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Abstract
The Message Layer Security (MLS) protocol has recently
been standardized by the IETF. MLS is a scalable secure
group messaging protocol expected to run more efficiently
compared to the Signal protocol at scale, while offering a
similar level of strong security. Even though MLS has under-
gone extensive examination by researchers, the majority of
the works have focused on confidentiality.

In this work, we focus on the authenticity of the application
messages exchanged in MLS. Currently, MLS authenticates
every application message with an EdDSA signature and
while manageable, the overhead is greatly amplified in the
post-quantum setting as the NIST-recommended Dilithium
signature results in a 40x increase in size. We view this as an
invitation to explore new authentication modes that can be
used instead. We start by taking a systematic view on how
application messages are authenticated in MLS and catego-
rize authenticity into four different security notions. We then
propose several authentication modes, offering a range of dif-
ferent efficiency and security profiles. For instance, in one of
our modes, COSMOS++, we replace signatures with one-time
tokens and a MAC tag, offering roughly a 75x savings in the
post-quantum communication overhead. While this comes at
the cost of weakening security compared to the authentica-
tion mode used by MLS, the lower communication overhead
seems to make it a worthwhile trade-off with security.

1 Introduction

1.1 Background
A secure group messaging (SGM) protocol allows a group
of users to asynchronously communicate in an end-to-end
encrypted fashion. The Messaging Layer Security (MLS) pro-
tocol [12, 20], a recently standardized SGM protocol by the
IETF, is a proposal developed in a joint effort by academics
and industry for a scalable SGM protocol supporting groups
with tens of thousands of users. Similarly to the Signal pro-
tocol [36, 37, 46], considered the gold standard for two-user

SGMs, it offers a strong level of forward secrecy and post-
compromise security, limiting the scope of device compro-
mise. The draft versions of MLS are already running in pro-
duction in Cisco’s Webex [65] and RingCentral [74], and
other companies, including AWS, Cloudflare, and Google,
are planing deployment.1 Furthermore, with the recent adop-
tion of the Digital Markets Act by the European Union, a
standard like MLS is hoped to be a potential solution for the
interoperability problem in secure messaging [59].

The security of MLS (and its variants) has undergone ex-
tensive examination by researchers during the standardization
process, e.g., [4–8, 22, 29, 52, 53, 57, 78], and the protocol
has been continuously updated leading up to 20 drafts in to-
tal2 until the issuance of the RFC. The majority of works on
MLS have focused on the confidentiality of the exchanged
messages (or the shared group secret key). In contrast, rela-
tively less attention has been directed towards the authenticity
of messages, which is often viewed as a means to establish
confidentiality.

In MLS, there are two types of messages being authen-
ticated [12, Sec. 2]: application and handshake messages.
While the former carry the actual payloads such as chat texts,
the latter carry group operations affecting the group state (e.g.,
authenticating that user u added a new user v to the group).
In this work, we revisit how MLS authenticates application
messages motivated by the following two issues.

Issue 1: Heavy Reliance on Signatures. In MLS, every user
u has a signature key pair (vku,sku) and signs the application
message am for authentication. It further independently en-
crypts the message am and signature sigu using a symmetric
key encryption scheme whose key is derived from the group
secret key to conceal the application message and its identity
from the delivery server. The resulting (tuple of) ciphertext
ctu is then sent to the group. We call this mode of authen-
tication Enc-Sign mode.3 The recent work by Hashimoto et

1https://www.ietf.org/blog/mls-protocol-published/
2https://datatracker.ietf.org/doc/rfc9420/
3In contrast, handshake messages can be sent in Sign mode, where the

user simply sends the pair (m,sigu).
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al. [53] proposed adding an additional signature sigG on top
of ctu, using a signing key derived from the group secret
key. This mode, called the Sign-Enc-Sign mode, is a simple
but powerful enhancement of the Enc-Sign mode, allowing
to anonymously block outsiders from injecting malicious
messages to the group, similarly to Signal’s two-user Sealed
Senders [60].

While adding signatures provides stronger authenticity
guarantees, it comes with an increase in the communica-
tion and computational costs. This is currently manageable
as MLS uses an EdDSA signature with an overhead of
64 B. However, this overhead is greatly amplified in the
post-quantum setting. For instance, the NIST-recommended
Dilithium signature is 2.4 KB, a 40x increase to EdDSA
signatures. Given that a typical application message contains
less than 100 B [47], the overhead has a noticeable effect.
We thus view this as an invitation to explore alternatives de-
signs. We note that while handshake messages incur the same
overhead when turning to post-quantum security, the effect
is marginal as the size of the handshake message is larger,
and the rate at which group operations are performed is less
frequent compared to sending application messages.
Issue 2: Lack of Formal Model for Authentication. Com-
pared to the comprehensive study of the confidentiality guar-
antees of MLS, authentication has drawn less attention. This
lack of focus on authenticity may lead to unforeseen attacks
on MLS that do not contradict confidentiality but still harm
the protocol. As an illustrative example, the MLS is prone to
abuse from malicious insiders (e.g., [8]). Notice that both Enc-
Sign and Sign-Enc-Sign modes conceal the sender from the
server. This allows a malicious insider to craft a malformed
message and send it to the group. If the signature sigu included
in the ciphertext is malformed, even the group users cannot
trace back the sender, meaning that a malicious sender can
stealthily repeat the attack. While the users can reject these
malformed messages, this can only happen after downloading
them from the server and processing them. This opens the
door for a malicious insider to mount a DoS attack on the
group. A similar issue was pointed out by Tyagi et al. [75]
for Signal’s two-user Sealed Senders [60], who experimen-
tally verified that such an attack can easily drain a recipient’s
battery in a short period of time.

A formal security model that comprehensively captures
these properties allows us to better understand the strengths
and limitations of a given authentication mode.

1.2 Our Contributions
In this work, we explore new approaches to authenticate ap-
plication messages in MLS. Our contribution is explained
below in more detail and an overview is provided in Tab. 1.
Formal Model for Authentication. In Sec. 2, we study how
application messages are authenticated in MLS and system-
atically analyze the types of adversaries and threat models

Figure 1: Relation between a CGKA, FSPD, and GAM protocols.
hm denotes the handshake message used by the CGKA protocol. mi
denotes the output of the FSPD protocol; in MLS this is an encryp-
tion of the application message am. The blue and red circles indicate
that the handshake and application messages are authenticated.

needed to be considered. More technically, the core of MLS
can be regarded as a combination of two protocols: a con-
tinuous group key agreement (CGKA) and a forward-secure
payload delivery (FSPD) protocol [5].4 The former (resp.
latter) handles handshake (resp. application) messages. In
this paper, we formalize the authentication guarantees of
the application messages handled by the FSPD protocol
and introduce four different security notions: unforgeability,
anonymity, anonymous blocklisting, and tracing soundness.
To the best of our knowledge, this is the first work to put
a focus on the authenticity of the application message; pre-
vious works on MLS studied the different types of CGKA
protocol and focused on the confidentiality of the application
message [4–8, 22, 29, 52, 53, 57, 78].
Group Authenticated Messaging Protocol. In Sec. 3, we
propose the new notion of group authenticated messaging
(GAM) protocol, allowing us to focus solely on the authen-
ticity of the application messages while abstracting the confi-
dentiality guarantees. More specifically, the FSPD protocol
already entails the confidentiality of application messages
and our GAM protocol can be viewed as adding authenticity
guarantees to them. Fig. 1 gives an illustration on how a
GAM protocol interacts with the CGKA and FSPD protocols.
For instance, in MLS, m and Σ1 are the encryptions of the ap-
plication message am and signature sigu on am, respectively
(i.e., Enc-Sign mode).
New Authentication Modes. In Secs. 4 and 5, we introduce
five new GAM protocols: COSMOS, COSMAC, QUASAR, STARS,
and GEMSTARS. All are based on generic building blocks such
as one-way functions (OWFs), message authentication codes
(MACs), and key encapsulation mechanisms (KEMs) that are
instantiable from both classical and post-quantum assump-

4Alwen et al. [5] uses the term forward-secure group AEAD instead of
FSPD.
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Table 1: Comparison between different authentication modes for secure messaging protocols. N and T denote the size of the group and the
number of messages each user sends. “Communication Cost Overhead per Msg per User” is defined as the sum of 1 (offline/online) upload
cost and (N−1) (offline/online) download cost for each user normalized by NT . For readability, we use the simplification (N +1)/N ≈ 1.
sig, osig, and gsig denote a standard signature, a one-time signature, and a group signature, respectively. ovk denotes the verification key of
a one-time signature. ct denotes a KEM ciphertext. κ denotes the security parameter, set to 128 bits. ✓(∗) denotes that it satisfies a weaker
notion of unforgeability compared to ✓ (see Sec. 2.3). “State Updates” comes with “-”, “local”, and “global”, where “-” means no state
update is necessary (see Remark 3.2). COSMOS and COSMAC come with an optimized variants indicated by (+) and (++), whose respective total
communication cost overheads and state updates are provided in parentheses.

Authentication Modes Anon. Unf.
Anonymous
Blocklistable

Tracing
Soundness

Comm. Cost Overhead
per Msg per User

State
Updates

Enc-Sign [12] ✓ ✓ p p |sig| -
Sign-Enc-Sign [53] ✓ ✓ ✓ p 2 · |sig| -
COSMOS(+,++) (Secs. 4 ) p ✓(∗) ✓ ✓ 3 ·κ (3 ·κ , (2+ 3

T ) ·κ) local (- , local)
COSMAC(+,++) (Secs. 4) ✓ ✓(∗) ✓ p 4 ·κ (4 ·κ , (3+ 4

T ) ·κ) local (-, local)
QUASAR (Sec. 5.1) ✓ ✓(∗) ✓ ✓ 6 ·κ+ 2·(κ+|ct|)

T global
STARS (Sec. 5.2) ✓ ✓ ✓ ✓ |ovk|+2 · |osig|+ κ+2·|ct|

T global
GEMSTARS (Sec. 5.2) ✓ ✓ ✓ ✓ |sig|+ |gsig| -

tions. Each mode fills a specific part of the design space with
strengths and weaknesses, summarized in Tab. 1. In particular,
COSMOS and COSMAC do not rely on signatures and the over-
head (for their optimized variants) is merely 32 B and 48 B,
respectively. This offers a roughly 75x savings in the post-
quantum communication overhead compared to MLS, though
at the cost of slightly weakening the unforgeability guarantee;
we assume the malicious server does not collude with the
malicious insider. See Sec. 2.3 for more detail. We believe
this significantly lower communication overhead makes it a
worthwhile trade-off with security.

Efficiency Analysis. In Sec. 7, we instantiate our proposed
GAM protocols from both classical and post-quantum assump-
tions and compare their efficiency. For completeness, we also
detail in Sec. 6 how to use each of our proposed GAM proto-
cols inside MLS. While it is mostly a simple drop in, there are
minor issues that require some explanation, since the syntax
of GAM protocols intentionally leaves out some functionality
provided by MLS, such as what is typically captured by the
CGKA protocol (e.g., welcoming group members).

Lastly, we leave it as an important future work to analyze
MLS in its entirety when using our notion of GAM protocol
as a building block. While Alwen et al. [5] analyze MLS
by composing the CGKA and FSPD protocols with a PRF-
PRNG, the output of the FSPD protocol is explicitly signed
(and not encrypted); that is, they assume the vanilla (unen-
crypted) GAM protocol used by MLS. Replacing this with a
general GAM protocol and analyzing MLS is an interesting
future work. We discuss further open problems in Sec. 8.

Other related work and preliminaries are deferred
to Apps. A and B, respectively.

2 Setting: Authentication in SGM

This work focuses on secure group messaging (SGM) proto-
cols, where group users share a unique common group secret
key. In this section we use MLS as our primary example, but
all of our constructions apply equally to most MLS variants
(e.g., [2, 4, 6, 7, 52, 53, 57]) that rely on a group secret key to
exchange messages.

Below, we give a brief background on how MLS authen-
ticates application messages. We then take a close look at
different security notions under the umbrella of authenticity
and formally categorize them. Building on the systematiza-
tion provided in this section, we introduce the concept of a
group authenticated messaging (GAM) protocol in Sec. 3 and
formally define the relevant security notions.

2.1 Secure Group Messaging and Our Goal

Following Alwen et al. [5], we view MLS as a combination
of the CGKA and FSPD protocols (see Fig. 1 for illustration).
At a high level, one can draw a parallel to hybrid encryption,
where the heavy public key operations are handled by the
CGKA protocol and the exchange of application messages is
handled by the lightweight FSPD protocol.

In more detail, the CGKA protocol allows a group of users
to agree on a continuous sequence of shared (symmetric)
group secret keys. By regularly updating the group secret key
(and user specific keys), strong notions of forward secrecy
and post-compromise security [4–6,8,39] are guaranteed. The
protocol is also responsible for handling group operations
such as adding and removing users. Handshake messages is
an umbrella term for the exchanged messages by the CGKA
protocol, used to achieve the above objectives. A handshake
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message, or an encryption of it, is signed using the user’s
signing key to authenticate the sender. This plays an important
role in guaranteeing the consistency and integrity of the group
state. As can also be seen from Fig. 1, the authenticity of
handshake messages is analyzed implicitly as a means to
show confidentiality of the group secret keys; this is similar
to standard (two-user) authenticated key exchange protocols
where authenticity guarantees are implicit [15, 32].

The FSPD protocol then uses the established group secret
key by the CGKA protocol to securely exchange application
messages, containing various types of payload such as chat
texts, images, and stamps. Compared to the CGKA protocol,
the FSPD protocol is much simpler since there are no group
operations (i.e., static groups) and the objective is only confi-
dentiality with forward secrecy; authenticity is not a security
requirement. In MLS, the output of the FSPD protocol — an
encryption of the application message — is then signed us-
ing a signature scheme and encrypted (i.e., Enc-Sign mode),
adding the necessary authenticity guarantee. This rather ad
hoc way of adding authenticity seems to be justified by the
simple nature of the FSPD protocol, and indeed most works
on MLS mainly focus on the security of the CGKA proto-
col [4,6–8,22,29,52,53,57,78]. To the best of our knowledge,
Alwen et al. [5] is the only prior work to analyze MLS in its
entirety. They do so by modularly combining the CGKA and
FSPD protocols with a PRF-PRNG, assuming the output of
the FSPD protocol is authenticated by a digital signature.

The goal of our paper is thus to put a spotlight onto the
authentication of application messages or, to be more precise,
the output of the FSPD protocol (see Fig. 1). We introduce a
new primitive called group authenticated messaging (GAM)
protocol and aim to more clearly and systematically explore
alternative choices to the currently (implicitly) used GAM
protocol by MLS, which is the Enc-Sign mode.

2.2 Environment
We first explain the environment in which MLS operates in.
This involves introducing the relevant entities and outlining
the network model under consideration.

2.2.1 Entities

Group Users: The set of users in a group. Depending on the
considered security notion, the users are modeled to either be
all honest or some malicious. For instance, we consider the
latter case when modeling a security notion where a malicious
insider (e.g., [8]) tries to impersonate an honest user.

Server: Any asynchronous messaging protocol requires a
server to curate the messages between the group users. We
consider two types of servers: honest and malicious. While
servers are typically considered to be malicious by default in
prior work, this is because the focus is mainly on the confi-
dentiality of the CGKA protocol. For authentication, it makes

sense to consider honest servers as well. For example, the
recent work by Hashimoto et al. [53] considers an honest
server to anonymously block outsiders from injecting mali-
cious messages to the group.

Outsiders: Any adversary that is not a group user or the
server. For instance, a user of the secure messaging application
not in the group.

2.2.2 Network Model

Due to asynchronicity, when group users exchange messages,
they must upload and download these to and from the server.
Depending on the anonymity guarantee we aim to achieve,
there are two types of communication channels that can be
used between the group users and the server.

Non-Anonymous: If the server is allowed to know the users
in the group, then we assume a user-server authenticated
channel is used. For instance, TLS or Noise [69] with user-
side password-based authentication can be used.

Anonymous: If the group users are required to remain anony-
mous to the server, then we assume an authenticated anony-
mous channel such as TOR [42, 71] or a VPN is used.

We note dealing with authentication in the non-anonymous
setting is trivial since the server can simply maintain the group
list and explicitly authenticate the group users. In contrast, in
the anonymous setting, such trivial solutions no longer exist
and the issue of authentication becomes non-trivial. Indeed,
prior works on anonymous secure messaging, e.g., [34, 53,
60,75], overcome this by relying on some type of anonymous
group authentication protocol.

2.3 Threat Model for Authentication
We now categorize authenticity into four different security
notions: unforgeability, anonymity, anonymous blocklisting,
and tracing soundness. This categorization of the application
message is motivated by the security definitions used in well-
studied anonymous authentication schemes, such as group
signatures [13,27,35] and accountable ring signatures [18,80].

Below, for each security notion, we explain who the ad-
versary is, what the goal of the security notion is, and why
we consider it. For simplicity, we leave outsider adversaries
out of most security notions as they are strictly weaker than
malicious servers and group users. The following security
notions will be formalized in Sec. 3.3.

Goal 1: Unforgeability.
Adversary: Malicious group users and/or a malicious server.
Goal: No adversary can forge a signature5 of an honest user.

5Throughout this section, we use the term “signature” loosely and note
that signatures are not the only way to authenticate. Using the terminology
of our GAM protocol, this is more formally an “authentication token”.
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This is the default notion that any secure messaging proto-
col must ensure. We can consider two levels of unforgeability:
we call it unforgeable if the set of malicious group users and
the malicious server can collude, and non-colluding unforge-
able otherwise. The former guarantees that even a colluding
malicious insider and server cannot forge a signature of an
honest group user. In contrast, the latter restricts the adversary
to be either the set of malicious group users or the malicious
server; that is, unforgeability holds only if there is no col-
lusion. While (standard) unforgeability is the more secure
notion, sacrificing security against collusion of a malicious in-
sider and server could be a reasonable compromise for better
efficiency.
Goal 2: Anonymity.

Adversary: A malicious server.
Goal: The server cannot deanonymize and link the activity of
the group users. E.g., the server cannot distinguish whether
two uploaded messages came from the same user or from two
different users.

For this security notion we must rely on an anonymous
network model as, otherwise, communication will be linkable
at the network level. We further assume all the group users
to be honest, since a malicious user can always inform the
server of who is in the group or who authored a message.
Goal 3: Anonymous Blocklisting.

Adversary: An outsider.
Goal: An honest server can block any outsider trying to up-
load messages on behalf of the group.

Observe that non-anonymous blocklisting is trivial to sat-
isfy, since the server can perform access control by explicitly
authenticating the group users. We therefore use the term
“anonymous” to emphasize that the motivation of the server is
to blocklist non-group users while preserving the anonymity
of the users. The purpose of anonymous blocklisting is for the
server to be able to prevent outsiders from launching a DoS
attack on the group. Importantly, although group users can
verify the authenticity of the messages by downloading them
from the server, we require the server to directly reject invalid
messages on behalf of the group. This is satisfied for example
by Sealed Sender [60] used in the Signal protocol and the
metadata-hiding MLS protocol by Hashimoto et al. [53].
Goal 4: Tracing Soundness.

Adversary: Malicious group users.
Goal: The set of honest group users can trace any (possibly
maliciously crafted) signature back to a unique group user; if
an honest user traces a signature back to a user u in the group,
then all other honest users trace it back to the same user u.

Tracing soundness allows to keep the view of the hon-
est users consistent. For instance, consider a malicious in-
sider mounting a DoS attack against the group by spamming
garbage application messages. With tracing soundness, the
honest users can unanimously agree on who the malicious
insider was and remove him from the group. One can draw a

parallel to anonymous blocklisting, that prevents such attacks
from outsiders. Moreover, while similar, it is worth noting that
tracing soundness is an orthogonal notion to unforgeability.
Consider a malicious insider u that modifies the signature of
an honest user v in such a way that for half of the group mem-
bers it traces back to u, but for the other half traces back to v.
While this does not contradict unforgeability, as the malicious
user is effectively just “repurposing” somebody’s message, it
clearly breaks the consistency of the group’s view.

2.4 Modeling Choices and Simplifications
Before introducing our GAM protocol in the next section, we
clarify the modeling choices and simplifications we make.

Trusted Setup. The GAM protocol assumes the states of
both the group users and the server are generated honestly
by an initialization phase. This simplification is justified for
protocols like MLS, since users are assumed to start the GAM
protocol with the group secret key, derived from the CGKA
protocol, already in their states.

Static Groups. The GAM protocol assumes static groups,
following the way in which MLS’ FSPD protocol operates.
Recall that in MLS a new FSPD protocol for a static group
is initialized every time group membership changes, as this
will trigger a new CGKA protocol epoch (see Fig. 1). More
generally, though, we could consider a continuous GAM pro-
tocol where we do not need to reinitialize the protocol with
every group change, similarly to a CGKA protocol. However,
such a definition must be intertwined with that of the CGKA
protocol responsible for group state updates, rendering the def-
inition to be as complex as modeling MLS in its entirety. As a
study investigating new security goals of authentication, we
opt for making the security notions tractable and to improve
the overall readability. Nonetheless, we explain in Sec. 6.2
with concrete examples on how each of our proposed GAM
protocols can handle dynamic operations.

Out-of-Order Messages. In our work, we do not model au-
thentication when messages arrive out-of-order. While this
is arguably important for a comprehensive model, we high-
light that, unlike confidentiality, lack of authentication does
not harm the usability of the FSPD protocol. In the context
of the MLS protocol, immediate decryption of the messages
will still be maintained. The only difference between MLS is
that we may lose immediate authentication when messages
arrive out-of-order. Importantly, though security is lost while
some messages are missing, assuming that every message
eventually arrives, then out-of-order messages do not affect
security. Instead, if some messages are permanently dropped,
we can allow the recipients to fetch this missing authenti-
cation information, which they can do assuming the proper
indexing of the messages required by out-of-order decryption.
We note that in MLS [20, Section 5.2], whether messages
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eventually arrive or not is controlled by the application that
sets the policy.

