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Abstract

Secure Two-Party Computation (2PC) enables secure inference with
cryptographic guarantees that protect the privacy of the model
owner and client. However, it adds significant performance over-
head. In this work, we make 2PC-based secure inference efficient
while considering important deployment scenarios.
We observe that the hitherto unconsidered latency of fetching keys
from storage significantly impacts performance, as does network
speed. We design a Linear Secret Sharing (LSS)-based system LSSM
and a Function Secret Sharing (FSS)-based system FSSM for se-
cure inference, optimized for small key size and communication,
respectively. Notably, our highly-optimized and hardware-aware
CPU-based LSSM outperforms prior GPU-based LSS systems by
up to 50×. We then show that the best choice between LSSM and
FSSM depends on the deployment scenario. In fact, under certain
deployments, a combination of LSSM and FSSM can leverage het-
erogeneous processing across CPU and GPU. Such protocol-system
co-design lets us outperform state-of-the-art secure inference sys-
tems by up to 21× (geomean 3.25×).

1 Introduction

Secure inference can be achieved via the cryptographic technique of
secure 2-party computation (2PC). 2PC gives the formal guarantee
that the client learns nothing about the model beyond the inference
output and the model owner learns nothing about the client’s input.
While secure inference is well-explored ( [20, 36, 38, 39, 42, 50, 52, 59,
61, 76] and references therein), state-of-the-art systems for secure
inference via 2PC incur large performance overheads that limit
its broad practical applicability. Our goal in this work is to reduce
these overheads to make secure inference more useful.

The fastest systems for secure inference today [38,42,76] use the
preprocessing model, which has two phases. In the offline phase, a
trusted dealer gives input-independent correlated randomness, aka
keys, to the two parties who wish to securely compute a function 𝑓 .
In the online phase parties use these keys to securely compute 𝑓 on
their secret inputs. Works in this model, including ours, focus on
reducing online complexity.

In this work, we analyse and address the performance bottle-
necks of the state-of-the-art (SOTA) 2PC systems for secure infer-
ence when deployed in real scenarios. We make the crucial observa-
tion that while the keys can be large in SOTA systems [38,40,42,76]
– e.g. for a reasonably sized model like VGG16 (batch size of 50),
Orca [38] and CrypTen [42] need keys of size 255 GB and 580 GB,

respectively – evaluation in all prior works make the unreason-
able assumption that keys would be readily available in memory
for fast consumption at inference time. This assumption, however,
does not hold in practical systems serving high-throughput batch
inference queries. In real-world settings, keys must be retrieved
from storage, introducing a significant performance bottleneck. For
instance, using Orca [38], the leading system for convolutional neu-
ral networks (CNNs), we observe that reading keys from storage
incurs a substantial overhead of 9 minutes for a VGG16 model with
a batch size of 50, whereas the online inference time, once the keys
are loaded into memory, is only 20 seconds. This stark discrepancy
highlights the need for a fundamental redesign of 2PC systems to
address the challenges of secure inference at scale.

In particular, we explore how diverse practical deployment sce-
narios affect the performance of secure inferencing platforms and
focus on a holistic protocol-system co-design that delivers signif-
icant speedups across varied scenarios. First, we make a critical
observation that whether the keys are available in memory or must
be fetched from storage significantly impacts the performance of a
secure inferencing service. Moreover, the request arrival rate at the
secure inference service can determine whether the keys can be
found in the memory or must be fetched from the storage. The
request arrival rate often varies widely and can be hard to predict
for any webservice [66, 75], If the requests arrive intermittently,
there is enough slack to fetch the keys into the memory before
computation starts. However, at a high request arrival rate and/or
when many requests come in a burst, the time to fetch keys from
the storage would be in the critical path of execution.

The second factor that dictates performance is the network speed
between the computing parties. The computing parties can reside in
the same datacenter and thus be connected over a fast LAN network.
They can also be located across different parts of the globe and thus
be connected over a slow network, e.g., WAN. While the amount of
communication needed for secure computation varies across pro-
tocols and systems, even the most communication-efficient secure
inference systems [33,38] transmit tens of GBs for reasonably large
inference tasks. Consequently, the speed of the network connecting
the parties has a significant bearing on the performance. 1

We identify four key deployment scenarios, which arise from the
combination of two crucial deployment considerations discussed
above: 1○whether the keys required for the online phase are readily

1While some of the prior works have evaluated their performancewith varying network
speeds, as we show later, variation in network speed alone does not provide much
meaningful insight.
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available in the memory or must be fetched from the storage, and
2○ the network speed between the parties (e.g., LAN vs. WAN).
We show that each of these deployment scenarios exhibits distinct
performance characteristics in the context of secure inference sys-
tems. Furthermore, two of these scenarios open up new avenues
for innovation in system design (see "Hetero" below).

In creating a fast secure inferencing system that is adaptable to
diverse deployment scenarios through protocol-system co-design,
we start by focusing on 2PC protocols under the pre-processing
model. Further, to make discussions concrete, we focus on CNN
inference. However, the techniques proposed are applicable be-
yond CNNs, including transformers (see Appendix K) as well as
to training. While CNNs have two types of layers – linear layers,
e.g., matrix multiplication; and non-linear layers, e.g., ReLU, over
(> 90%) of time in secure inferences is attributable to the non-linear
layers. We, thus, focus on securely computing non-linear layers.
LSS vs FSS. There are two broad classes of cryptographic pro-
tocols that can be used to compute non-linear layers – Linear
Secret Sharing (LSS) [31, 42, 52, 76], and Function Secret Sharing
(FSS) [13, 34, 64]. LSS-based protocols communicate more bytes
and more frequently (rounds) compared to FSS-based protocols.
On the other hand, FSS-based protocols need more compute (AES
calls) and larger keys (storage) compared to LSS-based protocols.
Theoretically, we expect LSS-based protocols to stress the network
and FSS-based protocols to stress the compute and storage. How-
ever, observing this in practice relies on performant implemen-
tations, which, as we will show in Section 7, is not necessarily
true for prior LSS-based systems. Hence, to quantify their differ-
ences under different deployment scenarios, we first create LSS
and FSS-based protocol suites for secure CNN inference (described
later) that beat state-of-the-art in their respective protocol class.
We call these LSSM and FSSM respectively. We notice that, across
different models, LSSM communicates ≈ 2.5× as much as FSSM
over 3× as many rounds, while FSSM needs keys that 25-27× larger
than LSSM’s. Naturally, when the network is slow (e.g., WAN), and
keys are in memory, FSSM beats communication-heavy LSSM by
2.2 − 2.5×. However, when the network is fast (e.g., LAN), and
keys are in storage (previously unexplored), LSSM beats FSSM (and
all prior works) by 18× or more. In short, we demonstrate that
one size (protocol) does not fit all (deployments). One must choose
different protocols for different deployment scenarios.
Hetero. We then discover a hitherto unexplored opportunity to
leverage heterogeneous processing. We notice that in certain deploy-
ment scenarios such as when parties are connected over LAN and
keys are inmemory, or when they are connected overWAN but keys
are in storage, both LSSM and FSSM perform similarly (Figure 2).
Further, computation-heavy FSSM benefits significantly from the
large computational power of Graphics Processing Units (GPUs). In
contrast, LSSM, being inherently communication-heavy, has limited
usefulness of GPUs, once optimized to leverage advanced vector-
ization features of modern CPUs. Thus, while FSSM can leverage
GPU to compute non-linearities, LSSM can rely only on the CPU to
significantly boost the throughput of inference serving. In short,
one could simultaneously harness both CPU and GPU computing,

i.e., heterogenous processing, through carefully matching proto-
cols with hardware capabilities to achieve throughputs that are not
possible to attain using only the CPU or the GPU for computing.
Matchmaker. To ease the burden of manually choosing the right
protocol or a combination thereof, in varying deployment scenarios,
we create a software tool Matchmaker (MM). It uses profile-guided
modeling to automatically divide work across LSSM and FSSM under
any deployment in the true spirit of protocol-system co-design. By
judiciously choosing protocols across all scenarios, MM beats the
state-of-the-art in secure inference (Orca) by up to 21× (Section 7.3).
LSS

M
and FSS

M
. One of our key contributions is the creation of

highly optimized new state-of-the-art LSS and FSS-based protocols,
LSSM and FSSM, that form the backbone of MM. They harness both
protocol and hardware-aware optimizations to attain significant
speedups over their respective state-of-the-art.

We observe that the majority of time in LSS-based non-linear
layers can be attributed to secure comparison. We provide a new
protocol for comparison that leverages the structure of its tree-like
boolean circuit [42, 76] to 1○ use correlated Beaver bit-triples that
reduce key size, and 2○ optimize ANDs at the leaves to reduce com-
munication (Section 3.1). Importantly, LSSM introduces hardware-
aware optimizations to speed up secure comparison. We carefully
harness both vector compute and vector memory instructions on
modern CPUs. Vector instructions allow simultaneous execution
of the same operation (e.g., AND) on different data elements (i.e.,
data parallel). We leverage data parallelism across concurrently ex-
ecuting comparison circuits to fully benefit from the wide vector
instructions (256/512 bits) of today’s CPUs. However, this requires
the reorganization of input data, which, if not performed efficiently,
can eclipse the benefits of vectorizing the compute (ANDs/XORs).
We then observe that input reorganization can be efficiently per-
formed by leveraging vector memory (gather) instructions. Lastly,
protocols in LSSM have been designed to work with small keys
such that even in a fast LAN setting, the time to fetch the keys from
storage to memory can be hidden behind online computation time
once keys are in memory. In particular, the key size of LSSM is up
to 69× smaller than prior LSS-based systems and 29× smaller than
state-of-the-art in secure inference, i.e., Orca. While the key size
can be reduced further using techniques from silent pre-processing
literature, these are known to add significant overhead to online
compute time that would be detrimental [14, 77].

Overall, LSSM beats state-of-the-art LSS-based secure inference
systems by up to 29× in communication (Section 7.1) and by up to
31× in latency even in the well-studied setting of LAN and keys
in memory. Notice that the highly optimized realization of LSSM
using only the CPU leaves the GPU for FSSM, paving the path for
heterogeneous processing.

Finally, we enhance state-of-the-art FSS-based Orca [38] to use a
more efficient comparison scheme [67]. We also incorporate other
optimizations (Section 4) to create our FSS-based secure inference
system FSSM, which is faster than Orca by up to 2.2× (Section 7.1.4).
To summarize, our contributions are:
• An optimized LSS-based inference system, LSSM, that runs non-
linearities on a CPU, and still beats the state-of the-art GPU accel-
erated LSS-based systems by up to 50×. LSSM has 29-69× smaller
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key size than state-of-the-art, resulting in significant speedups (up
to 50×) in the critical high-throughput deployment.
• Isolating two critical considerations in practical deployments of
secure inference systems – the location of keys (memory or storage)
and network speed, we show that there is no one size fits all protocol
between LSSM and FSSM across deployment scenarios.
• Recognizing the opportunity to leverage heterogeneous processing
by simultaneously running LSSM on the CPU and FSSM on the GPU
to boost performance.
• Matchmaker leverages our insights and automatically picks the
best combination of protocols. MM beats state-of-the-art secure
inference by up to 21× (geomean 3.25×).

2 Preliminaries

Notation: Let 𝜆 be the computational security parameter. For a
positive integer 𝑛, let 𝑁 = 2𝑛 . We denote the set of 𝑛-bit unsigned
integers by U𝑁 . We denote the set of integers by Z. Arrays are
denoted by boldface, e.g. e, and the 𝑖𝑡ℎ element of e is denoted by
e[𝑖]. We use 0-based indexing for arrays. For a predicate 𝑝 , 1{𝑝} is
an indicator function which returns 1 if 𝑝 is true and 0 otherwise.
We use 𝑥

$← U𝑁 to denote that 𝑥 has been sampled uniformly at
random from U𝑁 .
Operators. For 𝑥 ∈ U𝑁 , we write int𝑛 (𝑥) when we wish to inter-
pret 𝑥 as an 𝑛-bit signed integer in 2’s complement representation.
We use MSB(𝑥) to denote the most significant bit of 𝑥 . For𝑚 > 𝑛,
we use extend(𝑥,𝑚) to denote the operation of prefixing𝑚 − 𝑛 0s
to 𝑥 . We use≫ to mean logical right shift and≫𝐴 to mean arith-
metic right shift. For an array e, we use e ≫ 𝑖 to denote cyclically
rotating the elements of e by 𝑖 places to the right. We denote logical
XOR by ⊕ and logical AND by ∧. We use | | to denote concatenation.
Fixed-point representation. A real number 𝑥 is converted to
fixed-point representationwith bitwidth𝑛 and precision 𝑓 as ⌊𝑥 ·2𝑓 ⌋
mod 𝑁 . A fixed-point number 𝑥 with bitwidth 𝑛 and precision 𝑓 is
converted to a real number as int𝑛 (𝑥 )

2𝑓 .

2.1 Linear Secret Sharing (LSS) Schemes

Arithmetic Secret Sharing. For 𝑥 ∈ U𝑁 , arithmetic secret sharing
randomly samples 𝑥0, 𝑥1

$← U𝑁 such that 𝑥0 + 𝑥1 = 𝑥 mod 𝑁 . We
denote the process of secret sharing 𝑥 by share 𝑥 . For 𝑏 ∈ {0, 1},
the share of party 𝑃𝑏 is denoted by 𝑥𝑏 . We refer to the process of
parties exchanging their shares and adding them to recover the
underlying value by reconstruct (𝑥𝑏 ).
Boolean secret sharing. When 𝑥 ∈ {0, 1} (or when 𝑥 ∈ U2),
we can also get 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 shares, i.e. random bits 𝑥0, 𝑥1 such that
𝑥0 ⊕ 𝑥1 = 𝑥 . Logical XOR is simply addition modulo 2.

2.2 Protocol Structure and Threat Model

2PC with preprocessing.We consider 2PC in the preprocessing
model [10,11,17,26,37], which has been considered by many recent
works on secure inference [33, 38, 76]. In this model, parties 𝑃0
and 𝑃1 with private inputs 𝑥0 and 𝑥1 securely compute, through
a protocol, a publicly known function 𝑓 of their inputs. In the
context of secure neural network inference, 𝑥0 refers to the private
weights of the model, 𝑥1 is the input on which to evaluate the
model, and 𝑓 is the structure of the neural network - however, as

is common in all prior works, 𝑥0 and 𝑥1 will be arithmetic shares
of the private weights and input of the two parties; the function
securely evaluated will then first reconstruct these shares internally
and then compute 𝑓 on it. A protocol Π𝑓 for a function 𝑓 is a pair
of algorithms (Gen𝑓 , Eval𝑓 ). Gen𝑓 , which depends only on 𝑓 and
not any of the inputs, is run by a trusted dealer in a pre-processing
phase and generates a pair of correlated random strings (also called
keys) denoted by (𝑘 𝑓0 , 𝑘

𝑓

1 ). Generic or specialized 2PC protocols
can emulate the trusted dealer. In the online phase, the dealer is no
longer involved, and for 𝑏 ∈ {0, 1}, party 𝑃𝑏 runs Eval(𝑏, 𝑘 𝑓

𝑏
, 𝑥𝑏 ) to

get 𝑓 (𝑥)𝑏 , which is its share of the output 𝑓 (𝑥). We denote the size
of the key per party for Π𝑓 by keysize(Π𝑓 ), the total number of bits
communicated (by both parties) by comm(Π𝑓 ), and the number of
rounds of communication by rounds(Π𝑓 ). In this work, we focus
on the online phase and not on Gen𝑓 .
Security. Our protocols are proven simulation secure in the ide-
al/real paradigm [19, 48], with security proven against one semi-
honest corruption. Informally, security implies that the protocol
computation does not leak anything about 𝑥0 to 𝑃1 (and similarly
about 𝑥1 to 𝑃0) beyond what is implied by the function output,
𝑓 (𝑥0, 𝑥1), as long as 𝑃0 (and similarly 𝑃1) follow the protocol speci-
fication faithfully (semi-honest behaviour). We will construct proto-
cols for various functions in which parties begin the protocol with
secret shares of the inputs to the function and end the protocol
with secret shares of the output to the function. This will allow us
to sequentially compose different protocols. By proving the stand-
alone security of protocols for various functions such as matrix
multiplications, convolutions, ReLU, and so on, and by invoking
the sequential composition theorem [19], we can prove the security
of the entire end-to-end protocol for secure inference. Security of
our standalone protocols can be proved in the hybrid model [19]
following the template in Appendix D.

2.3 Protocols common to LSS and FSS

We consider protocols for 2PC in the pre-processing model based
both on Linear Secret Sharing (LSS) [31] schemes as well as Function
Secret Sharing (FSS) [13, 17] schemes. We now describe existing
protocols for commonly occurring functionalities in secure ML.
These protocols are the same for LSS and FSS-based 2PC protocols.
Boolean to arithmetic secret shares. For 𝑠 ∈ {0, 1}, we define
B2A𝑛 (𝑠) = extend(𝑠, 𝑛) ∈ U𝑁 . It is easy to construct a protocol
ΠB2A
𝑛 = (GenB2A𝑛 , EvalB2A𝑛 ) that given secret shares of a bit 𝑠 , returns

secret shares of B2A𝑛 (𝑠) (see Appendix B). ΠB2A
𝑛 has keysize 𝑛 and

communicates 2 bits in a single round.
Matrix Multiplications and Convolutions.Matrix multiplica-
tions and convolutions can easily be realized using a generalization
of Beaver triples [10]. For a bilinear function 𝑓 : U𝑝

𝑁
× U𝑞

𝑁
→ U𝑟

𝑁
where 𝑝, 𝑞, 𝑟 are positive integers, the corresponding Beaver-triple
based protocol has keysize (𝑝+𝑞+𝑟 ) ·𝑛. It communicates 2 · (𝑝+𝑞) ·𝑛
bits in a single round. As a special case, to compute multiplication
of secret-shared inputs 𝑥,𝑦 ∈ U𝑁 , we require a key of size 3𝑛
and 2𝑛 bits of communication in a single round. To compute AND
of secret shared bits, we require a key of size 3 bits and 2 bits of
communication in a single round.
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Select. The functionality select𝑛 : U𝑁 × {0, 1} → U𝑁 takes
as input an 𝑛-bit value 𝑥 and a selector bit 𝑠 and returns 𝑠 · 𝑥 .
Orca [38] provides a protocol Πselect

𝑛 = (Genselect𝑛 , Evalselect𝑛 ) to se-
curely realize select𝑛 . It has keysize 3𝑛 and communicates 2𝑛 + 2
bits in a single round. For completeness, we present Πselect

𝑛 =

(Genselect𝑛 , Evalselect𝑛 ) in Appendix C.

