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Abstract. In this paper, we analyze the subtle issues of complexity estimates related
to state-of-the-art cryptanalytic efforts on ChaCha. In this regard, we demonstrate
that the currently best-known cryptanalytic result on 7-round ChaCha with time
2189.7 and data 2102.63 [Xu et al., ToSC 2024] can be estimated as 2178.12 for time and
2101.09 for data complexity. We improve the best-known result for the 7.25 round by
obtaining an improved set of Probabilistic Neutral Bits and considering our revised
estimation. Our result with time complexity 2212.43 and data complexity 2100.56

improves the result of Xu et al., where they could achieve time and data complexity
2223.9 and 2100.80, respectively. For both the 7 and 7.25 rounds, we can show an
improvement of the order of 211 in the time complexity. For 7.5-round, we improve
the result of Dey [IEEE-IT 2024], which reports the time and data complexity of
2255.24 and 232.64, respectively. By applying the formula of the same paper and
incorporating additional PNBs, we obtain improved time and data complexity of
2253.23 and 234.47, respectively. Thus, this paper describes the currently best-known
cryptanalytic results against reduced round ChaCha. Our results do not affect the
security claims of the complete algorithm with 20 rounds. Also, we provide a rebuttal
of the Work by Wang et al. [WDL+25] and analyze their claim about the error in
the “Divide-and-Conquer” Approach.
Keywords: Biases, ChaCha, Conditional Probability, Differential-Linear Cryptanaly-
sis, Probabilistic Neutral Bits.

1 Introduction
ChaCha [Ber08] was introduced by Bernstein in 2008 following a similar design strategy of
Salsa, i.e., ARX, with modified round functions. ChaCha is a more diffused and secure
version of Salsa. ChaCha is now widely used in many algorithms and protocols by different
organizations, including Google [Goo]. ChaCha combined with MAC algorithm Poly1305
[Ber05] to improve the software performance with no hardware acceleration, and it works
faster than AES-GCM [NL18]. As noted from the public domain information, ChaCha20-
Poly1305 is used in protocols like IPsec, SSH, TLS 1.2, DTLS 1.2, TLS 1.3, WireGuard,
S/MIME 4.0, OTRv4, etc. [Dep].
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One must note that the first paper [AFK+08] on cryptanalysis of ChaCha presented the
broad idea of the meet-in-the-middle technique, where the attacker moves forward to a
specific round and then returns to that round from a later one. Interestingly, to date,
all the cryptanalytic techniques exploit that broad idea from [AFK+08] with different
sophisticated and clever tweaks. In 2024, Dey [Dey24] introduced a new technique to
obtain the Probabilistic Neutral Bits (PNB set) for the linear combination of multiple
bits of the output difference position and formulate the new time complexity value for
the differential-linear attack. Recently, in ToSC 2024 [XXTQ24], Xu et al. improved the
correlation value of the four-round differential-linear distinguisher proposed in [BGG+23].
In this work, we have incorporated these ideas, revised the estimation of complexities,
and identified improved PNB sets to obtain the currently best-known parameters for
cryptanalysis of reduced round ChaCha.

1.1 Related Works
Soon after the introduction of ChaCha in 2008, cryptanalysts provided a series of results
on the cipher. In FSE 2008, Aumasson et al. [AFK+08] presented the first-ever attack
on 6 and 7-round ChaCha with time complexity 2139 and 2248, respectively. The authors
presented a new idea for obtaining the Probabilistic Neutral Bits (PNBs) in this work.
Till now, most works have used this technique to improve the attack on ChaCha. Ishiguro
et al. [IKM11] then constructed double-bit differentials to improve the attack against
ChaCha. In ICISC 2012, Shi et al. [SZFW13] improved the time complexities for 6-round
and 7-rounds, and they were shown to be 2136 and 2246.5, respectively. In 2016, Maitra
[Mai16] reduced the time complexity for 7-round ChaCha to 2238.94. In this work, Maitra
introduced the concept of finding the key-IV pair to obtain a higher bias value for the
differential-linear distinguisher.

Choudhuri et al. [CM17] further provided an attack on the R-round ChaCha (4 ≤ R ≤
7) for the 256-bit key version. The authors proposed linear extension techniques by
identifying certain approximation values and introducing new high-round differential-linear
distinguishers. These techniques reduce the time complexity of 7-round ChaCha to 2237.7.
In 2017, Dey et al. [DS17] improved the idea of finding PNBs to improve the attack on
7-round ChaCha with the time complexity of 2235.2. In Crypto 2020, Beierle et al. [BLT20]
introduced multiple linear approximations and partitioning techniques to improve the
time complexity for 7-round ChaCha to 2230.86. The authors obtained a new 3.5-round
single-bit differential-linear distinguisher in the process.

In 2021, cryptanalysts introduced further ideas on the cryptanalysis of ChaCha. In
Eurocrypt 2021, Coutinho et al. [CSN21] provided the first explicitly derived linear
approximations for 3 and 4 rounds of ChaCha. However, Dey et al. [DDSM22] revisited this
work and showed that the claimed distinguisher is incorrect, invalidating the improvement.
Miyashita et al. [MIM22] provided the PNB-based differential attack on ChaCha with time
complexity 2231.63, but that was not better than the attack by [BLT20]. In Eurocrypt 2022,
Dey et al. [DGSS22] provided a 3-step technique to obtain the PNB-set. This technique
reduced the time complexity for 7-round ChaCha to 2221.95. Moreover, the complexity
calculation formula given by Aumasson et al. [AFK+08] was improved in this work. Dey
et al. [DGSS23] then provided a novel technique for creating a collection of PNBs and
assigning values to the PNBs while guessing the keys. This technique reduced the time
complexity for 7-round ChaCha to 2218.92. In FSE 2023, Dey et al. [DGM23] introduced
the divide and conquer approach and reduced the time complexity of 6-round ChaCha
to 299.48. In Crypto 2023, Wang et al. [WLHL23] introduced the syncopation technique
for the PNB-based approximation in the backward direction to reduce the complexity for
7-round ChaCha to 2210.3. Recently, Bellini et al. [BGG+23] used the MILP technique to
obtain better linear trails, reducing the time complexity to 2206.8. Recently, Sharma et al.
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[SD24] explained estimating key recovery probability in ChaCha differential attacks using
empirical trials and statistics.

Table 1: Comparison of Our Attack Complexities With the Existing Attacks on ChaCha
for 256-Bit Key Having 7, 7.25, and 7.5 Rounds.

7-round
Time Data Ref.
2248 227 [AFK+08]

2246.5 227 [SZFW13]
2238.9 296 [Mai16]
2237.7 296 [CM17]
2235.22 - [DS17]
2230.86 248.83 [BLT20]
2221.95 290.20 [DGSS22]
2218.92 287.18 [DGSS23]
2210.3 2103.3 [WLHL23]
2206.8 2110.81 [BGG+23] ⋆

2192.89 293.79 [Dey24]
2189.7 2102.63 [XXTQ24]
2178.12 2101.09 Section 4

7.25-round
Time Data Ref.
2244.85 293.24 [DGSS23]
2238.34 2122.34 [BGG+23]⋆
2228.24 2100.90 [Dey24]
2223.9 2100.80 [XXTQ24]
2212.43 2100.56 Subsection 5.1

7.5-round
Time Data Ref.
2255.24 232.64 [Dey24]
2253.23 234.47 Subsection 5.2

Very recently, in 2024, two state-of-the-art works have been published that further improved
the time complexity for 7-round. [Dey24] improved the attack by sharpening the idea of
PNBs. The author obtained the PNBs for each bit in the output difference and the entire
linear combination of the Output Difference position (OD) bits. This technique reduces the
time and data complexities to 2192.89 and 293.79, respectively. Further, this work revisits
the technique of [BGG+23] and shows that the data complexity claimed in their attack is
more than the maximum available data in their approach, making the attack infeasible.
All the infeasible results are marked ⋆ in Table 1. Recently, in ToSC 2024 [XXTQ24], Xu
et al. improved the correlation value of the four-round differential-linear distinguisher,
earlier proposed in [BGG+23], from 2−34.15 to 2−32.2, hence reducing the time and data
complexities to 2189.7 and 2102.63, respectively. The works of [Dey24, XXTQ24] also
presented cryptanalysis on 7.25 and 7.5 rounds. In this work, we incorporated these two
independent ideas. Considering our revised complexity-related formula and using certain
revised PNB sets, we can improve the best results by a good margin.

1.2 Contributions & Organization
As we have already presented, the complexities of the existing attacks and our improvements
are summarized in Table 1. The paper is organized as follows.

Section 2 describes the specification of ChaCha and the preliminary techniques required
to explain our attack against ≥ 7-rounds of ChaCha. In Table 2, we mention the basic
notations used in the paper. Next, in Section 3, we discuss the previous attack ideas
combined with our proposed algorithm for PNBs. In Section 4, we describe our result on
7-round ChaCha, showing improvement in time complexity by a good margin compared to
[XXTQ24], with the revised formula that we explain in Equation 5. Then, in Section 5, we
present the improved cryptanalytic results for 7.25 and 7.5 rounds from [XXTQ24, Dey24].
Subsection 5.1, with our revised formula and improved PNB sets, explains the improvement
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for the 7.25 round. Further, Subsection 5.2 presents the improvement for the 7.5 round
with certain new PNBs, using the formula presented in the work of [Dey24] itself. In
Section 6, we discuss the work of Wang et al. [WDL+25] and discuss their claim of finding
errors in the works of IEEE TIT [Dey24] and INDOCRYPT 2024 [SDSM25]. Finally,
Section 7 concludes the paper.

