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Abstract

We explore advanced security notions for threshold signature schemes, focusing on Beyond
UnForgeability Features (BUFF), introduced by Cremers et al. (S&P’21) in the non-threshold
setting. The BUFF properties protect against attacks based on maliciously chosen keys, e.g.,
expropriating a message-signature pair under a new public key (called exclusive ownership). We
first formalize these notions in the threshold setting and examine their relationships. Notably,
unlike regular signature schemes, the hierarchy of variants of exclusive ownership notions only
holds for threshold schemes if they are also robust. We then present a generic compiler that
transforms any threshold signature scheme to satisfy exclusive ownership, and message-bound
signature properties with minimal overhead. Furthermore, we modify the threshold BLS signa-
ture scheme to achieve these additional properties without increasing the signature size. Lastly,
we identify specific structures in threshold signature schemes where BUFF properties can be
naturally extended from the underlying standard signature scheme, and we analyze and prove
the security properties in some of the existing threshold schemes.

Keywords Threshold signatures, Beyond UnForgeability Features, exclude ownership, message-
bound signatures

1 Introduction

Digital signatures are an important cryptographic primitive to guarantee message integrity and
authenticity of origin. They allow a signer to sign a message m using her secret key sk and generate
a signature σ, while everyone having the corresponding public key pk can verify the validity of
the signature. The main security requirement for a digital signature is the resistance to existential
unforgeability under chosen-message attacks (UF-CMA) [24], which implies that an adversary who
gets access to several message-signature pairs cannot generate a new valid signature-message pair.

Although the UF-CMA security notion was until recently used as an omnipotent security guar-
antee for digital signatures, it has been shown that it only covers digital security guarantees under
the assumption that the signer’s secret key is honestly generated, ignoring attacks in which an
adversary can choose related keys maliciously. Early on, such maliciously chosen keys have been
identified as a threat to key exchange protocols [5, 29] and certification schemes [31]. Recently,
Jackson et al. [25] pointed out the importance of stronger security guarantees of digital signature
schemes in other settings as well.

1

https://orcid.org/0000-0003-0597-8297
https://orcid.org/0000-0002-7073-0258
https://orcid.org/0009-0006-5329-0138


1.1 Beyond-Unforgeability Features of Signature Schemes

To address malicious-key attacks against digital signature schemes new security properties were
introduced under the term beyond-unf orgeability f eatures (BUFF) [31, 25, 10, 11]. This includes
exclusive ownership, message-bound signatures and non-resignability. Testifying their significance,
these properties have also been stated as an extra desirable security goal in NIST’s recent call for
additional post-quantum signature schemes [30].

In more detail, exclusive ownership considers an adversary who has access to a message and a
signature pair (m,σ) associated with a public key pk and is asked to find a new public key pk∗ which
also verifies the pair (m,σ). This security notion has two variations: the conservative exclusive
ownership (CEO), which is the one described above, and the destructive exclusive ownership (DEO),
which requires the adversary to find a different message i.e., (m∗, σ) where m∗ ̸= m such that the
pair verifies under pk∗. Message bound signatures (MBS) consider an adversary that should find
two messages m and m′ with m ̸= m′ and a signature σ s.t. both (m,σ) and (m′, σ) are valid under
pk. The main difference between MBS and UF-CMA is that pk can be generated arbitrarily and not
necessarily be the output of the key generation algorithm. Non-resignability (NR) considers that
an adversary with a signature σ corresponding to an unknown message m and a public key pk, is
asked to provide a different public key pk∗ and signature σ∗ such that σ∗ verifies correctly for the
unknown message m under the key pk∗.

Cremers et al. [11] studied the BUFF security properties of all six round-3 candidate signature
schemes of the NIST PQC standardization process. This includes the selected candidates Dilithium,
Falcon, and SPHINCS. Besides studying BUFF security of individual schemes, Cremers et al. [11]
discuss general transformations for signature schemes to achieve these extra security features. One
is the general BUFF transformation, guaranteeing all properties by signing a hash H(pk,m) of the
public key pk and the message m (instead of the message) and appending this hash value to the
signature. The BUFF-lite transformation only appends this hash value and achieves all properties
except for non-resignability. Pornin and Stern [31] also proposed some transformations to achieve
(weak) versions of exclusive ownership.

Aulbach et al. [1] studied the BUFF security of the additional signatures candidates for the
NIST standardization process, based on codes, isogenies, lattices, multi-variate equations. They
consider a weaker variation of the exclusive ownership notion, namely, S-UEO, that implies exclusive
ownership for honestly generated key pairs and signatures. Furthermore, they introduced a weaker
notion of non-resignability called wNR. They also argue that using one of the transformations in
[31], usually denoted PS-3, already provides BUFF security for some schemes. A similar result has
been established for the FALCON signature scheme by Düzlü et al. [22].

1.2 BUFFing Threshold Signature Schemes

In threshold signature schemes, the private key is distributed among a set of participants, and it is
required that a quorum must cooperate to issue a signature. Signatures can be verified by a single
public key. While the idea of threshold cryptography has been around for a while now [17, 18],
the advances in cryptocurrencies and smart contracts encourage the design especially of threshold
signature schemes, since they can be used by a set of signers to authenticate transactions or to sign
a network consensus.

Although constructions of threshold signatures have received significant attention in the lit-
erature recently, e.g., [27, 3, 15, 34, 12, 13, 19, 2, 23, 26, 9], to our knowledge no results have
been provided about whether the BUFF properties are satisfied by threshold signature schemes.
This is a natural question, considering that threshold signature schemes are meant to substitute
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regular signature schemes in settings where the trust should be distributed, but are in principle
also susceptible to such attacks. This is more true in decentralized finance, where identities often
correspond to public keys.

In this paper, we therefore study the following question:

Do threshold signature schemes satisfy the BUFF properties, and, if not, is there a
general way to transform threshold schemes to achieve BUFF properties?

1.3 Our Contributions

We answer the above question in the affirmative in the following sense: We can show that thresh-
old schemes that are based on BUFFed signature schemes inherit their security for the exclusive
ownership and message-binding properties. If this is not the case, we can apply a general transform
to BUFF threshold schemes. For specific cases like the threshold BLS scheme we can give more
direct constructions.

We note that, analogously to the BUFF-lite transformation [11], we only investigate here owner-
ship notions and message binding, neglecting the non-resignability property. Indeed, this property
is concerned with signatures for unknown messages, which, in particular, means that in the thresh-
old setting, no malicious party could participate in the signature generation process. As such the
non-resignability property would relapse to the question regarding honestly generated final signa-
tures. In this context, we remark that Don et al. [21] noted that the original non-resignability notion
in [11] cannot be achieved assuming that auxiliary data about the unknown message is available.
Düzlü et al. [22] and Don et al. [20] subsequently provided different definitions for non-resignability.

In more detail, our main contributions are as follows:

BUFF properties in the threshold setting We formalize beyond-unforgeability security no-
tions for threshold signature schemes and provide the relationships between the properties. We
focus here on the case of non-interactive schemes, as for some properties like message binding, the
round complexity of the signature generation step is irrelevant; for other properties, the approach
could be generalized to interactive settings. Remarkably, while for regular signature schemes, the
strongest version of malicious-strong universal exclusive ownership M-S-UEO [10] implies other vari-
ants like S-UEO, S-CEO, and S-DEO, this does not hold in general in the threshold setting. In this
scenario, we can resurrect the implication if the threshold signature scheme is also robust [6]. Ro-
bustness is a common property of threshold signature schemes and says that an adversary cannot
make a joint signature generation fail if sufficiently many valid partial signatures are provided. We
also discuss that robustness is necessary for the implication from M-S-UEO to S-UEO to hold.

Generic Compiler We provide a generic compiler that takes as input any threshold signature
scheme satisfying unforgeability and robustness and outputs a threshold signature scheme that
satisfies unforgeability, robustness, exclusive ownership, and message-bound signature properties.
The compiler is similar to the BUFF-lite transform for regular signature schemes, thus adding only
a hash value H(pk,m) of the scheme’s public key and the message to the signature. It preserves
the round complexity of the original scheme.

Direct Construction We show that the threshold BLS signature scheme can be modified with-
out increasing the signature size to achieve exclusive ownership and the message-bound signature
property in the random oracle model. The solution is to include the public key pk in the hashing
step when computing the signature. This shows that for specific schemes, improved solutions exist.
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Section Description S-CEO S-DEO M-S-UEO MBS

4 Compiler: TS′ → TS ✓ ✓ ✓ ✓
5 Construction: T-BLSpk ✓ ✓ ✓ ✓
6.2 Analysis of TRaccoon [15] ✓ ✓
6.3 Analysis of FROST [27] ✓ ✓
6.4 Analysis of Thresholdizer [7] ✓ ✓

Table 1: The sections and the security properties achieved by the resulting threshold signature
schemes.

Inheriting BUFF properties We identify that if the threshold signature schemes are con-
structed with a specific structural form, namely, having an underlying standard signature scheme
at the core, and if the underlying standard signature scheme achieves exclusive ownership and
the message-bound signature property, then the properties transfer to the threshold signature
scheme. We analyze some of the existing threshold signature schemes and provide proofs for
beyond-unforgeability properties. This includes TRaccoon [15], FROST [27], and the universal
thresholdizer of Boneh et al. [7].

Summary We summarize our constructions and transformations in Table 1. In Section 4, we
provide the compiler that takes a threshold signature scheme TS′ and transforms it into TS by
adding a hash value. In Section 5, we show the modified BLS achieving the additional security
properties. Lastly, in Section 6, we easily derive results for several threshold signatures [15, 27, 7]
via our general inheritance result of the signature-to-threshold paradigm. The properties satisfied
by the resultant threshold signature scheme are also provided in the table.

