 𝑡 ′

= 𝑠′ + (1 − 2𝑠′) · 𝑡 ′

Our protocol ΠB2A
𝑛 uses the above expression and is described

in Figure 4.

C Select

Orca [38] writes select as a mixed-bitwidth multiplication. Let
𝑥, 𝑟, 𝑥 ∈ U𝑁 be such that 𝑥 = 𝑥 + 𝑟 mod 𝑁 . Let 𝑠, 𝑡, 𝑠 ∈ {0, 1}
be such that 𝑠 = 𝑠 ⊕ 𝑡 and 𝑠′ = extend(𝑠, 𝑛). Let 𝑡 ′ = extend(𝑡, 𝑛).
Then, from [34] and the expression in Appendix B we have that

select𝑛 (𝑠, 𝑥) = extend(𝑠, 𝑛) · 𝑥
= (𝑠′ + (1 − 2𝑠′) · 𝑡 ′) · (𝑥 − 𝑟)
= 𝑠′ · 𝑥 − 𝑠′ · 𝑟 + (1 − 2𝑠′) · 𝑥 · 𝑡 ′ − (1 − 2𝑠′) · 𝑡 ′ · 𝑟

We use the above expression to describe our protocol for select𝑛 in
Figure 5.

D Security proof of Millionaire’s and Wrap

D.1 Security proof of Π𝐿Mill
𝑛

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Model

LAN, keys
in mem.

(s)

LAN, keys in
storage

(s)

WAN, keys in
mem.
(s)

WAN, keys in
storage

(s)
Piranha LSSM Piranha LSSM Piranha LSSM Piranha LSSM

P-SecureML 0.057
(4.8×) 0.012 0.057

(3.4×) 0.017 2.3
(1.8×) 1.3 2.3

(1.8×) 1.3

P-LeNet 0.402
(3×) 0.136 0.48

(3×) 0.159 8.6
(1.8×) 4.9 8.6

(1.8×) 4.9

P-AlexNet 0.424
(2.6×) 0.162 0.432

(2.3×) 0.19 12.2
(1.5×) 7.9 12.2

(1.5×) 7.9

P-VGG16 14
(5.7×) 2.47 23.726

(8.2×) 2.9 259
(3.8×) 67 259

(3.8×) 67

(a) Comparing the performance of LSS
M

with Piranha.

Model
Key size
(MB)

Comm
(MB) Rounds

Piranha LSSM Piranha LSSM Piranha LSSM

P-SecureML 15
(11×) 1.4 21

(3.3×) 6.3 66
(1.6×) 42

P-LeNet 265
(4.6×) 58 335

(2.1×) 157 108
(1.3×) 82

P-AlexNet 283
(5×) 57 324

(1.8×) 183 223
(1.4×) 162

P-VGG16 10163
(9.5×) 1071 13589

(4.3×) 3191 474
(1.4×) 343

(b) Comparing keysize and communication of LSS
M

with Piranha.

Table 5: Comparing LSS
M

with Piranha on inference benchmarks with batch 128.

Select Πselect
𝑛

Genselect𝑛 :

1: 𝑡
$← {0, 1}; 𝑟 $← U𝑁

2: 𝑡 ′ = extend(𝑡, 𝑛); 𝑢 = 𝑡 ′ · 𝑟
3: share 𝑟, 𝑡 ′, 𝑢
4: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑟𝑏 | |𝑡 ′𝑏 | |𝑢𝑏

Evalselect𝑛 (𝑏, 𝑘𝑏 , 𝑠𝑏 , 𝑥𝑏) :
1: Parse 𝑘𝑏 as 𝑟𝑏 | |𝑡 ′𝑏 | |𝑢𝑏
2: 𝑥𝑏 = 𝑥𝑏 + 𝑟𝑏 mod 𝑁 ;
3: 𝑡𝑏 = 𝑡 ′

𝑏
mod 2

4: 𝑠𝑏 = 𝑠𝑏 ⊕ 𝑡𝑏
5: (𝑥, 𝑠) ← reconstruct (𝑥𝑏 , 𝑠𝑏)
6: 𝑠′ = extend(𝑠, 𝑛)
7: return 𝑧𝑏 = 𝑏 ·𝑠′ ·𝑥−𝑠′ ·𝑟𝑏 + (1−2𝑠′) ·𝑥 ·𝑡 ′𝑏 −(1−2 ·𝑠

′) ·𝑢𝑏

Figure 5: Protocol for select𝑛
The ideal functionality for logical AND, F AND, takes secret shares
of bits 𝑝, 𝑞 as input and returns secret shares of the bit 𝑝 ∧ 𝑞 as
output. We define a related functionality F AND′ that takes a bit 𝑝
as 𝑃0’s private input and a bit 𝑞 as 𝑃1’s private input and returns
secret shares of 𝑝 ∧ 𝑞. We additionally define the gate ANDCorr as
taking bits 𝑝, 𝑞, 𝑟 as input and returning 𝑝 ∧ 𝑞 and 𝑞 ∧ 𝑟 as output.
The functionality F ANDCorr takes shares of bits 𝑝, 𝑞, 𝑟 as input and
returns shares of ANDCorr’s outputs.

Let 𝐶 denote the plaintext comparison logic described in Sec-
tion 3.1.𝐶 can be written as a circuit with AND, ANDCorr and XOR

gates. The protocols ΠAND, ΠAND′ and ΠANDCorr that securely real-
ize F AND, F AND′ and F ANDCorr can be trivially constructed using
Beaver triples.

The ideal functionality FMill
𝑛 for the Millionaire’s problem takes

inputs 𝑥,𝑦 from 𝑃0, 𝑃1 respectively and returns secret shares of
1{𝑥 < 𝑦}. Intuitively, the security of Π𝐿Mill

𝑛 follows from the cor-
rectness of 𝐶 and the security of the AND protocol (that uses
Beaver bit-triples). Note that since we can decompose Π𝐿Mill

𝑛 into
calls to ΠAND, ΠAND′ and ΠANDCorr and local XOR operations,
we prove the security of Π𝐿Mill

𝑛 in the F BB-hybrid model, where
F BB is the set of ideal functionalities of our building blocks, i.e.,
F BB = {F AND, F AND′ , F ANDCorr}. We replace all calls to ΠAND,
ΠAND′ and ΠANDCorr in Π𝐿Mill

𝑛 with calls to their ideal functionali-
ties to get a new protocol Π̂𝐿Mill

𝑛 . Π̂𝐿Mill
𝑛 computes a comparison

circuit 𝐶 consisting of F AND, F AND′ , F ANDCorr and XOR gates
(which only require a local XOR). Every wire in𝐶 either 1○ holds a
value that is only a function of 𝑃0/𝑃1’s private input 𝑥/𝑦 and can
thus be computed locally by 𝑃0/𝑃1, or 2○ holds a secret share of
the corresponding wire in 𝐶 . This follows from 1○ the definition of
ideal functionalities in F BB, and 2○ if the inputs to the local XOR
operations are secret shares, then the outputs are also secret shares.
Thus, 𝐶 outputs secret shares of 1{𝑥 < 𝑦} and so does Π̂𝐿Mill

𝑛 .
We now show the security of Π̂𝐿Mill

𝑛 with respect to FMill
𝑛 . In

Π̂𝐿
Mill
𝑛 , 𝑃0’s view consists of random bits that it receives as outputs

of calls to ideal functionalities in F BB. Parse 𝑥 = 𝑥1 | |𝑥0 and 𝑦 =

𝑦1 | |𝑦0, where 𝑥1, 𝑦1, 𝑥0, 𝑦0 all have the same length. We recall our

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

DReLU Π𝐿DReLU𝑛

Gen𝐿DReLU𝑛 :
1: (𝑘wrap0 , 𝑘

wrap
1) ← Gen𝐿wrap

𝑛−1
2: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑘

wrap
𝑏

Eval𝐿ReLUExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑥𝑏) :

1: Parse 𝑘𝑏 = 𝑘
wrap
𝑏

2: 𝑐𝑏 ← Eval𝐿wrap
𝑛−1 (𝑥𝑏 mod 2𝑛−1)

3: return 𝑑𝑏 = MSB(𝑥𝑏) ⊕ 𝑐𝑏 ⊕ 𝑏

Figure 6: LSS protocol for DReLU𝑛 .