2.4 Secure CNN Inference

Convolutional Neural Network (CNN) inference makes use of two
kinds of operations – linear operations, e.g., convolutions and ma-
trix multiplications, and non-linear operations, e.g., ReLU and Max-
pool. While plaintext MLworks over floating-point numbers, secure
ML works over fixed-point numbers for efficiency [38, 45, 52, 61].
Fixed-point numbers with bitwidth 𝑛 can easily be mapped to the
set of 𝑛-bit unsigned integers (U𝑁 ). Thus, linear operations can
be computed using the protocols outlined in Section 2.3. However,
when linear operations multiply two𝑛-bit fixed-point numbers with
precision 𝑓 , this results in a product with precision 2𝑓 . To return
to precision 𝑓 , we require a truncation operation, which drops the
last 𝑓 bits. Truncation is a non-linear operation. CNNs also contain
non-linear activations such as ReLU. For fixed-point numbers 𝑥,𝑦,
ReLU(𝑥) = 𝑥 · 1{𝑥 > 0}, and we compute max(𝑥,𝑦) required in
Maxpool as ReLU(𝑥 − 𝑦) + 𝑦. Non-linear operations have different
protocols across LSS and FSS, and we focus on these.
Network-level optimizations for fixed-point CNNs. Orca [38]
showed how to change the architecture of fixed-point CNNs such
that underlying functionality is identical to the original CNN, but
the cost of computing it securely is reduced. At a high level, Orca
is efficient because it works over bitwidths smaller than the fixed-
point bitwidth 𝑛 wherever possible and reuses the output of expen-
sive computations by fusing functionalities. We refer the reader
to [38] for details. As a result of applying Orca’s optimizations to
our models, we require LSS and FSS-based protocols for a new fused
functionality ReLU-Extend, which takes an (𝑛 − 𝑓 )-bit number 𝑥
as input and returns ReLU(𝑥) in 𝑛-bits as output.

3 LSS
M
: Optimized LSS for Matchmaker

As discussed in Section 2.4, we focus on computing non-linear
functionalities. Towards this, we first describe our novel LSS-based
protocol for the Millionaires’ problem [79] i.e., comparison on se-
cret inputs (Section 3.1). We use this as a building block for the
various ML functionalities outlined in the previous section. One
of our key contributions is the first secure LSS-based protocol for
stochastic truncation (Section 3.2). We also provide the first secure
LSS-based protocols for the other non-linear functionalities defined
in Orca [38]. To save space, we delegate these to Appendices E-
G. Notably, we provide new plaintext logic for the functionality
ReLU-Extend, which improves over Orca’s logic by needing fewer
comparisons (Appendix G).

In Section 3.3, we discuss how we efficiently implement our
protocol for the Millionaires’ problem by using vectorization to
accelerate computation on CPUs without needing to rely on GPUs
unlike prior work [42, 76]). We build an end-to-end system for
secure inference based on our LSS-based protocols and efficient
CPU-based comparison and call it LSSM. In Section 7.1, we compare

the performance of LSSM with state-of-the-art systems based on
LSS, Piranha [76] and CrypTen [42]. We show that LSSM is better
by at least an order of magnitude in latency and communication.

3.1 Millionaires’ and Wrap

In theMillionaires’ problem, 𝑃0 and 𝑃1 have secret inputs 𝑥,𝑦 ∈ U𝑁 ,
respectively, and wish to compute boolean shares of Lt𝑛 (𝑥,𝑦) =
1{𝑥 < 𝑦}. To compute Lt𝑛 , we construct a tree-like boolean cir-
cuit with AND and XOR gates. While our circuit follows that of
Cryptflow2 [61] and others [30], we compute the AND and XOR
gates using protocols in the preprocessing model (Section 2.3). Let
𝑥 = 𝑥1 | |𝑥0 and 𝑦 = 𝑦1 | |𝑦0 be such that 𝑥0, 𝑦0 are ⌈𝑛2 ⌉-bit strings and
𝑥1, 𝑦1 are ⌊𝑛2 ⌋-bit strings. Then,

1{𝑥 < 𝑦} = 1{𝑥1 < 𝑦1} ⊕ 1{𝑥1 = 𝑦1} ∧ 1{𝑥0 < 𝑦0}
1{𝑥 = 𝑦} = 1{𝑥1 = 𝑦1} ∧ 1{𝑥0 = 𝑦0}

Using these relations recursively, we can reduce comparison and
equality on 𝑛-bit strings to comparisons and equality on smaller
strings, resulting in a tree-like circuit of depth ⌈log𝑛⌉. When 𝑥,𝑦 ∈
{0, 1} (the base level of the recursion), we have,

1{𝑥 < 𝑦} = (𝑥 ⊕ 1) ∧ 𝑦; 1{𝑥 = 𝑦} = 𝑥 ⊕ 𝑦 ⊕ 1

Overall, for𝑛-bit comparisons, we obtain a boolean circuit with≈ 3𝑛
AND gates and depth ⌈log𝑛⌉, where 𝑛 AND gates are at the leaf
level to compute 1{𝑥𝑖 < 𝑦𝑖 } for each input bit. We further optimize
this circuit before realizing it with pre-processed bit-triples.

First, we observe that the AND gates at the leaf, that is, at the
base of the recursion, take secret values known to each of the parties
respectively as input and not secret shares of them. Hence, we can
optimize our protocol for AND so the key size required per leaf
node is 2 bits, and the communication required is 2 bits in 1 round.
Second, for recursion steps, both comparison and equality need one
ANDgate each. However, one of the inputs to the ANDgates is same,
and hence, we can generate correlated beaver triples2 as {𝑢, 𝑣1,𝑤1}
and {𝑢, 𝑣2,𝑤2} such that𝑤1 = 𝑢 ∧ 𝑣1 and𝑤2 = 𝑢 ∧ 𝑣2. We also save
on online communication and need 6 bits of total communication
per internal node compared to 8 bits needed naively. Finally, we
skip computing the equalities on the rightmost path in the tree on
the least significant chunks of values (as these are never used).

We design our comparison circuit to reduce the size of the corre-
lated randomness (keys) required to compute it securely. A practical
deployment consideration drives this – we noticed that previously
proposed LSS-based frameworks suffer significant slowdownswhen
they must fetch keys from storage in the critical path of computing
(Section 7.1). Thus, we strive to design LSSM to have small keys.
We avoid using circuits with many input AND gates, e.g., the one
in ABY2.0 [56], which slightly lower communication but at the
cost of a much larger key. For 64-bit comparison, ABY2.0 reduces
communication by 20% but has 2× larger keys.
We summarize the cost of our Millionaire’s protocol below.

Theorem 1. There exists a protocolΠ𝐿Mill
𝑛 = (Gen𝐿Mill

𝑛 , Eval𝐿Mill
𝑛 )

that securely computes Lt𝑛 with keysize(Π𝐿Mill
𝑛 ) = 7𝑛 − 2⌈log𝑛⌉,

comm(Π𝐿Mill
𝑛 ) = 8𝑛−2⌈log𝑛⌉−2 and rounds(Π𝐿Mill

𝑛 ) = ⌈log𝑛⌉+1.

2CryptFlow2 [61] made similar observation in 2PC context to reduce the cost of OTs.
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Stochastic Truncate-Reduce Π𝐿stTR
𝑛,𝑓

Gen𝐿stTR
𝑛,𝑓

:

1: 𝑟
$← U2𝑓 ; share 𝑟

2: 𝑤 = extend(wrap𝑓 (𝑟0, 𝑟1), 𝑛 − 𝑓 )
3: share𝑤
4: (𝑘wrap0 , 𝑘

wrap
1 ) ← Gen𝐿wrap

𝑓

5: (𝑘B2A0 , 𝑘B2A1 ) ← GenB2A
𝑛−𝑓

6: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑟𝑏 | |𝑘
wrap
𝑏
| |𝑘B2A

𝑏
| |𝑤𝑏

Eval𝐿stTR
𝑛,𝑓
(𝑏, 𝑘𝑏 , 𝑥𝑏 ) :

1: Parse 𝑘𝑏 as 𝑟𝑏 | |𝑘
wrap
𝑏
| |𝑘B2A

𝑏
| |𝑤𝑏

2: 𝑧𝑏 = 𝑥𝑏 mod 2𝑓
3: 𝑦𝑏 = 𝑧𝑏 + 𝑟𝑏 mod 2𝑓

4: 𝑣 (𝑏 ) = TR(𝑥𝑏 , 𝑓 ) + extend(wrap𝑓 (𝑧𝑏 , 𝑟𝑏 ), 𝑛 − 𝑓 )
5: 𝑝𝑏 ← Eval𝐿wrap

𝑓
(𝑏, 𝑘wrap

𝑏
, 𝑦𝑏 )

6: 𝑝′
𝑏
← EvalB2A

𝑛−𝑓 (𝑏, 𝑘
B2A
𝑏

, 𝑝𝑏 )
7: return 𝑧𝑏 = 𝑣 (𝑏 ) + 𝑝′

𝑏
−𝑤𝑏

Figure 1: LSS-based protocol for stTR𝑛,𝑓

Wrap. In subsequent protocols, we use Millionaires’ protocol to
compute thewrap bit which checks if the private input 𝑥 ∈ U𝑁 of 𝑃0
and the private input 𝑦 ∈ U𝑁 of 𝑃1 are such that 𝑥 +𝑦 > 2𝑛 −1 over
Z. Formally, for 𝑥,𝑦 ∈ U𝑁 we define the functionality wrap𝑛 (𝑥,𝑦)
that reduces to Lt𝑛 as follows:

wrap𝑛 (𝑥,𝑦) = 1{𝑥 + 𝑦 > 2𝑛 − 1} = Lt𝑛 (2𝑛 − 1 − 𝑥,𝑦)
Thus, LSS-based protocol for wrap𝑛 , denoted by Π𝐿

wrap
𝑛 =

(Gen𝐿wrap𝑛 , Eval𝐿wrap𝑛 ), is simply Π𝐿Mill
𝑛 with (2𝑛 −1−𝑥) as 𝑃0’s in-

put and𝑦 as 𝑃1’s input. We provide security proofs for our protocols
for Millionaire’s and Wrap in Appendix D.

3.2 Stochastic truncations

Truncations are used to reduce the scale of fixed-point values to
avoid overflows after a multiplication operation. Prior works have
used two kinds of truncations - faithful and stochastic. In stochastic
truncations, the output is rounded up or down with a probability
depending on the value of the truncated part. Prior works using
LSS, such as Piranha [76], and CrypTen [42], used fast local op-
erations to emulate stochastic truncations that have been shown
to be insecure [47]. Orca [38] provided a secure FSS-based proto-
col for stochastic truncation. We provide the first secure protocol
for LSS-based stochastic truncations. We need two kinds of opera-
tions to reduce the scale of fixed-point values – stochastic trunca-
tion (bitwidth-preserving) and stochastic truncate-reduce (bitwidth-
reducing). We describe our protocol for stochastic truncate-reduce.
Orca showed that stochastic truncation can be computed as sto-
chastic truncate-reduce followed by signed-extension (Lemma 2
in [38]). Following the same, Appendix F.2 details how we build
stochastic truncation based on our stochastic truncate-reduce.

3.2.1 Stochastic Truncate-reduce. Let truncate-reduce, TR𝑛,𝑓 , be a
functionality that drops the lower 𝑓 bits of an 𝑛-bit value, i.e., for
𝑥 ∈ U𝑁 , TR𝑛,𝑓 (𝑥) = (𝑥 ≫ 𝑓 ) mod 2𝑛−𝑓 ∈ U2𝑛−𝑓 .

Definition 1. For 𝑥 ∈ U𝑁 , 𝑧 = 𝑥 mod 2𝑓 , stochastic truncate-
reduce by 𝑓 , denoted by stTR𝑛,𝑓 (𝑥) is defined as

stTR𝑛,𝑓 (𝑥) =
{
TR𝑛,𝑓 (𝑥) with probability 1 − 𝑧 · 2−𝑓

TR𝑛,𝑓 (𝑥) + 1 with probability 𝑧 · 2−𝑓

Equivalently, stochastic truncate-reduce of 𝑥 can be computed
by first sampling 𝑡 that is 1 with probability 𝑧 · 2−𝑓 and 0 otherwise.
Then stTR𝑛,𝑓 (𝑥) = TR𝑛,𝑓 (𝑥) + 𝑡 . Moreover, for a random 𝑟 ∈ U2𝑓 ,
𝑡 ≡ 1{𝑧 + 𝑟 > 2𝑓 − 1} = wrap𝑓 (𝑧, 𝑟 ). This is because there are
exactly 𝑧 values of 𝑟 for which 𝑧 + 𝑟 > 2𝑓 − 1.

To compute stochastic truncate reduce securely, we prove the
following lemma3 in Appendix F.1:

Lemma 1. Let 𝑥0, 𝑥1, 𝑥 ∈ U𝑁 be such that 𝑥 = (𝑥0 + 𝑥1) mod 𝑁

and 𝑟0, 𝑟1, 𝑟 ∈ U2𝑓 be such that 𝑟 = (𝑟0 + 𝑟1) mod 2𝑓 . Let 𝑧 = 𝑥

mod 2𝑓 , and, for 𝑏 ∈ {0, 1}, let 𝑧𝑏 = 𝑥𝑏 mod 2𝑓 and 𝑦𝑏 = 𝑧𝑏 + 𝑟𝑏
mod 2𝑓 . Then,

TR𝑛,𝑓 (𝑥) = TR𝑛,𝑓 (𝑥0) + TR𝑛,𝑓 (𝑥1) + wrap𝑓 (𝑧0, 𝑧1) over Z

wrap𝑓 (𝑧, 𝑟 ) = wrap𝑓 (𝑧0, 𝑟0) + wrap𝑓 (𝑧1, 𝑟1) + wrap𝑓 (𝑦0, 𝑦1)
− wrap𝑓 (𝑧0 + 𝑧1) − wrap𝑓 (𝑟0 + 𝑟1) over Z

Hence, it follows that, over Z,

stTR𝑛,𝑓 (𝑥) = TR𝑛,𝑓 (𝑥0) + wrap𝑓 (𝑧0, 𝑟0)
+ TR𝑛,𝑓 (𝑥1) + wrap𝑓 (𝑧1, 𝑟1)
− wrap𝑓 (𝑟0, 𝑟1) + wrap𝑓 (𝑦0, 𝑦1)

In the final expression for stTR, the sum of the first two terms
can be computed locally by 𝑃0, while the sum of the third and fourth
terms can be computed locally by 𝑃1. For an 𝑟 ∈ U2𝑓 known to
the dealer, 𝑤 = extend(wrap𝑓 (𝑟0, 𝑟1), 𝑛 − 𝑓 ) is computed by the
dealer and secret shared between the two parties. In the online
phase, parties run Π𝐿

wrap
𝑓

to compute shares of 𝑝 = wrap𝑓 (𝑦0, 𝑦1)
and subsequently ΠB2A

𝑛−𝑓 to compute shares of 𝑝′ = extend(𝑝, 𝑛− 𝑓 ).
We describe our protocol in Figure 1 and summarize its cost below.

Theorem 2. Π𝐿stTR
𝑛,𝑓

realizes stTR𝑛,𝑓 securely with comm(Π𝐿stTR
𝑛,𝑓
)

= comm(Π𝐿wrap
𝑓
) + 2, keysize(Π𝐿stTR

𝑛,𝑓
) = keysize(Π𝐿wrap

𝑓
)+

keysize(ΠB2A
𝑛−𝑓 ) + 𝑛, and rounds(Π𝐿

stTR
𝑛,𝑓
) = rounds(Π𝐿wrap

𝑓
) + 1.

3.3 Accelerating Comparison on CPU

We observe that the practical usefulness and performance poten-
tial of even a well-designed cryptographic protocol may remain
unrealized without a holistic system design. Here, we demonstrate
how the structure of LSSM’s computation can effectively harness
the wide vectorization capabilities [3, 4] of modern CPUs through
a careful protocol-system co-design.

A majority of the computational cost for non-linear operations
such as ReLU can be attributed to secure comparison. For exam-
ple, when securely computing 1M 64-bit ReLUs on the CPU, both
CrypTen [42] and MP-SPDZ [40] spend more than 90% of their

3This lemma is inspired from Lemma 1 in Orca [38] for FSS-based protocols but needs
to be modified to work with LSS.
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time on secure comparison. We describe how we map the struc-
ture of secure comparison to harness vector compute and memory
instructions on the CPU.
Structure of computation for secure comparison. Consider
comparing two 𝑛-bit numbers 𝑥,𝑦 ∈ U𝑁 . For 𝑖 ∈ {0, · · · , 𝑛 − 1}
and 𝑥𝑖 , 𝑦𝑖 ∈ {0, 1}, parse 𝑥,𝑦 as 𝑥 = 𝑥0 | |𝑥1 | | · · · | |𝑥𝑛−1 and 𝑦 =

𝑦0 | |𝑦1 | | · · · | |𝑦𝑛−1. We recall that comparison has two high-level
computations, less-than and equality. To compute equality, we start
at the leaf level by computing equality of 1-bit inputs, then go up
the comparison tree to compute equality of 2-bit inputs, then 4-bit
inputs, and so on. For 𝑖 ∈ {0, · · · , 𝑛−1}, define 𝑒𝑖 = 1{𝑥𝑖 = 𝑦𝑖 }. After
computing 1-bit equality, we get (shares of) a tightly-packed (𝑛−1)-
bit vector ®𝑒 = 𝑒1 | |𝑒2 | | · · · | |𝑒𝑛−1. At the next level, we compute 2-bit
equality as 𝑒1 ∧ 𝑒2, 𝑒3 ∧ 𝑒4, etc.
Effectively harnessing vector instructions for the above computa-
tion structure is challenging. A typical way to efficiently compute
on a CPU is to process values that lie close together in the memory
at the same time. This preserves memory access locality and thus,
benefits from the CPU’s deep cache hierarchy. However, computing
on neighboring bits in the above-mentioned computation structure
while also leveraging vectorization poses two challenges.
Challenge 1○ Insufficient parallelism in a single comparison.

