
A Note on the Blindness of the Scheme from
ePrint 2025/397

Lucjan Hanzlik

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
hanzlik@cispa.de

Abstract. This note demonstrates that the blind signature scheme based
on cryptographic group actions, as proposed in ePrint paper 2025/397,
fails to ensure blindness. Specifically, we construct an adversary that
achieves a 1/8 advantage in the blindness experiment. The attack lever-
ages selective abort techniques (also known as selective failure attacks),
a well-known strategy in the MPC literature.

1 Introduction

Blind signatures, introduced by Chaum [1], enable a signer to issue signatures on
user-chosen messages without learning their content, making them a crucial tool
for privacy-preserving applications such as e-cash, e-voting, and anonymous cre-
dentials. The primary privacy guarantee of blind signatures is blindness, which
ensures that a signer cannot later link a given signature to the message it was
issued for. This property is formally captured through a security experiment:
an adversary first submits two messages, M0 and M1, to a challenger. The chal-
lenger then initializes two signing sessions, one for Mcoin and another for M1−coin,
where coin is a randomly chosen bit. After interacting with the signing oracles,
the adversary receives the corresponding signatures and attempts to determine
coin. Note that the adversary only receives the signatures if the challenger does
not abort any of the two sessions with the adversary (e.g., because of receiving
invalid signatures). If the adversary cannot do so with a significant advantage,
the scheme is considered blind. This ensures that even a malicious signer can-
not extract meaningful information about the user’s chosen message during the
signing process, preserving user privacy.

The ePrint Paper 2025/397 [2] proposes a new blind signature scheme from
cryptographic group actions. While the scheme builds on top of the framework
introduced by CSI-Otter [3], a wider range of cryptographic group actions can
instantiate it. In particular, the authors of [2] try to solve the following research
question:

Can we construct a blind signature from non-commutative group actions?



Contribution. In this short note, we show that despite the claims, the scheme
proposed in [2] is not blind. Moreover, the reason behind the attack is how the
authors solve the missing commutativity of the used cryptographic group action,
which makes the attack and the vulnerability inherent and not fixable for the
given research question.

2 Preliminaries

Before we shortly describe the scheme, we recall the notions and the blindness
definition used in [2]. For a positive integer k, we denote [k] as the set {1, . . . , k}.
We also use bold characters, e.g., h, to represent vectors. For a finite set S, we
write x ←$ S to indicate that x is sampled randomly from S. We use ⊙ to
denote component-wise multiplication of vectors in R. Specifically, for c ∈ R and
vectors a = (a1, . . . , ak), b = (b1, . . . , bk), we write c⊙ a = (c · a1, . . . , c · ak) and
a⊙b = (a1 · b1, . . . , ak · bk). For group actions, if a vector a acts on an element s,
we write this as a∗s = (a1∗s1, . . . , ak∗sk), where ∗ denotes the action operation.
In this note, we will only provide a high-level overview of the scheme for which
the above notion is sufficient. For more detail, we refer the reader to the original
paper [2].

Definition 1 (Blind Signature). A three-move blind signature BS with effi-
cient decidable public key space PK consists of the following PPT algorithms:

– BS.KGen(1n)→ (pk, sk): On input the security parameter 1n, the key gener-
ation algorithm outputs a pair of public and secret keys (pk, sk).

– BS.S = (BS.S1,BS.S2): The signer consists of two phases:
• BS.S1(sk) → (stateS, ρS,1): On input the secret key, outputs an internal

signer state stateS and the first-sender message ρS,1.
• BS.S2(stateS, ρU ) → ρS,2: On input the signer state stateS and a user
message ρU , outputs a second-sender message ρS,2.

– BS.U = (BS.U1,BS.U2): The user consists of two phases:
• BS.U1(pk,M, ρS,1)→ (stateU, ρU ): On input the public key pk, a message

M , and the first-sender message ρS,1, outputs an internal user state
stateU and a user message ρU .

• BS.U2(stateU, ρS,2) → σ: On input a user state stateU and a second-
signer message ρS,2, outputs a signature σ.

– BS.Verify(pk,M, σ): On input the public key pk, a message M , and a signa-
ture σ, it outputs 1 to indicate the signature is valid, and 0 otherwise.

Definition 2 (Blindness under Chosen Keys). For a blind signature BS,
define the blindness game BlindBS with an adversary A as follows:

– Setup: The challenger samples a bit coin←$ {0, 1} and runs A on input 1n.
– Online Phase: A outputs two messages M∗

0 and M∗
1 and a public key pk ∈

PK. The game checks if pk is valid; otherwise, it aborts. If valid, it sets
(M0,M1) = (M∗

coin,M
∗
1−coin). A is given access to the following oracles:



• Oracle U1: On input b ∈ {0, 1} and a first-signer message ρS,1,b, if
session b is not yet open, it marks session b as open and generates
(stateU,b, ρU,b)← BS.U1(pk,Mb, ρS,1). It returns ρU,b to A.