3 Group Authenticated Messaging Protocol

We introduce group authenticated messaging (GAM) proto-
cols and the associated security requirements.

3.1 Definition
A GAM protocol is defined between a server and a group G
of users. As explained above, there exists an initialization al-
gorithm Init that prepares the initial state for the group users,
possibly further preparing a secret key for the server. To send
a message m (e.g., the output of a FSPD protocol), a user
u ∈ G runs the Send algorithm, outputting a group authenti-
cation token ΣG. A server verifies (m,ΣG) using the Verify
algorithm and prepares user authentication tokens (σi)i∈[N],
where N = |G|. For example, in the context of the Sign mode
in MLS (see Footnote 3), ΣG is simply u’s signature and
σi := ΣG. To capture anonymity, we assume the server only
knows the size of the group G6 and assume a bijective map
idx : G→ [N] is secretly known by the group users. Namely, a
user u such that i = idx(u) fetches σi from the server. It then
runs the Receive algorithm to verify (m,σi) and traces the
purported user v∈G that generated σi. It is worth highlighting
that we make a distinction between a group authentication
token ΣG and a user authentication token σi to capture an
optimization technique called selective downloading [7, 52].
This technique allows the server to sanitize the group authen-
tication token ΣG in a straightforward manner by delivering
to each group user just the strictly necessary amount of data
σi, while maintaining the same level of (dis)trust.

Finally, we endow a GAM protocol with an offline-online
feature. In the offline phase, when the message is still un-
known, a user can perform a possibly heavy state update,
and share the update with the server and the group via the
UpdSend algorithm. This algorithm is accompanied by algo-
rithms UpdVerify and UpdReceive similarly to above. Once
the message is known in the online phase, the user can send it
using its updated state.7 Formally, we have the following.

Definition 3.1. A GAM protocol for message space M be-
tween a server Sv and a set of users in a group G consists of
the following algorithms, where idx : G→ [N] is a bijective
function with N := |G|. Below, if an algorithm outputs ⊥, we
assume it reverts to the state before running the algorithm.

6While we could consider further hiding the size of the group to the server,
we choose not to since it would resort in an inefficient padding strategy.
This is the same level of anonymity satisfied by previous anonymous SGM
protocols e.g., [34, 53].

7Naturally, protocols need not have such a differentiation and can simply
only perform online state updates. This optimization allows us to improve
the real-world usability of those protocols that do, as they can more evenly
distribute their computation and communication over time.

Init(1κ,G) →
(
pp,skSv,(stu)u∈G

)
: On input the security

parameter 1κ and group information G⊂ {0,1}∗, it outputs
public parameters pp, a secret key skSv for the server Sv, and
an initial state stu for all users u ∈ G. We assume G ∈ stu.

Send(stu,m)→ (st′u,ΣG) or ⊥ : On input a state stu for user
u ∈ G and a message m ∈M , user u outputs an updated state
st′u and a group authentication token ΣG, or ⊥.

Verify(pp,skSv,ΣG,m) → (pp′,(σi)i∈[N]) or ⊥ : On input
public parameters pp, a server secret key skSv, a group au-
thentication token ΣG, and a message m ∈M , the server Sv
outputs updated public parameters pp′ and N user authenti-
cation tokens (σi)i∈[N], or ⊥.

Receive(stu,σ,m)→ (st′u,b ∈ {⊤,⊥} ,v ∈ G∪{⊥}) : On
input a state stu for user u ∈ G, a user authentication token
σ, and a message m ∈M , user u outputs an updated state
st′u, a bit b indicating whether the token was valid (b =⊤) or
invalid (b = ⊥), and a purported user v ∈ G∪{⊥}, where
v =⊥ if tracing fails.

UpdSend(stu)→ (st′u, Σ̂G, ĉtG) : On input a state stu for user
u ∈ G, user u outputs an updated state st′u, a group update
authentication token Σ̂G, and group update information ĉtG.

UpdVerify(pp,skSv, Σ̂G, ĉtG) →
(
pp′,

(
σ̂i, ĉti

)
i∈[N]

)
or ⊥ :

On input public parameters pp, a server secret key skSv, a
group update authentication token Σ̂G, and group update infor-
mation ĉtG, the server Sv outputs updated public parameters
pp′ and a list of user update authentication tokens and user
update information

(
σ̂i, ĉti

)
i∈[N]

, or ⊥.

UpdReceive(stu, σ̂, ĉt)→ (st′u,b ∈ {⊤,⊥} ,v ∈ G∪{⊥}) :
On input a state stu for user u ∈ G, a user update authentica-
tion token σ̂, and user update information ĉt, user u outputs
an updated state state′u, a bit b indicating whether the token
was valid (b =⊤) or invalid (b =⊥), and a purported user
v ∈ G∪{⊥}, where v =⊥ if tracing fails.

Remark 3.2 (Local and Global State Updates). For some pro-
tocols the user state may only allow signing up to T messages,
and it may need to be updated before the user can sign again.
There are two ways to perform state updates: locally and glob-
ally. In the former, a user regains the ability to send messages
once it has updated its own state. In the latter, a user regains
the ability to send messages only after every user in the group
updates their states. Since global state updates are much more
costly than local state updates, they are only useful if one state
update allows to send a large number of messages T . Further,
global updates can only guarantee security if users are online,
a clear disadvantage over local updates. For the schemes pre-
sented in this paper there are no risks of a deadlock — i.e.,
a situation where a global state update cannot be completed
and users are prevented to keep sending messages — as long
as the users perform updates once coming online. However,
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the general definition of global updates does not guarantee
that such a deadlock does not occur.

3.2 Correctness
We define two types of signing correctness. One for signing
messages and the other for signing updates. They stipulate
that an honestly generated user authentication token is always
valid and traceable.

Definition 3.3 (Signing Correctness). For any κ ∈ N, G ⊂
{0,1}∗, and

(
pp,skSv,(stu)u∈G

)
∈ Init(1κ,G), if we execute

(Send,Verify,Receive,UpdSend,UpdVerify,UpdReceive) in
an arbitrary but honest manner (i.e., we only run the algo-
rithms on inputs that were output by another algorithm and
run Receive (resp. UpdReceive) for all users after running
Verify (resp. UpdVerify))8, then we have the following, where
pp′ and (st′u)u∈G are arbitrary public parameters and states
reachable from the initial pp and (stu)u∈G:

Message Signing Correctness: For any m ∈ M and u ∈
G, if we execute (st′′u ,ΣG)←$Send(st′u,m), redefine st′u :=
st′′u , and execute (pp′′,(σi)i∈[N]) ← Verify(pp′,skSv,ΣG,m),
(st′′v ,bv,uv)← Receive(st′v,σidx(v),m) for all v ∈ G, then con-
ditioned on ΣG ̸=⊥, we have (bv,uv) = (⊤,u) (i.e., every user
accepts and traces the message back to u).

Update Signing Correctness: For any u ∈ G, if we execute
(st′′u , Σ̂G, ĉtG)←$UpdSend(st′u), redefine st′u := st′′u , and exe-
cute (pp′′,

(
σ̂i, ĉti

)
v∈[N]

)← UpdVerify(pp′,skSv, Σ̂G, ĉtG) fol-

lowed by (st′′v ,bv,uv)← UpdReceive(st′v, σ̂idx(v), ĉtidx(v)) for
all v ∈ G, then conditioned on Σ̂G ̸= ⊥, we have (bv,uv) =
(⊤,u) (i.e., every user accepts and traces the update back to
u).

In some protocols, the states may occasionally need to be
updated in order to regain the ability to send messages again.
As explained in Remark 3.2, there are two ways a users can
update their states. One is local, where it is sufficient that
a user can simply update its state. The other one is global,
where all the group users must update their states. Below, we
define correctness of both state update modes.

Definition 3.4 (State-Update Correctness). Assume the
same precondition as in Def. 3.3. Then, we have either of
the following:

Local State-Update Correctness: For any m ∈ M
and user u ∈ G, if (st′′u ,ΣG)←$Send(st′u,m) such that
ΣG = ⊥, then if u executes (st∗u, Σ̂G, ĉtG)←$UpdSend(st′u),
the server Sv executes (pp∗,(σ̂i, ĉti)i∈[N]) ←
UpdVerify(pp′,skSv,(Σ̂G, ĉtG)), and every user v ∈ G

8We impose the second condition to define correctness in a minimal yet
well-defined manner. Without it, we must also include cases such as when
only part of the users received a user update information.

executes UpdReceive(st′v,(σ̂idx(v), ĉtidx(v))), then the updated
public parameters pp∗ and state st∗u allow user u to sign on
m, that is, ΣG ̸=⊥ and signing correctness holds (i.e., after
user u sends a user update information ĉtidx(v) to every user
v, then user u’s state will be refreshed).

State Update Correctness: For any m∈M and user u∈G, if
(st′′u ,ΣG)←$Send(st′u,m) such that ΣG =⊥, then if all users
v ∈ G execute (st′′v , Σ̂

v
G, ĉt

v
G)←$UpdSend(st′v), the server Sv

executes UpdVerify for all
(

Σ̂v
G, ĉt

v
G

)
v∈G

in an arbitrary order,

and user u executes UpdReceive for all
(

σ̂v
idx(u), ĉt

v
idx(u)

)
v∈G

output by UpdVerify in an arbitrary order, then the updated
public parameters pp∗ and state st∗u allow user u to sign on
m, that is, ΣG ̸=⊥ and signing correctness holds (i.e., after
every user v sends a user update information ĉt

v
idx(u) to user u,

then user u’s state will be refreshed). Note that by symmetry,
all users’ state is refreshed.

3.3 Security

We formalize the threat models explained in Sec. 2.3: un-
forgeability, anonymity, anonymous blocklisting, and tracing
soundness, via a security game defined in Fig. 2. The proba-
bility of the game outputting 1 against an efficient adversary
must be negligible for every game except for anonymity. For
anonymity, as it is a distinguishing game, the game must out-
put 1 with probability negligibly close to 1

2 .
For every game, the adversary is given access to ora-

cles {OSend,OUpdSend }, allowing it to invoke honest users
to create group (update) authentication tokens. The adver-
sary is further given access to either {OReceive,OUpdReceive }
or {OGroupReceive,OGroupUpdReceive }. The former allows the
adversary to directly invoke honest users to process (up-
date) authentication tokens. This capture malicious server
capabilities and is used by the unforgeability and anonymity
games. In contrast, the latter only allows the adversary to
query for group (update) authentication tokens. The oracle
then individually invokes each honest users on the correctly
processed (update) authentication tokens. Namely, this cap-
tures honest server behavior and models the fact that mali-
cious users cannot directly send messages to group users.
It is worth noting that, in this case, the authentication to-
kens created in {OSend,OUpdSend } are directly processed by
{OGroupReceive,OGroupUpdReceive }, modeling the fact that the
communication channel between an honest user and server is
secure.

To aid readability, we highlight some features of the se-
curity game. We model two types of unforgeability by
GameXA with X ∈ {ncUnf,Unf }. In standard unforgeability,
as the adversary models both a malicious user and server,
it has unrestricted access to all oracles. In contrast, for non-
colluding unforgeability, we have two case distinctions de-
pending on whether the set of corrupted users C = /0 or not.
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In the former case the adversary is a malicious server, so
the adversary is given the server secret key skSv and has
access to {OReceive,OUpdReceive }. In the latter case the ad-
versary is a set of malicious users, so the adversary is in-
stead given the corrupted users’ states and only has access to
{OGroupReceive,OGroupUpdReceive }. For both types of unforge-
ability, an adversary wins if it can output a valid user (update)
authentication token for an honest user that it has not seen
before. For anonymity, we model a malicious server by giv-
ing the adversary the server secret key skSv. The adversary
outputs two users and messages and the game creates the
group authentication tokens for both users. To non-trivialize
the game, we restrict the (group) authentication tokens to be
valid. To perform this check, the adversary needs to further
output a (possibly malformed) public parameter pp so the
game can run algorithm Verify. The adversary can further per-
form oracle queries under the restriction that it does not query
the receive oracles on the challenge authentication tokens.

We now provide the formal definition of non-colluding and
standard unforgeability, anonymity, anonymous blocklisting,
and tracing soundness and some more intuitions on how to
understand them.

Unforgeability. As already discussed above, we model stan-
dard and non-colluding unforgeability by giving the adver-
sary access to different oracles and running it with different
inputs (i.e., with or without server and user states). The adver-
sary wins if it outputs a valid authentication token such that
vu ∈H ∧ (vu,∗,m̄) /∈ Lupd where m̄ ∈ {m, ĉt } holds, where
recall vu is the traced user (cf. unforgeability game, lines 17
and 23). The former checks that the user vu is not malicious;
without this check a malicious user can trivially win unforge-
ability. The latter checks that the honest user vu did not sign
m̄. Formally, we define unforgeability as follows.

Definition 3.5 (Unforgeability). We define GamencUnfA (1κ)
as in Fig. 2 for an adversary A . We say a GAM protocol
is no-colluding unforgeable if for any G⊂ {0,1}∗, injective
function idx : G→ [N] with N = |G|, and any PPT adversary
A , we have

AdvncUnfA (1κ) := Pr[GamencUnfA (1κ) = 1] = negl(κ).

We further say the scheme is (standard) unforgeable if the
above holds for GameUnfA (1κ) as defined in Fig. 2.

Anonymity. As briefly explained above, the game checks
if the group authentication token ΣG and the individual au-
thentication tokens (σi)i∈[N] are valid. Without this check, an
adversary may trivially break anonymity if the protocol re-
quires state updates. Concretely, assume the adversary queries
a user u0 to oracle OSend until u0 can no longer sign without
performing an update. At this point, if the adversary chal-
lenges user u0 and u1, then it can trivially break anonymity as
u0 cannot produce a group authentication token while u1 can.

Moreover, while we can easily define anonymity for updates,
we chose not to do so as updates are sent far less often com-
pared to messages, and we opted for simplicity of the security
game. Formally, we define anonymity as follows.

Definition 3.6 (Anonymity). We define GameAnonA (1κ) as in
Fig. 2 for an adversary A . We say a GAM protocol is anony-
mous if for any G⊂ {0,1}∗, injective function idx : G→ [N]
with N = |G|, and any PPT adversary A , we have

AdvAnonA (1κ) :=
∣∣∣∣Pr[GameAnonA (1κ) = 1]− 1

2

∣∣∣∣= negl(κ).

Anonymous Blocklisting. This game is quite intuitive as
the adversary is an outsider. The adversary wins the game
if it’s able to output a valid group authentication token that
nobody in the group created. Although similar, we note that
anonymous blocklisting is different from unforgeability. To
win anonymous blocklisting, the adversary is required to out-
put a group authentication token ΣG that verifies. This entails
the fact that the server can check the validity of ΣG and im-
mediately block malformed group authentication tokens on
behalf of the group users. In contrast, unforgeability does
not capture this type of blocking by the server. Formally, we
define anonymous blocklisting as follows.

Definition 3.7 (Anonymous Blocklisting). We define the se-
curity game GameAnonBlockA (1κ) as in Fig. 2 for an adversary
A . We say a GAM protocol is anonymous blocklistable if for
any G⊂{0,1}∗, injective function idx :G→ [N] with N = |G|,
and any PPT adversary A , we have

AdvAnonBlockA (1κ) := Pr[GameAnonBlockA (1κ) = 1] = negl(κ).

Tracing Soundness. As discussed in Sec. 2.3, the adversary
wins if it outputs a group authentication token for which the
set Ltr of traced users by the honest users is not of the form
Ltr = {v} for some group user v ∈ G. That is, if the group
authentication token is valid, it must be traceable to some user
in the group and this user must be unique among the honest
users. Formally, we define tracing soundness as follows.

Definition 3.8 (Tracing Soundness). We define
GameTraceSoundA (1κ) as in Fig. 2 for an adversary A .
We say a GAM protocol is tracing sound if for any
G ⊂ {0,1}∗, injective function idx : G→ [N] with N = |G|,
and any PPT adversary A , we have

AdvTraceSoundA (1κ) := Pr[GameTraceSoundA (1κ) = 1] = negl(κ).

Remark 3.9 (Transparency of Server). In any secure messag-
ing protocol it may be important to have a transparent server,
so as to limit the trust we put in it. In the context of a GAM
protocol, notice that our current initialization algorithm Init
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GameXA(1
κ) : X∈{ncUnf,Unf }

1 : C ←$ A(1κ)

2 : H := G\C
3 : Lmsg,Lupd := /0 // Book keeping

4 :
(
pp,skSv,(stu)u∈G

)
←$ Init(1κ,G)

5 : if X= Unf then

6 : (label,obj)←$ AO(pp,skSv,(stu)u∈C )

7 : else // No collusion between malicious user and server

8 : if C = /0 // Honest users

9 : (label,obj)←$ AO(pp,skSv)

10 : else // Honest server

11 : (label,obj)←$ AO⋆

(pp,(stu)u∈C )

12 : if label= msg then
13 : parse (u,σ,m)← obj

14 : req u ∈H
15 : (st′u,bv,vu)← Receive(stu,σ,m)

16 : req bv =⊤ // Valid authentication token

17 : b← Jvu ∈H ∧ (vu,∗,m) /∈ LmsgK
18 : elseif label= upd then

19 : parse (u, σ̂,ĉt)← obj

20 : req u ∈H
21 : (st′u,bv,vu)← UpdReceive(stu, σ̂,ĉt)

22 : req bv =⊤ // Valid authentication token

23 : b← Jvu ∈H ∧ (vu,∗, ĉt) /∈ LupdK
24 : return b

GameAnonA (1κ)

1 : H := G // No corrupt users

2 : Challmsg := /0

3 : coin←${0,1}
4 :

(
pp,skSv,(stu)u∈G

)
←$ Init(1κ,G)

5 : (pp,u0,u1,m0,m1)←$ AO(pp,skSv)

6 : foreach b ∈ {0,1} do

7 : (st′ub
,Σb

G)←$Send(stub ,mb⊕coin)

8 : (pp′,(σb
i )i∈[N])

9 : ← Verify(pp,skSv,Σ
b
G,mb⊕coin)

10 : // Require the authentication token to be valid

11 : req pp′ ̸=⊥
12 : foreach u ∈H do

13 : (st′u,bu,vu)← Receive(stu,σ
b
idx(u),mb⊕coin)

14 : req bu ̸=⊥

15 : Challmsg← Challmsg ∪{σ
b
i }i∈[N]

16 : pp← pp′

17 : ĉoin←$ AO(Challmsg)

18 : return Jcoin= ĉoinK

GameAnonBlockA (1κ)

1 : H := G // No corrupt users

2 : Lmsg,Lupd := /0 // Book keeping

3 :
(
pp,skSv,(stu)u∈G

)
←$ Init(1κ,G)

4 : (label,obj)←$ AO⋆

(pp) // Malicious outsides

5 : if label= msg then
6 : parse (ΣG,m)← obj

7 : (pp′,(σi)i∈[N])← Verify(pp,skSv,ΣG,m)

8 : req pp′ ̸=⊥ // Require Verify to succeed

9 : // Sv accepts new non-member token

10 : b← J(∗,ΣG,∗) /∈ LmsgK
11 : elseif label= upd then

12 : parse (Σ̂G, ĉtG)← obj

13 :
(
pp′,

(
σ̂i, ĉti

)
i∈[N]

)
← UpdVerify(pp,skSv, Σ̂G, ĉtG)

14 : req pp′ ̸=⊥ // Require UpdVerify to succeed

15 : // Sv accepts new non-member token

16 : b← J(∗, Σ̂G,∗) /∈ LupdK
17 : return b

GameTraceSoundA (1κ)

1 : C ←$ A(1κ)

2 : H := G\C
3 : Ltr := /0 // Book keeping

4 :
(
pp,skSv,(stu)u∈G

)
←$ Init(1κ,G)

5 : (label,obj)←$ AO⋆

(pp,(stu)u∈C )

6 : if label= msg then
7 : parse (ΣG,m)← obj

8 : (pp′,(σi)i∈[N])← Verify(pp,skSv,ΣG,m)

9 : req pp′ ̸=⊥ // Require UpdVerify to succeed

10 : foreach u ∈H do
11 : (st′u,bv,vu)← Receive(stu,σidx(u),m)

12 : if bv =⊤ then
13 : Ltr← Ltr ∪{vu } // If tracing fails, vu =⊥

14 : elseif label= upd then

15 : parse (Σ̂G, ĉtG)← obj

16 :
(
pp′,

(
σ̂i, ĉti

)
i∈[N]

)
← UpdVerify(pp,skSv, Σ̂G, ĉtG)

17 : req pp′ ̸=⊥ // Require UpdVerify to succeed

18 : foreach u ∈H do
19 : (st′u,bv,vu)

← UpdReceive(stu, σ̂idx(u), ĉtidx(u))

20 : if bv =⊤ then
21 : Ltr← Ltr ∪{vu } // If tracing fails, vu =⊥

22 : // Does not uniquely trace user

23 : b← J∄v ∈ G : Ltr = {v}K
return b

Oracle OSend(u ∈H ,m)

1 : sRec := /0

2 : (st′u,ΣG)←$Send(stu,m)

3 : Lmsg← Lmsg ∪{(u,ΣG,m)}
4 : // Server honestly processes group authentication

5 : if A has access to O⋆ then
6 : sRec← OGroupReceive(ΣG,m)

7 : return (ΣG,sRec)

Oracle OReceive(u ∈H ,σ,m)

1 : req σ /∈ Challmsg // Only used by anonymity

2 : (st′u,bu,vu)← Receive(stu,σidx(u),m)

3 : return (bu,vu)

Oracle OGroupReceive(ΣG,m)

1 : (pp′,(σi)i∈[N])← Verify(pp,skSv,ΣG,m)

2 : if pp′ =⊥ then return ⊥
3 : foreach u ∈H do
4 : (st′u,bu,vu)← Receive(stu,σidx(u),m)

5 : return (bu,vu)u∈H

Oracle OUpdSend(u ∈H )

1 : sUpdRec := /0

2 : (st′u, Σ̂G, ĉtG)←$UpdSend(stu)

3 : Lupd← Lupd∪{(u, Σ̂G, ĉtG)}
4 : // Server honestly processes group authentication

5 : if A has access to O⋆ then

6 : sUpdRec← OGroupUpdReceive(Σ̂G, ĉtG)

7 : return
(
(Σ̂G, ĉtG),sUpdRec

)
Oracle OUpdReceive(u ∈H , σ̂, ĉt)

1 : (st′u,bu,vu)

2 : ← UpdReceive(stu, σ̂idx(u), ĉtidx(u))

3 : return (bu,vu)

Oracle OGroupUpdReceive(Σ̂G, ĉtG)

1 :
(
pp′,

(
σ̂i, ĉti

)
i∈[N]

)
2 : ← UpdVerify(pp,skSv, Σ̂G, ĉtG)

3 : if pp′ =⊥ then return ⊥
4 : foreach u ∈H do
5 : (st′u,bu,vu)

6 : ← UpdReceive(stu, σ̂idx(u), ĉtidx(u))

7 : return (bu,vu)u∈H

Figure 2: Security games for (non-colluding) unforgeability, anonymity, anonymous blocklisting, and tracing soundness. We
define a set of oracles O := {OSend,OReceive,OUpdSend,OUpdReceive } and O⋆ := {OSend,OGroupReceive,OUpdSend,OGroupUpdReceive }.
We assume the game maintains the public parameter pp and (secret) user states stu. Moreover, we assume the updated state st′u is
implicitly set as stu and omit the substitution st′u← stu for readability. When the condition in req does not hold, we assume the
game outputs a random bit in the anonymity game and 0 in all other games. Lastly, for readability, we sometimes ignore creating
the lists Ltr,Lmsg,Lupd when they are not required by the game.
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includes a server secret key skSv; our security says nothing if
skSv is maliciously generated.