Vector instructions operate over 128, 256, or even 512-bit inputs. 𝑛
is typically much smaller (e.g. 39), so even at the leaf level of the
tree, we cannot generate enough AND/XORs to fully exploit the
hardware. It reduces further as we go up the tree.
Challenge 2○ Reorganizing input layout. Since ®𝑒 is a tightly
packed bit-vector, while computing 2-bit equality as 𝑒1 ∧ 𝑒2, 𝑒3 ∧
𝑒4, etc, we are computing local ANDs of adjacent bits that are
stored in the same register. Vector (compute) instructions require
the left and right operands of the ANDs to be stored in separate
registers. So if we are to compute 𝑒1 ∧ 𝑒2, 𝑒3 ∧ 𝑒4, etc. via the same
vector AND, we need to reorganize the input and separate the odd
and even elements of ®𝑒 . This reorganization requires conditional
execution whereby the even and odd bits of ®𝑒 are treated differently.
Such irregular execution is expensive as it deters leveraging vector
memory instructions for reorganizing. To quantify this cost, we
implemented this reorganization and found that it took > 75% of
the total time of secure comparison, severely limiting the benefit of
any subsequent vectorization of computation (of ANDs/XORs).
Our technique. Since fully harnessing vector instructions within
a comparison circuit is difficult, we instead vectorize across com-
parisons. In secure ML, many thousands of secure comparisons are
performed in parallel (e.g., for ReLU). We exploit this to vectorize
comparison. Consider computing 𝑀 comparisons of 𝑛-bit num-
bers. This requires computing𝑀 copies of our comparison circuit.
Instead of collecting ANDs from within a comparison for vector-
ization (e.g. 𝑒1 ∧ 𝑒2 and 𝑒3 ∧ 𝑒4), we club corresponding ANDs from
multiple comparisons together. For equality, instead of computing
𝑒1 ∧ 𝑒2 and 𝑒3 ∧ 𝑒4 via the same vector AND, we compute 𝑒1 ∧ 𝑒2
from different comparisons via the same vector AND. To enable this,
we first perform a bit-decomposition that clubs the 1𝑠𝑡 bit of 𝑀
inputs together, then the 2𝑛𝑑 bit, then the 3𝑟𝑑 bit, and so on. After
bit-decomposition, instead of computing ®𝑒 = 𝑒1 | |𝑒2 | | · · · | |𝑒𝑛−1 as a
tightly-packed bit-vector, we instead compute 𝑒1 for all𝑀 compar-
isons as a tightly-packed bit-vector. The same holds for 𝑒2. While

computing 2-bit equality, we compute 𝑒1∧𝑒2 for all𝑀 comparisons
together. This computation can be vectorized as-is without needing
reorganization. Additionally, there are at least𝑀 local AND/XORs
for all levels of equality (from 1-bit to 𝑛-bit). Since𝑀 is very large,
this allows enough parallelism to leverage vector instructions.

Unfortunately, even though this would vectorize the compute in
the comparison circuit, bit decomposition is expensive. As in Chal-
lenge 1○), the overhead of reorganization of the inputs (here, bit
decomposition) can eclipse the benefits of vectorizing the compute
(ANDs/XORs). We then observe that decomposing bits corresponds
to transposing a bit-matrix. For𝑀 𝑛-bit comparisons, we think of
each party’s input as an𝑀 × 𝑛 bit-matrix, which we transpose to
get an 𝑛 × 𝑀 bit-matrix. Fortunately, unlike the costly reorgani-
zation that would have been necessary for vectorization within
a comparison, transpose is a uniform operation – it affects each
bit in the same way without conditionals. Hence, transpose lends
itself well to vectorized memory and compute instructions. Each
CPU thread computes the transpose of a 32 × 32 sub-matrix. The
size of the sub-matrix is chosen for better cache locality. For ef-
ficiently reading sub-matrices from memory, we use vector load
instructions (_mm256_i32gather_epi32). We then vectorize the
computation of the transpose using vector shift and XOR instruc-
tions (_mm256_sllv_epi32, _mm256_xor_si256). These optimiza-
tions limit the time for the transpose to < 4% of the total time.

In summary, it is imperative to vectorize both the computation
of the circuit and the input reorganization to efficiently perform
secure comparisons on a CPU. While we focused on comparison,
these observations apply to other circuits too.
Whynot use aGPU?Our vectorized comparison is communication-
bound even on a fast LAN. For example, to process 1M 64-bit com-
parisons, 28 ms of 35 milliseconds total, i.e., 80% of the time is
spent on communication. This fraction is even higher on a slow
WAN. GPUs can only accelerate computation and not communica-
tion. Thus, deploying a GPU cannot speed up our vectorized secure
comparison by > 25%. When executing LSS-based protocols for
non-linear layers, our efficient comparison ensures that 52 − 65%
of the time is spent on communication even on the CPU.

3.4 Key compression

Prior works [33, 38, 76] have assumed that keys are always avail-
able in memory (DRAM). However, in a practical deployment, if
inference requests arrive rapidly or arrive in bursts, keys may need
to be fetched from storage to the memory before the secure com-
putation can proceed. Even though LSS keys are small relative to
FSS, the time to read them from storage is still 3.6-4.5× more than
the time required for computation when the parties are connected
over LAN. To further reduce the size of LSS keys to improve end-to-
end latency, we compress them using well-known Pseudorandom
Function (PRF)-based techniques. Let 𝐹 be a PRF. The dealer shares
PRF keys 𝑘0, 𝑘1 with parties 𝑃0, 𝑃1 in the offline phase. The dealer
then avoids explicitly sending each party its entire key. Instead, for
𝑏 ∈ {0, 1}, party 𝑃𝑏 makes PRF calls that are identical to the ones
made by the dealer to generate a part of its key in the online phase.
We illustrate how this works for Beaver bit-triples in Appendix H.
With this optimization, the key size reduces by 4.6×, 4×, up to 3.7×
and up to 3.9× in Millionaires’/Wrap, ReLU/Maxpool, stochastic

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Matchmaker: Fast Secure Inference across Deployment Scenarios Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

truncate-reduce, and in ReLU-extend, respectively. Note that we
trade a smaller key for slightly more online computation in the
form of PRF calls. However, this computational overhead is small
(10-16%) compared to the large reduction in key size (4.5-5.5×).

4 FSS
M
: Improving FSS-based Orca

Orca [38] is the state-of-the-art in secure CNN inference in the
2PC with pre-processing model and is based on Function Secret
Sharing [15–17]. We improve on Orca using ideas from our LSS-
based protocols in Section 3 and improved FSS-based comparison
from Grotto [67]. We refer to the resulting FSS-based 2PC as FSSM
and provide an empirical comparison with Orca in Section 7.1.4.
We demonstrate that FSSM has keys that are 7-8% smaller, requires
up to 2.3× lower communication and is up to 2.2× faster.

In FSSM, we use the same model-level optimizations as Orca. We
need protocols for stochastic truncate-reduce/truncations, ReLU,
ReLU-Extend, and Maxpool. In Orca [38], each of these protocols
relied on secure comparisons, that were realized using Distributed
Comparison Functions (DCF) [16]. We make four improvements in
FSSM over Orca. 1○ In FSSM, we rely on Distributed Point Function
(DPF)-based comparisons as suggested in Grotto [67]. While this
switch can result in lower keysize and > 2× reduction in compute,
it can only support output group Gout = {0, 1}. All protocols in
Orca except ReLU-Extend require a single-bit output from secure
comparison and hence, for those, this switch is easy to make. 2○
Building on our ideas for LSS-based ReLU-Extend, we design a new
protocol for DPF-based ReLU-Extend where we only require com-
parisons with one-bit outputs. 3○ We reduce the communication
of stochastic truncate-reduce by 𝑓 from 2𝑛 to 𝑛 + 𝑓 bits by hav-
ing one party reconstruct only a part of the input. 4○ We extend
Orca [38] to support packing for non-power-of-2 bitwidths. This
reduces communication for models, e.g., ResNet50, that requires a
bitwidth of 37 to preserve accuracy. Due to space constraints, we
defer the details of our FSS-based protocols to Appendix I.

5 A case for Matchmaker

In Section 7, we quantitatively establish that LSSM and FSSM out-
perform prior LSS and FSS-based secure inference systems, respec-
tively, thanks to optimizations in Sections 3 and 4. Further, current
literature suggests that FSS-based protocols [38] always outperform
LSS-based protocols [42,76]. However, when comparing LSSM with
FSSM, we notice that this notion could be misplaced.

We make a novel observation that one protocol does not fit all
(deployments). There are two primary considerations in deploy-
ments: whether the keys are available in memory or in storage,
and whether the parties are connected via a fast LAN or a slow

Model
Batch=50

Key size (GB) Comm (GB) Rounds
LSSM FSSM LSSM FSSM LSSM FSSM

ResNet-18 2.02 54
(27×)

6.2
(2.6×) 2.4 381

(3.3×) 116

ResNet-50 9.1 246
(27×)

26
(2.4×) 11 932

(3.3×) 279

VGG-16 9.5 236
(25×)

27
(2.5×) 11 362

(3.1×) 107

Table 1: Comparing LSS
M

and FSS
M

on batch inference.

WAN. Before the online computation starts, keys are written to
the storage in the pre-processing step. If the incoming requests are
spread sparsely over time, there could be enough slack to fetch the
keys from storage to the memory before the computation starts.
However, at a high and/or bursty request arrival rate, keys must
first be fetched from storage to memory in the critical path of the
execution. Further, the computing parties (servers) may be hosted
on the same datacenter and, thus, connected over a high-speed LAN.
Parties could also be geographically distributed across datacenters
or even continents, connected over slow WAN.

LSSM and FSSM have inherently different characteristics. While
FSSM has lower communication and fewer rounds, it needs a much
larger key size compared to LSSM. Hence, when parties are con-
nected over WAN and keys reside in memory, FSSM enjoys an ad-
vantage over LSSM. On the other hand, when parties are connected
over LAN and keys are in storage, LSSM can be more efficient.

Inspired by this, we quantitatively compare LSSM and FSSM
under four different deployment scenarios for batch inference for
three models (sub-figures) in Figure 2. For each deployment sce-
nario, there are two bars – heights of the bars representing runtimes
with LSSM and FSSM, respectively (lower is better). The runtimes
in seconds are also mentioned at the top of each bar. The lower of
the LSSM or FSSM inference time for a given deployment scenario
is circled green, indicating the preferred protocol for the given
scenario. Further, Table 1 lists the communication and key size for
LSSM and FSSM to help us analyze the reported runtimes.
WAN, keys in memory (W/M). Here, FSSM outperforms LSSM by
∼ 2.5× across the models. This is expected; Table 1 shows that LSSM
communicates about 2.5×more and has about 3×more rounds than
FSSM. The runtime of LSSM is dominated by communication, e.g.,
in VGG-16 inference, LSSM spends 98% of its time communicating.
LAN, keys in storage (L/S). Here, we notice the opposite perfor-
mance characteristics. LSSM outperforms FSSM by ∼ 19×. FSSM
must fetch keys that are 25 − 27× larger than those required by
LSSM (Table 1). Thus, FSSM’s runtime is dominated by key fetch
time. Further, the fast LAN connection makes the time spent in
communicating a much smaller fraction of the overall computation
time for LSSM, unlike when the connection was over WAN.
LAN, keys in memory (L/M). FSSM is slightly faster than LSSM across
the board. While FSS-based Orca [38] was observed to beat LSS-
based CrypTen by 8 − 25× in this setting, we notice that, FSSM,
which beats Orca, is only 20 − 40% faster than LSSM. This because
of our optimizations in LSSM (Section 3).
WAN, keys in storage (W/S). Here, there is little to choose between
LSSM and FSSM. Their runtimes are within 3-10% of the other. LSSM
suffers due to high communication, while FSSM suffers from the
time it takes to fetch keys from storage.
Opportunity to leverage heterogeneous processing: It is ap-
parent that when the network is fast (LAN) but the keys are in
memory or when the network is slow (WAN) but the keys are in
storage, choosing LSS or FSS may not make a significant difference.
We observe that most of the computations (up to 97%) under both
LSSM and FSSM are attributable to non-linear layers such as ReLU
and MaxPool. These layers are computed on the CPU in the case
of LSS. Thanks to our careful hardware-aware optimizations in
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Figure 2: One protocol does not suit all deployment scenarios – a quantitative analysis. To enhance readability, we use W/L to

denote WAN/LAN, and M/S to denote that keys are in memory/storage, e.g. W/M denotes WAN with keys in memory.

realizing LSSM (Section 3), it does not have to rely on the GPU,
unlike prior works [76]). This frees the GPU when computing these
non-linear layers using LSSM. On the other hand, FSSM, like prior
work [38], relies on a GPU to accelerate computation. It leaves the
CPU idle. Since the hardware requirements of the two kinds of
protocols complement each other, it presents an opportunity to
deploy both simultaneously for computing non-linear layers. This
opens up a first-of-its-kind opportunity to leverage heterogeneous
processing (simultaneous processing on CPU and GPU) to improve
the throughput of secure inference.
Summary:We are the first to establish that different deployment
scenarios suit different protocols. 1○WAN, keys inmemory: FSSM is
the preferred choice. 2○ LAN, keys in storage: LSSM is the preferred
choice. 3○ For LAN, keys in memory and WAN, keys in storage:
deploy LSSM and FSSM simultaneously with heterogeneous process-
ing. Thus, we must match a protocol or a combination of protocols
with a given deployment scenario – we need a matchmaker.

6 Design and Implementation of Matchmaker

Our tool, Matchmaker (MM), has two primary components. 1○ Op-
timized implementations of LSS- and FSS-based protocols. They are
designed to be concurrently executed on the CPU and the GPU. 2○
Profile-guided modeling to decide the distribution of work between
LSS and FSS for minimizing the latency of batch inference.

6.1 Optimized LSS
M
and FSS

M

One of our contributions is the optimized implementation of LSS-
based protocols on the CPU. The cornerstone of this component
is the carefully vectorized implementation of secure comparison
(Π𝐿Mill). Additionally, to reduce communication overheads, we craft
efficient routines to tightly pack and unpack group elements into
and from bit-strings. This is especially useful when group elements
have non-powers-of-2 bitwidths, e.g. 37. Our packing routine is
used to tightly pack group elements before communicating them
over the network. Our unpacking routine is used to store them
in standard data types so they can be used in computation later.
Transmitting tightly packed group elements significantly reduces
communication overheads, e.g., by 15% for ResNet-50.

Besides reducing communication overheads, (un-) packing rou-
tines play a crucial role in key compression for LSS. We use AES-128
in counter mode as our PRF for compressing keys and accelerate
it on the CPU with AES-NI [2] instructions. AES-128 generates
a string of pseudorandom bits. These bits sometimes need to be

interpreted as pseudorandom group elements with non-power-of-2
bitwidths, e.g. 20, 37, etc., in our protocols for matrix multiplication,
convolution, and select. Tightly-packed non-powers-of-2 bitwidths
cannot be used directly in computation. Thus, efficiently unpacking
group elements with non-power-of-2 bitwidths from an AES-128
generated bit-string and storing them in standard data types is
needed before they can be computed upon.

Our implementation of FSS-based protocols is built atop Orca
[38] and SIGMA [33]. It extends them with ≈ 3000 additional lines
of C++/CUDA code. We borrow the code for linear layers from
Orca [38], and code for Distributed Point Functions (DPFs) and
packing and unpacking non-power-of-2 bitwidths on the GPU from
SIGMA [33]. We also write new GPU kernels for our new FSS-based
protocols, e.g., for stochastic truncate-reduce and ReLU-Extend.

Our implementation allows concurrent execution of LSS-based
and FSS-based protocols through multi-threading. Further, the lin-
ear layers for both LSS and FSS are computed on the same GPU
concurrently. We use CUDA streams [1] to execute GPU kernels
for LSS and FSS concurrently.

6.2 Profile-guided work distribution

The second component of MM is a profile-guided model to decide
which protocols or their combination to use for computing non-
linear layers under a given deployment scenario. The model takes
the neural network architecture, batch size 𝐵, and the location
of keys (in DRAM or in storage) as input. It outputs a fraction 𝑥 ,
0 ⩽ 𝑥 ⩽ 1, such that ⌊𝑥 · 𝐵⌋ images are to be computed with LSSM.
We call this fraction 𝑥 MM’s configuration. The dealer uses 𝑥 to
generate keys. Subsequently, parties use 𝑥 to correctly parse the
dealer-generated keys and use them for secure computation.