2 Preliminaries

Notations We denote by λ ∈ N the security parameter, usually employed in unary form as 1λ

that is implicitly given as input to all algorithms. A function negl : N → R is called negligible,
if for every constant c ≥ 0, there exists λc ≥ c s.t. ∀λ ≥ λc we have negl(λ) ≤ λ−c. Given a
polynomial p(·), an efficient randomized algorithm, A, is called probabilistic polynomial time, PPT
in short, if its running time is bounded by a polynomial p(|x|) for every input x. The set {1, . . . , n}
is denoted as [n] for a positive integer n ∈ N. For the equality check of two elements, we use “=”.
The assignment operator is denoted with “←”, whereas the randomized assignment is denoted by
a←$ A, where A is a randomized algorithm.

Threshold Signature Schemes Below we recall the definition of threshold signature schemes
as well as the corresponding security definitions for unforgeability under chosen message attack and
robustness under chosen message attack. We focus here on non-interactive schemes.

Definition 2.1 (Threshold Signature). Let t, n ∈ N such that t ≤ n. A (n, t)-threshold signature
scheme TS for a finite message space M having n signers with threshold t consists of a tuple of
polynomial algorithms defined as follows:

1. Setup(1λ) → pp: The setup algorithm takes as input the security parameter 1λ and outputs
public parameters pp.
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2. KeyGen(pp, n, t)→ (pk, {pki}i∈[n], {ski}i∈[n]). The distributed key generation protocol takes as
input the number of signers n, the threshold t and outputs the verification key pk, the partial
verification keys {pki}i∈[n] and the signing keys {ski}i∈[n], where secret key ski is held by the
i-th signer.

3. PartSign(pp, pk, ski,m) → σm,i. The partial signing algorithm takes as input the verification
key pk, the signing key ski, and the message m ∈M and outputs the partial signature σm,i.

4. PartVer(pp, pk,m, pki, σm,i)→ 0/1. The partial signature verification algorithm takes as input
the partial verification key pki, the message m, and the partial signature σm,i and outputs 0
(reject) or 1 (accept).

5. PartComb(pp, pk, S,m, {pki, σm,i}i∈S) → Σm. The combining algorithm takes as inputs the
verification key pk, the set of signers S, the message m, a set of tuples {pki, σm,i}i∈[n], con-
sisting of partial verification keys and partial signatures corresponding to the set S and outputs
either a signature Σm or ⊥.

6. Ver(pp, pk,m,Σm) → 0/1. The verification algorithm takes as input the verification key pk,
the message m, the signature Σm and outputs 0 (reject) or 1 (accept). We assume that the
algorithm never accepts the signature Σm = ⊥.

The standard digital signatures Sig = (Setup,KeyGen,Sign,Ver) can be considered as a (1, 1)-
threshold signature scheme, where Sign would be PartSign and have no partial verification algorithm
PartVer and combining algorithm PartComb.

We could define the correctness of a threshold signature scheme here, stating that genuine
partial signatures always validate under PartVer and that PartComb is able to construct a valid
combined signature if it receives at least t valid partial signatures. We omit such a definition here
as it can be considered as a special case of the robustness definition below.

Unforgeability and Robustness We require a (n, t)-threshold signature scheme to satisfy un-
forgeability and robustness. We provide descriptions of the oracles used in the security definitions
in Fig 1. Besides the apparent oracles to corrupt parties and learn their secret keys (oracle OCorrupt)
and to create partial signatures for honest parties (oracle OPartSign), we also have an oracle OaugmSign

that augments given partial signatures for (honest or corrupt) parties in a set J by freshly gener-
ated partial signatures for the remaining parties in a set I and derives the combined signatures. To
the advantage of the adversary, it returns the derived signatures and the created partial signatures.

Definition 2.2 (Unforgeability under Chosen Message Attack). Let TS be a (n, t)-threshold sig-
nature scheme. We say that TS is UF-CMA secure if the following holds for all PPTadversaries A,
where ExpUF-CMA

TS,A is defined in Figure 2.

AdvUF-CMA
TS,A (λ) := Pr[ExpUF-CMA

TS,A (1λ, n, t) = 1] ≤ negl(λ)

We say TS is UF-CMA against static corruptions if all the OCorrupt queries are queried before any
OPartSign oracle queries.

We follow the definition of robustness from [13] but slightly adapt it to match our notions.
The difference is that the approach in [13] separates violations of expected behavior according to
(a single) invalid, honestly generated partial signatures, and according to the combined signatures
from valid partial signatures. We combine this into a single attempt for partial signatures generated
for users in a set I and for malicious contributions for users from a set J . Both approaches are
equivalent.
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OCorrupt(i): OaugmSign(m, I,J , {σm,j}j∈J ):
1: if i ̸∈ C and |C| ≥ t− 1: 1: return ⊥ if |I ∪ J | < t.

return ⊥. 2: for j ∈ J do:
2: else if PartVer(pp, pk,m, pkj , σm,j) = 0

C ← C ∪ {i}. then return ⊥.
return ski. 3: for i ∈ I do:

σm,i ←$ PartSign(pp, pk, ski,m).
OPartSign(m, i) : 4: Σm ←$ PartComb(pp, pk, I ∪ J ,
1: return ⊥ if i ∈ C. m, {pkk, σm,k}k∈I∪J ).
2: σm,i ←$ PartSign(pp, pk, ski,m). 5: Q ← Q∪ {(m,Σm, I)}.
3: Qpsig ← Qpsig ∪ {(m, i)}. 6: return (Σm, {σm,i}i∈I).
4: return σm,i.

Figure 1: The description of the oracles used in ExpUF-CMA
TS,A , ExpRB-CMA

TS,A , ExpS-CEOTS,A , ExpS-DEO
TS,A ,

ExpS-UEOTS,A , ExpM-S-UEO
TS,A , ExpMBS

TS,A.

ExpUF-CMA
TS,A (1λ, n, t) :

1: pp←$ Setup(1λ).
2: (pk, {pki}i∈[n], {ski}i∈[n])←$ KeyGen(pp, n, t).
3: Qpsig ← ∅, C ← ∅,Q ← ∅.
4: (m∗,Σ∗)← AOPartSign(·,·),OCorrupt(·)(pk, {pki}i∈[n]).
5: Q[m∗] = {i : (m∗, i) ∈ Qpsig}.
6: d← Ver(pp, pk,m∗,Σ∗).
7: return [d = 1 ∧ |Q[m∗] ∪ C| < t].

Figure 2: The unforgeability game ExpUF-CMA
TS,A for a (n, t)-threshold signature scheme where the

adversary is allowed to make adaptive corruptions.

Definition 2.3 (Robustness under Chosen Message Attack). Let TS be a (n, t)-threshold signature
scheme. We say that TS is RB-CMA secure if the following holds for all PPTadversaries A, where
ExpRB-CMA

TS,A is defined in Figure 3.

AdvRB-CMA
TS,A (λ) := Pr[ExpRB-CMA

TS,A (1λ, n, t) = 1] ≤ negl(λ)

3 Beyond-Unforgeability Definitions

We use here the definitions of the beyond-unforgeability security notions for signature schemes
[31, 25, 10, 11] and transfer them to the threshold setting. At the end of this section, we discuss
the relationship between the properties.

3.1 Definitions

The first definition, strong conservative exclusive ownership (S-CEO), states that the adversary
should not be able to transfer a threshold signature for a message to which at least one honest
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ExpRB-CMA
TS,A (1λ, n, t) :

1: pp←$ Setup(1λ).
2: (pk, {pki}i∈[n], {ski}i∈[n])←$ KeyGen(pp, n, t).
3: Qpsig ← ∅, C ← ∅.
4: (m, I,J , {σm,j}j∈J )← AOPartSign(·,·),OCorrupt(·)(pk, {pki}i∈[n]).

// verification of honest partial signatures must be successful
5: for i in I do

σm,i ←$ PartSign(pp, pk, ski,m).
if PartVer(pp, pk,m, pki, σm,i) = 0 : return 1.

// combining sufficiently many valid partial signatures must yield valid signature
6: if |I ∪ J | < t: return 0.
7: for j in J do:

if PartVer(pp, pk,m, pkj , σm,j) = 0 : return 0.
8: Σm ← PartComb(pp, pk, I ∪ J ,m, {pkk, σk}k∈I∪J ).
9: if Ver(pp, pk,m,Σm) = 0 : return 1.

10: return 0.

Figure 3: The robustness security game ExpRB-CMA
TS,A for a (n, t)-threshold signature scheme.

user contributed (via a query to the augmented signing oracle OaugmSign as part of the set I \ C of
uncorrupted contributions) to a signature under a different public key:

Definition 3.1 (Strong Conservative Exclusive Ownership). Let TS be a (n, t)-threshold signature
scheme. We say that TS provides strong conservative exclusive ownership(S-CEO) if, for every
PPTadversary A, the following inequality holds:

AdvS-CEOTS,A (λ) := Pr[ExpS-CEOTS,A (1λ, n, t) = 1] ≤ negl(λ),

where ExpS-CEOTS,A is defined in Figure 4.

ExpS-CEOTS,A (1λ, n, t):

1: pp←$ Setup(1λ).
2: (pk, {pki}i∈[n], {ski}i∈[n])←$ KeyGen(pp, n, t).
3: Qpsig ← ∅,Q ← ∅, C ← ∅.
4: (m∗, pk∗,Σ∗)← AOaugmSign(··· ),OPartSign(·,·),OCorrupt(·)(pk, {pki}i∈[n]).
5: d← Ver(pp, pk∗,m∗,Σ∗).
6: // check validity and that at least one honest contribution:
7: return [d = 1 ∧ pk∗ ̸= pk ∧ ∃(m∗,Σ∗, I) ∈ Q : I \ C ̸= ∅].

Figure 4: The strong conservative exclusive ownership game ExpS-CEOTS,A for a (n, t)-threshold signature
scheme.