One way to handle this issue of transparency of the server is
to enforce that the server’s secret key skSv can be determinis-
tically derived from any user state stu. With such a restriction,
any user can locally run the server’s algorithms Verify and
UpdVerify, and potentially audit the server’s behavior. Indeed,
all of the protocols proposed in this paper will have such a
property as skSv is derived from the group secret key gener-
ated by the CGKA protocol.

4 COSMOS: Authentication with One-Time To-
kens

In this section we propose a GAM protocol named COSMOS

(Compact authenticated Secure Messaging with randomized
One-time tokenS). When anonymity is not necessary, COSMOS
is the most efficient and simplest protocol among all our pro-
posed protocols. The additional total communication over-
head is only 3κ compared to a protocol where messages are
sent without any authentication, where κ is the security pa-
rameter. Additionally, we show a simple method to bootstrap
COSMOS to satisfy anonymity and anonymous blocklisting,
which we name COSMAC. The added overhead to COSMOS is
a single MAC tag. Lastly, we show how to optimize both
protocols by batching sends and updates together.

4.1 Construction of COSMOS

The high level idea is as follows: each group user mints tokens
(xi,yi)∈ {0,1}κ×{0,1}κ for i∈ [T ] such that yi =OWF(xi);
stores the private tokens (xi)i∈[T ] in its state; uploads the
public tokens (yi)i∈[T ] to the server in an offline phase; and
ideally sends (xi,mi) to the server once the message mi is
defined in an online phase, where xi acts as the authentication
token, and delete xi from its state. However, since xi is not
cryptographically tied to mi, this is insecure. Thus, the user
additionally MACs (xi,mi) using a MAC key only known
among the group users. We highlight that such a MAC key
can be generated from the common group secret key gsk
maintained by the CGKA protocol.

More formally, after the initialization phase, each user u ∈
G and server maintain a list of public tokens PubTOKEN ∈
({0,1}κ)NT , where N = |G| and T is the number of messages a
user can send before needing to update its state. PubTOKEN
is a list such that, for each user u ∈ G, PubTOKEN[u] ∈
({0,1}κ)T stores the T public tokens (yi)i∈[T ] used by user u.
User u also maintains a list of private tokens PrivTOKENu ∈
({0,1}κ)T storing the T private tokens (xi)i∈[T ].

To send a message m, user u retrieves an unused pri-
vate token x from PrivTOKENu, along with the counter
ctr ∈ [T ] such that PubTOKEN[u][ctr] =OWF(x), and sends
(x,ctr,ΣMAC) as the group authentication token ΣG to the

server, where ΣMAC is a MAC tag using kMAC. The server
then checks if the token x is valid (i.e., yctr = OWF(x)) and
relays (x,ctr,ΣMAC) as the user authentication token σi to all
the users. Here, ΣMAC does not need to (nor can it) be verified
by the server. Now, since PubTOKEN and kMAC is shared
among the group, the users can verify the MAC tag and trace
the user u that sent σi.

When only one private token x is left, user u performs a
state update and mints new tokens. It generates a new batch
of T tokens (xi,yi)i∈[T ] and uploads (yi)i∈[T ] using the final
token x along with a MAC tag. The server and users check
that the newly minted tokens are from user u by validating x
and update PubTOKEN[u]← (yi)i∈[T ]. Once user u’s state is
updated, u can send T messages again. Importantly, COSMOS is
locally state-updatable since a user can start sending messages
once they update their state. We provide the formal description
of COSMOS in Fig. 3.

Lastly, COSMOS satisfies all the security notions except for
anonymity: non-colluding unforgeability, (anonymous) block-
listing, and tracing soundness. At a high level, we argue non-
colluding unforgeability by considering two cases: against a
malicious server the authentication token is unforgeable as
kMAC is unknown. Importantly, the same authentication token
(x,ctr,ΣMAC) cannot be reused by the malicious server since
the users have already deleted the associated public token y
when it receives x the second time. Otherwise, against a mali-
cious user, it is unforgeable as the private token x is unknown.
In the latter, we use the fact that an honest server correctly
processes the private token sent from an honest user (i.e.,
delete it from the server), preventing a malicious user from
replaying it. One can check that it is not standard unforgeable
since if a malicious server and insider collude, both kMAC

and private tokens x will be known to the adversary, allowing
for a trivial forgery. Moreover, we note that even though the
MAC tag attached to the group authentication token cannot
be verified by the server, and hence can be stealthily modified
to a garbage MAC tag, this will not harm tracing soundness as
we only use the private tokens for tracing. The formal security
proof is deferred to App. C.1.

4.2 COSMAC: An Anonymous COSMOS with
Anonymous Blocklisting

While COSMOS is efficient, it lacks anonymity. A server can
link two tokens by looking at their corresponding locations
in PubTOKEN. We present a simple method to transform
COSMOS to have anonymity and anonymous blocklisting at an
overhead of only one MAC tag. We name this GAM proto-
col COSMAC (COSMOS with MAC). Note that in exchange for
anonymity, COSMAC loses tracing soundness.

The high level idea is for each user in the group to addi-
tionally derive a unique MAC key kMAC and a symmetric-key
encryption (SKE) key kSKE from gsk where, unlike in COSMOS,
kMAC is uploaded to the server. When a group user uploads
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Init(1κ,G)

1 : gsk←${0,1}κ // Group secret key

2 : kMAC← PRF(gsk,0) // MAC key for group

3 : // Prepare empty lists

4 : foreach u ∈ G do
5 : PubTOKENu[∗] :=⊥
6 : PrivTOKENu[∗] :=⊥
7 : foreach u ∈ G do
8 : (Xu,Yu)← *gen-auth-token(G,u)

9 : PrivTOKENu← Xu // Xu ∈ ({0,1}κ)T

10 : foreach v ∈ G do
11 : PubTOKENv[u]← Yu // Yu ∈ ({0,1}κ)T

12 : foreach u ∈ G do
13 : TOKENu := (PrivTOKENu,PubTOKENu)

14 : stu← (G,kMAC,1,TOKENu)

15 : DB[∗] :=⊥ // Prepare empty database for Sv

16 : for u ∈ G do
17 : DB[u]← Yu

18 : pp←DB // DB ∈ ({0,1}κ)N×T

19 : return
(
pp,(stu)u∈G

)

Send(stu,m)

1 : parse (G,kMAC,ctr,TOKENu)← stu

2 : if ctr ≥ T −1 then return ⊥ // Need to update tokens

3 : ctr′← ctr+1

4 : ΣG← *attach-auth-token(stu,m)

5 : st′u←
(
G,kMAC,ctr

′,TOKENu
)

6 : return (st′u,ΣG)

Verify(pp,ΣG,m)

1 : parse DB← pp

2 : try (pp′,(σv)v∈G)← *verify-auth-token(pp,ΣG)

3 : return (pp′,(σv)v∈G)

Receive(stu,σ,m)

1 : try (st′u,b,v)← *trace-sender(stu,σ,m)

2 : return (st′u,b,v)

UpdSend(stu)

1 : parse (G,kMAC,ctr,TOKENu)← stu

2 : parse (PrivTOKENu,PubTOKENu)← TOKENu

3 : (Xu,Yu)← *gen-auth-token(G,u)

4 : PrivTOKENu← Xu

5 : PubTOKENu[u]← Yu

6 : TOKENu← (PrivTOKENu,PubTOKENu)

7 : // Refresh counter to 1

8 : st′u← (G,kMAC,1,TOKENu)

9 : ĉtG← (u,Yu)

10 : Σ̂G← *attach-auth-token(stu, ĉtG)

11 : return (st′u, Σ̂G, ĉtG)

UpdVerify(pp, Σ̂G, ĉtG)

1 : parse DB← pp

2 : try (pp′,(σ̂v)v∈G)← *verify-auth-token(pp, Σ̂G)

3 : parse (u,Yu)← ĉtG

4 : DB[u]← Yu

5 : foreach v ∈ G do

6 : ĉtv← (u,Yu)

7 : return (pp′,(σ̂v, ĉtv)v∈G)

UpdReceive(stu, σ̂, ĉt)

1 : parse (G,kMAC,ctr,TOKENu)← stu

2 : parse (PrivTOKENu,PubTOKENu)← TOKENu

3 : try (stu,b,v)← *trace-sender(stu, σ̂, ĉt)

4 : parse (v′,Y )← ĉt

5 : req v = v′

6 : PubTOKENu[v]← Y // Update user v’s tokens

7 : TOKENu← (PrivTOKENu,PubTOKENu)

8 : st′u← (G,kMAC,ctr,TOKENu)

9 : return (st′u,b,v)

Figure 3: COSMOS: A group authenticated messaging protocol with one-time tokens. The server Sv is assumed to implicitly apply
the inverse of idx, i.e., it uses u ∈ G rather than i = idx(u) ∈ [N]. The helper algorithms used above are detailed in Fig. 4.
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Func *gen-auth-token(G,u)

1 : X [∗],Y [∗] :=⊥
2 : foreach t ∈ [T ] do
3 : X [t]←${0,1}κ

4 : Y [t]←OWF(X [t])

5 : return (X ,Y )

Func *attach-auth-token(stu,m)

1 : parse (G,kMAC,ctr,TOKENu)← stu

2 : parse (PrivTOKENu,PubTOKENu)← TOKENu

3 : x(ctr)u ← PrivTOKENu[ctr]

4 : PrivTOKENu[ctr]←⊥
5 : TOKENu← (PrivTOKENu,PubTOKENu)

6 : ΣMAC ←$MAC.TagGen(kMAC,(u,ctr,x
(ctr)
u ,m))

7 : return
(

u,ctr,x(ctr)u ,ΣMAC

)

Func *verify-auth-token(pp,ΣG)

1 : DB← pp // DB ∈ ({0,1}κ)N×T

2 : parse (u,ctr,x,ΣMAC)← ΣG

3 : if DB[u][ctr] ̸=OWF(x) then
4 : return ⊥
5 : // If check passes, set user authentication tokens and

6 : // delete entry from DB

7 : foreach v ∈ G do
8 : σv← (u,ctr,x,ΣMAC)

9 : DB[u][ctr]←⊥
10 : pp′←DB

11 : return (pp′,(σv)v∈G)

Func *trace-sender(stu,σ,m)

1 : parse (G,kMAC,ctr,TOKENu)← stu

2 : parse (PrivTOKENu,PubTOKENu)← TOKENu

3 : parse (v,ctrv,x,ΣMAC)← σ

4 : if PubTOKENu[v][ctrv] ̸=OWF(x)

5 : ∨MAC.Verify(kMAC,(v,ctrv,x,m),ΣMAC) =⊥ then
6 : return (stu,⊥,⊥)
7 : PubTOKENu[v][ctrv]←⊥
8 : TOKENu← (PrivTOKENu,PubTOKENu)

9 : st′u← (G,kMAC,ctr,TOKENu)

10 : return (st′u,⊤,v)

Figure 4: Helper functions used by COSMOS.
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some content to the server, it runs the Send (resp. UpdSend)
algorithm of COSMOS, encrypts the group (resp. update) au-
thentication token using kSKE, and MACs the ciphertext with
kMAC. The server only accepts contents that have a valid tag
under kMAC. A group user can verify the user authentication
token by first decrypting the ciphertext using kSKE, followed
by the same check as COSMOS. The protocol is formally given
in Fig. 5. The protocol consists of COSMOS and a wrapper
protocol that encrypts and MACs the authentication tokens
output by COSMOS. The main difference between COSMAC and
COSMOS is highlighted with a box in Fig. 5.

Observe that the authentication tokens are now encrypted
and the server no longer learns the identity of the user. This
is how anonymity is achieved. Non-colluding unforgeabil-
ity almost immediately follows from the non-colluding un-
forgeability of COSMOS. This is because from the users point
of view, COSMAC and COSMOS are almost identical. The only
difference is that COSMAC requires to first perform a decryp-
tion using kSKE; this does not make forging anymore easier
for the adversary. Indeed, prove non-colluding unforgeabil-
ity of COSMAC assuming the non-colluding unforgeability of
COSMOS. Moreover, COSMAC satisfies anonymous blocklisting
since an outsider without knowledge of kMAC cannot upload
contents which the server will accept. Lastly, on the other
hand, unlike COSMOS, a malicious user can now stealthily per-
form a DoS attack on the group since the server can only check
the validity of the MAC tag and not the content. In particular,
COSMAC loses tracing soundness, as the content, which can
now be a malformed ciphertext, may not include the sender’s
identity. We show in App. C.2 that COSMAC is non-colluding
unforgeable, anonymous, and anonymous blocklistable.

4.3 Optimizations of COSMOS and COSMAC

We take advantage of the fact that COSMOS (and COSMAC)
have an efficient local state update and apply two optimiza-
tions leading to COSMOS+ and COSMOS++ (and COSMAC+ and
COSMAC++, respectively). We focus on COSMOS as the case
for COSMAC is almost identical.

Removing Local Updates: COSMOS+. Notice that local state-
updates allow a user to execute the UpdSend algorithm as part
of the Send algorithm. That is, users can send a message and
perform an update at the same time. Concretely, this requires
to maintain just one public token y per user u ∈ G. To send
a message m, u first mints a new token (x′,y′) and uploads
both the message and public token (m,y′) using the private
token x, along with a MAC tag binding (m,x,y′) together.
The server and other group members replace y with y′. User
u can repeat the process using the new private token x′. Ef-
fectively, the protocol now consists of only running an online
phase, since the update is implicitly performed during a send.
Compared to COSMOS, COSMOS+ balances the throughput of
the user without harming the total communication cost 3 ·κ,
while also reducing the storage cost of public tokens.

Minimizing Communication Cost: COSMOS++. This opti-
mization reduces the communication cost of COSMOS+ by 1/3
while keeping the local update of COSMOS.9 The main idea
is to make the private authentication token become the pub-
lic token for the next message. As in COSMOS+, the server
maintains a single public token yi,c per user, where c ∈ N
will be the number of times user u ran UpdSend. As a re-
sult of running UpdSend the user will upload a public to-
ken y0,c = OWFT (xT,c), i.e., T th invocation of OWF. This
updated public token can be used to send T messages. To
authenticate the i-th message mi, user u simply sends token
xi,c =OWFT−i(xT,c) along with a MAC tag on (mi,xi,c). The
server and other group members update the public token to
yi,c := xi,c. Since the public token generated in the offline
phase is useful for sending T messages, the amortized cost of
sending one message is (2+ 1

T ) ·κ. For a sufficiently large T ,
this reduces the communication cost of COSMOS+ by 1/3.

5 Anonymous and Tracing Sound GAMs

In this section we introduce three GAM protocols that simul-
taneously achieve anonymity and tracing soundness. These
are the first authentication modes in the literature to do so.
The first two protocols: QUASAR (Quick Authenticated Secure
Anonymous messaging with Randomized one-time tokens)
and STARS (Strongly-Authenticated anonymous messaging
with Randomized one-time Signatures) satisfy these stronger
authenticity guarantees at the cost of being only global as
opposed to local state-updatable like COSMOS and COSMAC.
Once a user u ∈ G exhausts its private tokens, it must wait
till all other users perform an update before being able to
send a message again. We discuss some ideas to mitigate
the shortcoming of global state updates in App. D.3. Our
third protocol GEMSTARS (Group Signature Modified STARS),
eliminates updates altogether by relying on group signatures.
Below we give intuitive overviews of the protocols, deferring
the formal descriptions and security proofs to Apps. D and E.

5.1 QUASAR: Anonymous Authentication with
Tokens

We first consider a non-anonymous variant of QUASAR and
add anonymity later. Its core idea is to perform a relatively
expensive offline phase (i.e., UpdSend) to make the online
phase (i.e., Send) very cheap.

Basic Idea. Assume a group G= (ui)i∈[N]. Each user ui mints

tokens (x(t)j→i,y
(t)
j→i) ∈ {0,1}κ×{0,1}κ for ( j, t) ∈ [N]× [T ]

such that y(t)j→i = OWF(x(t)j→i). Here, j→ i indicates that user

9This optimization was suggested to us by an anonymous reviewer; after-
wards, another reviewer informed us that a similar idea is used in the S/KEY
one-time password authentication protocol [48, 49].
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Init(1κ,G)

1 : gsk←${0,1}κ // Group secret key

2 : kMAC← PRF(gsk,0) // MAC key for group

3 : skSv := kMAC← PRF(gsk,1) // MAC key for Sv and group

4 : kSKE← PRF(gsk,2) // SKE key for group

5 : // Prepare empty lists

6 : foreach u ∈ G do
7 : PubTOKENu[∗] :=⊥
8 : PrivTOKENu[∗] :=⊥
9 : foreach u ∈ G do

10 : (Xu,Yu)← *gen-auth-token(G,u)

11 : PrivTOKENu← Xu // Xu ∈ ({0,1}κ)T

12 : foreach v ∈ G do
13 : PubTOKENv[u]← Yu // Yu ∈ ({0,1}κ)T

14 : foreach u ∈ G do
15 : TOKENu := (PrivTOKENu,PubTOKENu)

16 : stu←
(
G,kMAC, kMAC,kSKE ,1,TOKENu

)
17 : pp :=⊥ // No pp maintained by Sv

18 : return
(
pp, skSv ,(stu)u∈G

)

Send(stu,m)

1 : parse
(
G,kMAC, kMAC,kSKE ,ctr,TOKENu

)
← stu

2 : if ctr ≥ T −1 then return ⊥ // Need to update tokens

3 : ctr′← ctr+1

4 : ΣG← *attach-auth-token(stu,m)

5 : st′u←
(
G,kMAC, kMAC,kSKE ,ctr′,TOKENu

)
6 : return (st′u,ΣG)

Verify(pp, skSv ,ΣG,m)

1 : try (⊥,(σi)i∈[N])

← *verify-auth-token(⊥, skSv ,ΣG)

2 : return (pp′,(σi)i∈[N])

Receive(stu,σ,m)

1 : try (st′u,b,v)← *trace-sender(stu,σ,m)

2 : return (st′u,b,v)

UpdSend(stu)

1 : parse
(
G,kMAC, kMAC,kSKE ,ctr,TOKENu

)
← stu

2 : parse (PrivTOKENu,PubTOKENu)← TOKENu

3 : (Xu,Yu)← *gen-auth-token(G,u)

4 : Σ̂G← *attach-auth-token(stu,Yu)

5 : PrivTOKENu← Xu

6 : PubTOKENu[u]← Yu

7 : TOKENu← (PrivTOKENu,PubTOKENu)

8 : // Refresh counter to 1

9 : st′u←
(
G,kMAC, kMAC,kSKE ,1,TOKENu

)
10 : ĉtSKE← Enc(kSKE,(u,Yu))

11 : ĉtG← ĉtSKE

12 : return (st′u, Σ̂G, ĉtG)

UpdVerify(pp, skSv , Σ̂G, ĉtG)

1 : try (⊥,(σ̂i)i∈[N])← *verify-auth-token(⊥, skSv , Σ̂G)

2 : foreach i ∈ [N] do

3 : ĉti← ĉtG

4 : return (pp′,(σ̂i, ĉti)i∈[N])

UpdReceive(stu, σ̂, ĉt)

1 : parse
(
G,kMAC, kMAC,kSKE ,ctr,TOKENu

)
← stu

2 : parse (PrivTOKENu,PubTOKENu)← TOKENu

3 : parse ĉtSKE← ĉt

4 : (v′,Y )← SKE.Dec(kSKE, ĉtSKE)

5 : try (stu,b,v)← *trace-sender(stu, σ̂,Y )

6 : req v = v′

7 : PubTOKENu[v]← Y // Update user v’s tokens

8 : TOKENu← (PrivTOKENu,PubTOKENu)

9 : st′u←
(
G,kMAC, kMAC,kSKE ,ctr,TOKENu

)
10 : return (st′u,⊤,v)

Figure 5: COSMAC: An anonymous group authenticated messaging protocol with one-time tokens. The main differences between
COSMOS is highlighted by a box. The helper algorithms used above are detailed in Fig. 6.