ReLU Π𝐿ReLU𝑛

Gen𝐿ReLU𝑛 :
1: (𝑘DReLU0 , 𝑘DReLU1) ← Gen𝐿DReLU𝑛

2: (𝑘sel0 , 𝑘sel1) ← Genselect𝑛

3: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑘DReLU
𝑏

| |𝑘sel
𝑏

Eval𝐿ReLUExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑥𝑏) :

1: Parse 𝑘𝑏 = 𝑘DReLU
𝑏

| |𝑘sel
𝑏

2: 𝑑𝑏 ← Eval𝐿DReLU𝑛 (𝑏, 𝑘DReLU
𝑏

, 𝑥𝑏)
3: return 𝑧𝑏 ← Evalselect𝑛 (𝑏, 𝑘sel

𝑏
, 𝑑𝑏 , 𝑥𝑏)

Figure 7: LSS protocol for ReLU𝑛 .

equation for 1{𝑥 < 𝑦} from Section 3.1.

1{𝑥 < 𝑦} = 1{𝑥1 < 𝑦1} ⊕ 1{𝑥1 = 𝑦1} ∧ 1{𝑥0 < 𝑦0}
Let 𝑟 = 1{𝑥1 < 𝑦1}, 𝑠 = 1{𝑥1 = 𝑦1} and 𝑡 = 1{𝑥0 < 𝑦0}. At the

very top of the comparison tree, following the equation above, 𝑃0
securely computes 𝑟 ⊕ 𝑠 ∧ 𝑡 . Let 𝑟0, 𝑠0, 𝑡0 denote the shares of 𝑟, 𝑠, 𝑡
held by 𝑃0. 𝑃0 makes a call to F AND with 𝑠0 and 𝑡0 as input. It XORs
F AND’s output 𝑢0 with 𝑟0 to get the final output of the protocol.

We construct a simulator ŜMill
0 to simulate 𝑃0’s view in Π̂𝐿

Mill
𝑛

given 𝑥 and 𝑧0, which is FMill’s output for 𝑃0 (an identical simula-
tor can be constructed for 𝑃1). To simulate 𝑃0’s view as described
above, ŜMill

0 first samples random bits as outputs of all calls to ideal
functionalities in F BB except the last call to F AND. To set F AND’s
output, ŜMill

0 faithfully computes the bit 𝑟0 as 𝑃0 would in a real

execution of Π̂𝐿Mill
𝑛 . To do this it uses 𝑃0’s private input 𝑥 and the

view simulated thus far. It then sets the output of F AND to 𝑟0 ⊕ 𝑧0.
Since 𝑧0 is a random bit from the definition of FMill

𝑛 , 𝑟0 ⊕ 𝑧0 is
also a random bit. This exactly mimics the output of F AND. With
this, 𝑃0’s output in the simulated view matches 𝑃0’s output from
FMill
𝑛 . Indistinguishability of the joint distribution of the simulated

view and the outputs of FMill
𝑛 and the joint distribution of 𝑃0’s

view in Π̂𝐿
Mill
𝑛 and the outputs of Π̂𝐿Mill

𝑛 follows from the fact that
Π̂𝐿

Mill
𝑛 outputs secret shares of 1{𝑥 < 𝑦} as argued previously. Thus,

Π̂𝐿
Mill
𝑛 is secure in the F BB-hybrid model. Security of Π𝐿Mill

𝑛 in the
standard model follows from initializing the ideal functionalities in
F BB with their corresponding secure protocols and invoking the
sequential composition theorem [19, 48].

D.2 Security proof of Π𝐿
wrap
𝑛

The ideal functionality Fwrap
𝑛 takes inputs 𝑥,𝑦 from 𝑃0, 𝑃1 respec-

tively and returns shares of wrap𝑛 (𝑥,𝑦). We obtain Π̂𝐿
wrap
𝑛 by re-

placing the call to Π𝐿Mill
𝑛 in Π𝐿

wrap
𝑛 with a call to FMill

𝑛 . Security
of Π̂𝐿wrap𝑛 in the FMill

𝑛 -hybrid model follows from the correctness
of the expression for wrap𝑛 in Section 3.1 and the definition of
FMill
𝑛 (which returns secret shares). Security of Π𝐿wrap𝑛 follows

from securely instantiating FMill
𝑛 with Π𝐿Mill

𝑛 .

E LSS-based ReLU

Over reals, ReLU is defined as ReLU(𝑥) = max(𝑥, 0). When 𝑥 ∈ U𝑁

is interpreted as a signed value in 2’s complement representation,
ReLU𝑛 (𝑥) = 𝑥 ·DReLU𝑛 (𝑥), whereDReLU𝑛 (𝑥) = 1{𝑥 < 2𝑛−1}. To
compute DReLU𝑛 , we use the approach followed by CryptFlow2
[61]. LetMSB(·) denote themost significant bit. Consider 𝑥, 𝑥0, 𝑥1 ∈
U𝑁 such that 𝑥 = 𝑥0 + 𝑥1 mod 𝑁 . For 𝑏 ∈ {0, 1}, parse 𝑥𝑏 =

MSB(𝑥𝑏) | |𝑦𝑏 where MSB(𝑥𝑏) ∈ {0, 1} and 𝑦𝑏 ∈ {0, 1}𝑛−1. Define
carry := 1{𝑦0 + 𝑦1 > 2𝑛−1 − 1} = wrap𝑛−1 (𝑦0, 𝑦1). Then,

MSB(𝑥) = MSB(𝑥0) ⊕MSB(𝑥1) ⊕ carry

DReLU𝑛 (𝑥) = 1 ⊕MSB(𝑥)
In our context, parties 𝑃0 and 𝑃1 hold secret shares 𝑥0, 𝑥1 of 𝑥 .

Using above equations, to securely compute DReLU, it suffices to
securely compute carry that can be computed using Π𝐿wrap

𝑛−1 . Given
boolean shares of DReLU𝑛 (𝑥), we can select between 0 and 𝑥 using
Πselect
𝑛 . We describe our protocols for DReLU𝑛 and ReLU𝑛 formally

in Figures 6 and 7 that achieve the following cost.

Theorem 3. The protocol Π𝐿DReLU𝑛 in Figure 6 securely computes
DReLU𝑛 with Γ(Π𝐿DReLU𝑛) = Γ(Π𝐿wrap

𝑛−1) for Γ ∈ {keysize, comm,

rounds}. Moreover, the protocol Π𝐿ReLU𝑛 in Figure 7 securely com-
putes ReLU𝑛 with Γ(Π𝐿ReLU𝑛) = Γ(Π𝐿DReLU𝑛) + Γ(Πselect

𝑛) for Γ ∈
{keysize, comm, rounds}.