The next definition, strong destructive exclusive ownership (S-DEO), is similar to S-CEO, but
now the adversary has to modify the message as well:

Definition 3.2 (Strong Destructive Exclusive Ownership). Let TS be a (n, t)-threshold signature
scheme. We say that TS provides strong destructive exclusive ownership (S-DEO) if, for every
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PPTadversary A, the following holds:

AdvS-DEO
TS,A (λ) := Pr[ExpS-DEO

TS,A (1λ, n, t) = 1] ≤ negl(λ),

where ExpS-DEO
TS,A is defined in Figure 5.

ExpS-DEO
TS,A (1λ, n, t) :

1: pp←$ Setup(1λ).
2: (pk, {pki}i∈[n], {ski}i∈[n])←$ KeyGen(pp, n, t).
3: Qpsig ← ∅,Q ← ∅, C ← ∅.
4: (m∗, pk∗,Σ∗)← AOaugmSign(··· ),OPartSign(·,·),OCorrupt(·)(pk, {pki}i∈[n]).
5: d← Ver(pp, pk∗,m∗,Σ∗).
6: // check validity and that at least one honest contribution for different message:
7: return [d = 1 ∧ pk∗ ̸= pk ∧ ∃(m,Σ∗, I) ∈ Q : (I \ C ̸= ∅ ∧m ̸= m∗)]

Figure 5: The strong destructive exclusive ownership game ExpS-DEO
TS,A for a (n, t)-threshold signature

scheme.

The notion of strong universal exclusive ownership (S-UEO) combines the two previous defini-
tions into one:

Definition 3.3 (Strong Universal Exclusive Ownership). Let TS be a (n, t)-threshold signature
scheme. We say that TS provides strong universal exclusive ownership (S-UEO) if, for every
PPTadversary A, the following holds:

AdvS-UEOTS,A (λ) := Pr[ExpS-UEOTS,A (1λ, n, t) = 1] ≤ negl(λ),

where ExpS-UEOTS,A is defined in Figure 6.

ExpS-UEOTS,A (1λ, n, t) :

1: pp←$ Setup(1λ).
2: (pk, {pki}i∈[n], {ski}i∈[n])←$ KeyGen(pp, n, t).
3: Qpsig ← ∅,Q ← ∅, C ← ∅.
4: (m∗, pk∗,Σ∗)← AOaugmSign(··· ),OPartSign(·,·),OCorrupt(·)(pk, {pki}i∈[n]).
5: d← Ver(pp, pk∗,m∗,Σ∗).
6: // check validity and that at least one honest contribution:
7: return [d = 1 ∧ pk∗ ̸= pk ∧ ∃(m,Σ∗, I) ∈ Q : I \ C ̸= ∅]

Figure 6: The strong universal exclusive ownership game ExpS-UEOTS,A for a (n, t)-threshold signature
scheme.

Brendel et al. [10] strengthened the notion of S-UEO to a malicious version, denotedM-S-UEO, in
which we even waive the requirement of transforming a partly honest signature. Now, the adversary
can choose a signature which is valid for two maliciously chosen public keys and messages:

Definition 3.4 (Malicious-Strong Universal Exclusive Ownership). Let TS be a (n, t)-threshold sig-
nature scheme. We say that TS provides malicious-strong universal exclusive ownership (M-S-UEO)
if, for every PPTadversary A, the following inequality holds:

AdvM-S-UEO
TS,A (λ) := Pr[ExpM-S-UEO

TS,A (1λ, n, t) = 1] ≤ negl(λ),

where ExpM-S-UEO
TS,A is defined on the left-hand side of Figure 7.
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ExpM-S-UEO
TS,A (1λ, n, t):

1: pp←$ Setup(1λ).
2: (m,m∗, pk, pk∗,Σ)← A(1λ, pp).
3: d← Ver(pp, pk,m,Σ).
4: d∗ ← Ver(pp, pk∗,m∗,Σ).
5: return [d = 1 ∧ d∗ = 1 ∧ pk ̸= pk∗].

ExpMBS
TS,A(1

λ, n, t):

1: pp←$ Setup(1λ).
2: (m,m∗, pk,Σ)← A(1λ, pp).
3: d← Ver(pp, pk,m,Σ).
4: d∗ ← Ver(pp, pk,m∗,Σ).
5: return [d = 1 ∧ d∗ = 1 ∧m ̸= m∗].

Figure 7: Definitions for malicious-strong universal exclusive ownership game ExpM-S-UEO
TS,A and

message-bound Signatures game ExpMBS
TS,A for a (n, t)-threshold signature scheme.

The notion of message-bound signatures MBS informally says that a signature under a public
key is binding to the message, i.e., the adversary cannot find two valid messages to one signature:

Definition 3.5 (Message-Bound Signatures). Let TS be a (n, t)-threshold signature scheme. We
say that TS provides message-bound signatures (MBS) if, for every PPTadversary A, the following
inequality holds:

AdvMBS
TS,A(λ) := Pr[ExpMBS

TS,A(1
λ, n, t) = 1] ≤ negl(λ),

where ExpMBS
TS,A is defined on the right-hand side of Figure 7.

Our notions S-CEO, S-DEO, and S-UEO of exclusive ownership require that at least one honest
party contributes to the signature generation (I\C ≠ ∅) and demand that stealing message-signature
pairs as above should be infeasible. This reflects the protection of the honest party declaring its
will to sign that message. One could also define all notions more liberal and forgo the requirement
I \C ≠ ∅ in all cases entirely. This would reflect that honest parties united under the public key pk
are protected against takeovers, even if they have not contributed to an actual signature. We call
these properties extra-strong and denote the security notions as ES-CEO, ES-DEO, and ES-UEO.
It is obvious that each of the extra-strong notions implies the corresponding strong notion. In
Appendix A.1 we show that the converse does not hold in general.

3.2 Relationship Between Notions

We note that if we view regular signature schemes as (1, 1)-threshold signature schemes in a straight-
forward way, then all separations in [11] of the properties immediately transfer to the (general)
threshold setting. We discuss here in detail that the relationships of exclusive ownership notions in
the threshold case partly agree with results for regular schemes but that there are also differences
that require robustness as an additional property.

Proposition 3.6. A threshold signature scheme TS is S-CEO and S-DEO if and only if it is S-UEO.

It also holds that a scheme is ES-CEO and ES-DEO if and only if it is ES-UEO. We only discuss
the case of strong notions here (with I \C ≠ ∅); the case of extra-strong notions follows analogously.

Proof. In order to win the S-UEO game, the adversary submits (m∗, pk∗,Σ∗). Then, pk∗ ̸= pk
and Σ∗ must have been a valid signature of some query m, and there must be at least one honest
contribution during the generation of Σ∗. If m = m∗, the S-CEO security is broken. Otherwise,
m ̸= m∗ and we break S-DEO security. To prove the other direction, any successful attack on S-CEO
or S-DEO leads to a successful attack against S-UEO game. The reason is that any attack against
the more restrictive versions S-CEO (where the adversary needs to re-use a queried message m∗ in
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the forgery) or S-DEO (where the adversary needs to use a different message m∗ in the forgery)
also constitutes a valid attack against S-UEO where no restriction is put on m∗.

We next show that the malicious version M-S-UEO implies the version S-UEO. Unlike in the case
of ordinary signatures, however, we also rely on the robustness property RB-CMA of the threshold
scheme for this implication:

Proposition 3.7. If a threshold signature scheme TS is M-S-UEO and RB-CMA, it is also S-UEO.
More precisely, for any adversary A against S-UEO, making at most qa oracle queries to OaugmSign,
there exists algorithms A′

RB-CMA and A′
M-S-UEO with roughly the same running time as A such that

AdvS-UEOTS,A (λ) ≤ qa · AdvRB-CMA
TS,A′

RB-CMA
(λ) + AdvM-S-UEO

TS,A′
M-S-UEO

(λ).

We note that the bound in the theorem even holds for the stronger variant ES-UEO, not only for
S-UEO. The reason is that all reductions in the proof would also work against a ES-UEO adversary.

Proof. If there exists an efficient PPT algorithm A that breaks S-UEO of TS, we can use A to
build A′

RB-CMA against the robustness of the scheme or to construct A′
M-S-UEO that can break the

M-S-UEO security game. We start with a game hop to exclude attacks against S-UEO for which
there exists (m,Σ∗, I) ∈ Q but where Σ∗ does not constitute a valid signature for m under pk. The
reduction A′

RB-CMA against robustness works as follows:

1. The reduction receives pp, pk, {pki}i∈[n] as input.

2. Let A make at most qa oracle queries to oracle OaugmSign. Then A′
RB-CMA initially picks an

index k ←$ [qa].

3. The reduction runs A on pp, pk, {pki}i∈[n].

4. It answers all queries of A to OCorrupt(i) with ski by querying its own corruption oracle. For
any query OPartSign(m, i) of A to the partial signing oracle, the reduction calls its own partial
signing oracle to compute the requested partial signature according to the experiment.

5. For the j-th query of A to oracle OaugmSign for j ̸= k, the reduction once more exploits
knowledge of the secret keys or the partial signing oracle to compute the answer according to
the experiment. For j = k and query (m, I,J , {σm,j}j∈J ), however, the reduction A′

RB-CMA

outputs this tuple and stops.

Note that, up to the point where the reduction stops, the simulation is identically distributed to
an actual attack of A against S-UEO. If there is some query (m,Σ∗, I) ∈ Q in the attack (or
simulation) of A where Σ∗ does not constitute a valid signature, then this can only be because
the combine algorithm PartComb outputs an invalid signature. Using that we only add (m,Σ∗, I)
to the set Q if all partial signatures for parties in J have been verified, a failure of algorithm
PartComb can only happen if an honestly generated partial signature for a user in I is invalid or
if the combination itself for all valid partial signatures from I ∪ J fails. Either of the two events
constitutes a break of robustness. Hence, if there is such a query to oracle OaugmSign resulting in
(m,Σ∗, I) ∈ Q with invalid Σ∗, then our reduction has a probability of 1/qa to guess the first query
of this type correctly and to violate robustness.