Let 𝑡𝐿𝑆𝑆 and 𝑡𝐹𝑆𝑆 denote the time taken by LSSM and FSSM,
respectively, to securely compute inference of 𝐵 images while run-
ning alone. Let 𝑘𝐿𝑆𝑆 and 𝑘𝐹𝑆𝑆 be the time to read LSSM keys and
FSSM keys for inference of 𝐵 images from storage, respectively.
Let 𝑦 be some MM configuration. The time to read keys from stor-
age at configuration 𝑦 is given by 𝑦 · 𝑘𝐿𝑆𝑆 + (1 − 𝑦) · 𝑘𝐹𝑆𝑆 . The
computation for the current batch and the reading of the keys
for the next batch happen concurrently. Thus, the time for infer-
ence of 𝐵 images when keys are in storage becomes the largest
of the time to read keys, LSSM runtime and FSSM runtime, i.e.
max(𝑦 ·𝑘𝐿𝑆𝑆 + (1−𝑦) ·𝑘𝐹𝑆𝑆 , 𝑦 · 𝑡𝐿𝑆𝑆 , (1−𝑦) · 𝑡𝐹𝑆𝑆 ). We want to out-
put 𝑥 = argmin𝑦 max(𝑦 ·𝑘𝐿𝑆𝑆 + (1−𝑦) ·𝑘𝐹𝑆𝑆 , 𝑦 ·𝑡𝐿𝑆𝑆 , (1−𝑦) ·𝑡𝐹𝑆𝑆 ).
Solving this requires finding the minimum of the maximum of three
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Model PyTorch Fixed-point [𝑛, 𝑓 ]
ResNet-18 69.76 69.41 [32, 10]
ResNet-50 80.34 80.33 [37, 12]
VGG16 71.59 71.59 [32, 12]

Table 2: Accuracy of ImageNet-scale models. For fixed-point

accuracy, 𝑛 represents bitwidth and 𝑓 represents scale.

lines in the interval [0, 1]. We fill in the values of 𝑡𝐿𝑆𝑆 , 𝑡𝐹𝑆𝑆 , 𝑘𝐿𝑆𝑆
and 𝑘𝐹𝑆𝑆 by running inference of 𝐵 images with LSSM and FSSM,
respectively. When keys are in memory, we set 𝑘𝐿𝑆𝑆 = 𝑘𝐹𝑆𝑆 = 0.
Impact of network contention in heterogeneous processing:

While LSSM and FSSM computations for non-linearities use separate
processors, the CPU and the GPU, respectively, they still share the
network when both run concurrently to harness heterogeneous pro-
cessing. We use fq_codel [5] as the queuing discipline in Linux’s
network stack to limit contention, but it still plays a crucial role
in the runtimes. Consequently, we noticed that it is possible that
MM’s configuration 𝑥 , derived from the aforementioned equation,
may lead to sub-optimal performance in practice.

Toward this, we take a two-step process to refine MM’s con-
figuration. We first determine if heterogeneous processing may
yield a significant speedup under a given deployment scenario. If
yes, we refine MM’s configuration 𝑥 to 𝑥∗ that takes empirically
observed network contention into account. Specifically, we first
(theoretically) estimate the expected runtime at MM configuration
𝑥 , yielded by the profiling-guided optimization equation described
above. If this estimated runtime is at least 30% (tunable parameter)
smaller than the lower of the LSS or FSS’s runtime, then we consider
that heterogeneous processing can yield substantial benefits and
proceed on to estimate network contention as follows.

We run LSS and FSS together at configuration 𝑥 and estimate the
degraded bandwidth 𝐵𝑊𝐿𝑆𝑆 and 𝐵𝑊𝐹𝑆𝑆 experienced by LSS and
FSS at 𝑥 . We then estimate 𝑡 ′

𝐿𝑆𝑆
and 𝑡 ′

𝐹𝑆𝑆
, the time it would take for

LSS and FSS to run secure inference on 𝐵 images with bandwidth
𝐵𝑊𝐹𝑆𝑆 and 𝐵𝑊𝐿𝑆𝑆 . We compute 𝑥∗= argmin𝑦 max(𝑦 · 𝑘𝐿𝑆𝑆 + (1 −
𝑦) · 𝑘𝐹𝑆𝑆 , 𝑦 · 𝑡 ′𝐿𝑆𝑆 , (1 − 𝑦) · 𝑡

′
𝐹𝑆𝑆
) as the final MM configuration.

7 Evaluation

We provide empirical evidence to justify the following claims.
• LSSM beats state-of-the-art LSS-based systems using GPUs,

CrypTen [42] and Piranha [76], by upto 50× (Section 7.1). LSSM
beats CPU-only MP-SPDZ by up to 1492×.

• FSSM beats state-of-the-art FSS-based system, Orca [38], by upto
2.2× (Section 7.1.4).

• MM beats the state-of-the-art in secure inference systems, Orca
by up to 21× by judiciously leveraging LSSM and/or FSSM as
appropriate in a given deployment (Section 7.3).

Evaluation setup. We use two servers to run two parties. Each
server has an NVIDIA RTX A6000 GPU with 48GB of onboard
memory (GDDR6). The GPU is connected to an AMD Epyc 7742
processor via a 16-lane PCIe-4 interconnect with 32GBps bandwidth.
It has nearly 1TB of DRAM and is connected to two Seagate Exos
10TB disks configured as RAID0, which deliver about 400-500MBps
bandwidth. This is close to the bandwidth delivered by SATA SSDs.
Our servers are connected by a 9.7Gbps LAN with 0.05ms RTT.
We simulate a slower WAN network with 225Mbps bandwidth

and 60ms RTT using tc command in Linux for throttling. In all
experiments, LSSM is run with 8 CPU threads.
Datasets and Benchmarks. Since a single inference can leave
the GPU under-utilized, we focus on batch inference where the
task is to label a set of images. We evaluate secure inference on
the ImageNet dataset which has 224 × 224 × 3 images and 1000
classes [27]. We use three ImageNet models (used previously by
Orca [38]) – ResNet-18, ResNet-50, and VGG-16 which have 11.7M,
25.5M, and 138M parameters, respectively.
Fixed-point parameters. We run our LSS baselines CrypTen [42]
and Piranha [76] with fixed-point bitwidth 𝑛 = 64 and scale 𝑓 = 24.
Since both CrypTen and Piranha use (insecure) local truncations4
that only provide probabilistic correctness, the use of large bitwidth
is necessary for correctness. Like Orca [38] and MP-SPDZ [40], our
protocol for truncation is secure and does not have correctness
errors. This allows us to work over minimal bitwidths that suffice
for preserving model accuracy. In particular, we use fixed-point
parameters [𝑛, 𝑓 ] = [32, 10], [37, 12], [32, 12] from Orca [38] for
ResNet-18, ResNet-50 and VGG-16, respectively. We use these to
evaluate Orca, MP-SPDZ, LSSM and FSSM. Table 2 shows that our
fixed-point models match PyTorch (floating-point) accuracy. Fur-
ther details about model architectures can be found in Appendix J.

7.1 LSS
M
and FSS

M
: The new state-of-the-art

We first empirically substantiate our claim that LSSM and FSSM
are the new state-of-the-art LSS and FSS-based secure inferencing
systems, respectively.We notice that no prior LSS-based systems real-
ized the theoretical promise of small key size of LSS-based protocols. In
fact, the existing LSS-based systems have keys larger than even the
FSS-based ones (which in theory are expected to have larger keys
in order to reduce communication). With the introduction of LSSM,
we fix this gap between theoretical expectation and actual system
behavior through a series of protocol and system optimizations
(Section 3). This is critical in making LSSM performant when keys
are in storage; an important scenario that was previously ignored.

We compare LSSM against three LSS-based systems –CrypTen [42],
MP-SPDZ [40] and Piranha [76]. CrypTen and MP-SDPZ support
ImageNet-scale models, while Piranha only supports smaller mod-
els for the MNIST and CIFAR-10 datasets5. For uniformity, we only
consider ImageNet-scale models here. We compare briefly against
Piranha in Section 7.1.3 and defer a detailed analysis to Appendix A.
We compare FSSM against FSS-based state-of-the-art Orca.

Table 3 reports key size (GB), communication (GB), and runtimes
(s) for all four scenarios – LAN with keys in memory (K/M) and
storage (K/S), and WAN with keys in memory (K/M) and storage
(K/S). Each of the three models have five rows in the table – one
for each of MP-SPDZ, CrypTen, Orca, LSSM and FSSM.

7.1.1 Comparing LSS
M
with CrypTen. We first detail how LSSM

fares against CrypTen when parties are connected over LAN and
keys are in memory. We then examine how runtime changes when
keys must be fetched from storage.
Keys in memory (K/M).When keys are inmemory, LSSM’s speedups
over CrypTen (11-31×) closely mirror improvements over CrypTen
4 [47] proved that local truncations are insecure.
5These datasets have 49-192× smaller images than the images in ImageNet and thus
require simpler models.
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Model Framework Keysize (GB) Comm (GB) LAN, K/M (s) LAN, K/S (s) WAN, K/M (s) WAN, K/S (s)

ResNet18

MP-SPDZ 950 1350 8250 8250 - -
CrypTen 138 179 142 298 3012 3012
Orca 58 3.3 5 123 66 123
LSS

M 2 6.2 5.1 6 124 125
FSS

M 54 2.4 3.8 114 51 114

ResNet50

MP-SPDZ 2600 3900 11900 11900 - -
CrypTen 264 343 286 582 5728 5728
Orca 265 25 28 561 477 561
LSS

M 9.1 26 25 29 505 507
FSS

M 246 11 18 521 221 521

VGG16

MP-SPDZ 8450 11750 38050 38050 - -
CrypTen 580 744 646 1278 13386 13386
Orca 255 16 23 543 290 543
LSS

M 9.5 27 21 26 488 479
FSS

M 236 11 17 503 215 503
Table 3: Comparing MP-SPDZ, CrypTen, Orca, LSS

M
and FSS

M
on inference benchmarks with batch 50. MP-SDPZ only supports

batch 1 so we multiply reported metrics by 50. - indicates that MP-SPDZ did not finish running even after one day.

in communication (13-29×). Even though CrypTen relies on GPU,
LSSM’s vectorized implementation of Π𝐿Mill on the CPU makes
the compute efficient, enabling a reduction in communication over
CrypTen to be reflected in end-to-end speedups.

LSSM lowers communication over CrypTen in three ways. 1○ The
optimized implementation of Π𝐿Mill communicates tightly-packed
bits (Section 3.3). While CrypTen computes a boolean circuit similar
to LSSM for comparison, it wastefully communicates 64 bits per
party for each level of a single 64-bit comparison even though the
number of bits halves at each successive level of the tree (circuit).
2○ LSSM uses optimal fixed-point bitwidth 𝑛 for all benchmarks. As
discussed earlier, while CrypTen is forced to use large bitwidth (64)
for correctness due to probabilistically correct truncation, LSSM
can use much smaller bitwidths, e.g., 32 for VGG-16 (see paragraph
on “Fixed-point parameters”). This reduces communication since
the number of bits communicated is linear in bitwidth. 3○ LSSM
leverages the benefits of Orca’s network-level optimizations that
enable even smaller bitwidths for non-linear functions. For example,
Maxpool uses comparison over (𝑛 − 𝑓 ) bits instead of 𝑛 bits. For
VGG-16, we use 𝑛 = 32 and 𝑓 = 12. Thus, LSSM computes Maxpool
over 20 bits instead of 64 bits as in CrypTen.
Keys in storage (K/S). CrypTen assumes that keys are always in
memory. To simulate its performance when keys are in storage,
we instrumented CrypTen’s code to measure the size of the key
material used.We thenmeasured the time taken to read that amount
of key material from the storage in our server. We report the larger
of the key read time and the online compute time as the expected
runtime of CrypTen when keys are in storage.

As noted in Table 3, CrypTen needs large keys ranging from
138-580 GB. This is even larger than FSS-based Orca, contrary to
the theoretical expectation that LSS-based protocols should need
smaller keys than FSS-based ones. Mirroring its inefficiencies in
communication, CrypTen uses the same amount of key material
for each level of the comparison tree, amplifying key size by 8×.
Further, as is the case with communication, CrypTen’s inability to
use smaller bitwidth increases the size of its key. Consequently,
the time to read keys eclipses the online compute time, making
inference ∼ 2× slower than when keys are in memory (LAN, K/M).

Thanks to bit packing (Section 3.3), and key compression (Sec-
tion 3.4), LSSM’s keys are 30-70× smaller than CrypTen’s. Crucially,
they are also 27-29× smaller than FSS-based Orca’s, as one would
expect following theory. The de-compression of keys during online
computation only adds 10-16% overhead. Thus, LSSM’s speedup
over CrypTen increases to 20-50×when keys were in storage versus
11-31× when keys were in memory.
Comparison in WAN.Over a slow network, both Crypten and LSSM

are bottlenecked by communication, as expected. LSSM’s speedup
over CrypTen reflects its improvement over CrypTen in communi-
cation (11-28×). This is independent of the location of the keys.

7.1.2 Comparing LSS
M

with MP-SPDZ. We compare LSSM and
MP-SPDZ when parties are connected on LAN, since MP-SPDZ
does not finish running over WAN even after one day. MP-SPDZ
does not support batch inference for the evaluated models. Thus,
we report all its metrics for a single inference multiplied by the
batch size (here, 50) in Table 3. To estimate key size, we use the
output of MP-SPDZ’s online phase to collect the amount of key
material used (e.g., Beaver triples). We convert this to bytes (GBs)
by assuming that bits and all ring elements (even ones with non-
power-of-2 bitwidths) are tightly packed. We present this key size
in Table 3. We measure the time it would take to read that much
data from our storage and report the larger of the key read and
online time as time in LAN when keys are on storage (LAN, K/S).
As Table 3 shows, we improve over MP-SPDZ by 271− 1492× in the
LAN setting. LSSM’s improvement mainly stems from MP-SPDZ’s
inefficient implementation of linear layers and Maxpool. MP-SPDZ
uses one Beaver triple for each multiplication while multiplying
matrices, which amplifies the compute, communication, and key
size. Moreover, it is a CPU-only framework. Hence, its local compu-
tation for linear layers is significantly slower than LSSM’s (which
uses the GPU for linear layers but CPU for non-linear). Using one
triple per multiplication makes MP-SPDZ’s keys 217 − 384× larger
and its communication 149 − 438× higher.

7.1.3 Comparing LSS
M

with Piranha. LSSM reduces keysize by
4.5-11× and improves performance by 1.8-7.7× over Piranha on Pi-
ranha’s benchmarks. It does so while ensuring end-to-end security,
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Figure 3: Breakdown of LSS
M
’s runtime under LAN. K/M

denotes keys in memory and K/S denotes keys in storage. T

denotes online time. KR denotes key read time from storage.

unlike Piranha. Further, Piranha only supports smaller models for
MNIST and CIFAR-10 datasets, which limits headroom for speedups.
Due to differences in benchmarks, we defer a detailed comparison
with Piranha to Appendix A.

7.1.4 Comparing FSS
M
with Orca. We detail how FSSM improves

upon state-of-art for FSS-based inferencing systems, Orca [38] when
keys are in memory. FSSM’s optimized FSS protocols with bit pack-
ing beat Orca’s communication by 1.4-2.3× (Table 3). This is bene-
ficial in the slow WAN, where communication directly impacts per-
formance. On LAN, FSSM’s lower compute needs (> 2×, Section 4)
and smaller keys (by 7-8%) help it outperform Orca by 1.3-1.5×.
Interestingly, while key size does not affect LSSM when keys are
in memory, it has an impact on FSSM. This is because FSSM uses
GPUs for non-linear layers and needs to move large FSS keys from
CPU to GPU memory over the PCIe.

When keys are in storage, both FSSM and Orca are bottlenecked
by the key read time, irrespective of whether the parties are con-
nected over the LAN or WAN. FSSM marginally speeds up over
Orca (7-8%) due to smaller key size.
Orca is best amongst prior works. From the table, we notice that
Orca outperforms prior secure inferencing systems, such as MP-
SPDZ, and CrypTen, for all models and under all deployment scenar-
ios. Thus, in Section 7.3, we will compare Matchmaker, our secure
inference system, with Orca.

7.2 Performance breakdown of LSS
M
and FSS

M

We break down LSSM and FSSM’s runtimes for a deeper analysis.
Performance Breakdown of LSSM. We first consider the case when
parties are connected over LAN 6 in Figure 3. We consider two
scenarios: keys in memory (K/M) and keys in storage (K/S).

K/M has a single stacked bar per model, which provides a break-
down of online time (T). We report the time spent on communica-
tion (blue), cryptographic (protocol) computation (orange), commu-
nication packing and unpacking (green) and key expansion (yellow).
K/S has two stacked bars. The first bar shows the key read time
from storage (KR). The dark purple bar shows the actual key read
time in LSSM, and the light purple colored extension shows what
the key read time would have been, without key compression. This
6We do not provide a breakdown when parties are connected over WAN since more
than 95% time there is spent on communicating due to slow network.

captures the benefit of key compression. The second bar shows a
breakdown of online time. The numbers above all the bars denote
the total time for the corresponding bar in seconds.

From the T bars for both K/M and K/S, we see that LSSM spends
> 50% of time on communication (blue stack), even with a fast LAN
network. It spends 58-65% of time on communication when keys are
in memory and 51-58% when keys are in storage. This demonstrates
that after an optimized implementation on the CPU, there is little
room for further optimizing the computation of non-linear layers 7,
e.g., by using a GPU. It is already communication-bound.

Next, we notice that LSSM pays 10-16% performance overhead for
expanding the compressed keys when keys are in storage (yellow
stack on the T bar for K/S). However, without compression, the time
to read the keys from storage (total height of KR bars under K/S)
would have eclipsed the compute time (T bars under K/M). This
would have slowed down LSSM by 3.6-4.5× when keys are in the
storage (difference between heights of KR and T, K/M bars). Finally,
communication packing and unpacking take up a small fraction
(< 4%) of overall execution time across all models and settings.
Performance Breakdown of FSSM. In the LAN, once FSSM optimizes
the heavy FSS computation on the GPU, a majority of the time is
spent on moving (large) FSS keys from host (CPU) memory to GPU
memory. Across all models, FSSM spends 60% of it time on CPU-
GPU data transfer, 30% of its time on communication, and only 10%
of its time on actual computation. In the WAN, FSSM spends more
than 90% of its time on communication.

7.3 Putting It All Together: Matchmaker under

different deployment scenarios

Recall that a primary contribution of our work is Matchmaker (MM),
which automatically chooses LSSM, FSSM, or a combination of both,
as appropriate, for a given deployment scenario. We demonstrate
this unique adaptability of MMby reporting its performance against
the state-of-the-art secure inferencing system, Orca [38] under four
diverse deployment scenarios – LAN with keys in memory/storage,
and WAN with keys in memory/storage.

Table 4a reports the performance of MM and Orca under the
four deployment scenarios while 4b reports the relevant secondary
metrics such as key size and communication.

In Table 4a, each scenario has three sub-columns – the first two
list the time (in seconds) that it takes for Orca and MM to execute in
that given scenario, while the last column shows the configuration
chosen by MM. Specifically, it reports the fraction of non-linearities
executed with LSSM. MM uses FSSM for the rest. For example, an
entry 0.42 means that MM uses LSSM for secure computation of
42% of the non-linearities and uses FSSM for the remaining 58%.