• Oracle U2: On input b ∈ {0, 1} and a second-signer message ρS,2,b, if
session b is open, it computes σb ← BS.U2(stateU,b, ρS,2,b) and marks
session b as closed.

– Output: If both sessions are closed and BS.Verify(pk,Mb, σb) = 1 for both
b = 0, 1, the game returns (σcoin, σ1−coin) to A. A then outputs a guess coin∗.
We say that A wins if coin∗ = coin.

We say that BS is blind under chosen keys if the probability that A wins is
negligible.

3 The Scheme and Attack

The blind signature scheme from [2] implements a similar framework to the CSI-
Otter scheme proposed at Crypto’23. The construction uses a base OR Sigma
protocol for a relation on group actions. To elevate this protocol to a blind
signature, the approach is first to repeat the protocol n-times to reduce the
soundness error and later use randomization techniques to achieve blindness. The
main difference between CSI-Otter [3] and the proposed scheme is that it relies
on non-commutative group actions, which require the signer to provide more
values than otherwise the user would be able to compute using the commutative
property of the group action. The scheme itself involves complex details. Thus,
in the description below, we extract the essential parts of the scheme to highlight
the attack. See figure 4 in [2] for a full scheme description.

We begin with the public key of the signer pk = (A
(1)
0 , A

(−1)
0 , A

(1)
1 , A

(−1)
1 )

where A
(1)
i = gi ∗ E and A

(−1)
i = g−1

i ∗ E for a base set element E. The blind

signature protocol starts with a commitment (Y
(1)
0 ,Y

(−1)
0 ,Y

(1)
1 ,Y

(−1)
1 ) from

the signer (i.e., algorithm BS.S1), where the Y elements are actually vectors of
commitments of size n (recall the number we repeat the base protocol).

In the next step (BS.U1), the user picks two strings of size n, d0,d1 ←$

{−1, 1}n. The purpose of d0 and d1 is to determine which of the Y elements
will be used by the user in the final signature. In particular, the user computes
Zb ← zb ∗Ydb

b for a vector of random group elements zb and the hash challenge
c ← H(Z0,Z1,M) for the message M . Note that c will be the hash challenge
used in the final signature. Therefore, instead of sending c directly to the signer,
the user ”blinds” it using d0 and d1, i.e., the challenge sent to the signer is
c∗ ← c⊙d0⊙d1, where ⊙ is component-wise multiplication. Note that the hash
challenges and the values d are vectors of size n with elements from set {−1, 1}.

Once the signer obtains c∗ in BS.S2, it prepares responses (r
(1)
0 , r

(−1)
0 , r

(1)
1 , r

(−1)
1 )

based on it. Here, it is worth noting that due to the non-commutive property,
the signer provides 4 · n different responses, while we will later see the user only
uses 2 · n out of those values. The signer’s response also includes a mask to the



challenge c∗ that the signer adds as part of the OR protocol. However, this part
is unimportant for the attack, so we omit it.

To finalize the signature in algorithm BS.U2, the user computes r0 = z0 ∗
(r(d0)) and r1 = z1 ∗ (r(d1)) and checks that those responses lead to valid sig-
natures. Otherwise, the algorithm aborts by outputting ⊥ instead of a valid
signature. We now recall the statement we made above. While the signer pro-

vides 4 · n values in the 4 vectors (r
(1)
0 , r

(−1)
0 , r

(1)
1 , r

(−1)
1 ), the user only uses 2 · n

of those values. What is more, which values are used depends on the vectors d0

and d1, which hide the final challenge c.
The attack we employ is known in the MPC literature as selective failure

or selective aborts. The purpose of the adversary is to guess d0 and d1 by
exploiting the fact that the user does not abort the protocol if the provided

(r
(1)
0 , r

(−1)
0 , r

(1)
1 , r

(−1)
1 ) by the signer lead to a valid signature. However, since not

all of those values are used by the user, the signer can use dummy (i.e., randomly
selected) values instead and check whether the response is accepted by the user.

In more detail, the adversary can first guess d0, d1 and use the signing

protocol to verify its guess. To do so, instead of sending correct values for r
−(d0)
0

and r
−(d1)
1 it sends random values. The adversary’s guess was correct if the user

produced a valid signature. Note that the user only uses r
(d0)
0 and r

(d1)
1 in the

protocol and does not verify the validity of r
−(d0)
0 and r

−(d1)
1 , which cannot be

done due to the lack of commutativity in the group action. We will later show
that it is actually not necessary to guess the full vector d0, d1, and an adversary
can break blindness with the i-th elements of each of the vectors.