We may from now on assume that A against S-UEO outputs m∗,Σ∗, pk∗ ̸= pk such that there
is some (m,Σ∗, I) ∈ Q where Σ∗ is valid for m under pk. The description of A′

M-S-UEO against
M-S-UEO is now as follows:
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1. On receiving pp from the challenger, sample (pk, {pki}i∈[n], {ski}i∈[n])←$ KeyGen(pp, n, t) and
send (pk, {pki}i∈[n]) to A.

2. For all queries from A, respond correspondingly. This is possible as A′
M-S-UEO has access to

{ski}i∈[n].

3. On receiving (m∗, pk∗,Σ∗), find m such that (m,Σ∗, I) ∈ Q. Finally send (m,m∗, pk, pk∗,Σ∗)
to the challenger.

In this reduction, A′
M-S-UEO wins the game if A wins. The latter requires pk ̸= pk∗, which is also

necessary in the game of A′
M-S-UEO. Furthermore, the signature Σ∗ must be valid for m∗ and pk∗

according to the game’s requirement. By the previous game hop, we must also have that Σ∗ is valid
for m under pk, such that all stipulations for a successful attack of A′

M-S-UEO against M-S-UEO are
satisfied.

We show in Appendix A.2 that robustness is in fact necessary for this implication to hold, by
presenting a scheme that is M-S-UEO but not RB-CMA and neither S-UEO.

4 Construction of BUFF Compiler

In this section, we provide a generic compiler that takes as input any threshold signature scheme
TS′ = (Setup′,KeyGen′,PartSign′,PartVer′,PartComb′,Ver′) and a collision-resistant hash function
H, and outputs a threshold signature scheme TS = (Setup,KeyGen,PartSign,PartVer,PartComb,Ver)
which satisfies unforgeability, robustness, exclusive ownership, and message-bound signature prop-
erties.

The transformation is provided in Figure 8. It follows the BUFF-lite transformation [11],
appending H(pk,m) to the signature for some recoverable encoding of (pk,m) into bit strings. For
example, if all keys are of fixed size, then one could simply concatenate pk and m.

The security of the transformation is based on the collision-resistance of the hash function H.
Formally, we define collision-resistance of H by considering an algorithm A outputting distinct in-
puts x ̸= x′ such that H(x) = H(x′). Let Pr[ExpCRH,A = 1] denote the probability that A is successful.
Note that we do not use here asymptotic security notions, since (non-uniform) adversaries always
manage to output collisions. Rather, we rely on the constructive approach [32] where our reductions
to collision resistance of H will give concrete algorithms creating collisions.

Theorem 4.1. Assuming the underlying threshold signature scheme TS′ is UF-CMA secure, then,
TS is UF-CMA secure. Specifically, for any adversary A against UF-CMA we have

Pr[ExpUF-CMA
TS,A = 1] ≤ Pr[ExpUF-CMA

TS′,A′ = 1]

for an algorithm A′ running in roughly the same time as A.

Proof. We can prove the above inequality through a reduction to the UF-CMA game of the underly-
ing threshold signature scheme TS′. Consider an adversary A that can break the UF-CMA security
of the TS scheme. We build an adversary A′ that breaks the UF-CMA property of the underlying
scheme TS′. We describe the adversary A′ below.

1. On receiving pp′ from the TS′ challenger, sample H, and send pp = (pp′,H) to A.

2. On receiving (pk′, {pk′i}i∈[n]) from the challenger, forward it to A.

11



Setup(1λ):

1: pp′ ←$ Setup′(1λ).
2: Let H : {0, 1}∗ → {0, 1}ℓ, be a

collision-resistant hash function.
3: return pp = (pp′,H).

KeyGen(pp, n, t):

1: Parse pp as (pp′,H).
2: (pk′, {pk′i, sk′i}i∈[n])←$ KeyGen(pp′, n, t)
3: for i ∈ [n], pk← pk′, pki ← pk′i,

ski ← sk′i.
4: return (pk, {pki}i∈[n], skj)

to signer j for all j ∈ [n].

PartSign(pp, pk, ski,m):

1: Parse pp as (pp′,H).
2: σ′

m,i ← PartSign′(pp′, pk, ski,m).
3: return σm,i = σ′

m,i.

PartVer(pp, pk,m, pki, σm,i):

1: Parse pp as (pp′,H).
2: If PartVer′(pp′, pk,m, pki, σm,i) = 1

return 1.
3: Else

return 0.

PartComb(pp, pk,S,m, {pki, σm,i}i∈S):

1: Parse pp as (pp′,H).
2: assert |S| ≥ t.
3: For each i ∈ S: assert

PartVer(pp′, pk,m, pki, σm,i) = 1.
4: Σ′

m ← PartComb′(pp′, pk,S,m,
{pki, σm,i}i∈S).

5: hm ← H(pk,m).
6: return Σm ← (Σ′

m, hm).

Ver(pp, pk,m,Σm):

1: Parse pp as (pp′,H).
2: Parse Σm as (Σ′

m, hm).
3: If Ver′(pp′, pk,m,Σ′

m) = 1 and
H(pk,m) = hm:
return 1.

4: Else
return 0.

Figure 8: Generic compiler that takes as input any threshold signature scheme TS′ and outputs a
threshold signature scheme TS satisfying S-UEO, M-S-UEO and MBS.

3. On receiving partial signing oracle queries (m, i) from A, forward it to the challenger. After
receiving σm,i from the challenger, hand it to A.

4. On receiving corruption queries i from A, forward it to challenger and send the response ski
to A.

5. When A submits the challenge (m∗,Σ∗
m∗) for Σ∗

m∗ = (Σ′
m∗ , hm∗) check if it satisfies the

verifiability condition. If it is verified, forward (m∗,Σ′
m∗) to the challenger.

If the challenge satisfies the verifiability condition of TS, it will also satisfy the verifiability of TS′

as the Ver′ algorithm is run inside Ver algorithm. All the partial verification oracle queries are also
forwarded, thus, |Q[m∗]∪C| < t. Thus, any valid challenge against the UF-CMA game of TS is also
a valid challenge against the UF-CMA game of TS′.

Theorem 4.2. Assuming H is a collision-resistant hash function, and the underlying threshold sig-
nature scheme TS′ is RB-CMA secure, then TS is RB-CMA secure. In particular, for any adversary
A against RB-CMA we have

Pr[ExpRB-CMA
TS,A = 1] ≤ Pr[ExpRB-CMA

TS′,A′ = 1]

for an algorithm A′ running in roughly the same time as A.
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Proof. The robustness property follows from the robustness property of the underlying scheme
TS′. There are two winning cases for the adversary, (1) honestly generated partial signatures do
not satisfy the verification check, and (2) partial signatures pass verification, but the combined
signature does not satisfy verification.

We analyze the first winning case. The PartVer algorithm merely runs the PartVer′ algorithm.
Hence, any successful attack for partial signatures against TS immediately yields a valid attack
against TS′. For the second winning case, the Ver algorithm runs the Ver′ and checks the hm =
H(pk,m). The hash value H(pk,m) is computed correctly by the PartComb algorithm. Thus,
the hash check in the verification will be satisfied. Any failure to verify the final signature must
therefore be due to the verification of the signature of TS′.

In summary, the adversary wins the game by failing verification checks PartVer′ or Ver′. From
the robustness of the TS′ scheme, the probability of the verification checks failing is negligible.

Theorem 4.3. Assuming H is a collision-resistant hash function our construction is S-CEO secure.
Specifically, for any adversary A against S-CEO, we have

Pr[ExpS-CEOTS,A = 1] ≤ Pr[ExpCRH,A′ = 1]

for algorithm A′ running in roughly the same time as A.

The proof actually shows that we also achieve the stronger version ES-CEO.

Proof. Assume there exists an adversary A that can generate a valid signature (pk∗,m∗, (Σm∗ , hm∗))
with respect to the S-CEO game. Then, there exists an entry (m∗, (Σm∗ , hm∗), Im∗) ∈ Q with Σ∗

m∗ ̸=
⊥ (or else the adversary A cannot win, because such signatures are never accepted by assumption).
It follows that all checks by algorithm PartComb succeeded when creating the signature in a call to
oracle OaugmSign. In particular, PartComb has appended a valid hash value hm∗ = H(pk,m∗) to the
signature. For A to win for the very same signature Σ∗

m∗ with hash value hm∗ , its output must pass
verification PartVer according to the experiment for the same message m∗ but a different public key
pk∗ ̸= pk. Verification, however, also includes a check that the hash value is sound. This implies
H(pk,m∗) = H(pk∗,m∗), breaking the collision resistance property of the hash function H, because
the distinct pairs (pk,m∗), (pk∗,m∗) must encode to different strings.

Theorem 4.4. Assuming H is a collision-resistant hash function our construction is S-DEO secure.
Specifically, for any adversary A against S-DEO, we have

Pr[ExpS-DEO
TS,A = 1] ≤ Pr[ExpCRH,A′ = 1]

for algorithm A′ running in roughly the same time as A.

Once more, we actually achieve the stronger property ES-DEO.

Proof. The proof is almost identical to the one for S-CEO. Only this time the adversary also needs
to modify the message m∗ ̸= m, in addition to the public key, in one of the queries (m,Σ∗

m, Im) ∈ Q.
The argument above again shows that this implies

H(pk,m) = H(pk∗,m∗)

for different (pk,m) ̸= (pk∗,m∗), breaking the collision resistance property of the hash function
H.
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As we have shown in Proposition 3.6, S-CEO and S-DEO are equivalent to S-UEO, we omit the
proof of S-UEO security. We now provide the proof of M-S-UEO security below.

Theorem 4.5. Assuming H is a collision-resistant hash function, our construction is M-S-UEO
secure. Specifically, for any adversary A against M-S-UEO, we have

Pr[ExpM-S-UEO
TS,A = 1] ≤ Pr[ExpCRH,A′ = 1]

for algorithm A′ running in roughly the same time as A.