From Table 4a, we observe that MM always outperforms Orca
under all deployment scenarios demonstrating MM’s adaptability.
It speeds up secure inferencing by 1.3-21× depending upon the
scenario. MM’s greatest improvement over Orca (over 20×) comes
under LAN when keys are in storage. This is expected – Orca’s FSS-
based protocol with large keys is bottlenecked by time to read the
keys from storage. MM, instead, deploys LSSM under this scenario
that uses 27-29× smaller keys than Orca (Table 4b) and is also not
constrained by communication overheads due to a fast LAN.
7Note that linear layers always execute on GPUs.
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Model
Batch=50

LAN, keys in mem. LAN, keys in storage WAN, keys in mem. WAN, keys in storage

Orca MM MM
config. Orca MM MM

config. Orca MM MM
config. Orca MM MM

config.

ResNet-18 5
(2×) 2.5 0.44 123

(21×) 5.9 1 66
(1.3×) 50 0 123

(1.8×) 70 0.42

ResNet-50 28
(2.3×) 12.4 0.40 561

(19×) 29 1 477
(2.2×) 220 0 561

(1.9×) 300 0.44

VGG-16 23
(2×) 11.4 0.44 543

(21×) 26 1 290
(1.4×) 209 0 543

(1.9×) 293 0.44

(a) Performance of MM compared to Orca. We report the runtime in seconds. MM config. denotes fraction of non-linearities run with LSS
M
.

Model
Batch=50

Keysize (GB) Comm (GB)

Orca MM Orca MM
LAN, keys
in mem.

LAN, keys
in storage

WAN, keys
in mem.

WAN, keys
in storage

LAN, keys
in mem.

LAN, keys
in storage

WAN, keys
in mem.

WAN, keys
in storage

ResNet-18 58 34 2 54 32 3.3 4.1 6.2 2.4 4
ResNet-50 265 146 9.1 246 142 25 17.1 26 11 17.7
VGG-16 255 149 9.5 236 137 16 18.1 27 11 18.1

(b) Keysize and communication of Orca and MM in different settings.

Table 4: Comparing Matchmaker (MM) with Orca (state-of-the-art) under different deployment scenarios.

On the other extreme, when keys are in memory and the network
is slow (i.e., in the WAN), MM correctly chooses to deploy FSSM
since deploying LSSM would have made it hamstrung by commu-
nication overheads. Here, MM’s improvements over Orca [38] are
exactly the improvements of FSSM over Orca (1.3-2.2×).

In two scenarios, MM employs novel heterogeneous processing.
i.e. runs LSSM and FSSM simultaneously on the CPU and the GPU,
respectively. When the keys are in memory and the network is fast
(LAN), both LSSM and FSSM perform similarly (Section 5). While
FSSM uses GPU for secure computation of non-linearities, MM
simultaneously deploys LSSM on the CPU to increase the inference
throughput. Table 4a reports 40-44% of non-linearities are computed
using LSSM while FSSM is responsible for the rest.

MM also employs heterogeneous processing when keys are in
storage and the parties are connected over WAN. While FSSM may
seem like the best choice in WAN due to its low communication,
it needs large amounts of keys. For example, it takes 503 seconds
to read FSS keys for VGG16 from storage, while the compute takes
215 seconds. On the other hand, LSSM needs just 21 seconds to
read (compressed) LSS keys for VGG16, but needs 479 seconds to
compute. MM then judiciously partitions the work for securely
computing non-linearities between LSSM and FSSM to strike a fine
balance between computation time and the key read time such that
both are roughly equal. It does so automatically without manual in-
tervention, thanks to its profile-guided modeling (Section 6.2). MM
improves performance by 1.8-1.9× over Orca under this scenario.

Table 4b also captures how MM trades off keys size and commu-
nication overhead based on the deployment scenario. Notice that
while the key size and amount of communication remain the same
for Orca across the deployment scenarios, for MM changes as it
adapts to different deployment scenarios. For example, under LAN
and when keys are in storage, FSSM slightly increases the amount of
communication over Orca (up to 87%) but significantly lowers the
amount of keys needed (by 26-29×). Thanks to a fast LAN network,
a slight increase in the amount of communication has little impact
on performance but needing to fetch much smaller amounts of keys
from the slow storage helps performance. On the other hand, when

the parties are connected over WAN and keys are in memory, MM
prioritizes limiting the communication. In summary, MM adapts to
the characteristics of the given deployment scenario.

8 Related work

Secure Inference/2PC with preprocessing. SecureML [52] intro-
duced the problem of secure inference in the preprocessing model.
Following a long line of works [34, 39, 63, 64], GPU-accelerated
Piranha [76] and CrypTen [42] are the state-of-the-art in LSS-based
secure inference of CNNs with preprocessing. GForce [53] and Del-
phi [50] also use GPUs but rely on trainingMPC-friendlyMLmodels.
MP-SPDZ [6, 40] and ABY2.0 [7, 56] implement LSS-based 2PC pro-
tocols with preprocessing on CPUs. Orca [38] and SIGMA [33] build
upon prior FSS works [17, 34, 64, 67, 71] and are the state-of-the-art
secure inference systems for CNNs and LLMs, respectively.
Secure Inference/2PC without preprocessing. The 2-party se-
cure CNN inference (without preprocessing) is a well-studied prob-
lem [36, 39, 50, 52, 53, 60, 61]. They use different techniques, e.g.,
oblivious transfer and/or homomorphic encryption, that are natu-
rally more expensive than works with preprocessing. Works such
as [9, 24, 35, 49, 55] consider secure LLM inference. Some of these
works modify the underlyingML algorithm to bemore 2PC-friendly.
They [50, 53, 55] also accelerate computation using GPUs.
Secure ML under other models. Finally, several works have also
considered secure computation of ML algorithms amongst > 2
parties [23, 25, 28, 41, 42, 44, 51, 57, 68, 72, 74, 81]. Due to a different
setup, the performance of these protocols are incomparable to 2PC
protocols in the preprocessing model. A few works have also ex-
plored malicious secure 2/MPC for ML [20, 46, 51, 74, 81]. We leave
the exploration of such protocols in our context to future work.
Other privacy/security approaches. Another approach to secure
inference is via Trusted Execution Environments (TEEs) that make
assumptions on the hardware to provide security [32, 54, 58, 69, 70].
Works on Federated learning [43] and those that improve the secu-
rity/privacy guarantees in federated learning [12, 62, 65, 78] aim to
limit the amount of information shared between the participants
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during ML training while works on differential privacy [8, 73] pro-
vide privacy guarantees to individual data records in the training
data. Both these lines of works are orthogonal to secure computa-
tion of training algorithms and are further inapplicable to inference.
Modeling-based protocol selection. Prior works [18, 21, 22] con-
sidered using modeling to select the protocol best suited to a given
deployment scenario. However, these works did not consider the
preprocessing model and neither did they consider GPU accelera-
tion. Furthermore, they also do not consider simultaneously execut-
ing different protocols with varying performance characteristics.
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Boolean to Arithmetic ΠB2A
𝑛

GenB2A𝑛 :

1: 𝑡
$← {0, 1}

2: 𝑡 ′ = extend(𝑡, 𝑛)
3: share 𝑡 ′

4: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑡 ′
𝑏

EvalB2A𝑛 (𝑏, 𝑘𝑏 , 𝑠𝑏 ) :
1: Parse 𝑘𝑏 as 𝑡 ′

𝑏
2: 𝑡𝑏 = 𝑡 ′

𝑏
mod 2; 𝑠𝑏 = 𝑠𝑏 ⊕ 𝑡𝑏

3: 𝑠 ← reconstruct (𝑠𝑏 )
4: 𝑠′ = extend(𝑠, 𝑛)
5: return 𝑧𝑏 = 𝑏 · 𝑠′ + (1 − 2𝑠′) · 𝑡 ′

𝑏

Figure 4: Protocol for B2A𝑛

A Comparing LSS
M
with Piranha

Datasets. We perform secure inference on the MNIST and CIFAR-
10 datasets. MNIST is a 10-class dataset with 28 × 28 images and
10 classes. CIFAR-10 is also a 10-class dataset, but has 32 × 32 × 3
images (≈ 4× as large as MNIST).
Benchmarks. Piranha uses twoMNIST-scale models – P-SecureML
and P-LeNet, and two CIFAR-10-scale models – P-AlexNet and P-
VGG16. Piranha modifies plaintext models, e.g. by replacing Max-
pool with Averagepool, so we use the prefix P to separate them
from the corresponding floating-point plaintext models. The ac-
curacy of these models for our choice of fixed-point parameters
(𝑛 = 64, 𝑓 = 24) can be found in Figure 5 in [76].
Performance. Table 5a compares the performance of LSSM with
Piranha in all four settings – in the LAN when keys are in mem-
ory/storage, and in the WAN when keys are in memory/storage.
We provide keysize, communication and rounds in Table 5b to help
with analysis. We split our analysis into two parts.
LAN, keys in memory/storage. LSSM is 2.9−6.3× faster than Piranha
when keys are in memory, mirroring improvement in communica-
tion. Notably we are faster than Piranha and communicate 2 − 6×
less data while employing a more expensive (but secure) protocol for
stochastic truncation. Our lower communication can be attributed
to two sources. First, our efficient implementation of Π𝐿Mill (Sec-
tion 3.3) that communicates tightly packed bits. Piranha computes
a comparison circuit similar to ours, but embeds each bit of the
comparison input into a Byte, and then treats the Bytes as logical
bits. This amplifies communication by 8×. Second, we apply Orca’s
network-level optimizations to Piranha’s networks.

Piranha does not faithfully generate keys and write them to
storage. It assumes that keys are always in memory. To simulate
keys in storage, we instrument its code to output the size of the
preprocessing material used. We then measure the time it takes to
read that much data from our disk. We report Piranha’s expected
runtime as the larger of disk read and online compute. Table 5a
shows that LSSM is 2.4 − 7.7× faster than Piranha when keys are
on disk. For smaller networks P-SecureML, P-LeNet and P-AlexNet
(< 4 million parameters), Piranha’s runtime degrades only slightly
(1 − 1.2×) from having to read keys from disk. LSSM is able to hide
keyread behind online time, but online time itself is 1.08 − 1.3×

larger than when keys are in memory since key expansion is in the
critical path. LSSM suffers slightly more than Piranha when keys are
in storage for smaller networks, so its improvement over Piranha
decreases slightly to 2.4− 4.3× compared to the case when keys are
in memory. For P-VGG16, which is a larger network (∼ 15 million
parameters), Piranha takes 1.7× longer to read keys from disk than
online computation. LSSM’s keysize-specific optimizations keep
keyread time smaller than online time and key expansion costs
relatively low (1.4× longer online time compared to when keys are
in memory). Thus, LSSM’s improvement over Piranha increases to
7.7× for P-VGG16, compared to 6.3× when keys are in memory.
WAN, keys in memory/storage. In the slow WAN, LSSM and Pi-
ranha are bottlenecked by communication and rounds, regardless
of where the keys are located. LSSM’s improvement over Piranha
in performance (1.8 − 4.1×) mostly mirrors its improvement over
Piranha in communication (2.2 − 4.5×). The only anomaly is P-
SecureML. Here, we see the impact of LSSM’s muted improvement
over Piranha in rounds (1.4 − 1.7×), arising from its use of secure
stochastic truncation. Rounds do not impact performance when
the network is fast (LAN), but they do impact performance in the
WAN when the amount of data being communicated is small (tens
of MBs). Both Piranha and LSSM communicate very little data for
P-SecureML. Consequently, LSSM spends 1.2 seconds on rounds,
which makes up 92% of its runtime. Piranha spends 1.98 seconds on
rounds (86% of its runtime). Since the time for rounds dominates,
LSSM’s improvement over Piranha for P-SecureML closely mirrors
its improvement over Piranha in rounds (1.7×).

B Boolean shares to arithmetic shares

We rely on the following observation (which was also made in
Orca [38]). For 𝑠, 𝑡 ∈ {0, 1} such that 𝑠 = 𝑠 ⊕ 𝑡 and 𝑠′ = extend(𝑠, 𝑛),
𝑡 ′ = extend(𝑡, 𝑛), 𝑠′ = extend(𝑠, 𝑛),

B2A𝑛 (𝑠) = extend(𝑠, 𝑛)
= 𝑠′ − 𝑡 ′ + 2 · 1{𝑠 < 𝑡}
= 𝑠′ − 𝑡 ′ + 2 · (1 − 𝑠′) · 𝑡 ′

= 𝑠′ + (1 − 2𝑠′) · 𝑡 ′

Our protocol ΠB2A
𝑛 uses the above expression and is described

in Figure 4.

C Select

Orca [38] writes select as a mixed-bitwidth multiplication. Let
𝑥, 𝑟, 𝑥 ∈ U𝑁 be such that 𝑥 = 𝑥 + 𝑟 mod 𝑁 . Let 𝑠, 𝑡, 𝑠 ∈ {0, 1}
be such that 𝑠 = 𝑠 ⊕ 𝑡 and 𝑠′ = extend(𝑠, 𝑛). Let 𝑡 ′ = extend(𝑡, 𝑛).
Then, from [34] and the expression in Appendix B we have that

select𝑛 (𝑠, 𝑥) = extend(𝑠, 𝑛) · 𝑥
= (𝑠′ + (1 − 2𝑠′) · 𝑡 ′) · (𝑥 − 𝑟 )
= 𝑠′ · 𝑥 − 𝑠′ · 𝑟 + (1 − 2𝑠′) · 𝑥 · 𝑡 ′ − (1 − 2𝑠′) · 𝑡 ′ · 𝑟

We use the above expression to describe our protocol for select𝑛 in
Figure 5.

D Security proof of Millionaire’s and Wrap

D.1 Security proof of Π𝐿Mill
𝑛
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Model

LAN, keys
in mem.

(s)

LAN, keys in
storage

(s)

WAN, keys in
mem.
(s)

WAN, keys in
storage

(s)
Piranha LSSM Piranha LSSM Piranha LSSM Piranha LSSM

P-SecureML 0.057
(4.8×) 0.012 0.057

(3.4×) 0.017 2.3
(1.8×) 1.3 2.3

(1.8×) 1.3

P-LeNet 0.402
(3×) 0.136 0.48

(3×) 0.159 8.6
(1.8×) 4.9 8.6

(1.8×) 4.9

P-AlexNet 0.424
(2.6×) 0.162 0.432

(2.3×) 0.19 12.2
(1.5×) 7.9 12.2

(1.5×) 7.9

P-VGG16 14
(5.7×) 2.47 23.726

(8.2×) 2.9 259
(3.8×) 67 259

(3.8×) 67

(a) Comparing the performance of LSS
M

with Piranha.

Model
Key size
(MB)

Comm
(MB) Rounds

Piranha LSSM Piranha LSSM Piranha LSSM

P-SecureML 15
(11×) 1.4 21

(3.3×) 6.3 66
(1.6×) 42

P-LeNet 265
(4.6×) 58 335

(2.1×) 157 108
(1.3×) 82

P-AlexNet 283
(5×) 57 324

(1.8×) 183 223
(1.4×) 162

P-VGG16 10163
(9.5×) 1071 13589

(4.3×) 3191 474
(1.4×) 343

(b) Comparing keysize and communication of LSS
M

with Piranha.

Table 5: Comparing LSS
M

with Piranha on inference benchmarks with batch 128.

Select Πselect
𝑛

Genselect𝑛 :

1: 𝑡
$← {0, 1}; 𝑟 $← U𝑁

2: 𝑡 ′ = extend(𝑡, 𝑛); 𝑢 = 𝑡 ′ · 𝑟
3: share 𝑟, 𝑡 ′, 𝑢
4: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑟𝑏 | |𝑡 ′𝑏 | |𝑢𝑏

Evalselect𝑛 (𝑏, 𝑘𝑏 , 𝑠𝑏 , 𝑥𝑏 ) :
1: Parse 𝑘𝑏 as 𝑟𝑏 | |𝑡 ′𝑏 | |𝑢𝑏
2: 𝑥𝑏 = 𝑥𝑏 + 𝑟𝑏 mod 𝑁 ;
3: 𝑡𝑏 = 𝑡 ′

𝑏
mod 2

4: 𝑠𝑏 = 𝑠𝑏 ⊕ 𝑡𝑏
5: (𝑥, 𝑠) ← reconstruct (𝑥𝑏 , 𝑠𝑏 )
6: 𝑠′ = extend(𝑠, 𝑛)
7: return 𝑧𝑏 = 𝑏 ·𝑠′ ·𝑥−𝑠′ ·𝑟𝑏 + (1−2𝑠′) ·𝑥 ·𝑡 ′𝑏 −(1−2 ·𝑠

′) ·𝑢𝑏

Figure 5: Protocol for select𝑛
The ideal functionality for logical AND, F AND, takes secret shares
of bits 𝑝, 𝑞 as input and returns secret shares of the bit 𝑝 ∧ 𝑞 as
output. We define a related functionality F AND′ that takes a bit 𝑝
as 𝑃0’s private input and a bit 𝑞 as 𝑃1’s private input and returns
secret shares of 𝑝 ∧ 𝑞. We additionally define the gate ANDCorr as
taking bits 𝑝, 𝑞, 𝑟 as input and returning 𝑝 ∧ 𝑞 and 𝑞 ∧ 𝑟 as output.
The functionality F ANDCorr takes shares of bits 𝑝, 𝑞, 𝑟 as input and
returns shares of ANDCorr’s outputs.

Let 𝐶 denote the plaintext comparison logic described in Sec-
tion 3.1.𝐶 can be written as a circuit with AND, ANDCorr and XOR

gates. The protocols ΠAND, ΠAND′ and ΠANDCorr that securely real-
ize F AND, F AND′ and F ANDCorr can be trivially constructed using
Beaver triples.