F LSS-based Stochastic Truncation

F.1 Proof of Lemma 1

Proof. For 𝑏 ∈ {0, 1}, let 𝑤𝑏 ∈ U2𝑛−𝑓 be such that 𝑥𝑏 = 𝑤𝑏 ·
2𝑓 + 𝑦𝑏 . Alternately,𝑤𝑏 = TR𝑛,𝑓 (𝑥𝑏). Then

TR𝑛,𝑓 (𝑥) =
𝑥0 + 𝑥1 − 2𝑛 · wrap𝑛 (𝑥0, 𝑥1)

2𝑓
mod 2𝑛−𝑓

=
𝑥0 + 𝑥1
2𝑓

− 2𝑛−𝑓 · wrap𝑛 (𝑥0, 𝑥1) mod 2𝑛−𝑓

=
𝑤0 · 2𝑓 + 𝑧0 +𝑤1 · 2𝑓 + 𝑧1

2𝑓
mod 2𝑛−𝑓

= 𝑤0 +𝑤1 +
𝑧0 + 𝑧1
2𝑓

mod 2𝑛−𝑓

= 𝑤0 +𝑤1 + wrap𝑓 (𝑧0, 𝑧1)
To prove the second part of the lemma, we use the fact that

addition modulo 2𝑓 is commutative and associative, and so 𝑧 + 𝑟
mod 2𝑓 can be computed in one of two ways, both of which give

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Signed Extension Π𝐿
SignExt
𝑛−𝑓 ,𝑛

Gen𝐿SignExt
𝑛−𝑓 ,𝑛 :

1: (𝑘wrap0 , 𝑘
wrap
1) ← Gen𝐿wrap

𝑛−𝑓
2: (𝑘B2A0 , 𝑘B2A1) ← GenB2A𝑛

3: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑘
wrap
𝑏
| |𝑘B2A

𝑏

Eval𝐿SignExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑦𝑏) :

1: Parse 𝑘𝑏 as 𝑘wrap
𝑏
| |𝑘B2A

𝑏

2: 𝑢𝑏 = 𝑦𝑏 + 𝑏 · 2𝑛−𝑓 −1 mod 2𝑛−𝑓
3: 𝑤𝑏 ← Eval𝐿wrap

𝑛−𝑓 (𝑏, 𝑘
wrap
𝑏

, 𝑢𝑏)
4: 𝑤 ′

𝑏
← EvalB2A𝑛 (𝑏, 𝑘B2A

𝑏
,𝑤𝑏)

5: return 𝑧𝑏 = extend(𝑢𝑏 , 𝑛) − 2𝑛−𝑓 ·𝑤 ′𝑏 − 𝑏 · 2
𝑛−𝑓 −1

Figure 8: LSS protocol for SignExt𝑛−𝑓 ,𝑛 .

us identical results. Thus,

𝑧 + 𝑟 mod 2𝑓

= ((𝑧0 + 𝑧1) mod 2𝑓 + (𝑟0 + 𝑟1) mod 2𝑓) mod 2𝑓

= ((𝑧0 + 𝑟0) mod 2𝑓 + (𝑧1 + 𝑟1) mod 2𝑓) mod 2𝑓

=⇒ 𝑧0 + 𝑧1 − 2𝑓 · wrap𝑓 (𝑧0, 𝑧1) + 𝑟0 + 𝑟1 − 2𝑓 · wrap𝑓 (𝑟0, 𝑟1)

−2𝑓 · wrap𝑓 (𝑧, 𝑟)

= 𝑧0 + 𝑟0 − 2𝑓 · wrap𝑓 (𝑧0, 𝑟0) + 𝑧1 + 𝑟1 − 2𝑓 · wrap𝑓 (𝑧1, 𝑟1)

−2𝑓 · wrap𝑓 (𝑦0, 𝑦1)
=⇒ wrap𝑓 (𝑧, 𝑟) = wrap𝑓 (𝑧0, 𝑟0) + wrap𝑓 (𝑧1, 𝑟1) + wrap𝑓 (𝑦0, 𝑦1)
−wrap𝑓 (𝑧0, 𝑧1) − wrap𝑓 (𝑟0, 𝑟1)

□

F.2 LSS-based protocol for Stochastic

Truncation

Definition 2. For 𝑥 ∈ U𝑁 and 𝑧 = 𝑥 mod 2𝑓 , we define stochastic
truncation as

StTrunc𝑛,𝑓 (𝑥) =
{
(𝑥 ≫𝐴 𝑓) with probability 1 − 𝑧 · 2−𝑓

(𝑥 ≫𝐴 𝑓) + 1 with probability 𝑧 · 2−𝑓

Orca showed that stochastic truncation of 𝑥 ∈ U𝑁 by 𝑓 can be
computed as stochastic truncate-reduce by 𝑓 followed by signed-
extension to 𝑛 bits (see Lemma 2 in [38]). More formally, let signed-
extension SignExt𝑛−𝑓 ,𝑛 be a functionality that takes a 𝑦 ∈ U2𝑛−𝑓
as input and returns 𝑧 ∈ U𝑁 such that int𝑛 (𝑧) = int𝑛−𝑓 (𝑦). Then,
for 𝑥 ∈ U𝑁 such that int𝑛 (𝑥) ⩽ 2𝑛−1 − 2𝑓 , we have

StTrunc𝑛,𝑓 (𝑥) = SignExt𝑛−𝑓 ,𝑛 (stTR𝑛,𝑓 (𝑥))
We describe our protocol for signed-extension in Appendix F.3

that results in the following cost for our protocol Π𝐿StTrunc
𝑛,𝑓

for sto-
chastic truncation that invokes the protocol for stochastic truncate-
reduce followed by the protocol for signed-extension.

Theorem 4. Let 𝑥 ∈ U𝑁 with int𝑛 (𝑥) ⩽ 2𝑛−1 − 2𝑓 . There
exists a protocol Π𝐿StTrunc

𝑛,𝑓
that securely computes StTrunc𝑛,𝑓 (𝑥)

with Γ(Π𝐿StTrunc
𝑛,𝑓

) = Γ(Π𝐿stTR
𝑛,𝑓
) + Γ(Π𝐿wrap

𝑛−𝑓) + Γ(ΠB2A
𝑛) for Γ ∈

{keysize, comm, rounds}.

F.3 LSS-based Signed Extension

To perform signed-extension, we use Lemma 4 which was proved
in [29].

Lemma 2. Let 𝑦,𝑦0, 𝑦1, 𝑢0, 𝑢1 ∈ U2𝑛−𝑓 be such that 𝑦 = (𝑦0 + 𝑦1)
mod 2𝑛−𝑓 and 𝑢𝑏 = 𝑦𝑏 + 𝑏 · 2𝑛−𝑓 −1 mod 2𝑛−𝑓 for 𝑏 ∈ {0, 1}.
Let𝑤 = wrap𝑛−𝑓 (𝑢0, 𝑢1). Then SignExt𝑛−𝑓 ,𝑛 (𝑦) = extend(𝑢0, 𝑛) +
extend(𝑢1, 𝑛) − 2𝑛−𝑓 · extend(𝑤,𝑛) − 2𝑛−𝑓 −1.

Following the above lemma, let 𝑦0, 𝑦1 ∈ U2𝑛−𝑓 be the secret shares
held by 𝑃0, 𝑃1 of some underlying value 𝑦 ∈ U2𝑛−𝑓 . For 𝑏 ∈ {0, 1},
we have 𝑃𝑏 compute 𝑢𝑏 = 𝑦𝑏 + 𝑏 · 2𝑛−𝑓 −1 mod 2𝑛−𝑓 . Parties
then run Π𝐿

wrap
𝑛−𝑓 to compute boolean shares of𝑤 = wrap𝑓 (𝑢0, 𝑢1).

They subsequently run ΠB2A
𝑛 on the shares of 𝑤 to get shares of

𝑤 ′ = extend(𝑤,𝑛). Finally, 𝑃𝑏 sets 𝑧𝑏 = extend(𝑢𝑏 , 𝑛) − 2𝑛−𝑓 ·
𝑤𝑏 − 𝑏 · 2𝑛−𝑓 −1 as its output. Our protocol Π𝐿

SignExt
𝑛−𝑓 ,𝑛 that executes

these steps is shown in Figure 8 and its costs are summarized in
the following theorem.