Proof. Assume there exists an adversaryA that can generate a valid signature (m,m∗, pk, pk∗, (Σ, h))
with respect to theM-S-UEO game. Then we get Ver(pp, pk,m,Σ, h) = 1 and Ver(pp, pk∗,m∗,Σ, h) =
1, such that we must have

H(pk,m) = h and H(pk∗,m∗) = h.

This implies H(pk,m) = H(pk∗,m∗), which breaks the collision resistance property of the hash
function H.

Theorem 4.6. Assuming H is a collision-resistant hash function, our construction is MBS secure.

Proof. Assume there exists an adversary A that can generate a valid output (m,m∗, pk, pk∗, (Σ, h))
with respect to theMBS game. Then we conclude that Ver(pp, pk,m,Σ, h) = 1 and Ver(pp, pk∗,m∗,Σ, h) =
1, such that we must have

H(pk,m) = h and H(pk∗,m∗) = h.

This implies H(pk,m) = H(pk∗,m∗) which breaks the collision resistance property of the hash
function H.

5 Buffing the Threshold BLS Scheme with Key Prefixing

In this section, we show that the threshold BLS signature scheme can be buffed without increasing
the signature size if we assume that the underlying hash function H behaves like a random oracle
(which is already assumed for the security proof). The idea is to use key-prefixing and compute the
hash value during signature generation as H(pk,m) instead of H(m). Key-prefixing is a well-known
measure to prevent key substitution attacks [29] and accomplish tight multi-user security [4]. In
fact, using key-prefixing for multi-user security for the BLS scheme has been considered in [28].
Here, we show that it also improves the security in terms of beyond-unforgeability properties.

The BLS signature scheme [8] and its threshold version T-BLS [6] work over pairing-based groups
G1,G2 and GT with generators g1, g2, gT . We assume an efficiently computable, non-degenerate
pairing e : G1 ×G2 → GT such that

e(gx1 , g
y
2) = e(g1, g2)

xy and e(g1, g2) ̸= 1.

We denote by qT the order of the groups G1,G2,GT and assume it is prime throughout. We assume
a hash function H mapping strings to group elements G1. When modeled as a random oracle, the
hash function thus returns random group elements. Formally, we assume that there is a parameter
generating algorithm BGGen(1λ) that takes the security parameter λ and outputs a bilinear group
G = (G1,G2,GT , g1, g2, gT , q, e) where q is a λ-bit prime.

The threshold variant (T-BLS) of the BLS signature scheme, and the key-prefixing variant
T-BLSpk, are displayed in Figure 9. One can view them as the basic BLS scheme with Lagrange
interpolation on the exponent.
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Setup(1λ):

1: (G1,G2,GT , g1, g2, gT , qT ) ← BGGen(1λ) be
pairing groups (G1,G2,GT ) of prime order
qT with generators g1, g2, gT , over field ZqT ,
and bilinear pairing operation e : G1×G2 →
GT .

2: Let H : {0, 1}∗ → G1 be hash function mod-
eled as random oracle.

3: return pp = (G1,G2, g1, g2, qT ,H).

KeyGen(pp, n, t):

4: Let s(·)←$ ZqT [x] be a polynomial of degree
t− 1.

5: Set pk← g
s(0)
1 .

6: For each i ∈ [n]:

7: ski ← s(i), pki ← g
s(i)
1 .

8: return (pk, {pki}i∈[n], skj) to signer j for all
j ∈ [n]

PartSign(pp, pk, ski,m):

9: σm,i ← H([pk, ]m)ski .

10: return σm,i.

PartVer(pp, pki,m, σm,i):

11: If e(H([pk, ]m), pki) = e(σm,i, g2):
return 1.

12: Else
return 0.

PartComb(pp, pk,S,m, {pki, σm,i}i∈S):

13: assert |S| ≥ t.
14: For i ∈ S: assert PartVer(pp, pki,m, σm,i) =

1.
15: Let Li,S be the i-th Lagrange coefficients for

S.
16: return Σm ←

∏
i∈S σ

Li,S

m,i .

Ver(pp, pk,m,Σm):

17: If e(H([pk, ]m), pk) = e(Σm, g2):
return 1.

18: Else
return 0.

Figure 9: Threshold BLS scheme; the key-prefixing variant includes the optional argument [pk, ] in
the hash computation.

Theorem 5.1. Assuming the T-BLS scheme over message space M′ = G1 × M is UF-CMA-
secure against static corruptions in the random oracle model, then the key-prefixed scheme T-BLSpk
over message space M is UF-CMA secure against static corruptions in the random oracle model.
Specifically, for any adversary A against UF-CMA, we have

Pr[ExpUF-CMA
T-BLSpk,A = 1] ≤ Pr[ExpUF-CMA

T-BLS,A′ = 1]

for algorithm A′ running in roughly the same time as A.

Proof. Assume there exists an adversary A that breaks the unforgeability property of the T-BLSpk
scheme, we can build A′ that breaks the unforgeability property of the T-BLS scheme. We describe
the A′ below.

1. Forward the public parameters pp and verification keys (pk, {pki}i∈[n]) from the challenger to
A.

2. On receiving corruption queries from A, forward it to the challenger and send the response
ski from the challenger back to A.

3. On receiving partial signing queries (m, i) from A, prepend pk to the message m and forward
(m′, i) for m′ = (pk,m) to the challenger. The response from the challenger σm′,i is then
forwarded to the adversary A. The queries are updated in the Q.

4. The adversary A submits (m∗,Σ∗). If Ver(pp, pk,m∗,Σ∗) = 1, send m′′ = (pk,m∗) together
with Σ∗ to the challenger.
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If the challenge satisfies the verifiability condition of T-BLSpk, it will also satisfy the verifiability
condition of T-BLS as it is the same check e(pk,H(pk,m∗)) = e(g1,Σ

∗). All the partial signing oracle
queries are also forwarded by prepending the public key to the messages, thus |Q[m′′] ∪ C| < t.
Thus, any valid challenge against the UF-CMA game of T-BLSpk is also a valid challenge against
the UF-CMA game of T-BLS.

Theorem 5.2. Assuming the T-BLS over M′ = G1 ×M scheme is RB-CMA secure, then the
key-prefixed scheme T-BLSpk overM is RB-CMA secure. Specifically, for any adversary A against
RB-CMA, we have

Pr[ExpRB-CMA
T-BLSpk,A = 1] ≤ Pr[ExpRB-CMA

T-BLS,A′ = 1]

for algorithm A′ running in roughly the same time as A.

Proof. The robustness property follows from the robustness property of the underlying scheme
T-BLS. There are two winning cases for the adversary, (1) honestly generated partial signatures
that do not satisfy the verification check, and (2) partial signatures that pass verification, but the
combined signature does not satisfy the verification check.

We analyze the first case. Consider an adversary that can provide (m, i) where the honestly
generated partial signature does not verify, then (pk,m, i) would be a winning scenario for an
adversary A′ against T-BLS with larger message space M′ = G1 ×M. In the second case, if an
adversary can submit S,m, {σi}i∈S, the partial signatures pass the verification, but Ver(pp, pk,m,Σ)
is not satisfied, then e(pk,H(pk,m)) ̸= e(g1,Σ). Then, S, pk,m, {σi}i∈S also does not pass the
verification of the T-BLS scheme. Thus, whenever the T-BLSpk adversary breaks the robustness
property, we could break the robustness property of T-BLS.

We provide below the M-S-UEO proof of the T-BLSpk scheme. From the Proposition 3.6 and
Proposition 3.7, we know that M-S-UEO and RB-CMA together imply S-CEO, S-DEO and S-UEO.
Thus, we do not provide explicit proofs for S-CEO, S-DEO and S-UEO security.

Theorem 5.3. In the random oracle model, T-BLSpk is M-S-UEO. Specifically for any adversary
A against M-S-UEO, making at most qH random oracle queries, we have

Pr
[
ExpM-S-UEO

T-BLSpk,A(1
λ, n, t) = 1

]
≤ (qH + 2)2

qT
,

where qT is the prime order of the group GT .

Proof. Assume first that the adversary A, in its attack against the M-S-UEO property, does not
query the random oracle about H(pk,m) or H(pk′,m′) before outputting its attempt (m,m′, pk, pk′,Σ).
Then, we can patch this by letting A make this query right before creating the output, increasing
the number of random oracle queries by at most 2. So from now on, we assume that A at some
point makes these random oracle queries in some of its at most qH+2 queries. We may also assume
that A never queries the random oracle about the same value twice.

Assume now that A at some point makes a random oracle query about H(pk′,m′) for some pk′.
Note that we can recover pk′ from the query (or identify a false encoding) by assumption. If this
pair (pk′,m′) is to be used in A’s final output, including a yet-to-be-determined signature Σ, it
must satisfy

e(Σ, g2) = e(H(pk′,m′), pk′).

Any other of the at most qH + 1 previous hash queries pk,m could be used for the same signature
value Σ, it must also satisfy

e(Σ, g2) = e(H(pk,m), pk).
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But then the outputs must satisfy:

e(H(pk,m), pk) = e(H(pk′,m′), pk′).

When A makes the query about pk′,m′, it is the first time by assumption, and the hash value
is mapped to a random group element H(pk′,m′) = gh1 for random h. This group element is
independent of pk′ and all other previous data. Hence, the probability that it matches any of the
previous values

e(H(pk,m), pk) = e(H(pk′,m′), pk′) = e(gh1 , pk
′) = e(g1, pk

′)h

is at most (qH +2)/qT . Summing over at most qH +2 hash queries implies that the probability the
adversary only finds a pair of suitable hash inputs is bounded from above by (qH + 2)2/qT . Since
we assumed that A must query H about the output values, this also provides an upper bound on
the probability that A wins the M-S-UEO experiment.