The ideal functionality FMill
𝑛 for the Millionaire’s problem takes

inputs 𝑥,𝑦 from 𝑃0, 𝑃1 respectively and returns secret shares of
1{𝑥 < 𝑦}. Intuitively, the security of Π𝐿Mill

𝑛 follows from the cor-
rectness of 𝐶 and the security of the AND protocol (that uses
Beaver bit-triples). Note that since we can decompose Π𝐿Mill

𝑛 into
calls to ΠAND, ΠAND′ and ΠANDCorr and local XOR operations,
we prove the security of Π𝐿Mill

𝑛 in the F BB-hybrid model, where
F BB is the set of ideal functionalities of our building blocks, i.e.,
F BB = {F AND, F AND′ , F ANDCorr}. We replace all calls to ΠAND,
ΠAND′ and ΠANDCorr in Π𝐿Mill

𝑛 with calls to their ideal functionali-
ties to get a new protocol Π̂𝐿Mill

𝑛 . Π̂𝐿Mill
𝑛 computes a comparison

circuit 𝐶 consisting of F AND, F AND′ , F ANDCorr and XOR gates
(which only require a local XOR). Every wire in𝐶 either 1○ holds a
value that is only a function of 𝑃0/𝑃1’s private input 𝑥/𝑦 and can
thus be computed locally by 𝑃0/𝑃1, or 2○ holds a secret share of
the corresponding wire in 𝐶 . This follows from 1○ the definition of
ideal functionalities in F BB, and 2○ if the inputs to the local XOR
operations are secret shares, then the outputs are also secret shares.
Thus, 𝐶 outputs secret shares of 1{𝑥 < 𝑦} and so does Π̂𝐿Mill

𝑛 .
We now show the security of Π̂𝐿Mill

𝑛 with respect to FMill
𝑛 . In

Π̂𝐿
Mill
𝑛 , 𝑃0’s view consists of random bits that it receives as outputs

of calls to ideal functionalities in F BB. Parse 𝑥 = 𝑥1 | |𝑥0 and 𝑦 =

𝑦1 | |𝑦0, where 𝑥1, 𝑦1, 𝑥0, 𝑦0 all have the same length. We recall our
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DReLU Π𝐿DReLU𝑛

Gen𝐿DReLU𝑛 :
1: (𝑘wrap0 , 𝑘

wrap
1 ) ← Gen𝐿wrap

𝑛−1
2: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑘

wrap
𝑏

Eval𝐿ReLUExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑥𝑏 ) :

1: Parse 𝑘𝑏 = 𝑘
wrap
𝑏

2: 𝑐𝑏 ← Eval𝐿wrap
𝑛−1 (𝑥𝑏 mod 2𝑛−1)

3: return 𝑑𝑏 = MSB(𝑥𝑏 ) ⊕ 𝑐𝑏 ⊕ 𝑏

Figure 6: LSS protocol for DReLU𝑛 .

ReLU Π𝐿ReLU𝑛

Gen𝐿ReLU𝑛 :
1: (𝑘DReLU0 , 𝑘DReLU1 ) ← Gen𝐿DReLU𝑛

2: (𝑘sel0 , 𝑘sel1 ) ← Genselect𝑛

3: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑘DReLU
𝑏

| |𝑘sel
𝑏

Eval𝐿ReLUExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑥𝑏 ) :

1: Parse 𝑘𝑏 = 𝑘DReLU
𝑏

| |𝑘sel
𝑏

2: 𝑑𝑏 ← Eval𝐿DReLU𝑛 (𝑏, 𝑘DReLU
𝑏

, 𝑥𝑏 )
3: return 𝑧𝑏 ← Evalselect𝑛 (𝑏, 𝑘sel

𝑏
, 𝑑𝑏 , 𝑥𝑏 )

Figure 7: LSS protocol for ReLU𝑛 .

equation for 1{𝑥 < 𝑦} from Section 3.1.

1{𝑥 < 𝑦} = 1{𝑥1 < 𝑦1} ⊕ 1{𝑥1 = 𝑦1} ∧ 1{𝑥0 < 𝑦0}
Let 𝑟 = 1{𝑥1 < 𝑦1}, 𝑠 = 1{𝑥1 = 𝑦1} and 𝑡 = 1{𝑥0 < 𝑦0}. At the

very top of the comparison tree, following the equation above, 𝑃0
securely computes 𝑟 ⊕ 𝑠 ∧ 𝑡 . Let 𝑟0, 𝑠0, 𝑡0 denote the shares of 𝑟, 𝑠, 𝑡
held by 𝑃0. 𝑃0 makes a call to F AND with 𝑠0 and 𝑡0 as input. It XORs
F AND’s output 𝑢0 with 𝑟0 to get the final output of the protocol.

We construct a simulator ŜMill
0 to simulate 𝑃0’s view in Π̂𝐿

Mill
𝑛

given 𝑥 and 𝑧0, which is FMill’s output for 𝑃0 (an identical simula-
tor can be constructed for 𝑃1). To simulate 𝑃0’s view as described
above, ŜMill

0 first samples random bits as outputs of all calls to ideal
functionalities in F BB except the last call to F AND. To set F AND’s
output, ŜMill

0 faithfully computes the bit 𝑟0 as 𝑃0 would in a real

execution of Π̂𝐿Mill
𝑛 . To do this it uses 𝑃0’s private input 𝑥 and the

view simulated thus far. It then sets the output of F AND to 𝑟0 ⊕ 𝑧0.
Since 𝑧0 is a random bit from the definition of FMill

𝑛 , 𝑟0 ⊕ 𝑧0 is
also a random bit. This exactly mimics the output of F AND. With
this, 𝑃0’s output in the simulated view matches 𝑃0’s output from
FMill
𝑛 . Indistinguishability of the joint distribution of the simulated

view and the outputs of FMill
𝑛 and the joint distribution of 𝑃0’s

view in Π̂𝐿
Mill
𝑛 and the outputs of Π̂𝐿Mill

𝑛 follows from the fact that
Π̂𝐿

Mill
𝑛 outputs secret shares of 1{𝑥 < 𝑦} as argued previously. Thus,

Π̂𝐿
Mill
𝑛 is secure in the F BB-hybrid model. Security of Π𝐿Mill

𝑛 in the
standard model follows from initializing the ideal functionalities in
F BB with their corresponding secure protocols and invoking the
sequential composition theorem [19, 48].

D.2 Security proof of Π𝐿
wrap
𝑛

The ideal functionality Fwrap
𝑛 takes inputs 𝑥,𝑦 from 𝑃0, 𝑃1 respec-

tively and returns shares of wrap𝑛 (𝑥,𝑦). We obtain Π̂𝐿
wrap
𝑛 by re-

placing the call to Π𝐿Mill
𝑛 in Π𝐿

wrap
𝑛 with a call to FMill

𝑛 . Security
of Π̂𝐿wrap𝑛 in the FMill

𝑛 -hybrid model follows from the correctness
of the expression for wrap𝑛 in Section 3.1 and the definition of
FMill
𝑛 (which returns secret shares). Security of Π𝐿wrap𝑛 follows

from securely instantiating FMill
𝑛 with Π𝐿Mill

𝑛 .

E LSS-based ReLU

Over reals, ReLU is defined as ReLU(𝑥) = max(𝑥, 0). When 𝑥 ∈ U𝑁

is interpreted as a signed value in 2’s complement representation,
ReLU𝑛 (𝑥) = 𝑥 ·DReLU𝑛 (𝑥), whereDReLU𝑛 (𝑥) = 1{𝑥 < 2𝑛−1}. To
compute DReLU𝑛 , we use the approach followed by CryptFlow2
[61]. LetMSB(·) denote themost significant bit. Consider 𝑥, 𝑥0, 𝑥1 ∈
U𝑁 such that 𝑥 = 𝑥0 + 𝑥1 mod 𝑁 . For 𝑏 ∈ {0, 1}, parse 𝑥𝑏 =

MSB(𝑥𝑏 ) | |𝑦𝑏 where MSB(𝑥𝑏 ) ∈ {0, 1} and 𝑦𝑏 ∈ {0, 1}𝑛−1. Define
carry := 1{𝑦0 + 𝑦1 > 2𝑛−1 − 1} = wrap𝑛−1 (𝑦0, 𝑦1). Then,

MSB(𝑥) = MSB(𝑥0) ⊕MSB(𝑥1) ⊕ carry

DReLU𝑛 (𝑥) = 1 ⊕MSB(𝑥)
In our context, parties 𝑃0 and 𝑃1 hold secret shares 𝑥0, 𝑥1 of 𝑥 .

Using above equations, to securely compute DReLU, it suffices to
securely compute carry that can be computed using Π𝐿wrap

𝑛−1 . Given
boolean shares of DReLU𝑛 (𝑥), we can select between 0 and 𝑥 using
Πselect
𝑛 . We describe our protocols for DReLU𝑛 and ReLU𝑛 formally

in Figures 6 and 7 that achieve the following cost.

Theorem 3. The protocol Π𝐿DReLU𝑛 in Figure 6 securely computes
DReLU𝑛 with Γ(Π𝐿DReLU𝑛 ) = Γ(Π𝐿wrap

𝑛−1 ) for Γ ∈ {keysize, comm,

rounds}. Moreover, the protocol Π𝐿ReLU𝑛 in Figure 7 securely com-
putes ReLU𝑛 with Γ(Π𝐿ReLU𝑛 ) = Γ(Π𝐿DReLU𝑛 ) + Γ(Πselect

𝑛 ) for Γ ∈
{keysize, comm, rounds}.

F LSS-based Stochastic Truncation

F.1 Proof of Lemma 1

Proof. For 𝑏 ∈ {0, 1}, let 𝑤𝑏 ∈ U2𝑛−𝑓 be such that 𝑥𝑏 = 𝑤𝑏 ·
2𝑓 + 𝑦𝑏 . Alternately,𝑤𝑏 = TR𝑛,𝑓 (𝑥𝑏 ). Then

TR𝑛,𝑓 (𝑥) =
𝑥0 + 𝑥1 − 2𝑛 · wrap𝑛 (𝑥0, 𝑥1)

2𝑓
mod 2𝑛−𝑓

=
𝑥0 + 𝑥1
2𝑓

− 2𝑛−𝑓 · wrap𝑛 (𝑥0, 𝑥1) mod 2𝑛−𝑓

=
𝑤0 · 2𝑓 + 𝑧0 +𝑤1 · 2𝑓 + 𝑧1

2𝑓
mod 2𝑛−𝑓

= 𝑤0 +𝑤1 +
𝑧0 + 𝑧1
2𝑓

mod 2𝑛−𝑓

= 𝑤0 +𝑤1 + wrap𝑓 (𝑧0, 𝑧1)
To prove the second part of the lemma, we use the fact that

addition modulo 2𝑓 is commutative and associative, and so 𝑧 + 𝑟
mod 2𝑓 can be computed in one of two ways, both of which give
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Signed Extension Π𝐿
SignExt
𝑛−𝑓 ,𝑛

Gen𝐿SignExt
𝑛−𝑓 ,𝑛 :

1: (𝑘wrap0 , 𝑘
wrap
1 ) ← Gen𝐿wrap

𝑛−𝑓
2: (𝑘B2A0 , 𝑘B2A1 ) ← GenB2A𝑛

3: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑘
wrap
𝑏
| |𝑘B2A

𝑏

Eval𝐿SignExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑦𝑏 ) :

1: Parse 𝑘𝑏 as 𝑘wrap
𝑏
| |𝑘B2A

𝑏

2: 𝑢𝑏 = 𝑦𝑏 + 𝑏 · 2𝑛−𝑓 −1 mod 2𝑛−𝑓
3: 𝑤𝑏 ← Eval𝐿wrap

𝑛−𝑓 (𝑏, 𝑘
wrap
𝑏

, 𝑢𝑏 )
4: 𝑤 ′

𝑏
← EvalB2A𝑛 (𝑏, 𝑘B2A

𝑏
,𝑤𝑏 )

5: return 𝑧𝑏 = extend(𝑢𝑏 , 𝑛) − 2𝑛−𝑓 ·𝑤 ′𝑏 − 𝑏 · 2
𝑛−𝑓 −1

Figure 8: LSS protocol for SignExt𝑛−𝑓 ,𝑛 .

us identical results. Thus,

𝑧 + 𝑟 mod 2𝑓

= ((𝑧0 + 𝑧1) mod 2𝑓 + (𝑟0 + 𝑟1) mod 2𝑓 ) mod 2𝑓

= ((𝑧0 + 𝑟0) mod 2𝑓 + (𝑧1 + 𝑟1) mod 2𝑓 ) mod 2𝑓

=⇒ 𝑧0 + 𝑧1 − 2𝑓 · wrap𝑓 (𝑧0, 𝑧1) + 𝑟0 + 𝑟1 − 2𝑓 · wrap𝑓 (𝑟0, 𝑟1)

−2𝑓 · wrap𝑓 (𝑧, 𝑟 )

= 𝑧0 + 𝑟0 − 2𝑓 · wrap𝑓 (𝑧0, 𝑟0) + 𝑧1 + 𝑟1 − 2𝑓 · wrap𝑓 (𝑧1, 𝑟1)

−2𝑓 · wrap𝑓 (𝑦0, 𝑦1)
=⇒ wrap𝑓 (𝑧, 𝑟 ) = wrap𝑓 (𝑧0, 𝑟0) + wrap𝑓 (𝑧1, 𝑟1) + wrap𝑓 (𝑦0, 𝑦1)
−wrap𝑓 (𝑧0, 𝑧1) − wrap𝑓 (𝑟0, 𝑟1)

□

F.2 LSS-based protocol for Stochastic

Truncation

Definition 2. For 𝑥 ∈ U𝑁 and 𝑧 = 𝑥 mod 2𝑓 , we define stochastic
truncation as

StTrunc𝑛,𝑓 (𝑥) =
{
(𝑥 ≫𝐴 𝑓 ) with probability 1 − 𝑧 · 2−𝑓

(𝑥 ≫𝐴 𝑓 ) + 1 with probability 𝑧 · 2−𝑓

Orca showed that stochastic truncation of 𝑥 ∈ U𝑁 by 𝑓 can be
computed as stochastic truncate-reduce by 𝑓 followed by signed-
extension to 𝑛 bits (see Lemma 2 in [38]). More formally, let signed-
extension SignExt𝑛−𝑓 ,𝑛 be a functionality that takes a 𝑦 ∈ U2𝑛−𝑓
as input and returns 𝑧 ∈ U𝑁 such that int𝑛 (𝑧) = int𝑛−𝑓 (𝑦). Then,
for 𝑥 ∈ U𝑁 such that int𝑛 (𝑥) ⩽ 2𝑛−1 − 2𝑓 , we have

StTrunc𝑛,𝑓 (𝑥) = SignExt𝑛−𝑓 ,𝑛 (stTR𝑛,𝑓 (𝑥))
We describe our protocol for signed-extension in Appendix F.3

that results in the following cost for our protocol Π𝐿StTrunc
𝑛,𝑓

for sto-
chastic truncation that invokes the protocol for stochastic truncate-
reduce followed by the protocol for signed-extension.

Theorem 4. Let 𝑥 ∈ U𝑁 with int𝑛 (𝑥) ⩽ 2𝑛−1 − 2𝑓 . There
exists a protocol Π𝐿StTrunc

𝑛,𝑓
that securely computes StTrunc𝑛,𝑓 (𝑥)

with Γ(Π𝐿StTrunc
𝑛,𝑓

) = Γ(Π𝐿stTR
𝑛,𝑓
) + Γ(Π𝐿wrap

𝑛−𝑓 ) + Γ(ΠB2A
𝑛 ) for Γ ∈

{keysize, comm, rounds}.

F.3 LSS-based Signed Extension

To perform signed-extension, we use Lemma 4 which was proved
in [29].

Lemma 2. Let 𝑦,𝑦0, 𝑦1, 𝑢0, 𝑢1 ∈ U2𝑛−𝑓 be such that 𝑦 = (𝑦0 + 𝑦1)
mod 2𝑛−𝑓 and 𝑢𝑏 = 𝑦𝑏 + 𝑏 · 2𝑛−𝑓 −1 mod 2𝑛−𝑓 for 𝑏 ∈ {0, 1}.
Let𝑤 = wrap𝑛−𝑓 (𝑢0, 𝑢1). Then SignExt𝑛−𝑓 ,𝑛 (𝑦) = extend(𝑢0, 𝑛) +
extend(𝑢1, 𝑛) − 2𝑛−𝑓 · extend(𝑤,𝑛) − 2𝑛−𝑓 −1.

Following the above lemma, let 𝑦0, 𝑦1 ∈ U2𝑛−𝑓 be the secret shares
held by 𝑃0, 𝑃1 of some underlying value 𝑦 ∈ U2𝑛−𝑓 . For 𝑏 ∈ {0, 1},
we have 𝑃𝑏 compute 𝑢𝑏 = 𝑦𝑏 + 𝑏 · 2𝑛−𝑓 −1 mod 2𝑛−𝑓 . Parties
then run Π𝐿

wrap
𝑛−𝑓 to compute boolean shares of𝑤 = wrap𝑓 (𝑢0, 𝑢1).

They subsequently run ΠB2A
𝑛 on the shares of 𝑤 to get shares of

𝑤 ′ = extend(𝑤,𝑛). Finally, 𝑃𝑏 sets 𝑧𝑏 = extend(𝑢𝑏 , 𝑛) − 2𝑛−𝑓 ·
𝑤𝑏 − 𝑏 · 2𝑛−𝑓 −1 as its output. Our protocol Π𝐿

SignExt
𝑛−𝑓 ,𝑛 that executes

these steps is shown in Figure 8 and its costs are summarized in
the following theorem.

Theorem 5. The protocol Π𝐿SignExt
𝑛−𝑓 ,𝑛 in Figure 8 securely computes

SignExt𝑛−𝑓 ,𝑛 with Γ(Π𝐿SignExt
𝑛−𝑓 ,𝑛 ) = Γ(Π𝐿wrap

𝑛−𝑓 ) + Γ(Π
B2A
𝑛 ) for Γ ∈

{keysize, comm, rounds}.