Table 2: Table for Notations.

Notation Meaning
X The state matrix of the cipher consisting of 16 words
Xi i-th word of the state matrix

X(r) State matrix after r rounds
R-round ChaCha ChaCha reduced to R rounds

F −1 Reverse round function
ID Input Difference position
OD Output Difference position

ID − OD Input- Output Difference position
X

(r)
i [j] Value of j-th bit of the i-th word of X(r)

∆X
(r)
i [j] Difference at the j-th bit of the i-th word of states X(r) and X′(r)

ϵd Bias obtained after r rounds (forward bias)
ϵa Bias obtained after (R − r) rounds in backward direction

ODi i-th bit of the Output Difference position
ϵi Bias obtained obtained for each ODi position

Prfa Probability of False Alarm Error
Prnd Probability of Non-detection Error

2 Specifications, Preliminaries & Background
Here, we describe the cipher in Subsection 2.1, and Subsection 2.2 explains the differential-
linear cryptanalysis technique. [AFK+08] introduced the idea of Probabilistic Neutral
Bits; we explain this technique in Subsection 2.3. The idea of finding a Key-IV pair
and probabilistically independent bits are explained in Subsection 2.4 and Subsection 2.5,
respectively.

2.1 The Design of ChaCha
ChaCha is a steam cipher introduced by Daniel J. Bernstein [Ber08] in 2008. The initial
state is a 4 × 4 matrix of 32-bit words. That is, the cipher has a 512-bit state. The state
is initialized with a 128-bit constant, a 256-bit key, a 32-bit counter, and a 96-bit nonce.
The constant words (c0, c1, c2, c3) are placed in the first row. Keywords (k0, k1, . . . , k7) are
arranged in the second and third rows of the matrix. Nonce t0 and counter words (v1, v2, v3)
are positioned in the fourth row. The constants words (c0, c1, c2, c3) for the 256-bit key
structure are c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574.
The initial matrix looks as follows:

X =


X0 X1 X2 X3
X4 X5 X6 X7
X8 X9 X10 X11
X12 X13 X14 X15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 .

The round function consists of four quarterround functions. Let F denote the round
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function. In this round function, the vector (a, b, c, d) transforms into a vector (a′′, b′′, c′′, d′′)
as shown below:

a′ = a ⊞ b; d′ = ((d ⊕ a′) ≪ 16);
c′ = c ⊞ d′; b′ = ((b ⊕ c′) ≪ 12);

a′′ = a′ ⊞ b′; d′′ = ((d′ ⊕ a′′) ≪ 8);
c′′ = c′ ⊞ d′′; b′′ = ((b′ ⊕ c′′) ≪ 7).

(1)

During odd rounds, the round function is applied to each column, and these rounds
are referred to as the column-round function. The four columns are (X0, X4, X8, X12),
(X1, X5, X9, X13), (X2, X6, X10, X14) and (X3, X7, X11, X15). On the other hand, during
even rounds, the function is applied to the diagonals, and these rounds are known as the
diagonal-round function. The four diagonals are constructed as follows: (X0, X5, X10, X15),
(X1, X6, X11, X12), (X2, X7, X8, X13) and (X3, X4, X9, X14). X being the initial state is
added with X(n) (the state after n rounds of X) to obtain the keystream block Z as
Z = X ⊞ X(n). With n = 20 for ChaCha and the latest state-of-the-art results.

It should be noted that the ChaCha round function is reversible. In reverse round function
(F −1) the vector (a′′, b′′, c′′, d′′) acts as initial vector and changes into vector (a, b, c, d) as
follows:

b′ = ((b′′ ≫ 7) ⊕ c′′); c′ = c′′ ⊟ d′′;
d′ = ((d′′ ≫ 8) ⊕ a′′); a′ = a′′ ⊟ b′;
b = ((b′ ≫ 12) ⊕ c′); c = c′ ⊟ d′;
d = ((d′ ≫ 16) ⊕ a′); a = a′ ⊟ b;

(2)

2.2 Differential-Linear Cryptanalysis
Differential and Linear cryptanalysis are the primary attack methods against symmetric
ciphers. Differential cryptanalysis [BS91] was introduced by Biham and Shamir in 1990,
specifically targeting DES. In 1992, Matsui developed linear cryptanalysis [MY93], initially
applied to FEAL, where the attacker attempts to establish linear relationships between
bits of the plaintext, ciphertext, and key using the XOR operation. By 1994, Langford and
Hellman combined these two methods, creating differential-linear cryptanalysis [LH94].
This hybrid approach was first applied to DES and extended to stream ciphers. The
technique involves splitting the cipher E into two subciphers, E1 and E2, where E1 is
analyzed using differential cryptanalysis, and E2 is subjected to linear approximation.

To illustrate the differential-linear cryptanalysis on ChaCha, let X represent the initial
state matrix, and X ′ denote the state matrix with a single bit difference from X at input
difference position (ID). Here, Xi[j] refers to the j-th bit of the i-th word in matrix X.
After introducing the difference in the initial stage, the output difference after r rounds
is observed, denoted as ∆X

(r)
p [q] = X

(r)
p [q] ⊕ X

′(r)
p [q]. The position where the output

difference ∆X
(r)
p [q] = 0 occurs with high probability is identified as the output difference

position (OD). The probability value is expressed as 1
2 (1 + ϵd), where ϵd represents the

bias value for the difference obtained after r rounds, also called forward bias. Following
the observation of the r-round output difference, a linear relation between the output
differential after r rounds and R rounds is sought. The bias for this linear approximation is
denoted by ϵl, and since the linear relationship applies to both X and X ′, the differential-
linear bias for R rounds is given by ϵd · ϵ2

l . Therefore, the total bias value obtained for the
differential-linear distinguisher used in the key-recovery attack is ϵd · ϵ2

l .



6 Improved Cryptanalytic Results against ChaCha

2.3 Probabilistic Neutral Bits (PNBs)
In this section, we explain the concept of Probabilistic Neutral Bits (PNBs), also known
as non-significant key bits, and outline the procedure for identifying these key bits.
Probabilistic Neutral Bits have a low probability of affecting the output difference obtained
after the completion of r rounds. Using this technique, the attacker need not search
through all 2256 possible key combinations (for a 256-bit key). The focus should be on
the m bits, the non-PNBs, reducing the search space to 2m possibilities. After identifying
these m bits, an exhaustive search can determine the remaining Probabilistic Neutral Bits
(PNBs).

Let’s formally define Probabilistic Neutral Bits (PNBs). Consider an initial state matrix
X. By introducing an appropriate non-zero input difference (ID), we obtain a new state
X ′. After running X and X ′ for r rounds, we observe the output difference (OD), denoted
by ∆X

(r)
p [q]. The bias observed is denoted by ϵd. Upon completing R rounds, the final

states X(R) and X ′(R) are obtained, which are then used along with the initial states X
and X ′ to generate keystream blocks Z and Z ′, i.e., Z = X ⊞ X(R) and Z ′ = X ′ ⊞ X ′(R)

respectively.

To find the Probabilistically Neutral Bits (PNBs), we alter one key bit, say l, among the
total key bits (256) in the initial states X and X ′, resulting in new altered states Y and Y ′.
If we apply reverse round function F −1 on Z −Y and Z ′ −Y ′ for (R−r) rounds, we obtain
the state matrices M and M ′, where M = F −(R−r)((Z − Y ) and M ′ = F −(R−r)(Z ′ − Y ′).
For a key bit to be PNB, the probability that ∆Mp[q] = ∆X

(r)
p [q] is expected to be high.

We denote γl as the bias of this event, expressed as:

Pr
[
∆X(r)

p [q] ⊕ ∆Mp[q] = 0 | ∆X = 1
]

= 1
2(1 + γl).

To construct the set of Probabilistically Neutral Bits (PNBs), as mentioned in the work
of [AFK+08], we keep a threshold value γ. Key bits for which γi ≥ γ are classified as
Probabilistically Neutral Bits. The optimal threshold value γ can be chosen in order to
get a set of Probabilistically Neutral Bits, which helps in improving the time complexity.

2.4 Finding Right Pair
To find the right pair for the attack against ChaCha, we use the modified differential-linear
cryptanalysis idea by [BLT20]. In this procedure, instead of dividing the cipher E into two
subciphers, the cipher is divided into three parts E1, Em and E2, where Em ◦ E1 works on
the differential part. E1 subcipher is used to find the right Key-IV pair using the input
difference (ID). After the completion of E1 part, the difference between the two states
E1(X) and E1(X ′) is observed, and the number of differences after the first round (E1 part)
is δ. The probability p of obtaining a right pair is given by Pr [E1(X) ⊕ E1(X ′) = δ] = p.

The states (X, X ′) for which the output difference is δ are considered right pairs. We
require p−1 pairs on average to obtain a right pair. Hence, the attack needs to multiply p−2

with the complexity values obtained for the key-recovery attack, as explained in Section 5.2
of [BBC+22]. The technique to improve the complexity [BBC+22] introduced the concept
of finding the Probabilistically Independent IV Bits, as explained in the next section.