Theorem 5.4. In the random oracle model, T-BLSpk is MBS. Specifically for any adversary A
against MBS, making at most qH random oracle queries, we have

Pr
[
ExpMBS

T-BLSpk,A(1
λ, n, t) = 1

]
≤ (qH + 2)2

qT
,

where qT is the prime order of the group GT .

Proof. The proof is almost identical to M-S-UEO security proof (Theorem 5.3). This time, the
adversary tries to find hash inputs pk,m, pk,m′ for the same public key pk but different messages
m ̸= m′ such that the pairing operation maps them to the same value

e(H(pk,m), pk) = e(Σ, g2) = e(H(pk,m′), pk)

in the verification. It follows as in the M-S-UEO setting that the probability of finding such pairs
is at most (qH + 2)2/qT .

We are unaware if the (unkeyed) version of the threshold BLS scheme can be shown to achieve
the BUFF properties. It is clear that it already achieves S-CEO, because the adversary cannot find
pk∗ ̸= pk such that

e(H(m), pk) = e(Σm, g2) and e(H(m), pk∗) = e(Σm, g2)

for the same message and the same signature value Σm, as long as group membership of public keys
can be checked efficiently. We are not aware of positive or negative results concerning the other
properties.

6 BUFF Threshold Signatures from BUFF Signatures

Many threshold signature schemes are based upon an ordinary signature scheme and “thresholdize”
the computation of such an ordinary signature. We discuss here that such threshold schemes
immediately inherit some of the BUFF properties of the underlying signature scheme. We then
continue to show that some known protocols like TRaccoon [15], FROST [27], and the universal
thresholdizer of Boneh et al. [7] can be subsumed under our paradigm.
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6.1 Inheriting BUFF Properties

Consider a threshold signature TSSig scheme having the following structure with an underlying sig-
nature scheme Sig = (Setup′,KeyGen′,Sign′,Ver′) satisfying the BUFF properties. We assume that
the key generation and verification of the threshold scheme are the same as those of the signature
scheme. The additional steps, such as computations of additional public parameters, the signing
shares, the partial signatures, the combination of partial signatures, as well as the verification of
partial shares and extra verification steps, are carried out by some algorithms Algoi, i ∈ [6]. The
partial verification algorithm PartVer as well as the algorithm Algo4 is optional. These algorithms
can be interactive, probabilistic polynomial time algorithms. The description of TSSig is provided
in Figure 10.

We show below that if the underlying signature scheme Sig satisfies the M-S-UEO,MBS prop-
erties, then the threshold signature scheme TSSig based on Sig also satisfies the BUFF properties
M-S-UEO,MBS. The advantage of these properties over, say, S-CEO is that they are based on “pub-
lic” data chosen by the adversary. The relevant algorithms Algo1 and Algo6 only require public
information. We are not aware if the same is true for the properties S-CEO, S-DEO, and S-UEO
because in these cases, the adversary gets oracle access to functions with access to secrets, involving
algorithm Algo3. Recall, however, that M-S-UEO implies the further properties if we assume that
the threshold scheme is also robust.

Theorem 6.1. Assuming the underlying signature scheme Sig achieves M-S-UEO security, then,
TSSig in Figure 10 also achieves M-S-UEO. Specifically, for any adversary A against M-S-UEO, we
have

Pr[ExpM-S-UEO
TSSig,A = 1] ≤ Pr[ExpM-S-UEO

Sig,A′ = 1].

for algorithm A′ running in roughly the same time as A.

Proof. We prove the above theorem through a reduction to the M-S-UEO security game of the
underlying signature scheme Sig. Assume that there exists an adversary A that can break the
M-S-UEO security of the TSSig threshold scheme. Then we can build A′ that can break the security
of the signature scheme Sig. We provide the description of A′.

1. On receiving pp′ from the Sig challenger, it runs pp′′ ← Algo1(1
λ, pp′) and sends pp = (pp′, pp′′)

to A.

2. On receiving (m,m∗, pk, pk∗,Σ) fromA, forward it to the challenger if pk ̸= pk∗, Ver′(pp′, pk,m,
Σ) = 1, Algo6(pp, pk,m,Σ) = 1, Ver′(pp′, pk∗,m∗,Σ) = 1, and Algo6(pp, pk

∗,m∗,Σ) = 1. Note
that all these checks are possible given the public data.

The reduction A′ wins M-S-UEO game whenever A wins the M-S-UEO game. Thus,

Pr[ExpM-S-UEO
TSSig,A = 1] ≤ Pr[ExpM-S-UEO

Sig,A′ = 1].

This proves the theorem.

Theorem 6.2. Assuming the underlying signature scheme Sig achieves MBS security, then, the
TSSig signature scheme in Figure 10 also achieves MBS. Specifically, for any adversary A against
MBS, we have

Pr[ExpMBS
TSSig,A = 1] ≤ Pr[ExpMBS

Sig,A′ = 1].

for algorithm A′ running in roughly the same time as A.
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Setup(1λ):

1: pp′ ←$ Setup′(1λ).
2: pp′′ ←$ Algo1(1

λ, pp′).
3: return pp = (pp′, pp′′).

KeyGen(pp, n, t):

4: (pk′, sk′)←$ KeyGen′(pp′).
5: ({pki}i∈[n], {ski}i∈[n])←$ Algo2(pp, pk

′, sk′, n, t).
6: return (pk = pk′, {pki}i∈[n], {ski}i∈[n]).

PartSign(pp, pk, ski,m):

7: σm,i ←$ Algo3(pp, pk, ski,m).
8: return σm,i.

PartVer(pp, pk,m, pki, σm,i):

9: b←$ Algo4(pp, pk,m, pki, σm,i).
10: return b.

PartComb(pp, pk, S, {pki, σm,i}i∈S):

11: Σm ←$ Algo5(pp, pk,S, {pki, σm,i}i∈S).
12: return Σm.

Ver(pp, pk,m,Σm):

13: if Ver′(pp′, pk′,m,Σm) = 1 and Algo6(pp, pk,m,Σm) = 1, return 1.
14: else, return 0.

Figure 10: Description of a threshold signature scheme TSSig based on signature scheme Sig.

Proof. This follows the same way as the one described in the previous proof. Assume there exists
an adversary A that can break the MBS property of TSSig, then we can build A′ that breaks the
MBS property of Sig using A. We provide the description of A′ below.

1. On receiving pp′ from the Sig challenger, runs pp′′ ← Algo1(1
λ, pp′) and sends pp = (pp′, pp′′)

to A.

2. On receiving (m,m∗, pk,Σ) fromA, forward it to the challenger ifm ̸= m∗, Ver′(pp′, pk,m,Σ) =
1, Algo6(pp, pk,m,Σ) = 1, Ver′(pp′, pk,m∗,Σ) = 1, and Algo6(pp, pk,m

∗,Σ) = 1.

The reduction A′ wins whenever A wins.

We next analyze the M-S-UEO and MBS properties of some of the recent threshold signature
schemes.

6.2 Analysis of TRaccoon [15]

The threshold signature scheme TRaccoon is a practical three-round lattice-based threshold sig-
nature that can be viewed as a threshold version of the standard signature scheme Raccoon[16].
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We analyze the M-S-UEO and MBS properties of the TRaccoon scheme and provide the following
result.

Proposition 6.3. The threshold signature scheme TRaccoon is M-S-UEO and MBS secure, assum-
ing the hash functions are collision-resistant and non-malleable.

Proof. The threshold signature scheme TRaccoon could be viewed as the thresholdized version of
Raccoon [16] and follows the structure we provide in Figure 10. The NIST submission of Raccoon
[14] analyzes and proves that Raccoon providesM-S-UEO andMBS assuming that the hash functions
used are collision-resistant and non-malleable in Section 4.4 of the technical report. Considering
the above facts, and Theorems 6.1 and 6.2, TRaccoon provides M-S-UEO and MBS security.

6.3 Analysis of FROST [27]

The FROST (Flexible Round-Optimized Schnorr Threshold Signatures) scheme is a thresholdized
version of the key-prefixed Schnorr [33] signature scheme. It has a message-independent prepro-
cessing phase before the partial signing phase.

Proposition 6.4. Assuming the key-prefixed version of Schnorr signature scheme satisfies M-S-UEO
and MBS, then the threshold signature scheme FROST [27] provides M-S-UEO and MBS security
in the random oracle model.

Proof. The FROST signature scheme is a thresholdized version of the Schnorr signature scheme
and follows the structure provided in Figure 10. Thus, from Theorems 6.1 and 6.2, and assuming
Schnorr is M-S-UEO and MBS, FROST is M-S-UEO and MBS.

To complete the picture, we describe the key-prefixed version of Schnorr in Figure 11 and then
prove that it provides M-S-UEO and MBS security.

Setup(1λ):

1: (G,Zq, q, g)← GGen(1λ).
2: Let H : {0, 1}∗ → Zq be a

hash function modeled as random oracle.
3: return pp = (G,Zq, q, g,H)

Sign(pp, sk) :

4: k ←$ Zq, R← gk.
5: c← H(pk,m,R).
6: z ← k + sk · c.
7: return σ = (R, z).

KeyGen(pp):

8: Let sk←$ Zq

9: Set pk← gsk

10: return (pk, sk)

Ver(pp, pk,m, σm, ):

11: Parse σ as (R, z).
12: If R · pkH(pk,m,R) = gz:

return 1
13: Else

return 0

Figure 11: Construction of key-prefixed Schnorr signature scheme.

Theorem 6.5. In the random oracle model, Schnorr is M-S-UEO. Specifically for any adversary A
against M-S-UEO, making at most qH random oracle queries, we have

Pr
[
ExpM-S-UEO

Schnorr,A(1
λ) = 1

]
≤ (qH + 2)2

q
,

where q is the order of the group G.
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Proof. The proof follows the same way as the proof of Theorem 5.3. Assume that the adversary
A in the M-S-UEO game does not query the random oracle on H(pk,m,R) or H(pk′,m′, R) before
outputting its attempt (m,m′, pk, pk′, (R, z)). Then, we can patch this by letting A make this query
right before creating the output, increasing the number of random oracle queries by at most 2. We
assume that A makes these random oracle queries at some point where the total number of random
oracle queries is at most qH + 2 queries. We may also assume that A never queries the random
oracle about the same value twice.