Theorem 5. The protocol Π𝐿SignExt
𝑛−𝑓 ,𝑛 in Figure 8 securely computes

SignExt𝑛−𝑓 ,𝑛 with Γ(Π𝐿SignExt
𝑛−𝑓 ,𝑛) = Γ(Π𝐿wrap

𝑛−𝑓) + Γ(Π
B2A
𝑛) for Γ ∈

{keysize, comm, rounds}.

G LSS-based ReLU-Extend

In CNNs, linear layers are often followed by an activation such
as ReLU. In fixed-point computation, the output of a linear layer
needs to be truncated (to scale down). To reduce cost of truncation
followed by ReLU, Orca [38] re-wrote the computation as truncate-
reduce followed byReLUExt, which is defined asReLUExt𝑛−𝑓 ,𝑛 (𝑥) =
SignExt𝑛−𝑓 ,𝑛 (ReLU𝑛−𝑓 (𝑥)) = extend(ReLU𝑛−𝑓 (𝑥), 𝑛) for𝑥 ∈ U2𝑛−𝑓 .
Note that this keeps the functionality intact. Moreover, if the linear
layer is followed by Maxpool and ReLU, Orca computes truncate-
reduce followed by Maxpool on lower bitwidth (𝑛 − 𝑓) followed by
ReLUExt that outputs in 𝑛-bits.

To compute ReLUExt securely, we prove the following lemma
(see Appendix G.1) that expresses ReLUExt(𝑥) as computations on
secret shares of 𝑥 .

Lemma 3. For 𝑥0, 𝑥1, 𝑥 ∈ U2𝑛−𝑓 such that 𝑥 = 𝑥0 + 𝑥1 mod 2𝑛−𝑓 ,
let𝑑 = 1{𝑥 < 2𝑛−𝑓 −1},𝑤 = wrap𝑛−𝑓 (𝑥0, 𝑥1) and𝑤 ′ = extend(𝑤,𝑛).
Let 𝑦 := extend(𝑥0, 𝑛) + extend(𝑥1, 𝑛) − 2𝑛−𝑓 ·𝑤 ′. Then
ReLUExt𝑛−𝑓 ,𝑛 (𝑥) = select𝑛 (𝑑,𝑦).

Using the above lemma, we can get an LSS-based secure protocol
trivially for ReLUExt that does 2 secure comparisons, one each for
DReLU bit 𝑑 and wrap computation𝑤 . We optimize this further to
only require a single secure comparison as follows8: We build on our
construction for ReLU in Appendix E. Consider 𝑥, 𝑥0, 𝑥1 ∈ U2𝑛−𝑓
such that 𝑥 = 𝑥0 + 𝑥1 mod 2𝑛−𝑓 . For 𝑏 ∈ {0, 1}, 𝑥𝑏 = 𝑚𝑏 | |𝑦𝑏 ,
where 𝑚𝑏 = MSB(𝑥𝑏). Define carry = wrap𝑛−𝑓 −1 (𝑦0, 𝑦1). Then,
we compute𝑑 = DReLU(𝑥) = 1{𝑥 < 2𝑛−𝑓 −1} =𝑚0⊕𝑚1⊕carry⊕1.
8This idea is similar in spirit to MSB-to-Wrap optimization in [60].

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

ReLU-Extend Π𝐿ReLUExt
𝑛−𝑓 ,𝑛

Gen𝐿ReLUExt
𝑛−𝑓 ,𝑛 :

1: (𝑘wrap0 , 𝑘
wrap
1) ← Gen𝐿wrap

𝑛−𝑓 −1

2: 𝑟 (𝑐) , 𝑟 (0) , 𝑟 (1) ,
$← {0, 1}

3: 𝑡 = 𝑟 (0) ⊕ 𝑟 (1)
4: 𝑠 = (𝑟 (0) ∧ 𝑟 (1)) ⊕ (𝑟 (𝑐) ∧ 𝑡); 𝑟 (𝑑) = 𝑟 (𝑐) ⊕ 𝑡
5: share 𝑟 (𝑐) , 𝑠
6: (𝑘B2A0 , 𝑘B2A1) ← GenB2A𝑛

7: (𝑘select0 , 𝑘select1) ← Genselect𝑛

8: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑘
wrap
𝑏
| |𝑟 (𝑐)

𝑏
| |𝑟 (𝑏) | |𝑠𝑏 | |𝑘B2A𝑏

| |𝑘select
𝑏

Eval𝐿ReLUExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑥𝑏) :

1: Parse 𝑘𝑏 = 𝑘
wrap
𝑏
| |𝑟 (𝑐)

𝑏
| |𝑟 (𝑏) | |𝑠𝑏 | |𝑘B2A𝑏

| |𝑘select
𝑏

2: 𝑐𝑏 ← Eval𝐿wrap
𝑛−𝑓 −1 (𝑏, 𝑘

wrap
𝑏

, 𝑥𝑏 mod 2𝑛−𝑓 −1)
3: 𝑚̂ (𝑏) = MSB(𝑥𝑏) ⊕ 𝑟 (𝑏)

4: 𝑐𝑏 = 𝑐𝑏 ⊕ 𝑟
(𝑐)
𝑏

5: 𝑐 ← reconstruct (𝑐𝑏); Send 𝑚̂ (𝑏) to 𝑃1−𝑏 and receive
𝑚̂ (1−𝑏) from 𝑃1−𝑏 .

6: 𝑞 (𝑏) = 𝑐 ⊕ 𝑚̂ (1−𝑏) , 𝑢 = 𝑚̂ (0) ⊕ 𝑚̂ (1)

7: 𝑣 = (𝑚̂ (0) ∧ 𝑚̂ (1)) ⊕ (𝑐 ∧ 𝑢)
8: 𝑤𝑏 = 𝑏 · 𝑣 ⊕ (𝑟 (𝑏) ∧ 𝑞 (𝑏)) ⊕ (𝑟 (𝑐)

𝑏
∧ 𝑢) ⊕ 𝑠𝑏

9: 𝑤 ′
𝑏
← EvalB2A𝑛 (𝑏, 𝑘B2A

𝑏
,𝑤𝑏)

10: 𝑑𝑏 =𝑚 (𝑏) ⊕ 𝑐𝑏 ⊕ 𝑏
11: 𝑦𝑏 = extend(𝑥𝑏 , 𝑛) − 2𝑛−𝑓 ·𝑤 ′𝑏
12: return 𝑧𝑏 ← Evalselect𝑛 (𝑏, 𝑘select

𝑏
, 𝑑𝑏 , 𝑦𝑏)

Figure 9: LSS protocol for ReLUExt𝑛−𝑓 ,𝑛
Hence, to compute 𝑑 it suffices to compute carry, which requires a
single invocation of wrap𝑛−𝑓 −1. Next, we reduce computation of
𝑤 = wrap𝑛−𝑓 (𝑥0, 𝑥1) to carry by observing

𝑤 = wrap𝑛−𝑓 (𝑥0, 𝑥1) = (𝑚0 ∧𝑚1) ⊕ (carry ∧𝑚0) ⊕ (carry ∧𝑚1)
Given the above equation,𝑤 can be computed using bitwise AND

operations resulting in boolean shares of𝑤 . These can be converted
to arithmetic shares over U𝑁 using ΠB2A

𝑛 . We describe the protocol
formally in Appendix G.2 that achieves the cost summarized below.

Theorem 6. ΠReLUExt
𝑛−𝑓 ,𝑛 securely computes ReLUExt𝑛−𝑓 ,𝑛 with

keysize(ΠReLUExt
𝑛−𝑓 ,𝑛) = keysize(Π𝐿wrap

𝑛−𝑓 −1)+4𝑛+3, comm(ΠReLUExt
𝑛−𝑓 ,𝑛) =

comm(Π𝐿wrap
𝑛−𝑓 −1) + 2𝑛 + 4 and rounds(Π

ReLUExt
𝑛−𝑓 ,𝑛) =

rounds(Π𝐿wrap
𝑛−𝑓 −1) + 3.