2.5 Probabilistically Independent IV Bits
As mentioned in Subsection 2.4, the complexity values will be multiplied by p−2 using the
right pair technique. In order to reduce this term, a new idea was introduced [BLT20],
in which a single bit x among the IV bits is considered and checked that change in the
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value of the single bit x will not affect the encryption process. Such bits will be chosen so
that the probability of no change p1 is approximately 1. Pr [E1(X + x) ⊕ E1(X ′ + x) =
E1(X) ⊕ E1(X ′)] = p1. Such values of x are called probabilistically independent IV bits.
These bits are then collected together to form a set. For some pairs of initial states (X, X ′),
this set is observed, and the probability of the initial states (X, X ′) satisfy the conditional
E1(X + x) ⊕ E1(X ′ + x) = E1(X) ⊕ E1(X ′) is counted, where x denotes a single bit. Let
that probability value be p′, which is much larger than the p. Hence, using the concept,
the factor p−2 will become p−1 × p′, which reduces the complexity values by a fair margin.

3 Techniques Used in this Work
This section explains how a certain combination of existing and novel techniques can be
exploited to improve state-of-the-art results. Subsection 3.1, explains the improvement in
the correlation value of the four-round differential-linear distinguisher, which is an existing
technique. In Subsection 3.2, we introduce novel methods for identifying PNBs. Using
this newly developed PNB algorithm, we successfully determine the PNB for multiple OD
bits—a significant advancement. The procedure for obtaining such PNBs is explained
thoroughly. Finally, the modified data and time complexity values are calculated using
the defined methodology mentioned in Subsection 3.3. Hence, the newly introduced
PNB algorithm (Subsection 3.2), combined with the recalculated time complexity values,
provides a comprehensive solution that enhances the overall efficiency of the process.

3.1 Differential-Linear Hull Technique Proposed in [XXTQ24]
In ToSC 2024, Xu et al. [XXTQ24] explained that the four-round differential-linear
distinguisher proposed by Bellini et al. [BGG+23] can be improved using the differential-
linear hull method. Using this method, they modified the correlation value of the two-round
linear approximation (∆X

(3)
2 [4, 3, 0] ⊕ ∆X

(3)
7 [20, 4, 0] ⊕ ∆X

(3)
8 [20, 19] ⊕ ∆X

(3)
13 [4]) −→

(∆X
(5)
2 [0] ⊕ ∆X

(5)
6 [7] ⊕ ∆X

(5)
6 [19] ⊕ ∆X

(5)
10 [12] ⊕ ∆X

(5)
14 [0]) to 2−2.05 over the theoretically

obtained value 2−4. They partition the output difference obtained after three rounds into
two parts ∆X

(3)
7 [20, 4, 0] and (∆X

(3)
2 [4, 3, 0] ⊕ ∆X

(3)
8 [20, 19] ⊕ ∆X

(3)
13 [4]) and obtain the

correlation value separately for both partitions and upon applying the pilling -up lemma
showed that the correlation value of the 4-round differential-linear distinguisher is improved
from 2−34.15 to 2−32.2. This improved correlation value of the four-round distinguisher is
used in this work to provide the differential-linear attack against 7-round ChaCha.

3.2 Improved Algorithm for PNBs: Use of Conditional Probability
In [DS17], an improved algorithm to find the probabilistically neutral bits was proposed.
It was based on a Greedy approach where, in each iteration, the key bit providing the
best neutrality measure along with the existing set is included as the next member in
the set of PNBs. The limitation of this approach was that, as the size of the PNB set
increases, the bias decreases. Therefore, identifying the best candidate in each iteration
becomes very difficult in the end, and therefore, the best set might not be achieved. In
this work, we propose a different idea to obtain further improvement in constructing a set
of probabilistically neutral bits. This approach is also iterative but based on conditional
probability. The procedure of obtaining the PNB set is divided into two parts: pre-
processing and post-processing. In the pre-processing stage, we obtain the PNB set using
the Algorithm 1. After collecting PNBs, we added more PNBs to the set, which provided
a good bias. This addition of PNBs is explained in the post-processing part.
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3.2.1 Pre-Processing

The entire process is presented in Algorithm 1.

Algorithm 1: Improved Algorithm to find the set of PNBs.
Input: LOOP : the number of iterations to be performed, t: the number of PNBs

to be selected.
for i = 1 to t do

for K0 to K255 such that Kj /∈ PNB; do
counter = 0.
for loop = 1 to LOOP do

Initialize state matrix X and generate matrix X ′.
After R quarter rounds, X generates Z, and X ′ generates Z ′.
while true do

Construct X̃, X̃ ′ by put random values at PNBs of X, X ′.
M̃ = F −(R−r)(Z − X̃), M̃ ′ = F −(R−r)(Z − X̃ ′).
if (M̃p[q] ⊕ M̃ ′

p[q] = X(r) ⊕ X(r)′) then
break

end
end
X̂ = X̃ ⊕ Kj , X̂ ′ = X̃ ′ ⊕ Kj .
M̂ = F −(R−r)(Z − X̂), M̂ ′ = F −(R−r)(Z − X̂ ′).
if (M̂p[q] ⊕ M̂ ′

p[q] = X(r) ⊕ X(r)′) then
counter = counter + 1 .

end
Prob(Kj) = counter

LOOP .
end
Max = Choose the Kj with the highest Prob(Kj).

end
PNBi+1 = PNBi ∪ Max.

end

To explain more, let us denote the PNB set constructed after the i-th iteration by PNBi.
It contains i elements. In the (i + 1)-th iteration, we do the following for all the key bits
Kj such that Kj /∈ PNBi.

• From the matrices X and X ′, by assigning arbitrary values in the key bits belonging
to PNBi, we prepare the matrices X̃, X̃ ′.

• Next, we apply the reverse round function F −1 on Z − X̃, Z ′ − X̃ ′ by (R − r) rounds.
Let us denote the obtained matrices by M̃, M̃ ′.

• Consequently, we observe the difference M̃p[q] ⊕ M̃ ′
p[q] = X(r) ⊕ X(r)′ .

• If this difference is zero, we assign a random value at the key bit Kj of both X̃, X̃ ′,
and call the new matrices X̂, X̂ ′.

• Then, similarly as above, we apply the reverse round function F −1 on Z −X̂, Z ′ −X̂ ′,
and obtain M̂, M̂ ′.

• Further, observe the difference M̂p[q] ⊕ M̂ ′
p[q] = X(r) ⊕ X(r)′ .

• Repeating this process for a sufficient number of X, X ′, we find out the conditional
probability Pr(∆M̂p[q] = ∆X(r) | ∆M̃p[q] = ∆X(r)).
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• Among all the key bits Kj /∈ PNBi, the one for which the probability Pr(∆M̂p[q] =
∆X(r) | ∆M̃p[q] = ∆X(r)) is maximum is considered as the (i + 1)-th PNB.

As mentioned above, the bias decreases as the number of PNBs increases. Therefore,
identifying the best candidates for the PNB set becomes computationally intensive towards
the final stages, making it exceedingly challenging. However, our approach successfully
mitigates this issue. Consequently, our algorithm performs optimally when obtaining large
PNB sets. LOOP represents the number of iterations the algorithm performs when testing
each candidate bit. The counter value tracks how often a candidate bit behaves like a
PNB by counting how many times it satisfies the condition during testing. We calculate
the ratio counter

LOOP for a particular key Kj to find the probability. If the counter
LOOP value will

be high for Kj and satisfy the conditions outlined in the algorithm, then Kj is considered
PNB. In our algorithm, the bit Kj will be added to the PNB set if its probability value is
high, taking into account the PNBs already selected.

3.2.2 Post-Processing

In this part, we focus on expanding the PNB set by adding carefully selected candidates
that enhance the backward bias value. These candidates are chosen through a trial-and-
error approach, utilizing PNB elements not initially identified by our improved algorithm.
When combined with other PNBs, these candidates often yield better results. This method
significantly boosts the quality and size of the PNB set. We apply this process to increase
the PNB count across all rounds of ChaCha, as discussed in Section 4 and Section 5.

3.3 Improved Complexity Calculation as Explained in [Dey24]
In our attack against 7-round ChaCha, we use a recent idea proposed in [Dey24]. The
attack procedure is applied on a multi-bit output difference OD position. Suppose the
output difference is observed as a linear combination of multiple bits, OD1, OD2, . . . , ODk.
Then, first, the PNB set is constructed by the usual approach for the linear combination of
OD bits. Then, for the ODi’s, a separate PNB set is constructed by adding extra PNBs
corresponding to ODi only. Therefore, we have a PNB set for each ODi. Now, during the
actual attack, for each of the ODi, random values are assigned to PNB bits in the initial
states, and the states X̄i and X̄ ′

i are constructed corresponding to each ODi position.
From Z, Z ′, we compute Z − X̄i, Z ′ − X̄ ′

i, and on applying the reverse round function F −1,
we obtain two states M̄i and M̄ ′

i .

We perform this step for N pairs of Z and Z ′, storing the difference as an N -tuple. The
remaining non PNBs corresponding to each ODi are guessed in the next step. After
guessing the non PNBs (denoted by mi), we find the correlation between the states ∆M̄i

and ∆X̄i for each ODi bit position. This correlation value is denoted by ϵi. We find
the XOR of the N -tuple for each ODi. We also obtain the correlation corresponding
to the linear combination of multiple bits ODi’s. The correlation value is denoted by
ϵa. According to Proposition 1 in [Dey24], the total correlation is ϵ and is given by
ϵ = ϵd × ϵa × (

k

Π
i=1

ϵi). The formula for finding the data complexity value for the fixed
value of Prnd = 1.3 × 10−3 is the same as mentioned in the previous works (for example
[AFK+08]), using the Neyman-Pearson lemma, for Prfa = 2−α and Prnd = 1.3 × 10−3.