G LSS-based ReLU-Extend

In CNNs, linear layers are often followed by an activation such
as ReLU. In fixed-point computation, the output of a linear layer
needs to be truncated (to scale down). To reduce cost of truncation
followed by ReLU, Orca [38] re-wrote the computation as truncate-
reduce followed byReLUExt, which is defined asReLUExt𝑛−𝑓 ,𝑛 (𝑥) =
SignExt𝑛−𝑓 ,𝑛 (ReLU𝑛−𝑓 (𝑥)) = extend(ReLU𝑛−𝑓 (𝑥), 𝑛) for𝑥 ∈ U2𝑛−𝑓 .
Note that this keeps the functionality intact. Moreover, if the linear
layer is followed by Maxpool and ReLU, Orca computes truncate-
reduce followed by Maxpool on lower bitwidth (𝑛 − 𝑓 ) followed by
ReLUExt that outputs in 𝑛-bits.

To compute ReLUExt securely, we prove the following lemma
(see Appendix G.1) that expresses ReLUExt(𝑥) as computations on
secret shares of 𝑥 .

Lemma 3. For 𝑥0, 𝑥1, 𝑥 ∈ U2𝑛−𝑓 such that 𝑥 = 𝑥0 + 𝑥1 mod 2𝑛−𝑓 ,
let𝑑 = 1{𝑥 < 2𝑛−𝑓 −1},𝑤 = wrap𝑛−𝑓 (𝑥0, 𝑥1) and𝑤 ′ = extend(𝑤,𝑛).
Let 𝑦 := extend(𝑥0, 𝑛) + extend(𝑥1, 𝑛) − 2𝑛−𝑓 ·𝑤 ′. Then
ReLUExt𝑛−𝑓 ,𝑛 (𝑥) = select𝑛 (𝑑,𝑦).

Using the above lemma, we can get an LSS-based secure protocol
trivially for ReLUExt that does 2 secure comparisons, one each for
DReLU bit 𝑑 and wrap computation𝑤 . We optimize this further to
only require a single secure comparison as follows8: We build on our
construction for ReLU in Appendix E. Consider 𝑥, 𝑥0, 𝑥1 ∈ U2𝑛−𝑓
such that 𝑥 = 𝑥0 + 𝑥1 mod 2𝑛−𝑓 . For 𝑏 ∈ {0, 1}, 𝑥𝑏 = 𝑚𝑏 | |𝑦𝑏 ,
where 𝑚𝑏 = MSB(𝑥𝑏 ). Define carry = wrap𝑛−𝑓 −1 (𝑦0, 𝑦1). Then,
we compute𝑑 = DReLU(𝑥) = 1{𝑥 < 2𝑛−𝑓 −1} =𝑚0⊕𝑚1⊕carry⊕1.
8This idea is similar in spirit to MSB-to-Wrap optimization in [60].
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ReLU-Extend Π𝐿ReLUExt
𝑛−𝑓 ,𝑛

Gen𝐿ReLUExt
𝑛−𝑓 ,𝑛 :

1: (𝑘wrap0 , 𝑘
wrap
1 ) ← Gen𝐿wrap

𝑛−𝑓 −1

2: 𝑟 (𝑐 ) , 𝑟 (0) , 𝑟 (1) ,
$← {0, 1}

3: 𝑡 = 𝑟 (0) ⊕ 𝑟 (1)
4: 𝑠 = (𝑟 (0) ∧ 𝑟 (1) ) ⊕ (𝑟 (𝑐 ) ∧ 𝑡); 𝑟 (𝑑 ) = 𝑟 (𝑐 ) ⊕ 𝑡
5: share 𝑟 (𝑐 ) , 𝑠
6: (𝑘B2A0 , 𝑘B2A1 ) ← GenB2A𝑛

7: (𝑘select0 , 𝑘select1 ) ← Genselect𝑛

8: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑘
wrap
𝑏
| |𝑟 (𝑐 )

𝑏
| |𝑟 (𝑏 ) | |𝑠𝑏 | |𝑘B2A𝑏

| |𝑘select
𝑏

Eval𝐿ReLUExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑥𝑏 ) :

1: Parse 𝑘𝑏 = 𝑘
wrap
𝑏
| |𝑟 (𝑐 )

𝑏
| |𝑟 (𝑏 ) | |𝑠𝑏 | |𝑘B2A𝑏

| |𝑘select
𝑏

2: 𝑐𝑏 ← Eval𝐿wrap
𝑛−𝑓 −1 (𝑏, 𝑘

wrap
𝑏

, 𝑥𝑏 mod 2𝑛−𝑓 −1)
3: 𝑚̂ (𝑏 ) = MSB(𝑥𝑏 ) ⊕ 𝑟 (𝑏 )

4: 𝑐𝑏 = 𝑐𝑏 ⊕ 𝑟
(𝑐 )
𝑏

5: 𝑐 ← reconstruct (𝑐𝑏 ); Send 𝑚̂ (𝑏 ) to 𝑃1−𝑏 and receive
𝑚̂ (1−𝑏 ) from 𝑃1−𝑏 .

6: 𝑞 (𝑏 ) = 𝑐 ⊕ 𝑚̂ (1−𝑏 ) , 𝑢 = 𝑚̂ (0) ⊕ 𝑚̂ (1)

7: 𝑣 = (𝑚̂ (0) ∧ 𝑚̂ (1) ) ⊕ (𝑐 ∧ 𝑢)
8: 𝑤𝑏 = 𝑏 · 𝑣 ⊕ (𝑟 (𝑏 ) ∧ 𝑞 (𝑏 ) ) ⊕ (𝑟 (𝑐 )

𝑏
∧ 𝑢) ⊕ 𝑠𝑏

9: 𝑤 ′
𝑏
← EvalB2A𝑛 (𝑏, 𝑘B2A

𝑏
,𝑤𝑏 )

10: 𝑑𝑏 =𝑚 (𝑏 ) ⊕ 𝑐𝑏 ⊕ 𝑏
11: 𝑦𝑏 = extend(𝑥𝑏 , 𝑛) − 2𝑛−𝑓 ·𝑤 ′𝑏
12: return 𝑧𝑏 ← Evalselect𝑛 (𝑏, 𝑘select

𝑏
, 𝑑𝑏 , 𝑦𝑏 )

Figure 9: LSS protocol for ReLUExt𝑛−𝑓 ,𝑛
Hence, to compute 𝑑 it suffices to compute carry, which requires a
single invocation of wrap𝑛−𝑓 −1. Next, we reduce computation of
𝑤 = wrap𝑛−𝑓 (𝑥0, 𝑥1) to carry by observing

𝑤 = wrap𝑛−𝑓 (𝑥0, 𝑥1) = (𝑚0 ∧𝑚1) ⊕ (carry ∧𝑚0) ⊕ (carry ∧𝑚1)
Given the above equation,𝑤 can be computed using bitwise AND

operations resulting in boolean shares of𝑤 . These can be converted
to arithmetic shares over U𝑁 using ΠB2A

𝑛 . We describe the protocol
formally in Appendix G.2 that achieves the cost summarized below.

Theorem 6. ΠReLUExt
𝑛−𝑓 ,𝑛 securely computes ReLUExt𝑛−𝑓 ,𝑛 with

keysize(ΠReLUExt
𝑛−𝑓 ,𝑛 ) = keysize(Π𝐿wrap

𝑛−𝑓 −1)+4𝑛+3, comm(ΠReLUExt
𝑛−𝑓 ,𝑛 ) =

comm(Π𝐿wrap
𝑛−𝑓 −1) + 2𝑛 + 4 and rounds(Π

ReLUExt
𝑛−𝑓 ,𝑛 ) =

rounds(Π𝐿wrap
𝑛−𝑓 −1) + 3.

G.1 Proof of Lemma 3

We start by showing how to compute zero-extension. The zero-
extension functionality ZeroExt𝑛−𝑓 ,𝑛 takes 𝑥 ∈ U2𝑛−𝑓 as input and
returns extend(𝑥, 𝑛) ∈ U𝑁 as output. To compute ZeroExt𝑛−𝑓 ,𝑛 ,
we rely on the following lemma (proved in [29]).

Lemma4. Let𝑥, 𝑥0, 𝑥1 ∈ U2𝑛−𝑓 be such that𝑥 = (𝑥0+𝑥1) mod 2𝑛−𝑓 .
Let𝑤 = wrap𝑛−𝑓 (𝑥0, 𝑥1) and𝑤 ′ = extend(𝑤,𝑛). ThenZeroExt𝑛−𝑓 ,𝑛 (𝑥) =
extend(𝑥0, 𝑛) + extend(𝑥1, 𝑛) − 2𝑛−𝑓 ·𝑤 ′.

We now present our proof of Lemma 3.

Proof. When the DReLU bit 𝑑 = 0, the output of ReLU𝑛−𝑓 (𝑥),
and thus ReLUExt𝑛−𝑓 ,𝑛 (𝑥) is 0. When 𝑑 = 1, ReLUExt𝑛−𝑓 ,𝑛 (𝑥) =
ZeroExt𝑛−𝑓 ,𝑛 (𝑥). Thus, when 𝑑 = 1, we have from Lemma 4 that
ReLUExt𝑛−𝑓 ,𝑛 (𝑥) = 𝑥0+𝑥1−2𝑛−𝑓 ·𝑤 ′. This concludes the proof. □

G.2 Protocol Description

Our protocol is given in Figure 9. We compute carry using our
protocol for wrap over 𝑛 − 𝑓 − 1 bits which is used to compute both
𝑑 and𝑤 . Computation of 𝑑 is local with XORs. The boolean formula
for 𝑤 requires us to compute bitwise XOR operations, which are
local, and bitwise AND operations, which we compute using Beaver
bit-triples (Section 2.3). Once we have boolean shares of𝑤 (output
by our protocol for bitwise AND), we feed them into ΠB2A

𝑛 to get
shares 𝑤 ′0,𝑤

′
1 of 𝑤 ′ = extend(𝑤,𝑛). This allows us to compute

shares of 𝑦 = extend(𝑥0, 𝑛) + extend(𝑥1, 𝑛) − 2𝑛−𝑓 · 𝑤 ′ with, for
𝑏 ∈ {0, 1}, party 𝑃𝑏 computing𝑦𝑏 = extend(𝑥𝑏 , 𝑛)−2𝑛−𝑓 ·𝑤 ′𝑏 . Once
we have shares of 𝑦, we use the DReLU bit to choose between 𝑦

and 0 with Πselect
𝑛 .

H Details of LSS Key Compression

We illustrate the standard technique of compressing Beaver triples
that results in significant keysize reduction while computing secure
AND. Secure AND is used liberally within our comparison proto-
col Π𝐿Mill. Let 𝑢, 𝑣,𝑤 ∈ {0, 1} be a bit-triple such that 𝑤 = 𝑢 ∧ 𝑣 .
Ordinarily, 𝑃0 gets shares 𝑢0, 𝑣0,𝑤0 and 𝑃1 gets shares 𝑢1, 𝑣1,𝑤1.
Without compression, both parties need to store 3 bits of keys. Let
𝐹 be a pseudorandom function (PRF). The dealer shares PRF keys
𝑘0, 𝑘1 with 𝑃0, 𝑃1 in the offline phase. Now, the dealer picks a (pub-
licly known) value 𝑖 and a party 𝑏, and sets the bits𝑢1−𝑏 , 𝑣1−𝑏 ,𝑤1−𝑏
to be the output of 𝐹 (𝑘1−𝑏 , 𝑖). These bits can be computed by 𝑃1−𝑏
in the online phase and need not be sent explicitly by the dealer.
Similarly, 𝑢𝑏 , 𝑣𝑏 are set to be the output of 𝐹 (𝑘𝑏 , 𝑖) and can be com-
puted by 𝑃𝑏 instead of being sent by the dealer. With this, the dealer
only needs to send𝑤𝑏 to 𝑃𝑏 . Thus, out of the overall 6 bits of corre-
lation, only 1 bit needs to be stored explicitly (by party 𝑃𝑏 ). We can
share keys for several ANDs by simply having the dealer, 𝑃0 and
𝑃1 increment 𝑖 when needed. We additionally do load balancing
between 𝑃0 and 𝑃1, i.e. to share the key for 𝑚 ANDs, the dealer
picks 𝑏 = 0 for 𝑚

2 ANDs, and 𝑏 = 1 for 𝑚
2 ANDs. This means that

in contrast to 3𝑚 bits before, each party now only needs to store
𝑚
2 bits. Thus, we can get a key size reduction of 6× compared to
naively sharing Beaver triples. This basic idea can be extended to
all our protocols.

I Details of FSS
M

I.1 2PC with pre-processing based on FSS

Here we provide a brief description of FSS-based 2PC in the pre-
processing model and refer the reader to Orca [38] for a detailed
explanation.

I.1.1 Function Secret Sharing. For a function 𝑓 , a function secret
sharing (FSS) [15,16] scheme provides a pair of algorithms (Gen, Eval)
such that Gen splits 𝑓 into function shares 𝑓0, 𝑓1, and Eval on input
𝑏 ∈ {0, 1}, 𝑓𝑏 and 𝑥 produces𝑦𝑏 . The correctness guarantee requires
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that 𝑦0 + 𝑦1 = 𝑓 (𝑥). Security property requires that each function
share 𝑓𝑏 hides 𝑓 . Here, 𝑓0, 𝑓1 are referred to as the function keys,
and size of each of them is referred to as the keysize.

I.1.2 2PC with FSS. Boyle et al. [17] described how FSS can be used
to construct 2PC protocols with an offline/pre-processing phase
and an online phase. At a high level, consider a circuit with gates
{𝑔𝑖 }. To realize the circuit securely, it suffices if we have protocols
for each gate where parties start with secret shares of input to 𝑔𝑖
and generate secret shares of output of 𝑔𝑖 . For each gate consider
the corresponding offset gate 𝑔[𝑟𝑖 ]

𝑖
(𝑥) = 𝑔(𝑥 − 𝑟𝑖 ). Then, in the

offline phase, the dealer gives out shares of 𝑟𝑖 and FSS keys for 𝑔
[𝑟𝑖 ]
𝑖

.
In the online phase, 𝑃0 and 𝑃1 hold secret shares of 𝑥 . Given secret
shares of 𝑟𝑖 , they compute shares of 𝑥 = 𝑥 + 𝑟𝑖 , and reconstruct 𝑥 .
Then, they locally evaluate their FSS key on 𝑥 to learn shares of
𝑔𝑖 (𝑥).

I.1.3 FSS for Comparison. A key FSS scheme that we will use in
all our protocols is the FSS scheme for comparison. We define the
comparison function 𝑓 <

𝛼,𝛽
: U𝑁 → G that, for input𝑥 ∈ U𝑁 , returns

𝛽 ∈ G if 𝑥 < 𝛼 and 0 otherwise. When Gout = {0, 1} and 𝛽 = 1 (as
in our case), Grotto [67] shows how to construct an FSS scheme
LtFSS𝑛 = (Gen<𝑛 , Eval<𝑛 ) for 𝑓 <𝛼,𝛽 that is based on Distributed Point
Functions (DPFs) [16] and has the following cost.

Theorem 7 (FSS scheme for comparison [16, 67]). Let 𝜆 be the
computational security parameter. Let 𝐺 : {0, 1}𝜆 → {0, 1}2𝜆+2 be
a PRG. Let 𝜈 = log(𝜆 + 1). When 𝑛 > 𝜈 , there exists an FSS scheme
LtFSS𝑛 = (Gen<𝑛 , Eval<𝑛 ) such that ∀𝑥, 𝛼 ∈ U𝑁 :

(𝑘<0 , 𝑘
<
1 ) ← Gen<𝑛 (𝛼)

=⇒ Eval<𝑛 (0, 𝑥, 𝑘<0 ) + Eval
<
𝑛 (1, 𝑥, 𝑘<1 ) = 𝑓 <𝛼,1 (𝑥)

LtFSS𝑛 has key size (𝑛 − 𝜈) · (𝜆 + 2) + 2𝜆. Gen<𝑛 invokes the PRG
2 · (𝑛 − 𝜈) times and Eval<𝑛 invokes the PRG (𝑛 − 𝜈) times.

We set 𝜆 = 127 and use two calls to AES-128 in counter mode to
realize the slightly more than length-doubling PRG. When Eval<𝑛
invokes the PRG, it only needs a single AES call since it only uses
either the first or second half of the PRG output. We refer to this
as a half-PRG call. Orca [38] uses a different FSS scheme called the
Distributed Comparison Function (or DCF) for comparison. For 𝑛-
bit inputs, LtFSS𝑛 is more efficient than DCF𝑛 when Gout = {0, 1}.
LtFSS𝑛 requires 2× fewer AES calls in the online phase compared
to DCF𝑛 . LtFSS𝑛 also has a 1.02 − 1.2× smaller keysize than DCF𝑛
(depending on 𝑛).

I.2 FSS-based protocols for secure ML

We now elaborate on our FSS protocols for stochastic truncate-
reduce and ReLU-Extend. As previously stated, the rest of our pro-
tocols can be trivially obtained by replacing DCF in Orca [38]’s
protocols with LtFSS.

I.2.1 Stochastic truncate-reduce. We exactly follow Orca’s [38]
mathematical logic for computing stochastic truncate-reduce with
two changes.

Lemma 5 ( [38]). Let 𝑥, 𝑟 (𝑥 ) , 𝑥 ∈ U𝑁 be such that 𝑥 = 𝑥 + 𝑟 (𝑥 )
mod 𝑁 . Let 𝑧 = 𝑥 mod 2𝑓 , 𝑧 = 𝑥 mod 2𝑓 and 𝑟 (𝑧 ) = 𝑟 (𝑥 ) mod 2𝑓 .