14



Func *gen-auth-token(G,u)

1 : X [∗],Y [∗] :=⊥
2 : foreach t ∈ [T ] do
3 : X [t]←${0,1}κ

4 : Y [t]←OWF(X [t])

5 : return (X ,Y )

Func *attach-auth-token(stu,m)

1 : parse
(
G,kMAC, kMAC,kSKE ,ctr,TOKENu

)
← stu

2 : parse (PrivTOKENu,PubTOKENu)← TOKENu

3 : x(ctr)u ← PrivTOKENu[ctr]

4 : PrivTOKENu[ctr]←⊥
5 : TOKENu← (PrivTOKENu,PubTOKENu)

6 : ΣMAC ←$MAC.TagGen(kMAC,(u,ctr,x
(ctr)
u ,m))

7 : ctSKE ←$SKE.Enc
(
kSKE,

(
u,ctr,x(ctr)u ,ΣMAC

))
8 : ΣMAC ←$MAC.TagGen(kMAC,ctSKE)

9 : return (ctSKE,ΣMAC)

Func *verify-auth-token(pp=⊥, skSv ,ΣG)

1 : parse
(
ctSKE,ΣMAC

)
← ΣG

2 : if MAC.Verify(skSv,ctSKE,ΣMAC) =⊥ then

3 : return ⊥
4 : // If check passes, set user authentication tokens

5 : foreach i ∈ [N] do

6 : σi← ctSKE

7 : return (⊥,(σi)i∈[N])

Func *trace-sender(stu,σ,m)

1 : parse
(
G,kMAC, kMAC,kSKE ,ctr,TOKENu

)
← stu

2 : parse (PrivTOKENu,PubTOKENu)← TOKENu

3 : parse ctSKE← σ

4 : (v,ctrv,x,ΣMAC)← SKE.Dec(kSKE,ctSKE)

5 : if PubTOKENu[v][ctrv] ̸=OWF(x)

6 : ∨MAC.Verify(kMAC,(v,ctrv,x,m),ΣMAC) =⊥ then
7 : return (stu,⊥,⊥)
8 : PubTOKENu[v][ctrv]←⊥
9 : TOKENu← (PrivTOKENu,PubTOKENu)

10 : st′u←
(
G,kMAC, kMAC,kSKE ,ctr,TOKENu

)
11 : return (st′u,⊤,v)

Figure 6: Helper functions used by COSMAC. The main differences between COSMOS is highlighted by a box.
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Figure 7: A toy example of a non-anonymous variant of QUASAR.
G = (ui)i∈[4] and T = 3. The upper box stores the private tokens

(x(t)i→ j)t∈[3] for i, j ∈ [4]. The blue columns are tokens that user u2
uses to send messages and the red rows are tokens that user u2 minted.
The bottom box stores the public tokens (y(t)i→ j)t∈[3] for i, j ∈ [4] held
by the server.

ui approves u j to send a message to him. User ui sends the pri-
vate tokens (x(t)j→i)t∈[T ] to u j by encrypting it with a public-key
encryption (PKE) scheme using u j’s public key. Moreover,
ui uploads the public tokens (y(t)j→i)( j,t)∈[N]×[T ] to the server.
A toy example is provided in Fig. 7. Throughout the pro-
tocol, each user ui maintains two types of tokens: sender
tokens (x(t)i→ j)( j,t)∈[N]×[T ] (blue box in Fig. 7) and receiver to-

kens (x(t)j→i)( j,t)∈[N]×[T ] (red box in Fig. 7). To send the t∗-th

(t∗ < T ) message m, ui retrieves the sender tokens (x(t
∗)

i→ j) j∈[N]

and uploads this as the group authentication token ΣG along
with m. Similarly to COSMOS and COSMAC, ΣG will include
N MAC tags for each message tuple (x(t

∗)
i→ j,m), binding the

tokens to m. The server checks that ΣG maps to a specific
column of public tokens in its database. If so, it parses ΣG,
sets the user authentication token σ j for user u j as x(t

∗)
i→ j and

the j-th MAC tag. User u j can verify and trace σ j back to
ui by searching through its receiver tokens. Once the users
exhaust their tokens, they perform an update by minting new
one-time tokens and distributing them to the group as done
above. Note that this is where we require global state updates:
once the boxes in Fig. 7 become empty, every user has to
update in order to fill them back again.

Informally, user traceability holds since the group authen-
tication token ΣG corresponds to a unique column in the
database held by the server. All honest users can use this
unique column index to trace the same sender.

Amortized Efficiency. To reduce the communication cost
of the offline phase and make the dependence on the cipher-
text size minimal (particularly important in the post-quantum
regime), we replace the private tokens (x(t)j→i)t∈[T ] by one PRF
seed seed j→i, allowing each user to locally derive the corre-
sponding tokens. This reduces the number of ciphertexts by a
factor of T , making the overhead in the offline communica-

tion cost to be 2 ·
(
|ct|
T +κ

)
per message, where ct denotes a

PKE ciphertext and κ is the bit-length of the public tokens.

Adding Anonymity. Fig. 7 illustrates how if, e.g., u2 sends
two messages using private tokens from the blue box, the
server will be able to link these two messages together. Our fi-
nal description of QUASAR fixes this by permuting the column
indices using a permutation key derived from the group secret
key. The server stills checks the group authentication tokens
ΣG with respect to a single column, and the users can map
this randomly permuted column index to a unique sender.

Similarly to all the GAM protocols so far, QUASAR is non-
colluding unforgeable since each users maintain a database
of the public token and user pair. The added complexity only
comes from adding tracing soundness while maintaining anon-
mity. Moreover, QUASAR is not standard unforgeable as a mali-
cious server and malicious insider can collude to impersonate
any honest user.

5.2 STARS and GEMSTARS

STARS: This is almost equivalent to QUASAR, except that it
additionally achieves standard unforgeability by replacing
the usage of one-time tokens (i.e., private and public tokens
(x,y) such that OWF(x) = y) with one-time signatures (OTS).
Importantly, the usage must remain one-time as otherwise two
messages sent with the same signing key becomes linkable.
GEMSTARS: This is essentially STARS without state updates.
The main idea is to use a group signature (GS) [13, 27, 35].10

Informally, a GS consists of three entity types: a group man-
ager, group tracers (also referred to as opener), and users. A
group manager is unique and handles the registration of a new
user to the system. When a user u wishes to join the system,
the group manager provides u with a certificate certu attesting
to the fact that u is a valid user in the system. User u can
specify a group tracer I and use certu to anonymously sign a
message on behalf of all the users in the system. The signature
can be publicly verifiable, but importantly, it remains anony-
mous to any entity (including the group manager) except to
the specified group tracer I, who can trace the signature back
to user u.

An initial attempt to build a secure GAM protocol from a
GS is as follows. The server and users of a GAM protocol are
mapped to the group manager and users of a GS, respectively.
Since the group users in G should be the only users that can
trace the signature, we then would like to map each group G
in the GAM protocol to a group tracer I. We achieve this by
noticing that each group G shares a common group secret key
gsk. Thus, the group generates the keys (gtvkI ,gtskI) for the
group tracer I by executing the key generation algorithm of
the group tracer using randomness derived from gsk. When
a user sends a message to the group G, it runs the signing

10Since we consider multiple group tracers, we can view it as an account-
able ring signature as well [18, 80].
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algorithm of GS by specifying gtvkI as the group tracer’s key.
The server then relays the message to the group G only if
the signature verifies. The group users can locally run the
tracing algorithm of I on the signature since they hold the
group tracer’s secret key gtskI .

This GAM protocol inherits the anonymity and unforge-
ability of GS. Unfortunately, it does not achieve anonymous
blocklisting nor tracing soundness. The issue is that any user
in the system, even those outside of the group G, can sign on
behalf of G — this stems from the mismatch in the scope of
“groups” considered by the GAM protocol and GS. In partic-
ular, an adversary can mount the following Sybil attack on
the group: The adversary creates fake users u′ and obtains
credentials certu′ by joining the system. It then specifies gtvkI
as the group tracer’s key and signs on behalf of the group G.
While traceability of GS allows the group users to trace back
to this outsider u′, the server cannot block u′ from upload-
ing malicious contents to the group since it is a valid group
signature.

We resolve this issue by proving group membership in a dif-
ferent layer, similarly to the metadata-hiding protocol of [53]
and what we did with COSMAC. Using the group secret key
gsk, the group further generates a unique signature key pair
(vk,sk) and uploads vk to the server. To send a message to the
group, a group user generates the group signature as before,
but further attaches a signature generated by sk. Similarly
to COSMAC, this additional signature guarantees anonymous
blocklisting, while GS guarantees that we can trace the signer
to a group user. Lastly, since GS allows to sign an unbounded
number of messages, GEMSTARS requires no updates.

Although GEMSTARS removes state updates while satisfy-
ing all the desired security, it is quite inefficient in the post-
quantum setting due to the lack of efficient GS.

6 Running GAM Protocols on MLS

In this section, we explain how to integrate a GAM protocol
into MLS. While this is fairly straightforward, some discus-
sion is required since our GAM protocol assumes a trusted
initialization algorithm Init that prepares the group user states.
For the particular GAM protocol (i.e., Enc-Sign mode) cur-
rently used by MLS this is not an issue, since the initial user
state (i.e., the group secret key and verification keys of the
group users) is implicitly provided by the CGKA protocol.
However, in general, this may not be the case.

Below, we explain this integration in two steps. We first
consider the base case where a GAM protocol operates on
an already established set of user states. We then consider
how our specific GAM protocols can handle the Init algorithm
without a trusted setup. Recall in MLS, a single user u ini-
tializes a group G = {u} and then dynamically adds users
by sending welcome messages. We follow this approach and
explain how the Init algorithm of a GAM protocol can be
implemented through these dynamic group operations. As

á
(3) (pp′,(σi)i∈[N])

← Verify(pp,skSv,ΣG,gmsg)
Alice

(1) (st′A,ΣG)
← Send(stA,gmsg)

Bob

(5) (st′B,⊤,A)← Receive(stB,σidx(B),gmsg)

Charlie

(5) (st′C,⊤,A)← Receive(stC,σidx(C),gmsg)

(2) (gmsg,ΣG)

(4) (gmsg,σidx(B))

(4) (gmsg,σidx(C))

Figure 8: Using a GAM protocol on top of MLS’ FSPD pro-
tocol. When retrieving a message, a user u specifies its index
idx(u) to the server; the server then returns the user authenti-
cation token σidx(u) along with gmsg.

explained in Sec. 2.4, a formal model for allowing dynamic
groups in GAM protocols is left as an important future work.

6.1 Authentication in a Static Group

Assume the base case where the user states of the GAM proto-
col are already set up. Recall an application message of MLS’
FSPD protocol have the following format [12, Sec. 6]:

(gid,epochCGKA,ctsenderID,ctContents,AuthData) (1)

gid is the group identity; epochCGKA is a counter11; senderID
is the sender’s identity; Contents stores the payload; ctX is
an SKE encryption of X under an SKE key derived from the
group secret key; andAuthData is an authentication data field,
including an encryption of the signature (i.e., Enc-Sign mode).
Below, we denote gmsg as Eq. (1), excluding AuthData.

With this structure in mind, using a GAM protocol on top
of MLS’ FSPD is straightforward. This is depicted in Fig. 8
(see also Fig. 1). To send a message gmsg, user u ∈ G runs the
Send algorithm to create a group authentication token ΣG and
uploads (gmsg,AuthData := ΣG) to the server. The server
verifies ΣG and prepares user authentication tokens (σi)i∈[N],
where N = |G|. When a user v ∈ G with index i = idx(v)
contacts the server, the server returns (gmsg,AuthDatai :=
σi). User v can then verify and trace user u by running the
Receive algorithm of the GAM protocol on (gmsg,σi).

Lastly, in case the GAM protocol requires state updates
(e.g., QUASAR and STARS), this can be simply run on top of
FSPD by directly embedding the group update information
Σ̂G into Contents or ctContents depending on the anonymity
guarantee we require.

11Note that this epochCGKA is maintained by the CGKA protocol and
differs from those used by QUASAR and STARS.
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6.2 Authentication in a Dynamic Group

We now discuss how to add users to a preexisting GAM pro-
tocol using the welcome message functionality provided by
MLS (or the CGKA protocol to be precise). Similarly to how
the CGKA protocol is implemented, this procedure can be
used to execute the Init algorithm. Since the process is inher-
ently protocol specific, we explain them individually below.

COSMOS. This is simple since each user state is independent
of the others. When an outsider joins the group via a welcome
message, it mints a new token (x0,y0) and uploads the public
token y0 to the server and group. The outsider can additionally
authenticate y0 by including it in its key package maintained
by the Delivery Service [20, Sec. 5] or by directly signing
it to the group with its long-term key maintained by the Au-
thentication Service [20, Sec. 4]. Once y0 is shared among
the group, it can use x0 to start sending messages. Moreover,
the outsider can fetch the current public tokens of the other
users from the server. In case they want to be sure that these
public tokens were indeed minted by the respective users, they
can obtain the tokens directly from the senders. Note that the
process is very similar to the Enc-Sign mode currently used
by MLS’ FSPD protocol. The case for the optimized COSMOS

is similar.

COSMAC. This is almost identical to COSMOS. The only differ-
ence is that the outsider, after processing the welcome mes-
sage, recovers the current group secret key gsk. It then uses
the gsk to derive the MAC key kMAC and an SKE key kSKE.
Note that we can update kMAC and kSKE anytime the CGKA
protocol performs a commit, which would allow some form of
post-compromise security of the anonymity and anonymous
blocklisting properties (see Sec. 8). Moreover, if we need
sender anonymity of the welcome message, we can rely on
existing anonymous two-party messaging protocols, such as
Sealed Sender [60] or Orca [75], where the latter protocol
also provides user traceability.

QUASAR and STARS. These are the most involved due to
global state updates. Since the protocol flows of QUASAR
and STARS are identical, we only focus on QUASAR. Look-
ing at the toy example from Fig. 7, we cannot simply ap-
pend columns corresponding to the new users since the server
can always link public tokens associated to these appended
columns. Thus, to ensure anonymity, the group users must all
update their state and refresh the public tokens held by the
server. In more detail and similarly to COSMOS, the outsider
o, after having processed the welcome message, mints their
one-time tokens, uploads the public tokens

(
y(t)j→o

)
( j,t)∈[N]×[T ]

to the server, and sends the PRF seeds seed j→o to each group
user so that they can recover the corresponding private tokens.
After every other user updates their states by further minting
T extra public tokens for the new user o, the user can start
sending messages.

An optimization of the above approach will have each

group member j send a new PRF seed seedo→ j to o, but,
for each other group member i, derive the corresponding
seed for the new epoch from the seed seed j→i (respectively
seedi→ j) for the previous epoch, and upload the correspond-
ing public tokens y(t)∗→ j to the server. This could be done by
setting the new seed to be OWF(seed j→i∥epoch∥o) (respec-
tively OWF(seedi→ j∥epoch∥o)). The advantage of such an
approach is that each group member is only required to send
a single ciphertext, and download nothing, as opposed to up-
loading and downloading N ciphertexts.

GEMSTARS. This is the only protocol that requires the MLS
server to additionally run a group signature scheme. When a
user joins the secure group messaging application, the server
provides the user with a certificate (see Sec. 5.2 for details).
Assuming this step has been finished, then joining a group is
straightforward. This is because the only thing the outsider
requires to run GEMSTARS is the groups tracer key and signa-
ture key, which are both derived from the group secret key
gsk. Hence, following the same discussion in COSMAC, we can
easily add new users to GEMSTARS.

Lastly, we note that removing users is straightforward
for all of our GAM protocols. Since COSMOS is not anony-
mous, the server can simply maintain a list of group mem-
bers. COSMAC and GEMSTARS natively supports removal at
the CGKA layer since, once a commit occurs, the MAC key
kMAC is updated along with the group secret key gsk. Finally,
for QUASAR, the users can simply remove the unused public
tokens corresponding to the removed users from the server.

7 Bandwidth Efficiency Analysis

In this section we analyze the efficiency of our proposed
GAM protocols and compare them with existing authentica-
tion modes. We are specifically interested in the bandwidth
overhead incurred by each authentication mode compared to
a messaging protocol where the application message (e.g.,
chat texts) is sent in the clear, i.e., without authentication.

7.1 Instantiation
We target the NIST Level I security12 stating that breaking
the protocol is no easier than key-recovery on a block cipher
with a 128-bit key (e.g., AES-128). This provides a meaning-
ful baseline to discuss post-quantum security and ignoring
quantum attacks corresponds to a classical security level of
128 bits. The main cryptographic primitives used in our GAM
protocols is summarized below. The sizes of the cryptographic
artifacts used in our instantiations are shown in Tab. 2.

OWF: We use SHA-256 and truncate its output to 16 B.

12https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/
evaluation-criteria/security-(evaluation-criteria)
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Table 2: Instantiation of the building blocks for our GAM protocols. SIG and GS stand for signature schemes and group signatures.
sig, osig, and gsig denote the signature a standard signature, an OTS, and a group signature, respectively. ovk denotes the
verification key of an OTS. ek and ct denote a KEM encapsulation key and ciphertext, respectively. All sizes are given in bytes. †
indicates the output of SHA-256 is truncated to 16 B. We use κ to denote the security parameter, set to 128 bits.

Primitives Classic Post-quantum Related Auth. Modes

OWF SHA-256: κ = 16† SHA-256: κ = 16† COSMOS, COSMAC, QUASAR
MAC HMAC-SHA-256: κ = 16† HMAC-SHA-256: κ = 16† COSMAC

OTS EdDSA: |ovk|= 32, |osig|= 64 WOTS+: |ovk|= 1320, |osig|= 1072 STARS

SIG EdDSA: |sig|= 64 Dilithium: |sig|= 2420
Sign, Enc-Sign,

Sign-Enc-Sign, GEMSTARS
GS BBS: |gsig|= 336 LNP: |gsig|= 9.2×104 GEMSTARS

KEM Hashed ElGamal: |ek|= |ct|= 32 Kyber: |ek|= 800, |ct|= 768 QUASAR, STARS

MAC and PRF: We use HMAC [58] with SHA-256 and trun-
cate its output to 16 B. Note that a deterministic MAC
can be viewed as a PRF.

Pseudo-random permutation: We require a PRP to per-
mute the set of NT tokens. We have the option of using
either FastPRP [73] or the Thorp shuffle [67].

One-time signature schemes: For classical security, we use
EdDSA [17]. For post-quantum security, we use
WOTS+ [54, 55] used as a building block of the NIST
PQC standard signature SPHINCS+ [56]. We set the
Winternitz parameter w = 16, and use SHA-256 as the
underlying hash function.

Signature schemes: For classical security, we use Ed-
DSA [17]. For post-quantum security, we use the NIST
PQC standard Dilithium [61]. We did not consider Fal-
con [70], another PQC standard, since Dilithium is se-
lected as the primary algorithm and NIST recommends
it for most use cases.

Group signatures: For classical security, we use the pairing-
based BBS scheme [26] with the BLS12-381 pairing-
friendly curve. For post-quantum security, we use
the lattice-based scheme proposed by Lyubashevsky,
Nguyen, and Plançon (LNP) [62].

KEM schemes: For classical and post-quantum security, we
use the Hashed ElGamal KEM [40] and the NIST PQC
standard Kyber [72], respectively.

7.2 Efficiency

Cost Metric. Following [7, 53], analyzing the bandwidth effi-
ciency of MLS (and its variants), we analyze our GAM proto-
col through three metrics: the upload and download cost, and
the total cost. Each of these costs are further broken down
into offline and online costs; online (resp. offline) cost is asso-
ciated to the cost of uploading and downloading contents gen-
erated by Send and Verify (resp. UpdSend and UpdVerify).

We assume a user can send at most T messages once their
states are updated. For protocols that require no updates, we
can simply set T = 1 as there are no offline costs. In more
detail, we have the following, where the costs are defined per
user in a group of size N.

Total upload cost: The cost of uploading T outputs of Send
(online) and one output of UpdSend (offline).

Total download cost: The cost of downloading NT outputs
of Send (online) and N outputs of UpdSend (offline).

Total cost: The sum of the upload and download costs.

The download cost is a factor N times larger than the upload
cost since each user has N = |G| users to download from. Here,
for COSMOS++13, COSMAC++, and GEMSTARS, we can slightly
optimize the download cost by allowing the users to not down-
load the messages they upload. In contrast, for QUASAR and
STARS, the users must download what they uploaded to pre-
serve anonymity. At a high level, looking at Fig. 7, if a user
does not download what it uploaded, then the server can link
the (permuted) columns together. Lastly, observe that even if
the offline cost is larger compared to the online cost, it gets
amortized by T : as T grows larger, the total online cost starts
to dominate the total offline cost.

Comparison of Communication Costs. We analyze the com-
munication cost of our proposed GAM protocols and compare
them with existing authentication modes. The number of ex-
changed cryptographic elements in the GAM protocols is
summarized in Tab. 3. We classify the GAM protocols into
the following three categories and compare them.

(1) Non-anonymous protocols: Sign mode and COSMOS++.

(2) Anonymous protocols without tracing soundness: Enc-
Sign mode, Sign-Enc-Sign mode, and COSMAC++.

(3) Anonymous protocols with tracing soundness: QUASAR,
STARS, and GEMSTARS.
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Table 3: The number of total cryptographic elements exchanged in GAM protocols. N is the group size and T is the number
of online messages per one offline update. κ denotes the security parameter. sig, osig, and gsig denote a standard signature, a
one-time signature, and a group signature, respectively. ovk denotes the verification key of a one-time signature. ct denotes a
KEM ciphertext.