N ≈

(√
α log 4 + 3

√
1 − ϵ2

ϵ

)2

. (3)

The time complexity value mentioned in [Dey24] is given as
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k∑
i=1

2mi · N + 2m · N × k − 1
210 × (R − r) + 2256−α + 2256−m, (4)

where m denotes the non PNBs corresponding to the multi-bit output difference OD
position and mi denotes the non-PNBs corresponding to each ODi position. In this paper,
we will revisit this formula in a disciplined manner and will present certain modifications.

In [Dey24], the author mentioned that during the complexity calculation, the same set of
operations is performed for k ODi positions, which can be reduced by considering these
operations as one unit of complexity as mentioned in section V-B [Dey24]. As we know, 16
additions (⊞) and 16 XORs (⊕) are involved in one round of ChaCha. These operations
are applied to 32-bit numbers. Hence, 32 operations (16 additions and 16 XORs) were
repeated for (R − r) rounds. Also, the procedure is repeated for both X and X ′, so the
number of operations becomes equivalent to 32 × 32 × 2 × (R − r) = 211 × (R − r).
In [Dey24], the author missed counting the 16 addition operations that will be repeated
during computation. Since there are 32 operations that are functional for one round,
hence instead of 16, the factor should be 32 in the computation, which will increase the
denominator. The modified formula based on this observation is given below:

C =
k∑

i=1
2mi · N + 2m · N × k − 1

211 × (R − r) + 2256−α + 2256−m. (5)

The final data and time complexity values are p−1 × N and p−1 × C, where p is the
differential probability for E1 subcipher as explained in Subsection 2.4.

4 Description of our Cryptanalysis on 7-round ChaCha
In this section, we explain the attack procedure against 7-round ChaCha based on the
approaches discussed in Section 3, which improves the time complexity by a reasonable
margin over previous attacks.

In the timeline of the cryptanalysis against 7-round ChaCha, the introduction of differential-
linear distinguisher (ID − OD pair) played an important role in building different attack
techniques. Since 2020, most recent works have used the 3.5-round ID − OD pair obtained
by Beierle et al. [BLT20]. However, in 2023, Bellini et al. [BGG+23] found a 5-round
differential-linear distinguisher using the MILP tool starting with 2-bit differences instead
of 1-bit difference in the differential part. In this attack against 7-round ChaCha, we have
to come back by 2 rounds during the reverse direction to compare the difference at 5-round.
This leads to different variations of cryptanalysis towards building various attack ideas
using this 5-round differential-linear distinguisher. As explained thoroughly in Section 3,
the parallel works by [Dey24] and [XXTQ24] improved the attack procedure of [BGG+23].
The 5-round differential-linear distinguisher is given below.

ID : X
(0)
15 [9], X

(0)
15 [29]

OD : (∆X
(5)
2 [0] ⊕ ∆X

(5)
6 [7] ⊕ ∆X

(5)
6 [19] ⊕ ∆X

(5)
10 [12] ⊕ ∆X

(5)
14 [0]). (6)
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4.1 Results of [Dey24] and [XXTQ24]
In [Dey24], the author uses the same ID − OD pair mentioned above in Equation 6 with
bias ϵd = 2−34.15 and uses the 3-step process of finding PNBs given in [DGSS23] and
obtain the set of 156 PNBs mentioned below. The PNB bits obtained are listed in the
descending order of the bias value γl.

31, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 0, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 95, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 1, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,
182, 183, 184, 185, 186, 187, 188, 189, 191, 218, 219, 220, 221, 222, 223, 255, 2, 3, 4,
103, 32, 104, 64, 105, 123, 106, 65, 5, 33, 244, 71, 77, 124, 125, 83, 245, 204, 224,
126, 127, 34, 6, 66, 107, 246, 225, 84, 72, 205, 78, 192, 198, 210, 247, 89, 108, 199,
67, 35, 7, 8, 226, 128, 206, 79, 85, 73, 193, 109, 129, 99, 90, 211, 140, 19, 20, 141,
227, 9, 200, 194, 142, 21, 110, 68, 130, 36, 74, 231, 91, 100, 86, 14, 201, 212, 207, 80.

The correlation value for these bits is ϵa = 0.0026. Next, in this work, the author introduces
a new technique of finding PNBs for each OD bit of the OD position obtained after 5
rounds. This technique improves the time complexity to 2192.89.

At the same time, Xu et al.[XXTQ24] worked on improving the bias ϵd value for the
5-round differential-linear distinguisher. They successfully improved the value from 2−34.15

to 2−32.2 using the differential-linear hull technique. Xu et al. also introduce a two-step
technique to find the PNBs. They obtained 169 PNBs listed below. The PNBs are
arranged according to the PNB algorithm mentioned in their work. The correlation value
ϵa = 0.00027 for these PNBs.

0, 1, 2, 3, 4, 5, 6, 7, 8, 19, 20, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71,
72, 73, 74, 77, 78, 79, 80, 83, 84, 85, 86, 89, 90, 95, 99, 100, 103, 104, 105, 106, 107,
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 198, 199, 200, 204, 205, 206, 207, 210, 211, 218,
219, 220, 221, 222, 223, 224, 225, 226, 227, 244, 245, 246, 247, 255, 248, 9, 130, 142,
21, 91, 212, 110, 231, 22, 143, 232, 111, 228, 10, 201, 249, 115, 147, 14, 81, 26.

4.2 Our Cryptanalytic Steps
Comparing both recent works, we observe further scope for improvement in the value of
time complexity. We modified the attack in the following steps.

1. Firstly, we use the improved bias value obtained using the differential-linear hull
technique for the ID − OD pair given by [XXTQ24]. Following the differential-linear
hull technique by Xu et al. [XXTQ24], the improved forward bias is ϵd = 2−32.2.

2. We use the Algorithm 1 proposed in Subsection 3.2 to construct the set of Probabilistic
Neutral Bits for the ID − OD pair and obtained bias values for different sets of
PNBs and selected the best set to provide the attack against 7-round ChaCha. The
comparison of complexity values for different sets of PNBs is given in Table 3.

3. Next, we find PNBs for each OD position mentioned in [Dey24] and apply the data
and time complexity formulae for the same attack procedure.

4. Further, we improve the probability value p of obtaining a right pair as explained by
Bellini et al. [BGG+23]. For this input difference, the right pair produces exactly
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8 differences after the first round. Hence, they obtained that the probability of
achieving a right-pair by randomly choosing the IV is p = 2−7. Both [Dey24] and
[XXTQ24] use the same value of p.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

0.2
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Figure 1: Distribution of Probability Value for 32 Bit Positions of word v2.

We observed that the value of p can be reduced experimentally. According to our experiment,
among all keys, approximately for 63% keys, the right pair is available, and the probability
of achieving a suitable IV is p = 2−5.2.

After improving the value of p over the previous attacks, we use the idea of Probabilistically
Independent IV’s mentioned in [BLT20]. We find the probability for each IV bit. One
must note that except the IV word in the input difference column, for all the other IV
bits, the probability is 1 since the criterion for the right pair is in the first round only. The
distribution of the ‘probability’ across all 32 bits of v2 is illustrated in Figure 1. There are
four positions, namely 10, 11, 22, and 23, where the probability exceeds 0.9. We select 96
bits with probability 1 for the set of probabilistically independent IV bits, hence p′ = 1.
Therefore, the data and time complexity values will be multiplied by 2−5.2 instead of 2−7.

4.3 Experimental Results
In this process, we used our proposed Algorithm 1 to find a better set of PNBs compared
to the sets provided by [Dey24] and [XXTQ24] and used Equation 3 and Equation 5
to determine the complexity values for the key-recovery attack. The improved forward
bias ϵd = 2−32.2 is used in computing the complexity values. Finding the value of

ϵ = ϵd × ϵa ×
5∏

i=1
ϵi and substituting k = 5 and R − r = 7 − 5 = 2 in Equation 5, we obtain

the complexity values for different PNB sets. The outcomes are shown below, with details
in Table 3.

1. Firstly, we obtain a set of 156 PNBs with bias ϵa = 0.0030 using our PNB algorithm
(Algorithm 1). This set gives better complexity in comparison to [Dey24]. After
obtaining the bias values for 5 OD bits positions, for α = 83, we get N = 288.87

and using Equation 5, C = 2178.90 for the improved set of PNBs. After multiplying
with p−1 = 25.2, the final data, and time complexity values are 294.07 and 2184.10,
respectively.

2. Running Algorithm 1 for t = 163, we increased the PNB set size to 163 PNBs. The
bias value ϵa for these bits is 0.0010. Using the technique of finding PNBs for all
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OD positions mentioned in [Dey24], for α = 87, we get N = 292.11 and C = 2175.13.
The final data and time complexity values are 297.31 and 2180.33, respectively after
multiplying both values with p−1.

3. Using the post-processing technique mentioned in Subsubsection 3.2.2, we added 4
Bits {26, 115, 147, 14} and achieved 167 PNBs. Similarly, for the set of 167 PNBs,
we get the values N and C as 294.13 and 2173.15, respectively, by keeping α = 89.
Upon multiplying with p−1 = 25.2, the final data, and time complexity values are
299.33 and 2178.35, respectively.