G.1 Proof of Lemma 3

We start by showing how to compute zero-extension. The zero-
extension functionality ZeroExt𝑛−𝑓 ,𝑛 takes 𝑥 ∈ U2𝑛−𝑓 as input and
returns extend(𝑥, 𝑛) ∈ U𝑁 as output. To compute ZeroExt𝑛−𝑓 ,𝑛 ,
we rely on the following lemma (proved in [29]).

Lemma4. Let𝑥, 𝑥0, 𝑥1 ∈ U2𝑛−𝑓 be such that𝑥 = (𝑥0+𝑥1) mod 2𝑛−𝑓 .
Let𝑤 = wrap𝑛−𝑓 (𝑥0, 𝑥1) and𝑤 ′ = extend(𝑤,𝑛). ThenZeroExt𝑛−𝑓 ,𝑛 (𝑥) =
extend(𝑥0, 𝑛) + extend(𝑥1, 𝑛) − 2𝑛−𝑓 ·𝑤 ′.

We now present our proof of Lemma 3.

Proof. When the DReLU bit 𝑑 = 0, the output of ReLU𝑛−𝑓 (𝑥),
and thus ReLUExt𝑛−𝑓 ,𝑛 (𝑥) is 0. When 𝑑 = 1, ReLUExt𝑛−𝑓 ,𝑛 (𝑥) =
ZeroExt𝑛−𝑓 ,𝑛 (𝑥). Thus, when 𝑑 = 1, we have from Lemma 4 that
ReLUExt𝑛−𝑓 ,𝑛 (𝑥) = 𝑥0+𝑥1−2𝑛−𝑓 ·𝑤 ′. This concludes the proof. □

G.2 Protocol Description

Our protocol is given in Figure 9. We compute carry using our
protocol for wrap over 𝑛 − 𝑓 − 1 bits which is used to compute both
𝑑 and𝑤 . Computation of 𝑑 is local with XORs. The boolean formula
for 𝑤 requires us to compute bitwise XOR operations, which are
local, and bitwise AND operations, which we compute using Beaver
bit-triples (Section 2.3). Once we have boolean shares of𝑤 (output
by our protocol for bitwise AND), we feed them into ΠB2A

𝑛 to get
shares 𝑤 ′0,𝑤

′
1 of 𝑤 ′ = extend(𝑤,𝑛). This allows us to compute

shares of 𝑦 = extend(𝑥0, 𝑛) + extend(𝑥1, 𝑛) − 2𝑛−𝑓 · 𝑤 ′ with, for
𝑏 ∈ {0, 1}, party 𝑃𝑏 computing𝑦𝑏 = extend(𝑥𝑏 , 𝑛)−2𝑛−𝑓 ·𝑤 ′𝑏 . Once
we have shares of 𝑦, we use the DReLU bit to choose between 𝑦

and 0 with Πselect
𝑛 .

H Details of LSS Key Compression

We illustrate the standard technique of compressing Beaver triples
that results in significant keysize reduction while computing secure
AND. Secure AND is used liberally within our comparison proto-
col Π𝐿Mill. Let 𝑢, 𝑣,𝑤 ∈ {0, 1} be a bit-triple such that 𝑤 = 𝑢 ∧ 𝑣 .
Ordinarily, 𝑃0 gets shares 𝑢0, 𝑣0,𝑤0 and 𝑃1 gets shares 𝑢1, 𝑣1,𝑤1.
Without compression, both parties need to store 3 bits of keys. Let
𝐹 be a pseudorandom function (PRF). The dealer shares PRF keys
𝑘0, 𝑘1 with 𝑃0, 𝑃1 in the offline phase. Now, the dealer picks a (pub-
licly known) value 𝑖 and a party 𝑏, and sets the bits𝑢1−𝑏 , 𝑣1−𝑏 ,𝑤1−𝑏
to be the output of 𝐹 (𝑘1−𝑏 , 𝑖). These bits can be computed by 𝑃1−𝑏
in the online phase and need not be sent explicitly by the dealer.
Similarly, 𝑢𝑏 , 𝑣𝑏 are set to be the output of 𝐹 (𝑘𝑏 , 𝑖) and can be com-
puted by 𝑃𝑏 instead of being sent by the dealer. With this, the dealer
only needs to send𝑤𝑏 to 𝑃𝑏 . Thus, out of the overall 6 bits of corre-
lation, only 1 bit needs to be stored explicitly (by party 𝑃𝑏). We can
share keys for several ANDs by simply having the dealer, 𝑃0 and
𝑃1 increment 𝑖 when needed. We additionally do load balancing
between 𝑃0 and 𝑃1, i.e. to share the key for 𝑚 ANDs, the dealer
picks 𝑏 = 0 for 𝑚

2 ANDs, and 𝑏 = 1 for 𝑚
2 ANDs. This means that

in contrast to 3𝑚 bits before, each party now only needs to store
𝑚
2 bits. Thus, we can get a key size reduction of 6× compared to
naively sharing Beaver triples. This basic idea can be extended to
all our protocols.

I Details of FSS
M

I.1 2PC with pre-processing based on FSS

Here we provide a brief description of FSS-based 2PC in the pre-
processing model and refer the reader to Orca [38] for a detailed
explanation.

I.1.1 Function Secret Sharing. For a function 𝑓 , a function secret
sharing (FSS) [15,16] scheme provides a pair of algorithms (Gen, Eval)
such that Gen splits 𝑓 into function shares 𝑓0, 𝑓1, and Eval on input
𝑏 ∈ {0, 1}, 𝑓𝑏 and 𝑥 produces𝑦𝑏 . The correctness guarantee requires

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

that 𝑦0 + 𝑦1 = 𝑓 (𝑥). Security property requires that each function
share 𝑓𝑏 hides 𝑓 . Here, 𝑓0, 𝑓1 are referred to as the function keys,
and size of each of them is referred to as the keysize.

I.1.2 2PC with FSS. Boyle et al. [17] described how FSS can be used
to construct 2PC protocols with an offline/pre-processing phase
and an online phase. At a high level, consider a circuit with gates
{𝑔𝑖 }. To realize the circuit securely, it suffices if we have protocols
for each gate where parties start with secret shares of input to 𝑔𝑖
and generate secret shares of output of 𝑔𝑖 . For each gate consider
the corresponding offset gate 𝑔[𝑟𝑖]

𝑖
(𝑥) = 𝑔(𝑥 − 𝑟𝑖). Then, in the

offline phase, the dealer gives out shares of 𝑟𝑖 and FSS keys for 𝑔
[𝑟𝑖]
𝑖

.
In the online phase, 𝑃0 and 𝑃1 hold secret shares of 𝑥 . Given secret
shares of 𝑟𝑖 , they compute shares of 𝑥 = 𝑥 + 𝑟𝑖 , and reconstruct 𝑥 .
Then, they locally evaluate their FSS key on 𝑥 to learn shares of
𝑔𝑖 (𝑥).

I.1.3 FSS for Comparison. A key FSS scheme that we will use in
all our protocols is the FSS scheme for comparison. We define the
comparison function 𝑓 <

𝛼,𝛽
: U𝑁 → G that, for input𝑥 ∈ U𝑁 , returns

𝛽 ∈ G if 𝑥 < 𝛼 and 0 otherwise. When Gout = {0, 1} and 𝛽 = 1 (as
in our case), Grotto [67] shows how to construct an FSS scheme
LtFSS𝑛 = (Gen<𝑛 , Eval<𝑛) for 𝑓 <𝛼,𝛽 that is based on Distributed Point
Functions (DPFs) [16] and has the following cost.