Once the adversary’s guess is correct and it knows the correct d0 and d1,
it can break blindness as defined in definition 2. At the end of the blindness
experiment, the adversary receives (σcoin, σ1−coin), where one of the two signa-
tures will ”hash” to the challenge c. We assume here that the above attack is
performed against one of the two sessions between the adversary and the chal-
lenger while the other session is executed according to the protocol. Since the
adversary knows c∗, d0 and d1 it can check if c∗ ⊙ d0 ⊙ d1 correspond to the
hash challenge for signature σcoin or σ1−coin easily distinguishing the coin picked
by the challenger. Thus breaking the blindness experiment.

Interestingly, the above attack is also acknowledged by the authors [2]. In
the proof of theorem 2 (page 22), they state the exact same attack as above. See
the exact citation below.

In fact, an adversary can guess d0,d1 picked by the user as follows. First, it
randomly chooses d0,d1 and changes the way it generates a signature in line

406 by returning random r
−(d0)
0 and r

−(d1)
1 , hence a different choice of ρS,2.

Note that these values are never used by the user in BS.U2. Thus, the user
will return a valid signature in line 508 if the guess is correct. Otherwise, the
check in line 507 will fail and the user will return ⊥ in line 509. It occurs with
probability 1/4n, which is negligible for n at the security level. This completes
the proof.



While the above statement is true, the adversary does not need to actually
guess the whole vector d0 and d1. Assume that d0 = (d0,1, . . . , d0,n) and d1 =
(d1,1, . . . , d1,n). It is sufficient that the adversary learns only d0,i and d1,i for a
random i ∈ [n]. In other words, we do not need to reveal the real challenge across
all n repetitions of the base OR Sigma protocol, but it is enough to reveal it
for just one of the instances. Using the above estimation, by randomly guessing
the elements d0,i and d1,i, which are from {−1, 1}, the user will not abort the
protocol with probability 1/4. Thus, now the adversary knows the correct d0,i
and d1,i for one of the two final signatures (σcoin, σ1−coin).

Let us now assume that ccoin and c1−coin are the two hash challenges received
from the signatures (σcoin, σ1−coin). Moreover, assume that ccoin ∈ {−1, 1} and
c1−coin ∈ {−1, 1} correspond to the i-th element of those vectors. Moreover, let
c∗ ∈ {−1, 1} correspond to the i-th element of the vector c∗ received from the
challenger in the session the adversary tries to attack using the abort technique.
Without loss of generality, let’s assume we target the first session. To output
coin the adversary checks if

ccoin =
? c∗ · d0,i · d1,i

and
c1−coin =

? c∗ · d0,i · d1,i.

In case both equations are correct, the adversary aborts. Otherwise, it outputs
0 if the first equation holds and 1 if the second one holds. It is worth noting that
the adversary aborts if both equations are correct, which only happens in case
ccoin = c1−coin. However, since the adversary randomly picks the position i, the
probability of this happening is 1/2. Thus, the total advantage of the adversary
is 1/4 · 1/2 = 1/8.

Consequently, the scheme proposed in [2] is not blind despite the
claims.

References

1. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L.,
Sherman, A.T. (eds.) Advances in Cryptology – CRYPTO’82. pp. 199–203. Plenum
Press, New York, USA, Santa Barbara, CA, USA (1982). https://doi.org/10.
1007/978-1-4757-0602-4_18

2. Duong, D.H., Khuc, X.T., Qiao, Y., Susilo, W., Zhang, C.: Blind signatures from
cryptographic group actions. Cryptology ePrint Archive, Paper 2025/397 (2025),
https://eprint.iacr.org/2025/397

3. Katsumata, S., Lai, Y.F., LeGrow, J.T., Qin, L.: CSI-Otter: Isogeny-based (par-
tially) blind signatures from the class group action with a twist. In: Handschuh,
H., Lysyanskaya, A. (eds.) Advances in Cryptology – CRYPTO 2023, Part III. Lec-
ture Notes in Computer Science, vol. 14083, pp. 729–761. Springer, Cham, Switzer-
land, Santa Barbara, CA, USA (Aug 20–24, 2023). https://doi.org/10.1007/

978-3-031-38548-3_24

https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://eprint.iacr.org/2025/397
https://doi.org/10.1007/978-3-031-38548-3_24
https://doi.org/10.1007/978-3-031-38548-3_24
https://doi.org/10.1007/978-3-031-38548-3_24
https://doi.org/10.1007/978-3-031-38548-3_24

	A Note on the Blindness of the Scheme from ePrint 2025/397