4. We obtain a set of 169 PNBs after including {249, 81} in the set of 167 PNBs. This
PNB set of 169 PNBs mentioned below is the same as the PNB set mentioned in
[XXTQ24]. These PNBs are arranged in ascending order to assign the values to
PNBs as explained in [DGSS23]. The consecutive PNBs are assigned 100 . . . 00, and
the non-consecutive PNBs are assigned random values. The backward bias obtained
is ϵa = 0.00027.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 26, 31, 32, 33, 34, 35, 36, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 77, 78, 79, 80, 81, 83, 84, 85, 86,
89, 90, 91, 95, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110, 111, 115, 123,
124, 125, 126, 127, 128, 129, 130, 140, 141, 142, 143, 147, 152, 153, 154, 155,
156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 198, 199, 200, 201, 204, 205, 206, 207, 210,
211, 212, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 231, 232, 244,
245, 246, 247, 248, 249, 255.

Applying the technique proposed in [Dey24], we find the PNBs and the corre-
sponding bias ϵi for the 5 individual OD bits separately. The 5 ODi positions are
X

(5)
2 [0], X

(5)
6 [7], X

(5)
6 [19], X

(5)
10 [12] and X

(5)
14 [0]. The count of PNB sets for these five

OD positions are 41, 58, 41, 29, and 37, and the biases ϵi corresponding to these
positions are 0.983, 0.99, 0.996, 0.993, and 0.982, respectively. We provide this PNB
list for five OD bits below.

PNB Set for 7-round

OD1 (X(5)
2 [0]) 11, 12, 13, 15, 16, 17, 18, 23, 24, 25, 27, 28, 29, 30, 87, 88, 92,

93, 94, 102, 112, 113, 122, 131, 144, 145, 146, 148, 149, 150, 151, 195, 208,
209, 213, 214, 215, 216, 217, 233, 243. Count = 41, Bias = 0.983.

OD2 (X5
6 [7]) 15, 16, 17, 18, 23, 24, 25, 27, 28, 29, 30, 37, 38, 82, 87, 88, 92,

93, 94, 96, 97, 98, 101, 102, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122,
135, 136, 137, 138, 139, 144, 145, 146, 148, 149, 150, 151, 202, 203, 208, 209,
233, 234, 243, 250, 251, 252, 253, 254. Count = 58, Bias = 0.99.

OD3 (X(5)
6 [19]) 27, 28, 29, 30, 37, 38, 69, 70, 75, 76, 92, 93, 94, 96, 97, 98,

101, 102, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122, 131, 148, 149, 150,
151, 213, 214, 215, 216, 217, 229, 230, 243. Count = 41, Bias = 0.996.

OD4 (X(5)
10 [12]) 37, 38, 69, 70, 75, 76, 82, 87, 88, 92, 93, 94, 96, 97, 98, 101,

195, 208, 209, 213, 214, 215, 216, 217, 250, 251, 252, 253, 254. Count = 29,
Bias = 0.993.
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OD5 (X(5)
14 [0]) 11, 12, 13, 15, 16, 17, 27, 28, 29, 30, 37, 38, 69, 70, 75, 76, 82,

119, 120, 135, 136, 137, 138, 148, 149, 150, 151, 195, 197, 202, 203, 216, 217,
240, 252, 253, 254. Count = 37, Bias = 0.982.

For α = 89, and ϵ = ϵd × ϵa ×
5∏

i=1
ϵi = 2−32.2 × 0.00027 × 0.983 × 0.99 × 0.996 ×

0.993 × 0.982 = 2−44.13, we obtain N = 295.89 for α = 89 using Equation 3. The mi

values (1 ≤ i ≤ 5) are 46, 29, 46, 58 and 50 respectively for the 5 OD bits. By fixing
k = 5, R = 7, r = 5 and m = 87 in Equation 5, we get C = 2172.92. The final data
and time complexity values are p−1 × 295.89 = 2101.09 and p−1 × 2172.92 = 2178.12

respectively, with p−1 = 25.2.

5. Using the post-processing method, we add a few potential bits to the PNB set of
169 bits mentioned in [XXTQ24]. However, the bias value ϵa we obtain for 170 bits
increased the value of N beyond 296, which gives an infeasible attack. Therefore, we
use the PNB sets of 169 bits and, through the computational techniques thoroughly
explained in Section 3, we achieve the optimal complexity value.

In Table 3, we compare the complexity values for different sizes of PNB sets, specifying
the corresponding bias value ϵa for each observation.

Table 3: Complexity for Different Sizes of PNB set for 7-round ChaCha

# PNBs Bias ϵa Bias ϵ Time N

Complexity
156 0.0030 2−40.66 2184.10 288.87

163 0.0010 2−42.25 2180.33 292.11

167 0.0005 2−43.25 2178.35 294.13

169 0.00027 2−44.13 2178.12 295.89

170 0.00018 2−44.72 - > 296

5 Cryptanalysis of ChaCha beyond 7 rounds
In this section, we will explain the cryptanalysis of ChaCha for 7.25 and 7.5 rounds.
Recently, there have been two important works [XXTQ24] and [Dey24] that mentioned
the cryptanalysis of ChaCha beyond 7 rounds. A detailed discussion about the techniques
and the complexity values in both works are first presented. In the next two subsections,
we provide our results for 7.25 and 7.5 rounds, claiming the best result over the previous
attacks.

In [XXTQ24], Xu et al. provided the attack on two round versions of ChaCha 7.25 and
7.5⊕. For the 7.25-round, they obtained 133 PNBs and data complexity as 2100.8 and time
complexity as 2223.9. They mentioned the same data and time complexity for 7.5⊕-round.
This observation is because there is no difference between the 7.25 and 7.5⊕ round versions
of ChaCha. The 7.5⊕ version is obtained by adding 4 addition operations (⊞) to the 7.25
round version, which does not affect the PNB set. Since both versions of ChaCha have
the same security against the PNB-based differential-linear attack, Xu et al. claimed that
the complexity values for both versions are the same. Hence, in an actual sense, Xu et
al. provided the results only up to 7.25 rounds. They have not extended their technique
for 7.5 rounds. For the PNB-based differential-linear attack, the authors used the same
ID − OD as they used for the 7-round ChaCha.
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The first-ever key recovery attack on 7.5-round ChaCha is presented in [Dey24]. In this
work, the cryptanalysis of both 7.25 and 7.5 rounds has been explained thoroughly. However,
the major difference in the attacks is the differential-linear distinguisher (ID − OD). For
the attack against 7.25-round, the author used the 5-round ID − OD given by Bellini et
al. [BGG+23], whereas for the attack against 7.5-round, the 4-round ID − OD given by
[BLT20] is used. The 4-round differential has the bias value ϵd = 0.0032, which is much
higher than the bias value for the 5-round differential. Moreover, the author has also
modified the error probability value Prnd so that the time complexity value is below 2256.
The attack is only applicable for 79% of all keys, as the author did not use the concept of
right pair in the attack against 7.5-round ChaCha. Hence, this result can be improved by
making it applicable to all the keys.

5.1 Analysis of Attacks on 7.25-round ChaCha
This subsection presents the attacks on the 7.25-round ChaCha and highlights the key
findings. Firstly, we discuss our improvements over the works of [Dey24] and [XXTQ24]
and in subsection 5.1.3 we provided our results in detail.

5.1.1 Improvement over work [Dey24]

In this work, the attack on 7.25-round is observed by finding 121 PNBs with bias value
ϵa = 0.0020. This reduces the data complexity to 2100.90 and time complexity to 2228.24.
We use our PNB algorithm (Algorithm 1) to obtain a set of 121 PNBs and the bias
value ϵa = 0.0039. Using this result, we can improve the work of [Dey24], but the
count of PNBs should be increased in order to provide a major improvement over the
attack over the recent work [XXTQ24]. We also obtained the improved PNB sets for 5
OD positions X

(5)
2 [0], X

(5)
6 [7], X

(5)
6 [19], X

(5)
10 [12] and X

(5)
14 [0]. Combining all bias values,

ϵ = ϵd × ϵa ×
5∏

i=1
ϵi = 2−32.2 × 0.0039 × 0.968 × 0.978 × 0.972 × 0.983 × 0.96 = 2−40.4,

we obtain N = 287.78 for α = 49 using Equation 3 and C = 2212.64 by fixing k = 5,
R = 7.25, r = 5 and m = 135 in Equation 5. The final data and time complexity values
for p−1 × 287.78 = 292.98 and p−1 × 2212.64 = 2217.84 respectively for this computation.

5.1.2 Improvement over work [XXTQ24]

The work of [XXTQ24] provided an improvement of around 24 over [Dey24]. The set of
133 PNBs was obtained using their PNB algorithm, which reduces the complexity value.
The data complexity is 2100.8 and time complexity is 2223.9. This complexity value can
be improved using the mathematical formulation discussed for the time complexity value
mentioned in [Dey24]. In the next section, we have discussed our cryptanalysis against a
7.25-round ChaCha in detail.