Assume that A at some point makes a random oracle query on H(pk′,m′, R) for some pk′ and
R. Note that we can recover pk′ and R from the query by assumption. If this tuple (pk′,m′) is to
be used in A’s final output, along with signature (R, z), it must satisfy:

R · pk′H(pk
′,m′,R) = gz.

Any other of the at most qH+1 previous hash queries (pk,m,R) could be used for the same signature
value Σ, it must also satisfy

R · pkH(pk,m,R) = gz.

But then the outputs must satisfy

pkH(pk,m,R) = pk′H(pk
′,m′,R).

When A makes a random oracle query on (pk′,m′, R) the first time by assumption, and the hash
value is mapped to a random group element H(pk′,m′, R) = h for random h ∈ Zq. This field
element is independent of pk′ and all other previous data. Hence, the probability that it matches
any of the previous values

pkH(pk,m,R) = pk′H(pk′,m′,R) = h

is at most (qH + 2)/q. Summing over at most qH + 2 hash queries implies that the probability the
adversary only finds a pair of suitable hash inputs is bounded from above by (qH + 2)2/q. Because
we assumed that A must query H about the output values, this also provides an upper bound on
the probability that A wins the M-S-UEO experiment.

Theorem 6.6. In the random oracle model, Schnorr is MBS secure. Specifically for any adversary
A against MBS, making at most qH random oracle queries, we have

Pr
[
ExpMBS

Schnorr,A(1
λ) = 1

]
≤ (qH + 2)2

q
,

where q is the order of the group G.

Proof. The proof follows the same way as the proof of M-S-UEO. Here, the adversary tries to find
hash inputs (m,m′, pk, (R, z)) such that

pkH(pk,m,R) = pkH(pk,m′,R) = h

where m ̸= m′. It follows as in the M-S-UEO setting where the probability of finding such pairs is
at most (qH + 2)2/q.
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6.4 Analysis of TS by Boneh et al. [7]

The work of Boneh et al. provides a general approach for adding a threshold functionality to a
large class of (non-threshold) cryptographic schemes. In particular, they introduced the concept
of universal thresholdizer which can be applied to a non-threshold lattice signature system Sig to
obtain a single-round threshold signature scheme TS. We analyze theM-S-UEO andMBS properties
of this signature scheme and provide the following results.

Proposition 6.7. If the underlying signature scheme Sig used in the threshold signature construc-
tion of [7] satisfies M-S-UEO and MBS properties, then the TS scheme is also M-S-UEO and MBS
secure.

Proof. The universal thresholdizer is used to thresholdize Sig to construct TS. The signing key of
the signature scheme Sig is given as an input to the universal thresholdizer in their construction.
The verification of TS is the same as that of Sig. So, the TS follows the structure provided in
Figure 6.1. Thus, from theorems 6.1 and 6.2, and assuming Sig is M-S-UEO and MBS, TS is
M-S-UEO and MBS.

7 Conclusion

We explored advanced security notions for threshold signature schemes, focusing on Beyond Un-
Forgeability Features (BUFF). Our contributions include a generic compiler for transforming thresh-
old signature schemes to achieve exclusive ownership and message-bound signature properties with
minimal overhead, as well as a modified threshold BLS scheme achieving BUFF properties with-
out increasing the signature size. Future work could focus on examining the S-CEO, S-DEO, and
robustness properties in other relevant threshold signature schemes.

Concerning the BUFF security of existing schemes, we have already mentioned that the original
(“prefixing-free”) threshold BLS scheme already supports S-CEO directly, but that we are unaware
if it satisfies further BUFF properties. Key-prefixing is, on the other hand, an easy patch to ensure
all properties. It would also be interesting to see if the non-robust scheme FROST also achieves
the S-UEO property. Our general result states that it is M-S-UEO based on the security of the
underlying Schnorr signature scheme. The lack of robustness of FROST, however, does not allow
us to draw the conclusion that this implies S-UEO security. For TRaccoon it is currently unclear if
the scheme is also robust [15]. Hence, we neither derive the other properties instantaneously but
would need to prove them from scratch—–or show robustness of TRaccoon.
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[28] Marie-Sarah Lacharité. Security of BLS and BGLS signatures in a multi-user setting. Cryptogr.
Commun., 10(1):41–58, 2018.

[29] Alfred Menezes and Nigel P. Smart. Security of signature schemes in a multi-user setting. Des.
Codes Cryptogr., 33(3):261–274, 2004.

[30] National Institute of Standards and Technology. Call for additional digital signature schemes
for the post-quantum cryptography standardization process. Technical report, National Insti-
tute of Standards and Technology, 2022. Available at https://csrc.nist.gov/Projects/

pqc-dig-sig/standardization/call-for-proposals.

[31] Thomas Pornin and Julien P. Stern. Digital signatures do not guarantee exclusive ownership.
In John Ioannidis, Angelos D. Keromytis, and Moti Yung, editors, Applied Cryptography and
Network Security, Third International Conference, ACNS 2005, New York, NY, USA, June
7-10, 2005, Proceedings, volume 3531 of Lecture Notes in Computer Science, pages 138–150,
2005.

[32] Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor, Progress in
Cryptology - VIETCRYPT 2006, pages 211–228, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[33] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Proceedings
of the 9th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO
’89, page 239–252, Berlin, Heidelberg, 1989. Springer-Verlag.

25

https://csrc.nist.gov/Projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/Projects/pqc-dig-sig/standardization/call-for-proposals


[34] Haiyang Xue, Man Ho Au, Mengling Liu, Kwan Yin Chan, Handong Cui, Xiang Xie, Tsz Hon
Yuen, and Chengru Zhang. Efficient multiplicative-to-additive function from joye-libert cryp-
tosystem and its application to threshold ECDSA. In Weizhi Meng, Christian Damsgaard
Jensen, Cas Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2023, Copenhagen, Denmark, Novem-
ber 26-30, 2023, pages 2974–2988. ACM, 2023.

A Further Relationships between BUFF Notions

A.1 Separating Extra-Strong from Strong Exclusive Ownership Notions

As mentioned before, all extra-strong versions ES-CEO, ES-DEO, and ES-UEO versions imply their
strong counterparts S-CEO, S-DEO, and S-UEO. We show here that the converse is not true in
general. We start with a separating example of a scheme TS that is S-CEO and ES-DEO but not
ES-CEO. Necessarily, the scheme cannot be ES-UEO, and hence neither simultaneously M-S-UEO
and RB-CMA, because the former would imply ES-CEO and ES-DEO by Proposition 3.6, and the
latter would imply ES-UEO by Proposition 3.7. The scheme preserves unforgeability and M-S-UEO
if the underlying scheme TS′ has these properties.

The main idea is to prepend a bit b = 0 to each (honest) partial signature and to let the combine
algorithm prepend the logical AND over all such bits of the partial signatures and to prepend this
AND to the combined signatures. Then, any honest contribution of a partial signature (as in S-CEO)
enforces a 0-bit in the combined signature, whereas contributions from exclusively dishonest parties
(as in ES-CEO) can easily make this bit 1. The final step is to allow the transfer to a public key
pk∗ of such signatures starting with 1. To ensure ES-DEO, we simply include the message in the
signature. More formally, consider an arbitrary threshold scheme TS′ (where KeyGen′ for given
parameters pp always outputs public keys pk′ of a fixed length and PartComb′ for a given pk′ always
outputs signatures Σ′

m of a fixed length) and modify it to scheme TS as follows:

1. Setup(1λ)→ pp: Outputs Setup′(1λ)→ pp′.

2. KeyGen(pp, n, t)→ (pk, {pki}i∈[n], {ski}i∈[n]): Computes the underlying keys KeyGen′(pp′, n, t)
→ (pk′, {pk′i}i∈[n], {sk′i}i∈[n]) and returns pk = 0||pk′, as well as {pki}i∈[n], {ski}i∈[n] for pki =
pk′i and ski = sk′i.

3. PartSign(pp, pk, ski,m) → σm,i. Runs PartSign′(pp, pk, ski,m) → σ′
m,i and outputs σm,i =

0||σ′
m,i.

4. PartVer(pp, pk,m, pki, σm,i) → 0/1. Runs PartVer′(pp, pk′,m, pki, σ
′
m,i) → 0/1 for pk′, σ′

m,i

with pk = b||pk′ and σm,i = bi||σ′
m,i.

5. PartComb(pp, pk, S,m, {pki, σm,i}i∈S) → Σm: Runs PartComb′(pp, pk′, S,m, {pki, σ′
m,i}i∈S) →

Σ′
m for pk′, σ′

m,i with pk = b||pk′ and σm,i = bi||σ′
m,i. Returns Σm = (

∧
i∈S bi)||pk

′||Σ′
m||m.

6. Ver(pp, pk,m,Σm) → 0/1: Accepts if Ver′(pp, pk′,m,Σ′
m) → 0/1 for pk = b||pk′ Σm =

b||pk′||Σ′
m||m. (If Σm does not parse correctly with leading values b||pk′ and Σ′

m of fixed
length, followed by m, then Ver also returns 0.)

Via the equivalence of UEO to CEO and DEO (both in the strong and extra-strong versions),
we immediately obtain a separation for the UEO case as part of our result for CEO:
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Proposition A.1. If TS′ is a correct and UF-CMA and M-S-UEO threshold signature scheme,
then TS as defined above is a correct and UF-CMA and M-S-UEO threshold signature scheme which
satisfies S-CEO and ES-DEO (and thus S-UEO) but not ES-CEO (and thus not ES-UEO).