Offline Online
Upload Download Upload Download

Auth. Mode κ |ovk| |ct| κ |ovk| |ct| κ |osig| |sig| |gsig| κ |osig| |sig| |gsig|

Enc-Sign (MLS) T (N−1)T
Sign-Enc-Sign [53] T (N−1)T

COSMOS++ 3 3(N−1) 2T 2(N−1)T
COSMAC++ 4 4(N−1) 3T 3(N−1)T
QUASAR 2NT N 2N N 2NT 2NT
STARS NT N N N NT NT

GEMSTARS T T (N−1)T (N−1)T

Table 4: Communication cost of each GAM protocols. The sizes are in bytes. N is the group size and T is the number of online
messages per one offline update. In Tabs. 4a and 4b, we ignore the O(N) cost of the offline phase for readability. The column
“Total” is normalized by NT , denoting the total overhead cost per message. The column “PQ?” is p (resp. ✓) for classical (resp.
post-quantum) security. The mode “Sign” in Tab. 4a corresponds to the naïve approach of simply signing messages.

a: Non-anonymous GAM protocols

Online
Auth. Mode Upload Download Total PQ?

Sign 64 ·T 64 · (N−1)T 64 p
2420 ·T 2420 · (N−1)T 2420 ✓

COSMOS++ 32 ·T 32 · (N−1)T 16 · (2+ 3
T ) ✓

b: Anonymous GAM protocols without tracing soundness

Online
Auth. Mode Upload Download Total PQ?

Enc-Sign (MLS) 64 ·T 64 · (N−1)T 64 p
2420 ·T 2420 · (N−1)T 2420 ✓

Sign-Enc-Sign [53] 128 ·T 128 · (N−1)T 128 p
4840 ·T 4840 · (N−1)T 4840 ✓

COSMAC++ 48 ·T 48 · (N−1)T 16 · (3+ 4
T ) ✓

c: Anonymous GAM protocols with tracing soundness

Offline Online
Auth. Mode Upload Download Upload Download Total PQ?

32 ·NT +32 ·N 64 ·N 64 ·NT 32 ·NT
(
96+ 96

T

)
· N+1

N p
QUASAR 32 ·NT +768 ·N 800 ·N 32 ·NT 32 ·NT

(
96+ 1568

T

)
· N+1

N ✓

32 ·NT +32 ·N 48 ·N 64 ·NT 64 ·NT
(
160+ 80

T

)
· N+1

N p
STARS 1320 ·NT +768 ·N 784 ·N 1072 ·NT 1072 ·NT

(
3464+ 1552

T

)
· N+1

N ✓

— — 400 ·T 400 · (N−1)T 400 p
GEMSTARS 9.4×104 ·T 9.4×104 · (N−1)T 9.4×104 ✓

Category (1). Tab. 4a compares the Sign mode (cf. Foot-
note 3) used in MLS and COSMOS++. Technically, the Sign
mode is used exclusively by the CGKA protocol in MLS,
and not used to authenticate the output of the FSPD proto-
col. Nonetheless, this mode was used to analyze MLS by
Alwen et al. [5] and we view it as the vanilla non-anonymous
GAM protocol. Considering that any cryptographic element
added to satisfy authentication should be at least 128-bits,
COSMOS++ is near optimal. Compared to the Sign mode, the
total post-quantum communication cost is a factor 75x smaller.
On the other hand, Sign mode achieves standard unforgeabil-
ity while COSMOS++ does not. We believe COSMOS++ offers
a worthwhile tradeoff between efficiency and security.

13We only consider the most efficient version of COSMOS and COSMAC here.

Category (2). Tab. 4b compares the Enc-Sign mode used in
MLS, Sign-Enc-Sign mode [53], and COSMAC++. Recall Enc-
Sign mode does not achieve anonymous blocklisting while
Sign-Enc-Sign and COSMAC++ do (see Tab. 1). Out of the
three protocols, COSMAC++ has the lowest communication
cost. Compared to the Enc-Sign mode used in MLS, the total
post-quantum communication cost is a factor 50x smaller.
As with COSMOS++, COSMAC++ only achieves non-colluding
unforgeability while Enc-Sign and Sign-Enc-Sign modes do.

Category (3). Tab. 4c compares QUASAR, STARS, and
GEMSTARS. These are the only anonymous GAM protocols
with tracing soundness. QUASAR and STARS have a variable
total communication cost that becomes smaller as T (and N)
increases. This is because the KEM ciphertext encrypting the
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PRF seed, exchanged during the offline phase, can be used
to mint T tokens. Specifically, the cost of sending a large
ciphertext is amortized by the number of messages T sent in
the online phase. By setting T = 1000, the cost of sending a
KEM ciphertext relative to the total cost is only 2 B or less
per message, even in the post-quantum setting.

Out of the three protocols, QUASAR provides the most total-
cost-efficient protocol. In fact, QUASAR is even comparable
to COSMAC++ that has no tracing soundness, e.g., it is 106 B
when (N,T ) = (10,1000). While larger than QUASAR, STARS
also offers a relatively small total overhead, albeit more com-
putationally expensive due to running an OTS. The bene-
fit of using STARS over QUASAR is that it achieves standard
unforgeability. Lastly, while both QUASAR and STARS have
an O(N) online upload cost (i.e., maximum bandwidth con-
sumption) per message, the concrete cost is only 16 KB for
QUASAR even for a relatively large group of N = 1024. STARS
uploads 64 KB and 1 MB of data in the classical and post-
quantum settings, respectively. Lastly, recall one of the weak-
ness of QUASAR and STARS are that they are only globally
state-updatable. GEMSTARS removes updates altogether, with
the cost of a larger total communication overhead; in the
post-quantum setting, it is 94 KB.

8 Open Problems and Future Work

Other than those discussed in Sec. 2.4, we consider the fol-
lowing as interesting future work.

FS and PCS. Both forward secrecy (FS) and post-
compromise security (PCS) are standard security notions in
secure messaging. A natural question is then, given the com-
promise of (one or more) users states to the adversary, what
is the effect of this on the unforgeability, anonymity, anony-
mous blocklisting, and user traceability of past and future
messages? This opens interesting directions, both towards
formalizing these notions and towards constructing authenti-
cation modes satisfying them.

Regarding FS, we first note that unforgeability, anonymous
blocklisting, and user traceability are not relevant, as in our
setting these notions are only concerned with the moment
messages are processed by users.14 Anonymity, on the other
hand, is more interesting: can a state compromise allow an
adversary to de-anonymize past messages from a user? The
answer for both MLS and our proposals is “Yes”, at least in
some cases. Indeed, messages in each MLS’ FSPD instanti-
ation share an epoch and are thus all signed with the same
signing key, and their sender identity and signature are en-
crypted with the shared secret in the epoch. In the latter, either
key material is static (like in GEMSTARS), or anonymity relies
on the key material that only gets rotated between CGKA

14The concept of forward-secret signatures [14], motivated by the will
that the compromise of the current secret key does not enable an adversary
to forge signatures pertaining to the past, is thus not relevant.

epochs, like the MAC key used in COSMAC, or the permuta-
tion key used in QUASAR or STARS. Thus, natural questions
are: how do we formalize “forward anonymity”? and can we
design authentication modes that satisfy it?

The matter regarding PCS for authentication is more in-
volved, since all the security notions make sense in this setting,
as indicated by the original work on PCS by Cohn-Gordon,
Cremers, and Garratt [39]. For unforgeability, the work of
Cremers, Hale, and Kohbrok [41] introduces the notion of
PCS signatures, where key-pairs can be evolved to “heal”
from a compromise. For anonymity, ideas from unlinkable
sanitizable signatures [30, 45] could be useful. We leave con-
crete construction of a PCS GAM protocol as an interesting
problem.

Optimal Security with PQ Efficiency. We provide several
GAM protocols with different efficiency and security profiles,
some of which offering much better post-quantum efficiency
compared to the GAM protocol used in MLS, albeit weak-
ening unforgeability. So far, the only GAM protocol satisfy-
ing optimal security (i.e., standard unforgeability, anonymity,
anonymous blocklisting, tracing soundness) with no global
state updates is GEMSTARS. However, this comes at a great
cost as post-quantum group signatures are much more costly
than signatures. We view it as an interesting open problem to
find a GAM protocol achieving all the desireable properties
while retaining efficiency.
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A Other Related Work

Secure Two-Party Messaging. A well-known secure two-
party messaging protocols is the Signal protocol, which com-
prises two sub-protocols: X3DH protocol [64] and Double
Ratchet protocol [63]. The full security of Signal protocol was
analyzed by Cohn-Gordon et al. [36, 37]. Subsequently, these
two sub-protocols were studied separately. The X3DH proto-
col, which is used to establish the initial secret key required
to start a secure conversation, was analyzed by [28, 50, 51].
With respect to the Double Ratchet protocol, Alwen et al. [3]
abstracted it as Continuous Key Agreement (CKA) (CGKA in
two-party setting) and studied the security of Signal’s Double
Ratchet protocol in this abstruction. Recently, Bienstock et
al. [25] and Canetti et al. [31] concurrently formalized an ideal
functionality for the Signal protocol and proved its security
using the Universally Composable (UC) framework.
Secure Group Messaging. Signal supports a group of more
than two users by sending the same message to the users
on the group with each of two-user messaging channels (i.e.,
pair-wise channels). It becomes less efficient as the group
grows. To address this limitation, the Messaging Layer Secu-
rity (MLS) protocol was developed in an IETF working group
and is ready to be published as an RFC. MLS consists of two
sub-protocols: Continuous Group Key Agreement (CGKA)
protocol and Forward Secure Payload Delivery (FSPD) pro-
tocol. The former establishes a group secret key and contin-
uously updates it, while the latter delivers payloads (a.k.a.
application messages [12]) securely using the group secret
key.

MLS uses TreeKEM [21] as a CGKA protocol, which is
based on the Asynchronous Ratcheting Trees proposed by
Cohn-Gordon et al. [38]. The security of TreeKEM as a stand-
alone protocol was analyzed with game-based [4], simulation-
based (UC framework) [8], and machine-checkable [22] se-
curity definitions. Alwen et al. [5] proposed a game-based
security definitions for MLS, and analyzed MLS in its entirety.
Their paper is the first to formally cast group messaging as
the composition of CGKA and FSPD (termed FS-GAEAD
in their model). They also identify a third component primi-
tive, which takes the form of a hash function with particular
properties. Bienstock et al. [23] proved a lower bound on the
communication cost of any group messaging protocol, as well
showing no optimal (with respect to distributions of group
operations) protocol exists. Anastos et al. [9] prove a lower
bound on the communication cost of replacing a set of users
in CGKA, in particular showing MLS is optimal in this regard
among protocols built in a black-box way from a standard set
of primitives.

In addition to studying the standard TreeKEM in MLS,
constructing new CGKA protocols is an active research topic.
Re-randomized TreeKEM [4] and TreeKEM with active se-
curity [6] was proposed to improve forward security. Tainted
TreeKEM [57] introduced an alternative approach to remov-

ing users which can be more efficient in certain settings, such
as those with group administrators. Hashimoto et al. [52] and
Alwen et al. [7] constructed communication-efficient CGKA
protocols by allowing receivers to selectively download up-
loaded contents. Hashimoto et al. [52] proposed a CGKA pro-
tocol based on multi-recipient PKEs called Chained CmPKE,
which is designed to reduce the total communication cost.
Alwen et al. [7] proposed a server-aided CGKA protocol by
extending MLS’s TreeKEM, which is designed to reduce the
upload and download costs per message. Weidner et al. [79]
proposed a decentralized CGKA (DCGKA) protocol to realize
secure group messaging for decentralized networks that have
no central authority. An issue with CGKA protocols is how to
handle concurrently uploaded key updates. To address this,
CGKA protocols supporting concurrent key updates and ex-
hibiting different trade-offs have been proposed [1, 2, 24, 78].
Bienstock et al. [24] also showed a lower bound on the com-
munication costs of achieving PCS in two rounds of con-
current communication. This lower bound was extended by
Auerbach et al. [10] to capture the more general setting of
achieving PCS in a (potentially) higher number of rounds.
Authentication for Group States. In secure group messag-
ing, group members share a common group state that includes
information such as the list of group members and their cryp-
tographic keys. When new members join the group, they must
verify that the received group state is synchronized across
all current members. If not, the group suffers from insider
and outsider attacks e.g., double join attacks [22]. Signal uses
an anonymous group management protocol called private
groups [34]. In this protocol, the group membership list is en-
crypted with a group secret key and stored on the server. When
members want to modify the list, the server anonymously au-
thenticates them to ensure that they have the permission to
do so. Further, a recent paper [11] introduces the notion of
administrated CGKA, which enables a set of administrators
to cryptographically manage group membership.

In MLS, new members receive the group state as a welcome
message from an existing member. The group state includes
the membership of the group and the structure of the public
key tree for TreeKEM. MLS uses an authentication mecha-
nism called tree-signing to allow new members to agree on
and authenticate the group’s membership and public key tree
structure, without which powerful insider attacks could be
performed [8]. Wallez et al. [77] formalized this authentica-
tion mechanism as TreeSync and provided a machine-checked
formal specification for it.

It is worth noting that these works are orthogonal to the au-
thentication we consider. Whereas they consider the integrity
of group states and the authentication of values therein, we
consider the authenticity of conversation messages.
Anonymous Secure Messaging. In the two-party setting,
Signal provides sender-anonymous messaging through the
Sealed Sender protocol [60]. Each user distributes an access
key to their friends and registers it with the server in advance.
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The server authenticates senders by checking whether the
sender holds the access key of the intended receiver. Martiny
et al. [66] demonstrated statistical analysis attacks that break
sender anonymity in Sealed Sender, and suggested counter-
measures to address their attacks. Tyagi et al. [75] pointed
out that the access key distribution during the setup in Sealed
Sender is not anonymous, and users could suffer from a DoS
attack due to the lack of user traceability. To address these
issues, they proposed a new sender-anonymous messaging
protocol called Orca. Their protocol ensures that all commu-
nication, even in the setup phase, is anonymous and provides
user traceability.

In the group setting, Signal already supports anony-
mous group messaging by using the sender-anonymous
two-party protocol mentioned above as the underlying two-
party messaging protocol. MLS also considers sender-
anonymous group messaging according to its specifica-
tion [12, Sec. 6.3.2.] (see also [19, Sec. 7.1.2]). Hashimoto et
al. [53] studied the anonymity that MLS provides and defined
a new security models that covers anonymity of senders and
receivers against the server. They proposed a metadata-hiding
CGKA protocol satisfying their security definition. Their pro-
tocol offers an implicit anonymous blocklisting property that
allows the server to block access from outside the group,
similar to Signal’s Sealed Sender.

Group Signatures. Group signatures [13, 27, 35] can be used
to achieve anonymous authentication with user traceability.
They allow users to anonymously sign messages on behalf
of a group, while allowing a special entity called the group
tracer to trace the signature back to the user. In the context of
secure messaging, we view the server as the group manager
and verifier, and users as signers and group tracers. The server
manages a group of all users in the system. Users join this
group by setting up the account, and receiving a certificate
from the server. With this set up in place, a sender can generate
a signature with its certificate, and designate the intended
receiver as tracer. The server can then verify the signature
and, if verification is successful, deliver it to the intended
receiver, who can then trace it back to the sender with its
tracing key. In the context of group messaging, the set of
users in a group is regarded as one instantiation of the group
tracer, thus allowing all members to trace the sender. Tyagi et
al. [75] and this work propose anonymous (group) messaging
protocols following this framework.

To use group signatures in secure messaging as explained
above, they must support dynamic groups [16] and multiple
group tracers [75]. It is worth noting that the same key is
used for both issuing certificates and verifying signature in
this setting, since the server acts as both group manager and
verifier. This property is called keyed-verification [33, 34, 75]
in the literature, and it could be useful to construct efficient
schemes. Tyagi et al. [75] constructed an efficient group sig-
nature satisfying these properties based on the Diffie-Hellman
assumption.

B Preliminary: Cryptographic Tools

In this section, we define all the standard cryptographic tools
used in our work.

One-Way Function. Let OWF : D → R be an efficient
function family with domain D and finite range R . We define
a one-way function as follows.

Definition B.1 (One-Way Function). We say OWF is a one-
way function if for all PPT adversary A , we have∣∣Pr[x←$ D,x′←$ A(1κ,OWF(x)) : x = x′]

∣∣≤ negl(κ).

Lemma B.2. Let n,m be integers such that n,m≥ κ. Then, a
hash function H : {0,1}n→{0,1}m instantiated as a random
oracle is a OWF.

Proof. Let A be a PPT adversary that makes at most Q =
poly(κ) queries to the random oracle. First, the probability
that A queries x is bounded by Q/2n. Moreover, if it queries
z ̸= x, then the probability that H(z) = H(x) is Q/2m. Hence,
the probability that A wins is upper bounded by Q(1/2n +
1/2m)≤ Q/2κ−1 = negl(κ).

Pseudorandom Function. Let PRF : K ×D→R be an ef-
ficient function family with key space K , domain D and finite
range R . We define a pseudorandom function as follows.

Definition B.3 (Pseudorandom Function). We say PRF is a
pseudo-random function if for all PPT adversary A , we have∣∣∣∣Pr

[
b = b′ :

b←${0,1};K←$ K ;RF←$ R F ;
b′ ←$ AF (·)(1κ)

]
− 1

2

∣∣∣∣≤ negl(κ),

where R F is a set of all functions with domain D and range
R , and F (·) is defined as PRF(K, ·) if b = 0, and RF(·) oth-
erwise.

Pseudorandom Permutation. Let PRP : K ×R → R be
an efficient function family of one-to-one functions from R
to R with key space K for which PRP−1 is also efficiently
computable given the first input (i.e., key). We define a pseu-
dorandom permutation as follows.

Definition B.4 (Pseudorandom Permutation). We say PRP
is a pseudo-random permutation if for all PPT adversary A ,
we have∣∣∣∣Pr

[
b = b′ :

b←${0,1};K←$ K ;RP←$ R P ;
b′← AP (·),P−1(·)(1κ)

]
− 1

2

∣∣∣∣≤ negl(κ),

where R P is the set of all permutations over R , and P (·)
(resp. P−1(·)) is defined as PRP(K, ·) (resp. PRP−1(K, ·)) if
b = 0, and RP(·) (resp. RP−1(·)) otherwise.
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Secret Key Encryption. We provide the standard notion of
secret key encryption (SKE).

Definition B.5 (Secret-Key Encryption). A secret-key en-
cryption (SKE) over key space K and message space M
consists of the following two algorithms:

Enc(k,m)→ ct : On input a secret key k∈K and a message
m ∈M , it outputs a ciphertext ct.

Dec(k,ct)→m or ⊥ : On input a secret key k and a cipher-
text ct, it (deterministically) outputs either m ∈M or
⊥ ̸∈M .

Definition B.6 (Correctness). An SKE is correct if
Pr[Dec(k,Enc(k,m)) = m] = 1 holds for all m ∈ M and
k ∈K .

Definition B.7 (IND-CCA). An SKE is IND-CCA secure if
for all PPT adversary A , we have∣∣∣∣Pr

[
b = b′ :

(b,k)←${0,1}×K ,

b′←$ AC (·,·),D(·)(ct∗)

]
− 1

2

∣∣∣∣≤ negl(κ),

where C (m0,m1) outputs (ct0,ct1), where
cti←$Enc(k,mi⊕b) for i ∈ {0,1}, and D(ct) returns
Dec(k,ct) conditioned on ct not being an output of C (·, ·).

Message Authentication Code. We provide the stan-
dard notion of (deterministic) message authentication codes
(MAC).

Definition B.8 (MAC). A (deterministic) message authenti-
cation code MAC over key space K and message space M
consists of the following algorithms:

TagGen(k,m)→ tag: On input a key k ∈K and a message
m ∈M , it (deterministically) outputs a tag tag.

Verify(k, tag,m)→⊥/⊤: On input a key k, a tag tag, and
a message m, it (deterministically) outputs ⊤ or ⊥.

Since the TagGen algorithm is deterministic, we can sim-
ply define Verify to run TagGen on (k,m) and check if the
generated tag′ is identical to the provided tag.

Definition B.9 (Correctness). A MAC is correct if for all keys
k ∈K and all messages m ∈M ,

Pr [Verify(k,TagGen(k,m),m) =⊤] = 1.

Definition B.10 (sEUF-CMA). A MAC is sEUF-CMA secure
if for all PPT adversary A , we have

Pr
[

Verify(k,m∗,tag∗) =⊤
∧(m∗,tag∗) /∈ L∗

:
k←$ K ;

(m∗,tag∗)←$ AT (·)(1κ)

]
≤ negl(κ)

where T is the MAC oracle which on input m returns
TagGen(k,m), and L∗ is the set of pairs of message and tag
generated by the MAC oracle.

(One Time) Signature We provide the standard notion of a
signature scheme.

Definition B.11 (Signature Scheme). A signature scheme
SIG over a message space M consists of the following algo-
rithms:

KeyGen(1κ)→ (vk,sk): On input the security parameter 1κ,
it outputs a verification and signing key pair (vk,sk).

Sign(sk,m)→ σ: On input a signing key sk and a message
m ∈M , it outputs a signature σ.

Verify(vk,σ,m)→⊥/⊤: On input a key k, a signature σ,
and a message m, it (deterministically) outputs ⊤ or ⊥.

Definition B.12 (Correctness). A signature scheme SIG is
correct if for all κ ∈ N, m ∈M , and (vk,sk) ∈ KeyGen(1κ),
we have

Pr [Verify(vk,σ,m) =⊤ : σ←$Sign(sk,m)] = 1−negl(κ).