5.1.3 Our Result

We get an improved PNB set for 7.25-round using Algorithm 1, but to increase the PNB
count, we have to add some more bits to the PNB set, as mentioned in the post-processing
step. To improve the recent attacks against 7.25-round ChaCha, we use the PNB set of
133 bits mentioned in [XXTQ24]. The bias ϵa = 2−11.25 for these 133 bits. Adding bit
{195} in the PNB, using the post-processing step mentioned in Subsubsection 3.2.2, we
add 1 more PNB in the set. The bias value ϵa = 0.00025 for the set of 134 PNBs. Using
the technique mentioned in [Dey24], we obtain the PNB set for the 5 OD positions. Also,
to compute the complexity values, we use the bias value ϵd = 2−32.2 improved by using
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the differential-linear hull technique. The 134 bits are arranged in the ascending order as
given below:

0, 7, 8, 20, 21, 22, 31, 35, 44, 45, 46, 47, 48, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 71, 72, 73, 74, 77, 80, 81, 83, 84, 85, 86, 89, 90, 91, 95, 99, 100, 108,
109, 110, 111, 123, 124, 125, 126, 127, 128, 129, 130, 140, 141, 142, 143, 152, 153,
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195, 198, 199, 200, 204, 205, 206, 207, 210, 211,
212, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 231, 232, 244, 245, 246, 247,
248, 249, 255.

The 5 ODi positions are X
(5)
2 [0], X

(5)
6 [7], X

(5)
6 [19], X

(5)
10 [12] and X

(5)
14 [0]. The count of

PNB sets for these five OD positions are 66, 71, 67, 34, and 65, and the bias value ϵi

corresponding to these positions are 0.986, 0.978, 0.972, 0.983, and 0.960, respectively. We
provide this PNB list for five OD bits below.

PNB Set for 7.25-round

OD1 (X(5)
2 [0]) 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25,

26, 27, 28, 29, 30, 49, 50, 52, 53, 54, 87, 88, 92, 93, 94, 102, 103, 104, 105, 106, 107,
112, 113, 114, 122, 131, 132, 144, 145, 146, 147, 148, 149, 150, 151, 196, 208, 209,
213, 214, 215, 216, 217, 233, 234, 243.
Count = 66, Bias = 0.968.

OD2 (X5
6 [7]) 19, 23, 24, 25, 26, 27, 28, 29, 30, 39, 40, 41, 42, 43, 69, 78, 79, 82, 87,

88, 92, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 135, 136, 137, 138, 139, 144, 145, 146, 147, 148,
149, 150, 151, 201, 202, 203, 208, 209, 233, 234, 235, 243, 250, 251, 252, 253, 254.
Count = 71, Bias = 0.978.

OD3 (X(5)
6 [19]) 1, 2, 3, 4, 5, 6, 36, 37, 38, 39, 40, 52, 53, 54, 69, 70, 75, 76, 78, 79,

92, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 131, 132, 133, 134, 147, 148, 149, 150, 151, 201, 202, 213,
214, 215, 216, 217, 228, 229, 230, 233, 234, 235, 243. Count = 67, Bias = 0.972.

OD4 (X(5)
10 [12]) 32, 33, 49, 50, 52, 53, 54, 69, 70, 75, 76, 78, 79, 82, 87, 88, 92, 93,

94, 96, 97, 196, 208, 209, 213, 214, 215, 216, 217, 250, 251, 252, 253, 254. Count
= 34, Bias = 0.983.

OD5 (X(5)
14 [0]) 1, 2, 3, 4, 5, 6, 16, 17, 18, 26, 27, 28, 29, 30, 32, 33, 34, 36, 37, 38,

39, 40, 41, 42, 43, 49, 50, 52, 53, 54, 69, 70, 75, 76, 78, 79, 82, 104, 105, 106, 107,
120, 121, 135, 136, 137, 138, 139, 147, 148, 149, 150, 151, 196, 197, 201, 202, 203,
216, 217, 240, 241, 252, 253, 254.
Count = 65, Bias = 0.960.

Therefore, for ϵ = ϵd × ϵa ×
5∏

i=1
ϵi = 2−32.2 ×0.00025×0.968×0.978×0.972×0.983×0.96 =

2−43.95, we obtain N = 295.36, keeping α = 54 using Equation 3 and C = 2207.23 by
fixing k = 5, R = 7.25, r = 5 and m = 122 in Equation 5. The final data and time
complexity values for p−1 × 295.36 = 2100.56 and p−1 × 2207.23 = 2212.43 respectively for
this computation.
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5.2 Critical Analysis of Attack on 7.5-round
In this section, we describe the cryptanalysis of 7.5-round ChaCha. First, we revisit the
attack idea mentioned in [Dey24] and later discuss the improvement we can achieve using
our techniques.

The ID − OD pair used in attack against 7.5-round ChaCha is X
(0)
13 [6] − (∆X

(4)
2 [0] ⊕

∆X
(4)
8 [0] ⊕ ∆X

(4)
7 [7]) which is different from the ID − OD pair (Equation 6) we use in the

attack against 7 and 7.25 ChaCha. The bias value for this ID − OD pair is ϵd = 0.0032.
The PNB set size used by [Dey24] is 23, with a bias value ϵa = 0.012 after using the
memory approach introduced in [DGSS23]. In the memory approach, the PNBs from the
IV column (X1, X5, X9, X13) are not included in the PNB set. This is done to avoid the
multiplication of N and C with p−2 to compute the final data and time complexity as
explained in Subsection 2.4.

Dey [Dey24] introduced the concept of finding the PNB for OD bits. The count of
PNBs for the 3 ODi positions X

(4)
2 [0], X

(4)
8 [0] and X

(4)
7 [7] is 16, 20 and 16 with ϵi’s 0.66,

0.97 and 0.84 as mentioned in Table VII of [Dey24]. Therefore, ϵ = ϵd × ϵa ×
3∏

i=1
ϵi =

0.0032 × 0.012 × 0.66 × 0.97 × 0.84 = 2−15.56. For the computation of N , the probability
of non-detection error is considered Prnd = 0.147, which is different from the Prnd used
in most previous works starting from [AFK+08]. Using Prnd = 0.147, term 3

√
1 − ϵ2 in

Equation 3 will be replaced by −0.8
√

1 − ϵ2 as mentioned in Section VI-C of [Dey24]. The
data and time complexity values using the memory approach are 232.64 and 2255.24.

Our Result

To provide the attack against 7.5-round ChaCha, we added 3 PNBs {89, 116, 226} using
our post-processing step in the existing PNB set of 23 bits to improve this attack. For the
PNB list of 26 PNBs mentioned below, we obtain bias ϵa = 0.0048.

70, 71, 72, 75, 78, 86, 87, 89, 95, 103, 104, 105, 106, 116, 120, 121, 122, 123, 127,
155, 156, 157, 158, 159, 226, 255.

Also, we improve the PNB count for 3 ODi positions X
(4)
2 [0], X

(4)
8 [0] and X

(4)
7 [7] with

bias values ϵi’s 0.848, 0.97 and 0.856 respectively over the work of [Dey24].

PNB Set for 7.5-round

OD1 (X(4)
2 [0]) 35, 36, 37, 38, 75, 76, 77, 83, 95, 155, 156, 218, 255.

Count = 13, Bias = 0.848.

OD2 (X4
8 [0]) 0, 1, 2, 31, 97, 98, 99, 100, 101, 108, 125, 126, 140, 141, 142, 143, 152,

153, 154. Count = 19, Bias = 0.97.

OD3 (X(4)
7 [7]) 73, 74, 97, 98, 99, 100, 101, 102, 115, 117, 118, 119, 125, 126, 135.

Count = 15, Bias = 0.856.

Hence, the bias value ϵ = ϵd × ϵa ×
3∏

i=1
ϵi = 0.0032 × 0.0048 × 0.848 × 0.97 × 0.856 = 2−16.49,

keeping α = 4.5, we obtain N = 234.47 using the same formulation mentioned in [Dey24]
(Prnd = 0.147 i.e., replace term 3

√
1 − ϵ2 by −0.8

√
1 − ϵ2 in Equation 3 ). We improved

attack complexity with an increase in the PNB count. Using Equation 5, we obtain
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the value of C = 2253.23. The data and time complexity values are 234.47 and 2253.23,
respectively.

An important observation from using Equation 3 without modification is that the value of
C exceeds 2256, making the attack infeasible. However, by applying the memory-based
approach, the data and time complexities are significantly reduced to 234.47 and 2253.23,
respectively. Notably, this approach successfully identifies the correct pair for only 79% of
the keys, limiting the attack’s overall effectiveness.

Our analysis of the 7.5-round ChaCha shows that introducing new techniques can further
enhance the attack. Using our methodology, we reduced the time complexity to 2253.23,
with the potential for further improvements in future research. However, this requires
additional analysis, particularly by experimenting with a toy version of ChaCha [DGM23].
To determine the appropriate value of Prnd that would enable the development of more
effective and refined techniques, further reducing time complexity and enhancing the overall
feasibility of attacking ChaCha.

6 Rebuttal of the Work by Wang et al. [WDL+25]
Recently, in 2025 Wang et al. [WDL+25] presented work on the analysis of Differential-
Linear attacks on ChaCha from recent works in IEEE TIT [Dey24] and INDOCRYPT
2024 [SDSM25]. Wang et al. claim to find some errors in the work from IEEE TIT
[Dey24] and INDOCRYPT 2024 [SDSM25] and give the cryptanalytic attacks based on
their new analysis. Wang et al. assert to modify the attack technique “Divide-and-
Conquer” introduced in [Dey24]. However, the attacks based on this modified technique
have extremely large time and data complexities compared with the claimed attacks in
[Dey24, SDSM25]. They propose that the technique introduced in [Dey24] may not be
able to obtain improved differential-linear attacks on ChaCha,

In [WDL+25, Section 3, Page 3], Wang et al. critically examine the prior works on ChaCha
from IEEE TIT [Dey24] and INDOCRYPT 2024 [SDSM25] and state

“The attacker utilizes different thresholds for the linear combination OD and
the output difference bit ODi.”