Theorem 7 (FSS scheme for comparison [16, 67]). Let 𝜆 be the
computational security parameter. Let 𝐺 : {0, 1}𝜆 → {0, 1}2𝜆+2 be
a PRG. Let 𝜈 = log(𝜆 + 1). When 𝑛 > 𝜈 , there exists an FSS scheme
LtFSS𝑛 = (Gen<𝑛 , Eval<𝑛) such that ∀𝑥, 𝛼 ∈ U𝑁 :

(𝑘<0 , 𝑘
<
1) ← Gen<𝑛 (𝛼)

=⇒ Eval<𝑛 (0, 𝑥, 𝑘<0) + Eval
<
𝑛 (1, 𝑥, 𝑘<1) = 𝑓 <𝛼,1 (𝑥)

LtFSS𝑛 has key size (𝑛 − 𝜈) · (𝜆 + 2) + 2𝜆. Gen<𝑛 invokes the PRG
2 · (𝑛 − 𝜈) times and Eval<𝑛 invokes the PRG (𝑛 − 𝜈) times.

We set 𝜆 = 127 and use two calls to AES-128 in counter mode to
realize the slightly more than length-doubling PRG. When Eval<𝑛
invokes the PRG, it only needs a single AES call since it only uses
either the first or second half of the PRG output. We refer to this
as a half-PRG call. Orca [38] uses a different FSS scheme called the
Distributed Comparison Function (or DCF) for comparison. For 𝑛-
bit inputs, LtFSS𝑛 is more efficient than DCF𝑛 when Gout = {0, 1}.
LtFSS𝑛 requires 2× fewer AES calls in the online phase compared
to DCF𝑛 . LtFSS𝑛 also has a 1.02 − 1.2× smaller keysize than DCF𝑛
(depending on 𝑛).

I.2 FSS-based protocols for secure ML

We now elaborate on our FSS protocols for stochastic truncate-
reduce and ReLU-Extend. As previously stated, the rest of our pro-
tocols can be trivially obtained by replacing DCF in Orca [38]’s
protocols with LtFSS.

I.2.1 Stochastic truncate-reduce. We exactly follow Orca’s [38]
mathematical logic for computing stochastic truncate-reduce with
two changes.

Lemma 5 ([38]). Let 𝑥, 𝑟 (𝑥) , 𝑥 ∈ U𝑁 be such that 𝑥 = 𝑥 + 𝑟 (𝑥)
mod 𝑁 . Let 𝑧 = 𝑥 mod 2𝑓 , 𝑧 = 𝑥 mod 2𝑓 and 𝑟 (𝑧) = 𝑟 (𝑥) mod 2𝑓 .

For 𝑠
$← U2𝑓 , let 𝑠 = 𝑠 + 𝑟 (𝑧) mod 2𝑓 . Then,

stTR𝑛,𝑓 (𝑥) = TR𝑛,𝑓 (𝑥)︸ ︷︷ ︸
𝑃1

+ 1{𝑧 > 𝑠}︸ ︷︷ ︸
FSS

− TR𝑛,𝑓 (𝑟 (𝑥)) − 1{𝑠 < 𝑟 (𝑧) }︸ ︷︷ ︸
Dealer

Orca computed the second term using a DCF-like FSS scheme
for greater-than comparison, 𝑓 >

𝑠,1. While the ideas behind LtFSS can
potentially be extended (in a non-black-box manner) to compute
greater-than as well, we do something simpler. We note that

1{𝑧 > 𝑠} = 1 − 1{𝑧 ⩽ 𝑠}

= 1 − 1{𝑧 < (𝑠 + 1) mod 2𝑓 }︸ ︷︷ ︸
Computed via FSS

− 1{𝑠 = 2𝑓 − 1}︸ ︷︷ ︸
Computed by Dealer

)

Next, we reduce the communication of Orca as follows: Orca
reconstructs 𝑥 using 2𝑛 bits of communication, and parties locally
compute 𝑧 = 𝑥 mod 2𝑓 . We note that while both parties need to
learn 𝑧, only 𝑃1 needs to learn 𝑥 . We can achieve this with only
(𝑛+ 𝑓) bits of communication as follows: 𝑃0 computes 𝑥0 = 𝑥0+𝑟 (𝑥)0
and sends it to 𝑃1. Also, 𝑃1 computes 𝑧1 = 𝑥1 + 𝑟 (𝑥) mod 2𝑓 and
sends to 𝑃0. Then, 𝑃0 computes 𝑧 = 𝑥0 + 𝑧1 mod 2𝑓 . Also, 𝑃1
computes 𝑥 = 𝑥1 + 𝑟 (𝑥)1 + 𝑥0 and 𝑧 = 𝑥 mod 2𝑓 .

Our protocol for stochastic truncate-reduce is given in Figure 10
that satisfies the following theorem.

Theorem 8. There exists a protocol Π𝐹 stTR
𝑛,𝑓

that securely computes

stTR𝑛,𝑓 with keysize(Π𝐹 stTR𝑛,𝑓
) = keysize(LtFSS𝑓)+keysize(ΠB2A

𝑛−𝑓)+
2𝑛−𝑓 , comm(Π𝐹 stTR

𝑛,𝑓
) = comm(ΠB2A

𝑛−𝑓)+𝑛+𝑓 and rounds(Π𝐹
stTR
𝑛,𝑓
) =

rounds(ΠB2A
𝑛−𝑓) + 1.

I.2.2 ReLU-Extend. Let 𝑥, 𝑟, 𝑥 ∈ U2𝑛−𝑓 be such that 𝑥 = 𝑥 + 𝑟
mod 2𝑛−𝑓 . Let 𝑑 = DReLU(𝑥) and 𝑤̃ = 1{𝑥 < 𝑟 }. Orca uses one
DCF key and two evaluations of DCF to compute the DReLU bit 𝑑
and the bit 𝑤̃ for the secret value 𝑥 . Then, it uses (𝑑, 𝑤̃) to perform
a selection from a table of 4 values. To enable this, 𝑑, 𝑤̃ ∈ U4, that
is both 𝑑 and 𝑤̃ are 2-bit outputs of secure comparisons done with
DCF. One straightforward way to modify Orca’s protocol to use
comparisons with 1-bit outputs (so we can use LtFSS) is to first
obtain 𝑑 and 𝑤̃ as single bit values, and then use our protocol for
Boolean-to-Arithmetic to convert (𝑑, 𝑤̃) to values in U4. While this
would work, it requires an additional round of interaction and 4
bits of online communication over Orca. Instead, below, we build
on the ideas described in Section G to require a single evaluation of
LtFSS (instead of 2 evaluations of DCF) and also avoid the above
overhead of extension by re-designing the logic of ReLU-Extend to
work directly with one-bit comparison outputs. Overall compared to
ReLU-Extend in Orca, for 𝑛 = 64 and 𝑓 = 24, we have a marginally
(1.05×) lower keysize, 4× fewer PRG calls, the same number of
rounds, and 6 fewer bits of communication.