Definition B.13 (EUF-CMA). A signature scheme SIG is
EUF-CMA secure if for all PPT adversary A , we have

Pr
[

Verify(vk,σ∗,m∗) =⊤
∧m∗ /∈ L∗

:
(vk,sk)←$KeyGen(1κ);
(m∗,σ∗)←$ AS(·)(1κ)

]
≤ negl(κ)

where S is the signing oracle which on input m returns
σ←$Sign(sk,m), and L∗ is the set of messages queried to
the signing oracle. We say SIG is one-time secure if |L∗|= 1.

Key Encapsulation Mechanism We provide the standard
notion of a key encapsulation mechanism (KEM).

Definition B.14 (Key Encapsulation Mechanism). A key
encapsulation mechanism (KEM) with key space K consists
of the following PPT algorithms:

KeyGen(1κ) → (ek,dk) : On input a security parameter
1κ, it outputs a pair of encryption and decryption keys
(ek,dk).

Enc(ek)→ ct : On input an encryption key ek, it outputs a
key k ∈K and a ciphertext ct.

Dec(dk,ct)→ m/⊥ : On input a decryption key dk and a
ciphertext ct, it outputs a key k ∈K ∪{⊥}.

Definition B.15 ((1− δ)-Correctness). A KEM is (1− δ)-
correct if for all κ ∈ N, we have

(1−δ)≤Pr
[

(ek,dk)←$KeyGen(1κ),
(k,ct)←$Enc(ek)

: Dec(dk,ct) = k

]
.

Definition B.16 (IND-CCA Security). A KEM is IND-CCA
secure if for all PPT adversary A we have∣∣∣∣∣∣∣∣Pr

b = b′ :

(ek,dk)←$KeyGen(1κ),
(b,k∗0)←${0,1}×K ,
(k∗1,ct

∗)←$Enc(ek),

b′←$ AD(·)(ek,ct∗,kb)

− 1
2

∣∣∣∣∣∣∣∣≤ negl(κ),

where D(ct) outputs Dec(dk,ct) conditioned on ct ̸= ct∗.
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C Security Proofs for COSMOS and COSMAC

In this section, we provide the security proofs for COSMOS and
COSMAC.

C.1 Security Proof of COSMOS
We prove that COSMOS is correct and secure. Here, note that
COSMOS is not anonymous since the list of public tokens
PubTOKEN is indexed by the users u ∈ G and when user
u updates its tokens (xi,yi)i∈[T ], the list of public tokens
PubTOKEN[u] is updated to (yi)i∈[T ]. Any two messages
with private tokens x and x′ such that OWF(x),OWF(x′) ∈
(yi)i∈[T ] can thus be linked together. Also, recall that if a GAM
protocol is not anonymous, then blocklisting becomes trivial
(see Secs. 2.2.2 and 2.3).

Formally, we have the following theorem.

Theorem C.1. The GAM protocol COSMOS in Fig. 3 is signing
correct, local state update correct, non-colluding unforgeable,
and tracing sound assuming OWF is one-way, PRF is pseu-
dorandom, and MAC is sEUF-CMA.

Proof. Correctness of signing and local state-updates is clear
from construction. In the following, we prove COSMOS is non-
colluding unforgeable and tracing sound in Lems. C.2 and C.3,
respectively.

C.1.1 Proof of Lem. C.2

Lemma C.2. COSMOS is non-colluding unforgeable assum-
ing OWF is one-way, PRF is pseudorandom, and MAC is
sEUF-CMA.

Proof. There are two cases we must consider for non-
colluding unforgeability: C ̸= /0 (i.e., the server is honest and
A has access to O⋆) and C = /0 (i.e., the server is malicious
and A has access to O).

We first consider the first case. Let us assume A out-
puts (label,obj) = (msg,(v,σ,m)) for v ∈ H ; the other
case when label = upd is proven identically. Since it is
a valid adversary, the authentication token σ is valid and
traces back to some honest user u∗ ∈ H . That is, σ is the
form (u∗,ctr,x,ΣMAC) and (u∗,∗,m) /∈ Lmsg. Now notice that
a group authentication token of the form ΣG = (u∗,ctr,x,∗)
could not have been output by OSend since when A has access
to O⋆, ΣG is immediately processed by OGroupReceive. In partic-
ular, the honest server and group users delete the public token
y = OWF(x) from DB and will not verify the second time it
is used. Thus, for A to forge u∗ it must output an unknown
private token x for a public token y =OWF(x) without query-
ing OSend on u∗. Due to the one-wayness of OWF, this can be
done with at most negligible probability.

We next consider the second case. Similarly as before, let us
assume A outputs (label,obj) = (msg,(v,σ,m)) for v ∈H

and traces to some honest user u∗ ∈ H . Moreover, due to
the winning condition, we have σ = (u∗,ctr,x,ΣMAC) with
MAC.Verify(kMAC,(u∗,ctrx,m),ΣMAC) =⊤ and (u∗,∗,m) /∈
Lmsg. However, since the malicious server does not know the
MAC key kMAC, this can occur with at most negligible proba-
bility assuming sEUF-CMA security of the MAC. Concretely,
if (u∗,∗,m) /∈ Lmsg, then the game will have never signed
the tuple (u∗,ctrx,m). Therefore, if an adversary outputs a
MAC tag ΣMAC for such a tuple, it breaks sEUF-CMA secu-
rity. Here, to simulate the sEUF-CMA security game, we rely
on the pseudorandomness of the PRF to sample the MAC key
kMAC directly without running PRF.

It is worth mentioning that in the above proof, we cru-
cially rely on the fact that either the set of group users or the
server is honest. When considering standard unforgeability,
a malicious user and server can easily collude to break un-
forgeability as secrecy of both the OWF inputs and MAC key
kMAC are known to the adversary.

C.1.2 Proof of Lem. C.3

Lemma C.3. COSMOS is (unconditionally) tracing sound.

Proof. Assume the adversary A outputs (label,obj) =
(msg,(ΣG,m)). The game then runs (pp′,(σi)i∈[N]) ←
Verify(pp,ΣG,m). Since pp′ verifies, ΣG = (u,ctr,x,ΣMAC)
for some u ∈ G, ctr ∈ [T ], and DB[u][ctr] = OWF(x), where
DB is the database stored in the public parameter pp. Then,
a user authentication token for user v ∈ G ∩H is set as
σv = (u,ctr,x,ΣMAC). Next, notice that all v ∈ G∩H include
the same PubTOKEN in their state as those included in DB.
Then, by the description of *trace-sender in Fig. 4, all hon-
est users v either all reject the authentication token because
ΣMAC is invalid or uniquely traces u given σv. The case when
A outputs (label,obj) = (upd,(Σ̂G, ĉtG)) is proven identi-
cally. This completes the proof of the lemma.

C.1.3 Security of the Optimizations

Lifting the security proofs of COSMOS from App. C to the opti-
mized schemes COSMOS+ and COSMOS++ are straightforward.
Indeed, it is clear from the similarity of the construction that
COSMOS+ will satisfy the same security guarantees. When it
comes to COSMOS++, we note that tracing soundness immedi-
ately follows from the original proof in Lemma C.3. The proof
for non-colluding unforgeability in Lemma C.2 shows that, in
order to forge, an adversary must either break sEUF-CMA se-
curity of the MAC or find a pre-image of the employed OWF.
Relying on the same argument and noting that any revealed
private token becomes a pre-image challenge for the adver-
sary, it follows that COSMOS++ is non-colluding unforgeable
as well.
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C.2 Security Proof of COSMAC
We show in the following theorem that COSMAC is non-
colluding unforgeable, anonymous, and anonymous block-
listable. We note that COSMAC is not tracing sound since any
malicious user can upload a valid MAC tag along with a ci-
phertext that does not decrypt to any valid authentication
tokens of COSMOS. The optimized schemes COSMAC+ and
COSMAC++ can be proven almost identically as per the discus-
sion in App. C.1.3.

Theorem C.4. The GAM protocol COSMAC in Fig. 5 is signing
correct, local state update correct, non-colluding unforgeable,
anonymous, and anonymous blocklistable assuming OWF is
one-way, PRF is pseudorandom, MAC is sEUF-CMA secure,
and SKE is IND-CCA secure.

Proof. Correctness of signing and local state-updates are in-
herited from COSMOS, additionally relying on the fact that the
MAC and SKE are correct. In the following we prove COSMAC
is non-colluding unforgeable, anonymous, and anonymous
blocklistable in Lems. C.5 to C.7, respectively. Proving these
lemmas completes the proof of the theorem.

C.2.1 Proof of Lem. C.5

Lemma C.5. COSMAC is non-colluding unforgeable assum-
ing OWF is one-way, PRF is pseudorandom, and MAC is
sEUF-CMA.

Proof. An adversary A that breaks the non-colluding unforge-
ability of COSMAC can be used to construct an adversary B
that breaks the non-colluding unforgeability of COSMOS. Con-
cretely, B generates kMAC and kSKE randomly over their re-
spective domains without invoking the PRF; this is indistin-
guishable assuming the pseudorandomness of PRF. To simu-
late OSend and OUpdSend to A , B calls its own oracle; encrypts
its output using kSKE; and signs it using kMAC as specified by
COSMAC. To simulate OReceive, OUpdReceive, OGroupReceive, and
OGroupUpdReceive to A , B checks if the attached tag and content
verifies and decrypts under kMAC and kSKE, respectively. If so,
it queries its own oracle on the decrypted message. Finally, if
A outputs a valid forgery, B removes the tag, decrypts it using
kSKE, and submits it as its own forgery. Thus, assuming that
COSMOS is non-colluding unforgeable (which is established in
Lem. C.2), COSMAC is non-colluding unforgeable.

C.2.2 Proof of Lem. C.6

Lemma C.6. COSMAC is anonymous assuming PRF is pseu-
dorandom and SKE is IND-CCA secure.

Proof. We first use the pseudorandomness of the PRF to
modify the security game so that kMAC, kMAC, and kSKE are
sampled independently. We show that an adversary A that
breaks anonymity of this modified security game can be used

to construct an adversary B that breaks IND-CCA security of
the SKE.

Concretely, B samples skSv = kMAC and provides it to A .
It then prepares an empty list Lct. When A queries OSend

and OUpdSend, B runs COSMAC except that it queries (m̄,m̄) to
its encryption oracle C (·, ·) where m̄ = (u,ctr,x(ctr)u ,ΣMAC),
rather than generating it itself. On receiving (ctSKE,0,ctSKE,1)
from the oracle, B uses ctSKE,0 and kMAC to create the au-
thentication tokens. It then updates Lct← Lct∪ (m,ctSKE,0),
where m is the message for which *attach-auth-token is
invoked when A queries OSend and OUpdSend. This simulates
COSMAC perfectly.

When A makes a challenge query (u0,u1,m0,m1), B
runs COSMAC except that it queries ((u0,ctr0,x

(ctr0)
u0 ,ΣMAC0),

(u1,ctr1,x
(ctr1)
u1 ,ΣMAC,1)) to its encryption oracle C (·, ·).

Here, note that we ignore the public parameter pp from
A’s output as it is empty for COSMAC. On receiving
(ct∗SKE,0,ct

∗
SKE,1) from the oracle, B generates MAC tags

(Σ
∗
MAC,0,Σ

∗
MAC,1) using kMAC, respectively, and then out-

puts
(
((ct∗SKE,0,Σ

∗
MAC,0),m0),((ct

∗
SKE,1,Σ

∗
MAC,1),m1)

)
. Fi-

nally, B executes the Verify and Receive algorithms to
check the resulting (group) authentication tokens are valid.
Here, we note that B can ignore decrypting the ciphertext
(ct∗SKE,0,ct

∗
SKE,1) in the Receive algorithm assuming correct-

ness of the SKE. It can be checked that the challenge bit of the
IND-CCA security game is consistent with the challenge bit
coin implicitly sampled by B . Hence, this simulates COSMAC
perfectly.

Lastly, when A queries OReceive and OUpdReceive on an au-
thentication token σ, B checks σ = ct′SKE /∈ Challmsg, where
recall Challmsg is the 2N authentication tokens generated by
Verify above. If the ciphertext ct′SKE satisfies (m′,ct′SKE)∈ Lct

for some m′, it runs COSMAC except that it uses m′. Otherwise,
if ct′SKE /∈ Lct∪{ct∗SKE,0,ct∗SKE,1 }, it runs COSMAC except that
it decrypts ct′SKE using its decryption oracle D(·). Finally, we
never have the case ct′SKE ∈ {ct∗SKE,0,ct∗SKE,1 } due to the con-
dition σ /∈ Challmsg. Thus, this simulates COSMAC perfectly.

At the end of the game, when A outputs a guess ĉoin, B
outputs this as its guess. Since B perfectly simulates the
game to A , if A breaks anonymity of COSMAC, then B breaks
IND-CCA security of SKE. This completes the proof.

C.2.3 Proof of Lem. C.7

Lemma C.7. COSMAC is anonymous blocklistable assuming
PRF is pseudorandom and MAC is sEUF-CMA secure.

Proof. We first use the pseudorandomness of the PRF to mod-
ify the security game so that kMAC, kMAC, and kSKE are sam-
pled independently. We show that an adversary A that breaks
anonymous blocklisting of this modified security game can
be used to construct an adversary B that breaks sEUF-CMA
security of the MAC.
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Concretely, B samples everything as in the anonymous
blocklistable security game except for implicitly setting
skSv = kMAC as the MAC key used by the sEUF-CMA se-
curity game. It then proceeds as follows. When A queries
OSend and OUpdSend, B runs COSMAC except that it queries the
MAC oracle TG(·) on ctSKE, rather than generating the MAC
tag on its own. This perfectly simulates the view to A since
MAC is perfectly correct.

When A queries OGroupReceive and OGroupUpdReceive, it
queries its MAC oracle on ctSKE attached to A’s query. If
the returned MAC tag is identical to the MAC tag ΣMAC

attached to A’s query, it completes COSMAC. Since MAC is
deterministic, this perfectly simulates the view to A . (Note
that we can rely on sEUF-CMA security instead if we assume
a randomized MAC). Here, without loss of generality, we
can assume ctSKE was never queried to the MAC oracle by
B . Otherwise, A can use the pair (ctSKE,ΣMAC) to win the
anonymous blocklisting security game.

Finally, when A outputs a forgery (ΣG,m) or (Σ̂G, ĉtG), it
parses the authentication token as (ct∗SKE,Σ

∗
MAC) and submits

it as its forgery. Due to the winning condition of the security
game, the tuple (ct∗SKE,Σ

∗
MAC) was never output by OSend or

OUpdSend. Moreover, as discussed above, we can assume this
tuple was never queried to OGroupReceive or OGroupUpdReceive.
This implies that B never queried to its MAC oracle. Thus
the tuple (ct∗SKE,Σ

∗
MAC) forms a valid forgery against the

sEUF-CMA security game as desired. This completes the
proof.

D More Details on QUASAR

In this section, we provide the omitted details from Sec. 5.1.

D.1 Formal Description of QUASAR
We provide the formal description of QUASAR in Fig. 9.

D.2 Security Proof of QUASAR
The following establishes the correctness and security of
QUASAR.

Theorem D.1. The GAM protocol QUASAR in Fig. 9 is signing
correct, global state-update correct, non-colluding unforge-
able, anonymous, anonymous blocklistable, and tracing sound
assuming OWF is one-way,PRF and PRP are pseudorandom,
MAC is sEUF-CMA secure, and KEM is IND-CCA secure.

Proof. Correctness of signing follows from the construction.
In the following, we prove QUASAR is global state-update
correct, non-colluding unforgeable, anonymous, anonymous
blocklistable, and tracing sound in Lems. D.2 to D.6, respec-
tively. Proving these lemmas completes the proof of the theo-
rem.

D.2.1 Proof of Lem. D.2

Lemma D.2. QUASAR is global state-update correct.

Proof. Assume user u ∈ G used up all of its tokens in epoch,
i.e., ΣG = ⊥. After each user (including u) run UpdSend;
the server runs UpdVerify on all group update authentica-
tion tokens; and the users run UpdReceive on all user update
authentication tokens, each user v’s SendSEEDv[epoch+1]
will be updated and hence the epoch in their states will be
incremented by one and the counter ctr will be refreshed to
one. Therefore, every user (including u) will be able to run
Send after ever users update. This shows global state-update
correctness.

D.2.2 Proof of Lem. D.3

Lemma D.3. QUASAR is non-colluding unforgeable assuming
OWF is one-way, PRF is pseudorandom, MAC is sEUF-CMA
secure, and KEM is IND-CCA secure.

Proof. We first focus on the case the adversary A out-
puts (label,obj) = (msg,(v,σ,m)) for v ∈ H ; the
other case when label = upd is proven identically.
Since it is a valid adversary, the authentication token
σ is valid and traces back to some honest user u∗ ∈ H .
That is, σ is the form (epoch∗, ĩdsend,x

(t)
u∗→v,ΣMAC)

where x(t)u∗→v = PRF(seedu∗→v,epoch
∗∥t∥v), (seedu∗→v, t)

= ReceiveSEEDv[epoch
∗][u∗], and MAC.Verify(kMAC,

(ĩdsend,x
(t)
u∗→v,m),ΣMAC) = ⊤. We also have (u∗,∗,m) /∈

Lmsg.
Recall there are two cases we must consider for non-

colluding unforgeability: C ̸= /0 (i.e., the server is honest and
A has access to O⋆) and C = /0 (i.e., the server is malicious
and A has access to O). Below, our goal is to argue that no
A can guess x in the first case and no A can create ΣMAC in
the second case. Towards this goal, we first invoke IND-CCA
security of the KEM to argue that seedu∗→v for u∗,v ∈ H is
distributed uniformly random over {0,1}κ from the view of
A .

Game 1: This is the real non-colluding unforgeability game.

Game 2: In this game, when A invokes OUpdSend(v)
on epoch∗ − 1, it stores a random seedu∗→v in
ReceiveSEEDv[epoch

∗][u∗]. Note that in the pre-
vious game, it generated a user update informa-
tion (seedu∗→v,ctu∗)←$KEM.Enc(eku∗) and stored
seedu∗→v in ReceiveSEEDv[epoch

∗][u∗]. Moreover, in
this game, when user u∗ is invoked on UpdReceive with
user update information ctu∗ , it simply uses seedu∗→v
rather than decrypting it by KEM.Dec(dku∗ ,ctu∗). Oth-
erwise, the game proceeds identically to the previous
game.
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Init(1κ,G)

1 : gsk←${0,1}κ // Group secret key

2 : kMAC← PRF(gsk,0) // MAC key for group

3 : K← PRF(gsk,1) // PRF key for group

4 : // Prepare empty list and public key for users

5 : foreach u ∈ G do
6 : SendSEEDu[∗],ReceiveSEEDu[∗] :=⊥
7 : (eku,dku)← KEM.KeyGen(1κ)

8 : EK← (u,eku)u∈G // EK[u] = eku

9 : epoch := 0

10 : kepoch← PRF(K,epoch) // Permutation keys for tokens

11 : foreach u ∈ G do
12 : (ReceiveSEEDu,Yu,(ctv)v∈G)

← *gen-auth-token(G,EK,epoch,u,ReceiveSEEDu)

13 : foreach v ∈ G do
14 : (seedv→u,1)← ReceiveSEEDu[epoch][v]

15 : SendSEEDv[epoch][u]← seedv→u

16 : foreach u ∈ G do
17 : SEEDu := (SendSEEDu,ReceiveSEEDu)

18 : stu← (G,kMAC,K,EK,dku,epoch,1,SEEDu)

19 : DB[∗] :=⊥ // Prepare empty database for Sv

20 : for (u, j) ∈ G× [NT ] do
21 : j̃← PRP(kepoch, j) // Reorder public tokens and store it in DB

22 : DB[epoch][idx(u)][ j̃]← Yu[ j]

23 : pp←DB // DB[0] ∈ ({0,1}κ)N×NT

24 : return
(
pp,(stu)u∈G

)

Send(stu,m)

1 : parse (G,kMAC,K,EK,dku,epoch,ctr,SEEDu)← stu

2 : if ctr ≥ T −1 then return ⊥ // Need to update tokens

3 : ctr′← ctr+1

4 : ΣG← (epoch,*attach-auth-token(stu,msg :: m))

5 : st′u←
(
G,kMAC,K,EK,dku,epoch,ctr

′,SEEDu
)

6 : return (st′u,ΣG)

Verify(pp,ΣG,m)

1 : parse DB← pp

2 : try (pp′,(σi)i∈[N])← *verify-auth-token(pp,ΣG)

3 : return (pp′,(σi)i∈[N])

Receive(stu,σ,m)

1 : try (st′u,b,v)← *trace-sender(stu,σ)

2 : return (st′u,b,v)

UpdSend(stu)

1 : parse (G,kMAC,K,EK,dku,epoch,ctr,SEEDu)← stu

2 : // Cannot update again if others haven’t

3 : if ctr = T then return ⊥
4 : parse (SendSEEDu,ReceiveSEEDu)← SEEDu

5 : epoch′← epoch+1 // Move to new epoch

6 : kepoch′ ← PRF(K,epoch′)

7 : // Create seeds/tokens for new epoch

8 : (ReceiveSEEDu,Yu,(ctv)v∈G)

← *gen-auth-token(G,EK,epoch′,u,ReceiveSEEDu)

9 : Ỹu[∗] :=⊥ // Reorder public tokens to be uploaded to Sv

10 : for j ∈ [NT ] do
11 : j̃← PRP(kepoch, j)

12 : Ỹu[ j̃]← Yu[ j]

13 : ĉtG← (idx(u),Ỹu,(ctv)v∈G)

14 : Σ̂G← (epoch,*attach-auth-token(stu,upd :: (ctv)v∈G))