This above statement comes from the assumption that Theorem 1 is used to obtain the PNB
set for both OD and each output difference bit ODi, which is not the case. Notably, Wang
et al. only referenced a segment of Theorem 1 from [Dey24], despite the fact that neither
of the works [Dey24, SDSM25] claims to employ Theorem 1 for identifying the PNBs. Let
us compare the cryptanalytic attack on 7-Round ChaCha mentioned in [WDL+25] and
the works [Dey24, SDSM25]. This will help us to thoroughly understand the technique
introduced by Dey [Dey24], which is further modified by Sharma et al. [SDSM25], and
draw a conclusion about the claim of Wang et al. [WDL+25].

Discussion on the Divide-and-Conquer Approach for 7-Round ChaCha

In our research, we determine the PNB set for the OD position (∆X
(5)
2 [0] ⊕ ∆X

(5)
6 [7] ⊕

∆X
(5)
6 [19] ⊕ ∆X

(5)
10 [12] ⊕ ∆X

(5)
14 [0]) using the Improved Algorithm for PNBs (Algorithm 1).

The initial PNB set consists of 169 elements. We set a threshold of θ = 0.30 to select 163
PNBs, while the remaining six PNBs are included through a post-processing technique,
as detailed in Subsection 4.3. As outlined by Dey [Dey24], after identifying the PNBs for
the linear combination, the bias value is determined by guessing significant key bits. S
denotes the set of significant key bits for the OD position. The computed bias for guessing
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set S is ϵa = 0.00027. Let us thoroughly discuss the work of Sharma et al.[SDSM25] based
on the analysis by Wang et al. [WDL+25].

• After obtaining the set of PNBs and significant key bits for the OD position (the
linear combination of ODi positions), we find the set of PNBs and the remaining
significant key bits for each ODi position and Si denotes the set of significant key
bits for the ODi position. The correlation value ϵa is obtained for the correct guess
of set S, and by guessing the set Si correctly, the bias value we get is ϵi. Divide-
and-Conquer approach [Dey24] explicitly correlates these value values and provides
a new attack procedure against ChaCha.

• Importantly, neither of the works [Dey24, SDSM25] suggests that the threshold value
for identifying PNBs in the linear combination must be identical to the threshold for
individual ODi bit. Both studies employ a modified PNB algorithm as an extension
of the basic PNB algorithm. In [SDSM25], an initial PNB set is established using
a specific threshold, but certain PNBs are subsequently added or removed based
on the improved PNB algorithm. Consequently, a single fixed threshold cannot be
universally applied to all cases, which is why neither work [Dey24, SDSM25] specifies
a threshold value.

• In contrast, Wang et al. adopt a threshold of 0.435 and identify 156 PNBs as
mentioned in their work in [WDL+25, Section 4, Page 5]. However, their methodology
diverges from the PNB algorithm described in previous works [Dey24, SDSM25]. As
a result, their approach is not optimal for identifying PNBs. Additionally, they apply
the same algorithm to determine the PNB set for each ODi, which further raises
concerns about the validity of their findings.

• Moreover, the procedure for identifying PNBs for individual ODi bits, as outlined
in [Dey24], has not been accurately implemented by Wang et al. [WDL+25]. The
PNB set for each ODi should be derived using the same PNB algorithm as the one
applied for the linear combination of ODi bits.

• For the attack on 7-round ChaCha, as detailed in [SDSM25], the PNB set for
ID − OD pair is determined using the improved PNB algorithm. Setting a threshold
of θ = 0.90 and applying the post-processing technique, we obtain 210 PNBs. After
excluding the 169 PNBs already given in the PNB set mentioned in Subsection 4.3,
we derive a final subset of 41 PNBs. These 41 PNBs pertain specifically to OD1 and
not to the linear combination of ODi bits. The bias value for these PNBs is 0.983.

Thus, after identifying the PNBs, we find the set of extra PNBs for each ODi by
eliminating the PNBs obtained for the OD position. The corresponding biases ϵi are
also obtained for each ODi position. The final bias value ϵ is computed as explained
in Section V [Dey24].

In conclusion, the PNB set for OD position and k ODi positions are obtained separately,
and the extra PNBs are extracted for each ODi position from their respective PNB set by
removing the PNBs obtained for the OD position. Wang et al.’s [WDL+25] analysis of
the Divide-and-Conquer approach lacks a thorough understanding of this PNB selection
process. Their assertion that different thresholds are used for the linear combination OD
and individual ODi bits is misleading, as both previous works [Dey24, SDSM25] employ
a refined PNB algorithm that does not rely on a single fixed threshold. The approach
we have outlined, based on the Improved PNB Algorithm, more accurately captures the
dependencies within the cipher structure and ensures a more precise bias estimation.
Therefore, our findings highlight the importance of correctly applying the PNB algorithm
to maintain the integrity of the Divide-and-Conquer framework in the cryptanalysis of
ChaCha.
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7 Conclusion
In this paper, we propose a novel heuristic to construct improved sets of Probabilistically
Neutral Bits (Subsection 3.2) and also revisit the formula (Equation 5) for calculating the
complexities of the attacks on ChaCha. Our ideas help in reducing the time complexity
value for the cryptanalysis of 7, 7.25, and 7.5-round ChaCha over the existing attacks
(Sections 4, 5). Connecting relevant ideas mentioned in [Dey24, XXTQ24] with our
refinements, we improved the time complexities for 7 and 7.25 rounds by order of around
211. We also provided an improved time complexity value for 7.5-round ChaCha. It
is important to see how refinements of previous techniques and possibly new ideas can
improve the cryptanalysis against ChaCha. We also examine the study by Wang et al.
[WDL+25] and address their assertion of identifying errors in the cryptanalysis presented
in IEEE TIT [Dey24] and INDOCRYPT 2024 [SDSM25].

Acknowledgments: The authors would like to thank the anonymous reviewers for their
detailed comments that improved the editorial as well as technical presentation of the paper.
The last author (Subhamoy Maitra) acknowledges the support of MeitY, Government of
India, related to the initiative “Cluster - Cryptography, Information Security Education
and Awareness (ISEA) Project Phase - III".

References
[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and

Christian Rechberger. New Features of Latin Dances: Analysis of Salsa,
ChaCha, and Rumba. In Kaisa Nyberg, editor, Fast Software Encryption, vol-
ume 5086, pages 470–488, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
URL: https://doi.org/10.1007/978-3-540-71039-4_30.

[BBC+22] Christof Beierle, Marek Broll, Federico Canale, Nicolas David, Antonio Flórez-
Gutiérrez, Gregor Leander, María Naya-Plasencia, and Yosuke Todo. Improved
Differential-Linear Attacks with Applications to ARX Ciphers. J. Cryptol.,
35(4), oct 2022. URL: https://doi.org/10.1007/s00145-022-09437-z.

[Ber05] Daniel J. Bernstein. The Poly1305-AES Message-Authentication Code. In
Henri Gilbert and Helena Handschuh, editors, Fast Software Encryption, pages
32–49, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. URL: https:
//doi.org/10.1007/11502760_3.

[Ber08] Daniel Bernstein. ChaCha, a variant of Salsa20. In Workshop Record of SASC,
pages vol. 8, pp. 3–5, 2008. URL: https://cr.yp.to/chacha/chacha-20080
120.pdf.

[BGG+23] Emanuele Bellini, David Gerault, Juan Grados, Rusydi H. Makarim, and
Thomas Peyrin. Boosting Differential-Linear Cryptanalysis of ChaCha7 with
MILP. IACR Transactions on Symmetric Cryptology, 2023(2):189–223, 2023.
URL: https://doi.org/10.46586/tosc.v2023.i2.189-223.

[BLT20] Christof Beierle, Gregor Leander, and Yosuke Todo. Improved Differential-
Linear Attacks with Applications to ARX Ciphers. In CRYPTO(3), volume
12172 of Lecture Notes in Computer Science, pages 329–358. Springer, 2020.
URL: https://doi.org/10.1007/978-3-030-56877-1_12.

[BS91] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In Alfred J. Menezes and Scott A. Vanstone, editors, Advances in
Cryptology-CRYPTO’ 90, volume 537, pages 2–21, Berlin, Heidelberg, 1991.

https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/s00145-022-09437-z
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/11502760_3
https://cr.yp.to/chacha/chacha-20080120.pdf
https://cr.yp.to/chacha/chacha-20080120.pdf
https://doi.org/10.46586/tosc.v2023.i2.189-223
https://doi.org/10.1007/978-3-030-56877-1_12


N. K. Sharma et al. 21

Springer Berlin Heidelberg. URL: https://doi.org/10.1007/3-540-38424
-3_1.

[CM17] Arka Rai Choudhuri and Subhamoy Maitra. Significantly Improved Multi-bit
Differentials for Reduced Round Salsa and ChaCha. IACR Transactions on
Symmetric Cryptology, 2016(2):261–287, 2017. URL: https://doi.org/10.1
3154/tosc.v2016.i2.261-287.