We reuse our ideas from Section G to design our new FSS-based
protocol for ReLU-Extend. Let 𝑥, 𝑟 (𝑥) , 𝑥 ∈ U2𝑛−𝑓 be such that 𝑥 =

𝑥 − 𝑟 (𝑥) mod 2𝑛−𝑓 . We interpret 𝑥 as being shared between the
dealer in the offline phase with share −𝑟 (𝑥) and the two parties in
the online phase with share 𝑥 . As we did in Section G, we define
𝑦0 = 𝑥 mod 2𝑛−𝑓 −1, 𝑦1 = −𝑟 (𝑥) mod 2𝑛−𝑓 −1 and carry = 1{𝑦0 +
𝑦1 > 2𝑛−𝑓 −1 − 1}. We compute carry as 1{2𝑛−𝑓 −1 − 1 − 𝑦0 < 𝑦1}

20

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

Stochastic Truncate-Reduce Π𝐹 stTR
𝑛,𝑓

Gen𝐹 stTR
𝑛,𝑓

:

1: 𝑟 (𝑥)
$← U2𝑛 ; share 𝑟 (𝑥)

2: 𝑟 (𝑧) = 𝑟 (𝑥) mod 2𝑓

3: 𝑠
$← U2𝑓 ; 𝑠 = 𝑠 + 𝑟 (𝑧) mod 2𝑓

4: 𝑡 = 𝑠 + 1 mod 2𝑓
5: (𝑘<0 , 𝑘

<
1) ← Gen<

𝑓
(𝑡)

6: 𝑞 = 1 − TR𝑛,𝑓 (𝑟 (𝑥)) − 1{𝑠 < 𝑟 (𝑧) } − 1{𝑠 = 2𝑓 − 1}
mod 2𝑛−𝑓

7: share 𝑞
8: (𝑘B2A0 , 𝑘B2A1) ← GenB2A

𝑛−𝑓
9: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑟

(𝑥)
𝑏
| |𝑘<

𝑏
| |𝑘B2A

𝑏
| |𝑞𝑏

Eval𝐹 stTR
𝑛,𝑓
(𝑏, 𝑘𝑏 , 𝑥𝑏) :

1: Parse 𝑘𝑏 as 𝑟 (𝑥)
𝑏
| |𝑘<

𝑏
| |𝑘B2A

𝑏
| |𝑞𝑏

2: 𝑥𝑏 = 𝑥𝑏 + 𝑟
(𝑥)
𝑏

mod 2𝑛 ; 𝑧𝑏 = 𝑥𝑏 mod 2𝑓
3: 𝑃0 sends 𝑥0 to 𝑃1. 𝑃1 sends 𝑧1 to 𝑃0.
4: 𝑃0 computes 𝑧 = 𝑧0+𝑧1 mod 2𝑓 . 𝑃1 computes 𝑥 = 𝑥0+𝑥1

mod 2𝑛 and 𝑧 = 𝑥 mod 2𝑓 .
5: 𝑝𝑏 ← Eval<

𝑓
(𝑏, 𝑘<

𝑏
, 𝑧)

6: 𝑝′
𝑏
← EvalB2A

𝑛−𝑓 (𝑏, 𝑘
B2A
𝑏

, 𝑝𝑏)
7: return 𝑧𝑏 = 𝑏 · TR𝑛,𝑓 (𝑥) − 𝑝′𝑏 + 𝑞𝑏

Figure 10: FSS protocol for stTR𝑛,𝑓
using LtFSS𝑛−𝑓 −1. Let 𝑔 = −𝑟 (𝑥) mod 2𝑛−𝑓 and ℎ = MSB(𝑔).
The dealer gives out boolean shares of 𝑟 (𝑐)

$← {0, 1}, and parties
reconstruct 𝑐 , which is the carry bit masked by 𝑟 (𝑐) . Once parties
have 𝑥 and 𝑐 , they compute 𝑑 = 𝑥 ⊕ 𝑐 , which we interpret as
the DReLU bit 𝑑 masked by 𝑟 (𝑐) ⊕ ℎ ⊕ 1. Now, in Section G, we
explicitly compute the wrap bit 𝑤 = 1{𝑥 + 𝑔 > 2𝑛−𝑓 − 1} via a
boolean formula. This boolean formula, whenmapped to the current
setting, takesMSB(𝑥), ℎ and the carry bit as input. In contrast to
LSS, where all three inputs of the boolean formula were secret, here,
MSB(𝑥) is known to the parties, and ℎ is known to the dealer in
the offline phase. Only the carry bit is secret. We exploit this to
avoid computing𝑤 explicitly (since that costs one round and 2 bits
of communication). Let 𝑑′ = extend(𝑑, 𝑛), 𝑤 ′ = extend(𝑤,𝑛), 𝑢 =

extend(𝑔, 𝑛) and 𝑥 ′ = extend(𝑥, 𝑛). Recall that ReLUExt𝑛−𝑓 ,𝑛 (𝑥) =
select𝑛 (𝑑, 𝑥 ′ +𝑢 − 2𝑛−𝑓 ·𝑤 ′) = 𝑑′ · 𝑥 ′ +𝑑′ · 𝑢 − 𝑑′ ·𝑤 ′ · 2𝑛−𝑓 (this
follows from Lemma 3). We now use the following lemma, which
computes the underlined part directly as a function of MSB(𝑥),
𝑢 and carry. We can thus compute ReLUExt𝑛−𝑓 ,𝑛 with no further
interaction after computing carry.

Lemma6. Let𝑥, 𝑟 (𝑥) , 𝑥 ∈ U2𝑛−𝑓 be such that𝑥 = 𝑥+𝑟 (𝑥) mod 2𝑛−𝑓 .
Let 𝑢 = extend(−𝑟 (𝑥) mod 2𝑛−𝑓 , 𝑛), 𝑠 = extend(MSB(−𝑟 (𝑥)), 𝑛),
𝑠′ = 1 − 𝑠 , 𝑡 = 𝑢 · 𝑠 and 𝑡 ′ = 𝑢 · 𝑠′. Let 𝑑′ = extend(DReLU(𝑥), 𝑛),
carry = 1{𝑥 − 𝑟 (𝑥) > 2𝑛−𝑓 − 1} and 𝑦 = MSB(𝑥). Let 𝑥 ′ =

extend(𝑥, 𝑛). Then, ReLUExt𝑛−𝑓 ,𝑛 (𝑥) = 𝑑′ ·𝑥 ′+𝐹𝑠,𝑡 (carry, 𝑦), where
𝐹𝑠,𝑡 is given by

𝐹𝑠,𝑡 (carry, 𝑦) =


𝑡 ′ carry = 0, 𝑦 = 0
𝑡 − 2𝑛−𝑓 · 𝑠 carry = 0, 𝑦 = 1
𝑡 − 2𝑛−𝑓 · 𝑠 carry = 1, 𝑦 = 0
𝑡 ′ − 2𝑛−𝑓 · 𝑠′ carry = 1, 𝑦 = 1

Proof. Let 𝑔 = −𝑟 (𝑥) mod 2𝑛−𝑓 ,𝑤 = 1{𝑥 +𝑔 > 2𝑛−𝑓 − 1} and
𝑤 ′ = extend(𝑤,𝑛). We have from Lemma 3 that

ReLUExt𝑛−𝑓 ,𝑛 (𝑥) = 𝑑′ · 𝑥 ′ + 𝑑′ · 𝑢 − 𝑑′ ·𝑤 ′ · 2𝑛−𝑓 (1)

Thus, it suffices to show that 𝐹𝑠,𝑡 correctly computes the under-
lined part. Given 𝑦 and carry, the DReLU bit 𝑑′ can be computed
as

𝑑′ =


1 − 𝑠 carry = 0, 𝑦 = 0
𝑠 carry = 0, 𝑦 = 1
𝑠 carry = 1, 𝑦 = 0
1 − 𝑠 carry = 1, 𝑦 = 1

Similarly, 𝑑′ ·𝑤 ′ can be computed as

𝑑′ ·𝑤 ′ =


0 carry = 0, 𝑦 = 0
𝑠 carry = 0, 𝑦 = 1
𝑠 carry = 1, 𝑦 = 0
1 − 𝑠 carry = 1, 𝑦 = 1

By substituting the above expressions for 𝑑′ and 𝑑′ · 𝑤 ′ in the
underlined part of Equation 1, the lemma follows. □

Following the above lemma, we compute arithmetic shares of 𝑑′

from the masked DReLU bit (with underlying mask 𝑟 (𝑐) ⊕ ℎ ⊕ 1)
using the expression in Appendix B for ΠB2A

𝑛 . We compute 𝐹𝑠,𝑡
by having the dealer secret share a look-up table indexed by the
carry and 𝑦 bits. Parties have access to the masked carry bit, so the
dealer appropriately rotates the look-up table to ensure that parties
look up the correct entry of look-up table in the online phase. Our
protocol is given in Figure 11.