For 𝑠
$← U2𝑓 , let 𝑠 = 𝑠 + 𝑟 (𝑧 ) mod 2𝑓 . Then,

stTR𝑛,𝑓 (𝑥) = TR𝑛,𝑓 (𝑥)︸    ︷︷    ︸
𝑃1

+ 1{𝑧 > 𝑠}︸    ︷︷    ︸
FSS

− TR𝑛,𝑓 (𝑟 (𝑥 ) ) − 1{𝑠 < 𝑟 (𝑧 ) }︸                            ︷︷                            ︸
Dealer

Orca computed the second term using a DCF-like FSS scheme
for greater-than comparison, 𝑓 >

𝑠,1. While the ideas behind LtFSS can
potentially be extended (in a non-black-box manner) to compute
greater-than as well, we do something simpler. We note that

1{𝑧 > 𝑠} = 1 − 1{𝑧 ⩽ 𝑠}

= 1 − 1{𝑧 < (𝑠 + 1) mod 2𝑓 }︸                          ︷︷                          ︸
Computed via FSS

− 1{𝑠 = 2𝑓 − 1}︸           ︷︷           ︸
Computed by Dealer

)

Next, we reduce the communication of Orca as follows: Orca
reconstructs 𝑥 using 2𝑛 bits of communication, and parties locally
compute 𝑧 = 𝑥 mod 2𝑓 . We note that while both parties need to
learn 𝑧, only 𝑃1 needs to learn 𝑥 . We can achieve this with only
(𝑛+ 𝑓 ) bits of communication as follows: 𝑃0 computes 𝑥0 = 𝑥0+𝑟 (𝑥 )0
and sends it to 𝑃1. Also, 𝑃1 computes 𝑧1 = 𝑥1 + 𝑟 (𝑥 ) mod 2𝑓 and
sends to 𝑃0. Then, 𝑃0 computes 𝑧 = 𝑥0 + 𝑧1 mod 2𝑓 . Also, 𝑃1
computes 𝑥 = 𝑥1 + 𝑟 (𝑥 )1 + 𝑥0 and 𝑧 = 𝑥 mod 2𝑓 .

Our protocol for stochastic truncate-reduce is given in Figure 10
that satisfies the following theorem.

Theorem 8. There exists a protocol Π𝐹 stTR
𝑛,𝑓

that securely computes

stTR𝑛,𝑓 with keysize(Π𝐹 stTR𝑛,𝑓
) = keysize(LtFSS𝑓 )+keysize(ΠB2A

𝑛−𝑓 )+
2𝑛−𝑓 , comm(Π𝐹 stTR

𝑛,𝑓
) = comm(ΠB2A

𝑛−𝑓 )+𝑛+𝑓 and rounds(Π𝐹
stTR
𝑛,𝑓
) =

rounds(ΠB2A
𝑛−𝑓 ) + 1.

I.2.2 ReLU-Extend. Let 𝑥, 𝑟, 𝑥 ∈ U2𝑛−𝑓 be such that 𝑥 = 𝑥 + 𝑟
mod 2𝑛−𝑓 . Let 𝑑 = DReLU(𝑥) and 𝑤̃ = 1{𝑥 < 𝑟 }. Orca uses one
DCF key and two evaluations of DCF to compute the DReLU bit 𝑑
and the bit 𝑤̃ for the secret value 𝑥 . Then, it uses (𝑑, 𝑤̃) to perform
a selection from a table of 4 values. To enable this, 𝑑, 𝑤̃ ∈ U4, that
is both 𝑑 and 𝑤̃ are 2-bit outputs of secure comparisons done with
DCF. One straightforward way to modify Orca’s protocol to use
comparisons with 1-bit outputs (so we can use LtFSS) is to first
obtain 𝑑 and 𝑤̃ as single bit values, and then use our protocol for
Boolean-to-Arithmetic to convert (𝑑, 𝑤̃) to values in U4. While this
would work, it requires an additional round of interaction and 4
bits of online communication over Orca. Instead, below, we build
on the ideas described in Section G to require a single evaluation of
LtFSS (instead of 2 evaluations of DCF) and also avoid the above
overhead of extension by re-designing the logic of ReLU-Extend to
work directly with one-bit comparison outputs. Overall compared to
ReLU-Extend in Orca, for 𝑛 = 64 and 𝑓 = 24, we have a marginally
(1.05×) lower keysize, 4× fewer PRG calls, the same number of
rounds, and 6 fewer bits of communication.

We reuse our ideas from Section G to design our new FSS-based
protocol for ReLU-Extend. Let 𝑥, 𝑟 (𝑥 ) , 𝑥 ∈ U2𝑛−𝑓 be such that 𝑥 =

𝑥 − 𝑟 (𝑥 ) mod 2𝑛−𝑓 . We interpret 𝑥 as being shared between the
dealer in the offline phase with share −𝑟 (𝑥 ) and the two parties in
the online phase with share 𝑥 . As we did in Section G, we define
𝑦0 = 𝑥 mod 2𝑛−𝑓 −1, 𝑦1 = −𝑟 (𝑥 ) mod 2𝑛−𝑓 −1 and carry = 1{𝑦0 +
𝑦1 > 2𝑛−𝑓 −1 − 1}. We compute carry as 1{2𝑛−𝑓 −1 − 1 − 𝑦0 < 𝑦1}
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Stochastic Truncate-Reduce Π𝐹 stTR
𝑛,𝑓

Gen𝐹 stTR
𝑛,𝑓

:

1: 𝑟 (𝑥 )
$← U2𝑛 ; share 𝑟 (𝑥 )

2: 𝑟 (𝑧 ) = 𝑟 (𝑥 ) mod 2𝑓

3: 𝑠
$← U2𝑓 ; 𝑠 = 𝑠 + 𝑟 (𝑧 ) mod 2𝑓

4: 𝑡 = 𝑠 + 1 mod 2𝑓
5: (𝑘<0 , 𝑘

<
1 ) ← Gen<

𝑓
(𝑡)

6: 𝑞 = 1 − TR𝑛,𝑓 (𝑟 (𝑥 ) ) − 1{𝑠 < 𝑟 (𝑧 ) } − 1{𝑠 = 2𝑓 − 1}
mod 2𝑛−𝑓

7: share 𝑞
8: (𝑘B2A0 , 𝑘B2A1 ) ← GenB2A

𝑛−𝑓
9: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑟

(𝑥 )
𝑏
| |𝑘<

𝑏
| |𝑘B2A

𝑏
| |𝑞𝑏

Eval𝐹 stTR
𝑛,𝑓
(𝑏, 𝑘𝑏 , 𝑥𝑏 ) :

1: Parse 𝑘𝑏 as 𝑟 (𝑥 )
𝑏
| |𝑘<

𝑏
| |𝑘B2A

𝑏
| |𝑞𝑏

2: 𝑥𝑏 = 𝑥𝑏 + 𝑟
(𝑥 )
𝑏

mod 2𝑛 ; 𝑧𝑏 = 𝑥𝑏 mod 2𝑓
3: 𝑃0 sends 𝑥0 to 𝑃1. 𝑃1 sends 𝑧1 to 𝑃0.
4: 𝑃0 computes 𝑧 = 𝑧0+𝑧1 mod 2𝑓 . 𝑃1 computes 𝑥 = 𝑥0+𝑥1

mod 2𝑛 and 𝑧 = 𝑥 mod 2𝑓 .
5: 𝑝𝑏 ← Eval<

𝑓
(𝑏, 𝑘<

𝑏
, 𝑧)

6: 𝑝′
𝑏
← EvalB2A

𝑛−𝑓 (𝑏, 𝑘
B2A
𝑏

, 𝑝𝑏 )
7: return 𝑧𝑏 = 𝑏 · TR𝑛,𝑓 (𝑥) − 𝑝′𝑏 + 𝑞𝑏

Figure 10: FSS protocol for stTR𝑛,𝑓
using LtFSS𝑛−𝑓 −1. Let 𝑔 = −𝑟 (𝑥 ) mod 2𝑛−𝑓 and ℎ = MSB(𝑔).
The dealer gives out boolean shares of 𝑟 (𝑐 )

$← {0, 1}, and parties
reconstruct 𝑐 , which is the carry bit masked by 𝑟 (𝑐 ) . Once parties
have 𝑥 and 𝑐 , they compute 𝑑 = 𝑥 ⊕ 𝑐 , which we interpret as
the DReLU bit 𝑑 masked by 𝑟 (𝑐 ) ⊕ ℎ ⊕ 1. Now, in Section G, we
explicitly compute the wrap bit 𝑤 = 1{𝑥 + 𝑔 > 2𝑛−𝑓 − 1} via a
boolean formula. This boolean formula, whenmapped to the current
setting, takesMSB(𝑥), ℎ and the carry bit as input. In contrast to
LSS, where all three inputs of the boolean formula were secret, here,
MSB(𝑥) is known to the parties, and ℎ is known to the dealer in
the offline phase. Only the carry bit is secret. We exploit this to
avoid computing𝑤 explicitly (since that costs one round and 2 bits
of communication). Let 𝑑′ = extend(𝑑, 𝑛), 𝑤 ′ = extend(𝑤,𝑛), 𝑢 =

extend(𝑔, 𝑛) and 𝑥 ′ = extend(𝑥, 𝑛). Recall that ReLUExt𝑛−𝑓 ,𝑛 (𝑥) =
select𝑛 (𝑑, 𝑥 ′ +𝑢 − 2𝑛−𝑓 ·𝑤 ′) = 𝑑′ · 𝑥 ′ +𝑑′ · 𝑢 − 𝑑′ ·𝑤 ′ · 2𝑛−𝑓 (this
follows from Lemma 3). We now use the following lemma, which
computes the underlined part directly as a function of MSB(𝑥),
𝑢 and carry. We can thus compute ReLUExt𝑛−𝑓 ,𝑛 with no further
interaction after computing carry.

Lemma6. Let𝑥, 𝑟 (𝑥 ) , 𝑥 ∈ U2𝑛−𝑓 be such that𝑥 = 𝑥+𝑟 (𝑥 ) mod 2𝑛−𝑓 .
Let 𝑢 = extend(−𝑟 (𝑥 ) mod 2𝑛−𝑓 , 𝑛), 𝑠 = extend(MSB(−𝑟 (𝑥 ) ), 𝑛),
𝑠′ = 1 − 𝑠 , 𝑡 = 𝑢 · 𝑠 and 𝑡 ′ = 𝑢 · 𝑠′. Let 𝑑′ = extend(DReLU(𝑥), 𝑛),
carry = 1{𝑥 − 𝑟 (𝑥 ) > 2𝑛−𝑓 − 1} and 𝑦 = MSB(𝑥). Let 𝑥 ′ =

extend(𝑥, 𝑛). Then, ReLUExt𝑛−𝑓 ,𝑛 (𝑥) = 𝑑′ ·𝑥 ′+𝐹𝑠,𝑡 (carry, 𝑦), where
𝐹𝑠,𝑡 is given by

𝐹𝑠,𝑡 (carry, 𝑦) =


𝑡 ′ carry = 0, 𝑦 = 0
𝑡 − 2𝑛−𝑓 · 𝑠 carry = 0, 𝑦 = 1
𝑡 − 2𝑛−𝑓 · 𝑠 carry = 1, 𝑦 = 0
𝑡 ′ − 2𝑛−𝑓 · 𝑠′ carry = 1, 𝑦 = 1

Proof. Let 𝑔 = −𝑟 (𝑥 ) mod 2𝑛−𝑓 ,𝑤 = 1{𝑥 +𝑔 > 2𝑛−𝑓 − 1} and
𝑤 ′ = extend(𝑤,𝑛). We have from Lemma 3 that

ReLUExt𝑛−𝑓 ,𝑛 (𝑥) = 𝑑′ · 𝑥 ′ + 𝑑′ · 𝑢 − 𝑑′ ·𝑤 ′ · 2𝑛−𝑓 (1)

Thus, it suffices to show that 𝐹𝑠,𝑡 correctly computes the under-
lined part. Given 𝑦 and carry, the DReLU bit 𝑑′ can be computed
as

𝑑′ =


1 − 𝑠 carry = 0, 𝑦 = 0
𝑠 carry = 0, 𝑦 = 1
𝑠 carry = 1, 𝑦 = 0
1 − 𝑠 carry = 1, 𝑦 = 1

Similarly, 𝑑′ ·𝑤 ′ can be computed as

𝑑′ ·𝑤 ′ =


0 carry = 0, 𝑦 = 0
𝑠 carry = 0, 𝑦 = 1
𝑠 carry = 1, 𝑦 = 0
1 − 𝑠 carry = 1, 𝑦 = 1

By substituting the above expressions for 𝑑′ and 𝑑′ · 𝑤 ′ in the
underlined part of Equation 1, the lemma follows. □

Following the above lemma, we compute arithmetic shares of 𝑑′

from the masked DReLU bit (with underlying mask 𝑟 (𝑐 ) ⊕ ℎ ⊕ 1)
using the expression in Appendix B for ΠB2A

𝑛 . We compute 𝐹𝑠,𝑡
by having the dealer secret share a look-up table indexed by the
carry and 𝑦 bits. Parties have access to the masked carry bit, so the
dealer appropriately rotates the look-up table to ensure that parties
look up the correct entry of look-up table in the online phase. Our
protocol is given in Figure 11.

Theorem 9. ΠReLUExt
𝑛−𝑓 ,𝑛 securely computes ReLUExt𝑛−𝑓 ,𝑛 with

keysize(ΠReLUExt
𝑛−𝑓 ,𝑛 ) = keysize(LtFSS𝑛−𝑓 −1) + 6𝑛 − 𝑓 + 1,

comm(ΠReLUExt
𝑛−𝑓 ,𝑛 ) = 2𝑛−2𝑓 +2 and rounds(ΠReLUExt

𝑛−𝑓 ,𝑛 ) = 2. It requires
one evaluation of LtFSS𝑛−𝑓 −1 in the online phase.

J Model details

The architecture of VGG16 is identical to the corresponding plain-
text model. Plaintext ResNet-18 and ResNet-50 have batch normal-
ization after convolution. A common optimization implemented
during inference (in PyTorch, and in CrypTen) is to fold the weight-
s/biases of batch normalization into the weights/biases of the pre-
ceding convolution [80, 82]. This reduces the number of operations
required during inference and improves efficiency. Since multi-
plication is commutative and associative over reals, the function
computed after merging the two (linear) layers is identical to the
one computed before merging, and so merging does not affect ac-
curacy. In Table 2, PyTorch accuracy is with batch normalization,
and fixed-point accuracy is after merging. Since merging causes no
accuracy loss, we follow PyTorch and CrypTen and merge convo-
lution and batch normalization in ResNet-18 and ResNet-50. For
fairness, we use the same architecture for ResNet-18 and ResNet-50
across all our baselines (CrypTen supports it by default).
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ReLU-Extend Π𝐹ReLUExt
𝑛−𝑓 ,𝑛

Gen𝐹ReLUExt
𝑛−𝑓 ,𝑛 :

1: 𝑟 (𝑥 )
$← U2𝑛−𝑓 ; share 𝑟

(𝑥 )

2: 𝑦1 = −𝑟 (𝑥 ) mod 2𝑛−𝑓 −1
3: (𝑘<0 , 𝑘

<
1 ) ← Gen<

𝑛−𝑓 −1 (𝑦1)

4: 𝑟 (𝑐 )
$← {0, 1}; share 𝑟 (𝑐 )

5: 𝑔 = −𝑟 (𝑥 ) mod 2𝑛−𝑓 ; ℎ = MSB(𝑎)
6: 𝑢 = extend(𝑔, 𝑛); 𝑠 = extend(ℎ, 𝑛)
7: 𝑟 (𝑑 ) = 𝑟 (𝑐 ) ⊕ 𝑓 ⊕ 1
8: 𝑟 ′ = extend(𝑟 (𝑑 ) , 𝑛); share 𝑟 ′
9: 𝑠′ = 1 − 𝑠
10: 𝑡 = 𝑢 · 𝑠; 𝑡 ′ = 𝑢 · 𝑠′
11: e = {(𝑡 ′, 𝑡 −2𝑛−𝑓 ·𝑠), (𝑡 −2𝑛−𝑓 ·𝑠, 𝑡 ′−2𝑛−𝑓 ·𝑠′)}≫ 𝑟 (𝑐 )

12: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑟
(𝑥 )
𝑏
| |𝑘<

𝑏
| |𝑟 (𝑐 )

𝑏
| |𝑟 ′

𝑏
| |e𝑏

Eval𝐹ReLUExt
𝑛−𝑓 ,𝑛 (𝑏, 𝑘𝑏 , 𝑥𝑏 ) :

1: Parse 𝑘𝑏 = 𝑟
(𝑥 )
𝑏
| |𝑘<

𝑏
| |𝑟 (𝑐 )

𝑏
| |𝑟 ′

𝑏
| |e𝑏

2: 𝑥𝑏 = 𝑥𝑏 + 𝑟
(𝑥 )
𝑏

mod 2𝑛−𝑓
3: 𝑥 ← reconstruct (𝑥𝑏 )
4: 𝑦0 = 𝑥 mod 2𝑛−𝑓 −1

5: 𝑐𝑏 ← Eval<
𝑛−𝑓 (𝑏, 𝑘

<
𝑏
, 2𝑛−𝑓 −1 − 1 − 𝑦0)

6: 𝑐𝑏 = 𝑐𝑏 ⊕ 𝑟
(𝑐 )
𝑏

; 𝑐 ← reconstruct (𝑐𝑏 )
7: 𝑦 = MSB(𝑥); 𝑑 = 𝑦 ⊕ 𝑐
8: 𝑑′ = extend(𝑑, 𝑛)
9: 𝑑′

𝑏
= 𝑏 · 𝑑′ + (1 − 2𝑑′) · 𝑟 ′

𝑏

10: Parse e𝑏 [𝑐] as (𝑞 (0) , 𝑞 (1) )
11: 𝑥 ′ = extend(𝑥, 𝑛)
12: return 𝑧𝑏 = 𝑑′

𝑏
· 𝑥 ′ + 𝑞 (𝑦̂)

Figure 11: FSS protocol for ReLUExt𝑛−𝑓 ,𝑛

K Extending MM to transformers

The ideas driving MM can be extended to secure transformer in-
ference as well. To illustrate, we consider SIGMA [33], which is
the current state-of-the-art in secure transformer inference in the
preprocessing model. SIGMA designs accuracy-preserving approxi-
mations of the complex non-linearities in transformers (e.g. GeLU)
and realizes them securely via FSS-based protocols. These approx-
imations use comparisons, linear functions and small look-up ta-
bles (LUTs). We provide efficient LSS-based comparison in this
work. SIGMA’s LUTs are small (most have 28 entries) and only
need boolean secret-shared vectors. Thus, we have all the building
blocks we need to construct an LSS-based protocol suite for secure
transformer inference. We can use the techniques outlined in this
paper to choose between LSS and FSS based on the deployment
scenario and to further employ heterogeneity (mixing LSS and FSS)
whenever it is useful.
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