[CSN21] Murilo Coutinho and Tertuliano C. Souza Neto. Improved Linear Approxima-
tions to ARX Ciphers and Attacks Against ChaCha. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT
2021, volume 12696, pages 711–740, Cham, 2021. Springer International Pub-
lishing. URL: https://doi.org/10.1007/978-3-030-77870-5_25.

[DDSM22] Sabyasachi Dey, Chandan Dey, Santanu Sarkar, and Willi Meier. Revisiting
Cryptanalysis on ChaCha From Crypto 2020 and Eurocrypt 2021. IEEE
Transactions on Information Theory, 68(9):6114–6133, 2022. URL: https:
//doi.org/10.1109/TIT.2022.3171865.

[Dep] ChaCha Usage & Deployment. URL: https://ianix.com/pub/chacha-dep
loyment.html.

[Dey24] Sabyasachi Dey. Advancing the idea of probabilistic neutral bits: first key
recovery attack on 7.5 round ChaCha. IEEE Transactions on Information
Theory, 2024. URL: https://doi.org/10.1109/TIT.2024.3389874.

[DGM23] Sabyasachi Dey, Hirendra Kumar Garai, and Subhamoy Maitra. Cryptanaly-
sis of Reduced Round ChaCha- New Attack and Deeper Analysis. IACR
Transactions on Symmetric Cryptology, page 89–110, Mar. 2023. URL:
https://doi.org/10.46586/tosc.v2023.i1.89-110.

[DGSS22] Sabyasachi Dey, Hirendra Kumar Garai, Santanu Sarkar, and Nitin Kumar
Sharma. Revamped Differential-Linear Cryptanalysis on Reduced Round
ChaCha. In Orr Dunkelman and Stefan Dziembowski, editors, Advances
in Cryptology – EUROCRYPT 2022, pages 86–114, Cham, 2022. Springer
International Publishing. URL: https://doi.org/10.1007/978-3-031-070
82-2_4.

[DGSS23] Sabyasachi Dey, Hirendra Kumar Garai, Santanu Sarkar, and Nitin Kumar
Sharma. Enhanced Differential-Linear Attacks on Reduced Round ChaCha.
IEEE Transactions on Information Theory, 69(8):5318–5336, 2023. URL:
https://doi.org/10.1109/TIT.2023.3269790.

[DS17] Sabyasachi Dey and Santanu Sarkar. Improved analysis for reduced round
Salsa and Chacha. Discrete Applied Mathematics, 227:58–69, 2017. URL:
https://doi.org/10.1016/j.dam.2017.04.034.

[Goo] Google. URL: https://varindia.com/news/for-the-entry-level-smart
phones-google-announced-a-new-encryption-solution--adiantum.

[IKM11] Tsukasa Ishiguro, Shinsaku Kiyomoto, and Yutaka Miyake. Latin Dances
Revisited: New Analytic Results of Salsa20 and ChaCha. In Sihan Qing, Willy
Susilo, Guilin Wang, and Dongmei Liu, editors, Information and Commu-
nications Security, pages 255–266, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. URL: https://doi.org/10.1007/978-3-642-25243-3_21.

[LH94] Susan K. Langford and Martin E. Hellman. Differential-Linear Cryptanalysis.
In Yvo G. Desmedt, editor, Advances in Cryptology — CRYPTO ’94, pages

https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.13154/tosc.v2016.i2.261-287
https://doi.org/10.13154/tosc.v2016.i2.261-287
https://doi.org/10.1007/978-3-030-77870-5_25
https://doi.org/10.1109/TIT.2022.3171865
https://doi.org/10.1109/TIT.2022.3171865
https://ianix.com/pub/chacha-deployment.html
https://ianix.com/pub/chacha-deployment.html
https://doi.org/10.1109/TIT.2024.3389874
https://doi.org/10.46586/tosc.v2023.i1.89-110
https://doi.org/10.1007/978-3-031-07082-2_4
https://doi.org/10.1007/978-3-031-07082-2_4
https://doi.org/10.1109/TIT.2023.3269790
https://doi.org/10.1016/j.dam.2017.04.034
https://varindia.com/news/for-the-entry-level-smartphones-google-announced-a-new-encryption-solution--adiantum
https://varindia.com/news/for-the-entry-level-smartphones-google-announced-a-new-encryption-solution--adiantum
https://doi.org/10.1007/978-3-642-25243-3_21


22 Improved Cryptanalytic Results against ChaCha

17–25, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. URL: https:
//doi.org/10.1007/3-540-48658-5_3.

[Mai16] Subhamoy Maitra. Chosen IV cryptanalysis on reduced round ChaCha and
Salsa. Discrete Applied Mathematics, 208:88–97, 2016. URL: https://doi.or
g/10.1016/j.dam.2016.02.020.

[MIM22] Shotaro Miyashita, Ryoma Ito, and Atsuko Miyaji. PNB-Focused Differential
Cryptanalysis of ChaCha Stream Cipher. In Khoa Nguyen, Guomin Yang,
Fuchun Guo, and Willy Susilo, editors, Information Security and Privacy,
pages 46–66, Cham, 2022. Springer International Publishing. URL: https:
//doi.org/10.1007/978-3-031-22301-3_3.

[MY93] Mitsuru Matsui and Atsuhiro Yamagishi. A New Method for Known Plaintext
Attack of FEAL Cipher. In Rainer A. Rueppel, editor, Advances in Cryptology

— EUROCRYPT’ 92, pages 81–91, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg. URL: https://doi.org/10.1007/3-540-47555-9_7.

[NL18] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols.
RFC 8439, June 2018. URL: https://www.rfc-editor.org/info/rfc8439.

[SD24] Nitin Kumar Sharma and Sabyasachi Dey. Analyzing the probability of key
recovery in the differential attacks against chacha. IEEE Access, 12:37000–
37011, 2024. URL: 10.1109/ACCESS.2024.3372857.

[SDSM25] Nitin Kumar Sharma, Sabyasachi Dey, Santanu Sarkar, and Subhamoy Maitra.
On improved cryptanalytic results against chacha for reduced rounds ≥ 7. In
Sourav Mukhopadhyay and Pantelimon Stănică, editors, Progress in Cryptology
– INDOCRYPT 2024, pages 29–52, Cham, 2025. Springer Nature Switzerland.

[SZFW13] Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu. Improved Key
Recovery Attacks on Reduced-Round Salsa20 and ChaCha. In Taekyoung
Kwon, Mun-Kyu Lee, and Daesung Kwon, editors, Information Security and
Cryptology – ICISC 2012, pages 337–351, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-37682-5_2
4.

[WDL+25] Xinhai Wang, Lin Ding, Zhengting Li, Jiang Wan, and Bin Hu. Revisiting the
differential-linear attacks on ChaCha from IEEE TIT and INDOCRYPT 2024
(extended abstract). Cryptology ePrint Archive, Paper 2025/206, 2025. URL:
https://eprint.iacr.org/2025/206.

[WLHL23] Shichang Wang, Meicheng Liu, Shiqi Hou, and Dongdai Lin. Moving a Step of
ChaCha in Syncopated Rhythm. In Helena Handschuh and Anna Lysyanskaya,
editors, Advances in Cryptology – CRYPTO 2023, pages 273–304, Cham, 2023.
Springer Nature Switzerland. URL: https://doi.org/10.1007/978-3-031
-38548-3_10.

[XXTQ24] Zhichao Xu, Hong Xu, Lin Tan, and Wenfeng Qi. Differential-Linear Cryptanal-
ysis of Reduced Round ChaCha. IACR Transactions on Symmetric Cryptology,
2024:166–189, 06 2024. URL: https://doi.org/10.46586/tosc.v2024.i2
.166-189.

https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1016/j.dam.2016.02.020
https://doi.org/10.1016/j.dam.2016.02.020
https://doi.org/10.1007/978-3-031-22301-3_3
https://doi.org/10.1007/978-3-031-22301-3_3
https://doi.org/10.1007/3-540-47555-9_7
https://www.rfc-editor.org/info/rfc8439
10.1109/ACCESS.2024.3372857
https://doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/978-3-642-37682-5_24
https://eprint.iacr.org/2025/206
https://doi.org/10.1007/978-3-031-38548-3_10
https://doi.org/10.1007/978-3-031-38548-3_10
https://doi.org/10.46586/tosc.v2024.i2.166-189
https://doi.org/10.46586/tosc.v2024.i2.166-189

	Introduction
	Related Works
	Contributions & Organization

	Specifications, Preliminaries & Background
	The Design of ChaCha
	Differential-Linear Cryptanalysis 
	Probabilistic Neutral Bits (PNBs)
	Finding Right Pair
	Probabilistically Independent IV Bits

	Techniques Used in this Work
	Differential-Linear Hull Technique Proposed in TOSC24
	Improved Algorithm for PNBs: Use of Conditional Probability
	Improved Complexity Calculation as Explained in deyIEEE

	Description of our Cryptanalysis on 7-round ChaCha
	Results of deyIEEE and TOSC24
	Our Cryptanalytic Steps
	Experimental Results

	Cryptanalysis of ChaCha beyond 7 rounds
	Analysis of Attacks on 7.25-round ChaCha
	Critical Analysis of Attack on 7.5-round

	Rebuttal of the Work by Wang et al. wangeprint
	Conclusion