15 : SendSEEDu[epoch]←⊥ // Remove seeds from previous epoch

16 : // Update own seed/private tokens for next epoch

17 : SendSEEDu[epoch
′][u]← ReceiveSEEDu[epoch

′][u]

18 : SEEDu← (SendSEEDu,ReceiveSEEDu)

19 : // Max out counter to T but do not increment epoch yet

20 : st′u← (G,kMAC,K,EK,dku,epoch,T,SEEDu)

21 : return (st′u, Σ̂G, ĉtG)

UpdVerify(pp, Σ̂G, ĉtG)

1 : parse DB← pp

2 : try (pp′,(σ̂i)i∈[N])← *verify-auth-token(pp,upd :: (Σ̂G, ĉtG))

3 : parse
(
epoch, ĩdsend,

(
xi,ΣMAC,i

))
i∈[N]

← Σ̂G

4 : parse (idreceive,Ỹ ,(cti)i∈[N])← ĉtG

5 : req DB[epoch+1][idreceive] =⊥ // No public token for idreceive in epoch+1

6 : DB[epoch+1][idreceive]← Ỹ // Update DB for next epoch

7 : foreach i ∈ [N] do
8 : ĉti← cti

9 : return (pp′,(σ̂i, ĉti)i∈[N])

UpdReceive(stu, σ̂, ĉt)

1 : parse (G,kMAC,K,EK,dku,epoch,ctr,SEEDu)← stu

2 : parse (SendSEEDu,ReceiveSEEDu)← SEEDu

3 : try (st′u,b,v)← *trace-sender(stu, σ̂, ĉt)

4 : if v = u then return (stu,⊤,u) // SendSEEDu is already updated with seedu→u

5 : req SendSEEDu[epoch+1][v] =⊥ // v hasn’t updated yet in epoch+1

6 : seedu→v← KEM.Dec(dku, ĉt) // Seed used by u to send message to v in epoch+1

7 : SendSEEDu[epoch+1][v]← seedu→v

8 : SEEDu← (SendSEEDu,ReceiveSEEDu)

9 : if ∀w ∈ G,SendSEEDu[epoch+1][w] ̸=⊥ then
10 : // Increment epoch and refresh counter to 1 if everybody updated

11 : st′u← (G,kMAC,K,EK,dku,epoch+1,1,SEEDu)

12 : else st′u← (G,kMAC,K,EK,dku,epoch,ctr,SEEDu)

13 : return (st′u,⊤,v)

Figure 9: QUASAR: An anonymous group authenticated messaging protocol with tracing soundness. label :: obj denotes that obj
has a type label, where label is a special string used nowhere else. The helper algorithms used above are detailed in Fig. 10
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Func *gen-auth-token(G,EK,epoch,u,ReceiveSEED)

1 : req ReceiveSEED[epoch] =⊥
2 : foreach v ∈ G do
3 : (seedv→u,ctv)←$KEM.Enc(EK[v])

4 : ReceiveSEED[epoch][v]← (seedv→u,1)

5 : foreach t ∈ [T ] do
6 : // t-th private token v sends to u in epoch

7 : x(t)v→u← PRF(seedv→u,epoch∥t∥u)

8 : y(t)v→u←OWF(x(t)v→u) // Corresponding t-th public token

9 : // Arrange all public tokens in order of users G= (u1, · · · ,uN)

10 : Y ←
(

y(1)u1→u, . . . ,y
(T )
u1→u,

11 : . . . ,y(1)uN→u, . . . ,y
(T )
uN→u

)
∈ ({0,1}κ)NT

12 : return (ReceiveSEED,Y,(ctv)v∈G)

Func *attach-auth-token(stu,label :: obj)

1 : parse (G,kMAC,K,EK,dku,epoch,ctr,SEEDu)← stu

2 : parse (SendSEEDu,ReceiveSEEDu)← SEEDu

3 : kepoch← PRF(K,epoch)

4 : foreach v ∈ G do
5 : seedu→v← SendSEEDu[epoch][v]

6 : x(ctr)u→v ← PRF(seedu→v,epoch∥ctr∥v) // ctr-th private token u sends to v

7 : if label= msg then
8 : parse m← obj

9 : ΣMAC,v ←$MAC.TagGen
(
kMAC,

(
x(ctr)u→v ,m

))
10 : elseif label= obj then
11 : parse (ctv)v∈G← obj

12 : // Sign v’s ciphertext using otsk from v

13 : ΣMAC,v ←$MAC.TagGen
(
kMAC,

(
x(ctr)u→v ,ctv

))
14 : // Compute permuted index of the corresponding public token in DB

15 : idsend← ctr+(idx(u)−1) ·T
16 : ĩdsend← PRP(kepoch, idsend) // idsend, ĩdsend ∈ [NT ]

17 : return
(
ĩdsend,

(
x(ctr)u→v ,ΣMAC,v

)
v∈G

)

Func *verify-auth-token(pp,ΣG)

1 : DB← pp // Y ∈ ({0,1}κ)N×NT

2 : parse
(
epoch, ĩdsend,

(
xi,ΣMAC,i

))
i∈[N]

← ΣG

3 : foreach i ∈ [N] do

4 : if DB[epoch][i][ĩdsend] ̸=OWF(xi) then
5 : return ⊥
6 : // If check passes, set user authentication tokens and

7 : // delete column to update DB

8 : foreach i ∈ [N] do

9 : σi← (epoch, ĩdsend,xi,ΣMAC,i)

10 : DB[epoch][i][ĩdsend]←⊥
11 : pp′←DB

12 : return (pp′,(σi)i∈[N])

Func *trace-sender(stu,σ,m)

1 : parse (G,kMAC,K,EK,dku,epoch,ctr,SEEDu)← stu

2 : parse (SendSEEDu,ReceiveSEEDu)← SEEDu

3 : parse (epoch′, ĩdsend,x,ΣMAC)← σ

4 : req epoch= epoch′

5 : kepoch← PRF(K,epoch)

6 : idsend← PRP−1(kepoch, ĩdsend)

7 : i← ⌊idsend/T⌋+1 // Index of the user who sent the message

8 : t← idsend−⌊idsend/T⌋ ·T // t-th token from user in epoch

9 : v← i-th user in G // v ∈ G and idsend = t +(idx(v)−1) ·T

10 : (seedv→u,ctr)← ReceiveSEEDu[epoch][v]

11 : req ctr = t // Require that token wasn’t used yet

12 : x(t)v→u← PRF(seedv→u,epoch∥t∥u)

13 : if x(t)v→u ̸= x

14 : ∨MAC.Verify(kMAC,
(
ĩdsend,x

(ctr)
v→u ,m

)
,ΣMAC) =⊥ then

15 : return (stu,⊥,⊥)
16 : ReceiveSEEDu[epoch][v]← (seedv→u,ctr+1) // Mark t-th private token to be used

17 : SEEDu← (SendSEEDu,ReceiveSEEDu)

18 : st′u← (G,kMAC,K,EK,dku,epoch,ctr,SEEDu)

19 : return (st′u,⊤,v)

Figure 10: Helper functions used by QUASAR.
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These two games are indistinguishable assuming the
IND-CCA security of the KEM. Concretely, an adversary B
against the IND-CCA security game is given (ek∗,ct∗,seed∗)
as its challenge. It then embeds ek∗ into eku∗ and sim-
ulates the non-colluding unforgeability security game to
A . When A invokes OUpdSend(v) on epoch∗, it sets the
user update information ctu∗ as ct∗ and stores seed∗ in
ReceiveSEEDv[epoch

∗][u∗]. Moreover, when user u∗ is in-
voked on UpdReceive with user update information ct′u∗ , it
queries its decryption oracle if ct′u∗ ̸= ct∗. Otherwise, it sim-
ply sets the decapsulated value as seed∗ without running the
decapsulation algorithm. Assuming the (1−δ)-correctness,
B correctly simulates Game 1 (resp. Game 2) when the chal-
lenge bit is 1 (resp. 0) as desired.

We are now ready to invoke the pseudorandomness of the
PRF.

Game 3: In this game, when A invokes OUpdSend(v)
on epoch∗ − 1, it samples T random private tokens
for u∗: x(t)u∗→v←${0,1}κ for t ∈ [T ] (cf. line 7 of
*gen-auth-token in Fig. 10). Note that in the previ-
ous game, it generated them by using seedu∗→v and the
PRF. Moreover, in this game, when user u∗ runs Send or
UpdSend with SendSEEDu∗ [epoch][w] = seedu∗→v for
some w∈G, it uses

(
x(t)u∗→v

)
t∈[T ]

when epoch= epoch∗

rather than generating them via the PRF. Otherwise, if
epoch ̸= epoch∗, it samples T random fresh private to-
kens for this epoch and uses them. Here, note that we
do not necessarily have (w,epoch) = (u,epoch∗) since
a malicious user w can reuse the user update information
ctu∗ that v sent to u∗ at some later epoch> epoch∗.

Finally, when *trace-sender(stu,σ,m) with σ =

(epoch∗, ĩdsend,x,ΣMAC) is invoked it checks if ĩdsend
is the permuted index of user u∗’s ctr-th token (cf.
lines 7 to 9 of *trace-sender in Fig. 10), where
(ReceiveSEEDv[epoch

∗][u∗] = (seedu∗→v,ctr)). If not,
it proceeds as in Game 2. Otherwise, it checks if x =

x(ctr)u∗→v rather than using the PRF. Otherwise, the game
proceeds identically to the previous game.

Assuming the pseudorandomness of the PRF, it is clear that
Game 2 and Game 3 are indistinguishable.

We now make two case distinctions based on C ̸= /0 or not.
Let us consider the first case where the adversary is the set of
malicious sender and the server is honest. In Game 3, notice
the private tokens

(
x(t)u∗→v

)
t∈[T ]

in epoch∗ are distributed uni-

formly random over ({0,1}κ)T and shared only between the
honest users u∗ and v. Due to the one-wayness of OWF, the
corresponding public tokens

(
y(t)u∗→v = OWF(x(t)u∗→v)

)
t∈[T ]

do

not leak the private tokens in any meaningful way. Moreover,
since each private tokens are tied to epoch∗ and a counter
t ∈ [T ], x(t)u∗→v is only revealed when u∗ is invoked on the t-th

Send or UpdSend in epoch∗. As explained above, u∗ may
reveal the same private token x(t)u∗→v multiple times in epoch∗

on the t-th invocation of Send or UpdSend since a malicious
user w can set x(t)u∗→v = x(t)u∗→v by replaying the ciphertext ctu∗ .
However, as long as the adversary A cannot reuse the pri-
vate token for a different t ′ ̸= t or epoch′ ̸= epoch∗, this does
not constitute in an attack. Indeed, since we assume an hon-
est server, the private tokens sent by v for a particular pair
(epoch, t) is processed correctly, and in particular, the adver-
sary cannot reuse them in a different (epoch′, t ′) ̸= (epoch, t).
Thus, we conclude that A cannot output a private token that
hasn’t been used by the honest user u∗.

Let us consider the second case where the adversary is the
malicious server but all users are honest. The hardness almost
immediately follows from assuming sEUF-CMA security of
the MAC as the malicious server does not know the MAC key
kMAC. Concretely, if (u∗,∗,m) /∈ Lmsg, then user u∗ will have
never signed the tuple (x(t)u∗→v,m). Moreover, since x(t)u∗→v is
now sampled uniformly random over {0,1}κ, the probability
that another user w ̸= u∗ signed the tuple is negligible. There-
fore, we conclude that if an adversary outputs a MAC tag
ΣMAC for such a tuple, it breaks sEUF-CMA security. Here,
to simulate the sEUF-CMA security game, we rely on the
pseudorandomness of the PRF to sample the MAC key kMAC

directly without running PRF.
This completes the proof of the lemma.

D.2.3 Proof of Lem. D.4

Lemma D.4. QUASAR is anonymous assuming assuming PRF
and PRP are pseudorandom and KEM is IND-CCA secure.

Proof. Before we get into the proof, we make some useful
observations. Due to global state-update correctness, if u0
and u1 can both run Send, the generated global authentication
tokens Σ0

G and Σ1
G must contain the same epoch∗. Moreover,

due to A’s winning condition that all the users verify, every
user in G must have been invoked on OUpdSend at epoch∗−1
as otherwise, they will not be able to verify u0 and u1’s user
authentication token at epoch∗. With this in mind, we perform
several game hybrids, where anonymity trivially holds in the
final game. The first two game transition is almost identical
to those done in the proof of non-colluding unforgeability.

Game 1: This is the real anonymity game.

Game 2: In this game, for any u ∈ G, when A invokes
OUpdSend(u) on epoch∗−1, it stores a random seedv→u
in ReceiveSEEDu[epoch

∗][v] for all v ∈ G. Note that
in the previous game, it generated a user update in-
formation (seedv→u,ctv)←$KEM.Enc(ekv) and stored
seedv→u in ReceiveSEEDu[epoch

∗][v]. Moreover, in this
game, when user v is invoked on UpdReceive with user
update information ctv, it simply uses seedv→u rather
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than decrypting it by running KEM.Dec(dkv,ctv). Oth-
erwise, the game proceeds identically to the previous
game.

Following the same argument made to move from Game 1
to Game 2 in Lem. D.3, the two games are indistinguishable
assuming the IND-CCA security of the KEM. We next invoke
the pseudorandomness of the PRF.

Game 3: In this game, for any u ∈ G, when A invokes
OUpdSend(u) on epoch∗− 1, it samples T random pri-
vate tokens for every v ∈ G: x(t)v→u←${0,1}κ for t ∈ [T ]
(cf. line 7 of *gen-auth-token in Fig. 10). Note that in
the previous game, it generated them by using seedv→u
and the PRF. Moreover, in this game, when any user v
runs Send or UpdSend with SendSEEDv[epoch][w] =

seedv→u, it uses
(

x(t)v→u

)
t∈[T ]

when epoch = epoch∗

rather than generating them via the PRF. Otherwise,
if epoch ̸= epoch∗, it samples T random fresh private to-
kens for this epoch and uses them. Here, note that we do
not necessarily have (w,epoch) = (u,epoch∗) since the
malicious server may reuse the user update information
ctv that u sent to v by modifying user w’s user update
information — this is due to group update authentica-
tion tokens not being cryptographically tied to the group
update information.

Finally, when *trace-sender(stu,σ,m) with
σ = (epoch∗, ĩdsend,x,ΣMAC) is invoked (as part
of Receive or UpdReceive) it checks if ĩdsend is
the permuted index of user v’s ctr-th token (cf.
lines 7 to 9 of *trace-sender in Fig. 10), where
(ReceiveSEEDu[epoch

∗][v] = (seedv→u,ctr)). If not,
it proceeds as in Game 2. Otherwise, it checks if
x = x(ctr)v→u rather than using the PRF. Otherwise, the
game proceeds identically to the previous game.

Assuming the pseudorandomness of the PRF, it is clear that
Game 2 and Game 3 are indistinguishable. At this point, the
private tokens

(
x(t)v→u

)
(t,v,u)∈[T ]×G2

generated via OUpdSend in

epoch∗ are independently distributed. We next argue that the
challenge users ub ∈ G, b ∈ {0,1} must also receive these
private tokens

(
x(t)ub→v

)
(t,v)∈[T ]×G

. Namely, we consider the

following game.

Game 4: In this game, the game aborts if there exists a user
v ∈ G such that the following holds for either b ∈ {0,1}:

ReceiveSEEDv[epoch
∗][ub] ̸= SendSEEDub [epoch

∗][v].
(2)

Put differently, the game aborts if the user update infor-
mation ctv from v to ub on epoch∗ was modified.

We argue that this modification has no impact on A’s ad-
vantage. Assume if the adversary A won under this condition.
Due to the winning condition of the anonymity game, the
group authentication token generated by u0 and u1 must be
accepted by user v. As we established in Game 3, the private
tokens

(
x(t)ub→v

)
(t,b)∈[T ]×{0,1}

stored in v’s state at epoch∗ are

distributed uniformly random over {0,1}κ from the view of
A . Hence, if Equation (2) holds, then the probability that v ac-
cepts ub’s private token is at most 1/2κ. Thus, the advantage
of A cannot change with all but a negligible probability.

At this point, we have that the private tokens included in
the group authentication tokens of u0 and u1 are uniformly
distributed. We finally invoke the pseudorandomness of the
PRF one last time along with that of the PRP.

Game 5: In this game, the permutation key kepoch at each
epoch is no longer sampled. Instead, it samples a uni-
formly random permutation over [NT ] at each epoch
and uses that instead. Otherwise, it is identical to the
previous game.

Since the group secret key gsk is hidden to the adversary, we
can first invoke the pseudorandomness of the PRF to argue
that the permutation key at each epoch is uniform random and
independent. Then, we invoke the pseudorandomness of the
PRP to replace the PRP by a truly random permutation.

By Game 5, ĩdseed,0 and ĩdseed,1 included in the group au-
thentication tokens Σ0

G and Σ1
G, respectively, no longer leak

the identity of u0 and u1. Thus combining everything, we
conclude that Σ0

G and Σ1
G no longer leak the identity of u0 and

u1. This completes the proof of the lemma.

D.2.4 Proof of Lem. D.5

Lemma D.5. QUASAR is anonymous blocklistable assuming
OWF is one-way, PRF is pseudorandom, and KEM is IND-
CCA secure.

Proof. The proof follows almost directly from the proof of
non-colluding unforgeability (cf. Lem. D.3). In fact, the proof
is much simpler since unlike in the non-colluding unforge-
ability game, we can assume without of generality that the
adversary A never queries OReceive or OUpdReceive such that
Verify or UpdVerify verify, respectively. This is because such
a query can be used to directly win the anonymous block-
listable game since the private tokens can only be used once.
(Concretely, we only require IND-CPA security of the KEM).
Then, following an almost exact proof, we can argue that the
only information leakage of the private tokens corresponding
to the public tokens stored inside DB maintained by the server
are only from the public parameter pp= DB. Hence, under
the one-wayness of OWF, no A can output a group (update)
authentication token for which the server verifies.
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D.2.5 Proof of Lem. D.6

Lemma D.6. QUASAR is (unconditionally) tracing sound.

Proof. We first focus on the case the adversary A
outputs (label,obj) = (msg,(ΣG,m)). The game then
runs (pp′,(σi)i∈[N]) ← Verify(pp,ΣG,m). Since pp′ ̸= ⊥,

ΣG =
(
epoch, ĩdsend,(xi,ΣMAC,i)

)
i∈[N]

for some ĩdsend ∈

[N], ΣMAC,i is a valid MAC tag under the message tuple
(ĩdsend,xi,m), and DB[epoch][i][ĩdsend] = OWF(xi) for all
i ∈ [N], where DB is the database stored in the public
parameter pp. Then, a user authentication token for user
u ∈ G∩H is set as σu = (epoch, ĩdsend,xidx(u),ΣMAC,idx(u)).
Noticing that each honest users maintain the same group
secret key gsk and σu contains the same (epoch, ĩdsend), if
(st′u,bu,vu)← Receive(stu,σu,m) and bu =⊤, then vu must
be the same user for all honest user (cf. lines 7 to 9 of
*trace-sender in Fig. 10). Finally, the case when A outputs
(label,obj) = (upd,(Σ̂G, ĉtG)) is proven identically. This
completes the proof of the lemma.

D.3 Alternatives to Global State Updates
Lastly, we discuss below some ideas to mitigate the shortcom-
ing of global state updates discussed in Sec. 5.1.

Unbalancing the Number of Tokens. Depending on the
group, some users may have a higher frequency of commu-
nication than others. In such scenarios, if we allocate all the
users the same number of tokens T , some may take signifi-
cantly longer to exhaust their budget than others. As a result,
those who have already consumed their tokens may face pro-
longed waiting periods before everyone updates their state.
QUASAR can be easily modified to a protocol where each

user is allocated different number of tokens (Tu)u∈G. In fact,
the users can adaptively modify the number of tokens per
epoch T epoch

u , where one epoch corresponds to one global
state updates. This is possible because, in QUASAR, an unlim-
ited number of tokens can be minted from the seed using
the PRF. As before, the tokens are then shuffled by using a
PRP, whose keys are updated each epoch. While the server
can observe the number of total tokens ∑u∈G T epoch

u fluctuat-
ing between epochs, due to anonymity, it cannot deduce how
many tokens are allocated to each user. From the server’s
perspective, it could be a group where everybody is actively
talking (i.e., Tu ≈ Tv for any u,v ∈ G) or a group where only
one user is allocated most of the tokens (i.e., Tu≫ Tv for any
v ∈ G\{u}).
Relaxing the Global State Updates Restriction. While un-
balancing the number of tokens, explained in App. D.3, miti-
gates one aspect of the shortcoming of global state updates,
it does not solve the leading issue: once a user exhausts its
tokens, it must wait till all the users update to be able to send
messages again. An approach to address this is to let the users

who exhausted its tokens in epoch∗−1 to send messages in
epoch∗ with the limited updates it received. More specifically,
assuming a subset of the group G⊂ G performed an update
for epoch∗, any u ∈ G can start sending a message using the
user authentication tokens received from all the users in v∈G.
Visually, the rows in Fig. 7 corresponding to users in G are
filled with tokens while the other rows remain empty. In the
extreme case when u is the only user that performed an up-
date for epoch∗, then G = {u}. It is worth noting that this
approach is possible with QUASAR but not something that any
GAM protocol can do.

The upside of this approach is that users can locally update
their state via UpdSend and can start sending messages again
without waiting for all the other users to perform an update.
Any user v ∈ G\G can at any point perform an update for
epoch∗ to join G. Moreover, users v ∈ G can trace back any
user authentication token exchanged in epoch∗ to a specific
user in G, thus achieving a limited scope of tracing soundness.