Theorem 9. ΠReLUExt
𝑛−𝑓 ,𝑛 securely computes ReLUExt𝑛−𝑓 ,𝑛 with

keysize(ΠReLUExt
𝑛−𝑓 ,𝑛) = keysize(LtFSS𝑛−𝑓 −1) + 6𝑛 − 𝑓 + 1,

comm(ΠReLUExt
𝑛−𝑓 ,𝑛) = 2𝑛−2𝑓 +2 and rounds(ΠReLUExt

𝑛−𝑓 ,𝑛) = 2. It requires
one evaluation of LtFSS𝑛−𝑓 −1 in the online phase.

J Model details

The architecture of VGG16 is identical to the corresponding plain-
text model. Plaintext ResNet-18 and ResNet-50 have batch normal-
ization after convolution. A common optimization implemented
during inference (in PyTorch, and in CrypTen) is to fold the weight-
s/biases of batch normalization into the weights/biases of the pre-
ceding convolution [80, 82]. This reduces the number of operations
required during inference and improves efficiency. Since multi-
plication is commutative and associative over reals, the function
computed after merging the two (linear) layers is identical to the
one computed before merging, and so merging does not affect ac-
curacy. In Table 2, PyTorch accuracy is with batch normalization,
and fixed-point accuracy is after merging. Since merging causes no
accuracy loss, we follow PyTorch and CrypTen and merge convo-
lution and batch normalization in ResNet-18 and ResNet-50. For
fairness, we use the same architecture for ResNet-18 and ResNet-50
across all our baselines (CrypTen supports it by default).

21

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

Conference’17, July 2017, Washington, DC, USA Neha Jawalkar, Nishanth Chandran, Divya Gupta, Rahul Sharma, and Arkaprava Basu

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

ReLU-Extend Π𝐹ReLUExt
𝑛−𝑓 ,𝑛

Gen𝐹ReLUExt
𝑛−𝑓 ,𝑛 :

1: 𝑟 (𝑥)
$← U2𝑛−𝑓 ; share 𝑟

(𝑥)

2: 𝑦1 = −𝑟 (𝑥) mod 2𝑛−𝑓 −1
3: (𝑘<0 , 𝑘

<
1) ← Gen<

𝑛−𝑓 −1 (𝑦1)

4: 𝑟 (𝑐)
$← {0, 1}; share 𝑟 (𝑐)

5: 𝑔 = −𝑟 (𝑥) mod 2𝑛−𝑓 ; ℎ = MSB(𝑎)
6: 𝑢 = extend(𝑔, 𝑛); 𝑠 = extend(ℎ, 𝑛)
7: 𝑟 (𝑑) = 𝑟 (𝑐) ⊕ 𝑓 ⊕ 1
8: 𝑟 ′ = extend(𝑟 (𝑑) , 𝑛); share 𝑟 ′
9: 𝑠′ = 1 − 𝑠
10: 𝑡 = 𝑢 · 𝑠; 𝑡 ′ = 𝑢 · 𝑠′
11: e = {(𝑡 ′, 𝑡 −2𝑛−𝑓 ·𝑠), (𝑡 −2𝑛−𝑓 ·𝑠, 𝑡 ′−2𝑛−𝑓 ·𝑠′)}≫ 𝑟 (𝑐)

12: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑟
(𝑥)
𝑏
| |𝑘<

𝑏
| |𝑟 (𝑐)

𝑏
| |𝑟 ′

𝑏
| |e𝑏

Eval𝐹ReLUExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑥𝑏) :

1: Parse 𝑘𝑏 = 𝑟
(𝑥)
𝑏
| |𝑘<

𝑏
| |𝑟 (𝑐)

𝑏
| |𝑟 ′

𝑏
| |e𝑏

2: 𝑥𝑏 = 𝑥𝑏 + 𝑟
(𝑥)
𝑏

mod 2𝑛−𝑓
3: 𝑥 ← reconstruct (𝑥𝑏)
4: 𝑦0 = 𝑥 mod 2𝑛−𝑓 −1

5: 𝑐𝑏 ← Eval<
𝑛−𝑓 (𝑏, 𝑘

<
𝑏
, 2𝑛−𝑓 −1 − 1 − 𝑦0)

6: 𝑐𝑏 = 𝑐𝑏 ⊕ 𝑟
(𝑐)
𝑏

; 𝑐 ← reconstruct (𝑐𝑏)
7: 𝑦 = MSB(𝑥); 𝑑 = 𝑦 ⊕ 𝑐
8: 𝑑′ = extend(𝑑, 𝑛)
9: 𝑑′

𝑏
= 𝑏 · 𝑑′ + (1 − 2𝑑′) · 𝑟 ′

𝑏

10: Parse e𝑏 [𝑐] as (𝑞 (0) , 𝑞 (1))
11: 𝑥 ′ = extend(𝑥, 𝑛)
12: return 𝑧𝑏 = 𝑑′

𝑏
· 𝑥 ′ + 𝑞 (𝑦̂)

Figure 11: FSS protocol for ReLUExt𝑛−𝑓 ,𝑛

K Extending MM to transformers

The ideas driving MM can be extended to secure transformer in-
ference as well. To illustrate, we consider SIGMA [33], which is
the current state-of-the-art in secure transformer inference in the
preprocessing model. SIGMA designs accuracy-preserving approxi-
mations of the complex non-linearities in transformers (e.g. GeLU)
and realizes them securely via FSS-based protocols. These approx-
imations use comparisons, linear functions and small look-up ta-
bles (LUTs). We provide efficient LSS-based comparison in this
work. SIGMA’s LUTs are small (most have 28 entries) and only
need boolean secret-shared vectors. Thus, we have all the building
blocks we need to construct an LSS-based protocol suite for secure
transformer inference. We can use the techniques outlined in this
paper to choose between LSS and FSS based on the deployment
scenario and to further employ heterogeneity (mixing LSS and FSS)
whenever it is useful.

22

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Linear Secret Sharing (LSS) Schemes
	2.2 Protocol Structure and Threat Model
	2.3 Protocols common to LSS and FSS
	2.4 Secure CNN Inference

	3 LSSM: Optimized LSS for Matchmaker
	3.1 Millionaires' and Wrap
	3.2 Stochastic truncations
	3.3 Accelerating Comparison on CPU
	3.4 Key compression

	4 FSSM : Improving FSS-based Orca
	5 A case for Matchmaker
	6 Design and Implementation of Matchmaker
	6.1 Optimized LSSM and FSSM
	6.2 Profile-guided work distribution

	7 Evaluation
	7.1 LSSM and FSSM: The new state-of-the-art
	7.2 Performance breakdown of LSSM and FSSM
	7.3 Putting It All Together: Matchmaker under different deployment scenarios

	8 Related work
	A Comparing LSSM with Piranha
	B Boolean shares to arithmetic shares
	C Select
	D Security proof of Millionaire's and Wrap
	D.1 Security proof of LMilln
	D.2 Security proof of Lwrapn

	E LSS-based ReLU
	F LSS-based Stochastic Truncation
	F.1 Proof of Lemma 1
	F.2 LSS-based protocol for Stochastic Truncation
	F.3 LSS-based Signed Extension

	G LSS-based ReLU-Extend
	G.1 Proof of Lemma 3
	G.2 Protocol Description

	H Details of LSS Key Compression
	I Details of FSSM
	I.1 2PC with pre-processing based on FSS
	I.2 FSS-based protocols for secure ML

	J Model details
	K Extending MM to transformers