Proof. Correctness and unforgeability of TS follow straightforwardly from the correctness properties
of TS′ because genuinely combined partial signatures (all with leading bit bi = 0) result in a valid
signature Σ′

m which verify under an honestly generated key pk with a leading 0-bit. Unforgeability
also holds because one can give a straightforward reduction for genuine public keys of the form
pk = 0||pk′.

We first argue that M-S-UEO holds. Note that a valid signature Σm for public keys must contain
the encoding of the public key, including the leading bit. Hence, no signature can satisfy verification
for different keys simultaneously, and M-S-UEO must thus hold. The property ES-DEO is equally
easy to show since any signature Σm must contain the message m (starting at the fixed position)
such that each signature can only work for one message.

Next, consider S-CEO. Any signature Σm for I \C ̸= ∅ created in a query in set Q is at the front
of the form 0||pk′, because any partial signature by an honest party starts with a bit 0, resulting
in a leading 0-bit via the logical AND. This rules out the possibility for the adversary to output
a key pk∗ starting with a 1-bit for a successful attack. But any key pk∗ ̸= pk for the genuine key
pk = 0||pk′ then cannot match the entry 0||pk′ in Σm, showing that the scheme achieves S-CEO.

We finally argue that the scheme is not ES-CEO. For this, let the adversary on input pk = 0||pk′
corrupt t parties J and run the partial signature generation algorithm for some message m to
create σm,j = 0||σ′

mj
. Hand over m, I = ∅, J and {pkj , 1||σ′

m,j}j∈J to oracle OaugmSign to get a

signature Σm. Output m∗ = m, Σ∗ = Σm and pk∗ = 1||pk′. Note that the signature Σm created
by PartComb starts with the AND of all bits in the set of partial signatures, which is now 1, and
thus creates a valid signature starting with a 1-bit. This signature matches the modified public key
pk∗ = 1||pk′ starting with 1, thus breaking ES-CEO with probability 1.

We next separate ES-DEO from ES-DEO. We use the same scheme TS, based on a scheme TS′,
as in the CEO case, with one change in signature combining and verification, where we flip the
message bits m in the signature depending on the AND bit:

1. PartComb(pp, pk, S,m, {pki, σm,i}i∈S) → Σm: Runs PartComb′(pp, pk′, S,m, {pki, σ′
m,i}i∈S) →

Σ′
m for pk′, σ′

m,i with pk = b||pk′ and σm,i = bi||σ′
m,i. Let c =

∧
i∈S bi. Returns Σm =

c||pk′||Σ′
m||(c|m| ⊕m).

2. Ver(pp, pk,m,Σm) → 0/1: Accepts if Ver′(pp, pk′, b|m| ⊕m,Σ′
m) → 0/1 for pk = b||pk′ Σm =

b||pk′||Σ′
m||(b|m| ⊕m). (If Σm does not parse correctly with leading values b||pk′ and Σ′

m of
fixed length, followed by b|m| ⊕m, then Ver also returns 0.)

Proposition A.2. If TS′ is a correct and UF-CMA and M-S-UEO threshold signature scheme,
then TS as defined above is a correct and UF-CMA and M-S-UEO threshold signature scheme which
satisfies S-CEO and ES-DEO but not ES-UEO.

Proof. Correctness, unforgeability, and M-S-UEO follow as in the previous case. The extra-strong
version ES-CEO of S-CEO holds because each signature Σm for some message m in the query set Q
must start with c||pk′ for some bit c and the honest public key pk = 0||pk′. Hence, at most two keys
can match such a signature: pk = 0||pk′ and pk∗ = 1||pk. However, verification of the signature Σm

also checks that the message part encodes either m or the flipped version 1|m| ⊕m, depending on
the first bit of the public key. But then the signature Σm cannot verify positively for both keys pk
and pk∗, yielding that ES-CEO holds.
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Next, consider S-DEO. Any signature Σm for I \C ≠ ∅ created in a query in set Q is at the front
of the form 0||pk′, because any partial signature by an honest party starts with a bit 0, resulting
in a leading 0-bit via the logical AND. This rules out the possibility for the adversary to output
a key pk∗ starting with a 1-bit for a successful attack. But any key pk∗ ̸= pk for the genuine key
pk = 0||pk′ then cannot match the entry 0||pk′ in Σm, showing that the scheme achieves S-DEO.

We show that the scheme TS is not ES-DEO. The adversary receives as input pk = 0||pk′,
corrupts t parties J , and runs the partial signature generation algorithm for some message m to
create σm,j = 0||σ′

mj
. Hand over m, I = ∅, J and {pkj , 1||σ′

m,j}j∈J to oracle OaugmSign to get a

signature Σm. Note that this signature is of the form Σm = 1||pk′||Σ′
m||(1|m| ⊕m). The adversary

outputs m∗ = 1|m| ⊕m, Σ∗ = Σm and pk∗ = 1||pk′. It follows that Ver′ checks the validity of the
signature Σ′

m for message b|m
∗| ⊕ m∗ = m and accepts, and that Σm correctly encodes the data

for the modified public key pk∗ = 1||pk′ starting with 1, The adversary thus breaks ES-DEO with
probability 1.

A.2 Separating M-S-UEO and S-UEO in the Non-Robust Setting

In this section, we discuss that M-S-UEO only implies S-UEO for robust schemes. That is, we
present a scheme TS that is M-S-UEO (and unforgeable and correct if the underlying scheme TS′

already is) but not RB-CMA, and for which we show that S-UEO can be broken. This in particular
means that the extra-strong notion ES-UEO cannot hold either. Consider an arbitrary threshold
scheme TS′ and modify it to scheme TS as follows:

1. Setup(1λ)→ pp: Outputs Setup′(1λ)→ pp′.

2. KeyGen(pp, n, t)→ (pk, {pki}i∈[n], {ski}i∈[n]): Computes the underlying keys KeyGen′(pp′, n, t)
→ (pk′, {pk′i}i∈[n], {sk′i}i∈[n]) and returns pk = 0||pk′, as well as {pki}i∈[n], {ski}i∈[n] for pki =
pk′i and ski = sk′i.

3. PartSign(pp, pk, ski,m) → σm,i. Runs PartSign′(pp, pk, ski,m) → σ′
m,i and outputs σm,i =

0||σ′
m,i.

4. PartVer(pp, pk,m, pki, σm,i) → 0/1. Runs PartVer′(pp, pk′,m, pki, σ
′
m,i) → 0/1 for pk′, σ′

m,i

with pk = b||pk′ and σm,i = bi||σ′
m,i.

5. PartComb(pp, pk, S,m, {pki, σm,i}i∈S) → Σm: Runs PartComb′(pp, pk′, S,m, {pki, σ′
m,i}i∈S) →

Σ′
m for pk′, σ′

m,i with pk = b||pk′ and σm,i = bi||σ′
m,i. Returns Σm = 1||pk′ if there exists bi

with bi = 1, and Σm = 0||pk||Σ′
m otherwise.

6. Ver(pp, pk,m,Σm)→ 0/1: Accepts if pk = 1||pk′ and Σm = 1||pk′, else Ver(pp, pk′,m,Σ′
m)→

0/1 for pk = 0||pk′ and Σm = 0||pk′||Σ′
m. (In the latter case, if pk does not parse correctly

with a leading 0-bit or Σm does not parse correctly with leading bits 0||pk′, then Ver also
returns 0.)

Proposition A.3. If TS′ is a correct and UF-CMA threshold signature scheme for n ≥ 2, then TS
as defined above is a correct and UF-CMA threshold signature scheme which satisfies M-S-UEO but
not RB-CMA nor S-UEO.

Proof. Correctness and unforgeability of TS follow straightforwardly from the correctness properties
of TS′ because genuinely combined partial signatures (all with leading bit bi = 0) result in a valid
signature Σ′

m which verify under an honestly generated key pk with a leading 0-bit. Unforgeability
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also holds because one can give a straightforward reduction for genuine public keys of the form
pk = 0||pk′.

We first argue that M-S-UEO holds. Note that a valid signature Σm for public keys starting
with a 0-bit must contain the encoding of 0||pk′ at the beginning. Hence, one cannot find different
public keys pk ̸= pk∗ of this type that are valid for the same signature Σm. Furthermore, the
same holds for exceptional keys pk = 1||pk′, which only accept one signature Σm = 1||pk′ as valid.
Crossover cases with one public key starting with 1 and one with 0 in the M-S-UEO attack cannot
work for the same signature either since the leading bit of valid signatures must always match the
ones of the public keys.

It remains to argue that the scheme is neither S-UEO nor RB-CMA. For S-UEO, we let the
adversary initially corrupt one of the at least two users (n ≥ 2), say, j ∈ C. Then, for the honestly
generated public key pk = 0||pk′ it calls oracleOaugmSign for an arbitrary messagem and I = [n]\{j},
J = {j} and a created partial signature σm,j = 1||σ′

m,j . Here, σ
′
m,j is computed with knowledge of

the corrupted secret key skj = sk′j . The result of the call to OaugmSign is a signature Σm = 1||pk′
and some entry (m,Σm, I) in the query set Q. The attacker finally outputs pk∗ = 1||pk′ together
with m∗ = m and signature Σ∗

m = Σm = 1||pk′. Note that this is a valid signature for pk∗ ̸= pk,
and we have an entry in Q, such that the adversary wins the S-UEO game with probability 1.

To break property RB-CMA our adversary corrupts all except for one party i, generates partial
signatures 0||σ′

m,j with the help of the secret keys for some message m for j ̸= i, but changes them
to σm,j = 1||σ′

m,j . The attacker outputs (m, i) as the challenge to create partial signature σm,i

for the uncorrupt user i. It then submits ([n],m, {σm,i}i∈[n]) in the second round, resulting in a
signature of the form Σm = 1||pk′ due to the leading 1-bits in the (at least one) corrupt signatures
(using n ≥ 2). But then verification Ver rejects this signature Σm with leading 1-bit due to the
public key pk starting with a bit 0. Hence, our adversary breaks robustness with probability 1.
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