The downside of this approach is that the anonymity set
of the sender is limited to the size of the subgroup G. This is
because only the users in G are capable of sending a message
with a token from epoch∗. In the aforementioned extreme
case, when G= {u}, then u is the only user with tokens from
epoch∗. As a result, while the server does not learn who u is,
it can link together any messages u sent in epoch∗. Another
downside is that there are no tracing soundness guarantees
for the users w ∈ G outside the subgroup G as they have not
minted any private tokens for epoch∗. Tracing soundness is
restored only once w updates.

Combining QUASAR with COSMAC+. When |G| ≪ |G|, we
have seen that the anonymity for the users in G and the trac-
ing soundness of G\G is weakened. In this case, it may be
more appropriate to use COSMAC+ instead of QUASAR, given
that COSMAC+ is anonymous, more efficient but lacks trac-
ing soundness. To balance these trade-offs, we propose a
hybrid protocol that primarily employs QUASAR, but switches
to COSMAC+ when a predetermined number of users have not
yet performed an update for the next epoch∗. This approach
combines the benefits of both QUASAR and COSMAC+.

E More Details on STARS

In this section, we provide the omitted details from Sec. 5.2.

E.1 Formal Description of STARS

We provide the formal description of STARS. The main differ-
ence between QUASAR is that STARS replaces one-time tokens
and MAC tags with one-time signatures (OTS). Specifically,
the exchanged messages are signed by the OTS, effectively
making the GAM protocol standard unforgeable. The differ-
ence is highlighted with a box in Fig. 11.
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Init(1κ,G)

1 : gsk←${0,1}κ // Group secret key

2 : // Prepare empty list and public key for users

3 : foreach u ∈ G do
4 : SendSEEDu[∗],ReceiveSEEDu[∗] :=⊥
5 : (eku,dku)← KEM.KeyGen(1κ)

6 : EK← (u,eku)u∈G // EK[u] = eku

7 : epoch := 0

8 : kepoch← PRF(gsk,epoch) // Permutation keys for OTS otvks

9 : foreach u ∈ G do
10 : (ReceiveSEEDu,Yu,(ctv)v∈G)

← *gen-auth-token(G,EK,epoch,u,ReceiveSEEDu)

11 : foreach v ∈ G do
12 : (seedv→u,1)← ReceiveSEEDu[epoch][v]

13 : SendSEEDv[epoch][u]← seedv→u

14 : foreach u ∈ G do
15 : SEEDu := (SendSEEDu,ReceiveSEEDu)

16 : stu← (G,gsk,EK,dku,epoch,1,SEEDu)

17 : DB[∗] :=⊥ // Prepare empty database for Sv

18 : for (u, j) ∈ G× [NT ] do
19 : j̃← PRP(kepoch, j) // Reorder OTS otvks and store it in DB

20 : DB[epoch][idx(u)][ j̃]← Yu[ j]

21 : pp←DB // DB[0] ∈ ({0,1}κ)N×NT

22 : return
(
pp,(stu)u∈G

)

Send(stu,m)

1 : parse (G,gsk,EK,dku,epoch,ctr,SEEDu)← stu

2 : if ctr ≥ T −1 then return ⊥ // Need to update tokens

3 : ctr′← ctr+1

4 : ΣG← (epoch,*attach-auth-token(stu,msg :: m))

5 : st′u←
(
G,gsk,EK,dku,epoch,ctr

′,SEEDu
)

6 : return (st′u,ΣG)

Verify(pp,ΣG,m)

1 : parse DB← pp

2 : try (pp′,(σi)i∈[N])

← *verify-auth-token(pp, msg :: (ΣG,m) )

3 : return (pp′,(σi)i∈[N])

Receive(stu,σ,m)

1 : try (st′u,b,v)← *trace-sender(stu,σ,m)

2 : return (st′u,b,v)

UpdSend(stu)

1 : parse (G,gsk,EK,dku,epoch,ctr,SEEDu)← stu

2 : // Cannot update again if others haven’t

3 : if ctr = T then return ⊥
4 : parse (SendSEEDu,ReceiveSEEDu)← SEEDu

5 : epoch′← epoch+1

6 : kepoch′ ← PRF(gsk,epoch′)

7 : // Create seeds/OTS keys for new epoch

8 : (ReceiveSEEDu,Yu,(ctv)v∈G)

← *gen-auth-token(G,EK,epoch′,u,ReceiveSEEDu)

9 : Ỹu[∗] :=⊥ // Reorder OTS otvks to be uploaded to Sv

10 : for j ∈ [NT ] do
11 : j̃← PRP(kepoch, j)

12 : Ỹu[ j̃]← Yu[ j]

13 : ĉtG← (idx(u),Ỹu,(ctv)v∈G)

14 : Σ̂G← (epoch,*attach-auth-token(stu,upd :: (ctv)v∈G))

15 : SendSEEDu[epoch]←⊥ // Remove seeds from previous epoch

16 : // Update own seed/OTS otsks for next epoch

17 : SendSEEDu[epoch
′][u]← ReceiveSEEDu[epoch

′][u]

18 : SEEDu← (SendSEEDu,ReceiveSEEDu)

19 : // Max out counter to T but do not increment epoch yet

20 : st′u← (G,gsk,EK,dku,epoch,T,SEEDu)

21 : return (st′u, Σ̂G, ĉtG)

UpdVerify(pp, Σ̂G, ĉtG)

1 : parse DB← pp

2 : try (pp′,(σ̂i)i∈[N])← *verify-auth-token(pp, upd :: (Σ̂G, ĉtG) )

3 : parse
(
epoch, ĩdsend,(x1, . . . ,xN)

)
← Σ̂G

4 : parse (idreceive,Ỹ ,(cti)i∈[N])← ĉtG

5 : req DB[epoch+1][idreceive] =⊥ // No OTS otvks for idreceive in epoch+1

6 : DB[epoch+1][idreceive]← Ỹ // Update DB for next epoch

7 : foreach i ∈ [N] do
8 : ĉti← cti

9 : return (pp′,(σ̂i, ĉti)i∈[N])

UpdReceive(stu, σ̂, ĉt)

1 : parse (G,gsk,EK,dku,epoch,ctr,SEEDu)← stu

2 : parse (SendSEEDu,ReceiveSEEDu)← SEEDu

3 : try (stu,b,v)← *trace-sender(stu, σ̂, ĉt)

4 : if v = u then return (stu,⊤,u) // SendSEEDu is already updated with seedu→u

5 : req SendSEEDu[epoch+1][v] =⊥ // v hasn’t updated yet in epoch+1

6 : seedu→v← KEM.Dec(dku, ĉt) // Seed used by u to send message to v in epoch+1

7 : SendSEEDu[epoch+1][v]← seedu→v

8 : SEEDu← (SendSEEDu,ReceiveSEEDu)

9 : if ∀w ∈ G,SendSEEDu[epoch+1][w] ̸=⊥ then
10 : // Increment epoch and refresh counter to 1 if everybody updated

11 : st′u← (G,gsk,EK,dku,epoch+1,1,SEEDu)

12 : else st′u← (G,gsk,EK,dku,epoch,ctr,SEEDu)

13 : return (st′u,⊤,v)

Figure 11: STARS: An anonymous group authenticated messaging protocol with standard unforgeability. The main differences
between QUASAR is highlighted by a box. label :: obj denotes that obj has a type label, where label is a special string used
nowhere else. The helper algorithms used above are detailed in Fig. 12.
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Func *gen-auth-token(G,EK,epoch,u,ReceiveSEED)

1 : req ReceiveSEED[epoch] =⊥
2 : foreach v ∈ G do
3 : (seedv→u,ctv)←$KEM.Enc(EK[v])

4 : ReceiveSEED[epoch][v]← (seedv→u,1)

5 : foreach t ∈ [T ] do
6 : // t-th OTS key v uses to send a message to u in epoch

7 : r
(t)
v→u← PRF(seedv→u,epoch∥t∥u)

8 : (otvk,otsk)←OTS.KeyGen(1κ; r(t)v→u)

9 : y(t)v→u := otvk

10 : // Arrange all OTS otvks in order of users G= (u1, · · · ,uN)

11 : Y ←
(

y(1)u1→u, . . . ,y
(T )
u1→u,

12 : . . . ,y(1)uN→u, . . . ,y
(T )
uN→u

)
∈ ({0,1}κ)NT

13 : return (ReceiveSEED,Y,(ctv)v∈G)

Func *attach-auth-token(stu,label :: obj)

1 : parse (G,gsk,EK,dku,epoch,ctr,SEEDu)← stu

2 : parse (SendSEEDu,ReceiveSEEDu)← SEEDu

3 : foreach v ∈ G do
4 : seedu→v← SendSEEDu[epoch][v]

5 : // Derive ctr-th OTS key u uses to send a message to v in epoch

6 : r
(ctr)
u→v ← PRF(seedu→v,epoch∥ctr∥v)

7 : (otvk,otsk)←OTS.KeyGen(1κ; r(ctr)u→v )

8 : if label= msg then
9 : parse m← obj

10 : x(ctr)u→v := sig←OTS.Sign(otsk,m)

11 : elseif label= obj then
12 : parse (ctv)v∈G← obj

13 : // Sign v’s ciphertext using otsk from v

14 : x(ctr)u→v := sig←OTS.Sign(otsk,ctv)

15 : kepoch← PRF(gsk,epoch)

16 : // Compute permuted index of the corresponding OTS otvk in DB

17 : idsend← ctr+(idx(u)−1) ·T
18 : ĩdsend← PRP(kepoch, idsend) // idsend, ĩdsend ∈ [NT ]

19 : return
(
ĩdsend,

(
x(ctr)u→v

)
v∈G

)

Func *verify-auth-token(pp, label :: obj )

1 : DB← pp

2 : Y←DB[epoch] // Y ∈ ({0,1}κ)N×NT

3 : if label= msg then

4 : parse
((

epoch, ĩdsend,(x1, . . . ,xN)
)
,m

)
← obj

5 : foreach i ∈ [N] do

6 : if OTS.Verify(Y[i][ĩdsend],m,xi) =⊥ then

7 : return ⊥
8 : elseif label= upd then

9 : parse (Σ̂G, ĉtG)← obj

10 : parse
(
epoch, ĩdsend,(x1, . . . ,xN)

)
← Σ̂G

11 : parse
(
idreceive,Ỹ ,(cti)i∈G

)
← ĉtG

12 : foreach i ∈ [N] do

13 : if OTS.Verify(Y[i][ĩdsend],cti,xi) =⊥ then

14 : return ⊥
15 : // If check passes, set user authentication tokens and

16 : // delete column from Y

17 : foreach i ∈ [N] do

18 : σi← (epoch, ĩdsend,xi)

19 : Y[i][ĩdsend]←⊥
20 : DB[epoch]← Y // Update DB

21 : pp′←DB

22 : return (pp′,(σi)i∈[N])

Func *trace-sender(stu,σ,m)

1 : parse (G,gsk,EK,dku,epoch,ctr,SEEDu)← stu

2 : parse (SendSEEDu,ReceiveSEEDu)← SEEDu

3 : parse (epoch′, ĩdsend,x)← σ

4 : req epoch= epoch′

5 : kepoch← PRF(gsk,epoch)

6 : idsend← PRP−1(kepoch, ĩdsend)

7 : i← ⌊idsend/T⌋+1 // Index of the user who sent the message

8 : t← idsend−⌊idsend/T⌋ ·T // t-th OTS otvk from user in epoch

9 : v← i-th user in G // v ∈ G and idsend = t +(idx(v)−1) ·T

10 : (seedv→u,ctr)← ReceiveSEEDu[epoch][v]

11 : req ctr = t // Require that token wasn’t used yet

12 : r
(ctr)
v→u ← PRF(seedu→v,epoch∥ctr∥u)

13 : (otvk,otsk)←OTS.KeyGen(1κ; r(ctr)v→u )

14 : if OTS.Verify(otvk,m,x) =⊥ then return (stu,⊥,⊥)

15 : // Mark t-th OTS otsk to be used

16 : ReceiveSEEDu[epoch][v]← (seedv→u,ctr+1)

17 : SEEDu← (SendSEEDu,ReceiveSEEDu)

18 : st′u← (G,gsk,EK,dku,epoch,ctr,SEEDu)

19 : return (st′u,⊤,v)

Figure 12: Helper functions used by STARS. The main differences between QUASAR is highlighted by a box.
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E.2 Security Proof of STARS
We prove that STARS is correct and secure. The proof follows
almost identically to the proof given for QUASAR.

Theorem E.1. The GAM protocol STARS in Fig. 11 is signing
correct, global state-update correct, standard unforgeable,
anonymous, anonymous blocklistable, and tracing sound as-
suming PRF and PRP are pseudorandom, OTS is EUF-CMA,
KEM is IND-CCA secure.

Proof. Correctness of signing follows from construction.
Moreover, we omit the proof of global state-update correct-
ness and tracing soundness as they follow almost identically
to the proof given for QUASAR (cf. Apps. D.2.1 and D.2.5).
In the following, we prove STARS is unforgeable, anony-
mous, and anonymous blocklistable in Lems. E.2 to E.4, re-
spectively. Proving these lemmas completes the proof of the
theorem.

E.2.1 Proof of Lem. E.2

Lemma E.2. STARS is unforgeable assuming PRF is pseudo-
random, OTS is EUF-CMA, and KEM is IND-CCA secure.

Proof. The proof is identical up to Game 2 of the non-
colluding unforgeability proof given for QUASAR (cf.
App. D.2.2). We pick up the proof from Game 3. Below, recall
we focus on two honest users u and v (that may possibly be
u = v) and assume the adversary A∗ forges a group (update)
authentication on epoch∗.

Game 3: In this game, when A invokes OUpdSend(u) on
epoch∗−1, it samples T fresh randomness for each w ∈
G used to run algorithm OTS.KeyGen: r(t)w→u←${0,1}∗
for t ∈ [T ] (cf. line 7 of *gen-auth-token in Fig. 10).
Note that in the previous game, it generated them
by running PRF(seedw→u,epoch

∗∥t∥u). Moreover, in
this game, when user v runs Send or UpdSend with
SendSEEDv[epoch][w] = seedv→u, it uses

(
r(t)w→u

)
t∈[T ]

when epoch= epoch∗ rather than generating them via
the PRF. Otherwise, if epoch ̸= epoch∗, it samples T
random fresh randomness for the pair (w,epoch) and
uses them. Here, note that we do not necessarily have
(w,epoch) = (u,epoch∗) since a malicious user w can
reuse the user update information ctv that u sent to v at
some later epoch.

Finally, when *trace-sender(stu,σ) with
σ = (epoch∗, ĩdsend,x,m) is invoked (as part of
Receive or UpdReceive) it checks if ĩdsend is
the permuted index of user v’s ctr-th token (cf.
lines 7 to 9 of *trace-sender in Fig. 10), where
(ReceiveSEEDu[epoch

∗][v] = (seedv→u,ctr)). If not, it
proceeds as in Game 2. Otherwise, it generates the OTS

keys (otvk,otsk) using randomness r(ctr)v→u and check if

the signature message pair (x = sig,m) verifies under
otvk. Otherwise, the game proceeds identically to the
previous game.

Assuming the pseudoranomness of the PRF, it is clear that
Game 2 and Game 3 are indistinguishable.

We are now ready to invoke the EUF-CMA security of
OTS to show standard unforgeability. In Game 3, notice the
OTS signing keys

(
otsk

(t)
v→u := x(t)v→u

)
t∈[T ]

in epoch∗ are dis-

tributed uniformly random over the signing key space and
shared only between the honest users u and v. The only infor-
mation on these signing keys are provided to the adversary
A through the corresponding public OTS verification keys(
otvk

(t)
v→u := y(t)v→u

)
t∈[T ]

. Moreover, since each OTS signing

keys are generated by fresh randomness r
(t)
v→u, otsk(t)v→u is

only used when v is invoked on the t-th Send or UpdSend
in epoch∗ to prepare a signature for u. Note that this is why
we modified QUASAR to included the sender of seedv→u to
derive the randomness r(t)v→u (cf. line 7 of *gen-auth-token
in Fig. 10). Without this modification, a malicious user w that
sets SendSEEDv[epoch

∗][w] = seedv→u can trick v to sign
multiple times using otsk since r

(t)
v→u will only depend on

epoch∗ and counter t.
Due to the winning condition, if A outputs a valid forgery

that traces to v in epoch∗, it must be on a message that v
hasn’t signed yet. This is exactly the winning condition of
the EUF-CMA security game of OTS. Moreover, an adversary
against the EUF-CMA security can simulate Game 3 to A by
embedding its challenge into one of its otsk

(t)
v→u since each

OTS signing key is only used once. Finally, the case when A
outputs (label,obj) = (upd,(Σ̂G, ĉtG)) is proven identically.
This completes the proof of the lemma.

E.2.2 Proof of Lem. E.3

Lemma E.3. STARS is anonymous assuming assuming PRF
and PRP are pseudorandom, OTS is EUF-CMA, and KEM
is IND-CCA secure.

Proof. As the proof is a straightforward modification of the
anonymity proof of QUASAR (cf. App. D.2.3), we only sketch
the proof. The only modification is how we argue indistin-
guishability of Game 3 and Game 4 in Lem. D.4. In QUASAR,
we used the entropy of the private token to argue that these
two games are statistically indistinguishable. In STARS, we
use the EUF-CMA security of the OTS. In particular, if the
challenge users u0 or u1 generate a user authentication token
for which user v accepts under condition Equation (2), then
that token can be used to win the EUF-CMA security game.
This completes the proof of the lemma.
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E.2.3 Proof of Lem. E.4

Lemma E.4. STARS is anonymous blocklistable assuming
PRF is pseudorandom, OTS is EUF-CMA, and KEM is IND-
CCA secure.

Proof. The proof follows almost directly from the proof of un-
forgeability (cf. Lem. E.2), combined with the discussion pro-
vided in the proof of anonymous blocklistability of QUASAR
(cf. App. D.2.4).

Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . 1
1.2 Our Contributions . . . . . . . . . . . . . . . 2

2 Setting: Authentication in SGM 3
2.1 Secure Group Messaging and Our Goal . . . 3
2.2 Environment . . . . . . . . . . . . . . . . . . 4
2.3 Threat Model for Authentication . . . . . . . 4
2.4 Modeling Choices and Simplifications . . . . 5

3 Group Authenticated Messaging Protocol 6
3.1 Definition . . . . . . . . . . . . . . . . . . . 6
3.2 Correctness . . . . . . . . . . . . . . . . . . 7
3.3 Security . . . . . . . . . . . . . . . . . . . . 7

4 COSMOS: Authentication with One-Time Tokens 10
4.1 Construction of COSMOS . . . . . . . . . . . . 10
4.2 COSMAC: An Anonymous COSMOS with

Anonymous Blocklisting . . . . . . . . . . . 10
4.3 Optimizations of COSMOS and COSMAC . . . . 13

5 Anonymous and Tracing Sound GAMs 13
5.1 QUASAR: Anonymous Authentication with To-

kens . . . . . . . . . . . . . . . . . . . . . . 13
5.2 STARS and GEMSTARS . . . . . . . . . . . . . 16

6 Running GAM Protocols on MLS 17
6.1 Authentication in a Static Group . . . . . . . 17
6.2 Authentication in a Dynamic Group . . . . . 18

7 Bandwidth Efficiency Analysis 18
7.1 Instantiation . . . . . . . . . . . . . . . . . . 18
7.2 Efficiency . . . . . . . . . . . . . . . . . . . 19

8 Open Problems and Future Work 21

A Other Related Work 26

B Preliminary: Cryptographic Tools 27

C Security Proofs for COSMOS and COSMAC 29
C.1 Security Proof of COSMOS . . . . . . . . . . . 29
C.2 Security Proof of COSMAC . . . . . . . . . . . 30

D More Details on QUASAR 31
D.1 Formal Description of QUASAR . . . . . . . . 31
D.2 Security Proof of QUASAR . . . . . . . . . . . 31
D.3 Alternatives to Global State Updates . . . . . 36

E More Details on STARS 36
E.1 Formal Description of STARS . . . . . . . . . 36
E.2 Security Proof of STARS . . . . . . . . . . . 39

40


	Introduction
	Background
	Our Contributions

	Setting: Authentication in SGM
	Secure Group Messaging and Our Goal
	Environment
	Entities
	Network Model

	Threat Model for Authentication
	Modeling Choices and Simplifications

	Group Authenticated Messaging Protocol
	Definition
	Correctness
	Security

	COSMOS: Authentication with One-Time Tokens
	Construction of COSMOS
	COSMAC: An Anonymous COSMOS with Anonymous Blocklisting
	Optimizations of COSMOS and COSMAC

	Anonymous and Tracing Sound GAMs
	QUASAR: Anonymous Authentication with Tokens
	STARS and GEMSTARS

	Running GAM Protocols on MLS
	Authentication in a Static Group
	Authentication in a Dynamic Group

	Bandwidth Efficiency Analysis
	Instantiation
	Efficiency

	Open Problems and Future Work
	Other Related Work
	Preliminary: Cryptographic Tools
	Security Proofs for COSMOS and COSMAC
	Security Proof of COSMOS
	Proof of lem:cosmosunforgeable
	Proof of lem:cosmosusertraceable
	Security of the Optimizations

	Security Proof of COSMAC
	Proof of lem:cosmacunforgeable
	Proof of lem:cosmacanonymous
	Proof of lem:cosmacanonymousblocklistable


	More Details on QUASAR
	Formal Description of QUASAR
	Security Proof of QUASAR
	Proof of lem:quasarcorrect
	Proof of lem:quasarunforgeable
	Proof of lem:quasaranonymous
	Proof of lem:quasaranonymousblocklistable
	Proof of lem:quasarusertraceable

	Alternatives to Global State Updates

	More Details on STARS
	Formal Description of STARS
	Security Proof of STARS
	Proof of lem:starsunforgeable
	Proof of lem:starsanonymous
	Proof of lem:starsanonymousblocklistable



